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Carl Heiles June 12, 2002In our never-ending attempt to make your life easier, we present you with this highly in-stru
tive, time-saving, and labor-saving informative do
ument! Here we give heuristi
 derivations,dis
ussions, examples, and the pres
ription for doing least-squares the easy way using matrix te
h-niques generally, and spe
i�
ally in IDL. This pres
ription is given as an example in x5, and thepower-user 
an skip the details and go dire
tly there.This do
ument is an update, 
orre
tion, 
lari�
ation, and elaboration of a previous one madeex
lusively for the undergraduate lab 
lass. Here we extend the dis
ussion 
onsiderably to 
overmost of what anyone will need in future professional life. This makes the do
ument longer, butthe �rst parts (x1 to 7) are still a

essible at the introdu
tory level be
ause they haven't 
hangedmu
h. We o

asionally refer to the books Bevington and Robinson (1992); BR), Cowan (1998),Press et al (2001; Numeri
al Re
ipes, NM) and Taylor (1997; T97), and we update the notationto partially 
onform with NM. We owe se
tions 11 to 13 to the fantasti
ally ex
ellent website ofStetson, http://nedwww.ipa
.
alte
h.edu/level5/Stetson/Stetson4.html.We begin with least squares in the 
lassi
 sense, meaning we minimize the sum of squaresinstead of minimizing �2. In astronomy, more often than not you don't have an independentassessment of the intrinsi
 un
ertainty in the data, whi
h means you 
annot evaluate �2, and theleast squares approa
h is the only option. However, often in astronomy you do want to weightobservations di�erently, e.g. be
ause of integration time, and this requires an approa
h similar tothe �2 one. In later se
tions we generalize to the �2 and this other weighted-observations 
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ase . . . . . . . . . . . . . . . . . . . . . . . . . . . 5416 NOTATION COMPARISON WITH NUMERICAL RECIPES 551. LEAST-SQUARE FITTING FOR TWO PARAMETERS, AS WITH ASTRAIGHT LINE.1.1. The 
losed-form expressions for a straight-line �tFirst 
onsider the least squares �t to a straight line. Let �m be the mth measurement of theobserved quantity (in this example, �m is zenith distan
e; tm be the time of the mth measurement;M = the total number of observations, i.e. m runs from 0 to M � 1. Remember that in the least-squares te
hnique, quantities su
h as tm are regarded to be known with high a

ura
y while thequantity �m has un
ertainties in its measurement.We expe
t the zenith distan
e �m to 
hange linearly with time as follows:A+Btm = �m : (1)Given this, one does the maximum likelihood (ML) estimate assuming Gaussian statisti
s. Whenall measurements have the same intrinsi
 un
ertainty, this is the same as looking for the solutionthat minimizes the sum of the squares of the residuals (whi
h we will de�ne later). This leads tothe pair of equations (Taylor 8.8, 8.9), 
alled the normal equationsAN +B X tm =X �m (2a)A X tm +B X t2m =X tm�m (2b)Two equations and two unknowns|easy to solve! The 
losed-form equations for (A;B) are Taylor'sequations 8.10 to 8.12.1.2. Better is the following generalized notation.We want a way to generalize this approa
h to in
lude any fun
tional dependen
e on t and evenother variables, and to have an arbitrarily large number of unknown 
oeÆ
ients instead of just thetwo (A;B). This is very easy using matrix math. We will ease into this matrix te
hnique gently,by �rst 
arrying through an intermediate stage of notation.



{ 5 {First generalize the straight-line �t slightly by having two fun
tional dependen
es insteadof one. We have something other than the time tm; 
all it sm. For example, we 
ould havesm = 
os(tm) or sm = t2m; or we 
ould have sm = xm, where xm is the position from whi
h theobservation was taken. To 
orrespond to equation 1, sm = 1. Then we rewrite equation 1 to in
ludethis extra dependen
e Asm +Btm = �m : (3)There are still only two unknown parameters, so this is an almost trivial generalization; later we'llgeneralize to more parameters.We have M equations like equation 3, one for ea
h measurement. They are known as theequations of 
ondition be
ause they are the equations that spe
ify the theoreti
al model to whi
hwe are �tting the data. There are M equations of 
ondition and only two unknowns (A and B).This is too many equations! We have to end up with a system in whi
h the number of equations isequal to the number of unknowns.To a

omplish this, from equation 3 we form the normal equations. The number of normalequations is equal to the number of unknowns, so in this 
ase we will have two. We 
ould 
arrythrough the same ML derivation to derive equations equivalent to equation 2; the result isA X s2m +B X smtm =X sm�m (4a)A X smtm +B X t2m =X tm�m : (4b)We 
an rewrite these equations using the notation [st℄ =P smtm, et
.:A[s2℄ +B[st℄ = [s�℄ (5a)A[st℄ +B[t2℄ = [t�℄ : (5b)This is, of 
ourse, pre
isely analogous to equation 2. And now it's 
lear how to generalize to moreparameters!2. LEAST-SQUARE FITTING FOR MANY PARAMETERS, AS WITH ACUBICWith this notation it's easy to generalize to more (N) unknowns: the method is obviousbe
ause in ea
h equation of 
ondition (like equation 3) we simply add equivalent additional terms



{ 6 {su
h as Cum, Dvm, et
; and in the normal equations (equation 5) we have more produ
ts and alsomore normal equations.Let's take an example with four unknowns (N = 4), whi
h we will denote by A;B;C;D; thiswould be like �tting a 
ubi
. With N = 4 we need at least �ve data points (M = 5), so there mustbe at least �ve equations of 
ondition. The generalization of equation 4 is the M equationsAsm +Btm + Cum +Dvm = �m ; (6)with m = 0 ! (M � 1). Again, the least squares �tting pro
ess assumes that the sm; tm; um; vmare known with zero un
ertainty; all of the un
ertainties are in the measurements of �m. We thenform the four normal equations; the generalization of equation 5 written in matrix format is:26664 [ss℄ [st℄ [su℄ [sv℄[ts℄ [tt℄ [tu℄ [tv℄[us℄ [ut℄ [uu℄ [uv℄[vs℄ [vt℄ [vu℄ [vv℄ 3777526664 ABCD 37775 = 26664 [s�℄[t�℄[u�℄[v�℄ 37775 (7)The N �N matrix on the left is symmetri
. With N equations and N unknowns, you 
an a
tuallysolve for A;B;C;D!3. FAR, FAR BEST AND EASIEST: MATRIX ALGEBRA.The above equations are terribly 
umbersome to solve in a 
omputer 
ode be
ause they requirelots of loops. However, it be
omes trivial if we use matri
es. Here we designate a matrix byboldfa
e type.We illustrate the matrix method by 
arrying through the above N = 4 example, and we assumethat there are 5 independent measurements (M = 5). We �rst de�ne the matri
es
X� = 2666664 s0 t0 u0 v0s1 t1 u1 v1s2 t2 u2 v2s3 t3 u3 v3s4 t4 u4 v4

3777775 (8a)
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a� = 26664 ABCD 37775 (8b)
Y� = 2666664 �0�1�2�3�4

3777775 (8
)
so, in matrix form, the equations of 
ondition (equation 6) redu
e to the single matrix equationX� � a = Y� : (9)The notation for these equations 
orresponds to NM's. We write them with subs
ripts � to empha-size that they are 
al
ulated without dividing by �meas, i.e. that we are doing least squares insteadof 
hi square �tting. For 
hi square �tting, see x9 and 10.Our matrix X� 
orresponds to NM's \design matrix" A of Figure 15.4.1, ex
ept that ourelements are not divided by �meas;m, and the matrix equation of 
ondition (equation 9) is identi
alto the expression inside the square bra
kets of NM's equation 15.4.6. The di�eren
es arise be
ausehere we are dis
ussing least squares �tting instead of 
hi square �tting, i.e. we have omitted thefa
tors involving �meas;m, the intrinsi
 measurement un
ertainties (x9).Again, there are more equations than unknowns so we 
an't solve this matrix equation dire
tly.So next we form the normal equations from these matri
es. In matrix form, the normal equations(equation 7) redu
e to the single equation[��℄ � a = [��℄ ; (10)(NM equation 15.4.10), where [��℄ = XT� �X� (11a)[�� ℄ = XT� �Y� (11b)



{ 8 {The matrix [��℄ is known as the 
urvature matrix be
ause ea
h element is twi
e the 
urvature of�2 (or �2) plotted against the 
orresponding produ
t of variables.The number of equations is equal to the number of unknowns, so the solution of the matrixequation is easy|just rewrite it by multiplying both sides by the inverse of [�� ℄ (that is, by [��℄�1),whi
h gives a = [��℄�1�[��℄ : (12)All of these matrix operations are trivially easy in IDL (x5).4. UNCERTAINTIES IN THE DERIVED COEFFICIENTS.How about the un
ertainties in the derived quantities 
ontained in the matrix a?The �rst thing to do is derive the sample varian
e s2 (the square of standard deviation, ormean error, or dispersion, et
) of the individual data points using the generalization of the usualde�nition for a straight average of x, s2 = [PM�10 (xm � xm)2=(M � 1)℄. The generalization is,simply, to repla
e the M � 1 in the denominator by � = M � N . In the straight-average 
ase,N = 1 so this �ts. Here � is known as the number of degrees of freedom and N , the number ofunknown 
oeÆ
ients, is known as the number of 
onstraints. So we haves2 = 1M �N M�1Xm=0(�m � �m)2 ; (13)where �m are the values for �m predi
ted by the derived quantities a. Note the di�eren
e: �m arethe observed values, while �m are the values predi
ted by the least squares �t. The predi
ted valuesare those that are 
omputed from the derived 
oeÆ
ients A;B;C. . . The M quantitiesÆ�m = �m � �m (14)are 
alled the residuals or deviations from the �t.It's worth reiterating some essentials about s2, and in parti
ular the denominator (M � N).First 
onsider the 
ase of a single-parameter �t, e.g. N = 1. Then we 
annot possibly derivea sample varian
e from only one measurement M = 1; but we 
an from two M = 2. So thedenominator makes sense from that standpoint. The same goes for N > 1.Next 
onsider the e�e
t of using (M � N) in the denominator: it in
reases s2 by the ratioMM�N over what you'd get if you just took a straight average and used M . This 
ompensates forthe fa
t that you are subtra
ting �m, whi
h is derived from the data, instead of the truly 
orre
t



{ 9 {value ��. (In formal statisti
al language, �� is the mean of the parent population from whi
h yourset of measurements is drawn). If you used the truly 
orre
t value ��, then the sum would be largerthan when using �m. The use of M � N in the denominator 
ompensates for this larger value inexa
tly the right way: the expe
tation value E(s2) for a large number of experiments is pre
iselyequal to the normal varian
e �2, whi
h you'd get by using [�� and M ℄ instead of [�m and (M �N)℄in equation 14; see Cowan equations 5.9 and 5.10. So s2 is, in fa
t, exa
tly the number we want:an unbiased estimate of the true varian
e of our sample. Why not use [�� and M ℄ in equation 14?The reason is obvious: we don't know ��! (If we did, we wouldn't be doing this analysis!)It's easy to 
al
ulate the �m with matri
es. First de�ne the matrix Y� that 
ontains thesevalues:
Y� = 2666664 �0�1�2�3�4

3777775 (15)
Cal
ulating Y� is simple: Y� = X� � a : (16)Note that X� is already de�ned (equation 8) and a was solved for in equation 12. It's 
onvenientto de�ne the residual matrix ÆY� = Y� �Y� (17)so we 
an write s2 = 1M �N ÆYT� � ÆY� : (18)This is the sample varian
e of the datapoints, not the varian
es in the derived 
oeÆ
ients.We 
an obtain these as before, by generalizing the results from the two-parameter 
ase like thestraight-line �t dis
ussed in x1. We won't go through the derivation here; you 
an �nd it in Taylorx8.4 and equation 8.16, 8.17. The result issa2 = s2diagf[�� ℄�1g (19)



{ 10 {Or, to put it simply in words: to get the varian
e of 
oeÆ
ient n in the matrix a, multiply s2 bythe nth diagonal element of [��℄�1.Although the above equation for sa2 is 
orre
t, there is more to the story be
ause of 
ovarian
es,whi
h are the o�-diagonal elements. We return to this topi
 in x9.5. A NUMERICAL EXAMPLE AND ITS SOLUTION IN IDL.If the following sounds like Greek to you, take a look at x3 and 4.5.1. Generation of the numeri
al exampleSuppose that we make four measurements of the angle � and we want to �t to a paraboli
 fun
-tion in time t. In the notation of equation 6, s would be unity, t the time, and u the time squared,so the number of unknowns is three (N = 3). Be
ause there are four independent measurements(M = 4) the subs
ripts run from m = 0! 3. Suppose that the four values of time are 5, 7, 9, 11.First we 
reate the matrix X in IDLX = 
tarr(N;M) = 
tarr(3;4) (20)and then we populate it with numbers. In your own work, you would normally do this by readinga data �le and transferring the numbers to the matrix using IDL 
ommands; to work through thisexample, you might manually type them in. After populating the matrix, in dire
t 
orresponden
ewith equation 8a we have sm = 1, tm = timem, um = time2m:
X = 26664 1 5 251 7 491 9 811 11 121 37775 (21a)

Suppose that the four measured values of � are (equation 8
)
Y = 26664 142168211251 37775 : (22a)
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Fig. 1.| Our numeri
al example. Stars are the four datapoints; the solid line is the �t. We performtwo �ts: one uses the original de�nition of time; the other uses (time � 8), in e�e
t moving they-axis to the dashed line. The two �ts give the same line but the 
oeÆ
ients and their errors di�ergreatly.Figure 1 shows the datapoints, together with the �tted 
urve.One word of 
aution here: in IDL, to get these into a 
olumn matrix, whi
h is how we'vetreated Y above, you have to de�ne Y as a two-dimensional array be
ause the se
ond dimensionrepresents the 
olumn. When working in IDL it's more 
onvenient to de�ne a row ve
tor, whi
hhas only one dimension; in IDL you do this by de�ning Y = [142; 168; 211; 251℄; you 
an make itinto the ne
essary 
olumn ve
tor by taking its transpose, i.e. Y = transpose(Y).5.2. Solution of the Numeri
al Example in IDLIn IDL we 
al
ulate the normal equation matri
es and denote the [�℄ in equation 11a by XX:XX = transpose(X)##X ; (23a)



{ 12 {and we denote the [�℄ in equation 11b by XY:XY = transpose(X)##Y : (23b)In IDL we take the inverse of [�℄ (same as XX) byXXI = invert(XX) : (24)The least-square �tted quantities are in the matrix a (equation 12), whi
h we obtain in IDLwith a = XXI ## XY : (25)In IDL we denote the matrix of predi
ted values �m by YBAR, whi
h isYBAR = X ## a : (26)and we 
an also de�ne the residuals in Y asDELY = Y �YBAR (27)In IDL we denote s2 in equations 13 and 18 by s sq and writes sq = transpose(DELY)##DELY=(M �N) : (28a)or s sq = total(DELY ^ 2)=(M �N) : (28b)It is always a good idea to plot all three quantities (the measured valuesY, the �tted valuesYBAR,and the residuals DELY) to make sure your �t looks reasonable and to 
he
k for bad datapoints.To get the error in the derived 
oeÆ
ients we need a way to sele
t the diagonal elements of amatrix. Obviously, any N �N matrix has N diagonal elements; a 
onvenient way to get them isdiag elements of XXI = XXI[(N+ 1) � indgen(N)℄ (29)



{ 13 {In IDL, we de�ne the varian
es of the N derived 
oeÆ
ients by vard
 (think of \varian
es ofderived 
oeÆ
ients"). You 
an get this as in equation 19 from1vard
 = s sq �XXI[(N+ 1) � indgen(N)℄ : (30)5.3. Dis
ussion of the numeri
al exampleFor this numeri
al example, the solution (the array of derived 
oeÆ
ients) isa = 264 96:62504:50000:8750 375 (31a)and the errors in the derived 
oeÆ
ients [the square root of the �2's of the derived 
oeÆ
ients, i.e.[�2n℄1=2 or, in IDL, sqrt(vard
) in equations 30℄ are:�A = 264 34:0129:0000:5590 375 : (31b)These results look horrible: the un
ertainties are large fra
tions of the derived 
oeÆ
ients,The reason: we have spe
i�
ally 
hosen an example with terrible 
ovarian
e. And the greatthing is this 
an be �xed easily (at least in this 
ase|
ertainly not always), without taking moredata!6. THE COVARIANCE MATRIX AND ITS NORMALIZED COUNTERPARTFirst we provide a general dis
ussion, then we apply it to the above numeri
al example.6.1. De�nition of the normalized 
ovarian
e matrixThe varian
es in the derived 
oeÆ
ients are obtained from the diagonal elements of XXI. Theo�-diagonal elements represent the 
ovarian
es between the derived 
oeÆ
ients. Covarian
e means,1If you used equation 28a instead of 28b, then IDL 
onsiders s sq an array and you need to use a # instead of a� in this equation.
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i�
ally, the degree to whi
h the un
ertainty in one derived 
oeÆ
ient a�e
ts the un
ertainty inanother derived 
oeÆ
ient.Be
ause the 
ovarian
e matrix elements relate pairwise the various 
oeÆ
ients, the units ofthe matrix elements are all di�erent. This makes it 
onvenient to redu
e all the matrix elementsto a standard set of units|namely, no units at all. So before dis
ussing the 
ovarian
e matrix perse, we �rst dis
uss its normalized 
ounterpart.The normalized 
ovarian
e matrix2 n
ov is derived from XXI by dividing ea
h element by thesquare root of the produ
t of the 
orresponding diagonal elements. Let n
ov be the normalized
ovarian
e matrix; then n
ovik = XXIikpXXIii XXIkk (32)This is the same normalization that one does with the Pearson linear 
orrelation 
oeÆ
ient. Infa
t, the elements of the normalized 
ovarian
e matrix are the 
orrelation 
oeÆ
ients. In IDL, youdo the following: d
 = XXI[(N+ 1) � indgen(N)℄ (33a)n
ov = XXI=sqrt(d
#d
) (33b)In the above, d
#d
 is an N�N matrix 
onsisting of produ
ts of the diagonals ofXXI, so dividingXXI by sqrt(d
#d
) generates the normalized version.Be
ause n
ov is a normalized 
ovarian
e matrix, you might think that it's non-normalizedparent is XXI|and you'd be almost right. The true 
ovarian
e matrix C (as de�ned in Numeri
alRe
ipes for example) is C = �2measXXI (34)be
ause C is de�ned for �2 instead of �2 (see x9).In n
ov, the diagonal elements are all unity and the o�-diagonal elements re
e
t the inter-dependen
e of the derived 
oeÆ
ients on ea
h other. The o�-diagonal elements 
an range from�1 ! 1. Ea
h matrix element is the 
orrelation 
oeÆ
ient between the un
ertainties of its twoparameters. In parti
ular, suppose that the data happens to produ
e a 
oeÆ
ient that di�ers fromits true value by some positive number. If the normalized matrix element is negative, then theother 
oeÆ
ient will tend to di�er from its true value by a negative number.2It is a pleasure to thank Doug Finkbiener for introdu
ing me to this 
on
ept.
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ussion of what the 
ovarian
e means. Suppose you are least-squares�tting for two derived 
oeÆ
ients (A0 and A1). When you do a least-squares �t to a set of data,you are �tting one set of data out of a possible in�nity of possible sets that you'd get by repeatingthe experiment, and your parti
ular set of data happens to produ
e spe
i�
 values of A0 and A1,whi
h di�er from the true values (A�0; A�1) by amounts ÆA0 and ÆA1. If their 
ovarian
e is zero,then in the in�nity of data sets you'd �nd that ÆA0 is un
orrelated with ÆA1. But if it is nonzero,these two quantities would be 
orrelated.A high 
ovarian
e is bad be
ause the derived variables depend on ea
h other. For one, thismeans that with noisy data power 
an be shared or passed from one parameter to/from its 
ovariant
ounterpart(s). As we shall see x10, it also signi�
antly in
uen
es the un
ertainties in derived
oeÆ
ients. Often a high 
ovarian
e results from a poor 
hoi
e of fun
tions that you are �tting oreven a bad 
hoi
e of the zero point of the independent variable|as in our numeri
al example (seethe next subse
tion). And, as in that example, you 
an sometimes eliminate the bad 
ovarian
eby reformulating the problem|you don't even need to take more data! The best reformulationinvolves using a set of orthonormal fun
tions. However, sometimes your interest is in a spe
i�
 setof fun
tions that are not orthogonal, and in su
h 
ases it makes no sense to 
onvert to orthogonalfun
tions|be
ause you just have to 
onvert ba
k again and do the error propagation after-the-fa
tinstead of letting the least squares pro
ess do it for you.6.2. The 
ovarian
e in our numeri
al exampleApply equation 33 to obtain the 
ovarian
e matrix for our numeri
al example:n
ov = 264 1 �:989848 :969717�:989848 1 �:993808:969717 �:993808 1 375 : (35)The o�-diagonal elements are huge. This is the reason why our solution is so bad.In this seemingly inno
uous example we have an ex
ellent 
ase of a poor 
hoi
e of zero pointfor the independent variable (the time). The reason is 
lear upon a bit of re
e
tion. We are �ttingfor y = A0 + A1t + A2t2. The 
oeÆ
ient A0 is the y-inter
ept and A1 is the slope. Inspe
tion ofFigure 1 makes it very 
lear that an error in the slope has a big e�e
t on the y-inter
ept.Now we retry the example, making the zero point of the time equal to the mean of all thetimes, that is we set (timem = timem� 8). We get the same �tted line, but the derived 
oeÆ
ientsare 
ompletely di�erent|and amazingly better! We get
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A = 264 188:62518:5000:87500 375 (36a)
�A = 264 3:581:000:559 375 : (36b)In rede�ning the origin of the independent variable, we have made the zero inter
ept 
ompletelyindependent of the slope: 
hanging the slope has no a�e
t at all on the inter
ept. You 
an see thisfrom the normalized 
ovarian
e matrix, whi
h has be
omen
ov = 264 1 0 �0:780868810 1 0�0:78086881 0 1 375 : (37)whi
h is ni
e, but not perfe
t: Our step is partial be
ause the se
ond-order 
oeÆ
ient A2 a�e
tsA0 be
ause, over the range of [(time � 8) = �3! +3℄, the quantity [A2 �(timem � 8)2℄ is alwayspositive and is thereby 
orrelated with A0.We 
ould 
omplete the pro
ess of orthogonalization by following the pres
ription in BR 
hapter7.3, whi
h dis
usses the general te
hnique of orthogonalizing the fun
tions in least square �tting.The general 
ase is a royal pain, so mu
h so that we won't even 
arry it through for our example.For some parti
ular 
ases, standard pre-de�ned fun
tions are orthogonal. For example, if tmis a set of uniformly spa
ed points between (�1 ! 1) and you are �tting a polynomial, then theappropriate orthogonal set is Legendre polynomials. This is good if your only goal is to representa bun
h of points by a polynomial fun
tion, be
ause the 
oeÆ
ients of low-order polynomials areindependent of the higher ones. However, it's more work and, moreover, often you are interested inthe 
oeÆ
ients for spe
i�
 fun
tions that don't happen to be orthogonal; in su
h 
ases, you shouldjust forge ahead.But always look at the normalized 
ovarian
e matrix. Suppose one pair of o�-diagonal elementsdeparts signi�
antly from zero. Then their 
orresponding fun
tions are far from being orthogonaland the varian
es of the derived 
oeÆ
ients will su�er as a result. You might be able to eliminateone of the parameters to make the �t more robust. For example, suppose one fun
tion is t 
os(t)and the other is sin(t) 
os(t). If the range of t is small, these two fun
tions are indistinguishableand have a large 
ovarian
e; you should eliminate one from the �t. If the range of t is large, thereis no problem.
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ussion of 
ovarian
e, see x10. Also, you might also want to try out anotherexample in Taylor's x8.5.7. REJECTING BAD DATAPOINTS I.: CHAUVENET'S CRITERIONLeast squares �tting is derived from the maximum likelihood argument assuming the datapointresiduals Æym have a Gaussian pdf. This means that the errors are distributed asp(Æy;�) = 1p2��e�� Æy22�2� (38)where �2 is the true varian
e of the datapoints, i.e. s2 in equation 13 (to be pre
ise, s2 needs to beaveraged over many experiments).More importantly, the probability of �nding datapoints inside the limits ��y isP(jÆyj<�y) = Z +�y��y p(Æy;�)d(Æy) = erf � �yp2�� (39)where we use the 
ommonly-de�ned error fun
tion erf(X) = 1p� R +X�X e�x2dx. A parti
ularly impor-tant value is for �y = �, for whi
h P(jÆyj<�) = 0:683 (40)If we have an experiment with M datapoints, then the number of datapoints we expe
t to lieoutside the interval ��y is M(outside �y) =M �1� erf � �yp2��� (41)Chauvenet's 
riterion simply says:1. Find �y su
h that M(outside �y) = 0:5. This is given by�y� = erf�1�1� 12M� (42)2. Dis
ard all datapoints outside this range.This 
riterion makes very good sense. It leads to the following reje
tion 
riteria



{ 18 {Chauvenet's 
riterion versus MM �y�100 2.811000 3.48104 4.06105 4.56whi
h is a moderately interesting set of numbers.We o�er the following important Comments:� This assumes data are Gaussian distributed. In real life this doesn't often happen be
auseof \glit
hes". Examples of glit
hes 
an be interferen
e in radio astronomy, meteors in opti
alastronomy, and 
osmi
 rays on CCD 
hips. These glit
hes produ
e bad points that departfrom Gaussian statisti
s. They are often 
alled outliers.It is very important to get rid of the outliers be
ause the least squares pro
ess minimizesthe squares of the residuals. Outliers, being the points with the largest residuals, have adisproportionately evil e�e
t on the result.On the other hand, if your data don't follow Gaussian statisti
s as their intrinsi
 pdf, thenyou should think twi
e before using least squares!� You may wish to relax Chauvenet's 
riterion by in
reasing the �x beyond whi
h you dis
ardpoints. This is being 
onservative and, in the presen
e of some nonGaussian statisti
s, nota bad idea. But think about why you are doing this before you do it. Maybe the intrinsi
statisti
s aren't Gaussian?You should never make Chauvenet's 
riterion more stringent by de
reasing the �x beyondwhi
h you dis
ard points. This rule hardly needs elaboration: it means you are dis
ardingdatapoints that follow the assumed pdf!� Most statisti
s books (e.g. Taylor, BR) harp on the purity aspe
t. One extreme: don't throwout any datum without examining it from all aspe
ts to see if dis
arding it is justi�ed. Theother extreme: apply Chauvenet's 
riterion, but do it only on
e and 
ertainly not repeatedly.Being a real-life astronomer, our approa
h is di�erent. There do exist outliers. They in
reasethe 
al
ulated value of �. When you dis
ard them, you are left with a more nearly perfe
tapproximation to Gaussian statisti
s and the new � 
al
ulated therefrom will be smaller thanwhen in
luding the outliers. Be
ause the original � was too large, there may be points thatshould have been dis
arded that weren't. So our approa
h is: repeatedly apply Chauvenet's
riterion until it 
onverges.
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onverge, or if it dis
ards an inordinately large number of datapoints, you've gotreal problems and need to look at the situation from a global perspe
tive.� Many observers use the 3� 
riterion: dis
ard any points with residuals ex
eeding 3�. Thisis de�nitely not a good idea: the limit 3� is Chauvenet's 
riterion for M = 185 datapoints.Very often M ex
eeds this, often by a lot.� To apply Chauvenet's 
riterion it's most 
onvenient to 
al
ulate the inverse error fun
tion.For this, you have two 
hoi
es. One (for sissies like myself), you 
an use inverf.pro frommy area ~ heiles/idl/gen . But the real he-man will want to learn about using a root-�ndingalgorithm su
h Newton's method (NM x9.4 and 9.6) together with the error fun
tion; bothpro
edures exist in IDL as newton and errorf. You at least ought to skim lightly some ofNM's 
hapter 9 about root �nding, be
ause some day you'll need it.8. NONLINEAR LEAST SQUARESThe least squares formulation requires that the data values depend linearly on the unknown
oeÆ
ients. For example, in equation 1, the unknown 
oeÆ
ients A and B enter linearly.Suppose you have a nonlinear dependen
e, su
h as for example wanting to solve for A and Bwith equations of 
ondition that look likesin(Atm) +Btm = �m : (43)What do you do here? You linearize the pro
ess, using the following pro
edure.First, assume a trial values for A and B; 
all these A0 and B0. You should pi
k values thatare 
lose to the 
orre
t ones. In our example you wouldn't need to do this for B, but it's easier totreat all 
oeÆ
ients identi
ally. These trial values produ
e predi
ted values �0;m:sin(A0tm) +B0tm = �0;m : (44)Subtra
t equation 44 from 43, and express the di�eren
es as derivatives. Letting ÆA = A�A0 andÆB = B �B0, this gives ÆA[tm 
os(A0tm)℄ + ÆBtm = �m � �0;m : (45)This is linear in (ÆA; ÆB) so you 
an solve for them using standard least squares. In
rement theoriginal guessed values to 
al
ulate A0;new = A0 + ÆA and B0;new = B0 + ÆB, These won't beexa
t be
ause higher derivatives (in
luding 
ross derivatives) 
ome into play, so you need to usethese new values to repeat the pro
ess. This is an iterative pro
edure and you keep going until the
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hanges be
ome \small". The generalization to an arbitrarily large number of unknown 
oeÆ
ientsis obvious.We now o�er some 
autionary and pra
ti
al remarks.(0) In linear least squares, the 
urvature and 
ovarian
e matri
es are set by the values ofthe independent variable, whi
h here is denoted by t, and are independent of the datapoint values.Here, the matrix elements 
hange from one iteration to the next be
ause they depend on the guessedparameters, and sometimes they even depend on the datapoint values.(1): Multiple minima: Nonlinear problems often have multiple minima in �2. A 
lassi
al
ase is �tting multiple Gaussians to a spe
tral line pro�le. Gaussians are most de�nitely notorthogonal fun
tions and in some 
ases several solutions may give almost 
omparably good valuesof �2, ea
h one being a lo
al minimum. For example, for the 
ase of two blended Gaussians, one
an often �t two narrow Gaussians or the 
ombination of a wide and narrow Gaussian, the two�ts giving almost equal �2. The lower of these is the real minimum but, given the existen
e ofsystemati
 errors and su
h, not ne
essarily the best solution. The best solution is often determinedby physi
al 
onsiderations; in this 
ase, for example, you might have physi
al reasons to �t a broadplus narrow Gaussian, so you'd 
hoose this one even if it's �2 weren't the true minimum.(2): The Initial Guess: When there are multiple minima, the one to whi
h the solution
onverges is in
uen
ed by your initial guess. To fully understand the range of possible solutions,you should try di�erent initial guesses and see what happens. If the solutions always 
onverge tothe same answer, then you 
an have some 
on�den
e (but not full 
on�den
e) that the solution isunique.(3): Iterative stability: If your initial guess is too far from the true solution, then theexisten
e of higher derivatives means that the 
omputed 
orre
tions 
an be too large and drive theiterative solution into instability. It is often a good idea to multiply the derived 
orre
tion fa
tors(ÆA and ÆB above) by a fa
tor F less than unity, for example F = 0:5 or 0.75. This in
reases thenumber of iterations required for 
onvergen
e but often allows 
onvergen
e instead of produ
inginstability.(4): Convergen
e 
riteria: How do you know when the solution has 
onverged? One way:for ea
h iteration, 
al
ulate the un
ertainties in the derived 
oeÆ
ients. If the un
ertainty ex
eedsthe 
orre
tion, then you are getting 
lose. An alternate way, whi
h I usually use: if the fra
tional
orre
tion (e.g. ÆAA0 ) de
reases below some threshold, say 1%, you're 
lose (some parameters, su
has angles, need a threshold that is absolute instead of fra
tional). At this point, if you are usingF 6= 1, set F = 1, do a few more iterations, and you're done.(5): Numeri
al derivatives: Sometimes the equations of 
ondition are so 
ompli
ated thattaking the derivatives, as in obtaining equation 45, is a huge job and subje
t to mistakes. So you
an take numeri
al derivatives instead of analyti
 ones. Be 
areful, though; it's safest to use doublepre
ision and think a bit about numeri
al a

ura
y; take a look at NM's se
tion 5.7 on evaluating
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al derivatives.(6): Canned nonlinear least squares: Pa
kages like IDL o�er 
anned nonlinear leastsquares routines. They are designed to work well for a wide range of di�erent problems. However,often you 
an do better by tailoring things (su
h as the fa
tor F and 
onvergen
e 
riteria above)for the spe
i�
 problem at hand. A good example is Gaussian �tting: IDL's �tting program doesn't
onverge for some input data, while for many of these 
ases the program that I wrote myself works�ne.When 
onvergen
e is slow or doesn't o

ur be
ause your fun
tions are 
ompli
ated, you mightwish to try the Levenberg-Marquardt method (NM x15.5); IDL fun
tion LMFIT. This involvesin
reasing the diagonal elements of the 
urvature matrix by a set of suitably 
hosen fa
tors; whenyou get 
lose to the minimum, you reset these fa
tors to unity. I have never had to resort to su
hta
ti
s. In my opinion, if you are in su
h diÆ
ulty that you need su
h a te
hnique you shouldlook at the problem with an eye to gaining an appre
iation of the approximate lo
ations of thetrue minima and beginning with your initial guess reasonably 
lose to it. Of 
ourse, this might bediÆ
ult with a large number of parameters.(7): Be 
areful and LOOK at the solution before a

epting it! These nonlinearproblems 
an produ
e surprising results, sometimes 
ompletely meaningless results. Don't rely onthem to be automati
 or foolproof!(8): Reformulate! Sometimes you 
an avoid all this by reformulating the problem. Thereare two 
ases: the harmless 
ase and the not-so-harmless 
ase.An example of the harmless 
ase is �tting for the phase � in the fun
tion y = 
os(� + �).This is de�nitely a nonlinear �t! But its easy to reformulate it in a linear �t using the usual trigidentities to write y = A 
os ��B sin �, where BA = tan�. Solve for (A;B) using linear least squares,
al
ulate �, and propagate the un
ertainties.An example of the not-so-harmless 
ase is in NM's x15.4 example: �t for (A;B) with equationsof 
ondition ym = Ae�Bxm . They suggest linearizing by rewriting as log(ym) = C � Bxm, solvingfor (B;C), and deriving A after-the-fa
t. This is not-so-harmless be
ause you are applying anonlinear fun
tion to the observed values ym; thus the asso
iated errors �meas;m are also a�e
ted.This means you have to do weighted �tting, whi
h is dis
ussed in x9 below. Suppose that A = 1,your datapoints all have �meas;m = 0:05, and the observed ym ranges from 0.05 to 1. The datapointwith ym = 0:05 has a manageable �measm , but what is the 
orresponding value of �meas;m forlog ym = log 0:05? It's ill-de�ned and asymmetri
 about the 
entral value. Or even, God forbid,you have an observed ym that's negative??? Even for ym not near zero, you need to 
al
ulate new�meas;m by error propagation; in this 
ase, you need to reassign �(log y) = d log ydy �(y) = �(y)y . This isOK when ym is large enough so that the linear approximation is a

urate, but if not the 
onvertednoise be
omes nonGaussian.You should regard your datapoints as sa
rosan
t and never apply any nonlinear fun
tion to



{ 22 {them.9. CHI-SQUARE FITTING, AND WEIGHTED FITTING: DISCUSSIONIGNORING COVARIANCEIn least squares �tting the derived parameters minimize the sum of squares of residuals as inequation 13, whi
h we repeat heres2 = 1M �N M�1Xm=0(�m � �m)2 :Chi square �tting is similar ex
ept for two di�eren
es. One, we divide ea
h residual by its intrinsi
measurement error �meas;m; and two, we de�ne �2 as the sum�2 = M�1Xm=0 (�m � �m)2�2meas;m : (46a)Along with �2 goes the redu
ed 
hi squared �2 = �2M�N�2 = 1M �N M�1Xm=0 (�m � �m)2�2meas;m : (46b)whi
h is more dire
tly analogous to the de�nition of s2.Chi-square �tting is very mu
h like our least-squares �tting ex
ept that we divide ea
h data-point by its intrinsi
 measurement un
ertainty �meas;m. Thus, the redu
ed Chi-square (b�2) is equalto the ratio of the varian
e of the datapoint residuals (�2) to the adopted intrinsi
 measurementvarian
es (�2meas). So it should be obvious that in Chi-square �tting, you must know the measure-ment un
ertainties �meas of the individual data points beforehand. If you want to give the variousdatapoints weights based on something other than �meas, then that is just like Chi-square �ttingex
ept that you 
an adopt an arbitrary s
ale fa
tor for the un
ertainties (se
tion 9.3).Chi-squared �tting treats un
ertainties of the derived parameters in a surprising way. Gettingthe 
oeÆ
ient un
ertainties with 
hi-squared �tting is a tri
ky business be
ause1. With the standard treatments, the errors in the derived parameters don't depend on theresiduals of the datapoints from the �t (!).2. The errors in the derived parameters 
an depend on their mutual 
ovarian
es. This dis
ussionrequires a separate se
tion, whi
h we provide below in x10.
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tion we treat 
hi square �tting ignoring 
ovarian
e. We begin by illustrating the di�eren
ebetween least squares and 
hi square �tting by dis
ussing the simplest 
hi-square �tting 
ase of aweighted mean; then we generalize to the multivariate 
hi square �tting 
ase.9.1. The weighted mean: the simplest 
hi-squared �tFirst, re
all the formulas for an ordinary unweighted average in whi
h the value of ea
h pointis ym and the residual of ea
h point from the weighted mean is Æym:mean = P ymM (47a)s2 = P Æy2mM � 1 (47b)s2mean = s2M = P Æy2mM(M � 1) ; (47
)s2mean is the varian
e of the mean and s2 is the varian
e of the datapoints around the mean. Re
allthat in this 
ase the mean is the least squares �t to the data, so to use least squares jargon we 
analso des
ribe smean as the error in the derived 
oeÆ
ient for this single-parameter least squares �t.Now for a weighted average in whi
h the weight of ea
h point is wmeas;m = 1�2meas;m = 1�2meas .Applying maximum likelihood, in a nonweighted average the quantity that is minimized is P Æy2m;in a weighted average the quantity minimized is �2 =P Æy2m�2meas;m =Pwmeas;mÆy2m. So you'd thinkthat the three equations 
orresponding to the above would be
omemeanw = Pwmeas;mymPwmeas;m ! P ymM (48a)s2w = MM � 1Pwmeas;mÆy2mPwmeas;m ! P Æy2mM � 1 (48b)s2mean = s2wM = Pwmeas;mÆy2m(M � 1)Pwmeas;m ! P Æy2mM(M � 1) ; (48
)where the arrow to the rightmost expressions use our assumption that �meas;m are all identi
al. Infa
t, however, the last of these equations is always written (e.g. BR equation 4.19; Taylor equation7.12) s2mean = 1Pwmeas;m ! �2measM ; (49)
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ru
iatingly painful di�eren
e between equation 48
 and equation 49: the formerdepends on the varian
e of the datapoint residuals s2w, as you'd think it should, while the latterdepends on only the adopted intrinsi
 measurement varian
e of the data �2meas, whi
h is 
hosen bythe guy doing the �t. If you do an unweighted average, and derive a 
ertain varian
e, and next doa weighted average in whi
h you 
hoose some value for �meas that happens to be wrong, the two�ts give di�erent results for s2mean. This is 
razy.To get around this diÆ
ulty, we follow the pro
edure in BR equations 4.20 to 4.26. Thisintrodu
es an arbitrary multipli
ative fa
tor for the weights and goes through the ML 
al
ulationto derive, instead of equation 49, the far superiors2mean = b�2Pwmeas;m = �2(M � 1)Pwmeas;m ! s2wM ; (50)whi
h is pre
isely the same as our intuitive guess, equation 48
. The di�eren
e between equations50 and 49 is the numerator, whi
h 
ontains the redu
ed 
hi-squared b�2; for this 
ase where all�meas;m are identi
al, b�2 = s2w�2meas . Here�2 =Xwmeas;mÆy2m =X Æy2m�2meas;m (51)9.2. The multivariate Chi-square �tIn this 
ase, Chi-square �tting is just like least-squares �tting ex
ept for the following:1. In the matrix X� of equation 8a, ea
h row m is a di�erent measurement with a di�erentintrinsi
 varian
e �meas;m. You are generating a new matrix X, whi
h is identi
al to X�ex
ept that ea
h row m is divided by �meas;m. This new matrix is the same as NR's designmatrix (Figure 15.4.1), whi
h they denote by A.2. Divide ea
h datapoint �m in equation 8b by �meas;m. You are generating a new matrix Y,whi
h is identi
al to Y� ex
ept that ea
h row is divided by �meas. This new matrix is thesame as NR's ve
tor b.You've divided ea
h row, i.e. the equation of 
ondition for ea
h row m, by a 
ommon fa
tor, so thesolution of the equation is un
hanged.Now suppose that all datapoints have the same intrinsi
 measurement un
ertainty �meas. Inthe full matrix equation 9, whi
h now reads X � a = Y, you've divided both sides by the samequantity, �meas. Obviously, this doesn't 
hange the derived results for a. (If the �meas;m di�er fromea
h other, then a is a�e
ted, of 
ourse.)
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ripted) and �2 matri
esfor this spe
i�
 
ase where all �meas;m are identi
al:X = X��meas (52a)Y = Y��meas (52b)X � a = Y (52
)[�℄ = XT �X = [��℄�2meas (52d)[�℄ = XT �Y = [��℄�meas (52e)[�℄�1 = �2meas[��℄�1 (52f)a = [�℄�1 � [�℄ (52g)When you 
al
ulate the predi
ted values Y in equation 16, using X instead of X�, the valuesare divided by �meas. Be
ause Y is also divided by �meas, the residuals ÆY are as well. Thus whenyou 
al
ulate the square of the sum of the residuals as in equation 18 you get s2�2meas , whi
h is theredu
ed 
hi-square, denoted as b�2 :b�2 = ÆYT � ÆYM �N = ÆYT� � ÆY��2meas(M �N) (53)and, obviously, you 
ould 
al
ulate the non-redu
ed �2�2 = ÆYT � ÆY = ÆYT� � ÆY��2meas (54)This is pre
isely analogous to equation 51 for the weighted mean example above. The redu
ed
hi-square b�2 is equal to the ordinary 
hi-square �2 ex
ept that it is divided by the number ofdegrees of freedom, ordinarily denoted by �, whi
h is equal to (M �N).Finally, we have the analogy of equation 50 expressed in matrix form as in equation 19:
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ontrast to the result quoted in textbooks (e.g. NM equation 15.4.15, BR equation 7.25),whi
h omits the b�2 fa
tor: sa2 = diagf[�℄�1g (56)and, as in the standard textbook solution for the weighted mean 
ase, provides parameter errorsthat are independent of the datapoint residuals.Our result, equation 55, is very reasonable. Suppose, for example, that the least-squares �tmodel is perfe
t and the only deviations from the �tted 
urve result from measurement error.Then by ne
essity we have s2 � �2meas and b�2 � 1. (We write \�" instead of \=" be
ause di�erentexperiments produ
e somewhat di�erent values of s2 be
ause of statisti
al 
u
tuations; an averagegives �2 = hs2i). In this situation, though, equations 55 and 56 are identi
al.9.3. Persni
kety Diatribe on Choosing �meas9.3.1. Choosing and 
orre
ting �data;mIn the previous se
tion, equation 56 taught us that|formally, at least|the varian
e in thederived �t parameter (or its un
ertainty, whi
h is the square root) depends only on the adoptedun
ertainties �meas;m and not on the a
tual varian
e of the datapoints.Are you bothered by the fa
t that the un
ertainty of the mean �x0 is independent of the datavalues? You should be: it is obvious that the data values a�e
t �mean.Formally, �x0 depends only on the adopted un
ertainties �meas;m, whi
h are 
hosen beforehandby you|you're supposed be su
h a good experimentalist that you really do know the intrinsi
un
ertainty in your measured values. Moreover, you are assuming that there are no other sour
esof un
ertainty|su
h as \
osmi
 s
atter" or an inappropriate model to whi
h you are �tting thedata. Suppose your adopted values of �meas;m are o� by a 
ommon s
ale fa
tor, i.e. if �meas;adopted =f�meas;true. Then b�2 � f�2 instead of b�2 � 1. And to obtain the parameter errors from Æ�2, youmust �nd the o�set Æx su
h that ��2 = f�2 � b�2.You 
an 
orre
t for this erroneous 
ommon fa
tor f by dividing your adopted values of �meas;mby f . Of 
ourse, you don't know what this fa
tor f is until you do the 
hi squared �t. Dividingthem by f is equivalent to multiplying them by b�. And, of 
ourse, the same as multiplying �2meas;mby b�2.To be kosher, after having run through the problem on
e with the adopted �meas;m, 
al
ulate
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e �2x0 is also 
orre
t. You 
an obtain it either as the 
orresponding diagonal to the 
ovarian
ematrix (equations 55 and 56, whi
h are identi
al in this 
ase) or by �nding what departure fromx0 is ne
essary to make ��2 = 1. This redoing the �t may seem like unne
essary work, but whenwe deal with multiparameter error estimation it's the best way to go to keep yourself from getting
onfused.3 9.3.2. Come ba
k to realityIn the 
ase b�2 � 1 the dispersion of the observed points � is equal to the intrinsi
 dispersionof the datapoints �meas and the mathemati
al model embodied in the least-squares �t is perfe
t.That, at least, is the theoreti
al 
on
lusion. In pra
ti
e, however, your obtaining su
h a low, goodvalue for b�2 might mean instead that you are using too large a value for �meas: you are as
ribingmore error to your datapoints than they really have, perhaps by not putting enough faith in yourinstrument. Spe
i�
ally, if the datapoints really have intrinsi
 measurement dispersion �meas andyou spe
ify that they have 2�meas when 
omputing (X;Y), then you'll �nd b�2 = 0:25.There are, in fa
t, two ways you 
an get arti�
ially small values for b�2. One is by overestimatingyour adopted intrinsi
 values of �meas. The other is if your measurements are 
orrelated. Suppose,for example, that by mistake you in
lude the same measurements several times in your �t. Thenyour measurements are no longer independent; in other words there is 
ovarian
e in your measuredpoints. Cowan in
ludes this possibility in his equation 7.4 and also example 7.6.1.High values of b�2 indi
ate that the model is not perfe
t and 
ould be improved by the use ofa di�erent model, su
h as the addition of more parameters|or, alternatively, that you think yourequipment works better than it really does and you are as
ribing less error to your datapoints thanthey really have. And in this 
ase, using equation 56 instead of 55 is disastrous.Think about it.9.4. The 
ase in whi
h datapoints have di�erent dispersions, or di�erent weights:like a weighted averageHere the �meas;m are all di�erent. The mth row of the equation-of-
ondition matrix X� andthe mth element of the data ve
tor Y� get divided by their 
orresponding �meas;m. The equationembodied in ea
h row of the matrix equation 9 remains un
hanged, but the di�erent rows are3The ��2 = 1 
ondition only applies for the single-variable 
ase. For more variables, the varian
es need to make��2 > 1; for example, if you are �tting for two parameters, then the varian
es make ��2 = 2:3, as we dis
ussed inx10.
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t to ea
h other.Consider two measurements with intrinsi
 measurement un
ertainties (�meas;1; �meas;2); sup-pose �meas;1 < �meas;2. After being divided by their respe
tive �meas's, all of the numbers in row1 are larger than those in row 2. In all subsequent matrix operations, these larger numbers 
on-tribute more to all of the matrix-element produ
ts and sums. Thus, the measurement with smallerun
ertainty has more in
uen
e on the �nal result, as it should.Suppose that the above two measurements were taken under identi
al 
onditions ex
ept thatmeasurement 1 re
eived more integration time than measurement 2; we have �meas;1�meas;2 = � �1�2��1=2, sothe rows of X are weighted as �1=2. This means that during the 
omputation of [�℄ = XT �X, theself-produ
ts of row 1 are weighted as �1. This means that ea
h datapoint is weighted as � , whi
his exa
tly what you'd expe
t! Note that this is also exa
tly the same weighting s
heme used in aweighted average, in whi
h the weights are proportional to � 1�meas�2. We 
on
lude that weightings
heme of the �rst two steps in se
tion 9.2 agrees with 
ommon sense.Suppose you don't know the intrinsi
 measurement dispersion �meas, but you do know the rel-ative dispersion of the various measurements. For example, this would be the 
ase if the datapointswere taken under identi
al 
onditions ex
ept for integration time; then �meas / ��1=2. In this 
ase,multiply ea
h row by its weight w / 1�meas and pro
eed as above.9.5. The expli
it IDL for the weighted and 
hi square 
asesHere we give the expli
it IDL 
ommands required to do 
hi squared �tting, as we did for leastsquares �tting in x5.2. First, de�ne the X and Y arrays as before in x5. However, here we needto weight the matri
es. Let us denote the weighted versions by XW and YW. Then ea
h row ofXW and element of YW are divided by the 
orresponding �meas. Let us de�neW as the diagonalmatrix4 whose elements are equal to 1�meas;m , i.e. wm = 1:�meas;mW = fltarr(M;M) (57a)W[indgen(M) � (M+ 1)℄ = � 1�meas;m � (57b)Note that wm is the square root of the weights wmeas;m that we dis
ussed in x9.1. Spe
i�
ally, the
urrent weights wm are not those in the sense of the weighted average of x9.1; we use wm as a4W has M �M elements but only M numbers. If M is large and you are impa
ting ma
hine memory, thenyou 
an save memory by: reformulating equations 58 and 64 to use loops; not keeping XW and X as separatematri
es; and using IDL's temporary fun
tion wherever possible. The relevant for loop is for mr= 0, m doxw[*,mr℄=w[mr℄*x[*,mr℄, et
.
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onvenien
e only. Then XW =W ## X (58a)YW =W ## Y (58b)Optional 
omment: At this point you might wish to revert to Singular Value De
ompositionmethod using IDL's SVDFIT fun
tion; see x14 for a 
ookbook. It is rare, but sometimes you willen
ounter a problem for whi
h the inversion ofXXW is unstable. In this 
ase, XXW##XXWI 6=I (I is the unit matrix). You 
an tell this with the invert fun
tion by 
alling it with the statuskeyword; if status 6= 0, you've got problems.All steps up to obtaining the un
ertainties follow exa
tly the same steps as in x5.2, whi
h werepeat here. In IDL we 
al
ulate the normal equation matri
es and denote the [�℄ in equation 11aby XXW: XXW = transpose(XW)##XW ; (59a)and we denote the [�℄ in equation 11b by XYW:XYW = transpose(XW)##YW : (59b)In IDL we take the inverse of [�℄ (same as XXW) byXXWI = invert(XXW) : (60)The least-square �tted quantities are in the matrix a (equation 12), whi
h we obtain in IDLwith a = XXWI ## XYW : (61)In IDL we denote the matrix of weighted predi
ted values by YBARW, whi
h isYBARW = XW ## a : (62)and we 
an also de�ne the weighted residuals as
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ted values and residuals areYBAR = invert(W) ##XW ## a = X ## a : (64a)DELY = invert(W) ## (YW �YBARW) = Y �YBAR (64b)To 
al
ulate the 
hi square we want the weighted sum P Æw2my2m:
hi sq = transpose(DELYW) ## DELYW : (65a)and the redu
ed 
hi squarered 
hi sq = transpose(DELYW) ## DELYW=(M �N) : (65b)The full 
ovarian
e matrix is just XXWI and, 
orresponding to equation 30, the varian
es of thederived 
oeÆ
ients are the diagonal elements|unless the redu
ed 
hi squared di�ers signi�
antlyfrom unity, in whi
h 
ase you should seriously look at your assumed weights derived from �meas;mand/or the quality with whi
h the model �ts the data. That is,vard
 oÆ
ial = XXWI[(M+ 1) � indgen(M)℄ (66a)or, better, vard
 realworld = red 
hi sq �XXWI[(M+ 1) � indgen(M)℄ (66b)Finally, the normalized 
ovarian
e matrix is of 
ourse independent of 
hi squared and is the sameas equation 33 n
ov = XXWI=sqrt(vard
 oÆ
ial#vard
 oÆ
ial) (67)You should, of 
ourse, always look at the residuals from the �t. But here you need to look atthe weighted residuals DELYW.
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al des
riptionConsider the �rst two 
oeÆ
ients in our above example, whi
h we dis
ussed a bit above inx6.2. In this example, the �t gives y = A0 + A1t + A2t2, where the numeri
al values are given inve
tor form by equation 31. The 
oeÆ
ient A0 is the y-inter
ept and A1 is the slope. They havederived values A0 = 96� 34 and A1 = 4� 9.Remember what these un
ertainties really mean: in an in�nity of similar experiments, you'llobtain an in�nity of values of (A0; A1) that are normally distributed with dispersions (34,9). Looselyspeaking, this means that A0 lies between (96� 34 = 62) and (96 + 34 = 130) and A1 lies between�4:5 and 13:5.Suppose you are interested in knowing about A0 without regard to A1. By this we mean thatas A0 is varied from its optimum value of 96, �2 in
reases from its minimum value. As we vary A0,if we allow A1 to take on whatever value it needs to for the purpose of minimizing �2, then this iswhat we mean by \knowing about A0 without regard to A1". For this 
ase, the un
ertainty of A0is indeed 34. Ditto for A1. In other words, equations 19, and 55 apply.However, if you are interested in knowing about both, you must in
lude their 
ovarian
e. In ourexample, the large negative 
ovarian
e follows logi
ally just from looking at a graph: if you �t somepoints, all of whi
h lie at positive t, then a more negative derived slope will raise the y-inter
ept.Spe
i�
ally, the large negative 
ovarian
e means that positive departures of A0 are asso
iatedwith negative departures of A1. So even though the individual values ÆA0 = +34 and ÆA1 = +9are a

eptable, you 
annot 
on
lude that the pair of values (ÆA0; ÆA1) = (+34;+9) is a

eptable,be
ause this pair has both positive. In 
ontrast, what is a

eptable here would be something like(ÆA0; ÆA1) = (+34;�9).We stress that the a

eptable ranges of values depend on what you are interested in. This issort of like the observer's in
uen
e in quantum me
hani
s. If you are interested in A1 alone, thenyou 
an say A1 = 4� 9 and, in making this statement, you have to realize that, as A1 varies overthis range, A0 
an vary over (formally, at least) the range (1! �1): you just don't give a damnwhat happens to A0 be
ause you're not interested. But the moment you be
ome interested andrestri
t its possible range, that in
uen
es the possible range for A1, too.There is no simple relationship between the 
ovarian
e matrix elements and the a

eptableranges. For two variables, the best way to express this is to 
onstru
t the ellipses that de�nethe lo
i of 
onstant ��2 and present them on a graph with axes (Æa0; Æa1) as in BR Figure 11.2or NR Figure 14.5.4. For three variables, these ellipses be
ome ellipsoids; for four, they be
omefour-dimensional volumes, et
.
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Fig. 2.| Illustrating the meaning of varian
e and 
ovarian
e between (a1; a2) for our numeri
alexample. See text for dis
ussion.We illustrate these 
on
epts for the (a1; a2) parameters for our numeri
al example. We sub-tra
ted 7.75 from all times so that the 
ovarian
e would be small enough to illustrate the di�eren
ebetween the tangents to the ellipses and the end points of the ellipses. Contours are 
al
ulated asdes
ribed in x10.5 and are at ��2 = 1 and 2.3. The dashed horizontal and verti
al lines are atÆa = ��a.First 
onsider the pair of verti
al lines, whi
h are drawn at Æa1 = ��a1 , where � is the squareroot of the varian
e of the parameters as des
ribed in equations 19, 30, 55, 56, and 66. If thedatapoints were proje
ted downward, i.e. if we take small strips Æa1 and integrate over Æa2, thepdf of Æa1 is Gaussian; ditto for the other 
oordinate. Thus, 68% of the points lie between thesedashed lines. This is what we mean by the phrase \being interested in knowing about a1 withoutregard to a2". If we allow a2 to vary so as to minimize �2 as we 
onsider departures Æa1, then thepdf of Æa1 has dispersion �a1 . Alternatively, we 
an say that in a large number of experiments, thepdf of Æa1 follows a 
hi squared pdf with one degree of freedom if we don't 
are what happens toÆa2. If, however, we are 
on
erned about the pair, then we must look not at the proje
tion down
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hara
terized bythe tilted ellipses. Here, for a large number of experiments, the pair (a1; a2) follows a 
hi squaredistribution with 2 degrees of freedom (if we don't 
are about a0; if we do, it's 3 degrees of freedomand the ellipse be
omes an ellipsoid, but this is very hard to plot!). For � = 2, 68:3% of the pointslie within ��2 = 2:3, where we have drawn the outer 
ontour in Figure 2. The points inside thisellipse are darker; 68:3% of the points lie within that ellipse.The best des
ription of the spe
i�
s of 
al
ulating these ellipsoids is in BR x11.5 (Con�den
eIntervals, Con�den
e Levels for Multiparameter Fits). To des
ribe it, we'll talk spe
i�
ally aboutour numeri
al example, whi
h has M = 4 measurements and N = 3 unknowns. The unknowns area = [a0; a1; a2℄. We'll �rst begin by dis
ussing the 
ase of single parameter; then we'll generalize.10.2. Cal
ulating the un
ertainties of a single parameterFirst, suppose we want to know the value �a0 without regard to the values of a1 and a2. Havingalready done the solution, we know the 
hi-square value of a0 so we 
onsider variations Æa0 aroundthis best value.Pi
k a value of Æa0 and redo the least squares solution for [a1; a2℄. This gives a new value for�2 whi
h is, of 
ourse, larger than the minimum value that was obtained with Æa0 = 0. Call thisdi�eren
e ��2Æa0 . Determine the dependen
e of ��2Æa0 upon Æa0 and �nd the value of Æa0 su
h that��2Æa0 = 1. This is the desired result, namely the value �a0 without regard to the values of a1 anda2. This value is �2a0 = [�℄�100 , the same result quoted in equation 56.Consider now what you've done in this pro
ess. For ea
h least squares �t you used a trial valueof Æa0. In spe
ifying Æa0 you had exa
tly one degree of freedom be
ause you are �xing one and onlyone parameter. Having done this, you 
ould do a large number of experiments (or Monte Carlotrials) to determine the resultant distribution of ��2Æa0 . It should be 
lear that this distributionfollows a 
hi squared distribution with one degree of freedom (� = 1). So the un
ertainty �a0 isthat value for whi
h ��2Æa0 = 1. (The 
hi square �t for the other two parameters has M�2 degreesof freedom, but this is irrelevant be
ause|by hypothesis|you don't 
are what happens to thosevariables.) 10.3. Cal
ulating the un
ertainties of two parameterSuppose we want to know the value (�a0 ; �a2) without regard to the value of a1. Now we
onsider variations (Æa0; Æa2) around the best values (a0; a2).Pi
k values for (Æa0; Æa2) and redo the least squares solution for a1. This gives a new value for
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h is, of 
ourse, larger than the minimum value that was obtained with (Æa0; Æa2) = 0. Callthis di�eren
e ��2(Æa0;Æa2). As above, this follows a 
hi square distribution, but now with � = 2.Determine the dependen
e of ��2(Æa0;Æa2) upon (Æa0; Æa2) and �nd the set of values of (Æa0; Æa2)su
h that ��2(Æa0;Æa2) = 2:3. This is the desired result, namely the ellipse within whi
h the a
tualvalues (Æa0; Æa2) lie with a probability of 68:3%, without regard to the value of a1.These values 
an be de�ned in terms of the 
urvature matrix [�℄, as we dis
uss below.Consider now what you've done in this pro
ess. For ea
h least squares �t you used trial valuesof (Æa0; Æa2). In spe
ifying them you had exa
tly two degrees of freedom be
ause you are �xingtwo parameters. This distribution follows a 
hi squared distribution with two degree of freedom(� = 2). So the un
ertainty �a0 is that value for whi
h ��2Æa0 = 2:3, whi
h follows from theintegrated probability for the 
hi squared distribution for � = 2. (The 
hi square �t for the thirdparameter a1 has M � 1 degrees of freedom, but again this is irrelevant.)One 
an expand this dis
ussion in the obvious way. Consider �nally. . .10.4. Cal
ulating the un
ertainties of three parameterSuppose we want to know the values of all three parameters (or, generally, all N parameters).Then we pi
k trial values for all three. There is no least squares �t for the remaining parameters,be
ause there are none. For ea
h 
ombination of the three (or N) parameters we obtain ��a, whi
hde�nes a 3- (or N -) dimensional ellipsoid. This follows a 
hi squared distribution with � = 3 (orN). We �nd the (hyper)surfa
e su
h that ��a is that value within whi
h the integrated probabilityis 68:3%. This de�nes the (hyper)surfa
e of �a.10.5. Doing these 
al
ulations the easy wayThe obvious way to do the 
al
ulations des
ribed above is to set up a grid of values in theparameters of interest (Æan); perform the 
hi squared �t on the remaining variables, keeping tra
kof the resulting grid of �2; and plot the results in terms of a 
ontour plot (for two parameters ofinterest) or higher dimensions.There's an easier way whi
h is appli
able unless you are doing a nonlinear �t and the parametererrors are large. The 
urvature matrix ([�℄ of equation 52d, the same as XXW) 
ontains the matrixof the se
ond derivatives of �2 with respe
t to all pairwise 
ombinations of Æan, evaluated at theminimum �2; it's known as the 
urvature matrix for this reason. Clearly, as long as the Taylorexpansion is good we 
an write ��2a = ÆaT � [�℄ � Æa (68)
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urvature matrix, we don't have to re-do the �ts as we des
ribed above. Rather, we
an use the already-known matrix elements. Use the following pro
edure [see NM x15.6 (ProbabilityDistribution of Parameters in the Normal Case)℄. Follow the steps1. De
ide whi
h set of parameters you are interested in; 
all this number Ni and denote theirve
tor by ai. Here we use the above example and 
onsider Ni = 2 and ai = [a0; a2℄.2. From the N � N 
ovarian
e matrix [�℄�1, extra
t the rows and 
olumns 
orresponding tothe Ni parameters and form a new Ni �Ni 
ovarian
e matrix [�℄�1i ; in our 
ase the original
ovarian
e matrix is[�℄�1 = XXI = 264 1156:8125 �303:000 18:4375�303:000 81:000 �5:00018:4375 �5:000 0:31250 375 (69a)and it be
omes [�℄�1i = XXI = " 1156:8125 18:437518:4375 0:31250 # : (69b)3. Invert this new 
ovarian
e matrix to form a new 
urvature matrix [�℄i. The elements di�erfrom the those in the original 
urvature matrix.4. As usual, we have ��2ai = ÆaTi � [�℄i � Æai (70)so �nd the lo
us of ai su
h that the integrated probability of ��ai for � = Ni 
ontains 68:3%of the spa
e; e.g. for � = 2 this is ��ai = 2:3.You may well wonder why, in steps 2 and 3, you need to derive a new 
urvature matrix from theextra
ted elements of the original 
ovarian
e matrix. Why not just use the extra
ted elements ofthe original 
urvature matrix? To understand this, read the NM's dis
ussion surrounding equation(15.6.2). Good lu
k. 10.6. Important 
omments about un
ertaintiesHaving said all the above, we o�er the following important Comments:
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al
ulate these (hyper)surfa
es is to set up a grid in Ni-dimensional spa
eof trial values for Æai and use a 
ontour plot or volume plot pa
kage to plot the lo
i of 
onstant��2ai .� The pro
edure des
ribed in x10.5 works well for linear �ts, or nonlinear �ts in whi
h the �aare small so that ��2 is well-approximated by the se
ond derivative 
urvature matrix. Thisis not ne
essarily the 
ase; an example is shown in BR Figure 11.2. Here, the higher-order
urvature terms are important and it's better to a
tually redo the �t for the grid of trialvalues of ai as des
ribed above in x10.2, 10.3, and 10.4.� The varian
e (i.e., un
ertainty squared) of the derived parameters a depends only on theelements in the 
ovarian
e matrix [�℄�1. These, in turn, depend only on the 
urvature matrix[�℄. These, in turn, depend only on X. This matrix X is the matrix of the quantities thatare known exa
tly. For example, we began with the example in whi
h the elements of X werethe times at whi
h the measurements were taken.Generally, then, the 
urvature and 
ovarian
e matrix elements depend on the lo
ations of thedatapoints (the ensemble of tm in equation 1) but not on the measured values (the ensembleof �m in equation 1). And on your adopted values for �meas;m. Be
ause of this. . .� Think before making your measurements about the 
ovarian
e matrix and how to minimizethe o�-diagonal elements. By taking measurements at well-
hosen times, or well-
hosen valuesof the independent variable xm whatever it is, you 
an really optimize the a

ura
y-to-e�ortratio! For example, in our numeri
al example if you 
an get a few measurements at negativetimes you'll e�orts will be repaid in terms of mu
h better a

ura
y for the y-inter
ept.11. REJECTING BAD DATAPOINTS II.: STETSON'S METHOD PLUSCHAUVENET'S CRITERIONChauvenet's 
riterion is an on-o� deal: either you in
lude the datapoint or you don't. Thismakes sense from a philosophi
al point of view: either a datapoint is good or not, so you shouldeither in
lude it or ex
lude it.However, when doing a nonlinear �t this presents a problem. As you iterate, the solution
hanges, and a given datapoint 
an 
hange from being \bad" to \good". Or vi
e-versa. You 
animagine being in a situation in whi
h the iteration os
illates between two solutions, one in
luding aparti
ular datapoint and the other ex
luding it; the solution never 
onverges, it just keeps 
hasingits tail.Enter Stetson's beautiful te
hnique5. Stetson reasons that we shouldn't have an on-o� 
riterion.Rather, it should relieve a datapoint of its in
uen
e adiabati
ally: as its residual gets larger and5Stetson is one of those anomalies, a true expert on �tting. He invented many of the stellar photometry routines
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luded and their weights automati
ally adjust as the �t parameters home into their 
orre
t values.And you 
an't get into the 
hasing-tail syndrome that 
an happen with the stri
t on-o� in
lusion.11.1. Stetson's sliding weightStetson re
ommends using a sliding weight. To explain this, we review the ML 
on
ept of 
hisquare �tting. We write equations for the 
ase of a single parameter to keep things simple, but itworks for multiparameter �ts too. In 
hi square �tting, we de�ne 
hi square as�2 = M�1Xm=0 (ym � af(xm))2�2m (71a)and we minimize �2 by setting its derivative with respe
t to ea
h parameter a equal to zero:d�2da = �2M�1Xm=0 f(xm)�ym�2m (71b)Here �ym = (ym � af(xm)). This gives M�1Xm=0 f(x)�ym�2m = 0 (71
)Now we wish to modify this equation by introdu
ing a weight w(j�ymj) that makes datapointswith large j�ymj 
ontribute less, so it reads like this:M�1Xm=0 w(j�ymj)f(xm)�ym�2m = 0 (72)It's 
lear that we need the following properties for w(�ym):1. w(�ym) = w(j�ymj), meaning simply that it should depend on the absolute value of the residualand not bias the solution one way or the other.2. w(j�ymj) ! 1 as j�ymj ! 0, meaning that datapoints with small residuals 
ontribute theirfull weight.used in daophote, all of whi
h use least squares te
hniques. He provides a lively, engaging dis
ussion of manyfas
inating and instru
tive aspe
ts in his website: http://nedwww.ipa
.
alte
h.edu/level15/Stetson/Stetson4.html.



{ 38 {3. w(j�ymj) ! 0 as j�ymj ! 1, meaning that datapoints with large residuals 
ontribute nothing.Stetson re
ommends w(j�ymj) = 11 + � j�yj�� �� (73)This fun
tion w(j�ymj) has the desired properties. Also, for all � it equals 0.5 for j�ymj = ��. As� ! 1 the 
uto� gets steeper and steeper, so in this limit it be
omes equivalent to a 
omplete
uto� for j�ymj > ��.Stetson re
ommends � = 2 to 2.5, � = 2 to 4 on the basis of years of experien
e. Stetson isa true expert and we should take his advi
e seriously; he provides a vibrant dis
ussion to justifythese 
hoi
es in real life, in
luding an interesting set of numeri
al experiments.However, for large M I see a problem with the 
hoi
e � = 2 to 2.5. For large �, for whi
h the
uto� is sharp, it seems to me that the 
uto� should dupli
ate Chauvenet's 
riterion. Referring toequation 42, this o

urs by setting � = erf�1�1� 12M� (74)and I re
ommend making this 
hange, at least for problems having reasonably large M ; this makes� larger than Stetson's 
hoi
e. I'm more of a purist than Stetson, probably be
ause I'm a radioastronomer and often �t thousands of spe
tral data datapoints that are, indeed, 
hara
terizedmainly by Gaussian statisti
s. Stetson is an opti
al astronomer and probably sees a lot moredepartures from things like 
osmi
 rays. Nevertheless, in a CCD image with millions of pixels, ofwhi
h only a fra
tion are 
hara
terized by nonGaussian problems su
h as 
osmi
 ray hits, it seemsto me only reasonable to in
rease � above Stetson's re
ommended values by using equation 74.11.2. Implementation of the weight in our matrix equationsClearly, implementing Stetson's method requires a weighted �t, so you have to use the 
hisquared te
hnique dis
ussed in x9.5. There equation 57 de�nes a matrix of weights (whi
h isdiagonal) in whi
h Wm;m = 1�m (75)Comparing this with equation 71
, it's 
lear what to do: we modify this equation to read



{ 39 {Wm;m = w1=2m�m (76)where the weight wm is de�ned in equation 73.Now you must not forget here that the solution depends on the weights wm, whi
h in turndepend on the solution. Thus when you implement this te
hnique you must iterate until the solution
onverges by not 
hanging.12. MEDIAN, INSTEAD OF LEAST SQUARE, FITTINGLeast square �tting minimizes the square of the residuals. This means that datapoints havinglarge residuals 
ontribute importantly to the �t. If these datapoints are really bad, you've gotproblems; this is why it's important to get rid of outliers! Sometimes you're fa
ed with a set ofdatapoints that look bimodal: most datapoints have a Gaussian-like pdf, and many lie outside themain distribution; sometimes it's diÆ
ult to de
ide \where to draw the line". Or you might havenonGaussian statisti
s. In these 
ases, using least squares is not a great idea be
ause least squaresgives greatest weight to the datapoints having the largest residuals, but you don't know what theresiduals are until after you've done the �t|and the �t is in
uen
ed, and maybe even dominated,by the outliers!In these 
ases most astronomers use the median6. The median is the solution for whi
h thereas many positive as negative residuals, irrespe
tive of how big they are. As long as the dis
repantdatapoints are symmetri
ally distributed with respe
t to sign, the median works well. In fa
t,for any pdf that is symmetri
ally distributed with respe
t to sign, the median is a good solutionbe
ause it doesn't depend at all on the details of the pdf. If the statisti
s are nonGaussian thenthe error of the median is somewhat greater than that of the mean (by a fa
tor of something like�2 ; I forget, but it's straightforward to 
al
ulate) but, when the datapoints are 
ontaminated bynonGaussian statisti
s, this is often less than the error introdu
ed by the least squares te
hnique.12.1. The median and the double-sided exponential pdfIn fa
t, there is a spe
i�
 pdf for whi
h the median is the theoreti
ally 
orre
t solution: thedouble-sided exponential. Here the pdf of the measured datapoints isp(�ym) = e�j�ymj=�m2�m (77)6Stetson re
ommends, instead of the median, his sliding weight te
hnique. You should read his website



{ 40 {where, again, �ym = (ym�af(xm)). For this, the logarithm of the likelihood fun
tion is (we ex
ludethe term involving log�M�1m=0 1�m for simpli
ity)L(�ym) = log(L(�ym)) = �M�1Xm=0 � jym � af(xm))j�m � (78a)The absolute value signs are horrible to deal with, so we rewrite this asL(�ym)) = X�ym>0 ym � af(xm)�m � X�ym<0 ym � af(xm)�m (78b)Now we take the derivative of L with respe
t to a and set it equal to zero to �nd the maximum.This gives dLda = X�y>0 f(xm)�m � X�y<0 f(xm)�m = 0 (79)Amazing|neither �ym nor a appears!Consider �rst the 
ase f(xm) = 1; this is like an average. If all �m are identi
al, this says: theproper solution is the median, for whi
h half the datapoints have positive residuals! More generally,we have to de�ne a generalized median where ea
h datapoint is weighted by its f(xm)�m . Can youshow that the median of the residuals is zero?sss12.2. Doing a \
hi square" �t for the double-sided exponentialWe 
an use our standard 
hi square te
hnique to do a median �t by adjusting the weights.To see how, we rewrite equation 72 here; this is the equation that has Stetson's additional weightw(j�ymj) M�1Xm=0 w(j�ymj)f(xm)�ym�2m = 0 (80)We need to devise weight w(j�ymj) so that this equation looks like equation 79. By inspe
tion, werequire wm = �mj�ymj (81)so that in equations 72 and 80 we have



{ 41 {wm�2m = 1�mj�ymj (82)and in weight matrix W of equations 57 and 76 we use the square root of the above quantity.This works for multivariate �ts using any set of fun
tions f(xm). However, we 
aution againthat the weights wm depend on the parameters a and the parameters depend on the weights, soyou must iterate. In the experiments I've performed the iteration is slow (but sure). And at theend you will 
ertainly �nd that the redu
ed 
hi square b�2 will be nowhere near unity; nevertheless,you should use errors 
al
ulated �2, not for
ing b�2 to equal unity (so use equation 56 instead of55). [THIS STATEMENT IS ALMOST CERTAINLY CORRECT BUT NEEDS TOBE CHECKED WITH NUMERICAL EXPERIMENTS. . . ℄.12.3. IDL's resour
es for median �ttingThere are two 
ases for whi
h IDL provides median �tting. One is IDL's median fun
tion,whi
h takes the median of a bun
h of datapoints. It's great if there's no fun
tional dependen
e onxm. The other is lad�t (\least absolute deviation �t"). These are qui
k and you don't have todo any iterations. And they give a slightly more a

urate answer than the above te
hnique; this isbe
ause IDL is 
areful about the exa
t de�nition of the median, e.g. when there is an even numberof datapoints.However, with IDL's routines there are no errors given; there is no possibility for di�ering �m;there is no 
ovarian
e matrix. And, of 
ourse, you 
an't �t anything more 
ompli
ated than astraight line.13. FITTING WHEN ALL VARIABLES HAVE UNCERTAINTIESWe've mentioned that one of the essential assumptions of least squares is that the independentvariables are known with high pre
ision and the errors o

ur only in the measured data. Supposeyou're �tting two variables, t and �, as in equation 1. This essential assumption means that t isknown with high pre
ision and all the un
ertainty is in �, and you are minimizing the squares of theresiduals in the �-dire
tion only. If both variables have un
ertainties, then you have to be 
arefulbe
ause the essential assumption is violated. If you go ahead with a standard least squares �t whenthere are errors in both 
oordinates, the slope will be systemati
ally too small, as we dis
uss brie
ybelow.Thanks to Stetson, the ML formulation of this problem is straightforward. Nevertheless, as faras I know the proper formulation is rather re
ent; Stetson's treatment is the �rst I've seen. Beforereviewing Stetson's formulation, I want to warn you about some in
orre
t formulations:



{ 42 {1. Taylor x8.4 dis
usses the 
ase in
orre
tly, arguing that you 
an a

ount for x-varian
e �2xm byin
reasing the y-varian
e by the usual error propagation, i.e. de�ne an equivalent y-varian
e�2ym(equiv) = [�2ym + (a1�xm)2℄, where a1 is the slope. As we mentioned, this pro
edure leadsto a slope that is systemati
ally too small.2. Isobe et al (1990, ApJ 364, 104) dis
uss the 
ase in
orre
tly. Look in parti
ular at theirSe
tion V, where they make 5 numbered re
ommendations. Two of these are in
orre
t:(a) Number 3 says, in essen
e, that if you have measurement errors in y but not in x, andwant to predi
t x from y in some future dataset, that you should least squares �t the xvalues (whi
h have no errors) to the y. This is 
at wrong. Again, it leads to a slope thatis systemati
ally too small. The proper pro
edure is to �t y to x in the standard way,whi
h is 
onsistent with the ML formulation and gives the right answer; then use theresulting parameters, whose errors you know about, to predi
t x from y in the future.(b) Number 4 says that if both x and y have errors, and your main fo
us is �nding the trueslope, you should use their \bise
tor" method. I won't explain this be
ause this 
on
eptis wrong.Stetson has a beautiful dis
ussion of the problem, whi
h is obviously 
orre
t|both be
ause itmakes sense and be
ause numeri
al experiments show that the derived parameters don't dependon whether you 
onsider x or y the independent variable. With his te
hnique you are not restri
tedto �tting a straight line (a one-degree polynomial). NM x15.3 provides another method, whi
h ismore 
ompli
ated and is restri
ted to a straight line. Here we review Stetson's method.13.1. A preliminary: Why the slope is systemati
ally smallWhy is the derived slope systemati
ally too small if you use the standard least squares te
hniquewhen both variables have errors? To see this, take a look ba
k at equation 5, where we expli
itlywrite the normal equations for �tting a straight line of the form Asm + Btm = �m. To fo
us thedis
ussion and make it easy, repla
e that problem with a single-parameter solution for only theslope B, and use the usual variables (x; y) in pla
e of (t; �). Then we are �tting the set of Mequations Bxm = ym (83a)the set of two normal equations be
omes just the single equationB[x2℄ = [xy℄ (83b)or, writing out the sums expli
itly,



{ 43 {B = PM�1m=0 x�mymPM�1m=0 x�2m (83
)Here we use the star to designate the perfe
tly-known independent variable x�m. It is importantto realize that the xm that appear in this equation are the perfe
tly-known ones x�m; this is afundamental tenet of least squares �tting, whi
h 
omes from the 
on
ept and prin
iple of maximumlikelihood ML.Be
ause B is de�ned by the x�m and we are asking what happens when we use the imperfe
tlyknown xm instead, let us redu
e the problem to the essen
e and imagine that ym is perfe
tly known,i.e. ym = y�m; and that x�m = xm � Æxm (84)where Æxm is the observational error in point m. If we do standard least squares on this situation,as re
ommended by Taylor and Isobe et al, then we (in
orre
tly) rewrite equation 83
 to readB = PM�1m=0 xmymPM�1m=0 x2m (85a)that is, using xm instead of x�m (be
ause we don't know what x�m is!). Substituting equation 84,and remembering that ym = y�m = Bx�m, we haveB = PM�1m=0 x�m(x�m + Æxm)PM�1m=0 (x�2m + 2x�mÆxm + Æx2m) (85b)Now all terms having Æxm sum to zero be
ause the errors are distributed symmetri
ally aroundzero. But the denominator 
ontains Æx2m. The denominator is irrevo
ably in
reased by this term,whi
h de
reases the derived value of B from its true value. Yes, this is only a se
ond-order e�e
t,but it matters|after all, �2 is a se
ond-order quantity! Try some numeri
al experiments!13.2. Stetson's method13.2.1. PhilosophyTo make things 
lear, we dis
uss the 
ase of a straight line. Thus we assumey� = a0 + a1x� (86)
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ates the true quantity without errors. The measured points di�er from the trueones: Æxm = xm � x�m ; Æym = ym � y�m (87)and we de�ne, as usual, the apparent residual in ym as�ym = ym � a1xm (88)Note that this di�ers from the true residual in ym, whi
h is Æym; the apparent residual �ym assumesthat xm has no error.

Fig. 3.| Illustrating the dis
ussion of �tting when both variables have errors. Here, as usual inthis do
ument, di�eren
es are \measured minus true", e.g. �ym = ym � y�m, et
.; in the �gure,�ym < 0, Æym < 0, Æxm > 0.Look at Figure 3. There (xm; ym) is a measured point. The ellipse 
entered on it has (x; y)



{ 45 {axial ratio (�x; �y) and tra
es out a the lo
us where the point's 
ontribution to �2 is 
onstant; 
allthis 
ontribution �2m. The straight line is the �tted straight line, assumed to be perfe
tly 
orre
t,i.e. the line given by equation 86. The most probable pla
e where the observed point (xm; ym)would lie if it had no errors is (x�m; y�m); it lies on the smallest ellipse 
entered on (xm; ym), aspi
tured. This is the ellipse having the smallest possible �2m. The true di�eren
es between theobserved and most probable points are (Æxm; Æym) given by equation 87 above, where these aremeasured from the 
enter to the starred point on the ellipse.It's easy to 
al
ulate (Æxm; Æym) in terms of �ym. These are the distan
es from the measuredto the starred point. We realize that the starred point must satisfy two 
riteria:1. The straight line �t is tangent to the ellipse, so the slopes mu
h mat
h. The ellipse hasequation Æx2m�2xm + Æy2m�2ym = 
onst = �2m (89)so the slope is dÆymdÆxm = ��2ym�2xm ÆxmÆym (90)and this, evaluated at (x�m; y�m) must equal a1.2. The a
tual values must mat
h. Rather than solve for these, we 
an solve in terms of �ymdire
tly.From the �gure it's 
lear that �ym = Æym � a1Æxm (91)so 
ombining equations 90 and 91 we getÆxm = ��yma11 + �2yma21�2xm (92a)and Æym = �ym1 + a21�2xm�2ym (92b)



{ 46 {You 
ould minimize �2 by brute for
e. You would begin with the standard least squaressolution to get an estimate of the 
orre
t parameter values. Then you'd make up a grid in the(a0; a1) plane to �nd the lo
ation of the minimum in �2, whi
h is�2 = M�1Xm=0 �2m = M�1Xm=0 Æx2m�2xm + Æy2m�2ym (93)whi
h gives the parameters (a0; a1). The quantities (Æx2m; Æy2m) are given by equation 92. The errorsare given by the usual ��2 
ontours as dis
ussed in x10.13.2.2. Dire
t solutionUsing the prin
iple of maximum likelihood (ME), we �nd the minimum �2 by taking thederivative of �2 with respe
t to ea
h parameter an and setting the derivative equal to zero. Toillustrate, we work this through for the slope. We are �tting for the slope in the equationym = axm (94)for whi
h �2 is given by equation 93. Express (Æxm; Æym) in terms of �ym, as in equations 92, andrewrite equation 93 to read�2 = M�1Xm=0 (ym � axm)2a2�2xm + �2ym = M�1Xm=0 �y2ma2�2xm + �2ym (95)Di�erentiate with respe
t to a and set equal to zero. After 
an
elling extraneous fa
tors, and usingequation 92a, we get M�1Xm=0 (ym � axm)(xm � Æxm)a2�2xm + �2ym = 0 (96)The term axm(xm�Æxm) de�nes the relevant diagonal matrix element in the 
urvature matrix,and 
orresponds to the lower right element (B[t2℄) in equation 5; the term ym(xm�Æxm) 
orrespondsto [t�℄ in that equation. In other words, if we had standard least squares and no errors in x, equation96 would read M�1Xm=0 (ym � axm)(xm)�2ym = 0 (97)



{ 47 {Looking at these and, also, referring ba
k to x3, it's easy to see how to generalize this and writeit in matrix notation. First, note that ea
h datapoint has a net total error given by the denominatorof equation 95, and in general|i.e., when we �t something other than a straight line|the slope avaries from point to point so that, even if the (�x; �y) are 
onstant, the net total error is not. Thismeans you need to use the weighted �t te
hnique of x9.2 and 9.5 with�2meas;m = (a2m�2xm + �2ym) (98a)where the lo
al slope am is evaluated at (xm � Æxm)am = �y�x ����(xm�Æxm);(ym�Æym) (98b)We repeat all this to be perfe
tly expli
it:1. You are �tting X � a = Y (99)In X, ea
h 
olumn n 
ontains a di�erent fun
tion of x 
alled fn(x). The entry for (
ol; row) =(n;m) = fn(xm).2. In our normal equations we have the fa
tor (xm � Æxm) instead of xm, whi
h means that informing the matrix normal equations we need to de�ne a new matrixX MOD = X� ÆX (100)where the elements of ÆX are evaluated using equation 92. That is, ÆXm;n = fn(xm � Æxm).[Here we use IDL's 
onvention (m;n) instead of the 
onventional mathemati
al one (n;m).℄If it's a straight-line �t, the slope is the same everywhere. If it's a more general �t, the slopeis the lo
al slope derived using equation 98; this slope 
an be 
al
ulated either analyti
allyor numeri
ally.3. De�ne the weighted versions of X, X MOD, and YXW =W ## X =W �X (101a)X MODW =W ## X MOD =W �X MOD (101b)YW =W ## Y =W �Y (101
)where Wm;m = 1�meas;m (from equation 98a).



{ 48 {4. Then the matrix normal equation is[� mod℄�a = [� mod℄ (102)where [� mod℄ = X MODWT �X (103a)[� mod℄ = X MODWT �Y (103b)But, you ask, how 
an we form the matrix ÆX if we don't know the slope a? The answer:iterate. That is,1. Solve ym = a0 + a1xm using standard least squares or 
hi square; or use any other te
hniqueto get an initial guess for the parameters a. Cal
ulate the lo
al slopes using (xm; ym).2. Determine the �ym and 
al
ulate Æxm using equation 92a.3. Cal
ulate the matri
es X MODW, [� mod℄, and [� mod℄ as above.4. Solve for new parameters a.5. Cal
ulate the lo
al slopes using (xm � Æxm; ym � Æym).6. Loop ba
k and repeat steps 2, 3, 4,and 5 until 
onvergen
e.7. After 
onvergen
e, 
al
ulate the un
ertainties, as usual, by the equivalent of equation 55, i.e.s2a = b�2diagf[� mod℄g (104)13.3. Commentary on Stetson's solution13.3.1. This solution is general and makes senseThis solution makes sense. Consider standard least squares in whi
h �xm ! 0; here we shouldrevert to standard least squares. Also, when the slope is zero it's like taking an average of ym, soit shouldn't matter what �x is. Equation 92a satis�es these expe
tations be
ause the denominator!1: the ellipse be
omes tall and thin so Æxm ! 0.Similarly, if �ym ! 0 or a ! 1 then the ellipse be
omes very short and fat: Æxm ! �yma1 ,meaning that all of the 
orre
tion goes to Æxm. This is equivalent to y being the independent



{ 49 {variable, and you 
an solve it this way, but of 
ourse it is mu
h more eÆ
ient to use standard leastsquares with y a
tually being the independent variable.Finally, there's no reason why we had to use a straight-line �t. It 
ould have been any fun
tion;in an arbitrary 
ase, we repla
e the slope by the lo
al slope, namely the derivative of the fun
tionevaluated at the 
urrent value xm + Æxm. So this te
hnique is general. In his website, Stetsonprovides an example of �tting a 
ir
le to points in (x; y)!13.3.2. Yet another point I do not understandFirst, I found Stetson's website dis
ussion 
harming and stimulating. However, I found it verydiÆ
ult to glean just exa
tly how he suggests solving the problem! His formulation involves usingdi�eren
es from one iteration to the next and di�ers from the one I've given above.Se
ond, Stetson spends several pages dis
ussing the importan
e of the di�eren
e between twoquantities. One is �ym. The other is� = �ÆFm = �F�x ����x�;y� Æxm + �F�y ����x�;y� Æym (105)where F (x; y) = a0 + a1x� y (106)You 
ould put 
ontours of 
onstant F on Figure 3. The zero 
ontour is where F (x�; y�) = 0,whi
h is what you get with (Æxm; Æym) = (0; 0). This zero-level 
ontour is the straight line solutionof the problem. Moving away from zero gives 
ontours of 
onstant �; these are o�set from the zero
ontour and have the same shape.Stetson emphasizes that the proper thing to do is use �m in pla
e of �ym in equation 92a.However, after s
rat
hing my head for quite a while, I 
on
lude that in fa
t these two quantitiesare always equal, i.e. �m = �ym. I do not understand Stetson's emphasis on this point.13.4. Generalization to Multivariate CaseThe subse
tions above deal with the simple 
ase of two variables. It is straightforward togeneralize to the multivariate 
ase. As in se
tion 13.2.1, suppose you are �tting the multivariateanalogy of equation 86 z� = a0 + a1x�+ a2y�+ : : : (107a)



{ 50 {whi
h is equivalent to dz� = a1dx�+ a2dy�+ : : : (107b)Then the dis
ussion follows the same tra
k ex
ept that here, instead of the surfa
e of �2 being anellipse on a two-dimensional spa
e, it's an ellipsoid in a three-dimensinal spa
e. And for the 
ase ofN variables it's an N -dimensional ellipsoid. We 
an't draw this, but the ideas embodied in Figure3 remain: we mat
h the slopes and values to �nd the smallest ellipse, i.e. the smallest �2, for ea
hmeasured point. Equations 90 and 91 be
omedÆzm = ��2zm�2xm ÆxmÆzm dÆxm � �2zm�2ym ÆymÆzm dÆym + : : : (108)and �zm = Æzm � a1Æxm � a2Æym + : : : (109)Comparing equations 107b and 109, we see thata1 = ��2zm�2xm ÆxmÆzm ! Æzm = � �2zma1�2xm Æxm (110a)a2 = ��2zm�2ym ÆymÆzm ! Æzm = � �2zma2�2ym Æym (110b)... (110
)There are N su
h equations. We then generate N equations that express �zm in terms ofÆxm; Æym; : : : by su

essively substituting for Æzm the right-hand-side versions of equations 110into equation 109: �zm = �a1 � �2zm(a1�xm)2 + 1� Æxm � a2Æym � : : : (111a)�zm = �a1Æxm � a2 � �2zm(a2�ym)2 + 1� Æym � : : : (111b)... (111
)



{ 51 {or, in matrix form,26664 �a1 h �2zm(a1�xm )2 + 1i �a2 : : :�a1 �a2 h �2zm(a2�ym )2 + 1i : : :... ... . . . 37775264 ÆxmÆym... 375 = 264 �zm�zm... 375 (112a)or, symboli
ally, Am � Æm =�zm (112b)so that, as in equation 92a, we obtain (Æxm; Æym; : : :) in terms of �zm fromÆm = A�1m ��zm (113)Finally, as in equations 93 and 95, we 
ompute �2 from�2 = M�1Xm=0 (zm � a1xm � a2ym � : : :)2�2zm + a21�2xm + a22�2ym + : : : = M�1Xm=0 �z2m�2zm + a21�2xm + a22�2ym + : : : (114)and equation 98a be
omes �2meas;m = �2zm + a21�2xm + a22�2ym + : : : (115)whi
h is used, as above, to 
al
ulate Wm;m = 1�meas;m .14. USING SINGULAR VALUE DECOMPOSITION (SVD) IN IDLO

asionally, a normal-equation matrix [�℄ = XX = XXW is suÆ
iently ill-posed that in-verting it using standard matrix inversion doesn't work. In its invert fun
tion, IDL even providesa keyword 
alled status to 
he
k on this (although I �nd that it is not perfe
tly reliable; the bestindi
ator of reliability is to 
he
k that the matrix produ
t XX##XXI = I, the unitary matrix).In these 
ases, Singular Value De
omposition (SVD) 
omes to the res
ue. For a dis
ussion of thedetails of SVD, see NM x15.4.You don't need to read the following material to use the SVD te
hnique in IDL. Rather, you
an just use IDL's do
umentation for svd�t. The only problem is that you need to �t to a fun
tion



{ 52 {that you de�ne in an IDL fun
tion. If you are �tting to tabular values, or to a fun
tion that is noteasily expressed analyti
ally, then you 
an still use svd�t: read on.First let us brie
y des
ribe the te
hnique7. We are �ttingym = N�1Xn=0 anfn(xm) ; (116)The matrix element Xnm = fn(xm), i.e. it 
ontains the values of fn evaluated at xm. The idea is torepla
e the set of fun
tions fn(xm) with the set of matrix elements Xnm = fn(m), i.e. to repla
e theindependent variable xm by its index m and the fun
tion fn(xm) by its matrix-element 
ounterpartXnm.We will denote the X matrix by the symbol X SVD be
ause we need to put it in a 
ommonblo
k; however, remember that X SVD = X. You populate this matrix yourself, Often with valuesthat are not easily expressible analyti
ally. Here's the 
ookbook:14.0.1. Step 0: Introdu
e a 
ommon blo
k that will 
ontain the X SVD matrixLet's 
all this 
ommon blo
k svdinput. The relevant IDL 
ommand is 
ommon svdin-put,x svd. The only 
at
h is that, in IDL, you 
an't use a variable before de�ning a 
ommonblo
k that 
ontains it. So it is probably best to exit IDL and re-enter it, de�ning this 
ommonblo
k as the �rst statement.14.0.2. Step 1: De�ne the fun
tion svdf
nThis fun
tion referen
es the x svd matrix, whi
h you've put in 
ommon. This name of thisfun
tion is an input parameter to svd�t. It must have two input parameters, xm and N , thenumber of parameters to �t; and it must provide the N values of the parameters' fun
tions fn(xm)for ea
h measurement lo
ation xm. So we repla
e the set of xm by the the indi
es m and fn(xm)by the set of X SVD�;m, where the * means all N values.fun
tion svdf
n, dataindex, N
ommon svdinputreturn, x_svd[ *, dataindex℄end7It is a pleasure to thank Jason Wright for telling me about this te
hnique.
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tor almost as beforeHere you populate the X SVD and Y matri
es just as before in x5.2 and 9.5, with somesmall di�eren
es. One, the measurement un
ertainties are an independent input to svd�t so wedon't 
reate the weighted versions of X SVD and Y. Two, we must make Y a row ve
tor insteadof a 
olumn ve
tor. Here we repeat all the IDL 
ommands as in x9.5, but without the verbal
ommentary, and in
lude this slight modi�
ation for Y. We use the numbers in the numeri
alexample of x5.2 to be absolutely unambiguous about what to do. In this example, the number ofunknowns N = 3 and the number of measurements M = 4.X SVD = 26664 1 5 251 7 491 9 811 11 121 37775 (117a)
Y = [142; 168; 211; 251℄ : (117b)and we de�ne ME, the ve
tor of measurement errors, to beME = [5:; 3:; 7:; 4:℄ : (117
)where we have invented a four arbitrary values for illustrative purposes. You 
an, of 
ourse, useunity for all of the elements of ME; also, you 
an 
all svd�t without spe
ifying any measurementerrors, in whi
h 
ase it be
omes a standard least squares �t. In the following we assume that youare doing a 
hi-square �t, i.e. following x9.5.14.0.4. Step 3: Call svd�tNow in in x9.5 we repla
e 59 to 67 (and in x5.2, equation 23 to 30) by the following:dataindex = indgen(M) (118a)where M , we remind you, is the number of measurements; anda = svd�t(dataindex;Y;N;measure errors =ME; fun
tion name =0 svdf
n0;
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hisq = 
hi sq ;varian
e = vard
 oÆ
ial; sigma = sigd
 oÆ
ial;
ovar = XXWI; singular = singular) (118b)n
ov = XXWI=sqrt(vard
 oÆ
ial#vard
 oÆ
ial) (118
)If you are doing least squares �tting and setting all elements of ME equal to unity, then of 
ourse
hisq is the same as the sample varian
e s2.This te
hnique is simpler be
ause it requires fewer IDL statements. However, you have to de�nethe additional fun
tion and, if you are using the X SVD matrix, the 
ommon blo
k, whi
h mustbe done at the beginning of the IDL session. This te
hnique is good in those rare instan
es whereinversion of the 
urvature matrix fails, but it works for all 
ases, of 
ourse. NM x15.4 extols itsadvantages and mentions its one disadvantage, whi
h is requiring more memory (and, I'm guessing,more 
omputer time); they re
ommend that you use it always. I got along without it for 40 years,perhaps be
ause I never did any truly 
hallenging problems, but I'll probably 
hange my defaultte
hnique to this. Note, however, you 
an't use svd�t for errors in both variables dis
ussed inx13.2.2.15. BRUTE FORCE CHI SQUARED AND THE CURVATURE MATRIX15.1. Parameter Un
ertainties in Brute For
e Chi square �ttingThere are times when \brute for
e" least squares is appropriate. For example, if you havea nonlinear problem in whi
h taking derivatives is 
ompli
ated, and if the number of unknown
oeÆ
ients is small, then it might be easier to sear
h through the 
oeÆ
ient parameter spa
e,
al
ulate the �2 for ea
h 
ombination of parameters, and �nd the minimum.This pro
edure 
ertainly provides the least squares solution. However, getting the un
ertaintiesrequires a bit more work. You 
an get the full set of un
ertainties if you know the 
urvature matrix,whi
h is the matrix of se
ond derivatives of the pairwise parameters evaluated at the minimum �2.Having found the minimum, you 
an derive these 
urvatures (equal to half the se
ond derivatives)numeri
ally. Then, to �nd the un
ertainties in the parameters, follow the pro
edure in x10.5.15.2. Example: the single-parameter 
aseIt is parti
ularly easy to dis
uss this if there is only one parameter. Let us 
onsider this 
aseand assume that it is a simple weighted average (whi
h is the least squares solution for a 
onstant).Suppose the best �t �2 value for the unknown 
oeÆ
ient (i.e., the weighted average) is x0 and that
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e is �2x0 . Now 
onsider o�sets from x0, namely x0 + Æx. Be
ause �2 is minimized at x0,it is 
lear that ��2 = �2x0+Æx � �2x0 = 12 d2�2dÆx2 Æx2 (119)Generally, the 
urvature is the relevant element of the 
urvature matrix [�℄. In the parti
ular 
aseof a weighted average, there is just one element so12 d2�2dÆx2 = [��℄ = [��℄00 =X� 1�2meas;m� (120)Be
ause we have a single parameter x0, its varian
e �2x0 is the o�set Æx20 from x0 that gives��2 = 1. If we had more than one variable, we'd de�ne ellipsoids in the manner dis
ussed in x10.5.Are you bothered by the fa
t that the 
urvature is independent of the data values? Then goba
k and read x9.3.16. NOTATION COMPARISON WITH NUMERICAL RECIPESI learned least squares from Appendix A of Chauvenet (1863). He didn't use �2 and didn'tuse matrix te
hniques, but x1 and 2 follows his development quite 
losely. I wrote the �rst versionof this do
ument before knowing of NM's treatment, whi
h explains my orientation towards leastsquares instead of 
hi-square. I'm fortunate in this approa
h be
ause it made me realize the pitfallsone 
an get into with 
hi-square, as I dis
uss in x9.On the other hand, NM des
ribe the least squares approa
h with some disdain in the dis
ussionof equation (15.1.6) and warn that it is \dangerous" be
ause you aren't 
omparing the residuals tothe intrinsi
 ina

ura
ies of the data. In astronomy, though, more often than not you don't havean independent assessment of �meas. But you might know the relative weights, and this is a plusfor Chi-square �tting. In any 
ase, heed our warnings about 
hi-square �tting in x9.In this writeup I have revised my old notation to agree, partially, with NM's. This e�ort wasn't
ompletely su

essful be
ause I didn't read NM very 
arefully before starting. To make it easierto 
ross-referen
e this do
ument with NM, I provide the following table of 
orresponden
es (left ofthe double arrow is ours, to the right is theirs):X ! A (121a)Y ! b (121b)
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)XX�1 = XXI = [�℄�1  ! [�℄�1 = [C℄ = C (121d)I use M for the number of measurements and N for the number of unknown 
oeÆ
ients; NM usesthe opposite, so we have N  !M (121e)M  ! N (121f)REFERENCESBevington, P.R. & Robinson, D. 1992, Data Redu
tion and Error Analysis for the Physi
al S
ien
es(WCB/M
Graw-Hill).Chauvenet, W. 1863, A Manual of Spheri
al and Pra
ti
al Astronomy, Dover Press.Cowan, G. 1998, Statisti
al Data Analysis, Clarendeon Press.Press, W.H., Flannery, B.P., Teukolsky, S.A., & Vetterling, W.T. 2001, Numeri
al Re
ipes (se
ondedition), Cambridge University Press.Taylor, J.R. 1997, An Introdu
tion to Error Analysis, University S
ien
e Books.
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