Cite as: Mehnaz, T.F. Yang, Bo Da and Z.J. Ding, Exploring Universal Formula for Absolute Secondary Electron Yield
by
using Machine Learning Methods. (unpublished).
SEY of Ti [1]
Energy (keV) |
Yield |
0.050 |
0.290 |
0.100 |
0.448 |
0.200 |
0.568 |
0.300 |
0.572 |
0.400 |
0.545 |
0.500 |
0.515 |
0.600 |
0.495 |
0.800 |
0.441 |
1.000 |
0.402 |
2.000 |
0.251 |
3.000 |
0.199 |
4.000 |
0.173 |
SEY of Ti [2]
Energy (keV) |
Yield |
0.250 |
0.877 |
0.300 |
0.935 |
0.350 |
0.956 |
0.400 |
0.956 |
0.450 |
0.946 |
0.500 |
0.916 |
0.550 |
0.877 |
0.600 |
0.840 |
0.650 |
0.812 |
0.700 |
0.787 |
0.750 |
0.778 |
0.800 |
0.745 |
0.850 |
0.722 |
0.900 |
0.706 |
0.950 |
0.683 |
1.000 |
0.668 |
1.200 |
0.633 |
1.400 |
0.594 |
1.500 |
0.516 |
1.800 |
0.478 |
2.000 |
0.443 |
2.500 |
0.385 |
3.000 |
0.349 |
3.500 |
0.310 |
4.000 |
0.281 |
4.500 |
0.255 |
5.000 |
0.236 |
SEY of Ti [3]
Energy (keV) |
Yield |
0.500 |
0.768 |
0.800 |
0.792 |
1.000 |
0.820 |
1.500 |
0.771 |
2.000 |
0.645 |
3.000 |
0.517 |
5.000 |
0.410 |
6.500 |
0.340 |
9.500 |
0.290 |
24.000 |
0.130 |
SEY of Ti [4]
Energy (keV) |
Yield |
0.050 |
1.150 |
0.080 |
1.460 |
0.100 |
1.610 |
0.150 |
1.830 |
0.200 |
1.920 |
0.250 |
1.940 |
0.300 |
1.920 |
0.400 |
1.830 |
0.500 |
1.730 |
0.750 |
1.500 |
1.000 |
1.340 |
1.500 |
1.130 |
2.000 |
0.990 |
SEY of Ti [5]
Energy (keV) |
Yield |
5.000 |
0.342 |
5.000 |
0.279 |
30.000 |
0.100 |
30.000 |
0.087 |
SEY of Ti [6]
Energy (keV) |
Yield |
0.101 |
1.190 |
0.150 |
1.506 |
0.203 |
1.260 |
0.250 |
1.589 |
0.303 |
1.390 |
0.352 |
1.561 |
0.399 |
1.510 |
0.458 |
1.547 |
0.504 |
1.293 |
0.599 |
1.311 |
0.706 |
1.269 |
0.805 |
1.190 |
1.004 |
1.052 |
1.218 |
0.909 |
1.508 |
0.728 |
2.014 |
0.557 |
3.046 |
0.395 |
4.014 |
0.293 |
5.038 |
0.256 |
6.017 |
0.191 |
6.621 |
0.181 |
6.955 |
0.166 |
7.524 |
0.162 |
8.040 |
0.150 |
8.589 |
0.145 |
9.034 |
0.135 |
9.558 |
0.135 |
10.103 |
0.136 |
10.574 |
0.119 |
10.740 |
0.116 |
11.818 |
0.098 |
11.969 |
0.094 |
12.751 |
0.088 |
13.114 |
0.096 |
13.910 |
0.087 |
14.819 |
0.078 |
15.567 |
0.071 |
16.042 |
0.062 |
16.515 |
0.065 |
17.371 |
0.054 |
18.095 |
0.047 |
SEY of Ti [7]
Energy (keV) |
Yield |
0.070 |
0.930 |
0.090 |
1.020 |
0.110 |
1.090 |
0.140 |
1.150 |
0.160 |
1.190 |
0.180 |
1.200 |
0.210 |
1.210 |
0.230 |
1.210 |
0.260 |
1.190 |
0.290 |
1.190 |
0.310 |
1.170 |
0.340 |
1.170 |
0.360 |
1.150 |
0.390 |
1.120 |
0.490 |
1.040 |
0.590 |
1.000 |
0.690 |
0.950 |
0.780 |
0.910 |
0.890 |
0.870 |
0.990 |
0.850 |
SEY of Ti [8]
Energy (keV) |
Yield |
0.063 |
1.059 |
0.084 |
1.186 |
0.107 |
1.312 |
0.132 |
1.398 |
0.159 |
1.450 |
0.185 |
1.473 |
0.210 |
1.496 |
0.233 |
1.502 |
0.258 |
1.508 |
0.281 |
1.496 |
0.308 |
1.485 |
0.333 |
1.461 |
0.356 |
1.433 |
0.382 |
1.421 |
0.482 |
1.324 |
0.581 |
1.243 |
0.682 |
1.203 |
0.783 |
1.140 |
0.883 |
1.105 |
0.982 |
1.065 |
SEY of Ti [9]
Energy (keV) |
Yield |
0.299 |
2.482 |
0.401 |
2.293 |
0.500 |
2.261 |
0.603 |
2.085 |
0.702 |
2.016 |
0.800 |
1.915 |
0.906 |
1.814 |
0.991 |
1.738 |
1.214 |
1.543 |
1.415 |
1.442 |
1.593 |
1.360 |
1.825 |
1.278 |
2.009 |
1.203 |
2.517 |
1.083 |
5.073 |
0.724 |
SEY of Ti [10]
Energy (keV) |
Yield |
0.070 |
1.430 |
0.090 |
1.600 |
0.110 |
1.690 |
0.140 |
1.780 |
0.160 |
1.870 |
0.190 |
1.880 |
0.210 |
1.930 |
0.230 |
1.950 |
0.260 |
1.950 |
0.280 |
1.950 |
0.310 |
1.950 |
0.340 |
1.950 |
0.360 |
1.940 |
0.390 |
1.930 |
0.490 |
1.830 |
0.580 |
1.780 |
0.690 |
1.690 |
0.780 |
1.630 |
0.880 |
1.580 |
0.980 |
1.610 |
SEY of Ti [11]
Energy (keV) |
Yield |
0.065 |
1.180 |
0.084 |
1.318 |
0.107 |
1.554 |
0.134 |
1.680 |
0.159 |
1.795 |
0.185 |
1.835 |
0.208 |
1.887 |
0.235 |
1.922 |
0.258 |
1.922 |
0.283 |
1.910 |
0.310 |
1.887 |
0.333 |
1.870 |
0.361 |
1.829 |
0.384 |
1.790 |
0.487 |
1.640 |
0.583 |
1.508 |
0.684 |
1.415 |
0.783 |
1.329 |
0.883 |
1.266 |
0.982 |
1.209 |
References:
- [1] Bronstein, I. M.; Fraiman, B. S., Vtorichnaya elektronnaya emissiya. Nauka, Moskva 1969, 340.
- [2] Walker, C. G.; El-Gomati, M. M.; Assad, A. M.; Zadrazil, M., The secondary electron emission yield for
24 solid elements excited by primary electrons in the range 250-5000 eV: a theory/experiment comparison.
Scanning 2008, 30, 365-80.
- [3] Joy, D. C.; Joy, C. S. SEMATECH Report # 96063130A-TR; 1996.
- [4] Baglin, V.; Bojko, J.; Grobner, O.; Henrist, B.; Hilleret, N.; Scheuerlein, C.; Taborelli, M., The
secondary electron yield of technical materials and its variation with surface treatments. In: 7th IPAC
(CERN), Vienna, 2000.
- [5] Wittry, D. B., In: Proc. 4th Conf. on X-ray Optics and Microanalysis, Hermann Paris, Castaing,
R., Ed. Hermann Paris, 1966; p 168.
- [6] Thomson, C. D. Measurements of the secondary electron emission properties of insulators, Utah
State University, Logan, Utah, 2005.
- [7] Wang, J.; Wang, Y.; Xu, Y. H.; Zhang, B.; Wei, W., Research on the secondary electron yield of TiZrV-Pd
thin film coatings. Vacuum 2016, 131, 81-88.
- [8] Shibuya, K.; Nomura, K.; Miyake, H.; Tanaka, Y.; Ohira, M.; Okumura, T.; Takahashi, M., Development
of measurement system for secondary electron emission yield of insulating materials for spacecraft
materials, IEEE International Conference on Condition Monitoring and Diagnosis, 23-27 September 2012;
Bali, Indonesia: 2012; pp 1102-1105.