Cite as: Mehnaz, T.F. Yang, Bo Da and Z.J. Ding, Exploring Universal Formula for Absolute Secondary Electron Yield
by
using Machine Learning Methods. (unpublished).
SEY of Cu [1]
| Energy (keV) |
Yield |
| 0.100 |
0.564 |
| 0.200 |
0.716 |
| 0.300 |
0.846 |
| 0.400 |
0.933 |
| 0.600 |
1.024 |
| 0.800 |
1.034 |
| 1.000 |
0.993 |
| 1.500 |
0.881 |
| 2.000 |
0.771 |
| 2.500 |
0.702 |
| 3.000 |
0.610 |
| 4.000 |
0.498 |
SEY of Cu [2]
| Energy (keV) |
Yield |
| 0.250 |
0.576 |
| 0.300 |
0.685 |
| 0.350 |
0.768 |
| 0.400 |
0.808 |
| 0.450 |
0.852 |
| 0.500 |
0.882 |
| 0.550 |
0.890 |
| 0.600 |
0.906 |
| 0.650 |
0.898 |
| 0.700 |
0.914 |
| 0.750 |
0.906 |
| 0.800 |
0.898 |
| 0.850 |
0.890 |
| 0.900 |
0.882 |
| 0.950 |
0.882 |
| 1.000 |
0.852 |
| 1.200 |
0.830 |
| 1.400 |
0.795 |
| 1.500 |
0.742 |
| 1.800 |
0.691 |
| 2.000 |
0.646 |
| 2.500 |
0.567 |
| 3.000 |
0.501 |
| 3.500 |
0.460 |
| 4.000 |
0.418 |
| 4.500 |
0.380 |
| 5.000 |
0.354 |
SEY of Cu [3]
| Energy (keV) |
Yield |
| 1.000 |
1.590 |
| 5.000 |
0.690 |
| 20.000 |
0.216 |
SEY of Cu [4]
| Energy (keV) |
Yield |
| 5.000 |
0.390 |
| 5.000 |
0.291 |
| 30.000 |
0.119 |
| 30.000 |
0.105 |
SEY of Cu [5]
| Energy (keV) |
Yield |
| 0.200 |
1.000 |
| 0.600 |
1.300 |
| 1.500 |
1.000 |
SEY of Cu [6]
| Energy (keV) |
Yield |
| 2.500 |
0.750 |
| 5.000 |
0.478 |
| 10.000 |
0.310 |
| 15.000 |
0.224 |
| 20.000 |
0.174 |
| 25.000 |
0.161 |
SEY of Cu [7]
| Energy (keV) |
Yield |
| 0.500 |
2.110 |
| 0.800 |
1.869 |
| 1.000 |
1.723 |
| 1.200 |
1.469 |
| 1.400 |
1.440 |
| 1.600 |
1.370 |
| 1.800 |
1.194 |
| 2.000 |
1.117 |
| 2.500 |
1.040 |
| 3.000 |
0.893 |
| 3.500 |
0.813 |
| 4.000 |
0.752 |
| 5.000 |
0.641 |
SEY of Cu [8]
| Energy (keV) |
Yield |
| 0.500 |
1.009 |
| 1.000 |
0.892 |
| 1.500 |
0.726 |
| 2.000 |
0.588 |
| 3.000 |
0.422 |
| 4.000 |
0.326 |
| 5.000 |
0.275 |
| 6.000 |
0.245 |
| 7.000 |
0.216 |
| 8.000 |
0.196 |
| 9.000 |
0.180 |
| 10.000 |
0.167 |
SEY of Cu [9]
| Energy (keV) |
Yield |
| 0.050 |
0.368 |
| 0.100 |
0.701 |
| 0.200 |
1.000 |
| 0.400 |
1.230 |
| 0.600 |
1.260 |
| 0.800 |
1.276 |
| 1.000 |
1.230 |
SEY of Cu [10]
| Energy (keV) |
Yield |
| 0.500 |
1.410 |
| 1.000 |
1.328 |
| 2.000 |
0.992 |
| 3.000 |
0.813 |
| 4.000 |
0.724 |
| 5.000 |
0.649 |
| 6.000 |
0.604 |
| 7.000 |
0.567 |
| 8.000 |
0.537 |
| 9.000 |
0.522 |
| 10.000 |
0.500 |
SEY of Cu [11]
| Energy (keV) |
Yield |
| 0.020 |
1.118 |
| 0.060 |
1.265 |
| 0.100 |
1.442 |
| 0.200 |
1.554 |
| 0.250 |
1.573 |
| 0.300 |
1.561 |
| 0.400 |
1.492 |
| 0.500 |
1.404 |
| 0.700 |
1.277 |
| 1.000 |
1.097 |
| 1.500 |
0.925 |
| 2.000 |
0.859 |
SEY of Cu [12]
| Energy (keV) |
Yield |
| 0.010 |
0.040 |
| 0.012 |
0.050 |
| 0.013 |
0.050 |
| 0.015 |
0.090 |
| 0.018 |
0.130 |
| 0.016 |
1.060 |
| 0.014 |
0.910 |
| 0.014 |
0.620 |
| 0.014 |
0.400 |
| 0.019 |
0.080 |
| 0.052 |
0.290 |
| 0.078 |
0.470 |
| 0.104 |
0.670 |
| 0.146 |
0.910 |
| 0.208 |
1.100 |
| 0.270 |
1.240 |
| 0.329 |
1.320 |
| 0.391 |
1.380 |
| 0.468 |
1.440 |
| 0.568 |
1.460 |
| 0.666 |
1.470 |
| 0.739 |
1.470 |
| 0.810 |
1.450 |
| 0.880 |
1.440 |
| 0.981 |
1.410 |
SEY of Cu [13]
| Energy (keV) |
Yield |
| 0.016 |
0.998 |
| 0.019 |
0.970 |
| 0.016 |
0.942 |
| 0.019 |
0.891 |
| 0.019 |
0.853 |
| 0.022 |
0.797 |
| 0.022 |
0.689 |
| 0.022 |
0.600 |
| 0.019 |
0.506 |
| 0.019 |
0.417 |
| 0.019 |
0.333 |
| 0.019 |
0.263 |
| 0.019 |
0.202 |
| 0.019 |
0.159 |
| 0.019 |
0.113 |
| 0.016 |
0.089 |
| 0.016 |
0.061 |
| 0.022 |
0.047 |
| 0.026 |
0.024 |
| 0.028 |
0.047 |
| 0.032 |
0.075 |
| 0.035 |
0.108 |
| 0.041 |
0.127 |
| 0.041 |
0.155 |
| 0.044 |
0.178 |
| 0.053 |
0.202 |
| 0.053 |
0.221 |
| 0.065 |
0.295 |
| 0.071 |
0.380 |
| 0.083 |
0.460 |
| 0.095 |
0.534 |
| 0.101 |
0.600 |
| 0.113 |
0.666 |
| 0.125 |
0.727 |
| 0.131 |
0.773 |
| 0.143 |
0.825 |
| 0.152 |
0.872 |
| 0.164 |
0.909 |
| 0.173 |
0.942 |
| 0.179 |
0.975 |
| 0.192 |
0.998 |
| 0.204 |
1.036 |
| 0.212 |
1.050 |
| 0.218 |
1.069 |
| 0.231 |
1.096 |
| 0.237 |
1.106 |
| 0.249 |
1.129 |
| 0.258 |
1.143 |
| 0.267 |
1.167 |
| 0.276 |
1.181 |
| 0.285 |
1.190 |
| 0.297 |
1.209 |
| 0.306 |
1.228 |
| 0.318 |
1.247 |
| 0.336 |
1.256 |
| 0.351 |
1.274 |
| 0.369 |
1.293 |
| 0.385 |
1.303 |
| 0.399 |
1.317 |
| 0.414 |
1.321 |
| 0.430 |
1.340 |
| 0.451 |
1.345 |
| 0.469 |
1.354 |
| 0.487 |
1.368 |
| 0.496 |
1.368 |
| 0.508 |
1.363 |
| 0.601 |
1.387 |
| 0.707 |
1.382 |
| 0.810 |
1.373 |
| 0.900 |
1.354 |
| 0.997 |
1.345 |
SEY of Cu [14]
| Energy (keV) |
Yield |
| 0.012 |
0.270 |
| 0.014 |
0.290 |
| 0.016 |
0.310 |
| 0.018 |
0.340 |
| 0.020 |
0.360 |
| 0.023 |
0.370 |
| 0.026 |
0.390 |
| 0.028 |
0.410 |
| 0.031 |
0.410 |
| 0.035 |
0.420 |
| 0.023 |
0.270 |
| 0.034 |
0.370 |
| 0.052 |
0.430 |
| 0.066 |
0.500 |
| 0.093 |
0.650 |
| 0.114 |
0.760 |
| 0.171 |
0.970 |
| 0.212 |
1.090 |
| 0.253 |
1.170 |
| 0.290 |
1.210 |
| 0.350 |
1.260 |
| 0.392 |
1.280 |
| 0.433 |
1.300 |
| 0.488 |
1.300 |
| 0.593 |
1.310 |
| 0.662 |
1.300 |
| 0.728 |
1.290 |
| 0.781 |
1.280 |
| 0.841 |
1.260 |
| 0.940 |
1.240 |
SEY of Cu [15]
| Energy (keV) |
Yield |
| 0.005 |
0.390 |
| 0.044 |
0.491 |
| 0.034 |
0.506 |
| 0.053 |
0.612 |
| 0.081 |
0.718 |
| 0.091 |
0.778 |
| 0.186 |
0.854 |
| 0.290 |
0.894 |
| 0.395 |
0.879 |
| 0.491 |
0.844 |
| 0.586 |
0.809 |
| 0.691 |
0.748 |
| 0.795 |
0.713 |
| 0.900 |
0.687 |
| 0.995 |
0.647 |
| 1.499 |
0.521 |
| 1.994 |
0.430 |
| 2.984 |
0.350 |
SEY of Cu [16]
| Energy (keV) |
Yield |
| 0.069 |
0.525 |
| 0.075 |
0.564 |
| 0.116 |
0.783 |
| 0.152 |
0.866 |
| 0.175 |
0.943 |
| 0.246 |
1.089 |
| 0.299 |
1.159 |
| 0.353 |
1.201 |
| 0.406 |
1.248 |
| 0.447 |
1.274 |
| 0.495 |
1.290 |
| 0.554 |
1.306 |
| 0.601 |
1.315 |
| 0.643 |
1.315 |
| 0.695 |
1.312 |
| 0.737 |
1.309 |
| 0.808 |
1.306 |
| 0.849 |
1.296 |
| 0.908 |
1.286 |
| 0.949 |
1.274 |
| 0.996 |
1.264 |
| 1.050 |
1.252 |
| 1.103 |
1.239 |
| 1.150 |
1.229 |
| 1.197 |
1.220 |
| 1.251 |
1.207 |
| 1.304 |
1.191 |
| 1.357 |
1.175 |
| 1.410 |
1.169 |
| 1.451 |
1.153 |
| 1.498 |
1.140 |
| 1.552 |
1.128 |
| 1.594 |
1.115 |
| 1.646 |
1.099 |
| 1.693 |
1.089 |
| 1.747 |
1.076 |
| 1.794 |
1.070 |
| 1.853 |
1.054 |
| 1.900 |
1.044 |
| 1.948 |
1.042 |
| 2.001 |
1.025 |
| 2.048 |
1.010 |
| 2.101 |
1.000 |
| 2.143 |
0.994 |
| 2.202 |
0.981 |
| 2.249 |
0.971 |
| 2.302 |
0.965 |
| 2.343 |
0.956 |
| 2.402 |
0.952 |
| 2.449 |
0.936 |
| 2.497 |
0.930 |
| 2.544 |
0.924 |
| 2.597 |
0.917 |
| 2.645 |
0.905 |
| 2.698 |
0.901 |
| 2.757 |
0.889 |
| 2.792 |
0.882 |
| 2.851 |
0.879 |
| 2.892 |
0.872 |
| 2.940 |
0.863 |
| 2.993 |
0.863 |
SEY of Cu [17]
| Energy (keV) |
Yield |
| 0.019 |
0.417 |
| 0.016 |
0.526 |
| 0.035 |
0.671 |
| 0.065 |
0.816 |
| 0.095 |
0.961 |
| 0.119 |
1.091 |
| 0.146 |
1.174 |
| 0.171 |
1.251 |
| 0.198 |
1.313 |
| 0.222 |
1.339 |
| 0.247 |
1.370 |
| 0.274 |
1.391 |
| 0.301 |
1.412 |
| 0.328 |
1.417 |
| 0.358 |
1.417 |
| 0.380 |
1.423 |
| 0.410 |
1.423 |
| 0.437 |
1.423 |
| 0.464 |
1.417 |
| 0.486 |
1.407 |
| 0.516 |
1.396 |
| 0.543 |
1.391 |
| 0.567 |
1.391 |
| 0.592 |
1.386 |
| 0.619 |
1.381 |
| 0.646 |
1.370 |
| 0.676 |
1.355 |
| 0.700 |
1.350 |
| 0.724 |
1.350 |
| 0.754 |
1.334 |
| 0.784 |
1.339 |
| 0.811 |
1.329 |
| 0.836 |
1.324 |
| 0.855 |
1.308 |
| 0.885 |
1.298 |
| 0.912 |
1.293 |
| 0.933 |
1.288 |
| 0.955 |
1.283 |
| 0.982 |
1.272 |
| 1.012 |
1.262 |
| 1.039 |
1.262 |
| 1.067 |
1.257 |
| 1.096 |
1.246 |
| 1.145 |
1.236 |
| 1.178 |
1.220 |
| 1.205 |
1.215 |
| 1.226 |
1.220 |
| 1.254 |
1.204 |
| 1.289 |
1.194 |
| 1.313 |
1.194 |
| 1.330 |
1.189 |
| 1.360 |
1.179 |
| 1.387 |
1.169 |
| 1.417 |
1.179 |
| 1.444 |
1.169 |
| 1.463 |
1.169 |
| 1.490 |
1.158 |
| 1.514 |
1.158 |
| 1.547 |
1.148 |
| 1.571 |
1.138 |
| 1.593 |
1.138 |
| 1.625 |
1.122 |
| 1.650 |
1.122 |
| 1.672 |
1.122 |
| 1.699 |
1.111 |
| 1.726 |
1.106 |
| 1.750 |
1.091 |
| 1.786 |
1.085 |
| 1.808 |
1.085 |
| 1.832 |
1.080 |
| 1.862 |
1.080 |
| 1.891 |
1.075 |
| 1.916 |
1.059 |
| 1.943 |
1.049 |
| 1.970 |
1.054 |
SEY of Cu [18]
| Energy (keV) |
Yield |
| 0.064 |
0.983 |
| 0.081 |
1.084 |
| 0.107 |
1.155 |
| 0.133 |
1.208 |
| 0.159 |
1.255 |
| 0.183 |
1.250 |
| 0.207 |
1.250 |
| 0.233 |
1.250 |
| 0.257 |
1.232 |
| 0.283 |
1.208 |
| 0.309 |
1.196 |
| 0.337 |
1.178 |
| 0.357 |
1.161 |
| 0.383 |
1.143 |
| 0.487 |
1.072 |
| 0.587 |
1.036 |
| 0.682 |
1.001 |
| 0.784 |
0.977 |
| 0.884 |
0.953 |
| 0.986 |
0.942 |
References:
- [1] Bronstein, I. M.; Fraiman, B. S., Vtorichnaya elektronnaya emissiya. Nauka, Moskva 1969, 340.
- [2] Walker, C. G.; El-Gomati, M. M.; Assad, A. M.; Zadrazil, M., The secondary electron emission yield for
24 solid elements excited by primary electrons in the range 250-5000 eV: a theory/experiment comparison.
Scanning 2008, 30, 365-80.
- [3] Reimer, L.; Tolkamp, C., Measuring the backscattering coefficient and secondary electron yield inside a
scanning electron microscope. Scanning 1980, 3, 35.
- [4] Wittry, D. B., In: Proc. 4th Conf. on X-ray Optics and Microanalysis, Hermann Paris, Castaing,
R., Ed. Hermann Paris, 1966; p 168.
- [5] Whetten, N. R., Methods in Experimental Physics. Academic Press, New York: 1962; Vol. IV.
- [6] Moncrieff, D. A.; Barker, P. R., Secondary electron emission in the scanning electron microscope.
Scanning 1978, 1, 195-197.
- [7] Bongeler, R.; Golla, U.; Kussens, M.; Reimer, L.; Schendler, B.; Senkel, R.; Spranck, M.,
Electron-specimen interactions in low-voltage scanning electron microscopy. Scanning 1993,
15, 1-18.
- [8] Shimizu, R., Secondary electron yield with primary electron beam of kiloelectronvolts. J. Appl.
Phys. 1974, 45, 2107-2111.
- [9] Bruining, H.; Boer, J. M. D., Secondary electron emission of metals. Physica 1938, V, 17-30.
- [10] Koshikawa, T.; Shimizu, R., Secondary electron and backscattering measurements for polycrystalline
copper with a spherical retarding-field analyser. J. Phy. D: Appl. Phys. 1973, 6,
1369.
- [11] Septier, A.; Belgarovi, M., IEEE Trans. Elect. Insul. 1985, 20, 725.
- [12] Gonzalez, L. A.; Angelucci, M.; Larciprete, R.; Cimino, R., The secondary electron yield of nobel metal
surfaces. AIP Adv. 2017, 7, 115203.
- [13] Cimino, R.; Gonzalez, L. A.; Larciprete, R.; Gaspare, A. D.; Iadarola, G.; Rumolo, G., Detailed
investigation of the low energy secondary electron yield of technical Cu and its relevance for the LHC.
Phys. Rev. ST: Accel. Beams 2015, 18, 051002.
- [14] Hu, X. C.; Cao, M.; Cui, W. Z., Influence of surface topography on the secondary electron yield of
clean Cu samples. Micron 2016, 90, 71-77.
- [15] Bojko, I.; Hilleret, N.; Scheuerlein, C., Influence of air exposures and thermal treatments on the
secondary electron yield of copper. J. Vac. Sci. Technol. A 2000, 18, 972-979.
- [16] Ahmed, M. T., Secondary electron yield measurements on materials of interest to vacuum electron
communication devices, Ph.D. Dissertation, New Maxico, 2020.
- [17] Wang, J.; Wang, Y.; Xu, Y. H.; Zhang, B.; Wei, W., Research on the secondary electron yield of TiZrV-Pd
thin film coatings. Vacuum 2016, 131, 81-88.