
LEAST- AND CHI-SQUARES FOR THE BUDDING AFICIONADO:ART AND PRACTICECarl Heiles June 12, 2002In our never-ending attempt to make your life easier, we present you with this highly in-strutive, time-saving, and labor-saving informative doument! Here we give heuristi derivations,disussions, examples, and the presription for doing least-squares the easy way using matrix teh-niques generally, and spei�ally in IDL. This presription is given as an example in x5, and thepower-user an skip the details and go diretly there.This doument is an update, orretion, lari�ation, and elaboration of a previous one madeexlusively for the undergraduate lab lass. Here we extend the disussion onsiderably to overmost of what anyone will need in future professional life. This makes the doument longer, butthe �rst parts (x1 to 7) are still aessible at the introdutory level beause they haven't hangedmuh. We oasionally refer to the books Bevington and Robinson (1992); BR), Cowan (1998),Press et al (2001; Numerial Reipes, NM) and Taylor (1997; T97), and we update the notationto partially onform with NM. We owe setions 11 to 13 to the fantastially exellent website ofStetson, http://nedwww.ipa.alteh.edu/level5/Stetson/Stetson4.html.We begin with least squares in the lassi sense, meaning we minimize the sum of squaresinstead of minimizing �2. In astronomy, more often than not you don't have an independentassessment of the intrinsi unertainty in the data, whih means you annot evaluate �2, and theleast squares approah is the only option. However, often in astronomy you do want to weightobservations di�erently, e.g. beause of integration time, and this requires an approah similar tothe �2 one. In later setions we generalize to the �2 and this other weighted-observations ase.Contents1 LEAST-SQUARE FITTING FOR TWOPARAMETERS, ASWITHA STRAIGHTLINE. 41.1 The losed-form expressions for a straight-line �t . . . . . . . . . . . . . . . . . . . . 41.2 Better is the following generalized notation. . . . . . . . . . . . . . . . . . . . . . . . 42 LEAST-SQUARE FITTING FOR MANY PARAMETERS, AS WITH A CU-BIC 53 FAR, FAR BEST AND EASIEST: MATRIX ALGEBRA. 64 UNCERTAINTIES IN THE DERIVED COEFFICIENTS. 8
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{ 4 {15.2 Example: the single-parameter ase . . . . . . . . . . . . . . . . . . . . . . . . . . . 5416 NOTATION COMPARISON WITH NUMERICAL RECIPES 551. LEAST-SQUARE FITTING FOR TWO PARAMETERS, AS WITH ASTRAIGHT LINE.1.1. The losed-form expressions for a straight-line �tFirst onsider the least squares �t to a straight line. Let �m be the mth measurement of theobserved quantity (in this example, �m is zenith distane; tm be the time of the mth measurement;M = the total number of observations, i.e. m runs from 0 to M � 1. Remember that in the least-squares tehnique, quantities suh as tm are regarded to be known with high auray while thequantity �m has unertainties in its measurement.We expet the zenith distane �m to hange linearly with time as follows:A+Btm = �m : (1)Given this, one does the maximum likelihood (ML) estimate assuming Gaussian statistis. Whenall measurements have the same intrinsi unertainty, this is the same as looking for the solutionthat minimizes the sum of the squares of the residuals (whih we will de�ne later). This leads tothe pair of equations (Taylor 8.8, 8.9), alled the normal equationsAN +B X tm =X �m (2a)A X tm +B X t2m =X tm�m (2b)Two equations and two unknowns|easy to solve! The losed-form equations for (A;B) are Taylor'sequations 8.10 to 8.12.1.2. Better is the following generalized notation.We want a way to generalize this approah to inlude any funtional dependene on t and evenother variables, and to have an arbitrarily large number of unknown oeÆients instead of just thetwo (A;B). This is very easy using matrix math. We will ease into this matrix tehnique gently,by �rst arrying through an intermediate stage of notation.



{ 5 {First generalize the straight-line �t slightly by having two funtional dependenes insteadof one. We have something other than the time tm; all it sm. For example, we ould havesm = os(tm) or sm = t2m; or we ould have sm = xm, where xm is the position from whih theobservation was taken. To orrespond to equation 1, sm = 1. Then we rewrite equation 1 to inludethis extra dependene Asm +Btm = �m : (3)There are still only two unknown parameters, so this is an almost trivial generalization; later we'llgeneralize to more parameters.We have M equations like equation 3, one for eah measurement. They are known as theequations of ondition beause they are the equations that speify the theoretial model to whihwe are �tting the data. There are M equations of ondition and only two unknowns (A and B).This is too many equations! We have to end up with a system in whih the number of equations isequal to the number of unknowns.To aomplish this, from equation 3 we form the normal equations. The number of normalequations is equal to the number of unknowns, so in this ase we will have two. We ould arrythrough the same ML derivation to derive equations equivalent to equation 2; the result isA X s2m +B X smtm =X sm�m (4a)A X smtm +B X t2m =X tm�m : (4b)We an rewrite these equations using the notation [st℄ =P smtm, et.:A[s2℄ +B[st℄ = [s�℄ (5a)A[st℄ +B[t2℄ = [t�℄ : (5b)This is, of ourse, preisely analogous to equation 2. And now it's lear how to generalize to moreparameters!2. LEAST-SQUARE FITTING FOR MANY PARAMETERS, AS WITH ACUBICWith this notation it's easy to generalize to more (N) unknowns: the method is obviousbeause in eah equation of ondition (like equation 3) we simply add equivalent additional terms



{ 6 {suh as Cum, Dvm, et; and in the normal equations (equation 5) we have more produts and alsomore normal equations.Let's take an example with four unknowns (N = 4), whih we will denote by A;B;C;D; thiswould be like �tting a ubi. With N = 4 we need at least �ve data points (M = 5), so there mustbe at least �ve equations of ondition. The generalization of equation 4 is the M equationsAsm +Btm + Cum +Dvm = �m ; (6)with m = 0 ! (M � 1). Again, the least squares �tting proess assumes that the sm; tm; um; vmare known with zero unertainty; all of the unertainties are in the measurements of �m. We thenform the four normal equations; the generalization of equation 5 written in matrix format is:26664 [ss℄ [st℄ [su℄ [sv℄[ts℄ [tt℄ [tu℄ [tv℄[us℄ [ut℄ [uu℄ [uv℄[vs℄ [vt℄ [vu℄ [vv℄ 3777526664 ABCD 37775 = 26664 [s�℄[t�℄[u�℄[v�℄ 37775 (7)The N �N matrix on the left is symmetri. With N equations and N unknowns, you an atuallysolve for A;B;C;D!3. FAR, FAR BEST AND EASIEST: MATRIX ALGEBRA.The above equations are terribly umbersome to solve in a omputer ode beause they requirelots of loops. However, it beomes trivial if we use matries. Here we designate a matrix byboldfae type.We illustrate the matrix method by arrying through the above N = 4 example, and we assumethat there are 5 independent measurements (M = 5). We �rst de�ne the matries
X� = 2666664 s0 t0 u0 v0s1 t1 u1 v1s2 t2 u2 v2s3 t3 u3 v3s4 t4 u4 v4

3777775 (8a)
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a� = 26664 ABCD 37775 (8b)
Y� = 2666664 �0�1�2�3�4

3777775 (8)
so, in matrix form, the equations of ondition (equation 6) redue to the single matrix equationX� � a = Y� : (9)The notation for these equations orresponds to NM's. We write them with subsripts � to empha-size that they are alulated without dividing by �meas, i.e. that we are doing least squares insteadof hi square �tting. For hi square �tting, see x9 and 10.Our matrix X� orresponds to NM's \design matrix" A of Figure 15.4.1, exept that ourelements are not divided by �meas;m, and the matrix equation of ondition (equation 9) is identialto the expression inside the square brakets of NM's equation 15.4.6. The di�erenes arise beausehere we are disussing least squares �tting instead of hi square �tting, i.e. we have omitted thefators involving �meas;m, the intrinsi measurement unertainties (x9).Again, there are more equations than unknowns so we an't solve this matrix equation diretly.So next we form the normal equations from these matries. In matrix form, the normal equations(equation 7) redue to the single equation[��℄ � a = [��℄ ; (10)(NM equation 15.4.10), where [��℄ = XT� �X� (11a)[�� ℄ = XT� �Y� (11b)



{ 8 {The matrix [��℄ is known as the urvature matrix beause eah element is twie the urvature of�2 (or �2) plotted against the orresponding produt of variables.The number of equations is equal to the number of unknowns, so the solution of the matrixequation is easy|just rewrite it by multiplying both sides by the inverse of [�� ℄ (that is, by [��℄�1),whih gives a = [��℄�1�[��℄ : (12)All of these matrix operations are trivially easy in IDL (x5).4. UNCERTAINTIES IN THE DERIVED COEFFICIENTS.How about the unertainties in the derived quantities ontained in the matrix a?The �rst thing to do is derive the sample variane s2 (the square of standard deviation, ormean error, or dispersion, et) of the individual data points using the generalization of the usualde�nition for a straight average of x, s2 = [PM�10 (xm � xm)2=(M � 1)℄. The generalization is,simply, to replae the M � 1 in the denominator by � = M � N . In the straight-average ase,N = 1 so this �ts. Here � is known as the number of degrees of freedom and N , the number ofunknown oeÆients, is known as the number of onstraints. So we haves2 = 1M �N M�1Xm=0(�m � �m)2 ; (13)where �m are the values for �m predited by the derived quantities a. Note the di�erene: �m arethe observed values, while �m are the values predited by the least squares �t. The predited valuesare those that are omputed from the derived oeÆients A;B;C. . . The M quantitiesÆ�m = �m � �m (14)are alled the residuals or deviations from the �t.It's worth reiterating some essentials about s2, and in partiular the denominator (M � N).First onsider the ase of a single-parameter �t, e.g. N = 1. Then we annot possibly derivea sample variane from only one measurement M = 1; but we an from two M = 2. So thedenominator makes sense from that standpoint. The same goes for N > 1.Next onsider the e�et of using (M � N) in the denominator: it inreases s2 by the ratioMM�N over what you'd get if you just took a straight average and used M . This ompensates forthe fat that you are subtrating �m, whih is derived from the data, instead of the truly orret



{ 9 {value ��. (In formal statistial language, �� is the mean of the parent population from whih yourset of measurements is drawn). If you used the truly orret value ��, then the sum would be largerthan when using �m. The use of M � N in the denominator ompensates for this larger value inexatly the right way: the expetation value E(s2) for a large number of experiments is preiselyequal to the normal variane �2, whih you'd get by using [�� and M ℄ instead of [�m and (M �N)℄in equation 14; see Cowan equations 5.9 and 5.10. So s2 is, in fat, exatly the number we want:an unbiased estimate of the true variane of our sample. Why not use [�� and M ℄ in equation 14?The reason is obvious: we don't know ��! (If we did, we wouldn't be doing this analysis!)It's easy to alulate the �m with matries. First de�ne the matrix Y� that ontains thesevalues:
Y� = 2666664 �0�1�2�3�4

3777775 (15)
Calulating Y� is simple: Y� = X� � a : (16)Note that X� is already de�ned (equation 8) and a was solved for in equation 12. It's onvenientto de�ne the residual matrix ÆY� = Y� �Y� (17)so we an write s2 = 1M �N ÆYT� � ÆY� : (18)This is the sample variane of the datapoints, not the varianes in the derived oeÆients.We an obtain these as before, by generalizing the results from the two-parameter ase like thestraight-line �t disussed in x1. We won't go through the derivation here; you an �nd it in Taylorx8.4 and equation 8.16, 8.17. The result issa2 = s2diagf[�� ℄�1g (19)



{ 10 {Or, to put it simply in words: to get the variane of oeÆient n in the matrix a, multiply s2 bythe nth diagonal element of [��℄�1.Although the above equation for sa2 is orret, there is more to the story beause of ovarianes,whih are the o�-diagonal elements. We return to this topi in x9.5. A NUMERICAL EXAMPLE AND ITS SOLUTION IN IDL.If the following sounds like Greek to you, take a look at x3 and 4.5.1. Generation of the numerial exampleSuppose that we make four measurements of the angle � and we want to �t to a paraboli fun-tion in time t. In the notation of equation 6, s would be unity, t the time, and u the time squared,so the number of unknowns is three (N = 3). Beause there are four independent measurements(M = 4) the subsripts run from m = 0! 3. Suppose that the four values of time are 5, 7, 9, 11.First we reate the matrix X in IDLX = tarr(N;M) = tarr(3;4) (20)and then we populate it with numbers. In your own work, you would normally do this by readinga data �le and transferring the numbers to the matrix using IDL ommands; to work through thisexample, you might manually type them in. After populating the matrix, in diret orrespondenewith equation 8a we have sm = 1, tm = timem, um = time2m:
X = 26664 1 5 251 7 491 9 811 11 121 37775 (21a)

Suppose that the four measured values of � are (equation 8)
Y = 26664 142168211251 37775 : (22a)
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Fig. 1.| Our numerial example. Stars are the four datapoints; the solid line is the �t. We performtwo �ts: one uses the original de�nition of time; the other uses (time � 8), in e�et moving they-axis to the dashed line. The two �ts give the same line but the oeÆients and their errors di�ergreatly.Figure 1 shows the datapoints, together with the �tted urve.One word of aution here: in IDL, to get these into a olumn matrix, whih is how we'vetreated Y above, you have to de�ne Y as a two-dimensional array beause the seond dimensionrepresents the olumn. When working in IDL it's more onvenient to de�ne a row vetor, whihhas only one dimension; in IDL you do this by de�ning Y = [142; 168; 211; 251℄; you an make itinto the neessary olumn vetor by taking its transpose, i.e. Y = transpose(Y).5.2. Solution of the Numerial Example in IDLIn IDL we alulate the normal equation matries and denote the [�℄ in equation 11a by XX:XX = transpose(X)##X ; (23a)



{ 12 {and we denote the [�℄ in equation 11b by XY:XY = transpose(X)##Y : (23b)In IDL we take the inverse of [�℄ (same as XX) byXXI = invert(XX) : (24)The least-square �tted quantities are in the matrix a (equation 12), whih we obtain in IDLwith a = XXI ## XY : (25)In IDL we denote the matrix of predited values �m by YBAR, whih isYBAR = X ## a : (26)and we an also de�ne the residuals in Y asDELY = Y �YBAR (27)In IDL we denote s2 in equations 13 and 18 by s sq and writes sq = transpose(DELY)##DELY=(M �N) : (28a)or s sq = total(DELY ^ 2)=(M �N) : (28b)It is always a good idea to plot all three quantities (the measured valuesY, the �tted valuesYBAR,and the residuals DELY) to make sure your �t looks reasonable and to hek for bad datapoints.To get the error in the derived oeÆients we need a way to selet the diagonal elements of amatrix. Obviously, any N �N matrix has N diagonal elements; a onvenient way to get them isdiag elements of XXI = XXI[(N+ 1) � indgen(N)℄ (29)



{ 13 {In IDL, we de�ne the varianes of the N derived oeÆients by vard (think of \varianes ofderived oeÆients"). You an get this as in equation 19 from1vard = s sq �XXI[(N+ 1) � indgen(N)℄ : (30)5.3. Disussion of the numerial exampleFor this numerial example, the solution (the array of derived oeÆients) isa = 264 96:62504:50000:8750 375 (31a)and the errors in the derived oeÆients [the square root of the �2's of the derived oeÆients, i.e.[�2n℄1=2 or, in IDL, sqrt(vard) in equations 30℄ are:�A = 264 34:0129:0000:5590 375 : (31b)These results look horrible: the unertainties are large frations of the derived oeÆients,The reason: we have spei�ally hosen an example with terrible ovariane. And the greatthing is this an be �xed easily (at least in this ase|ertainly not always), without taking moredata!6. THE COVARIANCE MATRIX AND ITS NORMALIZED COUNTERPARTFirst we provide a general disussion, then we apply it to the above numerial example.6.1. De�nition of the normalized ovariane matrixThe varianes in the derived oeÆients are obtained from the diagonal elements of XXI. Theo�-diagonal elements represent the ovarianes between the derived oeÆients. Covariane means,1If you used equation 28a instead of 28b, then IDL onsiders s sq an array and you need to use a # instead of a� in this equation.



{ 14 {spei�ally, the degree to whih the unertainty in one derived oeÆient a�ets the unertainty inanother derived oeÆient.Beause the ovariane matrix elements relate pairwise the various oeÆients, the units ofthe matrix elements are all di�erent. This makes it onvenient to redue all the matrix elementsto a standard set of units|namely, no units at all. So before disussing the ovariane matrix perse, we �rst disuss its normalized ounterpart.The normalized ovariane matrix2 nov is derived from XXI by dividing eah element by thesquare root of the produt of the orresponding diagonal elements. Let nov be the normalizedovariane matrix; then novik = XXIikpXXIii XXIkk (32)This is the same normalization that one does with the Pearson linear orrelation oeÆient. Infat, the elements of the normalized ovariane matrix are the orrelation oeÆients. In IDL, youdo the following: d = XXI[(N+ 1) � indgen(N)℄ (33a)nov = XXI=sqrt(d#d) (33b)In the above, d#d is an N�N matrix onsisting of produts of the diagonals ofXXI, so dividingXXI by sqrt(d#d) generates the normalized version.Beause nov is a normalized ovariane matrix, you might think that it's non-normalizedparent is XXI|and you'd be almost right. The true ovariane matrix C (as de�ned in NumerialReipes for example) is C = �2measXXI (34)beause C is de�ned for �2 instead of �2 (see x9).In nov, the diagonal elements are all unity and the o�-diagonal elements reet the inter-dependene of the derived oeÆients on eah other. The o�-diagonal elements an range from�1 ! 1. Eah matrix element is the orrelation oeÆient between the unertainties of its twoparameters. In partiular, suppose that the data happens to produe a oeÆient that di�ers fromits true value by some positive number. If the normalized matrix element is negative, then theother oeÆient will tend to di�er from its true value by a negative number.2It is a pleasure to thank Doug Finkbiener for introduing me to this onept.



{ 15 {Here's a more detailed disussion of what the ovariane means. Suppose you are least-squares�tting for two derived oeÆients (A0 and A1). When you do a least-squares �t to a set of data,you are �tting one set of data out of a possible in�nity of possible sets that you'd get by repeatingthe experiment, and your partiular set of data happens to produe spei� values of A0 and A1,whih di�er from the true values (A�0; A�1) by amounts ÆA0 and ÆA1. If their ovariane is zero,then in the in�nity of data sets you'd �nd that ÆA0 is unorrelated with ÆA1. But if it is nonzero,these two quantities would be orrelated.A high ovariane is bad beause the derived variables depend on eah other. For one, thismeans that with noisy data power an be shared or passed from one parameter to/from its ovariantounterpart(s). As we shall see x10, it also signi�antly inuenes the unertainties in derivedoeÆients. Often a high ovariane results from a poor hoie of funtions that you are �tting oreven a bad hoie of the zero point of the independent variable|as in our numerial example (seethe next subsetion). And, as in that example, you an sometimes eliminate the bad ovarianeby reformulating the problem|you don't even need to take more data! The best reformulationinvolves using a set of orthonormal funtions. However, sometimes your interest is in a spei� setof funtions that are not orthogonal, and in suh ases it makes no sense to onvert to orthogonalfuntions|beause you just have to onvert bak again and do the error propagation after-the-fatinstead of letting the least squares proess do it for you.6.2. The ovariane in our numerial exampleApply equation 33 to obtain the ovariane matrix for our numerial example:nov = 264 1 �:989848 :969717�:989848 1 �:993808:969717 �:993808 1 375 : (35)The o�-diagonal elements are huge. This is the reason why our solution is so bad.In this seemingly innouous example we have an exellent ase of a poor hoie of zero pointfor the independent variable (the time). The reason is lear upon a bit of reetion. We are �ttingfor y = A0 + A1t + A2t2. The oeÆient A0 is the y-interept and A1 is the slope. Inspetion ofFigure 1 makes it very lear that an error in the slope has a big e�et on the y-interept.Now we retry the example, making the zero point of the time equal to the mean of all thetimes, that is we set (timem = timem� 8). We get the same �tted line, but the derived oeÆientsare ompletely di�erent|and amazingly better! We get
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A = 264 188:62518:5000:87500 375 (36a)
�A = 264 3:581:000:559 375 : (36b)In rede�ning the origin of the independent variable, we have made the zero interept ompletelyindependent of the slope: hanging the slope has no a�et at all on the interept. You an see thisfrom the normalized ovariane matrix, whih has beomenov = 264 1 0 �0:780868810 1 0�0:78086881 0 1 375 : (37)whih is nie, but not perfet: Our step is partial beause the seond-order oeÆient A2 a�etsA0 beause, over the range of [(time � 8) = �3! +3℄, the quantity [A2 �(timem � 8)2℄ is alwayspositive and is thereby orrelated with A0.We ould omplete the proess of orthogonalization by following the presription in BR hapter7.3, whih disusses the general tehnique of orthogonalizing the funtions in least square �tting.The general ase is a royal pain, so muh so that we won't even arry it through for our example.For some partiular ases, standard pre-de�ned funtions are orthogonal. For example, if tmis a set of uniformly spaed points between (�1 ! 1) and you are �tting a polynomial, then theappropriate orthogonal set is Legendre polynomials. This is good if your only goal is to representa bunh of points by a polynomial funtion, beause the oeÆients of low-order polynomials areindependent of the higher ones. However, it's more work and, moreover, often you are interested inthe oeÆients for spei� funtions that don't happen to be orthogonal; in suh ases, you shouldjust forge ahead.But always look at the normalized ovariane matrix. Suppose one pair of o�-diagonal elementsdeparts signi�antly from zero. Then their orresponding funtions are far from being orthogonaland the varianes of the derived oeÆients will su�er as a result. You might be able to eliminateone of the parameters to make the �t more robust. For example, suppose one funtion is t os(t)and the other is sin(t) os(t). If the range of t is small, these two funtions are indistinguishableand have a large ovariane; you should eliminate one from the �t. If the range of t is large, thereis no problem.



{ 17 {For further disussion of ovariane, see x10. Also, you might also want to try out anotherexample in Taylor's x8.5.7. REJECTING BAD DATAPOINTS I.: CHAUVENET'S CRITERIONLeast squares �tting is derived from the maximum likelihood argument assuming the datapointresiduals Æym have a Gaussian pdf. This means that the errors are distributed asp(Æy;�) = 1p2��e�� Æy22�2� (38)where �2 is the true variane of the datapoints, i.e. s2 in equation 13 (to be preise, s2 needs to beaveraged over many experiments).More importantly, the probability of �nding datapoints inside the limits ��y isP(jÆyj<�y) = Z +�y��y p(Æy;�)d(Æy) = erf � �yp2�� (39)where we use the ommonly-de�ned error funtion erf(X) = 1p� R +X�X e�x2dx. A partiularly impor-tant value is for �y = �, for whih P(jÆyj<�) = 0:683 (40)If we have an experiment with M datapoints, then the number of datapoints we expet to lieoutside the interval ��y is M(outside �y) =M �1� erf � �yp2��� (41)Chauvenet's riterion simply says:1. Find �y suh that M(outside �y) = 0:5. This is given by�y� = erf�1�1� 12M� (42)2. Disard all datapoints outside this range.This riterion makes very good sense. It leads to the following rejetion riteria



{ 18 {Chauvenet's riterion versus MM �y�100 2.811000 3.48104 4.06105 4.56whih is a moderately interesting set of numbers.We o�er the following important Comments:� This assumes data are Gaussian distributed. In real life this doesn't often happen beauseof \glithes". Examples of glithes an be interferene in radio astronomy, meteors in optialastronomy, and osmi rays on CCD hips. These glithes produe bad points that departfrom Gaussian statistis. They are often alled outliers.It is very important to get rid of the outliers beause the least squares proess minimizesthe squares of the residuals. Outliers, being the points with the largest residuals, have adisproportionately evil e�et on the result.On the other hand, if your data don't follow Gaussian statistis as their intrinsi pdf, thenyou should think twie before using least squares!� You may wish to relax Chauvenet's riterion by inreasing the �x beyond whih you disardpoints. This is being onservative and, in the presene of some nonGaussian statistis, nota bad idea. But think about why you are doing this before you do it. Maybe the intrinsistatistis aren't Gaussian?You should never make Chauvenet's riterion more stringent by dereasing the �x beyondwhih you disard points. This rule hardly needs elaboration: it means you are disardingdatapoints that follow the assumed pdf!� Most statistis books (e.g. Taylor, BR) harp on the purity aspet. One extreme: don't throwout any datum without examining it from all aspets to see if disarding it is justi�ed. Theother extreme: apply Chauvenet's riterion, but do it only one and ertainly not repeatedly.Being a real-life astronomer, our approah is di�erent. There do exist outliers. They inreasethe alulated value of �. When you disard them, you are left with a more nearly perfetapproximation to Gaussian statistis and the new � alulated therefrom will be smaller thanwhen inluding the outliers. Beause the original � was too large, there may be points thatshould have been disarded that weren't. So our approah is: repeatedly apply Chauvenet'sriterion until it onverges.



{ 19 {If it doesn't onverge, or if it disards an inordinately large number of datapoints, you've gotreal problems and need to look at the situation from a global perspetive.� Many observers use the 3� riterion: disard any points with residuals exeeding 3�. Thisis de�nitely not a good idea: the limit 3� is Chauvenet's riterion for M = 185 datapoints.Very often M exeeds this, often by a lot.� To apply Chauvenet's riterion it's most onvenient to alulate the inverse error funtion.For this, you have two hoies. One (for sissies like myself), you an use inverf.pro frommy area ~ heiles/idl/gen . But the real he-man will want to learn about using a root-�ndingalgorithm suh Newton's method (NM x9.4 and 9.6) together with the error funtion; bothproedures exist in IDL as newton and errorf. You at least ought to skim lightly some ofNM's hapter 9 about root �nding, beause some day you'll need it.8. NONLINEAR LEAST SQUARESThe least squares formulation requires that the data values depend linearly on the unknownoeÆients. For example, in equation 1, the unknown oeÆients A and B enter linearly.Suppose you have a nonlinear dependene, suh as for example wanting to solve for A and Bwith equations of ondition that look likesin(Atm) +Btm = �m : (43)What do you do here? You linearize the proess, using the following proedure.First, assume a trial values for A and B; all these A0 and B0. You should pik values thatare lose to the orret ones. In our example you wouldn't need to do this for B, but it's easier totreat all oeÆients identially. These trial values produe predited values �0;m:sin(A0tm) +B0tm = �0;m : (44)Subtrat equation 44 from 43, and express the di�erenes as derivatives. Letting ÆA = A�A0 andÆB = B �B0, this gives ÆA[tm os(A0tm)℄ + ÆBtm = �m � �0;m : (45)This is linear in (ÆA; ÆB) so you an solve for them using standard least squares. Inrement theoriginal guessed values to alulate A0;new = A0 + ÆA and B0;new = B0 + ÆB, These won't beexat beause higher derivatives (inluding ross derivatives) ome into play, so you need to usethese new values to repeat the proess. This is an iterative proedure and you keep going until the



{ 20 {hanges beome \small". The generalization to an arbitrarily large number of unknown oeÆientsis obvious.We now o�er some autionary and pratial remarks.(0) In linear least squares, the urvature and ovariane matries are set by the values ofthe independent variable, whih here is denoted by t, and are independent of the datapoint values.Here, the matrix elements hange from one iteration to the next beause they depend on the guessedparameters, and sometimes they even depend on the datapoint values.(1): Multiple minima: Nonlinear problems often have multiple minima in �2. A lassialase is �tting multiple Gaussians to a spetral line pro�le. Gaussians are most de�nitely notorthogonal funtions and in some ases several solutions may give almost omparably good valuesof �2, eah one being a loal minimum. For example, for the ase of two blended Gaussians, onean often �t two narrow Gaussians or the ombination of a wide and narrow Gaussian, the two�ts giving almost equal �2. The lower of these is the real minimum but, given the existene ofsystemati errors and suh, not neessarily the best solution. The best solution is often determinedby physial onsiderations; in this ase, for example, you might have physial reasons to �t a broadplus narrow Gaussian, so you'd hoose this one even if it's �2 weren't the true minimum.(2): The Initial Guess: When there are multiple minima, the one to whih the solutiononverges is inuened by your initial guess. To fully understand the range of possible solutions,you should try di�erent initial guesses and see what happens. If the solutions always onverge tothe same answer, then you an have some on�dene (but not full on�dene) that the solution isunique.(3): Iterative stability: If your initial guess is too far from the true solution, then theexistene of higher derivatives means that the omputed orretions an be too large and drive theiterative solution into instability. It is often a good idea to multiply the derived orretion fators(ÆA and ÆB above) by a fator F less than unity, for example F = 0:5 or 0.75. This inreases thenumber of iterations required for onvergene but often allows onvergene instead of produinginstability.(4): Convergene riteria: How do you know when the solution has onverged? One way:for eah iteration, alulate the unertainties in the derived oeÆients. If the unertainty exeedsthe orretion, then you are getting lose. An alternate way, whih I usually use: if the frationalorretion (e.g. ÆAA0 ) dereases below some threshold, say 1%, you're lose (some parameters, suhas angles, need a threshold that is absolute instead of frational). At this point, if you are usingF 6= 1, set F = 1, do a few more iterations, and you're done.(5): Numerial derivatives: Sometimes the equations of ondition are so ompliated thattaking the derivatives, as in obtaining equation 45, is a huge job and subjet to mistakes. So youan take numerial derivatives instead of analyti ones. Be areful, though; it's safest to use doublepreision and think a bit about numerial auray; take a look at NM's setion 5.7 on evaluating



{ 21 {numerial derivatives.(6): Canned nonlinear least squares: Pakages like IDL o�er anned nonlinear leastsquares routines. They are designed to work well for a wide range of di�erent problems. However,often you an do better by tailoring things (suh as the fator F and onvergene riteria above)for the spei� problem at hand. A good example is Gaussian �tting: IDL's �tting program doesn'tonverge for some input data, while for many of these ases the program that I wrote myself works�ne.When onvergene is slow or doesn't our beause your funtions are ompliated, you mightwish to try the Levenberg-Marquardt method (NM x15.5); IDL funtion LMFIT. This involvesinreasing the diagonal elements of the urvature matrix by a set of suitably hosen fators; whenyou get lose to the minimum, you reset these fators to unity. I have never had to resort to suhtatis. In my opinion, if you are in suh diÆulty that you need suh a tehnique you shouldlook at the problem with an eye to gaining an appreiation of the approximate loations of thetrue minima and beginning with your initial guess reasonably lose to it. Of ourse, this might bediÆult with a large number of parameters.(7): Be areful and LOOK at the solution before aepting it! These nonlinearproblems an produe surprising results, sometimes ompletely meaningless results. Don't rely onthem to be automati or foolproof!(8): Reformulate! Sometimes you an avoid all this by reformulating the problem. Thereare two ases: the harmless ase and the not-so-harmless ase.An example of the harmless ase is �tting for the phase � in the funtion y = os(� + �).This is de�nitely a nonlinear �t! But its easy to reformulate it in a linear �t using the usual trigidentities to write y = A os ��B sin �, where BA = tan�. Solve for (A;B) using linear least squares,alulate �, and propagate the unertainties.An example of the not-so-harmless ase is in NM's x15.4 example: �t for (A;B) with equationsof ondition ym = Ae�Bxm . They suggest linearizing by rewriting as log(ym) = C � Bxm, solvingfor (B;C), and deriving A after-the-fat. This is not-so-harmless beause you are applying anonlinear funtion to the observed values ym; thus the assoiated errors �meas;m are also a�eted.This means you have to do weighted �tting, whih is disussed in x9 below. Suppose that A = 1,your datapoints all have �meas;m = 0:05, and the observed ym ranges from 0.05 to 1. The datapointwith ym = 0:05 has a manageable �measm , but what is the orresponding value of �meas;m forlog ym = log 0:05? It's ill-de�ned and asymmetri about the entral value. Or even, God forbid,you have an observed ym that's negative??? Even for ym not near zero, you need to alulate new�meas;m by error propagation; in this ase, you need to reassign �(log y) = d log ydy �(y) = �(y)y . This isOK when ym is large enough so that the linear approximation is aurate, but if not the onvertednoise beomes nonGaussian.You should regard your datapoints as sarosant and never apply any nonlinear funtion to



{ 22 {them.9. CHI-SQUARE FITTING, AND WEIGHTED FITTING: DISCUSSIONIGNORING COVARIANCEIn least squares �tting the derived parameters minimize the sum of squares of residuals as inequation 13, whih we repeat heres2 = 1M �N M�1Xm=0(�m � �m)2 :Chi square �tting is similar exept for two di�erenes. One, we divide eah residual by its intrinsimeasurement error �meas;m; and two, we de�ne �2 as the sum�2 = M�1Xm=0 (�m � �m)2�2meas;m : (46a)Along with �2 goes the redued hi squared �2 = �2M�N�2 = 1M �N M�1Xm=0 (�m � �m)2�2meas;m : (46b)whih is more diretly analogous to the de�nition of s2.Chi-square �tting is very muh like our least-squares �tting exept that we divide eah data-point by its intrinsi measurement unertainty �meas;m. Thus, the redued Chi-square (b�2) is equalto the ratio of the variane of the datapoint residuals (�2) to the adopted intrinsi measurementvarianes (�2meas). So it should be obvious that in Chi-square �tting, you must know the measure-ment unertainties �meas of the individual data points beforehand. If you want to give the variousdatapoints weights based on something other than �meas, then that is just like Chi-square �ttingexept that you an adopt an arbitrary sale fator for the unertainties (setion 9.3).Chi-squared �tting treats unertainties of the derived parameters in a surprising way. Gettingthe oeÆient unertainties with hi-squared �tting is a triky business beause1. With the standard treatments, the errors in the derived parameters don't depend on theresiduals of the datapoints from the �t (!).2. The errors in the derived parameters an depend on their mutual ovarianes. This disussionrequires a separate setion, whih we provide below in x10.



{ 23 {In this setion we treat hi square �tting ignoring ovariane. We begin by illustrating the di�erenebetween least squares and hi square �tting by disussing the simplest hi-square �tting ase of aweighted mean; then we generalize to the multivariate hi square �tting ase.9.1. The weighted mean: the simplest hi-squared �tFirst, reall the formulas for an ordinary unweighted average in whih the value of eah pointis ym and the residual of eah point from the weighted mean is Æym:mean = P ymM (47a)s2 = P Æy2mM � 1 (47b)s2mean = s2M = P Æy2mM(M � 1) ; (47)s2mean is the variane of the mean and s2 is the variane of the datapoints around the mean. Reallthat in this ase the mean is the least squares �t to the data, so to use least squares jargon we analso desribe smean as the error in the derived oeÆient for this single-parameter least squares �t.Now for a weighted average in whih the weight of eah point is wmeas;m = 1�2meas;m = 1�2meas .Applying maximum likelihood, in a nonweighted average the quantity that is minimized is P Æy2m;in a weighted average the quantity minimized is �2 =P Æy2m�2meas;m =Pwmeas;mÆy2m. So you'd thinkthat the three equations orresponding to the above would beomemeanw = Pwmeas;mymPwmeas;m ! P ymM (48a)s2w = MM � 1Pwmeas;mÆy2mPwmeas;m ! P Æy2mM � 1 (48b)s2mean = s2wM = Pwmeas;mÆy2m(M � 1)Pwmeas;m ! P Æy2mM(M � 1) ; (48)where the arrow to the rightmost expressions use our assumption that �meas;m are all idential. Infat, however, the last of these equations is always written (e.g. BR equation 4.19; Taylor equation7.12) s2mean = 1Pwmeas;m ! �2measM ; (49)



{ 24 {Note the exruiatingly painful di�erene between equation 48 and equation 49: the formerdepends on the variane of the datapoint residuals s2w, as you'd think it should, while the latterdepends on only the adopted intrinsi measurement variane of the data �2meas, whih is hosen bythe guy doing the �t. If you do an unweighted average, and derive a ertain variane, and next doa weighted average in whih you hoose some value for �meas that happens to be wrong, the two�ts give di�erent results for s2mean. This is razy.To get around this diÆulty, we follow the proedure in BR equations 4.20 to 4.26. Thisintrodues an arbitrary multipliative fator for the weights and goes through the ML alulationto derive, instead of equation 49, the far superiors2mean = b�2Pwmeas;m = �2(M � 1)Pwmeas;m ! s2wM ; (50)whih is preisely the same as our intuitive guess, equation 48. The di�erene between equations50 and 49 is the numerator, whih ontains the redued hi-squared b�2; for this ase where all�meas;m are idential, b�2 = s2w�2meas . Here�2 =Xwmeas;mÆy2m =X Æy2m�2meas;m (51)9.2. The multivariate Chi-square �tIn this ase, Chi-square �tting is just like least-squares �tting exept for the following:1. In the matrix X� of equation 8a, eah row m is a di�erent measurement with a di�erentintrinsi variane �meas;m. You are generating a new matrix X, whih is idential to X�exept that eah row m is divided by �meas;m. This new matrix is the same as NR's designmatrix (Figure 15.4.1), whih they denote by A.2. Divide eah datapoint �m in equation 8b by �meas;m. You are generating a new matrix Y,whih is idential to Y� exept that eah row is divided by �meas. This new matrix is thesame as NR's vetor b.You've divided eah row, i.e. the equation of ondition for eah row m, by a ommon fator, so thesolution of the equation is unhanged.Now suppose that all datapoints have the same intrinsi measurement unertainty �meas. Inthe full matrix equation 9, whih now reads X � a = Y, you've divided both sides by the samequantity, �meas. Obviously, this doesn't hange the derived results for a. (If the �meas;m di�er fromeah other, then a is a�eted, of ourse.)



{ 25 {Let's summarize the relationships between the least-squares (�-subsripted) and �2 matriesfor this spei� ase where all �meas;m are idential:X = X��meas (52a)Y = Y��meas (52b)X � a = Y (52)[�℄ = XT �X = [��℄�2meas (52d)[�℄ = XT �Y = [��℄�meas (52e)[�℄�1 = �2meas[��℄�1 (52f)a = [�℄�1 � [�℄ (52g)When you alulate the predited values Y in equation 16, using X instead of X�, the valuesare divided by �meas. Beause Y is also divided by �meas, the residuals ÆY are as well. Thus whenyou alulate the square of the sum of the residuals as in equation 18 you get s2�2meas , whih is theredued hi-square, denoted as b�2 :b�2 = ÆYT � ÆYM �N = ÆYT� � ÆY��2meas(M �N) (53)and, obviously, you ould alulate the non-redued �2�2 = ÆYT � ÆY = ÆYT� � ÆY��2meas (54)This is preisely analogous to equation 51 for the weighted mean example above. The reduedhi-square b�2 is equal to the ordinary hi-square �2 exept that it is divided by the number ofdegrees of freedom, ordinarily denoted by �, whih is equal to (M �N).Finally, we have the analogy of equation 50 expressed in matrix form as in equation 19:



{ 26 {sa2 = b�2diagf[�℄�1g (55)This is in ontrast to the result quoted in textbooks (e.g. NM equation 15.4.15, BR equation 7.25),whih omits the b�2 fator: sa2 = diagf[�℄�1g (56)and, as in the standard textbook solution for the weighted mean ase, provides parameter errorsthat are independent of the datapoint residuals.Our result, equation 55, is very reasonable. Suppose, for example, that the least-squares �tmodel is perfet and the only deviations from the �tted urve result from measurement error.Then by neessity we have s2 � �2meas and b�2 � 1. (We write \�" instead of \=" beause di�erentexperiments produe somewhat di�erent values of s2 beause of statistial utuations; an averagegives �2 = hs2i). In this situation, though, equations 55 and 56 are idential.9.3. Persnikety Diatribe on Choosing �meas9.3.1. Choosing and orreting �data;mIn the previous setion, equation 56 taught us that|formally, at least|the variane in thederived �t parameter (or its unertainty, whih is the square root) depends only on the adoptedunertainties �meas;m and not on the atual variane of the datapoints.Are you bothered by the fat that the unertainty of the mean �x0 is independent of the datavalues? You should be: it is obvious that the data values a�et �mean.Formally, �x0 depends only on the adopted unertainties �meas;m, whih are hosen beforehandby you|you're supposed be suh a good experimentalist that you really do know the intrinsiunertainty in your measured values. Moreover, you are assuming that there are no other souresof unertainty|suh as \osmi satter" or an inappropriate model to whih you are �tting thedata. Suppose your adopted values of �meas;m are o� by a ommon sale fator, i.e. if �meas;adopted =f�meas;true. Then b�2 � f�2 instead of b�2 � 1. And to obtain the parameter errors from Æ�2, youmust �nd the o�set Æx suh that ��2 = f�2 � b�2.You an orret for this erroneous ommon fator f by dividing your adopted values of �meas;mby f . Of ourse, you don't know what this fator f is until you do the hi squared �t. Dividingthem by f is equivalent to multiplying them by b�. And, of ourse, the same as multiplying �2meas;mby b�2.To be kosher, after having run through the problem one with the adopted �meas;m, alulate



{ 27 {the b�2; multiply all �meas;m by b�; and redo the problem so that the new b�2 = 1. Then the derivedvariane �2x0 is also orret. You an obtain it either as the orresponding diagonal to the ovarianematrix (equations 55 and 56, whih are idential in this ase) or by �nding what departure fromx0 is neessary to make ��2 = 1. This redoing the �t may seem like unneessary work, but whenwe deal with multiparameter error estimation it's the best way to go to keep yourself from gettingonfused.3 9.3.2. Come bak to realityIn the ase b�2 � 1 the dispersion of the observed points � is equal to the intrinsi dispersionof the datapoints �meas and the mathematial model embodied in the least-squares �t is perfet.That, at least, is the theoretial onlusion. In pratie, however, your obtaining suh a low, goodvalue for b�2 might mean instead that you are using too large a value for �meas: you are asribingmore error to your datapoints than they really have, perhaps by not putting enough faith in yourinstrument. Spei�ally, if the datapoints really have intrinsi measurement dispersion �meas andyou speify that they have 2�meas when omputing (X;Y), then you'll �nd b�2 = 0:25.There are, in fat, two ways you an get arti�ially small values for b�2. One is by overestimatingyour adopted intrinsi values of �meas. The other is if your measurements are orrelated. Suppose,for example, that by mistake you inlude the same measurements several times in your �t. Thenyour measurements are no longer independent; in other words there is ovariane in your measuredpoints. Cowan inludes this possibility in his equation 7.4 and also example 7.6.1.High values of b�2 indiate that the model is not perfet and ould be improved by the use ofa di�erent model, suh as the addition of more parameters|or, alternatively, that you think yourequipment works better than it really does and you are asribing less error to your datapoints thanthey really have. And in this ase, using equation 56 instead of 55 is disastrous.Think about it.9.4. The ase in whih datapoints have di�erent dispersions, or di�erent weights:like a weighted averageHere the �meas;m are all di�erent. The mth row of the equation-of-ondition matrix X� andthe mth element of the data vetor Y� get divided by their orresponding �meas;m. The equationembodied in eah row of the matrix equation 9 remains unhanged, but the di�erent rows are3The ��2 = 1 ondition only applies for the single-variable ase. For more variables, the varianes need to make��2 > 1; for example, if you are �tting for two parameters, then the varianes make ��2 = 2:3, as we disussed inx10.



{ 28 {weighted di�erently with respet to eah other.Consider two measurements with intrinsi measurement unertainties (�meas;1; �meas;2); sup-pose �meas;1 < �meas;2. After being divided by their respetive �meas's, all of the numbers in row1 are larger than those in row 2. In all subsequent matrix operations, these larger numbers on-tribute more to all of the matrix-element produts and sums. Thus, the measurement with smallerunertainty has more inuene on the �nal result, as it should.Suppose that the above two measurements were taken under idential onditions exept thatmeasurement 1 reeived more integration time than measurement 2; we have �meas;1�meas;2 = � �1�2��1=2, sothe rows of X are weighted as �1=2. This means that during the omputation of [�℄ = XT �X, theself-produts of row 1 are weighted as �1. This means that eah datapoint is weighted as � , whihis exatly what you'd expet! Note that this is also exatly the same weighting sheme used in aweighted average, in whih the weights are proportional to � 1�meas�2. We onlude that weightingsheme of the �rst two steps in setion 9.2 agrees with ommon sense.Suppose you don't know the intrinsi measurement dispersion �meas, but you do know the rel-ative dispersion of the various measurements. For example, this would be the ase if the datapointswere taken under idential onditions exept for integration time; then �meas / ��1=2. In this ase,multiply eah row by its weight w / 1�meas and proeed as above.9.5. The expliit IDL for the weighted and hi square asesHere we give the expliit IDL ommands required to do hi squared �tting, as we did for leastsquares �tting in x5.2. First, de�ne the X and Y arrays as before in x5. However, here we needto weight the matries. Let us denote the weighted versions by XW and YW. Then eah row ofXW and element of YW are divided by the orresponding �meas. Let us de�neW as the diagonalmatrix4 whose elements are equal to 1�meas;m , i.e. wm = 1:�meas;mW = fltarr(M;M) (57a)W[indgen(M) � (M+ 1)℄ = � 1�meas;m � (57b)Note that wm is the square root of the weights wmeas;m that we disussed in x9.1. Spei�ally, theurrent weights wm are not those in the sense of the weighted average of x9.1; we use wm as a4W has M �M elements but only M numbers. If M is large and you are impating mahine memory, thenyou an save memory by: reformulating equations 58 and 64 to use loops; not keeping XW and X as separatematries; and using IDL's temporary funtion wherever possible. The relevant for loop is for mr= 0, m doxw[*,mr℄=w[mr℄*x[*,mr℄, et.



{ 29 {matter of onveniene only. Then XW =W ## X (58a)YW =W ## Y (58b)Optional omment: At this point you might wish to revert to Singular Value Deompositionmethod using IDL's SVDFIT funtion; see x14 for a ookbook. It is rare, but sometimes you willenounter a problem for whih the inversion ofXXW is unstable. In this ase, XXW##XXWI 6=I (I is the unit matrix). You an tell this with the invert funtion by alling it with the statuskeyword; if status 6= 0, you've got problems.All steps up to obtaining the unertainties follow exatly the same steps as in x5.2, whih werepeat here. In IDL we alulate the normal equation matries and denote the [�℄ in equation 11aby XXW: XXW = transpose(XW)##XW ; (59a)and we denote the [�℄ in equation 11b by XYW:XYW = transpose(XW)##YW : (59b)In IDL we take the inverse of [�℄ (same as XXW) byXXWI = invert(XXW) : (60)The least-square �tted quantities are in the matrix a (equation 12), whih we obtain in IDLwith a = XXWI ## XYW : (61)In IDL we denote the matrix of weighted predited values by YBARW, whih isYBARW = XW ## a : (62)and we an also de�ne the weighted residuals as



{ 30 {DELYW = YW �YBARW (63)The true (unweighted) predited values and residuals areYBAR = invert(W) ##XW ## a = X ## a : (64a)DELY = invert(W) ## (YW �YBARW) = Y �YBAR (64b)To alulate the hi square we want the weighted sum P Æw2my2m:hi sq = transpose(DELYW) ## DELYW : (65a)and the redued hi squarered hi sq = transpose(DELYW) ## DELYW=(M �N) : (65b)The full ovariane matrix is just XXWI and, orresponding to equation 30, the varianes of thederived oeÆients are the diagonal elements|unless the redued hi squared di�ers signi�antlyfrom unity, in whih ase you should seriously look at your assumed weights derived from �meas;mand/or the quality with whih the model �ts the data. That is,vard oÆial = XXWI[(M+ 1) � indgen(M)℄ (66a)or, better, vard realworld = red hi sq �XXWI[(M+ 1) � indgen(M)℄ (66b)Finally, the normalized ovariane matrix is of ourse independent of hi squared and is the sameas equation 33 nov = XXWI=sqrt(vard oÆial#vard oÆial) (67)You should, of ourse, always look at the residuals from the �t. But here you need to look atthe weighted residuals DELYW.



{ 31 {10. CHI-SQUARE FITTING, AND WEIGHTED FITTING: DISCUSSIONINCLUDING COVARIANCE10.1. Phenomenologial desriptionConsider the �rst two oeÆients in our above example, whih we disussed a bit above inx6.2. In this example, the �t gives y = A0 + A1t + A2t2, where the numerial values are given invetor form by equation 31. The oeÆient A0 is the y-interept and A1 is the slope. They havederived values A0 = 96� 34 and A1 = 4� 9.Remember what these unertainties really mean: in an in�nity of similar experiments, you'llobtain an in�nity of values of (A0; A1) that are normally distributed with dispersions (34,9). Looselyspeaking, this means that A0 lies between (96� 34 = 62) and (96 + 34 = 130) and A1 lies between�4:5 and 13:5.Suppose you are interested in knowing about A0 without regard to A1. By this we mean thatas A0 is varied from its optimum value of 96, �2 inreases from its minimum value. As we vary A0,if we allow A1 to take on whatever value it needs to for the purpose of minimizing �2, then this iswhat we mean by \knowing about A0 without regard to A1". For this ase, the unertainty of A0is indeed 34. Ditto for A1. In other words, equations 19, and 55 apply.However, if you are interested in knowing about both, you must inlude their ovariane. In ourexample, the large negative ovariane follows logially just from looking at a graph: if you �t somepoints, all of whih lie at positive t, then a more negative derived slope will raise the y-interept.Spei�ally, the large negative ovariane means that positive departures of A0 are assoiatedwith negative departures of A1. So even though the individual values ÆA0 = +34 and ÆA1 = +9are aeptable, you annot onlude that the pair of values (ÆA0; ÆA1) = (+34;+9) is aeptable,beause this pair has both positive. In ontrast, what is aeptable here would be something like(ÆA0; ÆA1) = (+34;�9).We stress that the aeptable ranges of values depend on what you are interested in. This issort of like the observer's inuene in quantum mehanis. If you are interested in A1 alone, thenyou an say A1 = 4� 9 and, in making this statement, you have to realize that, as A1 varies overthis range, A0 an vary over (formally, at least) the range (1! �1): you just don't give a damnwhat happens to A0 beause you're not interested. But the moment you beome interested andrestrit its possible range, that inuenes the possible range for A1, too.There is no simple relationship between the ovariane matrix elements and the aeptableranges. For two variables, the best way to express this is to onstrut the ellipses that de�nethe loi of onstant ��2 and present them on a graph with axes (Æa0; Æa1) as in BR Figure 11.2or NR Figure 14.5.4. For three variables, these ellipses beome ellipsoids; for four, they beomefour-dimensional volumes, et.



{ 32 {

Fig. 2.| Illustrating the meaning of variane and ovariane between (a1; a2) for our numerialexample. See text for disussion.We illustrate these onepts for the (a1; a2) parameters for our numerial example. We sub-trated 7.75 from all times so that the ovariane would be small enough to illustrate the di�erenebetween the tangents to the ellipses and the end points of the ellipses. Contours are alulated asdesribed in x10.5 and are at ��2 = 1 and 2.3. The dashed horizontal and vertial lines are atÆa = ��a.First onsider the pair of vertial lines, whih are drawn at Æa1 = ��a1 , where � is the squareroot of the variane of the parameters as desribed in equations 19, 30, 55, 56, and 66. If thedatapoints were projeted downward, i.e. if we take small strips Æa1 and integrate over Æa2, thepdf of Æa1 is Gaussian; ditto for the other oordinate. Thus, 68% of the points lie between thesedashed lines. This is what we mean by the phrase \being interested in knowing about a1 withoutregard to a2". If we allow a2 to vary so as to minimize �2 as we onsider departures Æa1, then thepdf of Æa1 has dispersion �a1 . Alternatively, we an say that in a large number of experiments, thepdf of Æa1 follows a hi squared pdf with one degree of freedom if we don't are what happens toÆa2. If, however, we are onerned about the pair, then we must look not at the projetion down



{ 33 {one axis or the other, but rather at the two-dimensional distribution. This is haraterized bythe tilted ellipses. Here, for a large number of experiments, the pair (a1; a2) follows a hi squaredistribution with 2 degrees of freedom (if we don't are about a0; if we do, it's 3 degrees of freedomand the ellipse beomes an ellipsoid, but this is very hard to plot!). For � = 2, 68:3% of the pointslie within ��2 = 2:3, where we have drawn the outer ontour in Figure 2. The points inside thisellipse are darker; 68:3% of the points lie within that ellipse.The best desription of the spei�s of alulating these ellipsoids is in BR x11.5 (Con�deneIntervals, Con�dene Levels for Multiparameter Fits). To desribe it, we'll talk spei�ally aboutour numerial example, whih has M = 4 measurements and N = 3 unknowns. The unknowns area = [a0; a1; a2℄. We'll �rst begin by disussing the ase of single parameter; then we'll generalize.10.2. Calulating the unertainties of a single parameterFirst, suppose we want to know the value �a0 without regard to the values of a1 and a2. Havingalready done the solution, we know the hi-square value of a0 so we onsider variations Æa0 aroundthis best value.Pik a value of Æa0 and redo the least squares solution for [a1; a2℄. This gives a new value for�2 whih is, of ourse, larger than the minimum value that was obtained with Æa0 = 0. Call thisdi�erene ��2Æa0 . Determine the dependene of ��2Æa0 upon Æa0 and �nd the value of Æa0 suh that��2Æa0 = 1. This is the desired result, namely the value �a0 without regard to the values of a1 anda2. This value is �2a0 = [�℄�100 , the same result quoted in equation 56.Consider now what you've done in this proess. For eah least squares �t you used a trial valueof Æa0. In speifying Æa0 you had exatly one degree of freedom beause you are �xing one and onlyone parameter. Having done this, you ould do a large number of experiments (or Monte Carlotrials) to determine the resultant distribution of ��2Æa0 . It should be lear that this distributionfollows a hi squared distribution with one degree of freedom (� = 1). So the unertainty �a0 isthat value for whih ��2Æa0 = 1. (The hi square �t for the other two parameters has M�2 degreesof freedom, but this is irrelevant beause|by hypothesis|you don't are what happens to thosevariables.) 10.3. Calulating the unertainties of two parameterSuppose we want to know the value (�a0 ; �a2) without regard to the value of a1. Now weonsider variations (Æa0; Æa2) around the best values (a0; a2).Pik values for (Æa0; Æa2) and redo the least squares solution for a1. This gives a new value for



{ 34 {�2 whih is, of ourse, larger than the minimum value that was obtained with (Æa0; Æa2) = 0. Callthis di�erene ��2(Æa0;Æa2). As above, this follows a hi square distribution, but now with � = 2.Determine the dependene of ��2(Æa0;Æa2) upon (Æa0; Æa2) and �nd the set of values of (Æa0; Æa2)suh that ��2(Æa0;Æa2) = 2:3. This is the desired result, namely the ellipse within whih the atualvalues (Æa0; Æa2) lie with a probability of 68:3%, without regard to the value of a1.These values an be de�ned in terms of the urvature matrix [�℄, as we disuss below.Consider now what you've done in this proess. For eah least squares �t you used trial valuesof (Æa0; Æa2). In speifying them you had exatly two degrees of freedom beause you are �xingtwo parameters. This distribution follows a hi squared distribution with two degree of freedom(� = 2). So the unertainty �a0 is that value for whih ��2Æa0 = 2:3, whih follows from theintegrated probability for the hi squared distribution for � = 2. (The hi square �t for the thirdparameter a1 has M � 1 degrees of freedom, but again this is irrelevant.)One an expand this disussion in the obvious way. Consider �nally. . .10.4. Calulating the unertainties of three parameterSuppose we want to know the values of all three parameters (or, generally, all N parameters).Then we pik trial values for all three. There is no least squares �t for the remaining parameters,beause there are none. For eah ombination of the three (or N) parameters we obtain ��a, whihde�nes a 3- (or N -) dimensional ellipsoid. This follows a hi squared distribution with � = 3 (orN). We �nd the (hyper)surfae suh that ��a is that value within whih the integrated probabilityis 68:3%. This de�nes the (hyper)surfae of �a.10.5. Doing these alulations the easy wayThe obvious way to do the alulations desribed above is to set up a grid of values in theparameters of interest (Æan); perform the hi squared �t on the remaining variables, keeping trakof the resulting grid of �2; and plot the results in terms of a ontour plot (for two parameters ofinterest) or higher dimensions.There's an easier way whih is appliable unless you are doing a nonlinear �t and the parametererrors are large. The urvature matrix ([�℄ of equation 52d, the same as XXW) ontains the matrixof the seond derivatives of �2 with respet to all pairwise ombinations of Æan, evaluated at theminimum �2; it's known as the urvature matrix for this reason. Clearly, as long as the Taylorexpansion is good we an write ��2a = ÆaT � [�℄ � Æa (68)



{ 35 {Knowing the urvature matrix, we don't have to re-do the �ts as we desribed above. Rather, wean use the already-known matrix elements. Use the following proedure [see NM x15.6 (ProbabilityDistribution of Parameters in the Normal Case)℄. Follow the steps1. Deide whih set of parameters you are interested in; all this number Ni and denote theirvetor by ai. Here we use the above example and onsider Ni = 2 and ai = [a0; a2℄.2. From the N � N ovariane matrix [�℄�1, extrat the rows and olumns orresponding tothe Ni parameters and form a new Ni �Ni ovariane matrix [�℄�1i ; in our ase the originalovariane matrix is[�℄�1 = XXI = 264 1156:8125 �303:000 18:4375�303:000 81:000 �5:00018:4375 �5:000 0:31250 375 (69a)and it beomes [�℄�1i = XXI = " 1156:8125 18:437518:4375 0:31250 # : (69b)3. Invert this new ovariane matrix to form a new urvature matrix [�℄i. The elements di�erfrom the those in the original urvature matrix.4. As usual, we have ��2ai = ÆaTi � [�℄i � Æai (70)so �nd the lous of ai suh that the integrated probability of ��ai for � = Ni ontains 68:3%of the spae; e.g. for � = 2 this is ��ai = 2:3.You may well wonder why, in steps 2 and 3, you need to derive a new urvature matrix from theextrated elements of the original ovariane matrix. Why not just use the extrated elements ofthe original urvature matrix? To understand this, read the NM's disussion surrounding equation(15.6.2). Good luk. 10.6. Important omments about unertaintiesHaving said all the above, we o�er the following important Comments:



{ 36 {� The easiest way to alulate these (hyper)surfaes is to set up a grid in Ni-dimensional spaeof trial values for Æai and use a ontour plot or volume plot pakage to plot the loi of onstant��2ai .� The proedure desribed in x10.5 works well for linear �ts, or nonlinear �ts in whih the �aare small so that ��2 is well-approximated by the seond derivative urvature matrix. Thisis not neessarily the ase; an example is shown in BR Figure 11.2. Here, the higher-orderurvature terms are important and it's better to atually redo the �t for the grid of trialvalues of ai as desribed above in x10.2, 10.3, and 10.4.� The variane (i.e., unertainty squared) of the derived parameters a depends only on theelements in the ovariane matrix [�℄�1. These, in turn, depend only on the urvature matrix[�℄. These, in turn, depend only on X. This matrix X is the matrix of the quantities thatare known exatly. For example, we began with the example in whih the elements of X werethe times at whih the measurements were taken.Generally, then, the urvature and ovariane matrix elements depend on the loations of thedatapoints (the ensemble of tm in equation 1) but not on the measured values (the ensembleof �m in equation 1). And on your adopted values for �meas;m. Beause of this. . .� Think before making your measurements about the ovariane matrix and how to minimizethe o�-diagonal elements. By taking measurements at well-hosen times, or well-hosen valuesof the independent variable xm whatever it is, you an really optimize the auray-to-e�ortratio! For example, in our numerial example if you an get a few measurements at negativetimes you'll e�orts will be repaid in terms of muh better auray for the y-interept.11. REJECTING BAD DATAPOINTS II.: STETSON'S METHOD PLUSCHAUVENET'S CRITERIONChauvenet's riterion is an on-o� deal: either you inlude the datapoint or you don't. Thismakes sense from a philosophial point of view: either a datapoint is good or not, so you shouldeither inlude it or exlude it.However, when doing a nonlinear �t this presents a problem. As you iterate, the solutionhanges, and a given datapoint an hange from being \bad" to \good". Or vie-versa. You animagine being in a situation in whih the iteration osillates between two solutions, one inluding apartiular datapoint and the other exluding it; the solution never onverges, it just keeps hasingits tail.Enter Stetson's beautiful tehnique5. Stetson reasons that we shouldn't have an on-o� riterion.Rather, it should relieve a datapoint of its inuene adiabatially: as its residual gets larger and5Stetson is one of those anomalies, a true expert on �tting. He invented many of the stellar photometry routines



{ 37 {larger, its weight gets smaller and smaller. With this, in nonlinear �tting all datapoints are alwaysinluded and their weights automatially adjust as the �t parameters home into their orret values.And you an't get into the hasing-tail syndrome that an happen with the strit on-o� inlusion.11.1. Stetson's sliding weightStetson reommends using a sliding weight. To explain this, we review the ML onept of hisquare �tting. We write equations for the ase of a single parameter to keep things simple, but itworks for multiparameter �ts too. In hi square �tting, we de�ne hi square as�2 = M�1Xm=0 (ym � af(xm))2�2m (71a)and we minimize �2 by setting its derivative with respet to eah parameter a equal to zero:d�2da = �2M�1Xm=0 f(xm)�ym�2m (71b)Here �ym = (ym � af(xm)). This gives M�1Xm=0 f(x)�ym�2m = 0 (71)Now we wish to modify this equation by introduing a weight w(j�ymj) that makes datapointswith large j�ymj ontribute less, so it reads like this:M�1Xm=0 w(j�ymj)f(xm)�ym�2m = 0 (72)It's lear that we need the following properties for w(�ym):1. w(�ym) = w(j�ymj), meaning simply that it should depend on the absolute value of the residualand not bias the solution one way or the other.2. w(j�ymj) ! 1 as j�ymj ! 0, meaning that datapoints with small residuals ontribute theirfull weight.used in daophote, all of whih use least squares tehniques. He provides a lively, engaging disussion of manyfasinating and instrutive aspets in his website: http://nedwww.ipa.alteh.edu/level15/Stetson/Stetson4.html.



{ 38 {3. w(j�ymj) ! 0 as j�ymj ! 1, meaning that datapoints with large residuals ontribute nothing.Stetson reommends w(j�ymj) = 11 + � j�yj�� �� (73)This funtion w(j�ymj) has the desired properties. Also, for all � it equals 0.5 for j�ymj = ��. As� ! 1 the uto� gets steeper and steeper, so in this limit it beomes equivalent to a ompleteuto� for j�ymj > ��.Stetson reommends � = 2 to 2.5, � = 2 to 4 on the basis of years of experiene. Stetson isa true expert and we should take his advie seriously; he provides a vibrant disussion to justifythese hoies in real life, inluding an interesting set of numerial experiments.However, for large M I see a problem with the hoie � = 2 to 2.5. For large �, for whih theuto� is sharp, it seems to me that the uto� should dupliate Chauvenet's riterion. Referring toequation 42, this ours by setting � = erf�1�1� 12M� (74)and I reommend making this hange, at least for problems having reasonably large M ; this makes� larger than Stetson's hoie. I'm more of a purist than Stetson, probably beause I'm a radioastronomer and often �t thousands of spetral data datapoints that are, indeed, haraterizedmainly by Gaussian statistis. Stetson is an optial astronomer and probably sees a lot moredepartures from things like osmi rays. Nevertheless, in a CCD image with millions of pixels, ofwhih only a fration are haraterized by nonGaussian problems suh as osmi ray hits, it seemsto me only reasonable to inrease � above Stetson's reommended values by using equation 74.11.2. Implementation of the weight in our matrix equationsClearly, implementing Stetson's method requires a weighted �t, so you have to use the hisquared tehnique disussed in x9.5. There equation 57 de�nes a matrix of weights (whih isdiagonal) in whih Wm;m = 1�m (75)Comparing this with equation 71, it's lear what to do: we modify this equation to read



{ 39 {Wm;m = w1=2m�m (76)where the weight wm is de�ned in equation 73.Now you must not forget here that the solution depends on the weights wm, whih in turndepend on the solution. Thus when you implement this tehnique you must iterate until the solutiononverges by not hanging.12. MEDIAN, INSTEAD OF LEAST SQUARE, FITTINGLeast square �tting minimizes the square of the residuals. This means that datapoints havinglarge residuals ontribute importantly to the �t. If these datapoints are really bad, you've gotproblems; this is why it's important to get rid of outliers! Sometimes you're faed with a set ofdatapoints that look bimodal: most datapoints have a Gaussian-like pdf, and many lie outside themain distribution; sometimes it's diÆult to deide \where to draw the line". Or you might havenonGaussian statistis. In these ases, using least squares is not a great idea beause least squaresgives greatest weight to the datapoints having the largest residuals, but you don't know what theresiduals are until after you've done the �t|and the �t is inuened, and maybe even dominated,by the outliers!In these ases most astronomers use the median6. The median is the solution for whih thereas many positive as negative residuals, irrespetive of how big they are. As long as the disrepantdatapoints are symmetrially distributed with respet to sign, the median works well. In fat,for any pdf that is symmetrially distributed with respet to sign, the median is a good solutionbeause it doesn't depend at all on the details of the pdf. If the statistis are nonGaussian thenthe error of the median is somewhat greater than that of the mean (by a fator of something like�2 ; I forget, but it's straightforward to alulate) but, when the datapoints are ontaminated bynonGaussian statistis, this is often less than the error introdued by the least squares tehnique.12.1. The median and the double-sided exponential pdfIn fat, there is a spei� pdf for whih the median is the theoretially orret solution: thedouble-sided exponential. Here the pdf of the measured datapoints isp(�ym) = e�j�ymj=�m2�m (77)6Stetson reommends, instead of the median, his sliding weight tehnique. You should read his website



{ 40 {where, again, �ym = (ym�af(xm)). For this, the logarithm of the likelihood funtion is (we exludethe term involving log�M�1m=0 1�m for simpliity)L(�ym) = log(L(�ym)) = �M�1Xm=0 � jym � af(xm))j�m � (78a)The absolute value signs are horrible to deal with, so we rewrite this asL(�ym)) = X�ym>0 ym � af(xm)�m � X�ym<0 ym � af(xm)�m (78b)Now we take the derivative of L with respet to a and set it equal to zero to �nd the maximum.This gives dLda = X�y>0 f(xm)�m � X�y<0 f(xm)�m = 0 (79)Amazing|neither �ym nor a appears!Consider �rst the ase f(xm) = 1; this is like an average. If all �m are idential, this says: theproper solution is the median, for whih half the datapoints have positive residuals! More generally,we have to de�ne a generalized median where eah datapoint is weighted by its f(xm)�m . Can youshow that the median of the residuals is zero?sss12.2. Doing a \hi square" �t for the double-sided exponentialWe an use our standard hi square tehnique to do a median �t by adjusting the weights.To see how, we rewrite equation 72 here; this is the equation that has Stetson's additional weightw(j�ymj) M�1Xm=0 w(j�ymj)f(xm)�ym�2m = 0 (80)We need to devise weight w(j�ymj) so that this equation looks like equation 79. By inspetion, werequire wm = �mj�ymj (81)so that in equations 72 and 80 we have



{ 41 {wm�2m = 1�mj�ymj (82)and in weight matrix W of equations 57 and 76 we use the square root of the above quantity.This works for multivariate �ts using any set of funtions f(xm). However, we aution againthat the weights wm depend on the parameters a and the parameters depend on the weights, soyou must iterate. In the experiments I've performed the iteration is slow (but sure). And at theend you will ertainly �nd that the redued hi square b�2 will be nowhere near unity; nevertheless,you should use errors alulated �2, not foring b�2 to equal unity (so use equation 56 instead of55). [THIS STATEMENT IS ALMOST CERTAINLY CORRECT BUT NEEDS TOBE CHECKED WITH NUMERICAL EXPERIMENTS. . . ℄.12.3. IDL's resoures for median �ttingThere are two ases for whih IDL provides median �tting. One is IDL's median funtion,whih takes the median of a bunh of datapoints. It's great if there's no funtional dependene onxm. The other is lad�t (\least absolute deviation �t"). These are quik and you don't have todo any iterations. And they give a slightly more aurate answer than the above tehnique; this isbeause IDL is areful about the exat de�nition of the median, e.g. when there is an even numberof datapoints.However, with IDL's routines there are no errors given; there is no possibility for di�ering �m;there is no ovariane matrix. And, of ourse, you an't �t anything more ompliated than astraight line.13. FITTING WHEN ALL VARIABLES HAVE UNCERTAINTIESWe've mentioned that one of the essential assumptions of least squares is that the independentvariables are known with high preision and the errors our only in the measured data. Supposeyou're �tting two variables, t and �, as in equation 1. This essential assumption means that t isknown with high preision and all the unertainty is in �, and you are minimizing the squares of theresiduals in the �-diretion only. If both variables have unertainties, then you have to be arefulbeause the essential assumption is violated. If you go ahead with a standard least squares �t whenthere are errors in both oordinates, the slope will be systematially too small, as we disuss brieybelow.Thanks to Stetson, the ML formulation of this problem is straightforward. Nevertheless, as faras I know the proper formulation is rather reent; Stetson's treatment is the �rst I've seen. Beforereviewing Stetson's formulation, I want to warn you about some inorret formulations:



{ 42 {1. Taylor x8.4 disusses the ase inorretly, arguing that you an aount for x-variane �2xm byinreasing the y-variane by the usual error propagation, i.e. de�ne an equivalent y-variane�2ym(equiv) = [�2ym + (a1�xm)2℄, where a1 is the slope. As we mentioned, this proedure leadsto a slope that is systematially too small.2. Isobe et al (1990, ApJ 364, 104) disuss the ase inorretly. Look in partiular at theirSetion V, where they make 5 numbered reommendations. Two of these are inorret:(a) Number 3 says, in essene, that if you have measurement errors in y but not in x, andwant to predit x from y in some future dataset, that you should least squares �t the xvalues (whih have no errors) to the y. This is at wrong. Again, it leads to a slope thatis systematially too small. The proper proedure is to �t y to x in the standard way,whih is onsistent with the ML formulation and gives the right answer; then use theresulting parameters, whose errors you know about, to predit x from y in the future.(b) Number 4 says that if both x and y have errors, and your main fous is �nding the trueslope, you should use their \bisetor" method. I won't explain this beause this oneptis wrong.Stetson has a beautiful disussion of the problem, whih is obviously orret|both beause itmakes sense and beause numerial experiments show that the derived parameters don't dependon whether you onsider x or y the independent variable. With his tehnique you are not restritedto �tting a straight line (a one-degree polynomial). NM x15.3 provides another method, whih ismore ompliated and is restrited to a straight line. Here we review Stetson's method.13.1. A preliminary: Why the slope is systematially smallWhy is the derived slope systematially too small if you use the standard least squares tehniquewhen both variables have errors? To see this, take a look bak at equation 5, where we expliitlywrite the normal equations for �tting a straight line of the form Asm + Btm = �m. To fous thedisussion and make it easy, replae that problem with a single-parameter solution for only theslope B, and use the usual variables (x; y) in plae of (t; �). Then we are �tting the set of Mequations Bxm = ym (83a)the set of two normal equations beomes just the single equationB[x2℄ = [xy℄ (83b)or, writing out the sums expliitly,



{ 43 {B = PM�1m=0 x�mymPM�1m=0 x�2m (83)Here we use the star to designate the perfetly-known independent variable x�m. It is importantto realize that the xm that appear in this equation are the perfetly-known ones x�m; this is afundamental tenet of least squares �tting, whih omes from the onept and priniple of maximumlikelihood ML.Beause B is de�ned by the x�m and we are asking what happens when we use the imperfetlyknown xm instead, let us redue the problem to the essene and imagine that ym is perfetly known,i.e. ym = y�m; and that x�m = xm � Æxm (84)where Æxm is the observational error in point m. If we do standard least squares on this situation,as reommended by Taylor and Isobe et al, then we (inorretly) rewrite equation 83 to readB = PM�1m=0 xmymPM�1m=0 x2m (85a)that is, using xm instead of x�m (beause we don't know what x�m is!). Substituting equation 84,and remembering that ym = y�m = Bx�m, we haveB = PM�1m=0 x�m(x�m + Æxm)PM�1m=0 (x�2m + 2x�mÆxm + Æx2m) (85b)Now all terms having Æxm sum to zero beause the errors are distributed symmetrially aroundzero. But the denominator ontains Æx2m. The denominator is irrevoably inreased by this term,whih dereases the derived value of B from its true value. Yes, this is only a seond-order e�et,but it matters|after all, �2 is a seond-order quantity! Try some numerial experiments!13.2. Stetson's method13.2.1. PhilosophyTo make things lear, we disuss the ase of a straight line. Thus we assumey� = a0 + a1x� (86)



{ 44 {where the � indiates the true quantity without errors. The measured points di�er from the trueones: Æxm = xm � x�m ; Æym = ym � y�m (87)and we de�ne, as usual, the apparent residual in ym as�ym = ym � a1xm (88)Note that this di�ers from the true residual in ym, whih is Æym; the apparent residual �ym assumesthat xm has no error.

Fig. 3.| Illustrating the disussion of �tting when both variables have errors. Here, as usual inthis doument, di�erenes are \measured minus true", e.g. �ym = ym � y�m, et.; in the �gure,�ym < 0, Æym < 0, Æxm > 0.Look at Figure 3. There (xm; ym) is a measured point. The ellipse entered on it has (x; y)



{ 45 {axial ratio (�x; �y) and traes out a the lous where the point's ontribution to �2 is onstant; allthis ontribution �2m. The straight line is the �tted straight line, assumed to be perfetly orret,i.e. the line given by equation 86. The most probable plae where the observed point (xm; ym)would lie if it had no errors is (x�m; y�m); it lies on the smallest ellipse entered on (xm; ym), aspitured. This is the ellipse having the smallest possible �2m. The true di�erenes between theobserved and most probable points are (Æxm; Æym) given by equation 87 above, where these aremeasured from the enter to the starred point on the ellipse.It's easy to alulate (Æxm; Æym) in terms of �ym. These are the distanes from the measuredto the starred point. We realize that the starred point must satisfy two riteria:1. The straight line �t is tangent to the ellipse, so the slopes muh math. The ellipse hasequation Æx2m�2xm + Æy2m�2ym = onst = �2m (89)so the slope is dÆymdÆxm = ��2ym�2xm ÆxmÆym (90)and this, evaluated at (x�m; y�m) must equal a1.2. The atual values must math. Rather than solve for these, we an solve in terms of �ymdiretly.From the �gure it's lear that �ym = Æym � a1Æxm (91)so ombining equations 90 and 91 we getÆxm = ��yma11 + �2yma21�2xm (92a)and Æym = �ym1 + a21�2xm�2ym (92b)



{ 46 {You ould minimize �2 by brute fore. You would begin with the standard least squaressolution to get an estimate of the orret parameter values. Then you'd make up a grid in the(a0; a1) plane to �nd the loation of the minimum in �2, whih is�2 = M�1Xm=0 �2m = M�1Xm=0 Æx2m�2xm + Æy2m�2ym (93)whih gives the parameters (a0; a1). The quantities (Æx2m; Æy2m) are given by equation 92. The errorsare given by the usual ��2 ontours as disussed in x10.13.2.2. Diret solutionUsing the priniple of maximum likelihood (ME), we �nd the minimum �2 by taking thederivative of �2 with respet to eah parameter an and setting the derivative equal to zero. Toillustrate, we work this through for the slope. We are �tting for the slope in the equationym = axm (94)for whih �2 is given by equation 93. Express (Æxm; Æym) in terms of �ym, as in equations 92, andrewrite equation 93 to read�2 = M�1Xm=0 (ym � axm)2a2�2xm + �2ym = M�1Xm=0 �y2ma2�2xm + �2ym (95)Di�erentiate with respet to a and set equal to zero. After anelling extraneous fators, and usingequation 92a, we get M�1Xm=0 (ym � axm)(xm � Æxm)a2�2xm + �2ym = 0 (96)The term axm(xm�Æxm) de�nes the relevant diagonal matrix element in the urvature matrix,and orresponds to the lower right element (B[t2℄) in equation 5; the term ym(xm�Æxm) orrespondsto [t�℄ in that equation. In other words, if we had standard least squares and no errors in x, equation96 would read M�1Xm=0 (ym � axm)(xm)�2ym = 0 (97)



{ 47 {Looking at these and, also, referring bak to x3, it's easy to see how to generalize this and writeit in matrix notation. First, note that eah datapoint has a net total error given by the denominatorof equation 95, and in general|i.e., when we �t something other than a straight line|the slope avaries from point to point so that, even if the (�x; �y) are onstant, the net total error is not. Thismeans you need to use the weighted �t tehnique of x9.2 and 9.5 with�2meas;m = (a2m�2xm + �2ym) (98a)where the loal slope am is evaluated at (xm � Æxm)am = �y�x ����(xm�Æxm);(ym�Æym) (98b)We repeat all this to be perfetly expliit:1. You are �tting X � a = Y (99)In X, eah olumn n ontains a di�erent funtion of x alled fn(x). The entry for (ol; row) =(n;m) = fn(xm).2. In our normal equations we have the fator (xm � Æxm) instead of xm, whih means that informing the matrix normal equations we need to de�ne a new matrixX MOD = X� ÆX (100)where the elements of ÆX are evaluated using equation 92. That is, ÆXm;n = fn(xm � Æxm).[Here we use IDL's onvention (m;n) instead of the onventional mathematial one (n;m).℄If it's a straight-line �t, the slope is the same everywhere. If it's a more general �t, the slopeis the loal slope derived using equation 98; this slope an be alulated either analytiallyor numerially.3. De�ne the weighted versions of X, X MOD, and YXW =W ## X =W �X (101a)X MODW =W ## X MOD =W �X MOD (101b)YW =W ## Y =W �Y (101)where Wm;m = 1�meas;m (from equation 98a).



{ 48 {4. Then the matrix normal equation is[� mod℄�a = [� mod℄ (102)where [� mod℄ = X MODWT �X (103a)[� mod℄ = X MODWT �Y (103b)But, you ask, how an we form the matrix ÆX if we don't know the slope a? The answer:iterate. That is,1. Solve ym = a0 + a1xm using standard least squares or hi square; or use any other tehniqueto get an initial guess for the parameters a. Calulate the loal slopes using (xm; ym).2. Determine the �ym and alulate Æxm using equation 92a.3. Calulate the matries X MODW, [� mod℄, and [� mod℄ as above.4. Solve for new parameters a.5. Calulate the loal slopes using (xm � Æxm; ym � Æym).6. Loop bak and repeat steps 2, 3, 4,and 5 until onvergene.7. After onvergene, alulate the unertainties, as usual, by the equivalent of equation 55, i.e.s2a = b�2diagf[� mod℄g (104)13.3. Commentary on Stetson's solution13.3.1. This solution is general and makes senseThis solution makes sense. Consider standard least squares in whih �xm ! 0; here we shouldrevert to standard least squares. Also, when the slope is zero it's like taking an average of ym, soit shouldn't matter what �x is. Equation 92a satis�es these expetations beause the denominator!1: the ellipse beomes tall and thin so Æxm ! 0.Similarly, if �ym ! 0 or a ! 1 then the ellipse beomes very short and fat: Æxm ! �yma1 ,meaning that all of the orretion goes to Æxm. This is equivalent to y being the independent



{ 49 {variable, and you an solve it this way, but of ourse it is muh more eÆient to use standard leastsquares with y atually being the independent variable.Finally, there's no reason why we had to use a straight-line �t. It ould have been any funtion;in an arbitrary ase, we replae the slope by the loal slope, namely the derivative of the funtionevaluated at the urrent value xm + Æxm. So this tehnique is general. In his website, Stetsonprovides an example of �tting a irle to points in (x; y)!13.3.2. Yet another point I do not understandFirst, I found Stetson's website disussion harming and stimulating. However, I found it verydiÆult to glean just exatly how he suggests solving the problem! His formulation involves usingdi�erenes from one iteration to the next and di�ers from the one I've given above.Seond, Stetson spends several pages disussing the importane of the di�erene between twoquantities. One is �ym. The other is� = �ÆFm = �F�x ����x�;y� Æxm + �F�y ����x�;y� Æym (105)where F (x; y) = a0 + a1x� y (106)You ould put ontours of onstant F on Figure 3. The zero ontour is where F (x�; y�) = 0,whih is what you get with (Æxm; Æym) = (0; 0). This zero-level ontour is the straight line solutionof the problem. Moving away from zero gives ontours of onstant �; these are o�set from the zeroontour and have the same shape.Stetson emphasizes that the proper thing to do is use �m in plae of �ym in equation 92a.However, after srathing my head for quite a while, I onlude that in fat these two quantitiesare always equal, i.e. �m = �ym. I do not understand Stetson's emphasis on this point.13.4. Generalization to Multivariate CaseThe subsetions above deal with the simple ase of two variables. It is straightforward togeneralize to the multivariate ase. As in setion 13.2.1, suppose you are �tting the multivariateanalogy of equation 86 z� = a0 + a1x�+ a2y�+ : : : (107a)



{ 50 {whih is equivalent to dz� = a1dx�+ a2dy�+ : : : (107b)Then the disussion follows the same trak exept that here, instead of the surfae of �2 being anellipse on a two-dimensional spae, it's an ellipsoid in a three-dimensinal spae. And for the ase ofN variables it's an N -dimensional ellipsoid. We an't draw this, but the ideas embodied in Figure3 remain: we math the slopes and values to �nd the smallest ellipse, i.e. the smallest �2, for eahmeasured point. Equations 90 and 91 beomedÆzm = ��2zm�2xm ÆxmÆzm dÆxm � �2zm�2ym ÆymÆzm dÆym + : : : (108)and �zm = Æzm � a1Æxm � a2Æym + : : : (109)Comparing equations 107b and 109, we see thata1 = ��2zm�2xm ÆxmÆzm ! Æzm = � �2zma1�2xm Æxm (110a)a2 = ��2zm�2ym ÆymÆzm ! Æzm = � �2zma2�2ym Æym (110b)... (110)There are N suh equations. We then generate N equations that express �zm in terms ofÆxm; Æym; : : : by suessively substituting for Æzm the right-hand-side versions of equations 110into equation 109: �zm = �a1 � �2zm(a1�xm)2 + 1� Æxm � a2Æym � : : : (111a)�zm = �a1Æxm � a2 � �2zm(a2�ym)2 + 1� Æym � : : : (111b)... (111)



{ 51 {or, in matrix form,26664 �a1 h �2zm(a1�xm )2 + 1i �a2 : : :�a1 �a2 h �2zm(a2�ym )2 + 1i : : :... ... . . . 37775264 ÆxmÆym... 375 = 264 �zm�zm... 375 (112a)or, symbolially, Am � Æm =�zm (112b)so that, as in equation 92a, we obtain (Æxm; Æym; : : :) in terms of �zm fromÆm = A�1m ��zm (113)Finally, as in equations 93 and 95, we ompute �2 from�2 = M�1Xm=0 (zm � a1xm � a2ym � : : :)2�2zm + a21�2xm + a22�2ym + : : : = M�1Xm=0 �z2m�2zm + a21�2xm + a22�2ym + : : : (114)and equation 98a beomes �2meas;m = �2zm + a21�2xm + a22�2ym + : : : (115)whih is used, as above, to alulate Wm;m = 1�meas;m .14. USING SINGULAR VALUE DECOMPOSITION (SVD) IN IDLOasionally, a normal-equation matrix [�℄ = XX = XXW is suÆiently ill-posed that in-verting it using standard matrix inversion doesn't work. In its invert funtion, IDL even providesa keyword alled status to hek on this (although I �nd that it is not perfetly reliable; the bestindiator of reliability is to hek that the matrix produt XX##XXI = I, the unitary matrix).In these ases, Singular Value Deomposition (SVD) omes to the resue. For a disussion of thedetails of SVD, see NM x15.4.You don't need to read the following material to use the SVD tehnique in IDL. Rather, youan just use IDL's doumentation for svd�t. The only problem is that you need to �t to a funtion



{ 52 {that you de�ne in an IDL funtion. If you are �tting to tabular values, or to a funtion that is noteasily expressed analytially, then you an still use svd�t: read on.First let us briey desribe the tehnique7. We are �ttingym = N�1Xn=0 anfn(xm) ; (116)The matrix element Xnm = fn(xm), i.e. it ontains the values of fn evaluated at xm. The idea is toreplae the set of funtions fn(xm) with the set of matrix elements Xnm = fn(m), i.e. to replae theindependent variable xm by its index m and the funtion fn(xm) by its matrix-element ounterpartXnm.We will denote the X matrix by the symbol X SVD beause we need to put it in a ommonblok; however, remember that X SVD = X. You populate this matrix yourself, Often with valuesthat are not easily expressible analytially. Here's the ookbook:14.0.1. Step 0: Introdue a ommon blok that will ontain the X SVD matrixLet's all this ommon blok svdinput. The relevant IDL ommand is ommon svdin-put,x svd. The only ath is that, in IDL, you an't use a variable before de�ning a ommonblok that ontains it. So it is probably best to exit IDL and re-enter it, de�ning this ommonblok as the �rst statement.14.0.2. Step 1: De�ne the funtion svdfnThis funtion referenes the x svd matrix, whih you've put in ommon. This name of thisfuntion is an input parameter to svd�t. It must have two input parameters, xm and N , thenumber of parameters to �t; and it must provide the N values of the parameters' funtions fn(xm)for eah measurement loation xm. So we replae the set of xm by the the indies m and fn(xm)by the set of X SVD�;m, where the * means all N values.funtion svdfn, dataindex, Nommon svdinputreturn, x_svd[ *, dataindex℄end7It is a pleasure to thank Jason Wright for telling me about this tehnique.



{ 53 {14.0.3. Step 2: Populate the X SVD matrix and Y vetor almost as beforeHere you populate the X SVD and Y matries just as before in x5.2 and 9.5, with somesmall di�erenes. One, the measurement unertainties are an independent input to svd�t so wedon't reate the weighted versions of X SVD and Y. Two, we must make Y a row vetor insteadof a olumn vetor. Here we repeat all the IDL ommands as in x9.5, but without the verbalommentary, and inlude this slight modi�ation for Y. We use the numbers in the numerialexample of x5.2 to be absolutely unambiguous about what to do. In this example, the number ofunknowns N = 3 and the number of measurements M = 4.X SVD = 26664 1 5 251 7 491 9 811 11 121 37775 (117a)
Y = [142; 168; 211; 251℄ : (117b)and we de�ne ME, the vetor of measurement errors, to beME = [5:; 3:; 7:; 4:℄ : (117)where we have invented a four arbitrary values for illustrative purposes. You an, of ourse, useunity for all of the elements of ME; also, you an all svd�t without speifying any measurementerrors, in whih ase it beomes a standard least squares �t. In the following we assume that youare doing a hi-square �t, i.e. following x9.5.14.0.4. Step 3: Call svd�tNow in in x9.5 we replae 59 to 67 (and in x5.2, equation 23 to 30) by the following:dataindex = indgen(M) (118a)where M , we remind you, is the number of measurements; anda = svd�t(dataindex;Y;N;measure errors =ME; funtion name =0 svdfn0;



{ 54 {y�t = ybar; hisq = hi sq ;variane = vard oÆial; sigma = sigd oÆial;ovar = XXWI; singular = singular) (118b)nov = XXWI=sqrt(vard oÆial#vard oÆial) (118)If you are doing least squares �tting and setting all elements of ME equal to unity, then of oursehisq is the same as the sample variane s2.This tehnique is simpler beause it requires fewer IDL statements. However, you have to de�nethe additional funtion and, if you are using the X SVD matrix, the ommon blok, whih mustbe done at the beginning of the IDL session. This tehnique is good in those rare instanes whereinversion of the urvature matrix fails, but it works for all ases, of ourse. NM x15.4 extols itsadvantages and mentions its one disadvantage, whih is requiring more memory (and, I'm guessing,more omputer time); they reommend that you use it always. I got along without it for 40 years,perhaps beause I never did any truly hallenging problems, but I'll probably hange my defaulttehnique to this. Note, however, you an't use svd�t for errors in both variables disussed inx13.2.2.15. BRUTE FORCE CHI SQUARED AND THE CURVATURE MATRIX15.1. Parameter Unertainties in Brute Fore Chi square �ttingThere are times when \brute fore" least squares is appropriate. For example, if you havea nonlinear problem in whih taking derivatives is ompliated, and if the number of unknownoeÆients is small, then it might be easier to searh through the oeÆient parameter spae,alulate the �2 for eah ombination of parameters, and �nd the minimum.This proedure ertainly provides the least squares solution. However, getting the unertaintiesrequires a bit more work. You an get the full set of unertainties if you know the urvature matrix,whih is the matrix of seond derivatives of the pairwise parameters evaluated at the minimum �2.Having found the minimum, you an derive these urvatures (equal to half the seond derivatives)numerially. Then, to �nd the unertainties in the parameters, follow the proedure in x10.5.15.2. Example: the single-parameter aseIt is partiularly easy to disuss this if there is only one parameter. Let us onsider this aseand assume that it is a simple weighted average (whih is the least squares solution for a onstant).Suppose the best �t �2 value for the unknown oeÆient (i.e., the weighted average) is x0 and that



{ 55 {its variane is �2x0 . Now onsider o�sets from x0, namely x0 + Æx. Beause �2 is minimized at x0,it is lear that ��2 = �2x0+Æx � �2x0 = 12 d2�2dÆx2 Æx2 (119)Generally, the urvature is the relevant element of the urvature matrix [�℄. In the partiular aseof a weighted average, there is just one element so12 d2�2dÆx2 = [��℄ = [��℄00 =X� 1�2meas;m� (120)Beause we have a single parameter x0, its variane �2x0 is the o�set Æx20 from x0 that gives��2 = 1. If we had more than one variable, we'd de�ne ellipsoids in the manner disussed in x10.5.Are you bothered by the fat that the urvature is independent of the data values? Then gobak and read x9.3.16. NOTATION COMPARISON WITH NUMERICAL RECIPESI learned least squares from Appendix A of Chauvenet (1863). He didn't use �2 and didn'tuse matrix tehniques, but x1 and 2 follows his development quite losely. I wrote the �rst versionof this doument before knowing of NM's treatment, whih explains my orientation towards leastsquares instead of hi-square. I'm fortunate in this approah beause it made me realize the pitfallsone an get into with hi-square, as I disuss in x9.On the other hand, NM desribe the least squares approah with some disdain in the disussionof equation (15.1.6) and warn that it is \dangerous" beause you aren't omparing the residuals tothe intrinsi inauraies of the data. In astronomy, though, more often than not you don't havean independent assessment of �meas. But you might know the relative weights, and this is a plusfor Chi-square �tting. In any ase, heed our warnings about hi-square �tting in x9.In this writeup I have revised my old notation to agree, partially, with NM's. This e�ort wasn'tompletely suessful beause I didn't read NM very arefully before starting. To make it easierto ross-referene this doument with NM, I provide the following table of orrespondenes (left ofthe double arrow is ours, to the right is theirs):X ! A (121a)Y ! b (121b)



{ 56 {XT �X = XX = [�℄ ! AT �A = [�℄ (121)XX�1 = XXI = [�℄�1  ! [�℄�1 = [C℄ = C (121d)I use M for the number of measurements and N for the number of unknown oeÆients; NM usesthe opposite, so we have N  !M (121e)M  ! N (121f)REFERENCESBevington, P.R. & Robinson, D. 1992, Data Redution and Error Analysis for the Physial Sienes(WCB/MGraw-Hill).Chauvenet, W. 1863, A Manual of Spherial and Pratial Astronomy, Dover Press.Cowan, G. 1998, Statistial Data Analysis, Clarendeon Press.Press, W.H., Flannery, B.P., Teukolsky, S.A., & Vetterling, W.T. 2001, Numerial Reipes (seondedition), Cambridge University Press.Taylor, J.R. 1997, An Introdution to Error Analysis, University Siene Books.

This preprint was prepared with the AAS LATEX maros v5.0.


