LEAST- AND CHI-SQUARES FOR THE BUDDING AFICIONADO:
ART AND PRACTICE

(©Carl Heiles June 12, 2002

In our never-ending attempt to make your life easier, we present you with this highly in-
structive, time-saving, and labor-saving informative document! Here we give heuristic derivations,
discussions, examples, and the prescription for doing least-squares the easy way using matrix tech-
niques generally, and specifically in IDL. This prescription is given as an example in §5, and the
power-user can skip the details and go directly there.

This document is an update, correction, clarification, and elaboration of a previous one made
exclusively for the undergraduate lab class. Here we extend the discussion considerably to cover
most of what anyone will need in future professional life. This makes the document longer, but
the first parts (§1 to 7) are still accessible at the introductory level because they haven’t changed
much. We occasionally refer to the books Bevington and Robinson (1992); BR), Cowan (1998),
Press et al (2001; Numerical Recipes, NM) and Taylor (1997; T97), and we update the notation
to partially conform with NM. We owe sections 11 to 13 to the fantastically excellent website of
Stetson, http://nedwww.ipac.caltech.edu/level’/Stetson/Stetsons.himl.

We begin with least squares in the classic sense, meaning we minimize the sum of squares
instead of minimizing x?. In astronomy, more often than not you don’t have an independent
assessment of the intrinsic uncertainty in the data, which means you cannot evaluate x2, and the
least squares approach is the only option. However, often in astronomy you do want to weight
observations differently, e.g. because of integration time, and this requires an approach similar to
the x? one. In later sections we generalize to the x? and this other weighted-observations case.

Contents

1 LEAST-SQUARE FITTING FOR TWO PARAMETERS, AS WITH A STRAIGHT

LINE. 4
1.1 The closed-form expressions for a straight-line it 4
1.2 Better is the following generalized notation. 4

2 LEAST-SQUARE FITTING FOR MANY PARAMETERS, AS WITH A CU-
BIC 5

3 FAR, FAR BEST AND EASIEST: MATRIX ALGEBRA. 6

4 UNCERTAINTIES IN THE DERIVED COEFFICIENTS. 8

9

5 A NUMERICAL EXAMPLE AND ITS SOLUTION IN IDL. 10
5.1 Generation of the numerical example, 10
5.2 Solution of the Numerical Example in IDL, 11
5.3 Discussion of the numerical example o0, 13

6 THE COVARIANCE MATRIX AND ITS NORMALIZED COUNTERPART 13

6.1 Definition of the normalized covariance matrix 13
6.2 The covariance in our numerical example oL 15
7 REJECTING BAD DATAPOINTS I.. CHAUVENET’S CRITERION 17
8 NONLINEAR LEAST SQUARES 19

9 CHI-SQUARE FITTING, AND WEIGHTED FITTING: DISCUSSION IG-

NORING COVARIANCE 22
9.1 The weighted mean: the simplest chi-squared fit 23
9.2 The multivariate Chi-square fit oo 24
9.3 Persnickety Diatribe on ChooSING Timeqs « « « « « « ¢ v v e e i e e 26
9.3.1 Choosing and correcting Ggatam - - « « + . 00w e e e 26
9.3.2 Come back toreality L 27
9.4 The case in which datapoints have different dispersions, or different weights: like a
weighted average L 27
9.5 The explicit IDL for the weighted and chi square cases 28

10 CHI-SQUARE FITTING, AND WEIGHTED FITTING: DISCUSSION IN-

CLUDING COVARIANCE 31
10.1 Phenomenological description. L Lo L 31
10.2 Calculating the uncertainties of a single parameter 33
10.3 Calculating the uncertainties of two parameter 33
10.4 Calculating the uncertainties of three parameter 34

10.5 Doing these calculations the easy way, 34

-3 -

10.6 Important comments about uncertainties o0 L.

11 REJECTING BAD DATAPOINTS II.: STETSON’S METHOD PLUS CHAU-

VENET’S CRITERION
11.1 Stetson’s sliding weight

11.2 Implementation of the weight in our matrix equations

12 MEDIAN, INSTEAD OF LEAST SQUARE, FITTING
12.1 The median and the double-sided exponential pdf
12.2 Doing a “chi square” fit for the double-sided exponential

12.3 IDL’s resources for median fitting oo

13 FITTING WHEN ALL VARIABLES HAVE UNCERTAINTIES
13.1 A preliminary: Why the slope is systematically small
13.2 Stetson’s method
13.2.1 Philosophy
13.2.2 Direct solution L
13.3 Commentary on Stetson’s solution oL
13.3.1 This solution is general and makes sense L.
13.3.2 Yet another point I do not understand

13.4 Generalization to Multivariate Case e

14 USING SINGULAR VALUE DECOMPOSITION (SVD) IN IDL
14.0.1 Step 0: Introduce a common block that will contain the X_SVD matrix
14.0.2 Step 1: Define the function svdfen00
14.0.3 Step 2: Populate the X_SVD matrix and Y vector almost as before.

14.0.4 Step 3: Callsvdfit

15 BRUTE FORCE CHI SQUARED AND THE CURVATURE MATRIX

15.1 Parameter Uncertainties in Brute Force Chi square fitting

36
37
38

39
39
40
41

41
42
43
43
46
48
48
49
49

51
52
52
93
53

54

15.2 Example: the single-parameter case L o oo 54

16 NOTATION COMPARISON WITH NUMERICAL RECIPES 55

1. LEAST-SQUARE FITTING FOR TWO PARAMETERS, AS WITH A
STRAIGHT LINE.

1.1. The closed-form expressions for a straight-line fit

h measurement of the

First consider the least squares fit to a straight line. Let 6,, be the m’
observed quantity (in this example, 6,, is zenith distance; t,, be the time of the m!" measurement;
M = the total number of observations, i.e. m runs from 0 to M — 1. Remember that in the least-
squares technique, quantities such as ¢,, are regarded to be known with high accuracy while the

quantity 6,, has uncertainties in its measurement.

We expect the zenith distance 6,, to change linearly with time as follows:

A+ Bty =0, . (1)

Given this, one does the maximum likelihood (ML) estimate assuming Gaussian statistics. When
all measurements have the same intrinsic uncertainty, this is the same as looking for the solution
that minimizes the sum of the squares of the residuals (which we will define later). This leads to
the pair of equations (Taylor 8.8, 8.9), called the normal equations

AN+B D tn=) On (22)
AN tm+B > 1= tmn (2b)

Two equations and two unknowns—easy to solve! The closed-form equations for (A, B) are Taylor’s
equations 8.10 to 8.12.

1.2. Better is the following generalized notation.

We want a way to generalize this approach to include any functional dependence on ¢ and even
other variables, and to have an arbitrarily large number of unknown coefficients instead of just the
two (A, B). This is very easy using matrix math. We will ease into this matrix technique gently,
by first carrying through an intermediate stage of notation.

-5

First generalize the straight-line fit slightly by having two functional dependences instead

of one. We have something other than the time #,,; call it s,. For example, we could have

2,

i or we could have s,, = z,,, where z,, is the position from which the

Sm = €08(tmy) or 8y =t
observation was taken. To correspond to equation 1, s,,, = 1. Then we rewrite equation 1 to include
this extra dependence

As,, + Bt,, = 0, . (3)
There are still only two unknown parameters, so this is an almost trivial generalization; later we’ll
generalize to more parameters.

We have M equations like equation 3, one for each measurement. They are known as the
equations of condition because they are the equations that specify the theoretical model to which
we are fitting the data. There are M equations of condition and only two unknowns (A and B).
This is too many equations! We have to end up with a system in which the number of equations is
equal to the number of unknowns.

To accomplish this, from equation 3 we form the normal equations. The number of normal
equations is equal to the number of unknowns, so in this case we will have two. We could carry
through the same ML derivation to derive equations equivalent to equation 2; the result is

A Z s?n + B Z Smtm = Z Smbm (4a)
A Zsmtm + B thn = Ztmom . (4b)

We can rewrite these equations using the notation [st] =) spmim, etc.:

A[s?] + Blst] = [s0] (ba)
Alst] + B[t*] = [tf] . (5b)

This is, of course, precisely analogous to equation 2. And now it’s clear how to generalize to more
parameters!

2. LEAST-SQUARE FITTING FOR MANY PARAMETERS, AS WITH A
CUBIC

With this notation it’s easy to generalize to more (N) unknowns: the method is obvious
because in each equation of condition (like equation 3) we simply add equivalent additional terms

-6 —

such as Cuyy,, Dv,,, etc; and in the normal equations (equation 5) we have more products and also
more normal equations.

Let’s take an example with four unknowns (N = 4), which we will denote by A, B, C, D; this
would be like fitting a cubic. With N = 4 we need at least five data points (M = 5), so there must
be at least five equations of condition. The generalization of equation 4 is the M equations

Asy, + Bty, + Cuyy, + Doy, = 0, (6)

with m =0 — (M —1). Again, the least squares fitting process assumes that the s,,, tmn, Um, Um
are known with zero uncertainty; all of the uncertainties are in the measurements of 6,,,. We then
form the four normal equations; the generalization of equation 5 written in matrix format is:

[ss] [st] [su] [sv] A [s6]
[ts] [tt] [tu] [tv] B _ | [tf] (7)
[us] [ut] [uu] [uv] C [uf)]
[vs] [vt] [vu] [vv] D [v6]

The N x N matrix on the left is symmetric. With N equations and N unknowns, you can actually
solve for A, B,C, D!

3. FAR, FAR BEST AND EASIEST: MATRIX ALGEBRA.

The above equations are terribly cumbersome to solve in a computer code because they require
lots of loops. However, it becomes trivial if we use matrices. Here we designate a matrix by
boldface type.

We illustrate the matrix method by carrying through the above N = 4 example, and we assume
that there are 5 independent measurements (M = 5). We first define the matrices

s to up o
s1 t1 ur wm

S4 t4 us V4

Ay =

Q>

6o
th
Y, =| 6 (8¢)
03
04

so, in matrix form, the equations of condition (equation 6) reduce to the single matrix equation

X,-a=Y,. (9)

The notation for these equations corresponds to NM’s. We write them with subscripts o to empha-
size that they are calculated without dividing by oyeqs, i.€. that we are doing least squares instead
of chi square fitting. For chi square fitting, see §9 and 10.

Our matrix X, corresponds to NM’s “design matrix” A of Figure 15.4.1, except that our
elements are not divided by opeqs,m, and the matrix equation of condition (equation 9) is identical
to the expression inside the square brackets of NM’s equation 15.4.6. The differences arise because
here we are discussing least squares fitting instead of chi square fitting, i.e. we have omitted the
factors involving opeqs,m, the intrinsic measurement uncertainties (§9).

Again, there are more equations than unknowns so we can’t solve this matrix equation directly.
So next we form the normal equations from these matrices. In matrix form, the normal equations
(equation 7) reduce to the single equation

(o] -a=[Bs] , (10)

(NM equation 15.4.10), where

(o, = XT . X, (11a)
[/80] = XT : YO’ (11b)

-8 -

The matrix [a,] is known as the curvature matriz because each element is twice the curvature of
o2 (or x?) plotted against the corresponding product of variables.

The number of equations is equal to the number of unknowns, so the solution of the matrix
equation is easy—just rewrite it by multiplying both sides by the inverse of [a,] (that is, by [a] 1),
which gives

a= [O‘U]_l'[ﬁa] : (12)

All of these matrix operations are trivially easy in IDL (§5).

4. UNCERTAINTIES IN THE DERIVED COEFFICIENTS.

How about the uncertainties in the derived quantities contained in the matrix a?

The first thing to do is derive the sample variance s? (the square of standard deviation, or
mean error, or dispersion, etc) of the individual data points using the generalization of the usual
definition for a straight average of z, s? = | éw_l(xm — ZTm)?/(M — 1)]. The generalization is,
simply, to replace the M — 1 in the denominator by v = M — N. In the straight-average case,
N =1 so this fits. Here v is known as the number of degrees of freedom and N, the number of

unknown coefficients, is known as the number of constraints. So we have

M—-1

= S O~) (13)

m=0

1
2 _
S—M_

where 6,, are the values for 6, predicted by the derived quantities a. Note the difference: 6,, are
the observed values, while 0,,, are the values predicted by the least squares fit. The predicted values
are those that are computed from the derived coefficients A, B, C... The M quantities

0 = O — O (14)

are called the residuals or deviations from the fit.

It’s worth reiterating some essentials about s2, and in particular the denominator (M — N).
First consider the case of a single-parameter fit, e.g. N = 1. Then we cannot possibly derive
a sample variance from only one measurement M = 1; but we can from two M = 2. So the
denominator makes sense from that standpoint. The same goes for N > 1.

Next consider the effect of using (M — N) in the denominator: it increases s> by the ratio

% over what you’d get if you just took a straight average and used M. This compensates for

the fact that you are subtracting 6,,, which is derived from the data, instead of the truly correct

-9

value 6*. (In formal statistical language, 6* is the mean of the parent population from which your
set of measurements is drawn). If you used the truly correct value 6*, then the sum would be larger
than when using 6,,. The use of M — N in the denominator compensates for this larger value in
exactly the right way: the expectation value FE(,») for a large number of experiments is precisely
equal to the normal variance o2, which you’d get by using [0* and M] instead of [0,, and (M — N)]
in equation 14; see Cowan equations 5.9 and 5.10. So s? is, in fact, exactly the number we want:
an unbiased estimate of the true variance of our sample. Why not use [#* and M] in equation 147
The reason is obvious: we don’t know 6*! (If we did, we wouldn’t be doing this analysis!)

It’s easy to calculate the 6, with matrices. First define the matrix Y, that contains these

values:

R
q

Il
D
[N}

(15)

Calculating Y, is simple:

Y,=X,-a. (16)

Note that X, is already defined (equation 8) and a was solved for in equation 12. Tt’s convenient
to define the residual matrix

Y, =Ys - Y, (17)
SO we can write

2 1

_ T
= o 0Y] Y, (18)

S

This is the sample variance of the datapoints, not the variances in the derived coefficients.
We can obtain these as before, by generalizing the results from the two-parameter case like the
straight-line fit discussed in §1. We won’t go through the derivation here; you can find it in Taylor
§8.4 and equation 8.16, 8.17. The result is

sa” = s*diag{[as] '} (19)

- 10 -

Or, to put it simply in words: to get the variance of coefficient n in the matrix a, multiply s? by
the n'* diagonal element of [a,]".

Although the above equation for s,? is correct, there is more to the story because of covariances,
which are the off-diagonal elements. We return to this topic in §9.

5. A NUMERICAL EXAMPLE AND ITS SOLUTION IN IDL.

If the following sounds like Greek to you, take a look at §3 and 4.

5.1. Generation of the numerical example

Suppose that we make four measurements of the angle 6 and we want to fit to a parabolic func-
tion in time ¢. In the notation of equation 6, s would be unity, ¢ the time, and u the time squared,
so the number of unknowns is three (N = 3). Because there are four independent measurements
(M = 4) the subscripts run from m = 0 — 3. Suppose that the four values of time are 5, 7, 9, 11.

First we create the matrix X in IDL

X = fltarr(N, M) = fltarr(3, 4) (20)

and then we populate it with numbers. In your own work, you would normally do this by reading
a data file and transferring the numbers to the matrix using IDL commands; to work through this
example, you might manually type them in. After populating the matrix, in direct correspondence
with equation 8a we have s, = 1, t,,, = timen,, Uy, = time?n:

49 (21a)

,_.,_.._\._\
~

11 121

Suppose that the four measured values of 6 are (equation 8c)

142
y- |8 (220)
211

251

- 11 -

300

Y—INTERCEPT FOR (TIME—8)

200

100

Y—INTERCEPT FOR ORIGINAL TIME

o
N
IS
D
3
3

Fig. 1.— Our numerical example. Stars are the four datapoints; the solid line is the fit. We perform
two fits: one uses the original definition of time; the other uses (time — 8), in effect moving the
y-axis to the dashed line. The two fits give the same line but the coefficients and their errors differ
greatly.

Figure 1 shows the datapoints, together with the fitted curve.

One word of caution here: in IDL, to get these into a column matrix, which is how we’ve
treated Y above, you have to define Y as a two-dimensional array because the second dimension
represents the column. When working in IDL it’s more convenient to define a row vector, which
has only one dimension; in IDL you do this by defining Y = [142,168,211,251]; you can make it
into the necessary column vector by taking its transpose, i.e. Y = transpose(Y).

5.2. Solution of the Numerical Example in IDL

In IDL we calculate the normal equation matrices and denote the [a] in equation 11a by XX:

XX = transpose(X)##X , (23a)

- 12 —

and we denote the [3] in equation 11b by XY:

XY = transpose(X)##Y . (23b)

In IDL we take the inverse of [a] (same as XX) by

XXI = invert(XX) . (24)

The least-square fitted quantities are in the matrix a (equation 12), which we obtain in IDL
with

a=XXI ## XY . (25)

In IDL we denote the matrix of predicted values 6,, by YBAR, which is

YBAR =X ## a. (26)

and we can also define the residuals in Y as

DELY = Y - YBAR (27)

In IDL we denote s? in equations 13 and 18 by s_sq and write

s_sq = transpose(DELY)##DELY /(M — N) . (28a)

or

s_sq = total(DELY A2)/(M — N) . (28b)

It is always a good idea to plot all three quantities (the measured values Y, the fitted values YBAR,
and the residuals DELY') to make sure your fit looks reasonable and to check for bad datapoints.

To get the error in the derived coefficients we need a way to select the diagonal elements of a
matrix. Obviously, any N x N matrix has N diagonal elements; a convenient way to get them is

diag elements of XXI = XXI[(N + 1) * indgen(N)] (29)

~ 13 -

In IDL, we define the variances of the N derived coefficients by varde (think of “variances of
derived coefficients”). You can get this as in equation 19 from!

vardc = s_sq x* XXI[(N + 1) * indgen(N)] . (30)

5.3. Discussion of the numerical example
For this numerical example, the solution (the array of derived coefficients) is
96.6250

a= | 4.5000 (31a)
0.8750

and the errors in the derived coefficients [the square root of the 0’s of the derived coefficients, i.e.

[02]1/2 or, in IDL, sqrt(vardc) in equations 30] are:

34.012
oa=| 9.000 | . (31b)
0.5590

These results look horrible: the uncertainties are large fractions of the derived coefficients,

The reason: we have specifically chosen an example with terrible covariance. And the great
thing is this can be fixed easily (at least in this case—certainly not always), without taking more
data!

6. THE COVARIANCE MATRIX AND ITS NORMALIZED COUNTERPART

First we provide a general discussion, then we apply it to the above numerical example.

6.1. Definition of the normalized covariance matrix

The variances in the derived coefficients are obtained from the diagonal elements of XXI. The
off-diagonal elements represent the covariances between the derived coefficients. Covariance means,

11f you used equation 28a instead of 28b, then IDL considers s_sq an array and you need to use a # instead of a
* in this equation.

- 14 -

specifically, the degree to which the uncertainty in one derived coefficient affects the uncertainty in
another derived coefficient.

Because the covariance matrix elements relate pairwise the various coefficients, the units of
the matrix elements are all different. This makes it convenient to reduce all the matrix elements
to a standard set of units—mnamely, no units at all. So before discussing the covariance matrix per

se, we first discuss its normalized counterpart.

The normalized covariance matrix? ncov is derived from XXI by dividing each element by the
square root of the product of the corresponding diagonal elements. Let ncov be the normalized
covariance matrix; then

X XTIy
VXXT; XX It

This is the same normalization that one does with the Pearson linear correlation coefficient. In

(32)

ncov;y, =

fact, the elements of the normalized covariance matrix are the correlation coefficients. In IDL, you
do the following;:

dc = XXI[(N + 1) * indgen(IN)] (33a)
ncov = XXI/sqgrt(de#dc) (33b)

In the above, dc#dc is an N X N matrix consisting of products of the diagonals of XXI, so dividing
XXI by sqrt(dc#tdc) generates the normalized version.

Because ncov is a normalized covariance matrix, you might think that it’s non-normalized
parent is XXI-—and you’d be almost right. The true covariance matrix C (as defined in Numerical
Recipes for example) is

C = 02, XXI (34)

meas

because C is defined for x? instead of o2 (see §9).

In ncov, the diagonal elements are all unity and the off-diagonal elements reflect the inter-
dependence of the derived coefficients on each other. The off-diagonal elements can range from
—1 — 1. Each matrix element is the correlation coefficient between the uncertainties of its two
parameters. In particular, suppose that the data happens to produce a coefficient that differs from
its true value by some positive number. If the normalized matrix element is negative, then the
other coefficient will tend to differ from its true value by a negative number.

It is a pleasure to thank Doug Finkbiener for introducing me to this concept.

~ 15 —

Here’s a more detailed discussion of what the covariance means. Suppose you are least-squares
fitting for two derived coefficients (Ag and A;). When you do a least-squares fit to a set of data,
you are fitting one set of data out of a possible infinity of possible sets that you’d get by repeating
the experiment, and your particular set of data happens to produce specific values of Ay and Aj,
which differ from the ¢rue values (Aj, A7) by amounts 04 and dA;. If their covariance is zero,
then in the infinity of data sets you'd find that § Ay is uncorrelated with A;. But if it is nonzero,
these two quantities would be correlated.

A high covariance is bad because the derived variables depend on each other. For one, this
means that with noisy data power can be shared or passed from one parameter to/from its covariant
counterpart(s). As we shall see §10, it also significantly influences the uncertainties in derived
coefficients. Often a high covariance results from a poor choice of functions that you are fitting or
even a bad choice of the zero point of the independent variable—as in our numerical example (see
the next subsection). And, as in that example, you can sometimes eliminate the bad covariance
by reformulating the problem—you don’t even need to take more data! The best reformulation
involves using a set of orthonormal functions. However, sometimes your interest is in a specific set
of functions that are not orthogonal, and in such cases it makes no sense to convert to orthogonal
functions—because you just have to convert back again and do the error propagation after-the-fact
instead of letting the least squares process do it for you.

6.2. The covariance in our numerical example

Apply equation 33 to obtain the covariance matrix for our numerical example:

1 —.989848 .969717
ncov = | —.989848 1 —.993808 . (35)
969717 —.993808 1

The off-diagonal elements are huge. This is the reason why our solution is so bad.

In this seemingly innocuous example we have an excellent case of a poor choice of zero point
for the independent variable (the time). The reason is clear upon a bit of reflection. We are fitting
for y = Ag + At + Aot?. The coefficient A is the y-intercept and A; is the slope. Inspection of
Figure 1 makes it very clear that an error in the slope has a big effect on the y-intercept.

Now we retry the example, making the zero point of the time equal to the mean of all the
times, that is we set (timey, = time,, —8). We get the same fitted line, but the derived coefficients
are completely different—and amazingly better! We get

~ 16 —

188.625
A= 18500 (36a)
0.87500

3.58
1.00 | . (36b)
0.559

OA

In redefining the origin of the independent variable, we have made the zero intercept completely
independent of the slope: changing the slope has no affect at all on the intercept. You can see this
from the normalized covariance matrix, which has become

1 0 —0.78086881
ncov = 0 1 0 . (37)
—0.78086881 0 1

which is nice, but not perfect: Our step is partial because the second-order coefficient Ao affects
Ajp because, over the range of [(time — 8) = —3 — +3], the quantity [Ay X(time,, — 8)?] is always
positive and is thereby correlated with Ag.

We could complete the process of orthogonalization by following the prescription in BR chapter
7.3, which discusses the general technique of orthogonalizing the functions in least square fitting.
The general case is a royal pain, so much so that we won’t even carry it through for our example.

For some particular cases, standard pre-defined functions are orthogonal. For example, if t,,
is a set of uniformly spaced points between (—1 — 1) and you are fitting a polynomial, then the
appropriate orthogonal set is Legendre polynomials. This is good if your only goal is to represent
a bunch of points by a polynomial function, because the coefficients of low-order polynomials are
independent of the higher ones. However, it’s more work and, moreover, often you are interested in
the coefficients for specific functions that don’t happen to be orthogonal; in such cases, you should
just forge ahead.

But always look at the normalized covariance matrix. Suppose one pair of off-diagonal elements
departs significantly from zero. Then their corresponding functions are far from being orthogonal
and the variances of the derived coefficients will suffer as a result. You might be able to eliminate
one of the parameters to make the fit more robust. For example, suppose one function is # cos(t)
and the other is sin(t) cos(t). If the range of ¢ is small, these two functions are indistinguishable
and have a large covariance; you should eliminate one from the fit. If the range of ¢ is large, there
is no problem.

17 -

For further discussion of covariance, see §10. Also, you might also want to try out another
example in Taylor’s §8.5.

7. REJECTING BAD DATAPOINTS I.. CHAUVENET’S CRITERION

Least squares fitting is derived from the maximum likelihood argument assuming the datapoint
residuals 6y, have a Gaussian pdf. This means that the errors are distributed as

P(oy;o) = 1 e*(i%) (38)

2mo

2

where 0 is the true variance of the datapoints, i.e. s? in equation 13 (to be precise, s> needs to be

averaged over many experiments).

More importantly, the probability of finding datapoints inside the limits Ay is

- d(s =
P = o =erf | —— 39
(63| <Ay) /Ay P(sy;o) A(6Y) (\@J) (39)
where we use the commonly-defined error function erf x) = % j))f e’ dr. A particularly impor-
tant value is for Ay = o, for which
Psy)<o) = 0.683 (40)

If we have an experiment with M datapoints, then the number of datapoints we expect to lie
outside the interval Ay is

Ay
M putside =M |1—erf 41
(outstde 20) [(ﬂa)])
Chauvenet’s criterion simply says:
1. Find Ay such that M (,ysige ay) = 0.5. This is given by
Ay 1 1
— —erf 1—— 42
s (2M> (42)

2. Discard all datapoints outside this range.

This criterion makes very good sense. It leads to the following rejection criteria

~ 18 —

Chauvenet’s criterion versus M

M Ay
a

100 2.81

1000 3.48

10% 4.06

10° 4.56

which is a moderately interesting set of numbers.

We offer the following important Comments:

e This assumes data are Gaussian distributed. In real life this doesn’t often happen because
of “glitches”. Examples of glitches can be interference in radio astronomy, meteors in optical
astronomy, and cosmic rays on CCD chips. These glitches produce bad points that depart
from Gaussian statistics. They are often called outliers.

It is very important to get rid of the outliers because the least squares process minimizes
the squares of the residuals. Outliers, being the points with the largest residuals, have a
disproportionately evil effect on the result.

On the other hand, if your data don’t follow Gaussian statistics as their intrinsic pdf, then
you should think twice before using least squares!

e You may wish to relax Chauvenet’s criterion by increasing the Ax beyond which you discard
points. This is being conservative and, in the presence of some nonGaussian statistics, not
a bad idea. But think about why you are doing this before you do it. Maybe the intrinsic
statistics aren’t Gaussian?

You should never make Chauvenet’s criterion more stringent by decreasing the Az beyond
which you discard points. This rule hardly needs elaboration: it means you are discarding
datapoints that follow the assumed pdf!

e Most statistics books (e.g. Taylor, BR) harp on the purity aspect. One extreme: don’t throw
out any datum without examining it from all aspects to see if discarding it is justified. The
other extreme: apply Chauvenet’s criterion, but do it only once and certainly not repeatedly.

Being a real-life astronomer, our approach is different. There do exist outliers. They increase
the calculated value of 0. When you discard them, you are left with a more nearly perfect
approximation to Gaussian statistics and the new o calculated therefrom will be smaller than
when including the outliers. Because the original o was too large, there may be points that
should have been discarded that weren’t. So our approach is: repeatedly apply Chauvenet’s
criterion until it converges.

~19 —

If it doesn’t converge, or if it discards an inordinately large number of datapoints, you've got
real problems and need to look at the situation from a global perspective.

e Many observers use the 3o criterion: discard any points with residuals exceeding 3o. This
is definitely not a good idea: the limit 30 is Chauvenet’s criterion for M = 185 datapoints.
Very often M exceeds this, often by a lot.

e To apply Chauvenet’s criterion it’s most convenient to calculate the inverse error function.
For this, you have two choices. One (for sissies like myself), you can use inverf.pro from
my area ~ heiles/idl/gen . But the real he-man will want to learn about using a root-finding
algorithm such Newton’s method (NM §9.4 and 9.6) together with the error function; both
procedures exist in IDL as newton and errorf. You at least ought to skim lightly some of
NM'’s chapter 9 about root finding, because some day you’ll need it.

8. NONLINEAR LEAST SQUARES

The least squares formulation requires that the data values depend linearly on the unknown
coefficients. For example, in equation 1, the unknown coefficients A and B enter linearly.

Suppose you have a nonlinear dependence, such as for example wanting to solve for A and B
with equations of condition that look like

sin(Atym) + Bty = 0, . (43)

What do you do here? You linearize the process, using the following procedure.

First, assume a trial values for A and B; call these Ay and By. You should pick values that
are close to the correct ones. In our example you wouldn’t need to do this for B, but it’s easier to
treat all coefficients identically. These trial values produce predicted values 6 ,:

Sin(Aotm) + Byt = ag’m . (44)

Subtract equation 44 from 43, and express the differences as derivatives. Letting 4 = A — Ay and
0B = B — By, this gives

dAlty, cos(Aotm)] + 0Bty = O — 0o - (45)
This is linear in (6A,dB) so you can solve for them using standard least squares. Increment the
original guessed values to calculate Ag e = Ao + 0A and By pew = Bo + 6B, These won't be
exact because higher derivatives (including cross derivatives) come into play, so you need to use
these new values to repeat the process. This is an iterative procedure and you keep going until the

~90 —

changes become “small”. The generalization to an arbitrarily large number of unknown coefficients
is obvious.

We now offer some cautionary and practical remarks.

(0) In linear least squares, the curvature and covariance matrices are set by the values of
the independent variable, which here is denoted by ¢, and are independent of the datapoint values.
Here, the matrix elements change from one iteration to the next because they depend on the guessed
parameters, and sometimes they even depend on the datapoint values.

(1): Multiple minima: Nonlinear problems often have multiple minima in o2. A classical
case is fitting multiple Gaussians to a spectral line profile. Gaussians are most definitely not
orthogonal functions and in some cases several solutions may give almost comparably good values
of 02, each one being a local minimum. For example, for the case of two blended Gaussians, one
can often fit two narrow Gaussians or the combination of a wide and narrow Gaussian, the two
fits giving almost equal 02. The lower of these is the real minimum but, given the existence of
systematic errors and such, not necessarily the best solution. The best solution is often determined
by physical considerations; in this case, for example, you might have physical reasons to fit a broad
plus narrow Gaussian, so you’d choose this one even if it’s 02 weren’t the true minimum.

(2): The Initial Guess: When there are multiple minima, the one to which the solution
converges is influenced by your initial guess. To fully understand the range of possible solutions,
you should try different initial guesses and see what happens. If the solutions always converge to
the same answer, then you can have some confidence (but not full confidence) that the solution is
unique.

(3): Iterative stability: If your initial guess is too far from the true solution, then the
existence of higher derivatives means that the computed corrections can be too large and drive the
iterative solution into instability. It is often a good idea to multiply the derived correction factors
(0A and 6B above) by a factor F less than unity, for example F = 0.5 or 0.75. This increases the
number of iterations required for convergence but often allows convergence instead of producing
instability.

(4): Convergence criteria: How do you know when the solution has converged? One way:
for each iteration, calculate the uncertainties in the derived coefficients. If the uncertainty exceeds
the correction, then you are getting close. An alternate way, which I usually use: if the fractional
correction (e.g. %) decreases below some threshold, say 1%, you're close (some parameters, such
as angles, need a threshold that is absolute instead of fractional). At this point, if you are using
F # 1, set F =1, do a few more iterations, and you’re done.

(5): Numerical derivatives: Sometimes the equations of condition are so complicated that
taking the derivatives, as in obtaining equation 45, is a huge job and subject to mistakes. So you
can take numerical derivatives instead of analytic ones. Be careful, though; it’s safest to use double
precision and think a bit about numerical accuracy; take a look at NM’s section 5.7 on evaluating

- 21 —

numerical derivatives.

(6): Canned nonlinear least squares: Packages like IDL offer canned nonlinear least
squares routines. They are designed to work well for a wide range of different problems. However,
often you can do better by tailoring things (such as the factor F and convergence criteria above)
for the specific problem at hand. A good example is Gaussian fitting: IDL’s fitting program doesn’t
converge for some input data, while for many of these cases the program that I wrote myself works
fine.

When convergence is slow or doesn’t occur because your functions are complicated, you might
wish to try the Levenberg-Marquardt method (NM §15.5); IDL function LMFIT. This involves
increasing the diagonal elements of the curvature matrix by a set of suitably chosen factors; when
you get close to the minimum, you reset these factors to unity. I have never had to resort to such
tactics. In my opinion, if you are in such difficulty that you need such a technique you should
look at the problem with an eye to gaining an appreciation of the approximate locations of the
true minima and beginning with your initial guess reasonably close to it. Of course, this might be
difficult with a large number of parameters.

(7): Be careful and LOOK at the solution before accepting it! These nonlinear
problems can produce surprising results, sometimes completely meaningless results. Don’t rely on
them to be automatic or foolproof!

(8): Reformulate! Sometimes you can avoid all this by reformulating the problem. There
are two cases: the harmless case and the not-so-harmless case.

An example of the harmless case is fitting for the phase ¢ in the function y = cos(f + ¢).
This is definitely a nonlinear fit! But its easy to reformulate it in a linear fit using the usual trig
identities to write y = A cos 8 — B sinf), where % = tan ¢. Solve for (A, B) using linear least squares,
calculate ¢, and propagate the uncertainties.

An example of the not-so-harmless case is in NM’s §15.4 example: fit for (A, B) with equations

of condition y,, = Ae~Brm

. They suggest linearizing by rewriting as log(y,,) = C — Bz, solving
for (B,C), and deriving A after-the-fact. This is not-so-harmless because you are applying a
nonlinear function to the observed values y,,; thus the associated errors op,cqs,m are also affected.
This means you have to do weighted fitting, which is discussed in §9 below. Suppose that A = 1,
your datapoints all have 0,cq5,m = 0.05, and the observed y,,, ranges from 0.05 to 1. The datapoint
with y, = 0.05 has a manageable 0y,cqs,,, but what is the corresponding value of oyeqs,m for
log ym = log 0.057 It’s ill-defined and asymmetric about the central value. Or even, God forbid,
you have an observed y,, that’s negative??? Even for y,, not near zero, you need to calculate new
Omeas,m Dy error propagation; in this case, you need to reassign o(logy) = %}fyo(y) = % This is
OK when y,, is large enough so that the linear approximation is accurate, but if not the converted
noise becomes nonGaussian.

You should regard your datapoints as sacrosanct and never apply any nonlinear function to

- 9292 —

them.

9. CHI-SQUARE FITTING, AND WEIGHTED FITTING: DISCUSSION
IGNORING COVARIANCE

In least squares fitting the derived parameters minimize the sum of squares of residuals as in
equation 13, which we repeat here

1 M-1
2 _ A2
S_M_NZ(em 0m)? .

m=0

Chi square fitting is similar except for two differences. One, we divide each residual by its intrinsic
measurement error Oyeqs,m; and two, we define x? as the sum

M—

—_

Om — Om)?
x: = O = Om)” = m)” (46a)
m=0 Omeas,m
Along with x? goes the reduced chi squared X? = fo N
M-1 —
1 (O — Op)?
_9 m m
% . (46)
M-N mz_:o U?neas,m

which is more directly analogous to the definition of s2.

Chi-square fitting is very much like our least-squares fitting except that we divide each data-
point by its intrinsic measurement uncertainty o,,eqs,m- Thus, the reduced Chi-square ()’52) is equal
to the ratio of the variance of the datapoint residuals (0?) to the adopted intrinsic measurement

So it should be obvious that in Chi-square fitting, you must know the measure-

variances (02,,,5)-

ment uncertainties oy,eqs Of the individual data points beforehand. If you want to give the various
datapoints weights based on something other than ¢,cqs, then that is just like Chi-square fitting
except that you can adopt an arbitrary scale factor for the uncertainties (section 9.3).

Chi-squared fitting treats uncertainties of the derived parameters in a surprising way. Getting
the coefficient uncertainties with chi-squared fitting is a tricky business because
1. With the standard treatments, the errors in the derived parameters don’t depend on the

residuals of the datapoints from the fit (!).

2. The errors in the derived parameters can depend on their mutual covariances. This discussion
requires a separate section, which we provide below in §10.

~ 93—

In this section we treat chi square fitting ignoring covariance. We begin by illustrating the difference
between least squares and chi square fitting by discussing the simplest chi-square fitting case of a
weighted mean; then we generalize to the multivariate chi square fitting case.

9.1. The weighted mean: the simplest chi-squared fit

First, recall the formulas for an ordinary unweighted average in which the value of each point
is ym and the residual of each point from the weighted mean is dyyy,:

mean = % (47a)
5 2
= %4 - (47b)
2 2
52 A 72 0Ym (47¢)

mean = N0 = A(M - 1)

2

2 .un 18 the variance of the mean and s? is the variance of the datapoints around the mean. Recall

s
that in this case the mean is the least squares fit to the data, so to use least squares jargon we can

also describe Syeqn as the error in the derived coefficient for this single-parameter least squares fit.

Now for a weighted average in which the weight of each point is wpeas,m =

Applying maximum likelihood, in a nonweighted average the quantity that is minimized is 3" §y2,;
Y
o

gmea.s,m

that the three equations corresponding to the above would become

in a weighted average the quantity minimized is x? = Y =" Wmeas.m0y2,. So you'd think

Z Wmeas,mYm Z Ym
_ mym 48
meany, Z Wineas,m M (a)
2 M Z wmeas,méy?n N Z 6y72n (48b)
w M—-1 Zwmeas,m M -1
&2 _ i _ Z wmeas,mdy?n N Z 6y7271 (48C)
mean M (M _ 1) Z Wimeas,m M(M - 1) ’

where the arrow to the rightmost expressions use our assumption that oy,cqs,m are all identical. In
fact, however, the last of these equations is always written (e.g. BR equation 4.19; Taylor equation
7.12)

SPrcan = —y Jmeas 49
mean Zwmeas’m M I ()

— 924 —

Note the excruciatingly painful difference between equation 48c and equation 49: the former

depends on the wvariance of the datapoint residuals s2,, as you'd think it should, while the latter
2

meas?’

the guy doing the fit. If you do an unweighted average, and derive a certain variance, and next do

depends on only the adopted intrinsic measurement variance of the data o which is chosen by

a weighted average in which you choose some value for o,,.,s that happens to be wrong, the two

2

fits give different results for s;,,.,,-

This is crazy.

To get around this difficulty, we follow the procedure in BR equations 4.20 to 4.26. This
introduces an arbitrary multiplicative factor for the weights and goes through the ML calculation
to derive, instead of equation 49, the far superior

Sgnean = 5(\2 = X2 — i ; (50)
Z Wmeas,m (M - 1) Z Wmeas,m M

which is precisely the same as our intuitive guess, equation 48c. The difference between equations
50 and 49 is the numerator, which contains the reduced chi-squared ¥?; for this case where all

2
. . A~ s
Omeas,m are identical, X2 = —“—. Here

meas

Y
X2 = Z wmeas,méygn = Z Qyi (51)

Omeas,m

9.2. The multivariate Chi-square fit

In this case, Chi-square fitting is just like least-squares fitting except for the following:

1. In the matrix X, of equation 8a, each row m is a different measurement with a different
intrinsic variance Opeqs,m- YOu are generating a new matrix X, which is identical to X,
except that each row m is divided by 0,e45,m. This new matrix is the same as NR’s design
matriz (Figure 15.4.1), which they denote by A.

2. Divide each datapoint 6, in equation 8b by 0yeqs,m- You are generating a new matrix Y,
which is identical to Y, except that each row is divided by o,,eqs. This new matrix is the
same as NR'’s vector b.

You’ve divided each row, i.e. the equation of condition for each row m, by a common factor, so the
solution of the equation is unchanged.

Now suppose that all datapoints have the same intrinsic measurement uncertainty o,,eqs. In
the full matrix equation 9, which now reads X -a = Y, you’ve divided both sides by the same
quantity, oymeqs. Obviously, this doesn’t change the derived results for a. (If the oyeqs,m differ from
each other, then a is affected, of course.)

_ 95 _

Let’s summarize the relationships between the least-squares (o-subscripted) and x? matrices
for this specific case where all 0,0q5,m are identical:

X - J’m‘;s (52a)

Y = U:;S (52b)
X-a=Y (52c)

[0 = XT X = % (52d)
R (52¢)
(0] ™" = O2easls]™ (52f)
a=lo] '8 (52g)

When you calculate the predicted values Y in equation 16, using X instead of X, the values

are divided by o,peqs. Because Y is also divided by o645, the residuals §Y are as well. Thus when
you calculate the square of the sum of the residuals as in equation 18 you get JQL, which is the

meas

reduced chi-square, denoted as ¥? :

o oYT.5y sYT .5y,

= 53
M—-N 072neas(M_N) ()
and, obviously, you could calculate the non-reduced x>
SYY - 0Y,
X’ =0YT ¥ =—2 7 (54)
o

meas

This is precisely analogous to equation 51 for the weighted mean example above. The reduced
chi-square ¥? is equal to the ordinary chi-square x? except that it is divided by the number of
degrees of freedom, ordinarily denoted by v, which is equal to (M — N).

Finally, we have the analogy of equation 50 expressed in matrix form as in equation 19:

~ 926 —

sa” = X diag{[a]™"} (55)

This is in contrast to the result quoted in textbooks (e.g. NM equation 15.4.15, BR equation 7.25),
which omits the x? factor:

sa” = diag{[a]™"} (56)

and, as in the standard textbook solution for the weighted mean case, provides parameter errors
that are independent of the datapoint residuals.

Our result, equation 55, is very reasonable. Suppose, for example, that the least-squares fit
model is perfect and the only deviations from the fitted curve result from measurement error.

2x02,,, and X2 ~ 1. (We write “~” instead of “=" because different

Then by necessity we have s
experiments produce somewhat different values of s> because of statistical fluctuations; an average

gives 02 = (s?)). In this situation, though, equations 55 and 56 are identical.

9.3. Persnickety Diatribe on Choosing ¢4
9.8.1. Choosing and correcting 0 4qtq,m

In the previous section, equation 56 taught us that—formally, at least—the variance in the
derived fit parameter (or its uncertainty, which is the square root) depends only on the adopted
uncertainties 0y,eqs,m and not on the actual variance of the datapoints.

Are you bothered by the fact that the uncertainty of the mean o4 is independent of the data
values? You should be: it is obvious that the data values affect opeqn-

Formally, 0,0 depends only on the adopted uncertainties o,,¢q5,m, which are chosen beforehand
by you—you’re supposed be such a good experimentalist that you really do know the intrinsic
uncertainty in your measured values. Moreover, you are assuming that there are no other sources
of uncertainty—such as “cosmic scatter” or an inappropriate model to which you are fitting the
data. Suppose your adopted values of 0y,e45,m are off by a common scale factor, i.e. if 0peqas,adopted =
fOmeas,true- Then X2 ~ f~2 instead of ¥? ~ 1. And to obtain the parameter errors from §x?, you
must find the offset dz such that Ay? = f=2 ~ 2.

You can correct for this erroneous common factor f by dividing your adopted values of 0y,eq5,m

by f. Of course, you don’t know what this factor f is until you do the chi squared fit. Dividing

2
meas,m

them by f is equivalent to multiplying them by X. And, of course, the same as multiplying o
by X?.

To be kosher, after having run through the problem once with the adopted ,,¢45,m, calculate

_ 97 -

the X2; multiply all Gymeasm by X; and redo the problem so that the new X2 = 1. Then the derived

2
T

matrix (equations 55 and 56, which are identical in this case) or by finding what departure from

variance oy, is also correct. You can obtain it either as the corresponding diagonal to the covariance
xo is necessary to make Ay? = 1. This redoing the fit may seem like unnecessary work, but when
we deal with multiparameter error estimation it’s the best way to go to keep yourself from getting
confused.?

9.3.2. Come back to reality

In the case ¥? &~ 1 the dispersion of the observed points o is equal to the intrinsic dispersion
of the datapoints 0,,¢,s and the mathematical model embodied in the least-squares fit is perfect.
That, at least, is the theoretical conclusion. In practice, however, your obtaining such a low, good
value for ¥2 might mean instead that you are using too large a value for o,,eq: you are ascribing
more error to your datapoints than they really have, perhaps by not putting enough faith in your
instrument. Specifically, if the datapoints really have intrinsic measurement dispersion oy,eqs and
you specify that they have 20,045 when computing (X,Y), then you'll find x? = 0.25.

There are, in fact, two ways you can get artificially small values for ¥?. One is by overestimating
your adopted intrinsic values of gy,eqs. The other is if your measurements are correlated. Suppose,
for example, that by mistake you include the same measurements several times in your fit. Then
your measurements are no longer independent; in other words there is covariance in your measured
points. Cowan includes this possibility in his equation 7.4 and also example 7.6.1.

High values of ¥? indicate that the model is not perfect and could be improved by the use of
a different model, such as the addition of more parameters—or, alternatively, that you think your
equipment works better than it really does and you are ascribing less error to your datapoints than
they really have. And in this case, using equation 56 instead of 55 is disastrous.

Think about it.

9.4. The case in which datapoints have different dispersions, or different weights:
like a weighted average

Here the 0y,c45,m are all different. The mth

row of the equation-of-condition matrix X, and
the m'" element of the data vector Y, get divided by their corresponding ,,eq5,m- The equation

embodied in each row of the matrix equation 9 remains unchanged, but the different rows are

3The Ax? =1 condition only applies for the single-variable case. For more variables, the variances need to make
Ax? > 1; for example, if you are fitting for two parameters, then the variances make Ax? = 2.3, as we discussed in
§10.

_ 98 —

weighted differently with respect to each other.

Consider two measurements with intrinsic measurement uncertainties (pmeqs,1; Omeas,2); SUp-
POSE Ormeas,1 < Omeas,2- After being divided by their respective opeqs’s, all of the numbers in row
1 are larger than those in row 2. In all subsequent matrix operations, these larger numbers con-
tribute more to all of the matrix-element products and sums. Thus, the measurement with smaller
uncertainty has more influence on the final result, as it should.

Suppose that the above two measurements were taken under identical conditions except that

~1/2
measurement 1 received more integration time than measurement 2; we have JL‘”; = (:—;) , SO
meas
1/2

the rows of X are weighted as 7'/2. This means that during the computation of [a] = XT . X, the
self-products of row 1 are weighted as 71. This means that each datapoint is weighted as 7, which

is exactly what you'd expect! Note that this is also exactly the same weighting scheme used in a

2
weighted average, in which the weights are proportional to (J L) . We conclude that weighting

meas

scheme of the first two steps in section 9.2 agrees with common sense.

Suppose you don’t know the intrinsic measurement dispersion o,eqs, but you do know the rel-
ative dispersion of the various measurements. For example, this would be the case if the datapoints
were taken under identical conditions except for integration time; then ,eqs 7=1/2_ In this case,

multiply each row by its weight w oc 1 - and proceed as above.

9.5. The explicit IDL for the weighted and chi square cases

Here we give the explicit IDL commands required to do chi squared fitting, as we did for least
squares fitting in §5.2. First, define the X and Y arrays as before in §5. However, here we need
to weight the matrices. Let us denote the weighted versions by XW and YW. Then each row of
XW and element of YW are divided by the corresponding 0,45 Let us define W as the diagonal

matrix? whose elements are equal to Umils -, ie. wy, = Umelas —
W = fltarr(M, M) (57a)
1
W(indgen(M) * (M + 1)] = [7] (57b)
Omeas,m

Note that w,, is the square root of the weights wy,eqs,m that we discussed in §9.1. Specifically, the
current weights w,, are not those in the sense of the weighted average of §9.1; we use wy,, as a

‘W has M x M elements but only M numbers. If M is large and you are impacting machine memory, then
you can save memory by: reformulating equations 58 and 64 to use loops; not keeping XW and X as separate
matrices; and using IDL’s temporary function wherever possible. The relevant for loop is for mr= 0, m do
xw[*,mr]=w[mr]*x[*,mr], etc.

~99 _

matter of convenience only. Then

XW = W #4# X (58a)
YW =W ##Y (58b)

Optional comment: At this point you might wish to revert to Singular Value Decomposition
method using IDL’s SVDFIT function; see §14 for a cookbook. It is rare, but sometimes you will
encounter a problem for which the inversion of XX'W is unstable. In this case, XXW##XXWI #£
I (T is the unit matrix). You can tell this with the invert function by calling it with the status
keyword; if status # 0, you've got problems.

All steps up to obtaining the uncertainties follow exactly the same steps as in §5.2, which we
repeat here. In IDL we calculate the normal equation matrices and denote the [«] in equation 11a
by XXW:

XXW = transpose(XW)##XW , (59a)

and we denote the [f] in equation 11b by XYW:

XYW = transpose(XW)##YW . (59b)

In IDL we take the inverse of [a] (same as XXW) by

XXWI = invert(XXW) . (60)

The least-square fitted quantities are in the matrix a (equation 12), which we obtain in IDL
with

a=XXWI ## XYW . (61)

In IDL we denote the matrix of weighted predicted values by YBARW, which is

YBARW = XW ## a. (62)

and we can also define the weighted residuals as

- 30 —

DELYW = YW — YBARW (63)

The true (unweighted) predicted values and residuals are

YBAR = invert(W) ##XW ## a=X ## a.. (64a)

DELY = invert(W) ## (YW - YBARW) =Y — YBAR (64b)

To calculate the chi square we want the weighted sum Y dw2 y2:

chi_sq = transpose(DELYW) ## DELYW . (65a)

and the reduced chi square

red_chi_sq = transpose(DELYW) ## DELYW /(M — N) . (65b)

The full covariance matrix is just XXWI and, corresponding to equation 30, the variances of the
derived coefficients are the diagonal elements—unless the reduced chi squared differs significantly
from unity, in which case you should seriously look at your assumed weights derived from oyeqs,m
and/or the quality with which the model fits the data. That is,

vardc_official = XXWI[(M + 1) * indgen(M)] (66a)
or, better,

vardc_realworld = red_chi_sq * XXWI[(M + 1) x indgen(M)] (66b)

Finally, the normalized covariance matrix is of course independent of chi squared and is the same
as equation 33

ncov = XXWI/sqrt(vardc_official#vardc_official) (67)

You should, of course, always look at the residuals from the fit. But here you need to look at
the weighted residuals DELYW.

- 31 -

10. CHI-SQUARE FITTING, AND WEIGHTED FITTING: DISCUSSION
INCLUDING COVARIANCE

10.1. Phenomenological description

Consider the first two coefficients in our above example, which we discussed a bit above in
§6.2. In this example, the fit gives y = Ay + At + Ayt?, where the numerical values are given in
vector form by equation 31. The coefficient Ag is the y-intercept and A; is the slope. They have
derived values Ag = 96 =34 and Ay =4 +£09.

Remember what these uncertainties really mean: in an infinity of similar experiments, you’ll
obtain an infinity of values of (Ag, A1) that are normally distributed with dispersions (34,9). Loosely
speaking, this means that Ag lies between (96 — 34 = 62) and (96 + 34 = 130) and A; lies between
—4.5 and 13.5.

Suppose you are interested in knowing about Ay without regard to A;. By this we mean that
as Ay is varied from its optimum value of 96, x? increases from its minimum value. As we vary Ay,
if we allow A; to take on whatever value it needs to for the purpose of minimizing x2, then this is
what we mean by “knowing about Ay without regard to A;”. For this case, the uncertainty of Ay
is indeed 34. Ditto for A;. In other words, equations 19, and 55 apply.

However, if you are interested in knowing about both, you must include their covariance. In our
example, the large negative covariance follows logically just from looking at a graph: if you fit some
points, all of which lie at positive ¢, then a more negative derived slope will raise the y-intercept.

Specifically, the large negative covariance means that positive departures of Ay are associated
with negative departures of A;. So even though the individual values 49 = +34 and §A; = +9
are acceptable, you cannot conclude that the pair of values (§A4g,0A1) = (4+34,+9) is acceptable,
because this pair has both positive. In contrast, what is acceptable here would be something like
((SA(), (SAl) — (‘|‘34, —9)

We stress that the acceptable ranges of values depend on what you are interested in. This is
sort of like the observer’s influence in quantum mechanics. If you are interested in A; alone, then
you can say A; = 4 4+ 9 and, in making this statement, you have to realize that, as A; varies over
this range, Aj can vary over (formally, at least) the range (oo — —o0): you just don’t give a damn
what happens to Ag because you’re not interested. But the moment you become interested and
restrict its possible range, that influences the possible range for Ay, too.

There is no simple relationship between the covariance matrix elements and the acceptable
ranges. For two variables, the best way to express this is to construct the ellipses that define
the loci of constant Ay? and present them on a graph with axes (dag,da;) as in BR Figure 11.2
or NR Figure 14.5.4. For three variables, these ellipses become ellipsoids; for four, they become
four-dimensional volumes, etc.

-39 -

w‘5\\\\\\\\\\\\\“\\\.\\\\\\\\\\\\\\\“\\\\\\\\\\\\

O
LA L B B

P S S Y > o T - _ O

0.5

6a,

0.0

L L

-0.5

L CONTOURS AT ‘AUQZW AND 2.5 : o
7W‘5 7\ - ‘] T Y N B | \H] Y Y | ‘] Y I Y O B | H\ Y I T Y S | ‘ L1
-2 —1 O 1 2

da,

Fig. 2.— Tllustrating the meaning of variance and covariance between (al,a2) for our numerical
example. See text for discussion.

We illustrate these concepts for the (a1, as) parameters for our numerical example. We sub-
tracted 7.75 from all times so that the covariance would be small enough to illustrate the difference
between the tangents to the ellipses and the end points of the ellipses. Contours are calculated as
described in §10.5 and are at Ax? = 1 and 2.3. The dashed horizontal and vertical lines are at
0q = Fog,.

First consider the pair of vertical lines, which are drawn at da; = £0,,, where o is the square
root of the variance of the parameters as described in equations 19, 30, 55, 56, and 66. If the
datapoints were projected downward, i.e. if we take small strips da; and integrate over das, the
pdf of da; is Gaussian; ditto for the other coordinate. Thus, 68% of the points lie between these
dashed lines. This is what we mean by the phrase “being interested in knowing about a; without
regard to ao”. If we allow as to vary so as to minimize x? as we consider departures da, then the
pdf of da; has dispersion o,,. Alternatively, we can say that in a large number of experiments, the
pdf of da; follows a chi squared pdf with one degree of freedom if we don’t care what happens to
6&2.

If, however, we are concerned about the pair, then we must look not at the projection down

- 33 —

one axis or the other, but rather at the two-dimensional distribution. This is characterized by
the tilted ellipses. Here, for a large number of experiments, the pair (a;,as) follows a chi square
distribution with 2 degrees of freedom (if we don’t care about ag; if we do, it’s 3 degrees of freedom
and the ellipse becomes an ellipsoid, but this is very hard to plot!). For v = 2, 68.3% of the points
lie within Ay? = 2.3, where we have drawn the outer contour in Figure 2. The points inside this
ellipse are darker; 68.3% of the points lie within that ellipse.

The best description of the specifics of calculating these ellipsoids is in BR §11.5 (Confidence
Intervals, Confidence Levels for Multiparameter Fits). To describe it, we’ll talk specifically about
our numerical example, which has M = 4 measurements and N = 3 unknowns. The unknowns are
a = [ag, a1, as]. We'll first begin by discussing the case of single parameter; then we’ll generalize.

10.2. Calculating the uncertainties of a single parameter

First, suppose we want to know the value o,, without regard to the values of a; and a2. Having
already done the solution, we know the chi-square value of ag so we consider variations day around
this best value.

Pick a value of dag and redo the least squares solution for [a1,as]. This gives a new value for
x? which is, of course, larger than the minimum value that was obtained with dag = 0. Call this
difference Axgao. Determine the dependence of Axgao upon dag and find the value of §ag such that
Axgao = 1. This is the desired result, namely the value o,, without regard to the values of a; and
an.

This value is O’ZO = [a}aol, the same result quoted in equation 56.

Consider now what you’ve done in this process. For each least squares fit you used a trial value
of dag. In specifying day you had exactly one degree of freedom because you are fixing one and only
one parameter. Having done this, you could do a large number of experiments (or Monte Carlo
trials) to determine the resultant distribution of Axgao. It should be clear that this distribution
follows a chi squared distribution with one degree of freedom (v = 1). So the uncertainty o, is
that value for which Axgao = 1. (The chi square fit for the other two parameters has M — 2 degrees
of freedom, but this is irrelevant because—by hypothesis—you don’t care what happens to those
variables.)

10.3. Calculating the uncertainties of two parameter

Suppose we want to know the value (0g4,,04,) without regard to the value of a;. Now we
consider variations (dag, daz) around the best values (ag, a2).

Pick values for (dag, das) and redo the least squares solution for a;. This gives a new value for

—34 —

x? which is, of course, larger than the minimum value that was obtained with (dag, daz) = 0. Call
this difference Ax%éao,éw)‘ As above, this follows a chi square distribution, but now with v = 2.
Determine the dependence of Axéam&m upon (dag, dag) and find the set of values of (dag, das)
such that Ax%ao’&@) = 2.3. This is the desired result, namely the ellipse within which the actual

values (dag, dag) lie with a probability of 68.3%, without regard to the value of ay.
These values can be defined in terms of the curvature matrix [a], as we discuss below.

Consider now what you’ve done in this process. For each least squares fit you used trial values
of (dag,das). In specifying them you had exactly two degrees of freedom because you are fixing
two parameters. This distribution follows a chi squared distribution with two degree of freedom
(v = 2). So the uncertainty o4, is that value for which Axj, = 2.3, which follows from the
integrated probability for the chi squared distribution for v = 2. (The chi square fit for the third
parameter a; has M — 1 degrees of freedom, but again this is irrelevant.)

One can expand this discussion in the obvious way. Consider finally. ..

10.4. Calculating the uncertainties of three parameter

Suppose we want to know the values of all three parameters (or, generally, all N parameters).
Then we pick trial values for all three. There is no least squares fit for the remaining parameters,
because there are none. For each combination of the three (or N) parameters we obtain Ay,, which
defines a 3- (or N-) dimensional ellipsoid. This follows a chi squared distribution with v = 3 (or
N). We find the (hyper)surface such that Ay, is that value within which the integrated probability
is 68.3%. This defines the (hyper)surface of o,.

10.5. Doing these calculations the easy way

The obvious way to do the calculations described above is to set up a grid of values in the
parameters of interest (da,); perform the chi squared fit on the remaining variables, keeping track
of the resulting grid of x?; and plot the results in terms of a contour plot (for two parameters of
interest) or higher dimensions.

There’s an easier way which is applicable unless you are doing a nonlinear fit and the parameter
errors are large. The curvature matrix ([«] of equation 52d, the same as XX W) contains the matrix
of the second derivatives of x? with respect to all pairwise combinations of da,, evaluated at the
minimum x?; it’s known as the curvature matrix for this reason. Clearly, as long as the Taylor
expansion is good we can write

Ax% =¢aT . [a] - da (68)

- 35 —

Knowing the curvature matrix, we don’t have to re-do the fits as we described above. Rather, we
can use the already-known matrix elements. Use the following procedure [see NM §15.6 (Probability
Distribution of Parameters in the Normal Case)]. Follow the steps

1. Decide which set of parameters you are interested in; call this number N; and denote their
vector by a;. Here we use the above example and consider N; = 2 and a; = [ay, as].

2. From the N x N covariance matrix [a] !, extract the rows and columns corresponding to
the N; parameters and form a new N; X N; covariance matrix [a]i_l; in our case the original
covariance matrix is

1156.8125 —303.000 18.4375
[a]”' =XXI=| —303.000 81.000 —5.000 (69a)
18.4375 —5.000 0.31250

and it becomes

1156.8125 18.4375

—1
-1 _ XXI =
lod; 18.4375 0.31250

(69b)

3. Invert this new covariance matrix to form a new curvature matrix [a];. The elements differ
from the those in the original curvature matrix.

4. As usual, we have

Axgi = 5aT . [O[h . 5ai (70)

1
so find the locus of a; such that the integrated probability of Ax,, for v = N; contains 68.3%
of the space; e.g. for v = 2 this is Axa, = 2.3.

You may well wonder why, in steps 2 and 3, you need to derive a new curvature matrix from the
extracted elements of the original covariance matrix. Why not just use the extracted elements of

the original curvature matrix? To understand this, read the NM’s discussion surrounding equation
(15.6.2). Good luck.

10.6. Important comments about uncertainties

Having said all the above, we offer the following important Comments:

- 36 —

e The easiest way to calculate these (hyper)surfaces is to set up a grid in N;-dimensional space

of trial values for §a; and use a contour plot or volume plot package to plot the loci of constant
Ax2..

e The procedure described in §10.5 works well for linear fits, or nonlinear fits in which the o,
are small so that Ax? is well-approximated by the second derivative curvature matrix. This
is not necessarily the case; an example is shown in BR Figure 11.2. Here, the higher-order
curvature terms are important and it’s better to actually redo the fit for the grid of trial
values of a; as described above in §10.2, 10.3, and 10.4.

e The variance (i.e., uncertainty squared) of the derived parameters a depends only on the
elements in the covariance matriz [o]~'. These, in turn, depend only on the curvature matrix
[a]. These, in turn, depend only on X. This matrix X is the matrix of the quantities that
are known ezxactly. For example, we began with the example in which the elements of X were
the times at which the measurements were taken.

Generally, then, the curvature and covariance matrix elements depend on the locations of the
datapoints (the ensemble of ¢, in equation 1) but not on the measured values (the ensemble
of 6, in equation 1). And on your adopted values for oycqs,m. Because of this.. .

e Think before making your measurements about the covariance matrix and how to minimize
the off-diagonal elements. By taking measurements at well-chosen times, or well-chosen values
of the independent variable x,, whatever it is, you can really optimize the accuracy-to-effort
ratio! For example, in our numerical example if you can get a few measurements at negative
times you’ll efforts will be repaid in terms of much better accuracy for the y-intercept.

11. REJECTING BAD DATAPOINTS II.: STETSON’S METHOD PLUS
CHAUVENET’S CRITERION

Chauvenet’s criterion is an on-off deal: either you include the datapoint or you don’t. This
makes sense from a philosophical point of view: either a datapoint is good or not, so you should
either include it or exclude it.

However, when doing a nonlinear fit this presents a problem. As you iterate, the solution
changes, and a given datapoint can change from being “bad” to “good”. Or vice-versa. You can
imagine being in a situation in which the iteration oscillates between two solutions, one including a
particular datapoint and the other excluding it; the solution never converges, it just keeps chasing
its tail.

Enter Stetson’s beautiful technique®. Stetson reasons that we shouldn’t have an on-off criterion.
Rather, it should relieve a datapoint of its influence adiabatically: as its residual gets larger and

SStetson is one of those anomalies, a true expert on fitting. He invented many of the stellar photometry routines

- 37 —

larger, its weight gets smaller and smaller. With this, in nonlinear fitting all datapoints are always
included and their weights automatically adjust as the fit parameters home into their correct values.
And you can’t get into the chasing-tail syndrome that can happen with the strict on-off inclusion.

11.1. Stetson’s sliding weight

Stetson recommends using a sliding weight. To explain this, we review the ML concept of chi
square fitting. We write equations for the case of a single parameter to keep things simple, but it
works for multiparameter fits too. In chi square fitting, we define chi square as

M-—1 2
(ym —af Tm)
A (71a)
m=0 m

and we minimize x? by setting its derivative with respect to each parameter a equal to zero:

dx? & fam) AYm

Here Ay = (Ym — af(z,,))- This gives

M—-1
x A m
T 2um _ (71c)
m=0 Tin

Now we wish to modify this equation by introducing a weight w(|a,,,) that makes datapoints
with large |Ayy,| contribute less, so it reads like this:

M-1
xT A m
3 Llaym) am)BYm _ (79)
(o

m

m=0

It’s clear that we need the following properties for w(ay,,):

L. W(Ay,.) = W(|Ay.|)> meaning simply that it should depend on the absolute value of the residual
and not bias the solution one way or the other.

2. w(aym) = 1 as |[Ay,| — 0, meaning that datapoints with small residuals contribute their
full weight.

used in daophote, all of which use least squares techniques. He provides a lively, engaging discussion of many
fascinating and instructive aspects in his website: hitp://nedwww.ipac.caltech.edu/levell5/Stetson/Stetsond.hitml.

— 38 —

3. W(Ay,)) — 0as |Ay,| — oo, meaning that datapoints with large residuals contribute nothing.

Stetson recommends

1

Ay P
1+ (22)

This function w(|ay,,) has the desired properties. Also, for all 3 it equals 0.5 for [Ay,,| = ao. As

W(| Aym|) = (73)

B — oo the cutoff gets steeper and steeper, so in this limit it becomes equivalent to a complete
cutoff for |Ay,| > ao.

Stetson recommends o = 2 to 2.5, § = 2 to 4 on the basis of years of experience. Stetson is
a true expert and we should take his advice seriously; he provides a vibrant discussion to justify
these choices in real life, including an interesting set of numerical experiments.

However, for large M 1 see a problem with the choice @ = 2 to 2.5. For large 3, for which the
cutoff is sharp, it seems to me that the cutoff should duplicate Chauvenet’s criterion. Referring to
equation 42, this occurs by setting

o =erf ! <1 - ﬁ) (74)

and I recommend making this change, at least for problems having reasonably large M this makes
« larger than Stetson’s choice. I'm more of a purist than Stetson, probably because I'm a radio
astronomer and often fit thousands of spectral data datapoints that are, indeed, characterized
mainly by Gaussian statistics. Stetson is an optical astronomer and probably sees a lot more
departures from things like cosmic rays. Nevertheless, in a CCD image with millions of pixels, of
which only a fraction are characterized by nonGaussian problems such as cosmic ray hits, it seems
to me only reasonable to increase a above Stetson’s recommended values by using equation 74.

11.2. Implementation of the weight in our matrix equations

Clearly, implementing Stetson’s method requires a weighted fit, so you have to use the chi
squared technique discussed in §9.5. There equation 57 defines a matrix of weights (which is
diagonal) in which

Wom = — (75)

Comparing this with equation 7lc, it’s clear what to do: we modify this equation to read

-39 —

Wm
Wm=—— (76)

where the weight w,, is defined in equation 73.

Now you must not forget here that the solution depends on the weights w,,, which in turn
depend on the solution. Thus when you implement this technique you must iterate until the solution
converges by not changing.

12. MEDIAN, INSTEAD OF LEAST SQUARE, FITTING

Least square fitting minimizes the square of the residuals. This means that datapoints having
large residuals contribute importantly to the fit. If these datapoints are really bad, you've got
problems; this is why it’s important to get rid of outliers! Sometimes you're faced with a set of
datapoints that look bimodal: most datapoints have a Gaussian-like pdf, and many lie outside the
main distribution; sometimes it’s difficult to decide “where to draw the line”. Or you might have
nonGaussian statistics. In these cases, using least squares is not a great idea because least squares
gives greatest weight to the datapoints having the largest residuals, but you don’t know what the
residuals are until after you've done the fit—and the fit is influenced, and maybe even dominated,
by the outliers!

In these cases most astronomers use the median®. The median is the solution for which there
as many positive as negative residuals, irrespective of how big they are. As long as the discrepant
datapoints are symmetrically distributed with respect to sign, the median works well. In fact,
for any pdf that is symmetrically distributed with respect to sign, the median is a good solution
because it doesn’t depend at all on the details of the pdf. If the statistics are nonGaussian then
the error of the median is somewhat greater than that of the mean (by a factor of something like
Z; I forget, but it’s straightforward to calculate) but, when the datapoints are contaminated by
nonGaussian statistics, this is often less than the error introduced by the least squares technique.

12.1. The median and the double-sided exponential pdf

In fact, there is a specific pdf for which the median is the theoretically correct solution: the
double-sided exponential. Here the pdf of the measured datapoints is

e_‘Aym |/om
PAaym) = T (77)

Stetson recommends, instead of the median, his sliding weight technique. You should read his website

40 —

where, again, Ay, = (ym —af(,,))- For this, the logarithm of the likelihood function is (we exclude

(z
1

the term involving log H%;Ul 5, for simplicity)

&Ym= aften))
Liag,y =log(Lay,) == Y | ——— = (78a)
m=0 m
The absolute value signs are horrible to deal with, so we rewrite this as
Ym — af (@) Ym — f(z)
Liagm) = D, =y) (78b)

Aym>0 Aym <0

Now we take the derivative of £ with respect to a and set it equal to zero to find the maximum.
This gives

dL J@m) f@m)
= > -> =0 (79)
Ay>0

Amazing—neither Ay, nor a appears!

Consider first the case f(,,) = 1; this is like an average. If all o, are identical, this says: the
proper solution is the median, for which half the datapoints have positive residuals! More generally,

fem)

we have to define a generalized median where each datapoint is weighted by its . Can you

show that the median of the residuals is zero?sss

12.2. Doing a “chi square” fit for the double-sided exponential

We can use our standard chi square technique to do a median fit by adjusting the weights.
To see how, we rewrite equation 72 here; this is the equation that has Stetson’s additional weight

W(Ayml)

=0 (80)

We need to devise weight w(|a,,,)) so that this equation looks like equation 79. By inspection, we

require

Om

| Ay

(81)

Wm

so that in equations 72 and 80 we have

— 41 —

Wm 1
- 2
02, Om|Aym| (82)

and in weight matrix W of equations 57 and 76 we use the square root of the above quantity.

This works for multivariate fits using any set of functions f(,). However, we caution again
that the weights w,, depend on the parameters a and the parameters depend on the weights, so
you must iterate. In the experiments I've performed the iteration is slow (but sure). And at the
end you will certainly find that the reduced chi square ¥? will be nowhere near unity; nevertheless,
you should use errors calculated x?, not forcing x? to equal unity (so use equation 56 instead of
55). [THIS STATEMENT IS ALMOST CERTAINLY CORRECT BUT NEEDS TO
BE CHECKED WITH NUMERICAL EXPERIMENTS...].

12.3. IDL’s resources for median fitting

There are two cases for which IDL provides median fitting. One is IDL’s median function,
which takes the median of a bunch of datapoints. It’s great if there’s no functional dependence on
Zm. The other is ladfit (“least absolute deviation fit”). These are quick and you don’t have to
do any iterations. And they give a slightly more accurate answer than the above technique; this is
because IDL is careful about the exact definition of the median, e.g. when there is an even number
of datapoints.

However, with IDL’s routines there are no errors given; there is no possibility for differing o,,;
there is no covariance matrix. And, of course, you can’t fit anything more complicated than a
straight line.

13. FITTING WHEN ALL VARIABLES HAVE UNCERTAINTIES

We’ve mentioned that one of the essential assumptions of least squares is that the independent
variables are known with high precision and the errors occur only in the measured data. Suppose
you're fitting two variables, ¢ and 0, as in equation 1. This essential assumption means that ¢ is
known with high precision and all the uncertainty is in 6, and you are minimizing the squares of the
residuals in the 6-direction only. If both variables have uncertainties, then you have to be careful
because the essential assumption is violated. If you go ahead with a standard least squares fit when
there are errors in both coordinates, the slope will be systematically too small, as we discuss briefly
below.

Thanks to Stetson, the ML formulation of this problem is straightforward. Nevertheless, as far
as I know the proper formulation is rather recent; Stetson’s treatment is the first I've seen. Before
reviewing Stetson’s formulation, I want to warn you about some incorrect formulations:

— 492 —

1. Taylor §8.4 discusses the case incorrectly, arguing that you can account for z-variance 02 by

Tm
increasing the y-variance by the usual error propagation, i.e. define an equivalent y-variance
agm(equiv) = [agm
to a slope that is systematically too small.

+ (a104,,)?], where a; is the slope. As we mentioned, this procedure leads

2. Isobe et al (1990, ApJ 364, 104) discuss the case incorrectly. Look in particular at their
Section V, where they make 5 numbered recommendations. Two of these are incorrect:

(a) Number 3 says, in essence, that if you have measurement errors in y but not in z, and
want to predict z from y in some future dataset, that you should least squares fit the x
values (which have no errors) to the y. This is flat wrong. Again, it leads to a slope that
is systematically too small. The proper procedure is to fit y to = in the standard way,
which is consistent with the ML formulation and gives the right answer; then use the
resulting parameters, whose errors you know about, to predict z from y in the future.

(b) Number 4 says that if both z and y have errors, and your main focus is finding the true
slope, you should use their “bisector” method. I won’t explain this because this concept

is wrong.

Stetson has a beautiful discussion of the problem, which is obviously correct—both because it
makes sense and because numerical experiments show that the derived parameters don’t depend
on whether you consider z or y the independent variable. With his technique you are not restricted
to fitting a straight line (a one-degree polynomial). NM §15.3 provides another method, which is
more complicated and is restricted to a straight line. Here we review Stetson’s method.

13.1. A preliminary: Why the slope is systematically small

Why is the derived slope systematically too small if you use the standard least squares technique
when both variables have errors? To see this, take a look back at equation 5, where we explicitly
write the normal equations for fitting a straight line of the form As,, + Bt,, = 0,,. To focus the
discussion and make it easy, replace that problem with a single-parameter solution for only the
slope B, and use the usual variables (z,y) in place of (¢,0). Then we are fitting the set of M

equations

Bxm = ym (83a)

the set of two normal equations becomes just the single equation

Blz?] = [zy] (83b)

or, writing out the sums explicitly,

43 -

M—-1
B = Zm=0 T¥mYm (83¢)

= M—1
Zm:(] x*%z

Here we use the star to designate the perfectly-known independent variable z+,,. It is important
to realize that the z,, that appear in this equation are the perfectly-known ones xx,,; this is a
fundamental tenet of least squares fitting, which comes from the concept and principle of maximum
likelihood ML.

Because B is defined by the zx,, and we are asking what happens when we use the imperfectly
known x,, instead, let us reduce the problem to the essence and imagine that y,, is perfectly known,
i.e. Ym = y*,,; and that

Tkm = T — 0T (84)

where dx,, is the observational error in point m. If we do standard least squares on this situation,
as recommended by Taylor and Isobe et al, then we (incorrectly) rewrite equation 83c to read

S oo TmY

— mJm

B = 751\/[0_1 > (85a)
m=0 *m

that is, using z,, instead of z#,, (because we don’t know what zx*,, is!). Substituting equation 84,
and remembering that y,, = y*,, = Bx*,,, we have

M—
B = L= T + 3om) (85D)

SMZN 542 4 205,02, + 022,)

m=0

Now all terms having dz,,, sum to zero because the errors are distributed symmetrically around
zero. But the denominator contains dz2,. The denominator is irrevocably increased by this term,
which decreases the derived value of B from its true value. Yes, this is only a second-order effect,
but it matters—after all, x? is a second-order quantity! Try some numerical experiments!

13.2. Stetson’s method
18.2.1. Philosophy

To make things clear, we discuss the case of a straight line. Thus we assume

y* = ag + a1 T* (86)

— 44 —

where the * indicates the true quantity without errors. The measured points differ from the true
ones:

0Tm = Tm — Tkm 5 0Ym = Ym — Yk, (87)

and we define, as usual, the apparent residual in y,, as

AYm = Ym — A1Zm (88)

Note that this differs from the true residual in y,,, which is dy,,; the apparent residual Ay,, assumes
that z,, has no error.

41]

- —a,0%,,]

3k =

S N
25 .
= >
O:\ |11 ‘ | Y Y Y I Y ‘ | Y Y I Y | ‘ | Y I B | ‘ | I Y | ‘ L1 1 \:

0 1 2 3 4

X

Fig. 3.— Illustrating the discussion of fitting when both variables have errors. Here, as usual in

this document, differences are °

Ay <0, dym <0, dz, > 0.

‘measured minus true”, e.g. Ay, = ym — y*,,, etc.; in the figure,

Look at Figure 3. There (zy,,yn) is a measured point. The ellipse centered on it has (z,y)

45 —

axial ratio (0, 0y) and traces out a the locus where the point’s contribution to x? is constant; call
this contribution x2,. The straight line is the fitted straight line, assumed to be perfectly correct,
i.e. the line given by equation 86. The most probable place where the observed point (z,,ym)

would lie if it had no errors is (z#,, y*,,); it lies on the smallest ellipse centered on (%, ym), as

pictured. This is the ellipse having the smallest possible x2,. The true differences between the

observed and most probable points are (0z,,dym,) given by equation 87 above, where these are

measured from the center to the starred point on the ellipse.

It’s easy to calculate (dzy,, dyy,) in terms of Ay,,. These are the distances from the measured

to the starred point. We realize that the starred point must satisfy two criteria:

1. The straight line fit is tangent to the ellipse, so the slopes much match. The ellipse has

equation

so the slope is

dx? Sy
02—m + UTm = const = x?, (89)
ITm Ym
2
doym Oy, 0Ty

= __Ym 90
déz.m, 02 Oym (90)

and this, evaluated at (z+,,,y*,,) must equal a;.

2. The actual values must match. Rather than solve for these, we can solve in terms of Ay,

directly.

From the figure it’s clear that

Aym = 0Ym — a10zy, (91)

so combining equations 90 and 91 we get

and

gy = —— (92a)

Sy = — o (92b)

46 —

You could minimize x? by brute force. You would begin with the standard least squares
solution to get an estimate of the correct parameter values. Then you’d make up a grid in the
(ag,a1) plane to find the location of the minimum in x?, which is

M-1 M-1 (51‘2 5y2
=) xm= L (93)
o2 o
m=0 m=0 m Ym

which gives the parameters (ag,a1). The quantities (0z2,, dy2,) are given by equation 92. The errors
are given by the usual Ay? contours as discussed in §10.

13.2.2. Direct solution

Using the principle of maximum likelihood (ME), we find the minimum x? by taking the
derivative of x? with respect to each parameter a, and setting the derivative equal to zero. To
illustrate, we work this through for the slope. We are fitting for the slope in the equation

Ym = AT, (94)

for which y? is given by equation 93. Express (62, 0y,) in terms of Ay,,, as in equations 92, and
rewrite equation 93 to read

M—1 (ym — az M—1 Ay

2 m m . =Im
_ Z 95
X — a’o? + 't a’o? + a (95)

Differentiate with respect to a and set equal to zero. After cancelling extraneous factors, and using
equation 92a, we get

M- 1

- - 6
Z gx;n xm xm) 0 (96)
— a“oy O
m=0 m

The term azy, (2, — 02y,) defines the relevant diagonal matrix element in the curvature matrix,
and corresponds to the lower right element (B[t?]) in equation 5; the term v, (, —d2,,) corresponds
to [t0] in that equation. In other words, if we had standard least squares and no errors in z, equation
96 would read

M-

,_\

aa:m (Tm)

—0 (97)

m=0 ym

— 47 -

Looking at these and, also, referring back to §3, it’s easy to see how to generalize this and write
it in matrix notation. First, note that each datapoint has a net total error given by the denominator
of equation 95, and in general—i.e., when we fit something other than a straight line—the slope a
varies from point to point so that, even if the (0., 0,) are constant, the net total error is not. This
means you need to use the weighted fit technique of §9.2 and 9.5 with

o2 = (a2,02 + azm) (98a)

meas,m

where the local slope a,, is evaluated at (2, — 02,)

Ay = g—i (98b)
(Tm—0Tm), (Ym —0ym)
We repeat all this to be perfectly explicit:
1. You are fitting
X-a=Y (99)

In X, each column n contains a different function of z called f,,(x). The entry for (col, row) =
(n,m) = fn(zm).

2. In our normal equations we have the factor (z,, — dz,,) instead of z,,, which means that in

forming the matrix normal equations we need to define a new matrix

X_MOD = X — §X (100)

where the elements of §X are evaluated using equation 92. That is, X, , = fn(@m — 02m).
[Here we use IDL’s convention (m,n) instead of the conventional mathematical one (n,m).]
If it’s a straight-line fit, the slope is the same everywhere. If it’s a more general fit, the slope
is the local slope derived using equation 98; this slope can be calculated either analytically

or numerically.

3. Define the weighted versions of X, X_MOD, and Y

XW =W ## X =W X (101a)
X_MODW = W ## X_MOD = W - X_MOD (101b)
YW=W##Y =W Y (101c)

1

Omeas,m

(from equation 98a).

where W, p, =

48 —

4. Then the matrix normal equation is

[a-mod]-a = [S-mod] (102)

where
[a_mod) = X _ MODWT . X (103a)
[B.mod] = X _ MODWT .Y (103b)

But, you ask, how can we form the matrix 6X if we don’t know the slope a? The answer:
iterate. That is,

1. Solve y,, = ag + a1z, using standard least squares or chi square; or use any other technique
to get an initial guess for the parameters a. Calculate the local slopes using (z,, Ym).

2. Determine the Ay,, and calculate dz,, using equation 92a.

3. Calculate the matrices X_MODW, [a_mod], and [S-mod] as above.
4. Solve for new parameters a.

5. Calculate the local slopes using (2, — 0Zm, Ym — 0Ym)-

6. Loop back and repeat steps 2, 3, 4,and 5 until convergence.

7. After convergence, calculate the uncertainties, as usual, by the equivalent of equation 55, i.e.

s2 = Y2diag{[a_mod]} (104)

13.3. Commentary on Stetson’s solution
13.3.1. This solution is general and makes sense

This solution makes sense. Consider standard least squares in which o, — 0; here we should
revert to standard least squares. Also, when the slope is zero it’s like taking an average of ¥,,, so
it shouldn’t matter what o, is. Equation 92a satisfies these expectations because the denominator
— oc: the ellipse becomes tall and thin so dx,, — 0.

Similarly, if oy,, — 0 or a — oc then the ellipse becomes very short and fat: dz,, — Aﬂ%,

meaning that all of the correction goes to dx,,. This is equivalent to y being the independent

49 —

variable, and you can solve it this way, but of course it is much more efficient to use standard least
squares with y actually being the independent variable.

Finally, there’s no reason why we had to use a straight-line fit. It could have been any function;
in an arbitrary case, we replace the slope by the local slope, namely the derivative of the function
evaluated at the current value z,, + dz,,. So this technique is general. In his website, Stetson
provides an example of fitting a circle to points in (z,y)!

13.3.2. Yet another point I do not understand

First, I found Stetson’s website discussion charming and stimulating. However, I found it very
difficult to glean just exactly how he suggests solving the problem! His formulation involves using
differences from one iteration to the next and differs from the one I've given above.

Second, Stetson spends several pages discussing the importance of the difference between two
quantities. One is Ay,,. The other is

OF oF
e=—0F, = — 0Tm + — 0Ym (105)
8x TH*,Y* ay Tk, Y*
where
F(z,y) =ao+aiz -y (106)

You could put contours of constant F' on Figure 3. The zero contour is where F'(zx*,y*) = 0,
which is what you get with (02, 04,) = (0,0). This zero-level contour is the straight line solution
of the problem. Moving away from zero gives contours of constant €; these are offset from the zero
contour and have the same shape.

Stetson emphasizes that the proper thing to do is use €, in place of Ay,, in equation 92a.
However, after scratching my head for quite a while, I conclude that in fact these two quantities
are always equal, i.e. €, = Ay,,. I do not understand Stetson’s emphasis on this point.

13.4. Generalization to Multivariate Case

The subsections above deal with the simple case of two variables. It is straightforward to
generalize to the multivariate case. As in section 13.2.1, suppose you are fitting the multivariate
analogy of equation 86

zx = ag + a12% + agy* + ... (107a)

— 50 —

which is equivalent to

dz*x = ardz* + asdyx + . .. (107b)

Then the discussion follows the same track except that here, instead of the surface of x? being an
ellipse on a two-dimensional space, it’s an ellipsoid in a three-dimensinal space. And for the case of
N variables it’s an N-dimensional ellipsoid. We can’t draw this, but the ideas embodied in Figure
3 remain: we match the slopes and values to find the smallest ellipse, i.e. the smallest y?, for each
measured point. Equations 90 and 91 become

2

))
dbzy, = =m0 5, — Tom UM g5y g (108)
o5 0zZm oy 02Zm
and
Azpy = 02m — 10Ty — a20Ym + - .. (109)
Comparing equations 107b and 109, we see that
2 2
)
o= —Tm O o Tem s (110a)
oz 0zZm ajo;
2 2
)
ay = _U;m m 5y = — %5 Y (110b)
0y 02Zm azoy

(110¢c)

There are N such equations. We then generate N equations that express Az, in terms of
0%m, OYm, ... by successively substituting for dz, the right-hand-side versions of equations 110
into equation 109:

2
Azp = —ay [(asjim)? + 1:| 0Zm — A20Ym — - - . (111a)
o2
Az, = —a10z,, — a9 [7(@;” 2 + 1] OYm — ... (111b)
Ym

(111c)

~51 —

or, in matrix form,

2
—a [7@1(:;’;)2 + 1} —2612 e 0Zm Az,
—a1 —a9 [(w;;ﬁ + 1i| c 0Ym = Az, (112&)

or, symbolically,

A, 0y = Az, (112b)
so that, as in equation 92a, we obtain (02, 0ym, ...) in terms of Az, from
om=A 1 Az, (113)

Finally, as in equations 93 and 95, we compute x? from

-1

M 2 M-1 2
9 (Zm — @1Zm — Q2Ym — ...)7 Az 114
X= 02 +a?02 +a2o2 +... Z 02 +a’02 +a%o2 + (114)
m=0 *m 17 xm 2% Ym e m=0 *m 1% 2m 2Y Ym Tt
and equation 98a becomes
2 _ 2 2 2 2 2
Omeasm = Oz, + 010, +ayo, +... (115)

1

Omeas,m

which is used, as above, to calculate W, ,, =

14. USING SINGULAR VALUE DECOMPOSITION (SVD) IN IDL

Occasionally, a normal-equation matrix [o] = XX = XXW is sufficiently ill-posed that in-
verting it using standard matrix inversion doesn’t work. In its invert function, IDL even provides
a keyword called status to check on this (although I find that it is not perfectly reliable; the best
indicator of reliability is to check that the matrix product XX##XXI = I, the unitary matrix).
In these cases, Singular Value Decomposition (SVD) comes to the rescue. For a discussion of the
details of SVD, see NM §15.4.

You don’t need to read the following material to use the SVD technique in IDL. Rather, you
can just use IDL’s documentation for svdfit. The only problem is that you need to fit to a function

- 52 —

that you define in an IDL function. If you are fitting to tabular values, or to a function that is not
easily expressed analytically, then you can still use svdfit: read on.

First let us briefly describe the technique’. We are fitting

N-1

Ym = Z anfn(xm) ; (116)

n=0

The matrix element X, = fn(zm), i-e. it contains the values of f, evaluated at z,,. The idea is to
replace the set of functions f,(x,,) with the set of matrix elements X,,,,, = fn(m), i.e. to replace the
independent variable z,, by its index m and the function f,(x,,) by its matrix-element counterpart
Xnm-

We will denote the X matrix by the symbol X_SVD because we need to put it in a common
block; however, remember that X_SVD = X. You populate this matrix yourself, Often with values
that are not easily expressible analytically. Here’s the cookbook:

14.0.1. Step 0: Introduce a common block that will contain the X_SVD matriz

Let’s call this common block svdinput. The relevant IDL command is common svdin-
put,x_svd. The only catch is that, in IDL, you can’t use a variable before defining a common
block that contains it. So it is probably best to exit IDL and re-enter it, defining this common
block as the first statement.

14.0.2. Step 1: Define the function svdfcn

This function references the x_svd matrix, which you’ve put in common. This name of this
function is an input parameter to svdfit. It must have two input parameters, z,, and N, the
number of parameters to fit; and it must provide the N values of the parameters’ functions f,(z,)
for each measurement location z,,. So we replace the set of x,, by the the indices m and f,(z,)
by the set of X_SVD, ;,, where the * means all N values.

function svdfcn, dataindex, N
common svdinput

return, x_svd[*, dataindex]
end

"It is a pleasure to thank Jason Wright for telling me about this technique.

— 53 —

14.0.83. Step 2: Populate the X_SVD matriz and Y vector almost as before

Here you populate the X_SVD and Y matrices just as before in §5.2 and 9.5, with some
small differences. One, the measurement uncertainties are an independent input to svdfit so we
don’t create the weighted versions of X_SVD and Y. Two, we must make Y a row vector instead
of a column vector. Here we repeat all the IDL. commands as in §9.5, but without the verbal
commentary, and include this slight modification for Y. We use the numbers in the numerical
example of §5.2 to be absolutely unambiguous about what to do. In this example, the number of
unknowns N = 3 and the number of measurements M = 4.

1 5 25
X_SVD = Lo 4 (117a)
1 9 381
1 11 121
Y = [142,168,211,251] . (117b)
and we define ME, the vector of measurement errors, to be
ME = [5.,3.,7.,4.] . (117c¢)

where we have invented a four arbitrary values for illustrative purposes. You can, of course, use
unity for all of the elements of ME; also, you can call svdfit without specifying any measurement
errors, in which case it becomes a standard least squares fit. In the following we assume that you
are doing a chi-square fit, i.e. following §9.5.

14.0.4. Step 3: Call svdfit

Now in in §9.5 we replace 59 to 67 (and in §5.2, equation 23 to 30) by the following:

dataindexr = indgen (M) (118a)

where M, we remind you, is the number of measurements; and

a = svdfit(dataindex, Y, N, measure_errors = ME, function_name =’ svdfcn/,

~ 54 —

yfit = ybar, chisq = chi_sq, variance = vardc_official, sigma = sigdc_official,

covar = XXWI, singular = singular) (118b)

ncov = XXWI/sqgrt(vardc_official#vardc_official) (118c¢)

If you are doing least squares fitting and setting all elements of ME equal to unity, then of course

chisq is the same as the sample variance s2.

This technique is simpler because it requires fewer IDL statements. However, you have to define
the additional function and, if you are using the X_SVD matrix, the common block, which must
be done at the beginning of the IDL session. This technique is good in those rare instances where
inversion of the curvature matrix fails, but it works for all cases, of course. NM §15.4 extols its
advantages and mentions its one disadvantage, which is requiring more memory (and, I'm guessing,
more computer time); they recommend that you use it always. I got along without it for 40 years,
perhaps because I never did any truly challenging problems, but I'll probably change my default
technique to this. Note, however, you can’t use svdfit for errors in both variables discussed in
§13.2.2.

15. BRUTE FORCE CHI SQUARED AND THE CURVATURE MATRIX
15.1. Parameter Uncertainties in Brute Force Chi square fitting

There are times when “brute force” least squares is appropriate. For example, if you have
a nonlinear problem in which taking derivatives is complicated, and if the number of unknown
coefficients is small, then it might be easier to search through the coefficient parameter space,
calculate the o2 for each combination of parameters, and find the minimum.

This procedure certainly provides the least squares solution. However, getting the uncertainties
requires a bit more work. You can get the full set of uncertainties if you know the curvature matrix,
which is the matrix of second derivatives of the pairwise parameters evaluated at the minimum 2.
Having found the minimum, you can derive these curvatures (equal to half the second derivatives)
numerically. Then, to find the uncertainties in the parameters, follow the procedure in §10.5.

15.2. Example: the single-parameter case

It is particularly easy to discuss this if there is only one parameter. Let us consider this case
and assume that it is a simple weighted average (which is the least squares solution for a constant).
Suppose the best fit x? value for the unknown coefficient (i.e., the weighted average) is z and that

— 55 —

its variance is J?EO. Now consider offsets from z(, namely xg + dz. Because x? is minimized at x,
it is clear that

1 d2x2 9
2 doz2 o

2 2 2
Ax* = Xzo+éz — Xzg = (119)
Generally, the curvature is the relevant element of the curvature matrix [a]. In the particular case
of a weighted average, there is just one element so

2.2
%% = [ao] = [os]oo = Y (%) (120)

meas,m

Because we have a single parameter g, its variance o2, is the offset dz2 from zy that gives

Ax? = 1. If we had more than one variable, we’d define ellipsoids in the manner discussed in §10.5.

Are you bothered by the fact that the curvature is independent of the data values? Then go
back and read §9.3.

16. NOTATION COMPARISON WITH NUMERICAL RECIPES

I learned least squares from Appendix A of Chauvenet (1863). He didn’t use x? and didn’t
use matrix techniques, but §1 and 2 follows his development quite closely. I wrote the first version
of this document before knowing of NM’s treatment, which explains my orientation towards least
squares instead of chi-square. I'm fortunate in this approach because it made me realize the pitfalls
one can get into with chi-square, as I discuss in §9.

On the other hand, NM describe the least squares approach with some disdain in the discussion
of equation (15.1.6) and warn that it is “dangerous” because you aren’t comparing the residuals to
the intrinsic inaccuracies of the data. In astronomy, though, more often than not you don’t have
an independent assessment of g,,eqs. But you might know the relative weights, and this is a plus
for Chi-square fitting. In any case, heed our warnings about chi-square fitting in §9.

In this writeup I have revised my old notation to agree, partially, with NM’s. This effort wasn’t
completely successful because I didn’t read NM very carefully before starting. To make it easier
to cross-reference this document with NM, T provide the following table of correspondences (left of
the double arrow is ours, to the right is theirs):

X+— A (121a)

Y+«—b (121b)

— 56 —

XT. X =XX =[a] +— AT . A = [q] (121c)

XX ' =XXI=[a] '¢—[a)'=[C]=C (121d)

I use M for the number of measurements and N for the number of unknown coefficients; NM uses
the opposite, so we have

N+— M (121e)
M +— N (121f)
REFERENCES

Bevington, P.R. & Robinson, D. 1992, Data Reduction and Error Analysis for the Physical Sciences
(WCB/McGraw-Hill).

Chauvenet, W. 1863, A Manual of Spherical and Practical Astronomy, Dover Press.
Cowan, G. 1998, Statistical Data Analysis, Clarendeon Press.

Press, W.H., Flannery, B.P., Teukolsky, S.A., & Vetterling, W.T. 2001, Numerical Recipes (second
edition), Cambridge University Press.

Taylor, J.R. 1997, An Introduction to Error Analysis, University Science Books.

This preprint was prepared with the AAS IATEX macros v5.0.

