Origin 6.1

LabTalk
Developer's Guide

OriginLab Corporation

Copyright

OriginLab, Origin, and LabTalk are either registered trademarks or trademarks of OriginLab
Corporation.

Microsoft, Windows, and Windows NT are registered trademarks of the Microsoft Corporation.

(02000 OriginLab Corporation. All rights reserved.

The software (including any images, "applets," photographs, animations, video, audio, music and text
incorporated into the software) is owned by OriginLab Corporation or its suppliers and is protected by
United States copyright laws and international treaty provisions. Therefore, you must treat the software
like any other copyrighted material (e.g., abook or musical recording) except that you may either (a)
make one copy of the software solely for backup or archival purposes, or (b) transfer the software to a
single hard disk provided you keep the original solely for backup or archival purposes. Y ou may not
copy the printed material s accompanying the software, nor print copies of any user documentation
provided in "online" or electronic form.

Grant of License

This OriginLab Corporation End-User License Agreement ("License") permits you to use one copy of
the OriginLab Corporation product Origin, which may include user documentation provided in "online"
or electronic form ("software"), on any single computer, provided the softwareisin use on only one
computer at any onetime. If this packageis alicense pack, you may make and use additional copies of
the software up to the number of licensed copies authorized. If you have multiple licenses for the
software, then at any time you may have as many copies of the software in use as you have licenses.
The softwareis"in use" on a computer when it isloaded into the temporary memory (i.e., RAM) or
installed into the permanent memory (e.g., hard disk, CD-ROM, or other storage device) of that
computer, except that a copy installed on a network server for the sole purpose of distribution to other
computersisnot "in use". If the anticipated number of users of the software will exceed the number of
applicable licenses, then you must have a reasonable mechanism or process in place to ensure that the
number of persons using the software concurrently does not exceed the number of licenses.

OriginLab Corporation Technical Support

Support hours are 8:30 A.M. to 6:00 P.M. EST. Users must have their Origin serial number and
registration code ready. Users who have not yet registered with OriginLab Corporation should be
prepared to register upon calling for technical support.

1-800-969-7720 (U.S. & Canada) OriginLab Corporation
Tel: +413-586-2013 One Roundhouse Plaza
Fax: + 413-585-0126 Northampton, MA 01060

tech@originlab.com USA

Contents

Contents

Getting Started 5
L1 INEFOTUCTION. ...ttt ettt b et b e b nns 5
1.2 HOW TO USE ThIS MBNUALccueieiiiiiiiieieee e e 6
1.3 MaNUal CONVENTIONSc.ceueiriieiiriiieierie ettt b e nnne 6
1.4 QUICK SEart TULOMAIS...cvecieceeecieece ettt et e b et e tesaaesreesreereennas 7

1.4.1 The SCript WINCOWcccoiiiieieeeie ettt et st b 8
1.4.2 WiINAOW BULLONScceeuiiiirieiisiesieisie sttt sre e 8
143 SCHIPL FIES .o e 10
LA.4 IMBCTOSeicveeieeeeeete sttt e et e 13
Advanced Origin 15
2 R @Y V1= YV o) @ 4o] o SRR 15
2.1 0 PrOJECES ..ottt ettt et bbb bbb 15
2.1.2 Child WINQOWS........ociveuiiririeinie ettt st r e sne b sre e 15
2.1.3 DABSELS.....ecveueereeieresieie sttt bbb bt e bbbt e bbb e e 16
P < 010 = =PTSRS 17
2.1.5 Graphsand LayerS......cccccoveieriniereeieie et s e e e e 19
2.1.6 LADT @K uiiitieiiieeieictee ettt bbb 20
217 CUINVE FITHNG ..ttt e sb e s s 21
2.1.8 Origin's WindOW ODJECES.......cccueiueriirieieniereeieie st 22
2.2 AVaNCed USE Of LAYEISccueieeieieiesie ettt sttt st e sb e 28
2.2. 1 LINKEO LAYEIS ..c.eeiueeieeeeie ettt sttt s s se et s b 29
2.2.2 SCAIIMNG vttt bbbt b et e bbb e b e b 33
2.3 AAGITIONGl TIPS .eiueetiiteiteeteeie ettt sttt e e e e besbesbesbe e e e s e seesbesbesaesnnans 36
2.3.1 MEIQING PagES.....ccueiiiiiiiie ittt sttt e s 36
2.3.2 Extracting Layersto Separate Pages.cocurerererereeieeseese e e 37
2.3.3 Extracting Data PlotSto Separate Layers........ccoceeereeeerieneene e 37
2.3.4 Showing Only Every nth Symbol ..o 37
2.3.5 Using Datasets as a Plotting ENhancementccooeveeereeeeneenene e 39
2.3.6 Using Escape Sequencesto Format Labels........ccocooeieeirieeiinenene e 45
2.3.7 VIBW MOUES.oieciiitiieiesieseeiest ettt 46

Contents e i

Contents

2.3.8 Updating the DiSPlayccccoeieieiericiesese e 46

2.3.9 CONtrol REGIONS.......cciieieiiieceeeseese et s e eae s e e e sse e e tesrestesneeneenaenaeneesrens 49

2.3.10 Screen PIOtiNg SPEEAc.ccvieiiiiiceerere s 50

P20 50 T (] oSS 50
LabTalk 53
T80 A g1 o (U (o o USSP 53
B2 VATBDIES ..ttt et ens 55
3.2.1 NUMENC VaiahlES ..o e 55

3.2.2 SHINGVATADIEScveee e nne s 56

3.2.3 NUMEXIC tO StNG CONVEISION......cveiirierieieesieseereeeeseeseeseestessesresseeeesaessesseseens 57

3.2.4 DeEleting VariableSccoveeeieiee e see et 57

GG T O] o= 0] S 57
ICIC I AN 110100 1= ([l @0 1< - o RS 57

3.3.2 ASSIGNMENE OPEFBEOIS. .. .cveieeriereereeeseeseeseseesteseesresseeseeeessessessessesseesessessensessens 58

3.3.3 Logical and Relational OPerators.........ccuvieeereeeerereseseseseereeseeseeseeseeseesnens 58

3.3.4 BitWiSE OPEIEIOIS.....ccuveveeiereestistesteeseeseeseeseestessesressesseeseesseseessessessessessesssensensens 59

3.3.5 Conditional OPEraLOrS........ccveereeeereeriereseseseseeeeseeseeseestessesresseeeeaeneenseseens 59

34 CAlCUIBLIONS. ..ottt ettt s et s e e ens 60
IC I RS o= 1= TR @ o = - 1 o 01~ TS 60

3.4.2 VECLOr OPEALiONS.....ccueivirieieistereeeeseessestestestesseeseeseessessessessessessesssessessessessessens 60

3.4.3 Writing Speedy CalCUlations...........cccviviereneneeeerese e eeesee e see e snens 66

3.5 Command Reference BY CalEgOIYcoviviirireeieeiesise et see e s et nee e e nes 67
3.6 Object ReferenCe by CateQOry.....cocuiviiriereceereeserestesese et e e e sre e nae e sresrennas 71
3.7 CONIOl FIOW .ttt sttt b e st 75
3.7.1 Statements and Statement BIOCKS.........cooevevereininne e 75

3.7.2 Break COMMANGoveuiiiiieirie ettt st s st b 77

3.7.3 ContinUE COMMANGc.eevirieietirieeetese ettt s se st s sre et seenesbeseeneenens 77

3.7.4 DOC COMIMENGcoveveniiirienieie ettt sttt sttt sttt se et st be e b snne 78

3.7.5 FOr COMMENGcueeviieieiisierieie ettt sttt sttt sttt sttt sttt 79

3.7.6 1T COMMEANG ..ottt ettt st 80

3.7.7 Layer -0 COMMAENGcccveeeieriisieieeeeeieeestestestesre e e eeeseestesnesresneeseesaeseeseesnens 81

3.7.8 LOOP COMMANG......iiiireeeeieseisieseeereseeeeseestesresreeseeeeeessessessessesssessessessessessens 81

3.7.9 Repeat COMMAN......ccoverieririeseseeeeeesesee e e e e e eeeseestesresresse e enaeneeneesrens 82

3.7.10 RUN ObjeCt MEhOUS........cceviieiece e 82

3.7.11 SWitch COMMANGceeiiriirieise et 83

3.7.12 WinN -0 COMIMENG........coereiiriirieesie ettt sttt s be e 84

3.8 PasSiNg ATQUMENES......ccueiieiieeieeeeeeeesees e stessessesseeseeseeeeseessessessessesseessessessessessessessessenssnnses 84
3.8.1 Passing Numeric Variables by Reference........ccoovovevevevesieve s ceeesene s 85

3.8.2 Passing Numeric Variables by Value.........cccovvveeeieiine e 86

G 1 T 1o | S 87
3.9.1 GetnuMbEr COMMENGcoeeirieiee e e e 87

3.9.2 GEPtS COMMANG......ceeereeiereeriese e eeereee s e sre e s e e e e e eesresresre e e eseeneeneeneens 88

ii « Contents

Contents

G 0 0 O 1 1 o1 | S 92
3.10.1 Literal SENGS ..ocveeieieeeeeeeeeeeieseesiesesresseeseeaesees e e sresseseeeeseessessesressessnenseseens 92

3.10.2 ODJEC'S TEXE PIOPENTY ...veveieeeeeeeeieseesie st s e see e s ste e et s sre e enaeneens 94

3.10.3 Customizing Output Using the Type Command and Escape Sequences........ 94

3.10.4 Formatted OULPUE With $() c..ceieireiririeriee e 95

3.10.5 Redirecting Output to the NoteS Windowccccvevereeerieerene e 96

3.10.6 Redirecting Output t0 the RESUItS LOJ......ccevveieererire e 97

3.11 Useful BUIlt=-iN FUNCHIONSc.iiiiieiiiiecie ettt sttt s ene 98
3111 D@ FUNCHION.....ceiiiieiiecrieie et e bt 99

3.12.2 EXISt FUNCHON....c.cctiiiiieiiitiieciesee e s 99

T T I g W o o TP 100

T B I o ' o SRS 100

3.11.5 MO FUNCHION. ...ttt sttt sae e 100

10 00 I R G TS o [o o) 101

3.12.7 SUM FUNCHION ...ttt ettt sttt s sbe e 101

3.11.8 TahIE FUNCHION ...ttt 101

3.12.9 XOf FUNCLION ...ttt 102

3.12.10 XVAUE FUNCLION. ..ottt 102

N |V - o {0 TSRS PRTPTUR PR 102
T30 BT o T S 7= T O 104
3.13.1 MiSSING VAIUESueeieieeciece ettt ettt sre e 104
Application Development 105
5 R g 1 (T [o ' o PSR SRSPRRRN 105
4.2 The LabTak Development ENVIrONMENTcccveeereererereseseeeeseeseeseeseeseessesseseesseneens 106
4.3 Developing Script Fileswith the LabTalk Editor.........cccovevevenievinesese e 109
4.4 RUNNING SCHIPL FIlES.....oceeeee et r e sne e e 111
4.4.1 Running Script from a Custom Toolbar BUtton...........ccceeveeveeeeveeeeceeieceeene, 111

4.4.2 Running Script from the Custom Routine Button on the Standard Toolbar...115

4.4.3 Running Script from the Label Control Dialog Box of an Object.................. 115

4.4.4 Running Script from New Menu [tems (Commands).........cccceeeeereevrereeneenens 117

4.4.5 Running Script from the Script Window.........ccccccvevveveveneceneseceseee e 118

4.4.6 Creating Templatesfor Your Custom Applications..........ccccvevvvveeieereerenneens 118

4.4.7 Useful Child Window SCripting TiPS.....cccceererererieneseseeseeseeseesessesresseeneenes 119

4.5 DEDUGING Y OU SCIIPL ...eevieeeeueeeeeeierieseesieseesteseseesteseesaessesaesressesseesesseeseesesssessesssssensenes 120
4.5.1 The LabTalk DEDUGGETccveieieeeeeieseese et 120

4.5.2 The ECho System Variable.........ccccocvieiirecesesese e 121

4.5.3 The List COMMANGcovirieiriirieiriesieeie st 122

4.5.4 Tracking Values of VariableS.......cccceeeeeeveere i 122

4.5.5 The #ISCript NOtatiON.......cccceeerere e 122

4.5.6 Checking Variable Values at Breakpoints..........ccoevvveeereereresesnseseeseeeens 123

4.6 Building Applications With OFiginPrO........cccueveiiie e 124
4.7 Distributing Y our Custom APPlICatiONS.........cceruerererieresirieesereseeseseesreseesaeseeseeseesnens 124

Contents e iii

Contents

4.7.1 Creating the EXport ((OPK) Fil€ ..o i 125
4.7.2 Installing the .OPK Fil ...ccueeeeieeeise st 127
4.7.3 Exchanging Y our Custom Application on the OriginLab Web Site............... 128
Index 129

iv e« Contents

Chapter 1, Getting Started

Getting Started

1.1 Introduction

Origin®-based applications can be constructed for many purposes. For
example, you can create applications to handle statistical process control,
analyze pharmaceutical data, control sophisticated data acquisition
devices, and even to evaluate eyesight! Though each of these
applications address specialized data analysis and plotting needs, in each
case it isthe Origin software that serves as the foundation for the custom-
designed scientific application.

The LabTalk Developer’s Guide provides tipsto assist you in building
your own well-written Origin application. However, this manual is not
intended as an Origin or LabTak® reference. Nor isit intended asa
reference for the devel opment tools available with OriginPro.

For assistance using Origin, see the Origin User’s Manual or the Origin
Help file.

For reference information on LabTalk, see the LabTalk Manual or the
LabTak Helpfile.

To learn about the development tools available with OriginPro, see the
OriginPro Manual.

1.1 Introduction ¢ 5

Chapter 1, Getting Started

1.2 How To Use This Manual

The Quick Start tutorials at the end of this chapter illustrate some of
the ways that you can run LabTalk scriptsin Origin. Injust afew
minutes, you'll learn different script execution methods to output
Hello World to an Attention dialog box.

Chapter 2 provides a brief overview of Origin. It also includes
advanced Origin issues and tips that are often included in custom
applications.

Chapter 3 surveysthe LabTalk language, focusing on issues of
particular interest to the application developer. Theseissuesinclude
the use of variables, operators, calculations, control flow statements,
input and output, built-in functions, and macros.

Chapter 4 guides you through the process of developing a custom
application. Detailed examples are provided illustrating different
script execution methods. Debugging methods are discussed.
Information is provided on building custom applications using
OriginPro tools. Additionally, information is provided on creating
and exchanging your custom tools with other Origin users.

1.3 Manual Conventions

Table 1.1 lists the documentation conventions observed in the LabTalk
Developer’s Guide.

Table1.1: Documentation Conventions

Convention Description
Plot:Graph Type Italicized text indicates the information is not
Layer n dialog box literal. Rather, the italicized text servesasa

placeholder for literal text. Supply or interpret the
appropriate literal text. For example, Plot: Scatter.
(Note: Text may also beitalicized for emphasis.
This difference should be clear by context.)

6 1.2 How To Use This Manual

Chapter 1, Getting Started

Convention

Description

Datal A

The names of datasets are displayed in bold.

Window: Script
Window

Menu commands are displayed in bold. Levelsare
separated by a colon.

ORIGING61.EXE

File names are displayed in uppercase characters.

TAB

Keyboard keys are displayed in uppercase
characters.

Script

Arial + bold font indicates LabTalk script that can
be entered verbatim.

Syntax

Used with LabTalk. Italicized + bold font
indicates a user-supplied argument that cannot be
entered verbatim. Serves as a placehol der for
literal text. Usually used in syntax examples.

[]

Used with LabTalk. Itemsin brackets are
optional.

0

Used with LabTak. Parentheses are used to
enclose text strings.

{}

Used with LabTak. Braces are used around a
script, when associating the script with a
command.

Used with LabTalk. Angle brackets indicate that
the argument(s) to a command can only be used
when no option is given.

[range]

Used with LabTak. Appearsin the command
syntax line of commands that take a dataset as an
argument. It indicates that the range modification
options can be used to set the active range of the
dataset. The command will then affect only the
active range of the dataset.

1.4 Quick Start Tutorials

The following tutoriasillustrate different methods of LabTalk script
execution. In each case, the resultant application outputs Hello World to
an Attention dialog box. For an expanded discussion of script execution
methods, see Chapter 4, "Application Development."”

1.4 Quick Start Tutorials » 7

Chapter 1, Getting Started

1.4.1 The Script Window

The Script window is atext editor with the additional feature of carrying
out LabTalk script execution. It ismost useful for executing single lines
or short scripts, or for troubleshooting longer scripts before storing and
executing elsewhere.

The Script window is not a child window - as are the graph, worksheet,
matrix, workbook, and layout page windows. When you save a project,
the contents of the Script window are not saved with the project, as are
the child windows.

To open the Script window, select Window: Script Window.

Figure1l.1l: The Script Window

Ede{Tee] Edt Hads

I7] 2

Type the following in the Script window. (Note that throughout this
manual, (ENTER) indicates that you pressthe ENTER key.)

type —b "Hello World" (ENTER)
Origin outputs Hello World to an Attention dialog box.

1.4.2 Window Buttons

Window buttons are objects located on Origin child windows that are
programmed with script in their associated Label Control dialog box.
They are created so users can initiate the script when the object's event is
triggered. For example, script can be triggered by clicking on an object
that appears as a button on a child window. Because the object islocated
on the child window, the object and its script can be saved as part of a
template, window, or project.

8¢ 1.4 Quick Start Tutorials

Chapter 1, Getting Started

In addition to the button triggering method, Origin provides a variety of
conditions for script execution, including (but not limited to):

Execute when awindow is opened, closed, or moved.
Execute before the project is saved.

Execute when the graph axes are rescal ed.

Execute when the object's child window is saved.

To learn more about buttons, perform the following procedure;

T

1) Open anew project and then click the Text Tool button onthe
Toolstoolbar.

2) Click to the right of the two empty columnsin the default Datal
worksheet. This action opensthe Text Control dialog box.

3) Type Start Button in the text box provided and click OK. The text
now displays to the right of the columns. (Resize the worksheet if
needed.)

4) Press ALT while double-clicking on the text object. This action
opensthe Label Control dialog box.

5) Typethefollowing script in the text box provided:
type —b "Hello World";

6) Select Button Up from the Script, Run After drop-down list and click
OK. Thetext now displays as a button.

7) Click the button to execute the script. Origin outputs Hello World to
an Attention dialog box.

In this example, the script that is executed when the object istriggered is
fully contained in the object's Label Control dialog box. However, itis
common LabTak programming practice to call script that islocated in a
script file from the object's Label Control dialog box. Script filesare
introduced in the following section. However, for a complete discussion
on calling script in script files, see Chapter 4, "Application
Development."”

1.4 Quick Start Tutorials 9

Chapter 1, Getting Started

For more information on
script files, see Chapter 4,
" Application Development.”

OriginPro 6.1 includes a
new LabTalk script editor
and debugger.

1.4.3 Script Files

Script filesare ASCI| text files containing LabTalk script. When
developing your Origin application, it is recommended that you write
and develop your LabTalk scriptsin script files. Script files are easy to
edit and replace, and their script can be executed from any object's Label
Control dialog box, from a custom toolbar button, or from other script
files, menu commands, the Script window, macros, configuration files,
etc.

When you construct script files, you should write small sections of code
that perform specific tasks. To help you get started, review the script
files (*.OGS) located in the Origin software folder.

Note: To open ascript file associated with a menu command or toolbar
button, press CTRL+SHIFT and then select the menu command or click
on the toolbar button. If that command or toolbar button runs a script
file section, Origin opens the script file in a new instance of the LabTalk
Editor.

The following tutorial uses the run.section() object method to run the
script in the specified section of ascript file. Inthefirst part of the
tutorial, the script file section is called from the Script window. Inthe
section part, it is called from a custom toolbar button.

To create a script fileand run its script, perform the following
procedure:

1) Click the New LabTalk Editor button [on the Standard toolbar.
This action opens a new instance of the LabTalk Editor.

The LabTalk Editor is aunique window typein Origin, designed for
developing and editing LabTalk script files. Like other window
types, you can open multiple LabTalk Editor windows in an instance
of Origin. You cannot, however, open the same script file multiple
timesin an instance of Origin.

2) Typethefollowing text into the LabTalk Editor window:
[Main]
type —b "Hello World";

3) Select File:Save Asfromthe LabTalk Editor menu bar. Savethis
fileasHELLO.OGS in the Origin software folder.

10« 1.4 Quick Start Tutorials

Chapter 1, Getting Started

4)

5)

Activate Origin and then select Window: Script Window from the
Origin menu bar (if the Script window is not already open).

Type the following in the Script window:

run.section(Hello,Main) (ENTER)

Because this script runs the Main section of the HELLO.OGSfile,
Origin outputs Hello World to an Attention dialog box.

To run this script from a custom toolbar button, perform the following

procedure:

1) Select View:Toolbars. This menu command opens the Customize
Toolbar dialog box.

2) Select the Button Groups tab.

3) Select User Defined from the Groups list box.

4) Select abutton from the Buttons group. For example, select the E=
button.

5) Click the Settings button in the Button group. This action opensthe

Button Settings dialog box.

1.4 Quick Start Tutorials ¢ 11

Chapter 1, Getting Started

Figure 1.2: Configuring a Custom Button

Customize Toolbar

QE‘\';'. | |] 7 |'F|.:t|rl.-|l'b|| r-lrrrl

2. Select abutton.

1. Select User
Defined.

Szl & group, ther ook & bublon o ses s desorpSion. [rag e bufon o

e ool
Bution
3. Click Settings.
adi. | Deete | Settingr.. |
Bratton Group
ose. | Ak | Dewe | Ewpor |

Hies Bitmiagze |[W rigan] _FFM_Cumentussrd Fiwars |

6) Inthe Button Settings dialog box, type Hello in the File Name text
box.

7) TypeMain in the Section Name text box.
8) Click OK to close the Button Settings dialog box.

9) Inthe Customize Toolbar dialog box, drag the button (whose settings
you just edited) from the Buttons group into the Origin workspace.
Origin creates a new toolbar containing your button.

10) Click Close to close the Customize Toolbar dialog box.

11) Click on your new button. Origin outputs Hello World to an
Attention dialog box.

12 « 1.4 Quick Start Tutorials

Chapter 1, Getting Started

1.4.4 Macros
For more information on A macro is aconvenient method of aliasing a LabTalk script. When you
macros, see Chapter 3, define amacro, you are associating an entire script with a specific name.
LabTalk. This name can then be used as a command that invokes the associated

script. Thus, if auser wants to perform an operation within an Origin
session, a macro can be defined during the Origin session. However, if a
user wants to perform the same operation in more than one Origin
session, it is best to define the macro in a configuration file (*.CNF)
which is executed each time Origin is started.

To define and call a macro, perform the following procedure:

1) Openanew Origin project and select Window: Script Window (if
the Script window is not already open).

2) Typethefollowing in the Script window:
define hello { type —b "Hello World"; } (ENTER)
This script defines amacro named hello with the associated script
located between the braces.

3) To execute this macro, type the following in the Script window:
hello (ENTER)
Origin outputs Hello World to an Attention dialog box.

1.4 Quick Start Tutorials ¢ 13

Chapter 1, Getting Started

This pageisintentionally |eft blank.

14 « 1.4 Quick Start Tutorials

Chapter 2, Advanced Origin

Advanced Origin

2.1 Overview of Origin

Origin provides a broad range of data analysis and plotting features.
These built-in features are sufficient for most data analysis and plotting
needs. However, when these built-in features are coupled with the ability
to write LabTalk scripts for user-input or user-action, then Origin itself
becomes a scientific application development platform.

2.1.1 Projects

An Origin project is a collection of child windows contained within the
Origin application workspace. When you save an Origin project, the
current collection of child windows (including the data and any objects
that they contain) and all global variables are saved to the specified file
name. When you re-open the (saved) project, al child windowsin the
project are opened in the state in which they were saved (minimized,
hidden, window, full screen).

2.1.2 Child Windows

Origin projects can include worksheet, graph, layout page, function
graph, Excel workbook, matrix, and notes child windows. Whereas notes
windows are created from script, worksheet, graph, layout page, function
graph, Excel workbook, and matrix child windows are created from
templates. Built-in templates can be customized and re-saved, or they

2.1 Overview of Origin « 15

Chapter 2, Advanced Origin

To learn how to create
datasets with LabTalk, see
the LabTalk Manual.

can be saved to new template files (except for the layout page). For
example, you can open achild window from a selected template, make
modifications to the window (such as changing the background color,
axis scale, and number of layers on the page), save the window to a
template file, and in the future create a child window based on the
customized template.

Having various child windows in a project allows you to simultaneously
view different visual representations of your data, such as datain a
worksheet versus a graph, simplifying data manipulation and analysis.
Since each child window displays a copy of an internally-held dataset,
changing the dataset in one child window will cause the dataset to be
displayed differently in other child windows that are displaying the same
dataset.

In addition to customizing the elementsin a child window, programmable
objects can be added to child windows - allowing you to develop a
custom Graphical User Interface (GUI). For example, you can develop
routines to automate a repetitive process like importing data, plotting, and
fitting. Additionally, you can simplify the analysis of data by developing
routines to perform pre-defined actions at the click of a button.

In addition to using the default interface, you can use LabTalk commands
to open and close child windowsin an Origin project. Thus, you need not
have every application-specific child window open at the same time,
cluttering the workspace. Opening a child window in a project can be as
simple as clicking a button on one child window to run a script that opens
another specified child window.

2.1.3 Datasets

A dataset is an object consisting of a one-dimensional array that can
contain numeric, text, or numeric and text values (including time, date,
and day of week). Individual valuesin adataset are called elements.
Each element is associated with a particular index number. When a
dataset is displayed in aworksheet, the index number directly
corresponds to the row number. Unlike C conventions, the dataset index
numbers start at one.

16« 2.1 Overview of Origin

Chapter 2, Advanced Origin

Dataset names appear in
bold font stylein the
LabTalk Developer’s Guide.

Displaying Datasets in Worksheets

A dataset is directly associated with the worksheet column in which it is
displayed. To emphasize this association, the name of the dataset object
contains the worksheet name and the column name. Origin uses the
following convention when naming datasets:

WorksheetName _ColumnName

where WorksheetName is the name of the worksheet that displays the
dataset and ColumnName is the name of the column containing the data.
For example, if the Datal worksheet contains two columns A and B,
then these datasets are named datal aand datal b.

Displaying Datasets in Matrices

A matrix window displays a single dataset containing Z values. Instead
of displaying the dataset as a single column (as in a worksheet), a matrix
window displays the dataset in a specified dimension of rows and
columns. X values are associated with the columnsand Y values are
associated with the rows.

Displaying Datasets in Graph Windows

When datais plotted into a graph window, the graph window displays an
image of the dataset(s) held in memory. If you modify the contents of the
dataset(s) held in memory (for example, by modifying the associated
worksheet data), then the data plot updates accordingly. However, if you
change the X column designation in the worksheet containing the plotted
data, the graph window will not change. 1t will still display the data plot
based on the originally set X column.

2.1.4 Templates

Child window template files contain all of the attributes of the respective
window except the data contained in the window. These attributes can be
controlled by editing the child window’ s dialog boxes, or by controlling
the window properties using LabTalk script.

2.1 Overview of Origin 17

Chapter 2, Advanced Origin

« Dialog Box Settings Saved with a Worksheet Template

Worksheet Display Control, Page Color, Worksheet Column Format,
ASCII Import Options for Worksheet, Data |mport Options for
Worksheet, Import Verification, Import Multiple ASCII, ASCII
Export Into, Set Column Values, Extract Worksheet Data, Worksheet
Script, Label Control (if an object islocated on the worksheet).

« Dialog Box Settings Saved with a (Function) Graph Template

Plot Details, Axis, Layer n, Label Control, Text Control, Color Scale
Control (if acolor scaleislocated on the graph window).

« Dialog Box Settings Saved with a Matrix Template

Matrix Dimensions, Matrix Properties, Set Matrix Values, Matrix
Display Control, Page Color, ASCII Import Options for Matrix, Data
Import Options for Matrix, ASCII Export Into.

« Dialog Box Settings Saved with the Layout Page Template

Plot Details, Text Control (if text labels), other annotation dialog
boxes, Label Control.

If a custom child window is required for an application, it is best to
construct the desired child window at design-time, and then save the
window to atemplate file. At run-time, your script need only open the
child window based on the customized template file, instead of
performing time-consuming manipulation of a default window during
run-time.

To open aworksheet named WindowName that is based on the
TemplateName template, use the following syntax:

win -t data TemplateName WindowName;

To open agraph window named WindowName that is based on the
TemplateName template, use the following syntax:

win -t plot TemplateName WindowName;

To open amatrix named WindowName that is based on the
TemplateName template, use the following syntax:

win -t matrix TemplateName WindowName;

Table 2.1 lists the extensions for template files.

18 « 2.1 Overview of Origin

Chapter 2, Advanced Origin

For more information on
control regions, see page
49.

Table2.1: Template File Extensions

Window Type Template File Extension
Worksheet oTW
Graph, Layout Page, Function Graph oTP
Matrix OT™M

2.1.5 Graphs and Layers

Each graph window contains a single page, which is represented by the
white area in the graph window. Each page must contain at least one
layer. A layerisdefined asaset of X and Y axes. Each layer that exists
on the pageis controlled by alayer icon that displays as a button in the
upper-left corner of the graph window. A graph page can contain
multiple layers, and thus multiple layer icons. However, at any given
time only one layer in the graph window can be “active.” A layeris
active when its layer icon is depressed. The active layer isthe layer
which receives the next operation. For example, if the layer 2 iconis
depressed and you select Analysis:Fit Linear, then linear regressionis
performed on the active data plot in layer 2.

When a graph window is saved to atemplate file, the number of layers
and their arrangement on the page are saved as part of the file. Thus, if
your application requires a graph with multiple layers, you can create the
page (including the layer arrangement) ahead of time and save the graph
window to atemplate file. The custom graph can then be quickly created
at alater time from the associated template file.

The gray area of a graph window is useful for placing objects that you
don’'t want to print out. Some of Origin's templates have pre-
programmed buttons located in thisarea. Additionally, you can use
script to add a control region to a graph, function graph, or layout page
window. A control region is an areafor object placement located above
or to the left of the page. You can control the height or width of this
region, aswell asthe color, through script. Like the areato the right of
the page, objects in the control region do not print out.

2.1 Overview of Origin « 19

Chapter 2, Advanced Origin

Figure2.1: Locating Buttons Outside the Page

H
{

[]
-
i
-

iy
-~

=
ke Bk

T i
[
!
!
ey,
I’

2.1.6 LabTalk

Origin is based on its own scripting language, LabTak. LabTakisa
full-featured programming language that has access to most of Origin's
functionality, as well as to user-written DLLs (Dynamic Link Libraries).

LabTalk has similarities with C, DOS batch commands, and Visual Basic.

e LabTalk contains expressions, operators, and control flow keywords
and structure similar to C.

e LabTak’ssyntax and convention are similar to DOS batch
commands.

e LabTalk includes object properties and methods comparabl e to those
inVisual Basic.

LabTalk isan interpreted language that receives and executes LabTalk
script. LabTalk script is defined as a block of text that is sent to the
LabTalk interpreter asasingle unit. By writing and executing script, you
can customize Origin's operation.

20« 2.1 Overview of Origin

Chapter 2, Advanced Origin

2.1.7 Curve Fitting

Origin's curve fitting isimplemented as a separate DLL called
ONLSF60.DLL. Origin'snonlinear regression method is based on the
Levenberg-Marquardt (LM) algorithm and is the most widely used
algorithm in nonlinear least squares fitting. The Simplex minimization
method is provided as well.

Asyou develop Origin applications, there are three basic options for
providing curve fitting to users:

Let the user use Origin’s standard fitting options.

The user can learn how to use Origin’sfitter by reviewing the Origin
User’s Manual and the Tutorial Manual. Tutorials are provided
covering topics such as defining a function with one independent
variable (Tutorial Manual), defining a function with multiple
independent variables, and fitting multiple datasets to a function.
Tips are provided on using the fitter. A troubleshooting sectionis
also provided. Additionally, reference sections are provided on each
of thefitter's dialog boxes.

Construct specia fitting functions and make them available to the
user.

New fitting functions can be added to Origin within the fitter's
Define New Function dialog box. After defining afunction and
pressing Save in the Define New Function dialog box, a function
definition file with the function’s name and an .FDF extension is
created in the Origin FITFUNC folder. Additionally, the function
name is appended to the NLSF.INI file. Specifically, the function
name is added to the NLSF.INI section representing the function
category that was active when you defined the function. For the
function to be available to the user, you must copy the .FDF file to
the user’s Origin FITFUNC folder, and modify their NLSF.INI file.

Take complete control of the fitter using LabTalk script to control
the fitting process.

Thisisaccomplished by using the ONLSF60.DLL as an external
object. Thisexternal object is called nisf. The nisf object properties
and methods are documented in the LabTalk Manual.

2.1 Overview of Origin 21

Chapter 2, Advanced Origin

2.1.8 Origin's Window Objects

Origin child windows can contain basic elements (objects) such as pages,
layers, axes, axis breaks, worksheets, and columns. These objects each
have pre-defined names and unique properties that can be controlled
using LabTalk. For example, the page (page object) can display in
portrait or landscape orientation, axes (layer .axis objects) have specific
“to” and “from” end point values, and worksheets (wks object) can
display or hide column labels.

In addition to these elements, you can also create objectsin Origin. For
example, you can create squares, circles, lines, arrows, and text labels.
Text labelsinclude axis labels and legends, as well as other annotations.
Before controlling the properties of these objects with LabTalk script,
you must name the object inits Label Control dialog box. Axislabels
and legends are automatically named by Origin during creation.

Origin provides two methods to simplify identification of objects that
have been named via the Label Control dialog box:

e Todisplay each object’s name in the upper-left corner of the
respective object, select Edit:Button Edit M ode to enter the editing
mode. Re-select Edit:Button Edit M ode to exit the editing mode.

 Toview aligt of all the objects contained in the active child window,
or the current layer of the active child window, type the following in
the Script window:

list o (ENTER)

You can view alist of the properties and methods associated with Origin
window objects (including those you have created) by typing the object
name in the Script window, followed by a period and an equal sign. For
example, to view the properties and methods associated with the page
object, type the following in the Script window:

page.= (ENTER)

Origin displays the properties and methods of the page object in the
Script window.

The Origin object properties and methods are fully documented in
Chapter 4, "Object Reference” inthe LabTalk Manual. A summary of
the page, layer, layer .axis, and wks objects follows:

22 ¢ 2.1 Overview of Origin

Chapter 2, Advanced Origin

page

The page object can be used to set various properties of the current
page, including (but not limited to) the width (width), the height
(height), the measurement units (unit), the active layer number
(active), the show-status of the layer icons (icons), the maximum
number of data pointsto display for each data plot (maxpts), the
mouse clicking status of objects on the page (noclick), the window
closing behavior (closebits), the number of layers (nlayer s), the
horizontal resolution (resx), and the vertical resolution (resy).

For example, to set the base color of the active graph window to the
fifth color in the color drop-down lists, you can use:

page.basecolor=5;

layer

The layer object's properties can control the display of various
elements of the layer including (but not limited to) the display state
of the axes (showx, showy), the display state of the data (showdata),
the display state of labels and other objects (showlabel), the active
data plot number (plot), the layer height (height), the layer width
(width), and the measurement units (unit).

For example, to display the active graph layer with a marble border,
you can use:

layer.border=2;

axis

The axis objects are sub-objects of the layer object. As such, they
are named using the following syntax: layer.axis. For example, for
a 2D graph, there are two axis objects: layer.x and layer.y.
Properties of these objects control the attributes for both the bottom
and top X axes and the left and right Y axes, respectively. The
attributes controlled by the properties include (but are not limited to)
the first axis scale value (from), the last axis scale value (to), the

major tick increment (inc), the number of minor ticks (minorticks),
and the axis scale type (type).

For example, to hide the X axis and ticksin the active layer of the
active graph window, you can use:

layer.x.showaxes=0;

2.1 Overview of Origin 23

Chapter 2, Advanced Origin

wks

The wks object is the worksheet representation of alayer object.
This object isindispensable for determining the selection of data
made by the user (r1, r2, c1, ¢2), adding columns to the worksheset
(addcol method), inserting columns in the worksheet (insert
method), and for manipulating general worksheet settings.

For example, to find the number of columns in the active workshest,
you can use:

val=wks.ncols;

val=;

Object Properties

Objects may possess properties that hold either a numeric value or a
string constant.

Setting an Object's Property Vaues

To assign a numeric value to a numeric object property, use the
following syntax:
ObjectName.PropertyName=NumericValue;

To assign a numeric value to a numeric object property for an object
located on awindow other than the active window, use the following
syntax:

[WinName!]ObjectName.PropertyName=NumericValue;

To assign a string constant to a text object property, use the
following syntax:

ObjectName.PropertyName$=StringConstant;

To assign a string constant to a text object property for an object
located on awindow other than the active window, use the following
syntax:

[WinName!]ObjectName.PropertyName$=StringConstant;

24 ¢ 2.1 Overview of Origin

Chapter 2, Advanced Origin

¢ Reading an Object's Property Values
To read the current numeric value of a numeric object property in the
Script window, use the following syntax:
ObjectName.PropertyName=

To read the current numeric value of a numeric object property for
an object located on awindow other than the active window, use the
following syntax in the Script window:

[WinName!]ObjectName.PropertyName=

To read the current string constant of a text object property, assign
the string constant to a string variable (for example, % Z) and then
read the value of the string variable:

StringVariable=ObjectName.PropertyName$;
StringVariable=;

To read the current string constant of atext object property for an
object located on a window other than the active window, use the
following syntax in the Script window:

StringVariable=[WinName!]ObjectName.PropertyName$;
StringVariable=;

Example: Reading and Setting an Axis Title Object's
Properties from the Script Window

To experiment reading and setting an object's property value, open a new
worksheet, enter some data, and create a new graph of thisdata. Most of
Origin's graph types will automatically display X and Y (and Z, for 3D)
axistitlesin the graph window. The properties of these visual objects can
be controlled through script viathe xb, xt, yl, yr, zf, and zb objects.

To view the X coordinate of the right edge of the bottom X axistitle, type
the following in the Script window:

xb.x= (ENTER)

Origin displays the bottom X axistitle's X coordinate value in the Script
window.

2.1 Overview of Origin 25

Chapter 2, Advanced Origin

When using object methods
in your scripts, make sure
you don't include a space
between the method name
and the opening
parenthesis.

In addition to reading this property value, you can aso directly change
the property value in the Script window. To move the right edge of the
bottom X axistitle to X=5, type the following in the Script window:

xb.x=5 (ENTER)

The right edge of the bottom X axistitle is now aligned with the line
X=5.

Thetext that displays in the bottom X axistitleis controlled by the xb
object's text$ string property. The following script assigns the current
string constant of the text$ property to a string variable, displaysthis
string constant in an Attention dialog box, and then assigns a new string
constant to the text$ property (which displaysin the bottom X axistitle).
To run this script from the Script window, type in each line of code
including the semicolon at the end of each line. Then highlight the three
lines of code and press ENTER.

%A=xb.text$;
type "The object's text is %A";
xb.text$=New Text Here!;

In general, any option that can be controlled in the Origin window
object’ s associated dialog box can also be set using the appropriate
LabTalk object property. For attributes that are controlled from a
combination box or drop-down list value in a dialog box, you can usually
set the object property to the associated entry number in the dialog box
list.

Object Methods

Objects can also perform actions including running their script, re-
drawing themselves, or simulating a click on themselves. Since these
actions are directly linked for a particular object, the actions are referred
to as object methods.

Object methods use the following syntax:
ObjectName.MethodName(Argumentl, ... , Argumentn);

Some object methods take no arguments. Thus, nothing appears within
the parentheses. However, even when the method has no arguments, the
parentheses must still be included. The parentheses indicate that
MethodName is a method of the ObjectName object - not a property.

26 ¢ 2.1 Overview of Origin

Chapter 2, Advanced Origin

Programming with the
Label Control dialog box is
discussed in Chapter 4,
" Application Development.”

The Label Control dialog box is used to set the object's name, define its
script, and specify the trigger for script execution. Y ou can open the
Label Control dialog box by clicking on the object and then selecting
Format:Label Control. Alternatively, press ALT while double-
clicking on the object.

Figure2.2: TheLabel Control Dialog Box

Labi L otnod

e

ANmch by Miouse Chick

" Page ™ Mo Vetical Mivemeni 4: —

1™ Ligssn Frama ™ Mo Borimonkal Hovemsend F Vil

™ Lopet sned Soler | [T Mol Sebecinble ™ BsakTima
Sprpd. Flun Afte: [lei: 3 Cigl I Lﬂﬂ-‘lfﬂhl u"ihl
Cid-TAR lor TAR

| =

o o

Example: Reading and Setting an Axis Title Object's
Properties Using the ObjectName.Run() Method

In the "Object Properties' section, you ran a script from the Script
window that assigned the current string constant of the xb.text$ property
to astring variable, displayed this string constant in an Attention dialog
box, and then assigned a new string constant to the xb.text$ property
(which displayed in the bottom X axistitle).

Alternatively, this script can be copied to the xb object's Label Control
dialog box and then run using the xb.run() object method from the
Script window.

1) Firgt, return the bottom X axistitle's text back to the default text by
typing the following in the Script window:

xb.text$=X Axis Title (ENTER)

2.1 Overview of Origin 27

Chapter 2, Advanced Origin

2)

3)

4)

5)
6)

7)

Highlight the three lines of script in the Script window (from the
previous example):

%A=xb.text$;

type "The object's text is %A";

xb.text$=New Text Here!;

and then select Edit: Copy from the Script window menu bar.

Press ALT while double-clicking on the bottom X axistitlein the
graph window. This action opensthe Label Control dialog box.

With the pointer active in the lower text box, click Paste. Thethree
lines of script display in the text box.

Select Moved from the Script, Run After drop-down list.

Click OK to close the dialog box.

To run the script in the bottom X axistitle's Label Control dialog
box, type the following in the Script window:

xb.run() (ENTER)

Note: You can also run the object's script by moving the object, as
Moved was selected in the object's Label Control dialog box in step
5.

2.2 Advanced Use of Layers

A layerisaset of X and Y axes on the page of a graph window. Layers
have attributes that control their appearance. For example, alayer can:

Contain multiple data plots.

Link to another layer so that it changes position and size whenever
the layer that it is linked to changes position or size.

Link to another layer so that its axes maintain a mathematical
relationship with the axesin the layer it is linked to.

Display superimposed on another layer.

28 ¢ 2.2 Advanced Use of Layers

Chapter 2, Advanced Origin

To re-order the layers, use
the page.reor der (n,[m])
method. For more
information, see page 36.

« Display or hide one or more axes.

« Digplay different X and Y axis scales.

Asyou develop your application, you should customize the appearance of
the layer in the graph window, and then save the custom graph as a
template. This custom graph template can then be available to the users
of your application.

2.2.1 Linked Layers

A graph page can contain one or more layers. If the graph page contains
more than one layer, then links can be set up between layers on that page.
When you link two layers, you can link them spatially so that if one layer
ismoved or resized, the other layer also moves and isresized to maintain
the original spatial arrangement. Y ou can also link two layersto set up a
mathematical relationship between the axesin the layers.

Origin has restrictions on linking layers. When you create multiple layer
graphs, Origin numbers the layers sequentially (starting with 1), based
on the order in which the layers were created. When linking layers, the
layer that you are linking to (parent layer) must always be less than the
layer you are linking from (child layer). For example, layer 2 (child)
can be linked to layer 1 (parent), and layer 8 (child) can be linked to
layer 3 (parent). However, layer 1 (child) cannot be linked to layer 2
(parent), and layer 3 (child) cannot be linked to layer 8 (parent).

To link two layers:

To link two layers, press CTRL while double-clicking on the layer icon
for the layer that you want to be the child layer. Thisisthe layer that will
follow the parent layer spatially or whose axes will update based on the
parent layer's axes. This action opens the child layer's Plot Details dialog
box. Select the Link Axes Scalestab. Link this child layer to a parent
layer by selecting a parent layer from the Link To drop-down list.

To establish a spatial link between the parent and child layers:

After you link a child layer to a parent layer, you can establish a spatial
relationship between layers so that if the parent layer moves or is resized,
the child layer also moves or isresized to maintain the original spatial
arrangement. To set this spatial arrangement, select the Size/Speed tab of
the child layer's Plot Details dialog box and then select % of Linked
Layer from the Units drop-down list in the Layer Area group.

2.2 Advanced Use of Layers « 29

Chapter 2, Advanced Origin

To establish a mathematical axes link between the parent and child
layers:

After you link a child layer to a parent layer, you can create a
mathematical relationship between the X (or Y) axesin the child layer
and the X (or Y) axesin the parent layer. Inthiscase, the parent layer
provides the source axis information. To establish this axis linking
relationship, select the Link Axes Scales tab of the child layer's Plot
Details dialog box if it is not already selected and then edit the X Axis
Link and the Y AxisLink groups.

Note that after you establish spatial and axes links between a parent and a
child layer, the child layer will update its position/size and axes scales
whenever the parent layer isredrawn. Therefore, after specifying the
linking relationship between the parent and the child layer, you may need
to refresh the graph window by selecting Window: Refresh or by using
plot -c in script.

In the following example, you will create a graph with four layers(inal

column and 2 rows grid) and establish links between layers. The final
graph is shown in Figure 2.3.

To create layers 1 and 2, perform the following steps:

1) Click the New Graph button on the Standard toolbar.

2) Select Edit:New Layer (Axes):(Linked): Right Y. Thismenu
command adds a new layer displaying aright Y axis. The X axisin
the new layer islinked by a straight one-to-one relationship to the X
axisinlayer 1. The X axisin the new layer (2) is not, however,

displayed.

3) Press CTRL while double-clicking on the layer 2 icon in the upper-
left corner of the graph window. This action opens the Background
tab of the layer's Plot Details dialog box.

4) Select theLink Axes Scalestab. Notethat Layer 1 is selected from
the Link To drop-down list.

5) Select the Size/Speed tab. Note that % of Linked Layer is selected
from the Units drop-down list in the Layer Areagroup. This setting
ensures that the layer measurements are in a percentage of the height
and width of the linked layer frame. Furthermore, since 100 is
displayed in both the Width and Height text boxes, and 0 is displayed

30 2.2 Advanced Use of Layers

Chapter 2, Advanced Origin

6)

7)

in both the Left and Top text boxes, layer 2 is set to be the exact size
of layer 1, and is set to be superimposed on layer 1.

Re-select the Link Axes Scalestab. Note that the Straight (1 to 1)
radio button is selected from the X Axis Link group. Additionally,
no link is set between the Y axes.

Click OK to close the Plot Details dialog box.

To create layers 3 and 4, perform the following steps:

1)

2)

3
4)

5)

6)

Select Edit:Add & Arrange Layers. This menu command opens
the Total Number of Layers dialog box.

Type 2 in the Number of Rows text box. Leave the Number of
Columnstext box at its default value of 1.

Click OK.
Click Yes at the Attention prompt.

Click OK to accept the default spacing in the Spacingsin % of Page
Dimension dialog box. Origin adds athird layer to the graph,
positioned above the first two layers.

To add afourth layer which islinked to layer 3, make sure the layer
3icon is selected and then select Edit:New Layer (Axes):(Linked):
Right Y.

To link layer 3 to layer 1, perform the following steps:

1)

2)
3
4)
5)

6)

Press CTRL while double-clicking on the layer 3 icon in the upper-
left corner of the graph window. This action opens the Background
tab of the layer's Plot Details dialog box.

Select the Link Axes Scales tab.

Select Layer 1 from the Link To drop-down list.

Select the Straight (1 to 1) radio button in the X Axis Link group.
Select the Size/Speed tab.

Select % of Linked Layer from the Units drop-down list in the Layer
Areagroup. After making this selection, the Width and Height text

2.2 Advanced Use of Layers « 31

Chapter 2, Advanced Origin

boxes update to 100, the Left text box updatesto 0, and the Top text
box updatesto -114. Leave these values at their new settings.

7) Click OK to close the Plot Details dialog box.

Figure2.3: A Graph with Four Linked Layers

B Graph |10 =]
| LN
o | LT TS
' W
s & [
-
"
=
i] =L
o = i BEE D,
% Axin Tida
] 5
E a4 i
X [
oL,
- 2 -
a T T T T T ¥ T [
-] ks i L | w
o Aaie Tins
e Layerl

The lower-left Y axis and the lower X axis are part of layer 1.

e Layer2
The lower-right Y axisis part of layer 2. ThisY axisisnot linked to
theY axisinlayer 1. The X axisin layer 2 is not displayed, though
itislinked (straight one-to-one mathematical link) to the X axisin
layer 1.

e Layer3
The upper-left Y axis and upper X axis are part of layer 3. TheY
axisin layer 3isnot linked to any other Y axis. The X axisin layer
3islinked (straight one-to-one mathematical link) to the X axisin
layer 1.

32 2.2 Advanced Use of Layers

Chapter 2, Advanced Origin

e Layer4
The upper-right Y axisis part of layer 4. ThisY axisis not linked to
any other Y axis. The X axisin layer 4 isnot displayed, thoughiit is
linked (straight one-to-one mathematical link) to the X axisin layer
3.

If you click on layer 1 and move it or resizeit, all of the child layers
(layers 2, 3, and 4) move (or resize) to maintain their relative position and

their axes relations. Furthermore, if you reset the axis scale range for the
X axisin layer 1, the upper X axis displays the same modification.

2.2.2 Scaling

The Offset Reciprocal Scale
Origin offers several types of axes scalesincluding linear, 10g10,

probability, probit, reciprocal, offset reciprocal, logit, In, and log2. The
offset reciprocal scale isacommon scale type in the physical sciences.

Figure2.4: An Offset Reciprocal Scale

1T]

DO O000d 00D DOEAy 000Gk DO0s 0000 D00
VES - : : :
1E7
VESE
VE
1E-1
1Eit =
iE-it% T T T T

0 0 L T e T T B B
] g L 1] 1] Bid 830 14D SR 15D F00

2.2 Advanced Use of Layers ¢ 33

Chapter 2, Advanced Origin

The offset reciprocal axis scale type is defined as x'=1/(x+273.14) where
273.14 is the absolute temperature corresponding to zero degrees Celsius.
Such arelation between axesis useful for showing temperature in
reciprocal of absolute temperature while the dataiin the graph isin
degrees Celsius.

To create a graph with an offset reciprocal axis scale, performthe
following:

1) Click the New Graph button on the Standard toolbar.

2) Double-click onthe X axis. This action opens the Scale tab of the
Axis dialog box.

3) TypeO0inthe From text box and 200 in the To text box.
4) Select Offset Reciprocal from the Type drop-down list.
5) Type50 in the Increment text box.

6) Click OK to close the dialog box.

7) Select Edit:New Layer (Axes):(Linked): Top X.

8) Press CTRL while double-clicking on the layer 2 icon in the upper-
left corner of the graph window. This action opens the Background
tab of the layer's Plot Details dialog box.

9) Select the Link Axes Scalestab.

10) Select the Custom radio button in the X Axis Link group.
11) Type 1/(X1+273.14) in the X1 text box.

12) Type 1/(X2+273.14) in the X2 text box.

13) Click OK to close the Plot Details dialog box.

Setting Particular Axis Ranges

Origin includes axis rescale options so that you can control the conditions
that trigger the axisto rescale. These rescale options are set from the
Rescal e drop-down list on the Scale tab of the Axisdialog box. The
Fixed From (Fixed To) drop-down list option causes the "from" ("to")
value of the axisto remain fixed unless the user manually changes the

34 ¢ 2.2 Advanced Use of Layers

Chapter 2, Advanced Origin

value in the From (To) text box on the Scale tab. The Fixed From and
Fixed To options are most useful when you are constructing a template
that you know will always be used to plot data starting or ending at the
origin.

In addition to controlling the axis rescale options from the interface, you
can control the rescale options from script. The layer.axis.rescale object
property controls the rescale mode. For example, to keep the "from" X
axis value fixed in the active layer of the active graph window, you can
use the following script:

layer.x.rescale=4;

Setting Rescale Margins

When plotting, Origin automatically rescales the graph to display all the
data points and includes a margin to the left and the right of the data.
Thismarginis controlled by layer .x.rescalemargin for the X axis and
layer.y.rescalemargin for the Y axis. Therescalemargin properties
specify the % of the data range that is used to produce a margin around
the data. Y ou can set these properties from script, and then force a
refresh of the graph window by using plot -clear or force arescale by
using layer -all. For example, to display the data in the graph with no
margin, use the following script:

layer.x.rescalemargin=0;
layer -all;

Rescaling to a Major Tick

Many developers like being able to construct graphs such that the axes
will rescaleto amajor tick mark. LabTalk providesthe layer -all
command which rescales the graph to show all the data, and |eaves the
axes ending on amajor or minor tick. When the layer -all command is
used with the layer .x.minorticks object property, asimple trick can be
used to rescale and leave an axis ending on amajor tick.

The following script illustrates how to rescale a graph such that the X
axis ends on amgjor tick:

oldsetting=layer.x.minorticks; // save number minor ticks
layer.x.minorticks=0; // set minor ticks to O

layer -all; // rescale, no minor ticks so axes end at major tick
layer.x.minorticks=oldsetting; // restore number minor ticks

2.2 Advanced Use of Layers ¢ 35

Chapter 2, Advanced Origin

Rescaling Only the XY Plane of a 3D Graph

The layer -az command rescales the XY plane of a 3D graph without
rescaling the Z axis.

2.3 Additional Tips

The following features can be accessed through Origin's user-interface, or
by using LabTalk.

2.3.1 Merging Pages

Y ou can merge all non-minimized graph windows into a single graph

page by selecting Edit:M erge All Graph Windows or by clicking the
Co]
Merge button L= on the Graph toolbar. From script, you can use the

win -m command to merge al non-minimized graph windowsinto a
single page, or you can use the win -ma command to open awarning
prompt before merging the pages.

When merging graph windows, the following tips may help you control
the merging process:

e You can use the win -i command to minimize any windows which
you do not want merged.

e You can use the page.reorder (n,[m]) object method to reorder the
layers after merging. If misnot specified, then the page object
method changes the current layer to the nth position. Otherwise, it
changes the nth layer to be the nth layer. Every layer after n would
then move up one layer. For example, if you have a graph with four
layers and you want to renumber layer 4 aslayer 2, you can use the
following script:

page.reorder(2,4);

When this script is executed, layer 4 becomes layer 2, layer 2
becomes layer 3, and layer 3 becomes layer 4. To move the layers so
that they display in the default locations for layer number, select

36 ¢ 2.3 Additional Tips

Chapter 2, Advanced Origin

Edit:Add & Arrange L ayers after executing the page.r eor der ()
method.

¢ You can use the Layer tool for adding and moving layers. Use the
Add tab controls to add layers and the Arrange tab controls to move
layers. The Move Layers group on the Arrange tab includes controls
to exchange layer positions and to overlay layers.

2.3.2 Extracting Layers to Separate
Pages

Y ou can extract the layers of amultiple layer graph into separate pages
==
by clicking the Extract to Graphs button LEE1 on the Graph toolbar. From

script, you can use the page -j command.

2.3.3 Extracting Data Plots to
Separate Layers

Y ou can extract data plotsin asingle layer graph to new layersin the

same graph window by clicking the Extract to Layers button
Graph toolbar. From script, you can use the layer -j command.

on the

2.3.4 Showing Only Every nth Symbol

To minimize the screen redraw time when plotting large datasets, Origin
provides a speed mode that is accessible through the Size/Speed tab of
the layer's Plot Details dialog box and page.maxpts object property.
Speed mode allows you to specify the maximum number of data points to
display for each data plot on the graph. The displayed data points are
then evenly distributed through the data plot. However, if your data plot
includes very sharp peaks, using speed mode could significantly alter the
peak display.

An alternative method for reducing the screen redraw time when plotting
large datasets isto display only every nth data point symbol in aline +
symbol or scatter data plot. In this method, all the data pointsin aline +
symbol data plot are connected by aline. However, only a specified

2.3 Additional Tips 37

Chapter 2, Advanced Origin

frequency of the symbols (every nth) are displayed. This method is
accessible through the Drop Linestab of the data plot's Plot Details
dialog box and the set dataset -skip n command.

For example, to display every 3rd data point symbol in the active line +
symbol data plot, type the following in the Script window:

set %C -skip 3 (ENTER)

Figure2.5: Controlling the Display Frequency of Data Pointsin a

Data Plot
) A
. e or A
T m
: e "
- -]
[} L]
:]
n
. | |
: i I-'-_.
l':'I .-
1 F L
.-I " l...
i .
- T - 1
1]] a
[
A ! L]
= w,
. | .
| LY
| o
2 J'I "
/ “u
= e
P ~r
y
T = T

38 ¢ 2.3 Additional Tips

Chapter 2, Advanced Origin

2.3.5 Using Datasets as a Plotting
Enhancement

Useful graph enhancements can be created by using an additional dataset
that marks or tags specific data points of another dataset.

Creating a Specialized Legend

Many elements of a data plot can be controlled based on values from
another dataset. For example, you can control the size of the symbolsin
a scatter data plot based on valuesin a selected worksheet (or Excel
workbook) column. When you select a dataset to control the display of
an element in adata plot, for each data point in the data plot, Origin uses
the associated worksheet row value in the specified column.

These "dataset control" options are available from drop-down lists and
combination boxes in the Plot Details dialog box. The dataset control
optionsinclude: color, symbol shape, symbol interior, symbol size,
vector angle, and vector magnitude.

In Figure 2.6, columns A and B supply the X and Y values for each of the
data pointsin the data plot. Column C supplies the index numbers for the
shape of each of the data point symbols. In this example, Col(C) was
selected from the Shape drop-down list (in the Show Construction group)
on the Symboal tab of the Plot Details dialog box. Origin maps dataset
values and symbol shapes asfollows: 0= no symbol, 1 = square, 2 =
circle, 3 =up triangle, 4 = down triangle, 5 = diamond, 6 = cross (+), 7 =
cross (x), 8 = star (*), 9 = bar (-), 10 = bar (]), 11 = number, 12 =
LETTER, 13 = letter, 14 =right arrow, 15 = left triangle, 16 = right
triangle, 17 = hexagon, 18 = star, 19 = pentagon, 20 = sphere.

2.3 Additional Tips ¢ 39

Chapter 2, Advanced Origin

Figure2.6: Controlling the Display of a Data Plot Based on a
Dataset

=
=
Ca
O]
||
B
Ca
ol

When you control adata plot element based on a dataset, because the
element (for example, data plot symboal) is not uniform, the default legend
cannot display an accurate representation of the data plot. To ensure that
the graph legend displays a data plot type icon that is representative of
the custom data plot, you can perform the following operations:

1) Include empty datasetsin the layer (one dataset for each symbol you
want to display in the legend's data plot type icon).

2) For each of the empty datasets, specify the desired symbol by editing
the Plot Details dialog box.

3) Modify the default legend text to access the symbols specified in step
2.

For example, after creating the data plot in Figure 2.6, create a new
worksheet (Data?) with two Y columns (B and C). Double-click on the
layer 1 icon (Graphl) to include these two new datasets in the layer.
Press CTRL and select Data:Data2 : A(X), B(Y) to open the Plot Details
dialog box for this dataset. On the Symbol tab, select Square from the
Shape drop-down list (in the Show Construction group). Double-click on
the Data2 : A(X), C(Y) dataplot icon on the |eft side of the Plot Details
dialog box. On the Symbol tab, select Up Triangle from the Shape drop-
down list (in the Show Construction group). Because these datasets
contain no data, these changes to the Plot Details dialog box will have no
affect on the data plotsin the graph. Now, to update the legend, double-
click onthe "B" in the legend to open the Text Control dialog box.
Change the text in the center text box to:

40 « 2.3 Additional Tips

Chapter 2, Advanced Origin

\L(2\L(3) % (1)
Click OK to update the graph with your custom legend.

Figure2.7: Displaying the Custom Data Plot Typelcon in the
L egend

B Tl P -

Displaying Vertical Lines at a Data Plot's X Values

Vertical or horizontal lines that span the height or width of the layer can
add clarity or emphasisto agraph. Origin providesthe draw -l -v value
command and the draw -| -h value command to draw a vertical or
horizontal line at the specified position value. However, if you want to
display multiple vertical linesin agraph that are at actual X data point
positions in a data plot, you can create a subset of your data plot and then
use the set dataset -k 58 command. This command draws vertical lines at
each X value in dataset.

2.3 Additional Tips 41

Chapter 2, Advanced Origin

Figure2.8: Displaying Vertical LinesUsing a Source Dataset

1 |
o i
= I i
i H
Ao | | i
- | S
oL | Fry
=7 fil P
| 1 i . %
14 | L W
H .
g H .,
i
1] __'_- H
1 — i
.
i
H
T T T T
i g il & w0
A 35 e

To create vertical lines at distinct data point values, you can perform the
following operations:

1) Include the dataset which is a subset of the original data plot using
the layer -i dataset command.

2) Set the data plot to scatter using the set dataset -1 0 command.

3) Set the symbol for the subset data plot asavertical line using the
set dataset -k 58 command.

The subset dataset can be created in many different ways:

e You can write ascript to find certain valuesin a data plot and then
extract these values and store them in a new worksheet.

e Theuser can be prompted to click on interesting points. Once done,
the subset can be compiled and included in the layer with the
appropriate symbol of 58 being set by script.

42 « 2.3 Additional Tips

Chapter 2, Advanced Origin

Creating Symbols or Labels to Accent Data in a
Data Plot

To highlight aregion of adata plot, you can display an additional dataset
in the graph that is a subset of the full range data plot. Y ou can then edit
the display of the subset data plot - thus highlighting the desired range of
the full range data plot. For example, you can increase the symbol size of
the data points in the subset data plot, or you can display the full range
data plot and subset data plot using different plot types.

Figure2.9: Highlighting Data Pointsin a Data Plot

=
'i & ;,-.ul .-'I‘I'. F:_
f N J,."' II'I.IJ.IH'-," -1"'.] II ",'_ ﬁ-ﬁ_fl_ml?

- Iy d S

- _,.F'“‘w.__ __,_-'"

ol

o) w :
L Wi]

In addition to displaying a subset of data as a data plot in the graph, you
can also display text or numeric data as data labelsin the graph. To
display datalabels, set the column containing the data labels as a label
column. When selected, the label column will provide data labels for the
first selected Y column to the left of thislabel column.

2.3 Additional Tips 43

Chapter 2, Advanced Origin

Figure2.10: Setting up a Worksheet Column with Data L abels

M SPECTRA

Z0 20 ES1EZE| second

z1 21 469072/

27 22 3.B97GR| ol
&3 23 311981

24 24 398043

75 75 B A9BEZ| ihird

Fal 76 4.0366G|

27 27 A4,79493)

20 L L

i | it N = fiiprih

an W 527363 ;J[

Figure2.11: Adding Data Labelstothe Graph

2 £

£ : "
g ;H : ;'tl T"- ¢ ¥
< ."Ilr b "ﬁ".-er Y 1A r"..
= i IIHI l.\.-.l,l '\-{F _|I R

. } /Y

R,
nrd
0 i'::l i::l

W daaE il

The labels are positioned at the X and Y coordinates specified by the X
and Y datain the worksheet. Note that you need not include the Y
dataset associated with the label dataset in the graph layer. Itisonly
necessary that the label dataset has an associated X and Y dataset in its
worksheet.

44 « 2.3 Additional Tips

Chapter 2, Advanced Origin

For a complete list of
escape options, see Chapter
11 inthe Origin User's
Manual.

2.3.6 Using Escape Sequences to
Format Labels

Origin allows you to use escape sequences in a string to control the
display of labels. These sequences begin with the \' character. All text
objects (those created with the Text Tool or the LabTalk label
command) as well as text plotted from a Label column will display
according to the rules of these sequences.

The following examples illustrate the use of escape sequences:

String: Appearance;
Some \b(bold) text Some bold text
Some\i(italic) text Someitalic text

Display of a'\' character presents a problem. If an unsupported escape
option or no parenthesis follows the escape character, then the
character(s) areignored. Following standard conventions, sequential \\
will be interpreted asone'\'. For example:

String: Appearance;
C:\My Documents C:My Documents
C:\\My Documents C:\My Documents

Thereisaso aspecial notation to ignore escape sequences.
String: Appearance:
\v(C:\My Documents) C:\My Documents

The\v() notation is particularly useful when you are substituting the
value of astring variablesuchas %Y inatext label. %Y containsthe
path of the Origin executable file, and thus includes the '\' character. In
the following examples using the label command, the Origin string
variable %Y isequal to D:\ORIGIN61\. (Thesetext labels could also be
created with the Text Tool aslong as you select the Link to Variables
check box in the associated Label Control dialog box.):

LabTalk Command: Label displaysas:
label -n titlel Pathis%Y; Path is %Y

label -s-n title2 Path is%Y; Path is D:ORIGIN61
label -s-n title4 Path is\v(%Y); Path is D:\ORIGING61\

Note that the first label did not substitute the %Y with its value
(D:\ORIGING61\). An additional command option (-s) was needed. This
is equivalent to selecting the Link to Variables check box in the Label

2.3 Additional Tips 45

Chapter 2, Advanced Origin

When Page View is selected,
the WYSSWYG In Page View
Mode check box on the Text
Fonts tab of the Options
dialog box allows you to
view text labelsin the graph
using the printer driver,
while all other objectsare
drawn with the screen
driver.

Control dialog box of atext object. Once substituted, the text displayed,
but without the '\' characters, which require the special \v(') notation.

2.3.7 View Modes

Origin offers four graph page view modes which are available from the
View menu (Print View, Page View, Window View, and Draft View).
The different view modes are provided so that you can benefit from
reduced redraw time as you are developing a graph, as well as accurate
object placement before printing or exporting the graph.

The default view mode, Page View, isthe ideal view mode as you
develop your graph. Page View mode uses the screen driver to draw the
screen image, thus providing fast screen redraw. However, Page View
mode does not provide a What Y ou See IsWhat Y ou Get (WY SIWY G)
view of the graph. To ensure that objects on your graph are in the exact
location you desire, you should switch to Print View mode before
printing or exporting your graph. Print View mode uses the current
printer driver to draw the screen image. Use this view mode to fine tune
object placement on the graph.

In Origin version 3.54 and up, when you select Edit: Copy Pagein any
view mode, Origin automatically uses the Print View mode to copy the
page. Thus, Origin creates a very accurate Windows Metafile image
using the printer driver.

2.3.8 Updating the Display

Master Page

Origin provides a master page feature to simplify the global annotation of
graphs. The master page feature lets you easily display a consistent
background, a company logo, or other labels and images on graph
windows in your project.

To use the master page feature, you must first create your master graph
that contains the objects and background that you want to display on
other graph windows. To do this, you can customize the display of any
graph window and then rename the graph window master
(Window:Rename). Alternatively, Origin provides a graph template
(MASTER.OTP) in which the axes and |abels are already hidden, thus

46 « 2.3 Additional Tips

Chapter 2, Advanced Origin

making it an ideal master page. To open thistemplate, select File:New
and then select Graph from the list box and Master from the Template
Name drop-down list (in the Origin folder) and click OK. Y ou can now
customize the display of thiswindow and rename it master.

After you create a master page (a graph window named master), you can
then control the display of the master itemsin other graph windows in the
project. There are two aspectsto this control:

¢ You can control whether or not the master items will be included
when you export, copy, or print the graph window. This control is
available on each graph page's Plot Details dialog box. Select
For mat: Page to open the Plot Details dialog box. Select the
Display tab. Select the Use Master Items check box to include
master items when you export, copy, or print this graph window.

* You can control whether or not the master items will display as you
view the graph in Origin. To access this control, select
View:Show:M aster 1temson Screen when the graph window is
active. Note: This menu command is not available if the Plot
Details Use Master Items check box is cleared.

Figure2.12: Creatinga Master Page

E masier - Thi o mp maled page

@riginloh

2.3 Additional Tips e 47

Chapter 2, Advanced Origin

Figure2.13: Displaying Master Itemsin a Graph Window

E [ETRTE .] |_ (O] |
1
k1
E » L o
2 Ly i
B SEEEE AL SHEEE S BEEE A/
APAY AN
Poopiey *E:n!ﬂ

Additional Master Page Notes:

1)

2)

3

To open agraph based on the MASTER.OTP template from script,
use:

win -t plot master Master;

In addition to opening a graph window from the template, this script
renames the window "Master."

To display master items exclusively in graph windows in portrait
page orientation or in graph windows in landscape page orientation,
instead of renaming your master graph window "master," rename it
"portrait" or "landscape." If you have renamed your graph window
portrait and you open a second graph window that isalso in the
portrait page orientation, after selecting View: Show: M aster Items
on Screen, the objects in the portrait graph window display in the
second graph window (assuming the Plot Details Use Master I1tems
check box is selected).

Y ou can also include master itemsin layout page windows.
However, by default, the Use Master Items check box on the layout
page's Plot Details dialog box is cleared by default. Therefore, you
must select this check box to include master items when exporting,
copying, or printing. Furthermore, you must select the

48 « 2.3 Additional Tips

Chapter 2, Advanced Origin

View:Show:M aster 1temson Screen menu command to display the
master items as you view the layout page in Origin.

Forcing a Refresh of a Window

When you plot worksheet data, the resultant graph window displays an
image of the dataset that it contains. At times the graph window may
reguire an update to refresh its image of the dataset contained in the
worksheet. To do so, type the following in the Script window:

plot -c (ENTER)

2.3.9 Control Regions

The control region is useful when building a template-based application
that requires multiple buttons or other objects. Control regions can be
located above or to the left of the page in the graph, function graph, or
layout page windows. When you place objectsin a control region, the
objects do not scale with the page or layer.

Figure2.14: The Control Region in the FUNCTION.OTP Template

E Franchoni -I:I m
1 Haw Frunciion... Roname..,
I Potar Hescae
=]
4 — —
F ._:"' ™, i R'\.
i , r ~,
ol .
) 1] I 1 P
T hg

Control regions are activated and sized using the LabTalk page object
properties. To activate the display of a control region, set

2.3 Additional Tips 49

Chapter 2, Advanced Origin

To display a specified
frequency of data points,
see"2.3.4 Showing Only
Every nth Symbol" on page
37.

page.cntriregion=1. After activating the display of a control region, you
then specify the height of the region (if you want it to display above the
page) or the width of the region (if you want it to display to the left of the
page). To control the height, set page.cntrlheight=value. To control the
width, set page.cntrlwidth=value. For both the height and width, value
isin units of pixels. To control the color of the control region, set
page.cntricolor=value. In thiscase, valueisthe number of the color in
Origin's color drop-down lists.

Note: To display objectsin the control region, you must create the object
directly in the control region. Y ou cannot drag objects on and off the
control region.

2.3.10 Screen Plotting Speed

During data analysis and plotting, users will often need to perform
various operations on a dataset being displayed in a graph window.
When the dataset is very large, it may become time consuming when the
screen redraws after every mathematical and graphical operation
performed on the dataset. If it is not necessary to view every data point
during these operations, you can speed up the screen redraw time for the
user by displaying alimited number of data pointsin the data plot.

To set this data point limit, select Format:L ayer to open the
Background tab of the layer's Plot Details dialog box. Select the
Size/Speed tab. The Speed Mode, Skip Pointsif Needed group controls
the speed viewing mode for worksheet and matrix data in the respective
layer. These controls are saved with the graph template, so you can
customize this setting for the user by resaving the template.

2.3.11 Printing

Setting the Page Orientation

Y ou can set the page orientation of the current graph window by editing
the Page Setup dialog box (File:Page Setup). Additionally, page
dimension controls are provided on the Print/Dimensions tab of the page's
Plot Details dialog box (Format:Page). If you select the " Set to Printer
Dimension When Creating Graphs From this Template" check box, save
the graph window as atemplate, and then at alater time open a graph

50 ¢ 2.3 Additional Tips

Chapter 2, Advanced Origin

For more information, see
"2.3.7 View Modes' on
page 46.

window based on this template, the graph page dimensions will reflect the
current printer page settings - not the page dimensions when the template
was saved. If you clear this check box, when you open a graph window
based on this template, the graph page will always reflect the page
dimensions when the template was saved - independent of the current
printer page settings.

When a graph template is saved with the " Set to Printer Dimension When
Creating Graphs From this Template" check box selected, you can use the
page-O L (for landscape) or page -O P (for portrait) commands in the
Script window to set the page orientation of a graph window that will be
opened from this template. These script commands change the current
printer driver orientation.

To update the active graph window with the current printer page setting,
run the page.dimupdate() method from the Script window.

Avoiding Printing Problems

To make sure the objects on the page print in the exact location you
desire, switch to Print View mode before printing. Print View mode
uses the current printer driver to draw the screen image, and will thus
show an exact representation of the printed page.

Printing Every Graph Window

LabTalk provides the option to send script to each of a particular kind of
object. Therefore you can develop an application that sends the print
command to each graph in the current project, causing each graph to be
printed.

doc -e P {print};

To print only the graphsin the active Project Explorer folder, use:
doc -ef P {print};

Note: To print only the graphs in the active Project Explorer folder using
this command, the Project Explorer view mode must be set to View
Windowsin Active Folder.

2.3 Additional Tips e 51

Chapter 2, Advanced Origin

This pageisintentionally |eft blank.

52 ¢ 2.3 Additional Tips

Chapter 3, LabTalk

3.1 Introduction

LabTalk

LabTalk isan interpreted, full-featured language which offers economical
expression size, modern C-like control flow, and istotally specialized to
Origin scientific plotting and data analysis. Asan interpreted language,
LabTalk code, called script, is processed one statement at atime. In
LabTalk, each statement must end with a semicolon. When running
LabTalk script, the LabTalk interpreter reads in a statement, interpretsit,
carries out the specified action, or returns the result of the expression.

Table3.1: SampleLabTalk Statements

LabTalk Example Results

Statement

Variable apples=4; A global variable called

Assignment applesissetto 4.

Macro Call AddThese 3 5; The AddThese macrois
passed two parameters then
called.

Command layer -i Datal_B; Dataset Datal_B isincluded
in the current graph layer.

Arithmetic apples=4*pears+5; A variable called applesis
set to 4 times the current
value of pearsplus5.

Function myfunc(x)=5.3*x+2; A function called myfuncis

Definition defined so that it returns 5.3
timesits argument plus 2.

3.1 Introduction « 53

Chapter 3, LabTalk

The LabTalk Editor [is
available for developing
script files. See Chapter 4,
" Application Development.”

LabTalk Example Results

Statement

Function Call | apples=myfunc(3); The function myfunc is
passed a parameter value of
3 and then called. Theresult
isthen returned and assigned
to the variable apples.

Control Flow | if (X1<0) {X1=0} else {x1=1}; | Based onthevalueof the

Statement variable X1, either a script
which sets X1 equal toO or a
script which sets X1 equal to
1 is executed.

Object Call apples=myObject.run(); The object method run()

Method executes the script associated
with the object myObject
and any returned number is
passed to the variable
apples.

Object myObject.Color=5; The property color of the

Property object myObject isset to 5.

Assignment

To learn about the various elements of the LabTalk language (variables,
operators, calculations, control flow, and input and output), it is useful

to use the Script window to issue immediate commands. To open the
Script window, select Window: Script Window. The Script window
floats over all other windows and offers an immediate method for
executing script. You can typein asingle line of script (without a
semicolon at the end) and the script will be interpreted and executed.

To execute a block of script, type each line of script, making sure to type
asemicolon at the end of each line. Then highlight the block of script
and press ENTER.

Though LabTalk issimilar to C, there are important syntactical
differences between LabTak and C. These differencesarelisted in Table
3.2

54« 3.1 Introduction

Chapter 3, LabTalk

Table 3.2 Summary of Syntax Differences

Item Description

% isused to designate a string %A through %Z are the available string
variable. variables.

A $() operator converts and x=1.23456; type "x=$(x)";

formats numeric variablesto string | type "2 significant digits: $(x,*2)";
variables.

3.2 Variables

All variables that you create are stored with the project when saved.
User-defined variables can be either numeric or string variables. When
naming a numeric variable, you should avoid using Origin keywords such
as commands, macros, and system variables.

3.2.1 Numeric Variables

A numeric variable contains asingle value. A variableisaways a scalar
quantity in LabTalk. All numeric variables are double precision real
numbers.

The assignment operator, =, is used to simultaneously create a variable (if
it does not already exist) and assign to it avalue. For example, open the
Script window and type the following:

apples=634 (ENTER)
This statement creates the variable called apples and setsit equal to 634.

Y ou can check the contents of a variable by typing the variable name
followed by an equal sign in the Script window. For example, type the
following in the Script window:

apples= (ENTER)
Origin responds by typing: apples=634

3.2 Variables ¢ 55

Chapter 3, LabTalk

For more information on
the string variables used by
Origin, seethe LabTalk
Manual.

3.2.2 String Variables

LabTalk usesthe % notation to define a string variable. A legal string
variable name must be a% character followed by a single al phabetic
character (aletter from A to Z). String variable names are case-
insensitive.

Of all the 26 string variables that exist, Origin itself uses 14. However,
you need only avoid using four of these: %C, %E, %G, and %H.

% C contains the name of the current active dataset, % E contains the
name of the window containing the latest worksheet selection, % G
contains the name of the current project, and % H contains the name of
the current active child window.

%A and % B are commonly used in development scripts. %A isused by
Origin to contain the file name returned by the most recent GetFileName
command. % B isused by Origin to contain the string returned by the
most recent GetString command. The values of these string variables
change as the user opens projects and templates. Because these aren't
"static" variables reserved by Origin, you should use them in your
development scripts.

String Variables and Object String Properties

Although numeric object properties (for example, legend.x) can be used
anywhere aliteral number or numeric variable would be used, string
properties (for example, legend.text$) cannot be used wherever aliteral
string or a string variable would be used. In order to output or check the
contents of an object's string property, you must first assign it to astring
variable, and then use that variable. An example illustrating this method
follows:

%A=myLabel.text$;
if (A=="Hello") {myLabel.text$="Good Bye";};

56 « 3.2 Variables

Chapter 3, LabTalk

For another example using
the $() operator, see page
90.

3.2.3 Numeric to String Conversion

To evaluate avariable or expression and interpret the result as a string,
you must use the $() operator on the numeric variable.

Example:

K=9;

type "K";

Inthefirst line of script, the value 9 is assigned to the variable K. The

second line of script causes the given string to be output to the Script
window. The Script window printsK.

However, if you use the numeric-to-string conversion notation to convert
K to avalue before printing to the Script window:

type "$(K)" (ENTER)

then the value of K isfound first, and the result (9) is output to the
Script window.

3.2.4 Deleting Variables

Y ou can delete a variable using the delete -v variableName command.

3.3 Operators

3.3.1 Arithmetic Operators

LabTalk recognizes the following arithmetic operators:

+ Addition.

- Subtraction.

* Multiplication.
/ Division.

n Exponentiate.

3.3 Operators ¢ 57

Chapter 3, LabTalk

3.3.2 Assignment Operators

LabTalk recognizes the following assignment operators:
= Assign the argument to the variable.

+= Add the argument to the variable contents and assign to the
variable.

-= Subtract the argument by the variable contents and assign to the
variable.

*= Multiply the argument by the variable contents and assign to the
variable.

/= Dividethe variable contents by the argument and assign to the
variable.

A= Raisethe variable contents to the argument and assign to the
variable.

++ Add 1 to the variable contents and assign to the variable.
-- Subtract 1 from the variable contents and assign to the variable.

--O (Also: +-0O,*-0, /-0, "-0) Perform an interpolation outside of
the domain of the second dataset for all X values of the first dataset
and then perform the subtraction. For example:
datal b --O data2_b;

For more information, see "Vector Calculations Requiring
Interpolation” on page 61.

3.3.3 Logical and Relational Operators

LabTalk recognizes the following logical and relational operators:
> Greater than.

>= Greater than or equal to.

< Less than.

<= Lessthan or equal to.

== Equal to.

= Not equa to.

&& AND.

[l OR.

58 « 3.3 Operators

Chapter 3, LabTalk

Thelogical and relational operators follow standard C programming
language notation. An expression involving logical or relation operators
will evaluate to either true (non-zero) or false (zero).

3.3.4 Bitwise Operators

LabTalk recognizes the following bitwise operators:
& Bitwise AND.
| Bitwiseinclusive OR.

Examples:
value=3|5;
Valueissetto 7.

value=3&b5;
Valueissetto 1.

3.3.5 Conditional Operators

Theternary operator, ?:, can be used in the form:
Expression1?Expression2:Expression3

This expression first evaluates Expressionl. If Expressionl istrue
(evaluates to a non-zero value), then Expression2 is evaluated. The value
of Expression2 becomes the value for the conditional expression. If
Expressionl is false (evaluates to zero), then Expression3 is eval uated
and becomes the value for the entire conditional expression.

Example:

value=test>=071:0;

In this example, Expression2 and Expression3 are literal values. The
statement sets value equal to either 0 or 1 depending on whether the
variable test is greater than or equal to 0. If test is greater than or equal

to 0, then valueis set to 1. If not, valueisset to 0. Thus, this statement
can replace the following script:

if (test>=0) {value=1} else {value=0};

3.3 Operators ¢ 59

Chapter 3, LabTalk

3.4 Calculations

3.4.1 Scalar Operations

You can use LabTalk to express a calculation and store the result in a
numeric variable. Such acalculation isreferred to as a scalar operation,
asonly asingle valueisinvolved. For example, consider the following:

inputVal=21;
myResult=4*32*inputVal;

The second line of this example performs a calculation and creates the
variable, myResult. The value of the calculation is stored in myResult.

When avariable is being used as an operand, and will also store aresult,
shorthand notation can be used. For example, you could write;

B=B*3;
or you could equivalently write:

B*=3;
In this example, multiplication is performed with the result assigned to
thevariable B. Similarly, you can use +=, -=, /=, and *=. Using

shorthand notation produces script that is faster in execution time as
compared to the longer syntax method.

3.4.2 Vector Operations

Row-by-Row Calculations

In your scripts, you may need to perform a calculation on awhole set of
numbers which are contained in acolumn. Such acalculationiscalled a
vector operation, and as such, the assignment operator must have a
dataset specified both on the left and right. For example:

datal b=3*datal_a;

This operation multiplies every element of the datal a dataset by 3.
Because the operand is a dataset, the result must be a dataset. In this
example, theresult is put into thedatal b dataset.

60 ¢ 3.4 Calculations

Chapter 3, LabTalk

If you wereto write:
newData=3*datal A,

then atemporary dataset called newData is created and assigned the
result of the vector operation. Elements of the temporary dataset can be
accessed in the same way you would access an element of a dataset
contained in aworksheet.

Mathematical operations can also be performed between elements of
datasets. Such operations are also vector operations. For example:

datal C=datal A*datal B;

This operation multiplies the elements of the datal A and datal B
datasets, row by row, and puts the product of each multiplication in the
datal C dataset.

Vector Calculations Requiring Interpolation

The previous discussion of vector operations assumed that when you use
two datasets as operands, the datasets have the same number of elements,
or rows. When the dataset operands do not have the same number of
rows, then linear interpolation can be used to perform the calculation.
This requires using a different kind of vector operator notation of the
form: dataset operator dataset

As an example, consider the following two dependent datasetsin Figure
3.1, each with its own set of independent data.

3.4 Calculations « 61

Chapter 3, LabTalk

Figure3.1: Sample Datasets

i [ko o
En & n
L e e

el bE A el P [
i ok) e Ll e ke

L

B Giaphl M= E

Bl
;1- o Baseline_B
0d

£al h —o— Signal 8
TR F
B .." 1
Al J b’
A !
A4 y

1! I]
EEE] i [+]
FE-F | *
204 ,u'f. o o '\,
1864 "
104 o i p.
LIE-E)
(g
0.6 <
4.0
G 1.0 4.5 20 25 3034 40 4% 50 55 B0 ES 0 78

W el THe

% pockn T

If you were to subtract baseline b from signal_b using the —= operator
in the Script window:

signal_b-=baseline_b (ENTER)

then the subtraction would be performed row by row (with no linear
interpolation) as shown in Figure 3.2.

62 ¢ 3.4 Calculations

Chapter 3, LabTalk

Figure 3.2: Subtracting Datasets Using the —= Operator

B Sional A=l E
A | B =
1 7.5 2| 1 1 -1
7 1.5] ? 2| -1
E| A5 il 3 ki 1
| BB | 4 q| B
| 5 | | & 5 -
L1 B i -
7 || L 7 -

1
744 O Baseline_B
ra o— Signal_B

o
=]

-
T -
myi]

P R

=]
—
o™
——
=]
=]

™

FHa
-l T -1
NN O e O e O -\IFl:l s Rl Rl

-

A
{ o

L) L} L L L T T T T T T T T 1
LS 0000 2l 8 2030 40 45 90 95 B0 S L0 La
X waid T

It is apparent that the subtraction was performed row by row, asthe
calculation was only performed on four rows (baseline_b only had four
rows while signal_b had seven).

However, if you use a dataset operator dataset assignment-operation
statement (starting with the initial worksheet values) in the Script
window:

signal_b-baseline_b (ENTER)
then linear interpolation of the second dataset (baseline_b) within the

domain of the first dataset (signal_b) isused to carry out the subtraction.
The results are stored in the first dataset (signal_b). Figure 3.3 showsthe

3.4 Calculations « 63

Chapter 3, LabTalk

results of this calculation, when starting with the initial worksheet values

(from Figure 3.1).

Figure 3.3: Subtracting Datasets Using the Dataset Operator Dataset

Assignment Operation

1 Z.5 2 1 |)
z 15 2 2 2 -1
3 a5 7 k| 3 1
A4 bR s 4 4]
| b | L 5 B 1
| B | 6 | 7] -1
I =] i Fil -
Bl Graph [_ o] =]

(=0 -
X5 o Bas=ing_R
T &
£ 5 == Signal B
[
=
=11 u]
. 484 P
= 4b P
= 35- K, 1
= =hi- 3 !
% xs l,-"l N
|
* 20 o o oY @
54 5
.04 'n] 'n]
0% ™
o ra "H\.
a3 ;
1.0 L8]
i

= e Ty

In this example, interpolation was used to find the Y values of basdline b
using the X values given by signal_a. Note that although X=2 and X=6
are outside the range of baseline b, interpolated values were found and
used in the subtraction. Thisis because this type of assignment operator
always interpol ates within the domain of the second dataset plus one
point on either side. (Note: In Origin 6.1, interpolation is performed
within the domain of the second dataset only. To return to the pre-6.1
behavior, set @IE = 1. The new default is @IE =0.)

64 « 3.4 Calculations

Chapter 3, LabTalk

You must leave at |east one
space between the dataset
names and the operator
with its option switch.

In order to have Origin perform the interpolation outside of the domain
of the second dataset for all X values of the first dataset, you need to
specify an option switch (-O). The syntax using this option switchiis:

dataset operator-O dataset

Figure 3.4 shows the results of the statement typed in the Script window:

sighal_b —-O baseline_b (ENTER)

when starting with the initial worksheet values (from Figure 3.1).

Figure 3.4: Subtracting Datasets Using the Dataset Operator-O

Dataset Assignment Operation

m Hageline E Yegnal !E m
_ i| A | B i|
1 P ? 1 1] -1
Fd ER-] 2 2 Al 1
3 4.5 2 | 3 1
[| 5.5 2 4 q 5
5 5 5 I
| B | 6 | hi -1
FJ | ¥ i 1 :IJ
1
20
5] B Badgsing_B
Y Lo Figna_B
Uk
=5
4] :
£ o A
a0 / h
d g J \
- =04 [} l_.' o o '.l. o
1.5 / '
- .
0.5 ___.-"'ﬂ'I .
an
05 ra Sy
404 G—a j - T—
K

A Hxm THa

3.4 Calculations « 65

Chapter 3, LabTalk

This option switch is
available for all the
arithmetic operators
(+-0, --0, *-0, /-0, and
~-0).

In this example, the option switch caused linear interpolation of
basgline b to be used within and outside of its domain in order to
perform the calculation for the entire domain of signal_b.

Note: When datais unsorted or there are duplicate Y valuesfor any
given X value, there will be inconsistencies in the linear interpolation
results.

3.4.3 Writing Speedy Calculations

In your scripts, you may need to perform complex vector operations. For
example, suppose the first column of aworksheet contains time values,
and you want the second column to contain the amplitude of a sinusoidal
function like the following:

y = 1.5 sin(5t+3)

One option isto use the following script:

col(2)=1.5*sin(5*col(1)+3);

However, this operation would take quite some time to perform because
the LabTalk interpreter has to break this statement down piece by piece
and interpret this for each row in col(1). To find out how long this script
takes to execute, you must get the time from the system clock, perform
the script, and then get the elapsed time since the system clock was
checked. Thisisaccomplished with the second command.

For example:

sec; /I Get the time from the system clock
col(2)=1.5*sin(5*col(1)+3); /I perform operation

watch; I/l Type elapsed time to Script window

The elapsed time prints to the Script window. (Additionally, you can
check the elapsed time by reading the value of the v1 variable.)

Instead of writing the vector operation in one statement, it would be
considerably faster to write multiple statements that modify the entire
dataset. Because the entire dataset is modified in a uniform way, Origin
can perform these tasks very quickly. For example, the following script
runs much faster than the previous script:

66 « 3.4 Calculations

Chapter 3, LabTalk

sec;
col(2)=col(2);
col(2)*=5;
col(2)+=3;

col(2)=sin(col(2));

col(2)*=1.5;
watch;

/I Get the time from the system clock
/I set col(2) equal to the time column

/I set col(2) to be 5 times its value

// add 3 to every element

/l compute the sine for every element
// multiply by 1.5

I/l Type elapsed time to Script window

Internal calculation shortcuts are used to perform these calculations very

quickly.

3.5 Command Reference by Category

The following tables categorize the LabTalk commands by their function.

Table 3.3: Data Manipulation and Calculation Commands

Command Description

average Replace a dataset with arunning average.

copy Copy one dataset to another.

create Create a dataset, worksheet, or function.

delete Delete a dataset, function, macro, or variable.

derivative Take the derivative of a dataset.

edit Open the worksheet for a dataset.

integrate Integrate a dataset.

limit Find the minimum and maximum X and Y values for a
dataset.

Ir Perform linear regression on a dataset.

mark Delete or mask data pointsin a dataset.

math Perform mathematical operations on or between datasets.

matrix Set the dimensions and values of amatrix. Transpose a
matrix.

nlsf Perform nonlinear least squares fitting.

3.5 Command Reference by Category ¢ 67

Chapter 3, LabTalk

Command Description

plot Append values to a dataset.
sort Sort worksheet data.

undo Undo various procedures.

Table 3.4: Display Control Commands

Command

Description

axis

Open the Axis dialog box. Edit the axis scale type, grid
display, tick, and tick label display. Display additional
axesin alayer.

document -t

Open awindow based on atemplate.

dotoolbox

Select or block selection of a Tools toolbar tool. Hide the
Toolstoolbar. Display a picture of aworksheet or graph
window in alayout page window.

draw

Draw aline and edit its properties. Hide an object. Update
an object. Edit the location of an object. Read a metéfile,
bitmap, or object from afileinto an object. Update an
object's numeric or text fields.

edit

Open the worksheet for adataset. Open the Color Palette
dialog box.

get

Read the display properties of a dataset or data plot.

label

Create and edit atext label, including axis titles.

layer

Edit the properties of alayer. Add datato alayer. Add
layersto agraph page. Open layer-related dialog boxes
including the Plot Details dialog box. Extract multiple data
plotsto separate layers.

legend

Display or update the legend for a graph layer.

page

Edit the properties of apage. Add datato separate layers of
agraph page. Open page-related dialog boxes including
the Plot Details dialog box. Extract multiple layersto

separate graph pages.

plot

Update the layer or the page.

select

Edit the display of the selected objects including alignment
and grouping.

set

Edit the display properties of a dataset or data plot. Open
the Plot Details dialog box.

type

Hide the Script window or the status bar.

undo

Undo various procedures.

68 ¢ 3.5 Command Reference by Category

Chapter 3, LabTalk

Command Description

window Open, close, hide, minimize, maximize, rename, and
activate awindow. Merge graph windows.

worksheet Edit the properties of aworksheet. Duplicate aworksheet.

Open worksheet-related dialog boxes. Plot worksheet data.
Run a worksheet's script.

Table 3.5: Project Management Commands

Command Description

document Append projects. Close the current project. Open a
project. Rename the current project. Count the number of
layersin agraph window. Count the number of object
typesin aproject.

file Copy onefile to another.

list List all datasets, macros, system variables, or data plot style

holders.

Table 3.6: Control Flow Commands

Command Description
break Exit from aloop, a script, or a progress dialog box.
continue Skip to the next iteration of the current loop.

document -e

(-ef)

Loop to execute a script that affects every object of the
specified type (-ef = in the active Project Explorer folder).

exit Exit from Origin.

for Loop for repeated operation.

if [else] Test acondition and branch accordingly.

layer -0 Execute a script for the specified layer.

loop Loop while incrementing a variable.

repeat Execute the same script multiple times.

return Return avalue from a script and exit the script.

switch Test an expression against a series of constant values and
branch accordingly.

win -0 Execute a script for the specified window.

3.5 Command Reference by Category * 69

Chapter 3, LabTalk

Table3.7: Input/Output Commands

Command

Description

clipboard

Copy the current page to the clipboard. Save the specified
graph page as a Windows metéfile.

copy

Copy one dataset to another.

draw -fb, -fm

Read a bitmap or metafile from afileinto an object.

getfilename

Open the Open or Import Multiple ASCII dialog boxes.

getnumber

Get input of up to six numbers or strings.

getpts

Graphically get points or screen coordinates from a data
plot.

getsavename

Open the Save As diaog box.

getstring

Get a user-supplied text string.

getyesno

Open a'Yes/No/Cancel dialog box.

open

Import adatafile.

print

Print the active (or specified) page. Open the Print or Page
Setup dialog boxes.

save

Save the project or save awindow in the project. Export
worksheet data.

type

Output text to the Script window, status bar, or various
dialog boxes.

Table 3.8: Script Management Commands

Command

Description

define

Define amacro.

draw

Run an object's Label Control dialog box script.

menu

M anipulate menus, submenus, and menu commands.

queue

Place a script at the end of the window update queue.

run

Execute a script file or run a Windows program.

Table 3.9: External Access Commands

Command

Description

dde

Client DDE support.

dll

Execute a function from a user-supplied DLL.

70 « 3.5 Command Reference by Category

Chapter 3, LabTalk

Table 3.10: Timer Commands

Command

Description

seconds

Elapsed time counter. Perform timer-related operations.

timer

Execute the TimerProc macro's script periodically.

3.6 Object Reference by Category

The following tables categorize the LabTalk objects by their function.

Table3.11: Data Manipulation and Calculation Objects

Object

Description

curve

Perform smoothing, integration, differentiation, and
baseline and peak operations on a data plot.

excel

Run Excel macros or VB application functions from
Origin.

fft

Perform forward and backward fast Fourier
transforms, correlation, convolution, and
deconvolution.

integ

Read the integration results from the integrate
command.

limit

Read the limit results from the limit command.

Read the linear regression results from the Ir
command.

mat

Convert data between aworksheet and matrix.
Perform mathematical operations on matrix data.

nlsf

Perform nonlinear least squares fitting.

sort

Sort worksheet data.

stat, stat.ds, stat.Ir, | Perform linear, polynomial, and multiple regression.
stat.mr, stat.pr

Calculate descriptive statistics.

sum

Read the statistics results from the sum() function
or from Statistics on Columns.

3.6 Object Reference by Category e 71

Chapter 3, LabTalk

Table 3.12: Display Control Objects

Object Description

create Create worksheets. Delete worksheet columns and
datasets.

draw Edit objects in Button Edit Mode.

ed LabTalk Editor control.

layer Edit the properties of alayer. Add datato alayer.

layer.axis Edit the properties of an axis.

layer.axis.break

Edit the properties of an axis break.

layer.axis.grid

Edit the properties of axis grid lines.

layer.axis.label

Edit the properties of axistick labels.

layer.plotn.boxchart

Edit the bin and box properties of abox chart.

page

Edit the properties of a page (for example, the graph
page).

system Read the general project properties including the
current date and time, the Origin version number,
and the starting menu level.

system.axis Edit the default axis color and width for graphs that

aren't created from atemplate.

system.dash

Edit the dash line settings and hatch line settings.

system.datadisplay

Edit the properties of the Data Display toolbar.

system.date

Edit the custom date formats available from the
Date Format drop-down lists.

system.dialog

Edit the open and close properties of the Options
dialog box.

system.display

Edit the display properties for balloon help, window
updating, and axis blinking when double-clicked.

system.excel

Edit the settings for using Excel in Origin.

system.font

Edit the font-related settings for text labels.

system.graph

Edit the graph-related settings that aren't saved with
atemplate.

system.grid

Edit the properties of axis grid lines for graphs that
aren't created from atemplate.

system.math

Set the angular unitsto radians, degrees, or
gradians.

system.notes

Control the size of anoteswindow. Display a
prompt when closing a notes window.

72 « 3.6 Object Reference by Category

Chapter 3, LabTalk

Object

Description

system.numeric

Edit the numeric display settings including the
number of digits displayed after a decimal point, the
numeric separator, and the conversion threshold for
decimal to scientific notation.

system.operations

Control the display of the toolbar spacer.

system.page

Edit the spacing of the axis grid lines and the object
grid lines.

system.project

Edit the Project Explorer display settings. Control
the type of child window that displays when you
open anew project.

system.script

Display a prompt when closing the Script window.

system.symbol

Edit the symbol border width and the line and
symbol gap for data plots.

system.tick

Edit the tick and tick label settingsthat aren't saved
with atemplate.

system.toolbar

Custom toolbar control.

system.wks

Display a prompt when closing an Excel workbook,
worksheet, or matrix. Delete datasets when deleting
aworksheet. Delete empty columns after
transposing aworksheet. Set new columns to
Numeric or to Text & Numeric.

type

Hide the Script window or the status bar.

wks

Edit the properties of aworksheet. Add, select, and
insert columns. Combine worksheets. Open a
worksheet based on atemplate.

wks.col

Edit the properties of a worksheet column.

Table 3.13; Input/Output Objects

Object Description

copy Read the number of elements copied when using the
copy command.

db ODBC import.

export Export agraph to afile.

export.image

Control the display of an advanced dialog box for
editing the image attributes when exporting a graph.

fdlog

Edit the properties and open the Save As, Open, and
Open Multiple Files dialog boxes.

3.6 Object Reference by Category ¢ 73

Chapter 3, LabTalk

Object

Description

getpts

Read or set the points/screen coordinate properties
when using the getpts command. The getpts
command graphically gets points/screen coordinates
from a data plot.

image

Export graphs. Import and export raster graphic
images.

mail

Basic email functionality.

OFTP

FTP access.

OPack

Exchanging custom tools.

OWKs2HTM

Convert worksheet to HTML.

rt

Read the properties of the real-time data block
coming into Origin.

system.copypage

Edit the Copy Page and export graph settings.

system.display

Control the setting when pasting images from the
Clipboard (metafile or bitmap).

system.fileext

Add and remove file extension groups and add file
extension types to the Save As and Open dialog
boxes. Track the default file paths within an Origin
session or between Origin sessions.

system.operations

Use OLE in-place activation when editing Origin
objects embedded in another application.

system.print

Edit the print-related settings.

system.project

Back-up the current project file before saving.

type

Copy the contents of aworksheet to the Script
window. Redirect analysis output to the Script
window or a notes window. Display a modal
message box. Append a header to the Results Log.

wks

Copy the contents of aworksheet into %A. Paste
the variable contents into a worksheet.

wks.export

Control the data export options for a worksheet.

wks.import

Open the Import Verification dialog box before
importing adatafile.

74 « 3.6 Object Reference by Category

Chapter 3, LabTalk

Table 3.14: Script M anagement Objects

Object Description

ini Create sectionsin an initidization file. Assign
values to keywords. Create new keywords.

macro Read the number of arguments passed to a macro.

menu Manipul ate menu commands.

run Execute script from a script file.

3.7 Control Flow

To specify the order of execution of statementsin a program, control flow
statements and statement blocks are needed. Control flow statements can
make a decision and then take appropriate action, repeat the same code
for either a specified number of times or until a certain criteriais
satisfied, stop executing a particular routine and go back to where the
script was called, or smply stop execution of a script completely.

3.7.1 Statements and Statement
Blocks

A statement isaword in the LabTalk language set followed by a
semicolon (for example, type "Hello World";) or an expression
involving a LabTalk operator followed by a semicolon (for example,
x=3;).

In the following sections, some of the control flow statements require a
statement block. The block is interpreted depending on the control flow
statement. A statement block is always surrounded by braces{ } and
followed by a semicolon. For example, the following program defines a
given block of script to be a macro.

3.7 Control Flow 75

Chapter 3, LabTalk

define myMacro

{

type "Running macro...";

Ir %C;

type "Slope of dataset is $(LR.B)";

h

Note: Do not use braces{ } instead of parentheses () in arithmetic and
conditional expressions. Braces take up stack space and can cause a
stack overflow error if they are improperly used. Braces should only be
used for embracing blocks of script, aswith if [else], loop, and for

statements.

Table 3.15: Summary of the Control Flow Statements

Command or
Object Method

Description

break

Unconditional exit from aloop or script.

continue Break out of the current iteration of aloop and go
to the beginning of the loop.

doc -e (-e) For each instance of a specified object type

doc -ef that exists within the current project, perform the
given script.
(-ef) Perform the given script for objectsin the
active Project Explorer folder only. (The Project
Explorer view mode must be set to View Windows
in Active Folder.)

exit Exit Origin.

for For loop for arepeated operation.

if [else] Test acondition and branch accordingly.

layer -0 Direct the given script to a specified layer.

loop Loop through ascript. Thisisfaster than afor
loop because there is no termination condition
specified in the command.

repeat Execute the same script multiple times.

return [value]

Exit from aloop or script and return the specified
value to the calling script.

run.file(fileName)
run.section(arguments)

Execute the specified LabTalk script file.
Execute the named section of the specified
LabTalk script file.

76 « 3.7 Control Flow

Chapter 3, LabTalk

Command or Description
Object Method
switch Test an expression against a series of constant

values and branch accordingly.

win -0 Direct the given script to a specified window.

3.7.2 Break Command

Syntax:
break;

Break out of the current loop (or entire script if the commandisnotina
loop).

Note: To break out of ascript, it isrecommended that you use the return
command, as the return command can return a particular value back to
wherever the script was called.

3.7.3 Continue Command

Syntax:
continue;

This command is intended for use with the for and loop commands.
When encountered, the incrementation statements are executed, and the
loop starts again.

This command is useful when a condition is found which indicates that
the current iteration of the loop may end and the next iteration begin.

Example:
for (ii=0;ii<=10;ii+=1)
{

if ((ii/2)!=int(ii/2)) {continue};
type "$(ii) is an Even number";

h

3.7 Control Flow e 77

Chapter 3, LabTalk

Theoutput is:

0 is an Even number
2 is an Even number
4 is an Even number
6 is an Even number
8 is an Even number
10is an Even number

3.7.4 Doc Command

Syntax:
doc -e object {script};

For each instance of a specified object type (Table 3.16), direct the given
script. Since the script is actually directed at a particular kind of object,
you can write in assumptions into the script. For example, to delete all
the graph windows in the project, type the following in the Script
window:

%z=""; [lclear contents of %Z

doc -cp; //count number graph windows

doc -e P {%Z=%Z %H;}; //concatenate window names

/Noop through and delete graph windows

loop (ii,1,count) {

win -c %[%Z #ii];

3

Note: Usedoc -ef object {script}; to direct the given script to each
instance of the specified object in the active Project Explorer folder.

When you use this command, the Project Explorer view mode must be set
to View Windows in Active Folder.

Table 3.16: Object Notation for the Doc -e Command

Object Description
D Dataplot in the active layer.
DY Data plot in the active layer excluding error bars and labels.

78 « 3.7 Control Flow

Chapter 3, LabTalk

The loop command provides
faster looping through a
block of script. For more
information, seethe "3.7.8
Loop Command" on page
81.

Object Description

G Labels and other named objects in the active layer.
L Layer (worksheet and matrix each have one layer).
LW Layersin the current window.

M Matrix.

(0] Any non-minimized window.

P Graph window.

S Dataset in the project.

w Worksheet.

3.7.5 For Command

Syntax:
for (expressionl; expression2; expression3) {script};

Inthe for statement, expressionl isevaluated. This specifies
initialization for the loop. Second, expression2 is evaluated and if true
(non-zero), then script is executed. Third, expression3, often an
incrementation, is executed. The process repeats at the second step.
The loop terminates when expression2 is found to be false (zero). Any
expression can consist of multiple statements, each separated by a
comma.

The for loop can be used to simulate the C-style while loop. To do this,
do not include expression1 and expression2 in the for statement. For
example:

p=1;

for (;p>0;) {

getn -s (Enter 0 to quit) p (Next value);
h

3.7 Control Flow 79

Chapter 3, LabTalk

For more information on
the run.section() method,
see"3.7.10 Run Object
Methods" on page 82.

3.7.6 If Command

Syntax 1.
if (testCondition) sentencel [else sentence2;]

Syntax 2:
if (testCondition) {scriptl1} [else {script2}];

If testCondition evaluates to a non-zero value (true), then sentencel or
scriptl is executed. If the optional elseis present and testCondition
evaluates to zero (false), then sentence? or script2 is executed.

Y ou can use the logical and relational operators for making compound
conditions for testCondition. For example:

if (b==4)&&(a<3))

{

type "Condition found to be true!";

3

prints Condition found to be true! in the Script window if the variable b
stores the value four and the variable a stores a value less than three.

Furthermore, you can use a variable or an object property as
testCondition. For example:

test=1; if (test) {type "True";};
prints Truein the Script window.

Additionally, testCondition can be the return value from a section of a
LabTalk script file (*.0OGS). For example:

if (run.section(sample,opl)) {type "Err has been set to 1";};

prints Err has been set to 1 in the Script window if the return value from
the [opl] section of the SAMPLE.OGSfileis non-zero.

80 ¢ 3.7 Control Flow

Chapter 3, LabTalk

3.7.7 Layer -o Command

Syntax:
layer -o layerNumber {script};

Execute the specified script for the specified layer. The layerNumber
layer istemporarily set as the active layer, the script is executed, then the
original active layer is restored.

This command is useful for passing values between objects on different

layers of the graph window. For example, if two buttons are in different
layers of a graph window, then there can be no communication between

the buttons unless the layer -0 command is used.

In the following example, if abutton named oneisin layer 1 and a button
named two isin layer 2, then the following script will not work:

one.x=two.x;

However, if layer 1 is currently active, then the following script:
layer -0 2 {temp=two.x;}; one.x=temp;

will work properly (button onein layer 1 moves to the X location of
button two in layer 2).

3.7.8 Loop Command

Syntax:
loop (variable,startVal,endVal) {script};

A simpleincrement loop structure. Initializes variable with a value of
startVal. Executes script. Increments variable and testsif it is greater
than endVal. If it isnot, executes script and continues to loop.

For example, if you open a new worksheet and add data to the first ten
rows of the first column, you can then print the data to the Script window
by running the following script in the Script window:

loop (ii,1,10) {type "%(%H,1,ii)";};

Note: Theloop command provides faster looping through a block of
script than does the for command. The enhanced speed is aresult of not
having to parse out a LabTalk expression for the condition required to
stop the loop, asis the case with the for command.

3.7 Control Flow « 81

Chapter 3, LabTalk

For more information on
passing arguments to script
file sections, see"3.8
Passing Arguments' on
page 84.

3.7.9 Repeat Command

Syntax:
repeat value {script};

Execute script the number of times specified by value, or until an error
occurs, or until the break command is executed.

Therepeat command is useful for looping through a script a known
number of times without regard to any condition being satisfied.

Example:
repeat 3 {type "line of output";}; /I types text on three lines

3.7.10 Run Object Methods

Syntax 1:
run.file(fileName);
Execute the specified LabTalk script file.

Syntax 2:
run.section(fileName,sectionName[,argl arg?2 ... arg5]);

Execute the named section of the specified LabTalk script file (*.OGS).
If fileName has an OGS extension, you need not include the extension in
the argument. Sectionsin the script file must be separated by [section
names]. For example, [Graph].

This method can pass up to five arguments to a script file section.
Arguments in the script can be referred to using the temporary string
variables%1, %2, %3, %4, and %5.

Note: If you use the run.section(') method to call a section from the
same file (fileName), you need not include the fileName argument.

82« 3.7 Control Flow

Chapter 3, LabTalk

3.7.11 Switch Command

Syntax:
switch (argument) {case 1: ...case 2: ... case n: ... [default: ...]};

The switch command is a special multi-way decision maker that tests
whether argument matches one of a number of values, and branches
accordingly. Argument can be either a constant or an identifier.

Each case requires a break command so that the following commands are
not executed. A default case can also be used. The default caseis
executed only when no other case is matched.

Example:
ii=2;
switch (ii)
{
case 1:
type "a";
break;
case 2:
type "b";
break;
case 3:
type "c";
break;
default:
type "none";
break;
3

Theoutput isb.

3.7 Control Flow « 83

Chapter 3, LabTalk

3.7.12 Win -o Command

Syntax:
win -o winName {script};

Usethewin -ocommandto Execute the specified script for the specified window (winName). For
direct script to a window example, if Data2 is the currently active window, then the following

that is currently not active. script:
win -0 Datal {col(1)=data(1,20);};

fillsthe first column in Datal with values using the data() function, even
though Data? is currently active.

3.8 Passing Arguments

When you use the run.section() object method (to call a script file
section) or when you call a macro, you can pass arguments to the script
file section or to the macro. Arguments can be literal text, numbers,
numeric variables, or string variables.

For more information on When you pass arguments to script file sections or to macros, the section
the run.section() object call or the macro call must include a space between each argument being
method, see”3.7.10 Run passed. Furthermore, when you pass literal text or string variables as

Object Methods' on page
82. For moreinformation
on macros, see"3.12
Macros' on page 102.

arguments, each argument should always be surrounded by quotation
marks (in case the argument contains more than one word). Passing
numbers or numeric variables doesn't require quotation mark protection,
except when passing negative values.

Y ou can pass up to five arguments to script file sections or macros. In
the script file section or macro definition, argument placeholders receive
the passed arguments. These placeholdersare %1, %2, % 3, %4, and
%5. The placeholder for the first passed argument is % 1, the second is
%2, etc. These placeholderswork just like string variablesin that they
are always substituted prior to execution of the command in which they
are embedded.

As an example of passing literal text as an argument that is received by
%1, %2, etc., suppose a TEST.OGS file includes the following section:

[output]
type "%1 %2 %3";

and you execute the following script:

84 « 3.8 Passing Arguments

Chapter 3, LabTalk

If the script file has an OGS
extension, you need not
include the extension in the
argument.

run.section(test.ogs,output, "Hello World" "from" "LabTalk");

Then % 1 holds "Hello World," %2 holds "from," and % 3 holds
"LabTak." After string substitution, Origin outputs Hello World from
LabTalk to the Script window. If you had omitted the quotation marks
fromthe script file section call, then % 1 would hold "Hello," % 2 would
hold "World," and % 3 would hold "from." Origin would then output
Hello World from.

3.8.1 Passing Numeric Variables by
Reference

Passing numeric variable arguments by reference allows the code in the
script file section or macro to change the value of the variable. For
example, suppose your application used the variable L astRow to hold the
row number of the last row inthedatal b column that contains avalue.
Furthermore, suppose that the current value of LastRow is 10. If you
pass the variable L astRow to a script file section whose code appends
five valuesto datal_b (starting at the current last row), then after
appending the values, the script file section could increment the value of
the LastRow variable so that the updated value of LastRow is 15.

Thus, if a TEST.OGS file includes the following section:
[adddata]

loop (n, 1, 5)

{

datal b[%1+n]=100;

3

%1=%1+(n-1);

return O;

And you execute the following script:

datal_b=data(1,10); //fill datal_b with values 1-10

get datal_b -e lastrow; //store last row of values in lastrow
run.section(test.ogs, adddata, lastrow);

Then the LastRow variable is passed by reference and then updated to
hold the value 15.

3.8 Passing Arguments ¢ 85

Chapter 3, LabTalk

3.8.2 Passing Numeric Variables by
Value

Passing numeric variable arguments by value is accomplished by using
the $()) substitution notation. This notation forces the interpreter to
evaluate the argument before sending it to the script file section or macro.
Thistechnique is useful for sending the value of a calculation for future
use. If the calculation were sent by reference, then the entire expression
would require calculation each time it was interpreted.

In the following script file example, the [main] section includesacall to
the [Part1] section in which the numeric variable var 1 is passed by
reference and by value. % 1 will hold the argument that is passed by
reference and % 2 will hold the argument that is passed by value.
Additionally, a string variable (% A) consisting of two words is sent by
value as asingle argument to % 3.

[main]
%A="degrees Celcius";

//Define a string variable to hold the units of the variable
//being output

run.section(,Partl,varl $(varl) "%A");

//[Pass 1st argument by reference, 2nd argument by value,
//3rd argument as a string variable

delete -v varl,;
return O;

[Partl]
/IAssumed Input: 1st Arg=Variable, 2nd Arg=Value
type -b “The value of %1 = %2 %3";
/[Example output: The value of varl = 22 degrees Celcius
return O;

86 ¢ 3.8 Passing Arguments

Chapter 3, LabTalk

3.9 Input

LabTalk provides a number of 'get' commands that simplify getting input
fromthe user. These include getfilename, gethumber, getpts,
getsavename, getstring, and getyesno. All of these commands use a
dialog box to present a string of information, and then set variables
according to the buttons pressed in the dialog box.

3.9.1 Getnumber Command

The getnumber command allows you to easily construct a multi-format,
multi-option dialog box. The resultant dialog box allows the user to
select astring from a specified list (even a system list of colors or fonts),
enter string values and numeric constants, and set on/off options. For
example, type the following in the Script window:

%Z=(One Two Three); ii=2;

getnumber (Your Choice:) ii:Z (User Input);

This script produces a dialog box with a 'Y our Choice drop-down list
containing One, Two, and, Three. Two isthe default selection.

Figure 3.5: Sample Getnumber Dialog Box

User bnput 0K I

Wour Choice: IT-...-.;.. -|

When the user makes a selection, the variable i is set to the token in the
list (thelist here is contained in % Z) which was selected. Therefore, in
order to extract the selected token, a substring parsing operation is
required.

%A=%[%Z #ii];

type -b "You picked %A";

3.9 Input e 87

Chapter 3, LabTalk

These two lines of script parse out the selected token from the list
contained in % Z, and display the selection in an Attention dialog box.

Figure 3.6: Resultant Attention Dialog Box

3.9.2 Getpts Command

The getpts command behaves a bit differently than the other 'get’
commands. For example, with the getnumber command, first a dialog
box opens and then the user makes a selection in that dialog box. Any
script after the getnumber command is not executed until the user makes
aselection. Thisallows your script to take different routes depending on
the user's selection. However, after the getpts command is executed, the
next LabTalk statements are executed without waiting for any user input.

The getpts command is often used in script for the user to pick pointson
their graph, and then perform some custom analysis. If you use the
getpts command incorrectly, your script could complete before the user
actually picks a point on their graph. To avoid this problem and to help
you understand the getpts command, review the following information.
An exampleis also provided.

When using the getpts command, datais entered via two methods:
By double-clicking on a data point in the graph.

By clicking on adata point in the graph and then pressing ENTER.

The getpts command works as follows:

First, the getpts.count object property is set to zero. Next, the
getpts.max object property is set to the number of requested points.
Lastly, the getpts command runs the script in the [GetPtsNoDraw]
section of the ORIGIN.OGSfile.

88 ¢ 3.9 Input

Chapter 3, LabTalk

The [GetPtsNoDraw] section of the file performs the following:
Sets the dataset name for X positionto _xpos.

Sets the dataset name for row index to _indx.

Sets the dataset name for reading points to the active dataset.
Creates the datasets (if needed) for X position and row index.
Defines the pointproc macro as follows:

def PointProc

{
#ltype click;
%B=getpts.xData$;
%B[getpts.count]=x;
%B=getpts.indexData$;
%B[getpts.count]=index;
if (getpts.count>=getpts.max)

{
type end toolbox;

{EndToolbox};
doTool 0;

}

else
doTool -next;

b

The pointproc macro executes each time the user selects a data point -
either by double-clicking on the point, or single-clicking and pressing
ENTER. Once the points are selected, Origin internally traps the
selection, sets X to the selected X position and index to the row for this X
value, and increments the getpts.count object property. Then, the
pointproc macro actually executes. In this case, this causes the X value
and row index to be added to the appropriate datasets. The macro then
teststo see if the getpts.count object value is greater than or equal to
getpts.max. If getpts.count isgreater than getpts.max, then the
endtoolbox macro executes and the cursor is switched back to a pointer
(dotool 0).

3.9 Input e 89

Chapter 3, LabTalk

The endtoolbox macro is normally not defined by Origin. It isavailable
so that you can define it to perform a custom routine. For example, if
your script prompts the user to pick points on the graph, and then the
script performs some custom analysis, you could define the endtoolbox
macro to set a data range for analysis using the Data Selector tool. This
tool setsthe mksl and mks2 variablesto arow index which defines a
region for analysis routines. In such an example, you can define the
endtoolbox macro to set these markers based on the information gathered
by the getpts command, and then execute a command that both carries
out an integration (or other analysis) and types the results to the Script
window:

def EndToolBox {
mks1l=_indx[1];
mks2=_indx[2];
integrate %C;

type -a "The Area under %C from $(_xpos[1]) to $(_xpos[2])
is $(INTEG.AREA).";

h

In this macro definition, the integrate command putsits resultsin the
integ object. In particular, the calculated areaisin theinteg.area
property. Note that % C contains the active dataset name and the $()
notation is used to evaluate a variable or expression and interpret the
result as a string.

To test the getpts command with the endtoolbox macro, perform the
following:

1) Plot some sample data.

2) Open the Script window and turn off script execution (Edit: Script
Execution).

3) Typethe endtoolbox macro definition into the Script window.

4) Type the following in the Script window:
getpts 2;

5) Turn script execution back on by reselecting Edit: Script Execution.

6) Highlight all the lines of script and press ENTER to execute the
entire script.

90« 3.9 Input

Chapter 3, LabTalk

The endtoolbox macro gets defined and getpts begins - allowing you (or
the user) to select two points on the graph to mark a particular region.
The actual analysisis held off until getptsis done - which triggers the
endtoolbox routine embedded in the pointproc macro. When the last
point is selected, the endtoolbox macro finally runs and the areaiis
calculated with the results typed to the Script window.

Redefining the Pointproc Macro

Because the pointproc macro executes whenever the user selects a data
point or a screen location, you can customize the pointproc macro to
meet your specific application needs. In the following script example, the
user selects a data point on a graph, and then selects alocation to display
the X and Y coordinates of the selected data point. For this example, you
must first plot some data. Then, with the graph window active, run the
following script from the Script window:
def pointproc {

XX1=x;

yyl=y;

dotool 0;

def pointproc {

label -s -j 1 -a x y " ($(xx1),$(yyl1))";

dotool 0O;
h
dotool 2;
h
dotool 3;

This script works as follows: First the pointproc macro is defined. After
the macro definition (which includes a redefinition of pointpraoc), the
Data Selector tool is activated (dotool 3). When the Data Selector tool is
active, the user selects a data point (for example, a peak position). After
selecting the data point, by default the pointproc macro runs. The
pointproc macro assignsthe X and Y values of the selected data point to
the two variables (xx1 and yy1), it temporarily makes the Pointer tool
active, and then redefines the pointproc macro. Next, the Screen Reader
tool is activated (dotool 2). When the Screen Reader tool is active, the
user selects a screen location for the data point label. After selecting the
location, by default the pointproc macro runs again (the second

3.9 Inpute 91

Chapter 3, LabTalk

definition of it). Thisresultsin alabel displaying on the graph at the
specified location. Finaly, the Pointer tool is reactivated.

3.10 Output

The type command is commonly used in scripts to output astring to a
specified device.

3.10.1 Literal Strings

Y our applications may have to print out messages regarding what
operations were done, or which errors occurred. To accomplish this, you
can use the type command followed by aliteral string to be output:

type [-q|-b|-c|-n]-1] string;

In this syntax example:

-q outputs to the status bar.

-b outputs to a dialog box with an OK button.

-c outputs to a dialog box with Y es and Cancel buttons.
-n outputs to a dialog box with Y es and No buttons.

- outputs to the Script window.

For example, the following script:
type -b "Error! Division by Zero.";
resultsin the dialog box in Figure 3.7.

92« 3.10 Output

Chapter 3, LabTalk

Figure 3.7: Dialog Box Created with the Type -b Option

j) Emad Division by Zern.

The -l option suppresses the carriage return at the end of the line typed to
the Script window. Therefore, any subsequent output to the Script
window will start at the end of the printed string (see Figure 3.8).

Figure 3.8: Usingthe Type-l Option

Foe{Tesd] Edt Hade

twpe —1 "Hells “;twpe —World™; -
pie o o ld * |
) H .

In general, string arguments need not be embraced by quotation marks.
However, there is one case where quotation marks are required: If the
string has asitsfirst character aminus sign. Such a problem usually
results when the $(variable) operator isthe first part of the output string
and variable contains a negative number. For example, if myVar=-1 and
you were to use:

type $(myVar) is the current value;

then an error would result in the output because the interpreter first
resolves $(myVar) to -1 and then tries to interpret the type statement.
The minus, or en dash, is then understood to denote an option switch.

To resolve this conflict, the script should be re-written:
type "$(myVar) is the current value";

3.10 Output e 93

Chapter 3, LabTalk

For information on
additional escape sequences
available with the label
command, see Chapter 2,
"Advanced Origin."

3.10.2 Object's Text Property

Using aliteral string for the output message requires embedding the
message in the LabTalk script. This can make it atedious process to later
modify or translate the output messages. A solution isto contain the
message text in a hidden text label, and have the application's script type
out the hidden object's text property. This solution uses the type
command but proceeds the option switches discussed on page 92 with at.

type -t[g|b|c|n] ObjectName.StringPropertyName;

As an example using this option switch, suppose you constructed a text
label and named it msg. Y ou could then enter in text to the label directly
at design time, or dynamically change the object's text property during
runtime. Suppose you entered "Error! Division by Zero." inthe Text
Control dialog box for the msg object.

Y our script to open an OK dialog box would then be:
type -tb msg.text;

Note that since only an object's string property can be an argument for the
type -t[q|bjc|n]|l] statement, there is no need for the $ at the end of the
argument. In fact, its presence would cause an error.

3.10.3 Customizing Output Using the
Type Command and Escape
Sequences

Origin allows you to use escape sequences in a string to control output
using the type command. These sequences begin with the '\ character,
and are summarized in Table 3.17.

Table 3.17: Escape Sequenceswith the Type Command

Escape Sequence | Description

\n Line feed.
\r Carriage return.
\r\n Carriage return and line feed.

94 « 3.10 Output

Chapter 3, LabTalk

Escape Sequence | Description

\d Delete/backspace.
\t Tab.
\xhh Any characters, where hh are two hex digits.

For example, the following script:
type -b "Here is the first line. \r\nHere is the second line.";
resultsin the dialog box in Figure 3.9.

Figure3.9: Carriage Return and Line Feed Escape Sequences

$ Hern iz thas firsd e
Hiiii i Bl ot e

|i"1:|k"'!

Note: If you usethe\r or \n escape sequences with the type command
(no option, so that you type to the Script window), then Origin displays
an unknown character in the Script window at the location of the escape
sequence, and the text displays on one line. However, if you copy the
Script window text output to another application, the text output will
display correctly (multiple lines, without the unknown character). To
avoid this problem when you type text to the Script window, the
recommended escape sequence for displaying text on multiplelinesis
\r\n, not \r or \n.

3.10.4 Formatted Output with $()

The $() notation can be used together with C-like formatting conversion
specifications - like the % f conversion specifier and the . decimal place
modifier - to format output. Table 3.18 summarizes the available options.

3.10 Output e 95

Chapter 3, LabTalk

Table 3.18: $(n, format) Options

Option Output Input Example
Range
SIGNED
dori Integer values (of | -2°31 n =-247.56;
SZICLIJgaI or integer t2?\31 1 type "Value: $(n,%d)";
Value: -247
SIGNED
f Decimal +1e290 n = 1.23456e5;
eorE Scientific 5-01&290 type "Values: $(n,%09.4f), $(n,%9.4E), $(n,%g)";
gor G Decimal or Values: 123456.0000, 1.2346E+005, 123456
Scientific
n = 1.23456€6;
type "Values: $(n,%9.4f), $(n,%9.4E), $(n,%g)";
Values: 1234560.0000, 1.2346E+006, 1.23456e+006
UNSIGNED
o, u, X, X Octal -2"31 n = 65551;
Integer ;?\32 1 type "Values: $(n,%o0), $(n,%u), $(n,%X)";
hexadecimal Values; 200017, 65551, 1000F
HEXADECIMAL (Negative values expressed as twos complements.)

3.10.5 Redirecting Output to the Notes

Window
For a complete discussion The type object is most often used in development to redirect output
of the type object properties from the Script window to a notes window. The type.notes$ object
and methods, see the property holds the name of the notes window that outpui is redirected to.

LabTalk Manual. Thetype.redirection property controls the redirection.

To illustrate how you could use these object propertiesin your
applications, type the following into the Script window:

window -n notes Results; //create new Results notes window
type.notes$=system.notes.created$;

//set notes window to receive output from type command
type.redirection=6;

96 « 3.10 Output

Chapter 3, LabTalk

/loutput to type.notes$, errors to Script window
type "This output is in the notes window";
type.redirection=5; //Set redirection back to Script window

Note that the window -n notes command enumerates the window name
provided if anotes window of that name already exists. Therefore,
instead of assigning "Results’ to type.notes$, you can assign the notes
window name held by the system.notes.created$ property. This object
property holds the name of the last created notes window, which in this
case is Results - or an enumeration of Results.

3.10.6 Redirecting Output to the
Results Log

Origin automatically routes results from most commands on the Analysis
menu as well as results from the Baseline, Linear Fit, Polynomial Fit, and
Sigmoidal Fit toolsto the Results Log. Each entry in the Results Log
includes a date/time stamp, the project file location, the dataset, the type
of analysis performed, and the results.

To have results from your analysis routines print to the Results Log, use
the type object. The following script example illustrates the use of the
type object for redirection.

Redirect=type.Redirection(16,3); //Set the redirection to the
//[Results Log and turn off redirection for the Script Window and
//Notes window

type.BeginResults(); //Begin the block of results
type "This output is in the Results Log.";
type.EndResults(); //End the block of results

type.Redirection=Redirect; //Restore the redirection

3.10 Output e 97

Chapter 3, LabTalk

3.11 Useful Built-in Functions

There are several functionsin LabTalk which are extremely useful for
application development. These functionsare listed in Table 3.19.
Additionally, examples are provided for some of these functionsin the

following sections.

Table 3.19: Sample Listing of Built-in Functions

Function

Description

data(beginval, endval, inc)

Returns a dataset beginning at beginval,
ending at endval, in steps of inc.

exist(name)

Returns avalue indicating what the object is:
0 does not exist, 1 dataset, 2 worksheet, 3
graph, 4 variable, 5 matrix, 6 macro, 7 tool, 9
notes window.

exist(name, n)

If n=0, returns a non-zero value (see return
valuesfor exist(name)) if the named window
isactive and isnot hidden. Otherwise, it
returns zero.

If n=10, returns a non-zero value (see return
values for exist(name)) if the named window
isactive. Otherwise, it returns zero.

int(x)

Returns the integer part of a number.

list(value, dataset)

Searches dataset for the first occurrence of
value, and returns its row number.

mod(X, y)

Returns the remainder from division of
integer x divided by integer y.

sart(x)

Returns the square root of a number.

sum(dataset)

Finds statistical information (mean, sd, etc.)
on dataset.

table(datasetl, dataset2,
dataset3)

Used after performing linear or nonlinear
fitting. Returnsnew X or Y values,
depending on the order of the dataset
arguments.

xindex(x, dataset)

Returns the index number (row number) of
thefirst cell in the X dataset associated with
dataset, where the cell value isless than or
equal to x. Dataset must be adesignated Y
dataset.

98 ¢ 3.11 Useful Built-in Functions

Chapter 3, LabTalk

For information on the
object type, see Table 3.19.

Function Description

xindex1(x, dataset) Returns the index number (row number) of
the first cell in the X dataset associated with
dataset, where the cell valueis greater than or
equal to x. Dataset must be adesignated Y
dataset.

xof (dataset) Returns the name of the independent dataset
corresponding to the specified dependent
dataset.

xvalue(i, dataset) Returns the corresponding X value for
dataset at row number i in the active

worksheet.

3.11.1 Data Function

Thedata() function isindispensable for creating a quick dataset. For
example, if you want to fill column A of the Datal worksheet with values
ranging from 2 to 6 in steps of 0.25, you could use the following script:

datal_a=data(2,6,0.25);

3.11.2 Exist Function

Theexist() functionis useful for error trapping. Often you need to be
sure that a certain window is a graph window, or a worksheet window,

or that a certain object isavariable or adataset. This function returns a
number which indicates the object's type. For example, to break out of a
script if the active window is not a graph window, you could use the
following script:

if (exist(%H)!=3) break;

The exist() function can also be used with two arguments to return a non-
zero value if the given name belongs to the specified object type. For
example, to check whether Datal is aworksheet, you could use the
following script:

3.11 Useful Built-in Functions ¢ 99

Chapter 3, LabTalk

N=exist(datal,2);
N=;
If datal is aworksheet, this script returns a non-zero number.

3.11.3 Int Function

Theint() function returns the truncated integer. For example, to get the
integer part of the number 6.7, you could use the following script:

int(6.7)=;

3.11.4 List Function

Thelist() function - not to be confused with the list command - searches
a specified dataset for a particular value, and if found it returns the row
number of the first occurrence. If not found, it returns zero. For
example, to search the Datal B dataset for the cell that contains the
value 5, you could use the following script:

Val=list(5,datal_b);
Val=;

3.11.5 Mod Function

The mod() function returns the integer modulus of one integer divided
by a second integer. For example, to get the remainder of 6 divided by 4,
you could use the following script:

value=mod(6,4);
value=;
Origin returns value=2.

100 ¢ 3.11 Useful Built-in Functions

Chapter 3, LabTalk

3.11.6 Sqgrt Function

The sgrt() function returns the square root of a number. For example, to
get the square root of 25, you could use the following script:

sqrt(25)=;

3.11.7 Sum Function

The sum() function performs basic statistics on a dataset and returns the
results to the sum object properties (sum.mean, sum.total, etc.). For
example, to get the mean value of the datal b dataset, you could use the
following script:

sum(datal_b);
sum.mean=;

3.11.8 Table Function

Thetable() function is used after performing alinear or nonlinear fit and
returns a dataset of X or Y values, depending on the order of the dataset
arguments. For example, the following script could be used to return new
Y values from afit curve:

Fit_Ynew=table(fit_a,fit_colb,fit_b);

In thisexample, fit_aisthe X fit dataset, fit_colb isthe Y fit dataset, and
fit_b holdsthe X values for the predicted Y values.

The next example returns new X values from afit curve:
Fit_Xnew=table(fit_colb,fit_a,fit_b);

In thisexample, fit_colb isthe Y fit dataset, fit_a isthe X fit dataset, and
fit_b holdsthe Y values for the predicted X values.

3.11 Useful Built-in Functions ¢ 101

Chapter 3, LabTalk

3.11.9 Xof Function

The xof(') function is very useful when you need to manipulate the
independent values of a particular dataset. The function returns the entire
dataset name of the associated X values. For example, to return the name
of the X dataset associated with the datal b column, you could use the
following script:

%A=xof(datal_b);
%A=,

3.11.10 Xvalue Function

The xvalue() function returns the X value at the specified index value.
For example, to get the X value at row humber 3 that is associated with
thedatal b Y dataset, you could use the following script:

Val=xvalue(3,datal_b);
Val=;

3.12 Macros

A macro is ashort script which is defined to run whenever its nameis
used like acommand. Macros are useful to use when you must perform
pointproc macro which is asimple task more th:?\n once. They.can be very dynamic since they can
executed when a user sdlects ~ Process an argument list. Macro scripts can clear worksheets, make a
adatapointinagraph, see child window based on a particular kind of template, check avalue, or
"3.9.2 Getpts Command" perform acalculation. The define command is used to define a macro.
on page 88. To delete a macro from memory use, you should use:

For information on the

del -m macroName;
when done with the macro.

102 « 3.12 Macros

Chapter 3, LabTalk

For more information on
passing arguments, see "3.8
Passing Arguments' on
page 84.

The following script defines a macro which can later be called by the
name M ultColAandB.

define MultColAandB
{
col(c)=col(b)*col(A);
|3
This macro can now be used just like any other LabTalk command. For
example:
col(a)={1,2,3};
col(b)={4,5,6};
multcolaandb;

By passing arguments to macros, you can make very useful macro
routines. Y ou can pass an argument list to a macro by typing the macro
name followed by a parameter list which is separated by spaces. Each
parameter can be accessed by the script using special string variables.

For example:
def minval
{
if (%1<%2) {type "Minimum is %1";}
else {type "Minimum is %2";};
b
This macro assumes the existence of two string variables called % 1 and
%2. Sincethe LabTalk interpreter replaces the string variable names

with their contents, you can use string variablesin logical and
mathematical expressions aswell asin string expressions.

The two string variables in the previous macro will be assigned when you
use an argument list after the macro name in acommand. For example,
try defining the macro and then typing the following:

minval 3 53 (ENTER)
minval 3 -1 (ENTER)

The macro specifies the minimum value.

3.12 Macros « 103

Chapter 3, LabTalk

3.13 Worksheet Tips

3.13.1 Missing Values

A missing value in aworksheet is often a useful value since it indicates
that something went wrong in the data collection at that point, or that it is
not appropriate to perform a calculation at that point. To enter amissing
value from the keyboard into a numeric worksheet column, you can enter
some alphabetic characters.

To assign amissing value or to search for a missing value using script,
you can use the quantity (0/0). For example:

datal_A[1]=(0/0);

assigns amissing value to the first cell in column A of the Datal
worksheet.

104 » 3.13 Worksheet Tips

Chapter 4, Application Development

Application
Development

4.1 Introduction

The process of developing a custom Origin application generally involves
the following steps:

1)

2)

3
4)

5)

Defining the application's task.

Creating the Origin elements for that task including templates, script
files, menu commands, and user defined toolbars.

Testing your application for proper function.
Debugging your scripts.

Developing a process for distributing your custom application.

Defining your application (step 1) requires a knowledge of your user's
plotting and analysis needs, as well as an understanding of Origin and
LabTalk. Before proceeding, make sure you are familiar with the Origin
and LabTalk concepts discussed in Chapter 2, "Advanced Origin," and
Chapter 3, "LabTalk."

Steps 2-5 are reviewed in the following sections.

4.1 Introduction « 105

Chapter 4, Application Development

4.2 The LabTalk Development
Environment

For more information on
passing arguments to script
file sections, see "Passing
Arguments’ in Chapter 3,
"LabTalk."

When developing your Origin application, it is recommended that you
write and develop your LabTalk scriptsin script files. In previous
versions of Origin, most scripts were hidden in the Label Control dialog
boxes of text buttons or other graphic objects located on child windows.
When the script associated with an object required modification, the
developer would open the template containing the object and edit the
script in the respective Label Control dialog box. This process could
reguire opening multiple templates and editing script associated with
multiple objects.

Script files provide a modular solution for script development. Script
filesare ASCII text fileswith an .OGS extension. They are external to
the Origin application, and are easily created and edited in Origin's
LabTalk Editor window. Assuch, they are easy to edit or replace, and do
not require that you recompile the application each time you make a
change.

As an example of the utility of developing applications using script files,
consider an application that must initialize variables, get input, make a
calculation, modify a graph, and add data to a worksheet. When written
asasingle script in an object's Label Control dialog box (or in a series of
Label Control dialog boxes), this script could prove cumbersome to write,
troubleshoot, and read. Additionally, this script could contain lines of
code that need not be executed every time. Alternatively, when this script
is developed in a script file with multiple sections - each section
performing a specific task - the script becomes easier to devel op and
maintain. Because each script file section performs a specific task, the
sections contain arelatively small amount of script - simplifying the
development process.

Therun.file(fileName) and run.section(fileName,sectionName][,argl
arg2 ... argb]) methods are provided to execute script in ascript file. In
the following example, the run.section() method is used to pass
arguments to and run a specified section of ascript file. The
run.section() method can pass up to five arguments to a section.
Arguments in the script can be referred to using the temporary string
variables%1, %2, %3, %4, and %5.

106 » 4.2 The LabTalk Development Environment

Chapter 4, Application Development

[Main]
if (run.section(Init, cc ee i jj)==0)
{
if (run.section(,Input, cc ee ii jj)==0)
{ /lget input from the user
run.section(,Calcpoly, cc ee);
/[Create a new function
run.section(,Plot, 200 jj); /IPlot the data as line
run.section(,DeleteVars); //Delete created variables

}

else

{
run.section(,DeleteVars); //Delete created variables
return;

[Init]
%A=My Graph;
%W=%H; //Store current window name into %W
%1=3.5; /[This is the constant in the function
%2=2; /[This is the exponent
%3=0;
%4=1;
return O; //[Return value of 0 to indicate success

[Input]
getnumber
(Const) %1
(Exp) %2
(Options) %3:2s
Color %4:@C
(Graph Title) %%A
(MyFunc(X)=Const * X"Exp);
return O;

4.2 The LabTalk Development Environment « 107

Chapter 4, Application Development

[CalcPoly]
if (exist(Poly)!=2) win -t data origin Poly; //Open wks
Poly A=data(-100,100,.2); //Set the X column
Poly B=%1*Poly_ A"%2; //Set the Y column
return O;

[Plot]

if (exist(PolyGraph)!=3)

win -t plot origin PolyGraph;
else

win -a PolyGraph; //Open graph template or activate it
label -s -p 30 (-10) -n Mylabel %A;//Title the graph
layer.plotxy(Poly_A, Poly_B, %1);

set Poly_B -c %2; //Set the color to jj from the color list
rescale; /IRescale to show all the data
return O;

[DeleteVars]
delete -v cc; //Delete created variables
delete -v ee;
delete -v ii;
delete -v jj;

This script file prompts the user for parameters, calculates some
worksheet data, then plots the data as aline graph. Notice that each
section uses the return command. The [Main] section checksiif an error
occurred after calling the other sections. Upon execution of
run.section(,I nit, cc eeii jj), the interpreter runs the [Init] script,
encounters the return 0 statement, and then uses the value of 0 in the if
statement. If an error occurs before the code reachesthe return 0
statement, the script will stop and the other sections will not run. Thus, it
is good practice to use the return command when using sections in script
files.

108 » 4.2 The LabTalk Development Environment

Chapter 4, Application Development

4.3 Developing Script Files with the
LabTalk Editor

To simplify developing, editing, and debugging of LabTalk script files,
Origin 6.1 includes a context-col oring editor and debugger for LabTalk.
(The debugger component is only availablein OriginPro 6.1.) Like other
window types, you can open multiple LabTalk Editor windows in an
instance of Origin. Y ou cannot, however, open the same script file
multiple times in an instance of Origin.

To open the LabTalk Editor, perform one of the following operations:;

Click the New LabTalk Editor button on the Standard toolbar.

Select File:New and then select LabTalk Script and click OK.

Select File:Open and then select LabTalk Script (*.OGS) from the Files
of Type drop-down list. Select the desired script file and click Open.
Origin opensthe script file in a new instance of the LabTalk Editor.

Y ou can double-click on a script file (.OGS) in Windows Explorer to
open the script file in anew instance of the LabTalk Editor (Origin
will also start if not currently running). To do this, you must first
perform the following steps. Open the DOFILE.OGS file (located in
your Origin program folder) in atext editor and add the following
line to the [FileTypeRegistration] section:

0GS=1

Then save thefile. The next time you launch Origin it will register
the file type .OGS with the Origin LabTalk Editor.

Press CTRL+SHIFT and select a menu command or click on atoolbar
button. If that command or toolbar button runs a script file section,
Origin opens the script file in a new instance of the LabTalk Editor.

Note: The value of the @ed system variable determines whether or
not the script file opensin the LabTalk Editor. By default, @ed = 2.
This means that you can press CTRL+SHIFT on either the right or
left side of the keyboard to open the script file in the LabTalk Editor.
Set @ed = 0 to activate this feature for the keys on the right side of
the keyboard only. Set @ed = 1 to activate this feature for the keys
on the left side of the keyboard only. (Some keyboards do not
support "left only" or "right only" access.)

4.3 Developing Script Files with the LabTalk Editor « 109

Chapter 4, Application Development

To save the script in the active LabTalk Editor, select File: Save or
File:Save Asfrom the LabTalk Editor menu bar.

Figure4.1l: TheLabTalk Editor and Debugger

B LabT alk Editor - D:YDmgeb 1 YWES . ogs

fle Ect Tosks Dabg Hel
D||e|@ » (e aao]o] = lele]
6 N e S T A RN
|
=:|:1H:-5 '..:E-c:.:e:l.“! L;- e
1
r - _l:. 3 1 7 1 o
hresks
. | L|J
For information on the The LabTalk Editor window includes atitle bar, menu, toolbars and a
Debug options, see 4.5 shortcut menu. It also provides Minimize, Maximize, and Restore

Debugging Your Script” on - pyttons, The LabTalk Editor stays maximized or minimized

page 120. independent of Origin (for example, it can be maximized when Originis
minimized). The LabTak Editor's five menus are File, Edit, Tools,
Help, and Debug.

The Edit menu allows you to search and replace text, move the cursor to
the corresponding opening or closing brace { } or parenthesis (), undo
and redo editing, and cut, copy, and paste text. Additionally, you can
insert bookmarks and navigate between bookmarks (from the toolbar).

Y ou can also insert a bookmark by right-clicking in the left, gray margin
for the corresponding line of script. A bookmark allows you to mark a
line of script so that you can easily return to the line later. A bookmark is

indicated by a blue-filled rectangIeD in the margin.

The Tools menu allows you to comment and uncomment the selected line
of script. Additionally, the Tools: Options menu command opens the
Script Editor Options dialog box. Y ou can edit this dialog box to change
the colors for context coloring. Context coloring can be set for LabTalk
keywords, comments, strings, numbers, operators, LabTalk commands
and objects, script file sections, and variables. To edit the font and font
size, click the Font button to open and edit the Font dialog box.

110« 4.3 Developing Script Files with the LabTalk Editor

Chapter 4, Application Development

4.4 Running Script Files

Origin provides several options for running script files:

Y ou can create a custom toolbar button that runs the specified section of
an OGSfile. You can add this button to any toolbar or create a new
toolbar.

Origin includes a Custom Routine button '53'5' on the Standard toolbar.
This button runs the [Main] section of the CUSTOM.OGSfile.

A button can be placed on an Origin child window to execute the script in
a specified script file. The script in the script file is executed using
the run.file(') or run.section() methods from the object's L abel
Control dialog box.

Y ou can use the menu command to create a menu item that runs the
script in ascript file using one of the run object methods.

Y ou can use the Script window to run the script in a script file using one
of the run object methods.

The following sections provide examples for running the previous sample
script from ascript file.

4.4.1 Running Script from a Custom
Toolbar Button

Custom toolbar buttons are created and modified on the Button Groups
tab of the Customize Toolbar dialog box (View:Toolbars). When
clicked, a custom toolbar button will run a specified section of a script
file.

4.4 Running Script Files » 111

Chapter 4, Application Development

To create the script file, perform the following procedure:

1) Click the New LabTalk Editor button on the Standard toolbar.

2) Typethefollowing text (in place of "Type script here.", overtype the
scriptin"4.2 The LabTalk Development Environment” on page
107):

/l Filename: Sample.ogs

/[Purpose: Prompt the user for parameters, calculate
/l worksheet data, plot the data asa line graph.

/I M odifications:
i
// Main Code
e
Type script here.

3) Sdect File:Save Asfrom the LabTalk Editor menu bar and then save
thisfile as SAMPLE.OGS in the Origin software folder.

To create the custom toolbar button, perform the following procedure:

1) Select View:Toolbars, then select the Button Groups tab of the
Customize Toolbar dialog box.

2) Select User Defined from the Groups list box. The default buttons
are displayed in the Buttons group. These buttons are not yet
associated with any script.

3) Select thefirst (Ieft-most) button in the Buttons group.
4) Click the Settings button to open the Button Settings dialog box.
5) Type Samplein the File Name text box.

6) TypeMain in the Section Name text box.

Note: Inthe Context group, you can restrict the button's availability
when awindow created from a particular template is active, or when
a specific window typeisactive. Furthermore, you can restrict the
button's availability based on the value of a specified variable.

If you enter avariable name in the Variable text box, Origin will

112 « 4.4 Running Script Files

Chapter 4, Application Development

check the current numeric value of the variable. If the current
variable valueis zero, Origin will disable the button. Otherwise,
Origin will enable the button. For example, if you enter wks.sel in
the Variable text box, then whenever thereis a selection in the
worksheet, wks.sel would be non-zero. Therefore, the button would
be enabled.

If you entered atest condition in the Variable text box, Origin then
checksif the test condition is False (zero) or True (non-zero). If the
test condition is False, Origin will disable the button. If the test
condition is True, Origin will enable the button. For example, if you
entered wks.sel == 8, then whenever arange of datais selected in the
worksheet, this condition would be True. Therefore, the button
would be enabled.

7) Click OK.

8) Dragthefirst (left-most) button = from the Buttons group to the
Origin workspace. A toolbar titled Toolbarl is added to the
workspace with the new button on it.

9) Click Closein the Customize Toolbar dialog box.

10) Click the new user defined toolbar button.

Origin runs the [Main] section of the SAMPLE.OGS file. The script
opens adialog box for inputting a constant and exponential value, and
optional color and title controls. After clicking OK, Origin opens a Poly
worksheet and a PolyGraph graph window that displays a data plot based
on the specified function.

Creating New Button Groups

In addition to customizing the User Defined button settings, you can add
new groups of custom buttonsto Origin. There are two ways you can do
this. Y ou can create a new button group or you can copy a button group
that another Origin user has created to your Origin program folder. (You
can also exchange button groups that have been exported to a .OPK file.
For more information on exchanging .OPK files, see "4.7 Distributing

Y our Custom Applications' on page 124.)

Creating a New Button Group

To create a new custom button group, click the Create button in the
Button Group group. This opens the Create Button Group dialog box.

4.4 Running Script Files » 113

Chapter 4, Application Development

Edit this dialog box to specify the button group name, the number of
buttons in the group, and the bitmap file for the buttons. The maximum
number of buttons for agroup is50. The selected bitmap must be a 16
color bitmap. After you click OK, if al the information you provided
was valid, Origin opens the Save As dialog box. By default, the Group
Name displaysin the File Name text box. Click Save to save your new
group settings to the specified initialization file.

After completing these steps, your new button group displays in the
Groups list box. Y ou can now customize the button settings for the
buttons in the group.

Copying a Custom Button Group from Another Location

A custom button group (including the User Defined group) has an
associated initialization file, a bitmap file, and at least one LabTalk script
file.

Theinitialization file is created when you click the Create button in the
Button Group group and then edit the Create Button Group and the
Save As dialog boxes.

The bitmap fileis specified in the Create Button Group dialog box. This
information is then added to the button group'sinitialization file.

The LabTalk script files are specified for each button in the group in the
respective Button Settings dialog box. Thisinformation isthen
added to the button group's initialization file.

If another Origin user (for example, a user on your network) has a custom
button group that you want access to, you can copy the user's custom
initialization file, bitmap file, and LabTalk script file to your Origin
folder. You can then add that custom button group to your version of
Origin by clicking the Add button in the Button Group group. This opens
the Add Button Group dialog box. Specify the initialization file for the
button group and then click the OK button. The new button group now
displaysin the Groupslist.

Note: You can also exchange button groups that have been exported to a
.OPK file. For more information on exchanging .OPK files, see"4.7
Distributing Y our Custom Applications’ on page 124.

114 « 4.4 Running Script Files

Chapter 4, Application Development

4.4.2 Running Script from the Custom
Routine Button on the Standard
Toolbar

In addition to running the script in "4.2 The LabTalk Devel opment
Environment" on page 107 from a user defined toolbar button, you can
run the script from the Custom Routine button on the Standard toolbar.
The Custom Routine button runs the script in the [Main] section of the
CUSTOM.OGS script file.

1) Press CTRL+SHIFT and then click on the Custom Routine button

'53'3‘ on the Standard toolbar. This action opens the Custom Routine
button's script file, CUSTOM.OGS, in a new instance of the LabTalk
Editor.

2) Typethe script from"4.2 The LabTak Development Environment”
on page 107 into this script file, overtyping the current script.

3) After typing in the script, resave the CUSTOM.OGSfile.

To run this script in your application, the user clicks on the Custom

Routine button '53'3' on the Standard toolbar.

4.4.3 Running Script from the Label
Control Dialog Box of an Object

Y ou can also run the script from the SAMPLE.OGSfile created in "4.4.1
Running Script from a Custom Toolbar Button" on page 111 from the
Label Control dialog box of an Origin object. To do this, perform the
following steps:

1) Select the Text Tool button T on the Tools toolbar and create a
text label displaying the text " Start" in the default Origin worksheet.
(Tip: Type aspace beforethe"S" and after the "t" to enhance the
text's display as a button.)

4.4 Running Script Files » 115

Chapter 4, Application Development

2) PressALT and double-click on the text label. This action opens the
Label Control dialog box.

3) Select Button Up from the Script, Run After drop-down list.

4) Typethefollowing script in the text box:
run.section(sample.ogs,main);

Figure 4.2: Editing the Label Control Dialog Box

Labol Comtrd
j;bpulmlrl [T Lk in vesshiss [%] | ok,

Aliach Mot Chek
Carcal

= Prge ™ MoYercal Mosverend _—
™ Layes Froeme ™ Mo Hoizonkel Hiovement 2 Vighis
Loyt ol Sesies [plol Seleciabla I AestTive
Seip, A Ater: |[ution Lip =] £ | Coes | Fuste] unds]
Chi-TAB ko TABR

n.sectlontsanple.ogn . mein | d

o

5) Click OK to close the dialog box.
(Tip: If you need to re-open the Text Control dialog box of a button,
press CTRL and double-click on the button. If you need to re-open

the Label Control dialog box of a button, press ALT and double-
click on the button.)

116 » 4.4 Running Script Files

Chapter 4, Application Development

When you create this new
menu and menu item, you
may need to make a graph
window active and then
redirect activity to the
worksheet to view the menu
changes.

Figure 4.3: Creating a Button (Programmed Object)

B Datal M=
AP B[] =
1 o
q
A
b
Fi
: -

6) To save this modified worksheet as the ORIGIN.OTW template,
select File: Save Template Asto open the Save As dialog box and
then click Save.

To run this script in your application, the user clicks the Start button on
the default worksheet.

4.4.4 Running Script from New Menu
Items (Commands)

To run the SAMPLE.OGS file from a new menu item, perform the
following:

1) Createthe SAMPLE.OGSfile asinstructed in"4.4.1 Running Script
from a Custom Toolbar Button" on page 111.

2) Open the Script window and run the following script:
menu -w; //to the worksheet window.
menu 7 &Sample;
menu (Sample Application) {
run.section(sample.ogs,main);

b

This script creates a new menu called Sample. The menu contains
one item called Sample Application.

4.4 Running Script Files » 117

Chapter 4, Application Development

To run this script in your application, the user selects Sample: Sample
Application when aworksheet is active.

4.4.5 Running Script from the Script
Window

To run the SAMPLE.OGS file (see "4.4.1 Running Script from a Custom
Toolbar Button" on page 111) from the Script window, the user opens the
Script window and types the following:

run.section(sample.ogs,main) (ENTER)

4.4.6 Creating Templates for Your
Custom Applications

In addition to creating templates with programmed objects that run script
from a script file, you can customize the attributes of a child window and
then save your changes to atemplate file. For example, when creating a
custom worksheet, you can preset the number of columns that display in
the worksheet, as well as each column's designation and type. When
creating graph window templates, you can customize the number of layers
in the graph and their arrangement, the axis scale type and range, as well
as other visua attributes in the graph. These changes can be saved to a
custom template file. When you preset the window attributes at
development time, you do not need to provide lengthy scripts that
customize the windows at run time.

To open achild window based on atemplate in your script, use the
following syntax:

window -t winType template [winName];

The options for winType are plot for a graph window and data or wks for
aworksheet window.

This command checks for a path in template and will use this path if
specified.

118 « 4.4 Running Script Files

Chapter 4, Application Development

When saving or closing a
window from an object's
Label Control dialog box,
precede the line of script
with a semicolon.

For example:
window -t plot c:\MyDir\MyTemp MyGraph;

opens a graph window based on the MyTemp template located in the
C:\MYDIR folder and names this graph window MyGraph.

window -t plot %Y\MyTemp MyGraph;

opens a graph window based on the MyTemp template located in the
MyDir subfolder of the Origin software folder and names this graph
window MyGraph. (Note: %Y contains the path of the ORIGIN.INI
file))

4.4.7 Useful Child Window Scripting
Tips

Y ou can add layers to the active graph window using the following script
syntax:

page -l template;

This command reads the specified template file and adds all of itslayers
to the page in the active graph window.

To close awindow from script, use the following script syntax:
win -ca winName;
This command closes the winName window.

When creating a programmed object on alayer or child window that
runs script to either close the layer or window, or to save the window,
you must make a modification to the standard script. For example, if
you create a button on a graph window with the following script in the
button's Label Control dialog box:

run.section(file.ogs,savewindow); // Open Save As dialog box

The graph window will appear to save correctly when you click the
button and edit the dialog box. However, if you re-open the saved graph
window, the button will no longer be operational. This occurs because
the button's script was executing as the window was saved. To prevent
this problem, you must precede the script line that saves or closes the
window (or closesthe layer) with asemicolon. In this example, you
would modify the script as follows:

;run.section(file.ogs,savewindow); // Open Save As dialog box

4.4 Running Script Files » 119

Chapter 4, Application Development

4.5 Debugging Your Script

4.5.1 The LabTalk Debugger

The OriginPro version of the LabTalk Editor includes a debugger. The
debugger helpsyou find bugsin your LabTalk script file, so that your
script file performs as you desire when it isrun in Origin. When
debugging your script, it isuseful to set breakpoints. Breakpoints are
locations in your script file where script execution will pause (in debug
mode). To set abreakpoint in ascript file that is open in the LabTalk
Editor, either click in the line of script where you want to insert a
breakpoint and select Debug: Toggle Breakpoint, or (left) click in the
|eft, gray margin for the corresponding line of script. The breakpoint is

indicated by ared-filled circle ® inthe margin.

To Sart Debugging

To start debugging, select one of the following commands from the
Debug menu: Run from Current Section or Go to Origin.

Run from Current Section

The current section is the section in which the cursor is active. When this
menu command is selected, execution of this section begins until the first
breakpoint in the section isreached. Execution pauses at this breakpoint
until you provide input to the debugger on how it should proceed. The
script file is saved in atemporary file, which is used for the execution, so
if any changes are made in the script they are not permanently saved
while debugging.

Goto Origin

When this menu command is selected, Origin becomes the active
window. When the Origin menu command is selected that runs the script
in the LabTalk Editor, execution begins until the first breakpoint is
reached. Execution pauses at this breakpoint until you provide input to
the debugger on how it should proceed.

120« 4.5 Debugging Your Script

Chapter 4, Application Development

To Resume Script Execution at a Breakpoint

To resume script execution that has paused at a breakpoint, select one of
the following Debug menu commands:

Go to Next Breakpoint

Select this menu command to continue script execution until the next
breakpoint is reached.

Step Over

Select this menu command to execute the next line of script. If the next
lineisacall torun.section(), the specified section is executed. Script
execution pauses after running the section.

Step In

Select this menu command to execute the next line of script. If the next
lineisacall torun.section(), script execution steps into the specified
section, but pauses at the first line of this section.

Step Out

Select this menu command to continue executing the script in the current
section. After completing script execution in this section, script
execution returns to the "calling section”, but pauses at the line after the
section call.

To Sop Debugging

To stop debugging, select Debug: Stop Debugging. If the current section
is being debugged from the LabTalk Editor, this menu command will
remove all breakpoints. If debugging from Origin, the breakpointsin all
open LabTalk Editor windows are removed. In both cases, script
execution stops.

4.5.2 The Echo System Variable

Y ou can change the value of the echo variable to instruct Origin to echo
different types of scripts to the Script window. For example, you can set
echo=1 to show any script that generates an error, or set echo=7 to
display all scriptsthat are executed. During normal operation, echo=0.

4.5 Debugging Your Script e 121

Chapter 4, Application Development

For an additional method of
viewing variable values, see
"4.5.6 Checking Variable
Values at Breakpoints."

45.3 The List Command

Thelist command can be used to examine your system environment. For
example, thelist s; command outputs all dataset names present in the
project to the Script window. This output includes temporary datasets.

Y ou can delete all temporary datasets using the del -a; command.

4.5.4 Tracking Values of Variables

Y ou can examine the value of any variable by using the varName=
notation. Y ou can embed thisin your script to display intermediate
variable values during your script execution. For example, if your script
includes the variable MyVar, and you include the following line in your
script:

MyVar=;

Origin outputs M yVar =value to the Script window when thislineis
executed.

Alternatively, you could direct output of avariable value using the type
command in your script. For example:

type -b "MyVar = $(MyVar)";

Thisline of script opens an Attention dialog box displaying the text
MyVar =value.

4.5.5 The #!script Notation

Y ou can embed debugging statements in your script using this notation.
The # character tellsthe LabTalk interpreter to ignore the text until the
end of the line. However, when followed by the ! character, the script is
executed if the @B system variable (or system.debug) issetto 1. The
following exampleillustrates this option:

for (i=1;i<=10;i+=1)

{
#li=;Datal_AJi]=; /l embedded debugging script
Datal A[i] +=i*10;

122 « 4.5 Debugging Your Script

Chapter 4, Application Development

If, before this script isrun, if you enter the following in the Script
window:

@B=1 (ENTER)

the previous script then reports the cell value at each loop count. During
normal operation, when @B=0, the loop performs quietly.

4.5.6 Checking Variable Values at
Breakpoints

It is often useful to stop execution of a script at a particular point and to
check the value of a specific variable. One way to do thisisto usethe
#lscript notation with the getnumber command.

For example, if your script includes the variable MyVar, and you embed
#lgetnumber MyVar MyVar; in your script, then to halt execution at
thisline of script and check the value of MyVar, you need only set
@B=1 before running the script. Thus, if MyVar=3 when the script gets
to this debugging line, then Origin opens the dialog box shown in Figure
4.4,

Figure4.4: Checkingthe Value of a Variable

To close the dialog box and stop the script at this point, press Cancel. To
close the dialog box and continue the script, press OK.

4.5 Debugging Your Script e 123

Chapter 4, Application Development

4.6 Building Applications with OriginPro

OriginPro includes all the features found in Origin. Additionally,
OriginPro includes tools for devel oping custom Origin applications.

After devel opment, custom applications can be run on the standard Origin
version or the OriginPro version.

Key OriginPro features include:

Dialog Builder - Create sophisticated custom tools, dialog boxes, and
wizards. Use Microsoft Visual C++ to design your custom interface,
then program its operation with Origin's LabTalk scripting language.

MOCA - Create custom DLLsthat directly operate on Origin's
worksheets, matrices, and graphs. Y our custom interface can
directly call your external DLL to perform calculation-intensive
routines.

LabTalk Script Editor and Debugger - The LabTalk Editor isavailablein
both Origin 6.1 and OriginPro 6.1. However, the debugger is only
available in OriginPro. Edit and debug LabTalk programs for
custom tool operation, data analysis, and automation routines. Set
breakpoints and run code line-by-line.

OriginPro also includes LabTalk commands for import and export of
ASCII and proprietary binary files, custom worksheet and graph
window user interface objects, and Dynamic Data Exchange for real-
time graphing.

For more information on these tools, see the OriginPro Manual.

4.7 Distributing Your Custom Applications

To learn how to create a
custom button group, see
"Creating New Button
Groups' on page 113.

The easiest way to share your custom Origin application isto create a
custom button group to start your application, and then exchange your
custom button group with other Origin 6.1 (or higher) users. This
exchange is accomplished by exporting your custom filesto a special
filewith a.OPK extension, and then sending that file to the intended
Origin user. The Origin user can install your custom files by dragging
the .OPK file onto their Origin program button on the taskbar or onto
their Origin program window, or they can double-click on the .OPK file.

124 « 4.6 Building Applications with OriginPro

Chapter 4, Application Development

It is recommended that you
save your custom button
group filesto a custom
subfolder of the Origin
program folder.

For example, if you create a Dialog Builder wizard with OriginPro (and
Visual C++) and a button from a custom button group to open this wizard
in Origin, you can then share the button group and associated files with
any other Origin 6.1 user.

4.7.1 Creating the Export (.OPK) File

When you create a custom button group that you intend to export to a
.OPK file, it is recommended that you save your button group's
initialization file, bitmap file, script files, and any other support filesto a
custom subfolder of the Origin program folder. Then when you create
the .OPK file and provide it to another Origin user to install, the custom
subfolder will automatically be created in the user's Origin folder during
the .OPK installation, and this subfolder will contain the files for the
custom button group. Using Origin subfoldersin this way allows you to
keep your custom files separate from the Origin files. Thisis
particularly helpful if auser installs many .OPK files.

Note: Do not save your button group's files to a folder outside of the
Origin program folder.

To export your custom button group (or the User Defined button group)
to a.OPK file, open the Customize Toolbar dialog box (View:Toolbars),
select the Button Groups tab, and then select your custom button group
from the Groups list box. Click the Export button in the Button Group
group. This action opens the Export Button Group dialog box.

4.7 Distributing Your Custom Applications ¢ 125

Chapter 4, Application Development

Figure4.5: The Export Button Group Dialog Box

Tha followang llaz vall ks epaorted with the giosp

Custoinoufires n
winiichiEl Binp
ikt it LIS
iieftinrol ey
ik File . Rlecres File |
ForllseBy |40 U =l

LEsot] _ Coes |

The upper view box lists the current files that will be exported to the
.OPK file when you click Export. By default, this view box lists the
initialization file and the bitmap file for the custom button group, and the
LabTalk script files associated with the buttons in the group.

To add files to the list that will be exported to the .OPK file, click the
Add File button. This action opens the Open dialog box. Select any
additional files using this dialog box. Additional files are displayed in the
Additional Filesview box. To delete an additional file, select the file you
want to delete and then click the Remove File button.

Note: You can only select filesto include in the .OPK file that are
located in the Origin folder or one of its subfolders.

The For Use By drop-down list allows you to restrict the type of Origin
user who can open your .OPK file and install your custom button group.
(Note: When version 6.1 is specified, the actual requirement isversion
6.1 or higher.)

126 4.7 Distributing Your Custom Applications

Chapter 4, Application Development

For information on
restricting use of a .OPK
file, see the previous
section.

Select All Usersto allow anyone who receives your .OPK fileto install
your custom button group into their Origin folder. The user who
receives your .OPK file must have Origin 6.1, OriginPro 6.1, the
Origin 6.1 Evaluation (demo) copy, or the Origin 6.1 Student version
installed.

Select Licensed Users to allow only users of Origin 6.1 and OriginPro 6.1
toinstall your custom button group.

Select Registered Users to allow only users of Origin 6.1 and OriginPro
6.1 who have registered their copy of Origin and received and
entered aregistration code to install your custom button group.

To export your custom button group to a.OPK file, click the Export
button. This opensthe Save Asdialog box. By default, Origin lists the
custom button group name in the File Name text box. Y ou can change
the file name and path and then click Save to create the .OPK file.

Note: The file name extension must be .OPK. Y ou do not need to enter
this extension as Origin will add it automatically. If you enter an
extension other than .OPK, .OPK will be appended on the file name.

See the following section for installation information.

4.7.2 Installing the .OPK File

Toinstall a.OPK file, you must have Origin 6.1, OriginPro 6.1, the
Origin 6.1 Evaluation (demo) copy, or the Origin 6.1 Student version
installed, depending on the "restriction” setting when the .OPK file was
created. (Accessrestrictions are set in the Export Button Group dialog
box which is opened by clicking the Export button on the Button Groups
tab of the Customize Toolbar dialog box.)

To install the .OPK file, perform one of the following operations:
Double-click on the .OPK file.
Drag the .OPK file onto a running Origin window.

Drag the .OPK file (but do not release the mouse button) onto the Origin
button on the taskbar (Origin isthusrunning). Keep the mouse
button depressed as the Origin window is activated. Then, with the
mouse button still depressed, drag the cursor up into the Origin
window and release the mouse button.

4.7 Distributing Your Custom Applications ¢ 127

Chapter 4, Application Development

When you perform one of these three operations, the .OPK file will

install into the specified installation of Origin. If you double-clicked on
the .OPK file, the .OPK file will install into the most recently run
installation of Origin 6.1 (if you have multiple installations). During the
.OPK installation, the custom button group is added to the Groups list
box on the Button Groups tab of the Customize Toolbar dialog box
(View:Toolbars). Additionally, atoolbar containing the buttons from
the custom button group is automatically created in the Origin workspace.

Note: When you install the .OPK file, Origin will save the custom files
so that it maintains the folder structure that existed when the .OPK file
was created. For example, if the custom button group'sinitialization file,
bitmap file, script files, and other support fileswere saved in a
\CUSTOM subfolder of the Origin program folder when the .OPK file
was created, this\CUSTOM subfolder will be created in the "target's”
Origin program folder. The custom button group's files will also be saved
to this\CUSTOM subfolder.

4.7.3 Exchanging Your Custom
Application on the OriginLab Web Site

OriginLab offers custom tools that are developed by both OriginLab and
by other application developers on the OriginLab web site
(www.OriginLab.com). Some tools are available free of charge and
others are available at a cost. Thetools add specific enhancements to
Origin and OriginPro. For example, the Peak Fitting tool allows you to
analyze data with many peaks using an intuitive wizard.

To learn more about offering your custom application to other Origin
users from the OriginLab web site, visit www.OriginLab.com or contact
the Technical Services department at OriginLab.

128 « 4.7 Distributing Your Custom Applications

Index

Index

- subtraction operator 57

1= not equal to operator 58

#
#! debugging notation 122

%

%1 argument placeholder 84, 103
%A string variable 56
%B string variable 56
%C string variable 56
%E string variable 56
%G string variable 56
%H string variable 56

&

& hitwise AND operator 59
& & logical AND operator 58

(

() parentheses 7

*

* multiplication operator 57
*= assignment operator 58

.0OGS
script files 106
.OPK
exchanging on OriginLab web site
128
exporting custom tools 125
installing custom tools 127

/

/ division operator 57
/= assignment operator 58

@

@B system variable
debugging script 122

[

[] brackets 7

\

\d (delete) escape sequence 95

\n (newline) escape sequence 94

\r (carriage return) escape sequence
94

\r\n (carriage return line feed) escape
sequence 94

\t (tab) escape sequence 95

\x hexadecimal escape sequence 95

AN

~ exponentiate operator 57

{

{} braces7, 75

| bitwise inclusive OR operator 59
|| logical OR operator 58

Index « 129

Index

+

+ addition operator 57
+= assignment operator 58

<

<> angle brackets 7
< less than operator 58
<= lessthan or equal operator 58

= assignment operator 58
-= assignment operator 58
== equal to operator 58

>

> greater than operator 58
>= greater than or equal operator 58

3

3D
rescaling XY axes 36

A

Addition (+) operator 57
Alias See Macros
Angle brackets< > 7
Applications See also Programming,
Script
.OPK file 125, 127
developing with OriginPro 124
distributing 124
exchaning on OriginLab web site
128
using templates 18
Arguments
object methods 26
passing to macros 84, 103
passing to script files 84, 107
placeholders 84, 103
run object method 82
Arithmetic
expressions 60
operators 57

Assigning
object property values 24

Assignment
operators 58

Axes
controlling data margins 35
controlling the rescale options 35
multiple sets See Layers
offset reciprocal scale 33
rescaling to major tick 35
rescaling XY in 3D 36
setting to and from values 34

B

Backslash character
in text labels 45
Bitwise AND operator (&) 59
Bitwise inclusive OR operator (]) 59
Block See Script
Bold font style escape sequence 45
Braces{ } 7, 75
Brackets[] 7
Branching See If command, Switch
command
Break command 77, 83
Breakpoints
for debugging script 120, 123
Button groups See also Toolbars
creating new groups 113
exchanging on OriginLab web site
128
exporting to .OPK 125
installing .OPK files 127
Buttons See also Objects
creating custom 111
excluding from printing 19, 49
programming 9, 111

C

Calculations
between datasets 61
enhancing script execution 66
on datasets 60
scalar 60
vector 60
Carriage return escape sequence 94

130 ¢ Index

Index

Carriage return line feed escape

sequence 94

Charts See Data plots, Graphs
Child windows See also Graphs,
Worksheets, Layout page

closing 119
current active

string variable 56
directing script to 84
listing objectsin 22

opening from templates 118

overview 15
returning type 99
saving 119
Closing
child windows 119
Code See Script
Coding See Programming
Columns See also Datasets
calculations between 61
calculations on 60
Commands
break 77
continue 77
document 78
for 79
getnumber 87
getpts 88
if 80
layer 81
list 122
loop 81
menu 117
overview by category 67
repeat 82
switch 83
type 92
window 84
Conditional
operators 59
Continue command 77
Control region
graphs 49
Conventions

LabTalk Developer's Guide 6

Conversion specifiers 95
Converting
for loop to while 79
scientific format 95
Curvefitting See Fitting

Curves See Data plots
Custom Routine button
running script files 115

D

Data See also Datasets, Data plots
finding the square root 101
missing values 104
returning the truncated integer 100
skipping pointsin graph 37, 50
vector calculations 60

Datalabels
adding to graphs 43, 44

Data plots
adding data labels 43, 44
controlling marginsin graph 35
customizing data points 39
extracting from graphs 37
picking points 88
skipping points 37, 50

Data Selector tool
activating with getpts 88

Data() function 99

Datasets
as source for graph enhancement

39,41, 43
calculations between 61
calculations on 60
creating with data() function 99
current active
string variable 56
definition 16
displaying in graphs 17
fitting look-up table 101
listing names in Script window
122
missing values 104
naming convention 17
performing statistics on 101
returning X dataset name 102
returning X value 102
searching for value 100
temporary 122
vector calculations 60

Debugging script
with # 122, 123
with @B 122
with echo 121

Index ¢ 131

Index

with LabTalk Editor and Debugger

120

Decision structure

if, if else 80

switch 83
Default case 83
Defining

macros 75
Delete escape sequence 95
Dialog boxes

Label Control 27, 115
Display

skipping pointsin graph 37, 50
Division

integer modulus 100
Division (/) operator 57
Document

manual conventions 6
Document command 78

printing all graphs 51

printing graphsin PE folder 51

E

Echo system variable

debugging script 121
Else See If command
Endtoolbox macro 90
Entry-condition loops

for command 79
Equality operator (==) 58
Escape sequences

ignoring 45

output strings 94

with labels 45
Exist() function 99
Exponentiate () operator 57
Exporting

custom applications 125, 127
Expressions

arithmetic 60

conditional 59

logical and relational 59, 80

vector 60
Extracting

data plots 37

layers 37

F
False

evaluating conditional expressions

59
evaluating if expressions 80

evaluating logical expressions 59

File extensions
templates 19
Files See also Projects
returned by getfilename
string variable 56
Fitting
look-up table 101
overview 21
For
conversion to while 79
For command 79
Functions
data() 99
exist() 99
int() 100
list() 100
mod() 100
sgrt() 101
sum() 101
table() 101
xof() 102
xvalue() 102

G

Getnumber command 87
for debugging scripts 123
Getpts command 88
Graphs
adding data labels 43, 44
adding layers 119
adding vertical lines 41
checking object placement 46
closing 119
control region 49
controlling data margins 35
deleting all 78
different viewing modes 46
display same background 46
displaying datain 17
extracting data plots 37
extracting layers 37
master page 46

132 ¢ Index

Index

merging pages 36

minimizing screen redraw 46

multiple layers 19

opening from templates 118

page orientation when printing 50

picking points on data plot 88

printing all 51

printing in PE folder 51

refreshing 35, 49

reordering layersin 36

skipping points 37, 50

templates 18

tutoria creating multiple layers 30
Greater than operator (>) 58
Greater than or equal operator (>=)

58

H

Hexadecimal value escape sequence
95

Horizontal tab escape sequence 95

110
getnumber command 87
getpts command 88
type command 92
type object 96, 97
If command 80
Inequality operator (!=) 58
Input See also I/0
pick points 88
Input and output See I/O
Int() function 100
Integer modulus 100
Interpolation
dataset calculations 61
Italic font style escape sequence 45
Iterations
loops
continue 77
for 79
loop 81
repeat 82

J

Jump statements
break command 77, 83
continue command 77

K

Keywords See Commands, Macros,
System variables

L

Label
case 83
default 83
Label Control dialog box 27
programming 9
running script files 115
Labels
displaying a backslash character 45
excluding from printing 19, 49
formatting with escape sequences
45
LabTak See also Script
command overview 67
differences with C 55
object overview 71
overview 20, 53, 54
LabTak Developer's Guide
document conventions 6
LabTalk Editor
debugging script files 120
developing script files 10, 109
Landscape
page orientation 50
Layer command 81
Layers
adding to graphs 119
directing script to 81
extracting from graphs 37
in graphs 19
linking 29
reordering 36
tutorial 30
Layout page
templates 18
Legends See also Text labels
customizing 39
Less than operator (<) 58

Index ¢ 133

Index

Lessthan or equal operator (<=) 58
Lines

adding to graphs 41
Linking

layers 29
List command 122

listing objects in window 22
List() function 100
Logica

operators 58
Logical AND operator (& &) 58
Logical OR operator (]|) 58
Look-up table

after fitting 101
Loop command 81
Loops

break 77

continue 77

doc-e 78

for 79

loop 81

repeat 82

simulated while 79

M

Macros
caling 103
defining 75, 90, 102
deleting 102
endtoolbox 90
passing arguments 84, 103
pointproc 89, 91
running 90
Manual
conventions 6
Master page
graphs 46
Matrices
overview 17
templates 18
Menu
running script files 117
Menu command 117
Merging graphs 36
Methods
listing for an object 22
Mod() function 100
Multiple

case labels 83
Multiplication (*) operator 57
Multi-way decision structure 83

N

Newline escape sequence 94
Notation
scientific format 95
Notes window
output to 96
Numbers
passing arguments 84
Numeric object properties See
Object properties
Numeric variables
as operands 60
assigning values 55
converting to string 57
creating 55
deleting 57
naming standards 55
passing arguments 84, 85, 86
reading values 55, 122, 123

@)

Object methods 26
Object properties
reading values 25
setting values 24
Objects
checking placement on graph 46
excluding from printing 19, 49
Label Control diaog box 27, 115
listing properties and methods 22
listing those in window 22
overview 22
overview by category 71
reading X coordinate 25
run 82
setting X coordinate 26
string properties 56
sum 101
type 96, 97
viewing names 22
Offset reciprocal axis scale 33
Operations
scalar 60

134 ¢ Index

Index

vector 60
Operators
arithmetic 57
assignment 58
bitwise 59
conditional 59
logical 58
relationa 58
Optimizing speed
redraw time 46
skipping pointsin graph 37, 50
Orientation
of graph page 50
Origin
child windows 15
datasets 16
exchanging custom applications
125, 127,128
projects 15
OriginLab web site
exchanging custom applications
128
OriginPro
overview 124
Output Seealso I/0
conversion specifications 95
list datasetsin project 122
non-printable characters 94

numeric variable as string 57, 122

object's text property 94
printf format 95

strings 92, 96, 97

suppress carriage return 93
using quotation marks 93

P

Pages See also Graphs

merging 36
Parentheses () 7
Passing arguments

macros 84, 103

script files 84, 107
Placeholders

passing arguments 84, 103
Plots See Data plots, Graphs
Pointproc macro 89, 91
Portrait

page orientation 50

Printing
all graphsin PE folder 51
all graphsin project 51
excluding buttons on page 19, 49
page orientation 50
Program jumps 82
Programming
buttons 9
calculations 60
control flow 75
decision structure 80, 83
faster scripts 66
functions 98
loops
break 77
continue 77
doc -e 78
for 79
loop 81
repeat 82
macros 102
operators 57
recommendations 106
script files 10, 106
statements 75
switch statements 83
with OriginPro tools 124
Programs See Script
Project Explorer
doc -ef command 78
printing graphsin folder 51
Projects
name of
string variable 56
overview 15
Properties
listing for an object 22
Property values
reading for objects 25
reading X coordinate 25
setting for objects 24
setting X coordinate 26

R

Reading

property values 25

X coordinate of objects 25
Refreshing

Index ¢ 135

Index

graphs 35, 49
Relationa
operators 58
Reordering
layersin graph 36
Repeat command 82
Results Log
output to 97
Run object 82, 116, 117, 118

S

Scalar operations 60
Scientific notation 95
Script Seealso LabTalk,
Programming
debugging 120, 122, 123
echoing 121
elapsed time 66
opening Script window 54
pausing 123
Script examples
analyzing region of data 88
calculating and plotting data 107
closing window with no prompt
119
deleting al graph windows 78
enhancing execution speed 66
labeling point in graph 91
no margin in graph 35
output to Results window 96
rescale to major tick 35
returning minimum vaue 103
Script execution
directing to layer 81
directing to window 84
enhancing speed 66
Label Control dialog box 9
script files 82, 106, 111, 115, 117,
118
Script window 90
stopping 123
Script files
creating with LabTalk Editor 109
passing arguments 84, 107
programming 10, 106
running 82
running from Custom Routine
button 115

running from Label Control dialog
box 115
running from menu command 117
running from Script window 118
running from User Defined toolbar
button 111
Script window 54
echoing script 121
output to 92
running script files 118
Second command
script running time 66
Sentences See Statements
Setting
object property values 24
X coordinate of objects 26
Speed
minimizing screen redraw 46
script execution 66
skipping pointsin graph 37, 50
Sart(') function 101
Standard tool bar
Custom Routine button 115
Statements 75
break 77
continue 77
for 79
functions 98
if 80
layer -0 81
loop 81
macros 75, 90, 102
repeat 82
switch 83
win-o0 84
Statistics
on datasets 101
Status bar
output to 92
String constant
assigning to property value 24, 26,
28
reading from object 25
String variables 56
deleting 57
passing arguments 84
placeholders for passed arguments
84
Strings
output 92, 96, 97

136 ¢ Index

Index

passing arguments 84
returned by getstring
string variable 56

Subtraction (-) operator 57
Sum object 101
Sum() function 101
Switch command 83
System variables 56

@B 122

debugging script 121, 122

echo 121

T

Tab escape sequence 95

Table() function 101

Templates
file extensions 19
opening through script 18, 118
overview 17

Temporary datasets
deleting 122

Temporary string variables
placeholders for passed arguments

84

Terminating
doc -eloop 78
Ternary operator 59
Test conditions
for loop 79
if statement 80
loop loop 81
switch statement 83
Text
assigning to property value 24, 26,
28
escape sequences 94
passing arguments 84
reading from object 25
Text labels See also Legends
displaying a backslash character 45
formatting with escape sequences
45
programming 9, 115
Text object properties See Object
properties
Ticks See also Axes
rescaling to major tick 35
Time

for script execution 66
Tokens
parsing from string 87
passing arguments 84
Toolbars See also Button groups
user defined buttons
running script files 111

Tools toolbar
Data Selector tool 88
True
evaluating conditional expressions
59

evaluating if expressions 80
evaluating logical expressions 59
Truncated integer function 100
Type command 92
Type object 96, 97

U

Updating
graphs 35, 49

User defined toolbar button
running script files 111

\Y

Variables See also Numeric
variables, String variables,
System variables

deleting 57

for debugging 122, 123

numeric 55

overview 55

string 56
Vector operations 60
Vertica lines

adding to graphs 41
Viewing modes

graphs 46

w

Web site
OriginLab
exchanging custom applications
128
Window command 84
Windows See also Child windows

Index ¢ 137

Index

directing script to 84
Origin
overview 15
Worksheets
closing 119
current active
string variable 56
missing values 104
templates 18, 118
WY SIWY G viewing mode 46

X

X coordinate
reading property value of objects
25
setting property value of objects 26
Xof() function 102
Xvalue() function 102

z

Z values
in matrices 17

138 ¢ Index

	Getting Started
	1.1 Introduction
	1.2 How To Use This Manual
	1.3 Manual Conventions
	1.4 Quick Start Tutorials
	1.4.1 The Script Window
	1.4.2 Window Buttons
	1.4.3 Script Files
	1.4.4 Macros

	Advanced Origin
	2.1 Overview of Origin
	2.1.2 Child Windows
	2.1.3 Datasets
	Displaying Datasets in Worksheets
	Displaying Datasets in Matrices
	Displaying Datasets in Graph Windows

	2.1.4 Templates
	2.1.5 Graphs and Layers
	2.1.6 LabTalk
	2.1.7 Curve Fitting
	2.1.8 Origin's Window Objects
	Object Properties
	Example: Reading and Setting an Axis Title Object's Properties from the Script Window

	Object Methods
	Example: Reading and Setting an Axis Title Object's Properties Using the ObjectName.Run() Method

	2.2 Advanced Use of Layers
	2.2.1 Linked Layers
	2.2.2 Scaling
	The Offset Reciprocal Scale
	Setting Particular Axis Ranges
	Setting Rescale Margins
	Rescaling to a Major Tick
	Rescaling Only the XY Plane of a 3D Graph

	2.3 Additional Tips
	2.3.1 Merging Pages
	2.3.2 Extracting Layers to Separate Pages
	2.3.3 Extracting Data Plots to Separate Layers
	2.3.4 Showing Only Every nth Symbol
	2.3.5 Using Datasets as a Plotting Enhancement
	Creating a Specialized Legend
	Displaying Vertical Lines at a Data Plot's X Values
	Creating Symbols or Labels to Accent Data in a Data Plot

	2.3.6 Using Escape Sequences to Format Labels
	2.3.7 View Modes
	2.3.8 Updating the Display
	Master Page
	Forcing a Refresh of a Window

	2.3.9 Control Regions
	2.3.10 Screen Plotting Speed
	2.3.11 Printing
	Setting the Page Orientation
	Avoiding Printing Problems
	Printing Every Graph Window

	LabTalk
	3.1 Introduction
	3.2 Variables
	3.2.1 Numeric Variables
	3.2.2 String Variables
	String Variables and Object String Properties

	3.2.3 Numeric to String Conversion
	3.2.4 Deleting Variables

	3.3 Operators
	3.3.1 Arithmetic Operators
	3.3.2 Assignment Operators
	3.3.3 Logical and Relational Operators
	3.3.4 Bitwise Operators
	3.3.5 Conditional Operators

	3.4 Calculations
	3.4.1 Scalar Operations
	3.4.2 Vector Operations
	Row-by-Row Calculations
	Vector Calculations Requiring Interpolation

	3.4.3 Writing Speedy Calculations

	3.5 Command Reference by Category
	3.6 Object Reference by Category
	3.7 Control Flow
	3.7.1 Statements and Statement Blocks
	3.7.2 Break Command
	3.7.3 Continue Command
	3.7.4 Doc Command
	3.7.5 For Command
	3.7.6 If Command
	3.7.7 Layer -o Command
	3.7.8 Loop Command
	3.7.9 Repeat Command
	3.7.10 Run Object Methods
	3.7.11 Switch Command
	3.7.12 Win -o Command

	3.8 Passing Arguments
	3.8.1 Passing Numeric Variables by Reference
	3.8.2 Passing Numeric Variables by Value

	3.9 Input
	3.9.1 Getnumber Command
	3.9.2 Getpts Command
	Redefining the Pointproc Macro

	3.10 Output
	3.10.1 Literal Strings
	3.10.2 Object's Text Property
	3.10.3 Customizing Output Using the Type Command and Escape Sequences
	3.10.4 Formatted Output with $()
	3.10.5 Redirecting Output to the Notes Window
	3.10.6 Redirecting Output to the Results Log

	3.11 Useful Built-in Functions
	3.11.1 Data Function
	3.11.2 Exist Function
	3.11.3 Int Function
	3.11.4 List Function
	3.11.5 Mod Function
	3.11.6 Sqrt Function
	3.11.7 Sum Function
	3.11.8 Table Function
	3.11.9 Xof Function
	3.11.10 Xvalue Function

	3.12 Macros
	3.13 Worksheet Tips
	3.13.1 Missing Values

	Application Development
	4.1 Introduction
	4.2 The LabTalk Development Environment
	4.3 Developing Script Files with the LabTalk Editor
	4.4 Running Script Files
	4.4.1 Running Script from a Custom Toolbar Button
	Creating New Button Groups

	4.4.2 Running Script from the Custom Routine Button on the Standard Toolbar
	4.4.3 Running Script from the Label Control Dialog Box of an Object
	4.4.4 Running Script from New Menu Items (Commands)
	4.4.5 Running Script from the Script Window
	4.4.6 Creating Templates for Your Custom Applications
	4.4.7 Useful Child Window Scripting Tips

	4.5 Debugging Your Script
	4.5.1 The LabTalk Debugger
	4.5.2 The Echo System Variable
	4.5.3 The List Command
	4.5.4 Tracking Values of Variables
	4.5.5 The #!script Notation
	4.5.6 Checking Variable Values at Breakpoints

	4.6 Building Applications with OriginPro
	4.7 Distributing Your Custom Applications
	4.7.1 Creating the Export (.OPK) File
	4.7.2 Installing the .OPK File
	4.7.3 Exchanging Your Custom Application on the OriginLab Web Site

	Index

