Chapter 5

 Discovering the Possibilities e«

Graphical Display Tricks

Chapter Overview

In the last chapter you learned a number of graphical display techniques. In this chap-
ter, you learn several graphical display tricks that can be used with graphical displays
to give your presentations a professional ook and feel.

Specifically, you will learn:

* How to provide cursor interaction with your graphical display
* How to erase annotation from your graphical display

* How to draw “rubberband” symbols on your graphical display

* How to use the Z graphics buffer for graphical display tricks

Using the Cursor with Graphical Displays

One of the reasons data is displayed visually is so the user can interact with it in one
way or another. One way users like to interact with data is to use the mouse cursor to
select or annotate portions of their data. This kind of interaction is easily accom-
plished in IDL using th&€ursor command.

To see how th€ursor command works, load theme Series data set with the
LoadData command like this:

IDL> curve = LoadData(1)
Display the curve by typing these commands:

IDL> W ndow, XSi ze=400, YSi ze=400
IDL> LoadCT, O

IDL> TvLCT, 255, 255, 0, 1

IDL> Pl ot, curve

The Cursor command accepts two arguments. These must be variables in which the
position of the cursor when a mouse button is pushed is recorde@uidoe com-

mand requires that the cursor be located in the current graphics window. (This is the
window pointed to by the system variablzWndow.) For example, if you type this

107

Graphical Display Tricks

command, IDL will be waiting for you to move your cursor into the current graphics
window (window index O if you typed the commands above) and click the mouse but-
ton down. When you do, IDL will put the position of the cursor into the variables xLo-
cation and yLocation. Type:

IDL> Cursor, xLocation, ylLocation

If you print these values out, you will see that the values are given in data coordinate
space. That is the xLocation values will be between 0 and 100 and the yLocation val-
ueswill be between 0 and 30. (At least they will beif you clicked the mouseinside the
plot boundaries. What happens if you do not?) The Cursor command returns data
coordinate positions by default.

IDL> Print, xLocation, ylLocation

When Is the Cursor Position Returned?

It would appear from the commands above that the cursor position is returned when
the mouse button is pushed down, but thisis not always the case. In fact, when the
Cursor command reports its position is determined by keywords to the Cursor com-
mand. These keywords are:

Change The position is reported when there is a change in the cur-
sor’s position, or when the usepoves the cursor.

Down The position is returned when the mouse button is pushed
down.

NoWait The position is returned immediately when @wsor com-

mand is executed. There is no delay or wait for mouse but-
tons. This keyword is sometimes used in loops when objects
are being moved on the display.

Up The position is returned not when the mouse button is clicked
down, but when it comag or is released.

Wait The Cursor commandwaits for the button to be pressed to
report its position. As long as the button is pressed down, this
keyword causes theursor command to act as though it had
been invoked with thBloWait keyword. This is the default
behavior for theCursor command.

|:| Be careful to use the proper keyword with @ sor command, especially if you are
using theCursor command in a loop. Users sometimes get into the habit of thinking
that the default behavior for ti&ursor command is to only report back when the cur-
sor is clickeddown. It is not. The default behavior iswait for a click then act as if a
no wait were in effect. In a loop this difference can be critical.

Which Mouse Button Was Used with the Cursor?

In addition to setting the behavior of the cursor, you also sometimes want to know
which mouse button was used to respond tdiirsor command. For example, you

may want to do one thing if the right mouse button was used and something different
if the left mouse button was used in response t&timsor command.

108

Using the Cursor with Graphical Displays

You can determine which button was used with the Cursor command by examining
the Button field of the 'Mouse system variable. (Older versions of IDL used the value
of the !Err system variable for this same purpose.) Thisfield is an integer bit map.
Valid values for the Button field and their meanings are as follows:

IMouse.Button =0 No button has currently been used.
IMouse.Button =1 The left mouse button was used with the Cursor command.
IMouse.Button = 2 The middle mouse button was used.

IMouse.Button =4 The right mouse button was used.

Annotating Graphics Output with the Cursor

Oneway the Cursor command might be used isto allow the user to interactively place
symbols on aline plot. For example, type the commands below exactly as they appear
here. When you hit the final carriage return, click your mouse five timesin the current
graphics window. Five symbols will be placed in the window. (If you make atyping
mistake in the code below, start again with the first line when you correct it.) Type:

IDL> FOR j=0, 4 DOBEGN $

IDL> Cursor, xloc, yloc, /Down & $

IDL> PlotS, xloc, yloc, PSynF4, SynSize=2, Col or=1 & ENDFOR
Drawing a Box

You might want to select a portion of the display and draw a box around it. Here are
some commands to select the diagonal corners of abox with the Cursor command,
draw the box (be sure to draw the box so that it includes a portion of the actua data),
and zoom the plot into the box coordinates. First, draw the plot:

IDL> Pl ot, curve

Next, use the cursor to select one corner of the box you want to draw. You will want to
be sure to click the cursor in the current graphics window. To make sure you know
which one that is and that it is not hidden, type:

IDL> WShow
Now type the first Cursor command. Click somewhere inside the plot axes:

IDL> Cursor, x1, yl, /Down ; Select one corner of box.
Now type the second Cursor command. Click somewhere inside the plot axes:

IDL> Cursor, x2, y2, /Down ; Select diagonal corner of box.

The coordinates returned from the Cursor commands above are in data coordinate
space. Draw the box like this:

IDL> PlotS, [x1,x1, x2 x2,x1], [yl,y2,y2,yl,yl], Color=1

Your output will look something like the illustration in Figure 58, although the actua
box on your plot will depend on where you clicked in the window.

To zoom into this portion of the plot, you will have to be sure the box coordinates are
ordered properly. Thisis necessary because you may have first selected the lower-
right corner of the box and then the upper-left, in which case x1 will be greater than
X2. You can imagine other scenarios aswell. To account for al of them, type:

109

Graphical Display Tricks

30 /\ /\

OE“‘\“‘\“‘\“““’
0 20 40 60 80 100

Figure58: A lineplot with a box drawn around the portion of the data. The box co-
ordinates were selected with the Cursor command and the box drawn
with the PlotS command.

IDL> Xxnin
IDL> ynin

M n([x1, x2], Max=xmax)
Mn([yl,y2], Max=ymax)

Finally, you are ready to zoom into the portion of the data enclosed by the box. In
addition to setting the data ranges properly, you also have to set the [XY] Qyle key-
words. Do you know why? If you don't, try the command below without these two
keywords. What happens?

IDL> Pl ot, curve, XRange=[xnin, xnax], YRange=[ym n,ymax], $
XStyle=1, YStyle=1

Using the Cursor with Images

Normally when you are working with image data and using_tirgaor command, you

want the cursor locations in device coordinates rather than data coordinates. This is
because there is usually a simple relationship (most of the time one-to-one) between
the device coordinate and the equivalent location in the image. To see how this works,
open the 360 by 36@brld Elevation data set with theoadData command, like this:

IDL> i mage = LoadDat a(7)
Display the image and load some colors like this:

IDL> topCol or = ID.N _Col ors-1

IDL> LoadCT, 3, NColors=!D. N Col ors-1
IDL> TvLCT, 255, 255, 0, topCol or

IDL> W ndow, XSize=360, YSize=360

IDL> TV, BytScl (i mage, Top=!D. N_Col ors-2)

Now use the cursor to select a particular column and row in the image. Notice the
Device keyword in theCursor andPlotS commands. This is to be sure the coordinates
are indevice coordinates and noata coordinates. Draw a cross-hair at that location.
(Be sure to click in the image window after you type@uesor command.) Type:

110

Using the Cursor with Graphical Displays

IDL> s = Size(imge)

IDL> Cursor, col, row, /Device ; dick in the wi ndow

IDL> PlotS, [col, col], [0, s(2)], /Device, Color=topCol or
IDL> PlotS, [0, s(1)], [row, row], /Device, Color=topCol or

Notice how easy it isto access the datain theimage in that particular column and row.
For example, you can easily plot the column and row data profiles for the image, like
this:

IDL> W ndow, 1, XSize=500, YSize=300
IDL> !'P.Multi = [0, 2, 1]

IDL> Plot, image(col, *), Title="Row Profile'
IDL> Plot, image(*, row), Title="Column Profile'
IDL> !'P.Multi=0

IDL> WSet, 0

Your output should ook similar to theillustration in Figure 59.

Row Profile Column Profile
250 T T T 200 T Aaaass T
200 |] —

' 150+ .
150/ .
, 100+ .
100 .
I 50t |
50 | .
oLl At 1IN oll .. | — ol e,
0O 100 200 300 400 0O 100 200 300 400

Figure59: Thecolumn and row profiles of theimage in the column and row select-
ed with the Cursor command.

Using the Cursor in Loops

Sometimes you want to use the Cursor command in aloop. For example, you might
want to know the value of each individual image pixel asyou select it with the cursor.
Hereisasimpleloop that continues until you click theright or middle mouse button to
get out of it. Open atext editor and type these commands exactly as you see here.

topColor = ID.N_Colors-1

LoadCT, 3, NColors=!D.N_Colors-1
TVvLCT, 255, 255, 0, topColor

TV, BytScl(image, Top=!D.N_Colors-2)

111

Graphical Display Tricks

I Mouse. Button = 1
REPEAT BEGQ N
Cursor, col, row, /Down, /Device
Print, 'Pixel Value: ', image(col, row)
ENDREP UNTIL !Mouse.Button NE 1
END

Save thefile asloopl.pro. (Thisfile is among the files you downloaded to use with
this book.) To compile and run thislittle main-level program, type:

IDL> .RUN loopl

Move your cursor into theimage window and start clicking with the left mouse button.
You will seetheimage pixel values printed out in your log window until you use some
button other than the | eft in the image window.

What happens if you use other keywords besides Down with the Cursor command?
Experiment alittle and find out.

Erasing Annotation From the Display

Using the cursor to place annotations on the graphical display the way you have been
doing tends to beg the question: “But, how @oake what | just put there!” There are
two preferred ways to erase annotations. | call thesextihgsive OR method and the
device copy method. Of the two, the device copy method gives more professional
looking results, in my opinion. Both are presented here, but the focus will be on the
device copy technique.

The “Exclusive OR” Method of Erasing Annotation

112

The exclusive OR method of erasing annotation works on the basis of what are called
graphicsfunctions. A graphicsfunction isabit-level operation on two numbers. These
numbers are associated with the pixel that is already on the display (thisisthe so-
called destination pixel) and the pixel you wish to put in that same location (thisisthe
so-called source pixel).

Normally, the graphics function IDL usesis called SOURCE. In this graphics func-

tion, IDL ignores the value of the destination pixel and just puts the value of the

source pixel at the pixel location. But if the graphics function is changed to XOR

(exclusive OR) IDL does a bit-wise comparison of the bits of the destination pixel

with the source pixel. This has the effect of “flipping” the bit values of the destination
pixel. In other words, if the binary representation of the pixel value is 01100101. Then
after the XOR operation, the binary representation of the pixel value is 10011010.

(The true XOR story is more complicated than this, because it only really works this
way if IDL has 256 colors in contiguous locations in the color lookup table, and this is
seldom the case. Most people just think of XOR mode as drawing in the “opposite”
color and leave it at that. In trad@®R mode you could predict what color you would

be drawing with, but this is not true with this mode under most circumstances. This is
the reason most professional IDL programmers prefer the device copy technique.)

The graphics function in effect at any particular time is set wittDéaéce command
and theSet_Graphics_Function keyword SOURCE mode is graphics function X0R

Erasing Annotation From the Display

mode is graphics function 6. At the moment IDL isin its default SOURCE mode.
While you arein this mode, redisplay the image in the image window. Type:

IDL> TV, BytScl (i mage, Top=!D. N_Col ors-2)
Now, select XOR mode, likethis:

IDL> Devi ce, Set_ G aphics_Function=6
You will draw a box on the image like this:

IDL> PlotS, [0.2, 0.2, 0.8, 0.8, 0.2], Color=topColor, $
[0.2, 0.8, 0.8, 0.2, 0.2], /Normal

You will notice that the line of the box is not yellow, as you might have expected, but
isinstead a sort of multicolored hue, although it shows up reasonably well. The under-
lying pixels have been “flipped” in this graphics function.

To erase the box, all you have to do is flip the underlying pixel values back to their
original values. This is easily done by issuingRh&S command again, like this:

IDL> PlotS, [0.2, 0.2, 0.8, 0.8, 0.2], Color=topColor, $
[0.2, 0.8, 0.8, 0.2, 0.2], /Normal

You can issue the above command over and over, making the box appear and disap-
pear at will. Before you go on, be sure you set your graphics function back to
SOURCE mode, like this:

IDL> Device, Set_ G aphics_Function=3

You can easily take advantage of graphics functions in your IDL programs. For exam-
ple, open théoopl.pro main-level program you wrote earlier and modify it to look

like this. Here you are going to draw a large cross-hair at each image location as you
click in the image window. Save this programagp2.pro. Type:

topColor = ! D.N Col ors-1

LoadCT, 3, NCol ors=!D. N Col ors-1
TvLCT, 255, 255, 0, topColor

TV, BytScl (i mage, Top=!D. N _Col ors-2)
I Mouse. Button = 1

; Go into XOR node.
Devi ce, Set_ G aphi cs_Function=6
: Get initial cursor |ocation. Draw cross-hair.

Cursor, col, row, /Device, /Down

PlotS, [col,col], [0,360], /Device, Color=topCol or
PlotS, [0,360], [row,row], /Device, Color=topCol or
Print, 'Pixel Value: ', image(col, row)

; Loop.
REPEAT BEGIN
; Get new cursor location.
Cursor, colnew, rownew, /Down, /Device
; Erase old cross-hair.

PlotS, [col,col], [0,360], /Device, Color=topColor
PlotS, [0,360], [row,row], /Device, Color=topColor

113

Graphical Display Tricks

Print, 'Pixel Value: ', image(colnew, rownew)
; Draw new cross-hair.

PlotS, [colnew,colnew], [0,360], /Device, Color=topColor
PlotS, [0,360], [rownew,rownew], /Device, Color=topColor

; Update coordinates.

col = colnew
row = rownew
ENDREP UNTIL 'Mouse.Button NE 1

:Erase the final cross-hair.

PlotS, [col,col], [0,360], /Device, Color=topColor
PlotS, [0,360], [row,row], /Device, Color=topColor

; Restore normal graphics function.

Device, Set_Graphics_Function=3
END

Savethefileasloop2.pro. (You can find loop2.pro among the files you downloaded to
use with this book.) To compile and run this main-level program, type:

IDL> .RUN loop2

Place your cursor in the image window and click several times with your left mouse
button. You should see across-hair at each cursor location. To exit the program, click
the right or middle mouse button.

The “Device Copy” Method of Erasing Annotation

114

The device copy technique uses pixmap windows to erase annotation that you put on

the display. A pixmap window isidentical to any other IDL graphics window, except

that it doesn't exist on your display. In fact, it exists in the video RAM of your display
device. In other words, it exists in memory. But in every other respect, it is like a nor-
mal IDL graphics window: it is created with tiiéndow command, it is made active

with theWSet command, it is deleted with tMgDelete command, etc. You draw
graphics in a pixmap window in exactly the same way you draw graphics in a normal
IDL graphics windows (e.g., witRlot, Surface, TV, and other graphics output com-
mands).

The device copy technique involves copying a rectangular area from one window
(called thesource window) and pasting the rectangle into another window (called the
destination window). The source and destination window can sometimes be the same
window, as you will see in a moment. You see an illustration of the device copy tech-
nique in Figure 60.

The actual copying is done with tBevice command and th€opy keyword (hence,
the name of the technique). The general form of the command is this:

Devi ce, Copy=[sx, sy, col, row, dx, dy, sourceW ndow D]
In this command, the elements of tbepy keyword are:

X, sy

the rectangle is being copied from.)

The device coordinates of the lower-left corner of the rectan-
gle in thesource window. (The source window is the window

Erasing Annotation From the Display

Source Window Destination Window

row

(sx,sy) col

(dx, dy)

Figure60: The device copy technique involves copying a rectangular portion of the
source window into a location in the destination window. In practice en-
tire windows may be copied or the source and destination window can be
the same window.

col The number of columnsto copy in the source window. Thisis
the width of the rectangle.

row The number of rowsto copy in the source window. Thisisthe
height of the rectangle.

dx, dy The device coordinates of the lower-left corner of the rectan-

glein the destination window. (The destination window isthe
window the rectangle is being copied to. The destination win-
dow is always the current graphics window.)

sourceWindowl D Thisis the window index number of the source window. The
rectangle is copied from this window into the current graph-
icswindow (which isidentified by the !D.Window system
variable). The source window can be the current graphics
window, but it is more often awindow other than the current
graphics window. It is often a pixmap window.

To see how this works, create a pixmap window and display the image in it. Pixmap
windows are created with the Window command and the Pixmap keyword, like this:

IDL> W ndow, 1, /Pixmap, XSize=360, YSize=360
IDL> TV, Byt Scl (i mage, Top=!D. N _Col ors-2)

Notice that you had no visua clue that anything happened when you typed these com-
mands. Thisis because the pixmap window existsonly in RAM, not on the display. To
be sure there is something in this window, open athird, regular window and try to
copy the contents of the pixmap window into it. If your third window looks like your
image window, you have typed the commands correctly. Type:

IDL> W ndow, 2, XSize=360, YSize=360
IDL> Device, Copy=[0, 0, 360, 360, 0, 0, 1]

Notice that you copied the entire contents of the pixmap window into this new win-
dow. Thisissimilar to just re-displaying the image in the new window, except that it is
several orders of magnitude faster. It is not unusual to copy the entire contents of a

115

Graphical Display Tricks

116

pixmap window into a display window, even if you just have to “repair” a portion of

the display window.

Delete the last two windows you created (including the pixmap window), like this:
IDL> WDel ete, 1, 2

It is important to remember to delete pixmap windows when you are finished with

them. They do take up memory that you may want to use for something else. Some

window managers allocate a fixed amount of memory for pixmap windows. Others

use virtual memory if your pixmap window exceeds the capacity of the video RAM.
X-terminals have notoriously little memory for pixmap windows.

To see how the device copy technique works in practice, modify the main-level pro-
gram you wrote earlier and namiedp2.pro. You may want to copy that program to
another file and namelibop3.pro. Make the modifications shown below.

topColor = ! D.N Col ors-1

LoadCT, 3, NCol ors=!D. N Col ors-1
TvLCT, 255, 255, 0, topColor

TV, BytScl (i mage, Top=!D. N _Col ors-2)
I Mouse. Button = 1

; Create a pixmap wi ndow and display image in it.

W ndow, 1, /Pixmap, XSize=360, YSize=360
TV, BytScl (i mage, Top=!D. N _Col ors-2)

; Make the display wi ndow the current graphics w ndow.
Wset, O
; Get initial cursor location. Draw cross-hair.

Cursor, col, row, /Device, /Down

PlotS, [col,col], [0,360], /Device, Color=topColor
PlotS, [0,360], [row,row], /Device, Color=topCol or
Print, 'Pixel Value: ', image(col, row)

; Loop.
REPEAT BEGIN
; Get new cursor location.
Cursor, colnew, rownew, /Down, /Device
; Erase old cross-hair.

Device, Copy=[0, 0, 360, 360, 0, 0, 1]
Print, 'Pixel Value: ', image(colnew, rownew)

; Draw new cross-hair.

PlotS, [colnew,colnew], [0,360], /Device, Color=topColor
PlotS, [0,360], [rownew,rownew], /Device, Color=topColor
ENDREP UNTIL !Mouse.Button NE 1

:Erase the final cross-hair.

Device, Copy=[0, 0, 360, 360, 0, 0, 1]
END

Erasing Annotation From the Display

Save thefile as loop3.pro. (Thisfile is among those you downloaded to use with this
book.) To compile and run this main-level program, type:

IDL> . RUN | oop3

Place your cursor in the image window and click several times with your left mouse
button. To exit the program, click the right or middle mouse button. Notice that the
cross-hairs are drawn in ayellow color.

Delete the pixmap window before you move on to the next exercise. Type:
IDL> WDel ete, 1

Drawing a Rubberband Box

The device copy techniqueis an excellent one for drawing rubberband selection boxes
and other shapes on the display. (A rubber band box is abox that has one fixed corner
and one dynamic corner that follows the cursor around.) In fact, your Loop3 program
can be easily modified. Copy the loop3.pro program into afile named rubberbox.pro.
(The loop3.pro file is among those you downloaded to use with this book.) Make the

modifications below to see how easy it is to create a rubberband box.

topCol or = ! D.N _Col ors-1

LoadCT, 3, NColors=!D. N Colors-1
TvLCT, 255, 255, 0, topColor

TV, Byt Scl (i mage, Top=!D. N_Col ors-2)
I Mouse. Button = 1

; Create a pixmap w ndow and display inmage in it.

W ndow, 1, /Pixmap, XSize=360, YSize=360
TV, Byt Scl (i mage, Top=!D. N_Col ors-2)

; Make the display wi ndow the current graphics w ndow.
Weet, O
; Get initial cursor location (static corner of box).
Cursor, sx, sy, /Device, /Down
; Loop.
REPEAT BEGQ N
; Get new cursor location (dynanic corner of box).
Cursor, dx, dy, /Wait, /Device
; Erase the old box.
Devi ce, Copy=[0, 0, 360, 360, 0, 0, 1]
; Draw the new box.

Pl otS, [sx,sx,dx,dx,sx], [sy,dy,dy,sy,sy], /Device, $
Col or =t opCol or
ENDREP UNTI L ! Mouse. Button NE 1

:Erase the final box.

Devi ce, Copy=[0, 0, 360, 360, 0, 0, 1]
END

117

Graphical Display Tricks

To run this program, type:
IDL> . RUN r ubber box

Delete the pixmap window before you move on to the next exercise. Type:
IDL> WDel ete, 1

Graphics Window Scrolling

Another good application of the device copy technique is to implement window
scrolling. In this example you will scroll the image in the graphics display window
with the device copy technique. The image will scroll four columns at atime from left
to right. The algorithm you will useisthis. (1) Copy the last four rows on the right of
the window into asmall pixmap window that isjust four columns wide and 360 rows
tall, then (2) Move the entire contents of the display window (minusthe four rowsyou
just copied) over to the right four rows in the same window (i.e., the source window
and the destination window are identical), and finally (3) Copy the contents of the pix-
map window into the first four rows on the left of the display window. Open atext edi-
tor and type the commands below. Name your program scroll.pro. (This program is
among those you downloaded to use with this book.) Type:

; Open a pi xmap wi ndow 4 col utms wi de.

W ndow, 1, /Pixmap, XSize=4, YSize=360
FOR j =0, 360/ 4 DO BEG N

; Copy four columms on right of display into pixmap.
Devi ce, Copy=[356, 0, 4, 360, 0, 0, O]

; Make the display wi ndow the active w ndow.
Weet, O

; Move wi ndow contents over 4 columms.
Devi ce, Copy=[0, 0, 356, 360, 4, 0, O]

; Copy pixmap contents into display w ndow on |eft.

Devi ce, Copy=[0, 0, 4, 360, 0, 0, 1]
ENDFOR
END

To run this program, type:
IDL> . Run scroll
The program scrolls once. To run it again, type:
IDL> . Go
Can you modify the program to make it keep scrolling until you stop it?
Delete the pixmap window before you move on to the next exercise. Type:
IDL> WDel ete, 1

118

Graphics Display Tricks in the Z-Graphics Buffer

Graphics Display Tricks in the Z-Graphics Buffer

You can think of the Z-graphics buffer in IDL as athree-dimensional box in which 3D

objects can be deposited without regard to their “solidity.” The box has the ability to
keep track of the “depth” of an object in a 16-bit depth buffer. One side of the box is a
projection plane. You can think of rays of light going through each pixel in the projec-
tion plane and eventually encountering a solid object in the box. The pixel value the
light ray encounters is the value that is “projected” onto the projection plane. In this
way, the Z-graphics buffer can take care of hidden surface and line removal automati-
cally. You see an illustration of this concept in Figure 61.

Z-Graphics Buffer

Projection
Plane ‘

"\
\(* -~ Depth

Figure61: The Z-graphics buffer can be thought of asa 3D box that keeps track of
depth information. Rays hit the objectsin the Z-graphic buffer and their
pixel values are projected back onto the projection plane.

The idea is that once you load your objects into the 3D box, you take a “snap-shot” or
picture of the projection plane. This is the 2D projection of the 3D objects in the box.
Objects that are behind other objects will not be shown. (This behavior can be modi-
fied by theTransparent keyword to some IDL graphics commands, as you will see.)
The snap-shot is, in effect, a screen dump of the projection plane take wit¥iRbe
command.

The Z-Graphics Buffer Implementation

The Z-graphics buffer is implemented in software in IDL as another graphics output
device, similar to the PostScript device or your normal X, Win, or Mac device. Thus,
to write to the Z-graphics buffer you must make it the current graphics output device
with theSet_Plot command. As with other graphics output devices, the Z-graphics
buffer is configured with th®evice command and appropriate keywords.

119

Graphical Display Tricks

Two keywords that are often used with the Z-graphics buffer are Set_Colors and
Set Resolution. The keywords are defined like this:

Set_Colors The number of colorsin the Z-graphics buffer. By default the
Z-graphics buffer uses 256 colors. Thisis seldom the number
of colorsin your IDL session. If you want the output from the
Z-graphics buffer to have the same number of colors as your
display device, you will need to set this keyword.

Set_Resolution The projection plane of the Z-graphics buffer is normally set
to 640 pixels wide and 480 pixels high. You should set the
resolution of the Z-graphics buffer to the size of the graphics
window you want to display the output in.

A Z-Graphics Buffer Example: Two Surfaces

120

To see how the Z-graphic buffer works, create two objects named peak and saddle,
like this. (The commands to implement this example can be found in the file two-
surf.pro that you downloaded to use with this book.)

IDL> peak = shift(Dist(20, 16), 10, 8)
IDL> peak Exp(- (peak / 5) ~ 2)
IDL> saddl e = Shift(peak, 6, 0) + Shift(peak, -6, 0) / 2B

You are going to combine these two 3D objects in the Z-graphics buffer, but first you
might like to see what these objects|ook like on their own. You will display them with
different color tablesin two windows. First, load a blue and red color tablein different
portions of the color lookup table. Type:

IDL> colors = ! D. N Col ors/2
IDL> LoadCT, 1, NCol ors=col ors
IDL> LoadCT, 3, NCol ors=col ors, Bottonrcol ors-1

Create awindow and display the shaded surface plot of the first object. Notice that the
Set Shading command is used to restrict the shading values to a particular portion of
the color lookup table. Type:

IDL> W ndow, 1, XSize=300, YSize=300
IDL> Set _Shadi ng, Val ues=[0, col ors-1]
IDL> Shade_Surf, peak, ZRange=[0.0, 1.2]

Display the second object in its own display window. Use a different portion of the
color lookup table for the shading parameters. Type:

IDL> W ndow, 2, XSize=300, YSize=300
IDL> Set _Shadi ng, Val ues=[colors, 2*col ors-1]
IDL> Shade Surf, saddle, ZRange=[0.0, 1.2]

Make the Z-Graphics Buffer the Current Device

To combine these two objects in the Z-graphics buffer, you must make the Z-graphics
buffer the current graphics display device. Thisis done with the Set_Plot command.
The Copy keyword copies the current color table into the Z-buffer. Be sure to save the
name of your current graphics display device, so you can get back to it easily. Type:

IDL> t hi sDevi ce = ! D. Nane
IDL> Set_Plot, 'Z', /Copy

Graphics Display Tricks in the Z-Graphics Buffer

Configure the Z-Graphics Buffer

Next, you must configure the Z-graphics device to your specifications. In this case,
you want to restrict the number of colors and you want to make the buffer resolution
equivalent to the size of the current graphics display windows. Type:

IDL> Devi ce, Set_ Col ors=2*col ors, Set_ Resol uti on=[300, 300]

Load the Objects into the Z-Graphics Buffer

Now, put the two objects into the Z-graphics buffer. Notice that you don’t see anything
happening as you type these commands. The output is going into the Z-graphics buffer
in memory, not to the display device. Type:

IDL> Set _Shadi ng, Val ues=[0, col ors-1]

IDL> Shade_ Surf, peak, ZRange=[0.0, 1.2]

IDL> Set _Shadi ng, Val ues=[col ors, 2*col ors-1]

IDL> Shade_ Surf, saddle, ZRange=[0.0, 1.2], /NoErase

Take a Picture of the Projection Plane

Next, take a “snap-shot” of the projection plane. This is done witfiVRD com-
mand, like this:

IDL> picture = TVRIX()

Display the Result on the Display Device

Finally, return to your display device, open a new window to display the result, and
display the “picture,” like this:

IDL> Set Pl ot, thisDevice
IDL> W ndow, 3, XSize=300, YSize=300
IDL> TV, picture

Your output should look similar to the illustration in Figure 62.

Figure 62: The Z-graphics buffer can be used to combine 3D objects with hidden
surface removal performed automatically.

121

Graphical Display Tricks

Some Z-Graphics Buffer Oddities

Look carefully at the output in, say, windows 1 and 3. Look particularly at the axes
labels. Notice that the axes annotations are written dightly larger in window 3, the
output that came from the Z-graphics buffer. The Z-graphics buffer for some reason
uses adifferent default character sizethan IDL doeswhen itisdisplaying graphicsina
display window.

This simple fact can cause you untold hours of difficulty if you don’t realize it when
you are setting up a 3D coordinate space in the Z-graphics buffer and combining IDL
graphics commands in the Z-graphics buffer. This is primarily because plot margins
are based on default character size and plot margins are not the same on the display
and in the Z-graphics buffer. They alenost the same. But it is the “almost” that will
drive you crazy.

A rule of thumb that ienormously helpful, is to always set tH€.Charsize system
variable if you are going to be doing graphics in the Z-graphics buffer. For example,
like this:

IDL> ! P. Charsize = 1.0

Just to give you an example, look at the illustration in Figure 62. The axes on this plot
were not created in the Z-graphics buffer because then they would have been rendered
in screen resolution (i.e., as an image) and | wanted to render them in PostScript reso-
lution. If the!P.Charsize keyword hadot been set prior to rendering the shaded sur-
faces and adding the axes later, it would have been impossible to get the axes to line
up in the correct position in the final output.

Warping Images with the Z-Graphics Buffer

122

One of the more powerful techniques to use with the Z-graphics buffer is to use it to

display slices of a 3D data set. This is possible because of the ability to warp images
onto a polygon plane with the Z-graphics buffer. To see how this works, open the 80
by 100 by 57 3IMRI Head Scan data set with theoadData command, like this:

IDL> head = LoadDat a(8)

You may want to open a journal file to capture these commands as you type them,
since there are many of them and you have to get them exactly right. A journal file
will enable you to make changes and re-run the commands easily. (This journal file
has already been created for you and can be found in theafidéeng.pro that you
downloaded to use with this book.)

IDL> Journal, ‘warping.pro'

In general, the dimensions or size of a variable are found with the Sze command in

IDL. You need to know the sizes of the three dimensions in order to define the proper
image plane. In this case, the “size” is going to be one less than the true size of the
dimension, because you want to use this number as an index into an array, and IDL
uses zero-based indexing. Type:

IDL> s = Si ze(head)

IDL> xs = s(1) - 1
IDL> ys = s(2) - 1
IDL> zs = s(3) - 1

Graphics Display Tricks in the Z-Graphics Buffer

Suppose you want to display the three orthogonal slices at the center of this data set,
say through the 3D point (40, 50, 27). You can define these points, like this:

IDL> xpt = 40
IDL> ypt = 50
IDL> zpt = 27

Next, you want to construct the individual polygons that describe these three image
dlices or planes. In this case, each polygon will be a simple rectangle with four points
(the corners of the rectangle). Each point in the rectangle will be described by an
(x,y,2) triple. Another way to say thisisthat each plane will be a3 by 4 polygon. You
can typethis:

IDL> xplane = [[xpt, 0, 0], [xpt, O, zs], [xpt, ys, zs], $
[xpt, ys, O]]

IDL> yplane = [[0, ypt, O], [0, ypt, zs], [xs, ypt, zs], $
[xs, ypt, O]]

IDL> zplane = [[0, 0, zpt], [xs, O, zpt], [xs, ys, zpt], $
[0, ys, zpt]]

The next step isto get the image data that will correspond to each image plane. Thisis
done easily by using array subscriptsin IDL. Type:

IDL> xi nmage = head(xpt, *, *)
IDL> yi mage = head(*, ypt, *)
IDL> zi mage = head(*, *, zpt)

Notice that these images are all 3D images (one dimension isal). What you want are
2D images associated with each image plane, so you must reformat these 3D images
into 2D images with the Reform command, like this. In this case, the Reform com-
mand reformats the image into an 80 by 100 by 1 image. When the final dimensionin
an array is 1, IDL discardsit. The result hereis an 80 by 100 image.

IDL> xi mage = Ref or m(xi mage)
IDL> yi mage = Ref ornm(yi mage)
IDL> zi mage = Ref ornm(zi mage)

To display these images properly, you want to make sure they are scaled properly into
the number of colors on your display. It isimportant to scale them in relation to the
entire data set. Scale the data and load colors like this:

IDL> m nData = M n(head, Max=maxDat a)

IDL> topCol or = I D.N Col ors-2

IDL> LoadCT, 5, NColors=!D. N Col ors-1

IDL> TvLCT, 255, 255, 255, topCol or+1

IDL> xi mage = Byt Scl (xi nage, Top=t opCol or, Max=nexData, $

M n=m nDat a)

IDL> yi mage = Byt Scl (yi nage, Top=t opCol or, Max=nexData, $
M n=m nDat a)

IDL> zi mage = Byt Scl (zi nage, Top=t opCol or, Max=nexData, $
M n=m nDat a)

Next, you are ready to set up the Z-graphics buffer. The Erase command will erase
whatever may have been left in the buffer previously. In this case, you are erasing with
the awhite color, to give more definition to your display. Type:

IDL> t hi sDevice = ! D. Nane
IDL> Set_Plot, 'Z'

123

Graphical Display Tricks

IDL> Devi ce, Set_ Col ors=topCol or, Set_ Resol uti on=[400, 400]
IDL> Erase, Color=topColor + 1

Set up the 3D coordinate space with the Scale3 command. Here the axes will be
|abelled with the size of each dimension. Type:

IDL> Scal e3, XRange=[0, xs], YRange=[0,ys], ZRange=[0, zs]

You are finally ready to render the dices in the Z-graphics buffer. You will use the
Polyfill command for this purpose. The Pattern keyword will be set to the image slice
you wish to display. The Image_Coord keyword contains alist of the image coordi-
nates associated with each vertex of the polygon. The Image_|Interp keyword specifies
that bilinear interpolation occurs rather than nearest neighbor re-sampling as the
image iswarped into the polygon. The T3D keyword ensures that the polygon isrepre-
sented in 3D space by applying the 3D transformation matrix to the final output. Type:

IDL> Pol yfill, xplane, /T3D, Pattern=xi mage, /I mage Interp, $
| mge _Coord=[[0,0], [0, zs], [ys, zs], [ys, O] 1]

IDL> Pol yfill, yplane, /T3D, Pattern=yimge, /Image Interp, $
| mmge _Coord=[[0,0], [0, zs], [xs, zs], [xs, 0]]

IDL> Pol yfill, zplane, /T3D, Pattern=zimge, /Image Interp, $

| mge_Coord=[[0,0], [xs, O], [xs, ys], [0, ys]]
Finally, take a snap-shot of the projection plane, and display the result, like this:

IDL> picture = TVRD()

IDL> Set Pl ot, thisDevice

IDL> W ndow, XSi ze=400, YSize=400
IDL> TV, picture

If you opened ajourna file, close it now:
IDL> Jour nal

Your output should look like the illustration in Figure 63. If it doesn’t, modify the
code in your journal file with a text editor to fix the problem. To re-run the code, save
the file and type this:

IDL> @nar pi ng

Figure 63: An example of warping image data into planesin the Z-graphics buffer.

124

Graphics Display Tricks in the Z-Graphics Buffer

Transparency Effects in the Z-Graphics Buffer

Notice that each slice in Figure 63 has quite alot of black around the outside edges of
the dice. Thisis not part of the image. Rather, it is part of the background noise.

One of the nice features of the Z-graphics buffer is that you can apply transparency
effectsinit. For example, if you set the Transparent keyword on the Polyfill command
above to roughly 20 or 25, then all those pixels below that value in the image will be
transparent. You can see what this looks like by typing this. (You may want to start
another journal file. If you closed the last journal file, give thisfile anew name.
Unfortunately, it is not possible to append to ajournal file. Call the new journal file
transparent.pro. You can find acopy of this journal file among the files you down-
loaded to use with this book.)

IDL> Journal, 'transparent'

IDL> Set_Plot, 'Z'

IDL> Erase, Color=topColor + 1

IDL> Polyfill, xplane, /T3D, Pattern=ximage, /Image_Interp, $
Image_Coord=[[0,0], [O, zs], [ys, zs], [ys, 0]], $
Transparent=25

IDL> Polyfill, yplane, /T3D, Pattern=yimage, /Image_Interp, $
Image_Coord=[[0,0], [O, zs], [Xs, zs], [Xs, O]], $
Transparent=25

IDL> Polyfill, zplane, /T3D, Pattern=zimage, /Image_Interp, $
Image_Coord=[[0,0], [xs, O], [xs, ys], [0, ys]], $
Transparent=25

IDL> picture = TVRD()

IDL> Set_Plot, thisDevice

IDL> Window, /Free, XSize=400, YSize=400

IDL> Erase, Color=topColor + 1

IDL> TV, picture

IDL> Journal

Combining Z-Graphics Buffer Effects with Volume Rendering

Z-graphics buffer effects are often combined with volume rendering technigues to
make vivid visua displays of data. For example, suppose you wanted to create an iso-
surface of this data set. (An iso-surface is a surface that has the same value every-
where. It islike athree-dimensional contour plot of the data.) Start ajournal file
named isosurface.pro. (A copy of thisjourna file is among the files you downloaded
to use with this book.)

IDL> Journal, 'isosurface.pro’

To create an iso-surface, first use the Shade Volume command to create alist of verti-
ces and polygons that describe the surface. In the command below, the Low keyword
is set so that all the values greater than the iso-surface value will be enclosed by the
iso-surface. The variables vertices and polygons are output variables. They will be
used in the subsequent PolyShade command to render the surface. A look at the histo-
gram of the head data suggests a value of 50 will be a suitable contouring level. Type:

IDL> Plot, Histogram(head), Max_Value=5000
IDL> Shade_Volume, head, 50, vertices, polygons, /Low

125

Graphical Display Tricks

126

Theiso-surface is rendered with the PolyShade command. Be sure to use the 3D trans-

formation that you set up earlier, like this:

IDL> Scal e3, XRange=[0, xs], YRange=[0,ys], ZRange=[0, zs]
IDL> i sosurface = Pol yShade(vertices, polygons, /T3D)
IDL> LoadCT, 0, NCol ors=topCol or+1

IDL> TV, isosurface

Now, combine thisiso-surface with the Z dice through the data set that you took ear-

lier in the Z-graphics buffer. Notice that you are truncating the head datain the Z
direction. Type:

IDL> Shade_Vol une, head(*,*,0:zpt), 50, vertices, $

pol ygons, /Low

IDL> i sosurface = Pol yShade(vertices, polygons, /T3D)

IDL> i sosurface(Were(isosurface EQ 0)) = topCol or+1

IDL> TvLCT, 70, 70, 70, topColor+1

IDL> Set_Plot, 'Z', /Copy

IDL> TV, isosurface

IDL> Scale3, XRange=[0,xs], YRange=[0,ys], ZRange=[0,zs]

IDL> Polyfill, zplane, /T3D, Pattern=zimage, /Image_Interp, $
Image_Coord=[[0,0], [Xs, 0], [Xs, ys], [0, ys]], $
Transparent=25

IDL> picture = TVRD()

IDL> Set_Plot, thisDevice

IDL> TV, picture

IDL> Journal

Your output should look like the illustration in Figure 64. If it doesn’t, modify your

journal file and run it over again by typing this:

IDL> @ sosurface

Figure64: Theisosurface and data dice combined in the Z-graphics buffer.

