Cite as: Mehnaz, T.F. Yang, Bo Da and Z.J. Ding, Exploring Universal Formula for Absolute Secondary Electron Yield
by
using Machine Learning Methods. (unpublished).
SEY of Au [1]
Energy (keV) |
Yield |
0.030 |
0.503 |
0.055 |
0.717 |
0.065 |
1.044 |
0.075 |
1.235 |
0.085 |
1.352 |
0.130 |
1.218 |
0.250 |
1.395 |
0.450 |
1.369 |
0.750 |
1.212 |
0.950 |
1.043 |
1.200 |
0.912 |
SEY of Au [2]
Energy (keV) |
Yield |
0.070 |
0.763 |
0.075 |
0.856 |
0.080 |
0.948 |
0.085 |
1.018 |
0.090 |
1.085 |
0.095 |
1.135 |
0.100 |
1.179 |
0.130 |
1.203 |
0.150 |
1.219 |
0.180 |
1.234 |
0.200 |
1.241 |
0.250 |
1.257 |
0.300 |
1.257 |
0.350 |
1.250 |
0.400 |
1.241 |
0.450 |
1.234 |
0.500 |
1.225 |
0.550 |
1.203 |
0.600 |
1.164 |
0.700 |
1.113 |
0.750 |
1.065 |
0.850 |
0.972 |
0.950 |
0.889 |
1.000 |
0.828 |
1.200 |
0.753 |
1.400 |
0.724 |
1.500 |
0.675 |
SEY of Au [3]
Energy (keV) |
Yield |
0.450 |
1.650 |
0.950 |
1.070 |
1.500 |
0.793 |
5.000 |
0.498 |
7.500 |
0.362 |
12.000 |
0.253 |
SEY of Au [4]
Energy (keV) |
Yield |
0.850 |
1.000 |
1.500 |
0.720 |
5.000 |
0.472 |
6.000 |
0.379 |
7.500 |
0.283 |
9.000 |
0.263 |
SEY of Au [5]
Energy (keV) |
Yield |
0.095 |
1.550 |
0.250 |
1.200 |
0.450 |
1.120 |
0.500 |
1.104 |
0.550 |
1.010 |
0.650 |
0.934 |
0.700 |
0.850 |
0.750 |
0.709 |
0.850 |
0.680 |
0.950 |
0.590 |
1.000 |
0.546 |
1.200 |
0.498 |
1.500 |
0.437 |
SEY of Au [6]
Energy (keV) |
Yield |
1.500 |
0.550 |
1.600 |
0.313 |
12.000 |
0.136 |
SEY of Au [7]
Energy (keV) |
Yield |
0.065 |
0.950 |
0.075 |
1.200 |
0.085 |
1.450 |
0.095 |
1.420 |
0.180 |
1.540 |
0.250 |
1.510 |
0.350 |
1.460 |
0.450 |
1.460 |
0.600 |
1.100 |
0.750 |
1.050 |
0.850 |
0.940 |
0.950 |
0.900 |
1.000 |
0.800 |
SEY of Au [8]
Energy (keV) |
Yield |
0.700 |
0.809 |
0.800 |
0.729 |
0.900 |
0.650 |
0.950 |
0.590 |
1.200 |
0.520 |
1.400 |
0.460 |
2.000 |
0.389 |
2.600 |
0.318 |
5.000 |
0.228 |
7.500 |
0.114 |
12.000 |
0.090 |
SEY of Au [9]
Energy (keV) |
Yield |
0.055 |
0.670 |
0.075 |
1.380 |
0.095 |
1.770 |
0.450 |
1.700 |
0.750 |
1.240 |
0.950 |
0.970 |
1.200 |
0.840 |
1.600 |
0.780 |
2.000 |
0.650 |
2.500 |
0.520 |
3.000 |
0.470 |
SEY of Au [10]
Energy (keV) |
Yield |
0.106 |
0.870 |
0.200 |
1.060 |
0.270 |
1.250 |
0.391 |
1.380 |
0.541 |
1.440 |
0.744 |
1.410 |
0.988 |
1.350 |
1.504 |
1.270 |
2.075 |
1.190 |
2.686 |
1.100 |
3.324 |
0.990 |
3.691 |
0.940 |
3.962 |
0.890 |
4.451 |
0.840 |
4.995 |
0.790 |
5.998 |
0.720 |
7.003 |
0.640 |
7.982 |
0.590 |
8.999 |
0.530 |
10.004 |
0.480 |
SEY of Au [11]
Energy (keV) |
Yield |
0.081 |
0.425 |
0.106 |
0.644 |
0.139 |
0.801 |
0.194 |
0.996 |
0.289 |
1.166 |
0.463 |
1.288 |
0.653 |
1.316 |
0.976 |
1.299 |
1.267 |
1.260 |
1.551 |
1.236 |
SEY of Au [12]
Energy (keV) |
Yield |
0.074 |
0.766 |
0.085 |
0.884 |
0.134 |
1.072 |
0.227 |
1.208 |
0.380 |
1.319 |
0.558 |
1.337 |
0.769 |
1.313 |
1.045 |
1.243 |
1.298 |
1.187 |
1.553 |
1.125 |
SEY of Au [13]
Energy (keV) |
Yield |
0.085 |
1.023 |
0.085 |
1.166 |
0.113 |
1.313 |
0.187 |
1.476 |
0.382 |
1.539 |
0.565 |
1.521 |
0.781 |
1.462 |
1.031 |
1.372 |
1.275 |
1.288 |
1.557 |
1.204 |
SEY of Au [14]
Energy (keV) |
Yield |
0.011 |
0.060 |
0.013 |
0.100 |
0.014 |
0.140 |
0.016 |
0.200 |
0.018 |
0.250 |
0.014 |
0.730 |
0.018 |
0.570 |
0.016 |
0.430 |
0.014 |
0.270 |
0.014 |
0.100 |
0.055 |
0.540 |
0.076 |
0.700 |
0.126 |
0.890 |
0.175 |
1.050 |
0.231 |
1.180 |
0.289 |
1.360 |
0.349 |
1.490 |
0.462 |
1.650 |
0.530 |
1.720 |
0.588 |
1.750 |
0.665 |
1.770 |
0.742 |
1.780 |
0.810 |
1.780 |
0.887 |
1.780 |
1.002 |
1.780 |
References:
- [1] Bronstein, I. M.; Fraiman, B. S., Vtorichnaya elektronnaya emissiya. Nauka, Moskva 1969, 340.
- [2] Walker, C. G.; El-Gomati, M. M.; Assad, A. M.; Zadrazil, M., The secondary electron emission yield for
24 solid elements excited by primary electrons in the range 250-5000 eV: a theory/experiment comparison.
Scanning 2008, 30, 365-80.
- [3] Reimer, L.; Tolkamp, C., Measuring the backscattering coefficient and secondary electron yield inside a
scanning electron microscope. Scanning 1980, 3, 35.
- [4] Moncrieff, D. A.; Barker, P. R., Secondary electron emission in the scanning electron microscope.
Scanning 1978, 1, 195-197.
- [5] Bongeler, R.; Golla, U.; Kussens, M.; Reimer, L.; Schendler, B.; Senkel, R.; Spranck, M.,
Electron-specimen interactions in low-voltage scanning electron microscopy. Scanning 1993,
15, 1-18.
- [6] Wittry, D. B., In: Proc. 4th Conf. on X-ray Optics and Microanalysis, Hermann Paris, Castaing,
R., Ed. Hermann Paris, 1966; p 168.
- [7] Rothwell, T. E.; Russell, P. E., In: Microbeam Analysis, Newbury, D. E., Ed. San Francisco:
1988; p 149.
- [8] Suszcynsky, D. M.; Borovsky, J. E.; Goertz, C. K., Secondary electron yields of solar system ices.
J. Geophys. Res. 1992, 97, 2611-2619.
- [9] Joy, D. C., A database of electron-solid interactions. (2008).
- [10] Thomson, C. D. Measurements of the secondary electron emission properties of insulators, Utah
State University, Logan, Utah, 2005.
- [11] Yun, H.; Ting, S.; Qi, W.; Guanghui, M.; Chunjian, B.; Bin, Y.; Yang, J.; Feng, G.; Hu, T.; Wang, X.;
Cui, W., Effect of atmospheric exposure on secondary electron yield of inert metal and its potential impact on
the threshold of multipactor effect. Appl. Surf. Sci. 2020, 520, 146320.
- [12] Gonzalez, L. A.; Angelucci, M.; Larciprete, R.; Cimino, R., The secondary electron yield of nobel metal
surfaces. AIP Adv. 2017, 7, 115203.