
BIDIDL: BASIC IMAGE DISPLAY IN IDLMar
h 18, 20031. COLOR DISPLAYS AND YOUR IDL START-UP FILEYour display s
reen
onsists of about a million little areas
alled pixels. Ea
h pixel
an showa di�erent
olor/intensity
ombination. Everything on your s
reen|text, pi
tures, whatever|isdisplayed by �lling the appropriate pixels with the appropriate
olor/intensity. Your s
reendimensions are 1280� 1024 (or, if your resear
h advisor is
heap, 1280� 768). So ea
h pixel issmall! But if you look
arefully, you
an see them|in parti
ular, on a �eld of uniform
olor you
an see thin verti
al lines, and these mark the verti
al pixel boundaries.All
olors seen by the human eye
an be produ
ed by a suitable mixture of intensities of onlythree
olors, red, green, and blue (RGB). Most
ommon displays in use today allow 256 intensitiesof ea
h
olor1. This gives a total of 2563
ombinations|this used to be billed in the PC worldas \millions of
olors". However, some
omputer s
reens
an't display this full range of
olors.Instead, they
an display only 256 di�erent
ombinations. This may seem small, but for mostpurposes it's exa
tly what you need. For example, in a bla
k/white image there
an be 256 (that's8 bits worth) di�erent intensity levels, ranging from bla
k, through the greys, to the brightestwhite.Our
omputer s
reens fall into several
ategories. These depend on the
apabilities of yourvideo
ard and software driver.1. Pseudo
olor, with 256
olors and a
olor table (see below). Found mainly on older Sunma
hines and also on
urrent
heap Sun ma
hines; if you have this you are in some senselu
ky. This mode allows you to use the
ursor to
hange the
ontrast of images.2. True
olor, with 2563
olors and no
olor table. Found on
urrent
heap Sun ma
hines, on allPC's running windows, also on PC's running linux. This gives you millions of
olors but no
ursor manipulation of image
ontrast. Note: Current
heap Sun ma
hines
an run eitherpseudo
olor or true
olor, but Kelley has to make the
hange|meaning you have to
hooseone and sti
k with it.3. Dire
t
olor, with 2563
olors and three
olor tables, one for ea
h primary
olor. Found onSun ma
hines with \Creator 3D" graphi
s and, also, on PC's running Linux. This gives all
apabilities.Portions of the �rst portion of this writeup deal with using the
ursor to
ontrol
ontrast,1Note that 256 is the same as 28: it's 8 bits|or, alternatively, 1 byte

{ 2 {for whi
h you need either pseudo
olor or dire
t
olor. If you have only true
olor, some of thedis
ussion won't apply to you, but forge ahead anyway.IMPORTANT: You have to tell IDL what
olor mode you want. To follow the writeup below,try to get into pseudo
olor; you do this by making the �rst statement you type in after enteringIDL. . .devi
e, pseudo=8(The \8" stands for 8 bits; remember, 28 = 256). It's best to put this statement in your IDLstartup �le. This won't work if you have a PC under Linux, so instead trydevi
e, dire
t
olor=24 , retain=2The retain=2 means that IDL will refresh the window if it gets
overed up by another window;you don't need to do this on the Sun ma
hines be
ause Solaris takes
are of this detail.If you request a
olor mode that your
omputer doesn't support, IDL will tell you so andrevert to the most
apable mode that it does support. On
e you're in IDL, you
an
he
k to seewhat you've told IDL. Enter the IDL
ommand. . .help, /devi
eand IDL will tell you what display devi
e it is using. If you are in pseudo
olor, the response willshow, among other things: Display Depth, Size: 8 bits, (xxxx, yyyy), where xxxx and yyyy arethe s
reen pixel dimensions; Visual Class: PseudoColor (3); Colormap: Shared, zzz
olors (zzz willprobably be about 228; see x7). It also lists all the windows you have open. If you are in posts
riptmode, in whi
h it writes all output to a posts
ript �le instead of the s
reen, it will tell you so.2. COLOR TABLESIn pseudo
olor mode, the maximum number of
olor/intensity
ombinations that
an bedisplayed simultaneously is 256.2 Therefore, images are represented by numbers that range0! 255. For this reason, displayed images are always represented by byte arrays. You
an displayother array data types, but IDL will
onvert whatever you give it to a byte array before displayingit. Therefore, if you display, say, an integer array (integers are two bytes long and range from�32768 ! 32767), and if numeri
al values in this array ex
eed 255, then the resulting imagedisplay will look weird. That's be
ause, in
onverting from integer to byte, numbers that ex
eed255 will \wrap around". For example, integer 255 equals byte 255, but integer 256 equals byte 0,integer 257 equals byte 1, et
. Below, we'll deal with these
onversions in more detail.For now, let's restri
t our attention to bla
k/white images|otherwise known as \grey-s
ale"2A
tually, it's less|probably 228. See x6.

{ 3 {images. Grey, or white, is
omposed of an equal mixture of red, green, and blue, and all we dealwith is the intensity I . In a grey-s
ale image, the intensity of ea
h pixel is related to the datavalue d in that pixel. Let's think of large intensity being white and small intensity being bla
k;there are 256 di�erent possible intensities, so I
an range from 0! 255. Similarly, the data valuesd
an range from 0! 255.An important
on
ept is the relationship between I and d. This is known as the
olor table.It spe
i�es the mapping between data value and
olor/intensity|or, for a grey-s
ale image, themapping between data value and intensity.2.1. Linear Mapping, both Dire
t and ReversedThe simplest mapping between data value d and intensity I is a linear one withI = d (1)In this
ase, a data value d = 255 gives white and d = 0 gives bla
k. This dire
t mapping is thedefault manner in whi
h images are displayed on the
omputer s
reen: there is a bla
k ba
kgroundon whi
h the image is painted with in
reasing data values being in
reasingly white. However, on apie
e of paper the relationship is usually reversed, be
ause paper is white and provides a naturallywhite ba
kground. Thus, in this reversed mapping, we want to paint the image with in
reasingdata values being in
reasingly bla
k. This is also a linear mapping, but reversed:I = 255� d (2)NOTE: Printed images usually look mu
h better with the reversed mapping, be
ause printers havea hard time giving a uniformly bla
k area with no streaks. This is the �rst reason why printedimages should be made with a reversed mapping. The se
ond reason is that making the paperbla
k uses lots of printer toner, whi
h is expensive. The third reason is that in s
ienti�
 journals,images with the reversed mapping are reprodu
ed mu
h better. To reverse the
olortable, see x5.2.2. Nonlinear MappingThe linear mapping is often not very useful be
ause you usually want to highlight weakfeatures or bright features; we'll see an example below. The most
ommonly used nonlinearmapping uses a power law (this is the photographer's \
hara
teristi

urve") together with a\stret
h", whi
h
uts o� the image at dim and bright intensity levels:

{ 4 {I = 255 d� dbotdtop � dbot!
 ; d = dbot ! dtop (3a)I = 0; d � dbot (3b)I = 255; d � dtop (3
)In a reversed mapping, you'd substitute (255� d) for d in the above equations.This parti
ular nonlinear mapping
an be invoked easily and automati
ally in IDL by typingxload
t or, alternatively, by using our homegrown diddle. diddle works even on dire
t
olor,while xload
t words only on pseudo
olor. These programs allow you to manipulate
olor tablewith the mouse: you
an
hange the values of
; dbot; dtop smoothly and wat
h the
ontrast of yourimage
hange. xload
t also allows you to sele
t a reversed mapping and to sele
t a multitudeof prede�ned
olor tables, not only grey-s
ale but many others. On
e you get an image, it's funto experiment. xload
t also allows you to generate any
ompletely arbitrary nonlinear mapping;
li
k on \Fun
tion" and experiment. Alternatively, you
an load prede�ned
olor tables; one ofmy favorites is \STD GAMMA II", whi
h you
an load manually using load
t 5.There is one other
ommonly used nonlinear mapping, the so-
alled \histogram equalization"te
hnique. In this te
hnique, the mapping is modi�ed so that all of the 255
olors are used in anequal number of pixels. Read about it in IDL's do
umentation on hist equal.3. LET'S TRY IT IN IDL!First, generate an image. There's a ni
e image of the X-ray sky, obtained by the GermanROSAT satellite, in /dzd2/heiles/
ourses/handouts/rass
.�ts. This �le is in a format
alled\FITS" format, whi
h is the same format of many astronomi
al images. To read the data �le intoan array
alled image, it is easiest to use the IDL pro
edure
alled \read�ts", whi
h resides in theGoddard IDL library whi
h, in turn, is aleady in your IDL path. All you have to do is typeimage = read�ts(0=dzd2=heiles=
ourses=handouts=rass
:�ts0;headerinfo) (4a)on the astron
luster, orimage = read�ts(0=home=ay120b=idl=rass
:�ts0;headerinfo) (4b)

{ 5 {on the ugastro
luster.This returns two arrays: the image array (image) and information about the image (headerinfo);type print, headerinfo to see the header information. Now type help, image and IDL will tellyou that it is a 480� 240 FLOAT array. You
an use the max and min fun
tions (or, ni
er,Goddard's minmax fun
tion) to determine that the data values range from about �174! 45337,thus far ex
eeding the valid range for a byte array. Never mind! Display the image anyway bytyping tv; image (5)and you see a grey mishmash oval. The oval is the Aito� proje
tion of the entire sky in softX-rays. The mishmash o

urs be
ause the data values in image ex
eed the allowable 0 ! 255range of a byte array, so there's lots of wrapping.You
an s
ale the data so that they all �t in the allowable byte range 0 ! 255. We'll �rstprodu
e a byte array, whi
h we'll
all byteimage, from image. . .byteimage = byts
l(image) (6)This linearly s
ales image, whi
h ranges �174! 45337, into byteimage, ranging from 0! 255.To display this image. . . tv;byteimage (7)A qui
k alternative to the above is IDL's tvs
l, whi
h
ombines the two operations.All you see is two white dots! These two dots are the strongest X-ray sour
es in the sky|theone on the left is a point sour
e
alled \Cygnus XR-1", and the one on the right is the Velasupernova remnant, home of the famous \Vela pulsar". In supernova remnants, the X-ray emissionis produ
ed by hot, � 106 K gas heated by the expanding sho
k of the supernova remnant.These images
ontain mu
h more! To see more, type xload
t and manipulate the sliders, oruse diddle . You
an see that the sky
ontains a weak, di�use glow in X-rays. Trouble is, though,that this glow is so weak that the intensity (I) values of this glow all lie in the range 0! 4. Thisprovides very little dynami
 range for this glow, so we need to expand this range so that we
anits stru
ture more
learly.How mu
h should we expand the range? We might make a guess and try �174 ! 2000. Ifthat didn't give a ni
e result, we
ould try some other values. But we don't have to guess! IDLprovides a ni
e way to intera
tively print the values of the image. We use rdpix, whi
h prints out

{ 6 {the pixel values of an image that one must spe
ify as we move the
ursor on the image. What wereally want is the values of the original data array, not its byte
ounterpart, so we spe
ify that bytyping. . . rdpix; image (8)and then the printed numbers will be of the original data array image. From this we see thatlimiting the data range to 0! 2000 would indeed be a good start.You
an also get a qui
k feel for the interesting data range by just doing plot, image andvisually estimating the range of interest.Now, to display the data range 0 ! 2000, we again use the byts
l
ommand as above butlimit the data range by typing. . .byteimage = byts
l(0 > (image < 2000)) (9)Here, the (image < 2000) means \take whi
hever number is smaller, either the data value inimage or the number 2000"; and the 0 > X means \take whi
hever number is larger, either thedata value in X or the number 0". So this performs a modi�ed s
aling, mapping the originaldata range 0 ! 2000 into the byte value range 0 ! 255. It also sets any original data numbersthat ex
eed 2000 equal to 255, and any that are smaller than zero equal to zero|so it obliteratesinformation on the strongest features.Now display this with tv;byteimage and use xload
t to play around with
ontrast|looksgreat, eh? See that huge
ir
ular stru
ture in the middle? That's the \North Polar Spur". Ito

upies an angle of about 120Æ. It's
lose|almost tou
hing our noses! It's
aused by a severaldozen supernovae that have exploded, produ
ing a \superbubble". These supernovae were lo
atedin the large
luster of young stars in the S
orpio
onstellation|some of the stars you see there ona dark night will explode as supernovae some day, adding to the energy stored in the hot gas andbrightening the X-ray emission. You also
an see a bun
h of fairly weak point sour
es and otherdi�use stru
tures.Ni
er than rdpix is pro�les, whi
h makes a plot of the pixel values along either a horizontalor verti
al line, depending on what mouse buttons you push. This pro
edure
an show the valuesof either the data array you are a
tually seeing (byteimage in this
ase) or any other data arrayof the same dimensions (image in this
ase). So trypro�les; image (10)and follow the printed instru
tions. You get a plot of the original data array in its original units,either in the horizontal or verti
al dire
tion, along a line you
hoose with the
ursor. This plot is

{ 7 {so
ompressed that it is virtually worthless, be
ause the plot automati
ally s
ales to the minimumand maximum values of the array; you
an get around this easily by using the < and > operators,as above; for example, pro�les; (0 > (image < 5000)) (11)Often even better is to make a histogram [e.g. histo = histogram(image)℄ of the originalimage; this tells you where most of the brightness data are
on
entrated. And if you're interestedin only a portion of the image, you
an sele
t this portion with the
ursor by typing. . .indi
es = defroi(xsize;ysize) (12)where (xsize, ysize) is the size of image; then image[indi
es℄ is an array
ontaining only thoseimage pixels within the area you've sele
ted|try histo = histogram(image[indi
es℄).4. IMAGE SIZE AND WINDOW SIZEThis image that we've been playing with is a ni
e,
onvenient size for viewing. But it probablydoesn't �ll the window area, or maybe the window is too small. We
an
reate a window of theappropriate size, that is with numbers of pixels equal to the same dimensions of the data array,by typing window;xsize = 480;ysize = 240 (13)and then redisplaying the image with tv;byteimage. Or, suppose you want to make this imagelarger so that you
an see more details. You
ould do this with zoom, but if you want to makethe whole image larger you need to in
rease the size of the image as measured in pixels. IDL doesthis easily; suppose you want to in
rease the size by a fa
tor of 2 in the horizontal and 3.5 in theverti
al dire
tions, i.e. to make an array of size 960� 840. Do this bybigimage =
ongrid(byteimage; 960; 840) (14)Then
reate an appropriately-sized window (e.g. with window, 5, xsize=960, ysize=840|whi
h
reates a new window, numbered 5, and leaves the old ones in pla
e), use tv, bigimage,and...there you are. There's another routine
alled rebin, whi
h works only for integral fa
tors.CAUTION WITH
ongrid and rebin: These routines handle enlargement and ensmallmentdi�erently, and treat the edges di�erently. You almost
ertainly don't want to use the defaultoptions; look
arefully at the keywords and try them out on a short 1-d array to see their e�e
ts.

{ 8 {5. MAKING HARD COPIES OF IMAGESOK. . . you've got a beautiful image and you want to make a hard
opy on the printer. Some
onsiderations:� The s
reen usually shows white on bla
k. As we mentioned above in x2, This doesn't
omeout very well on the printer; bla
k on white works better. Also, we use a lot less printertoner with bla
k on white. You
an get bla
k on white with xload
t:
li
k on \Options"and
hoose \Reverse Table". You'll have to play with the Gamma Corre
tion and Stret
hsliders again to get what you want.Alternatively, you
an type tv;not(image) (15)be
ause the not operating on a byte array reverses the bits and maps 0! 255 into 255! 0.� How big do you want the printed image?5.1. Copying the s
reen to PS with hardimageThe simplest and least elegant way to get a ps version is to
opy the s
reen pixels dire
tly ontoposts
ript. It's least elegant be
ause any notations you make get transferred to PS as pixellated
hata
ters, whi
h aren't very pretty.You might be tempted to use hardplot. But that's written mainly for line plots, whi
husually don't have shades of grey. For images use hardimage. Using its keywords, you
angenerate a posts
ript (PS) or en
apsulated posts
ript (EPS) �le, make an image of size that youspe
ify, and other options. They you examine the �le using the unix
ommand xv or display, andprint the �le using the UNIX
ommand lp �lename. Note: hardimage gives you an exa
t
opyof what you see on the s
reen: to get the desired bla
k-on-white image you need from the printer,you need to
reate this same version on the s
reen. hardimage also does
olor, and it works inall three
olor modes.5.2. Generating PS dire
tly with openimagepsIt's mu
h better to write the image itself dire
tly onto PS instead of �rst onto X, to avoidpixellation with
hara
ter notation. To a

omplish this, make PS the output devi
e; do all of youtv'ing and
hara
ter annotation; and then
lose the PS devi
e.

{ 9 {To make PS the output devi
e, you need to
reate a PS window with the set plot, ps anddevi
e
ommands. In the devi
e
ommand, you spe
ify su
h things as size of the window on theprinted page; it will look something like this:devi
e, filename=filenm, bits=8, lands
ape=lands
, /in
h, /
olor, $xsize=xin
h, xoff=xoffset, ysize=yin
h, yoff=yoffsetwhere xsize is the size of the PS window (not the image) and xo�set is the horizontal o�setof the lower left-hand
orner of the PS window from the
orner of the page. The units here inin
hes be
ause of the in
h. There's also a lands
ape option; if you use it, look
arefully at thedo
umentation!You
an save yourself a lot of grief by using our openimageps pro
edure, whi
h does all thisfor you, and you
an look at that
ode to see exa
tly how it's done. openimageps works in any
olor mode.After opening the PS window, do all the steps required to generate the image and its notation;then �nish with
loseps6. ANNOTATING IMAGES WITH PLOT BORDERS AND LABELSMost of the time you will need to annotate an image with a plot border or other annotations.Here's a verbal des
ription of the basi
s, in whi
h we assume the image is the 480� 240 pixelimage from /dzd2/heiles/
ourses/handouts/images/rass
.�ts.The details depend on whether the output devi
e is X windows (X) or Posts
ript (PS). Morepre
isely, what works for PS also works for X, so if you have the remotest idea that you'll want tomake a PS �le then you should use the more general notation.6.1. X-windows **ONLY**First, you need to make a large enough window to leave room for the plot border and labels.You
an do this by opening a window that's larger than the image size. In the example, we makethe window 50 pixels larger all around than the image.You need to
enter the image within this window. Do this with the x,y inputs to the TV
ommand:TV, image, 50, 50

{ 10 {Next, you need to
reate a plot border that's aligned with the image. For this you use theposition keyword in the plot
ommand. Also, you don't want the plot
ommand to erase theimage, so you use the noerase keyword; and also you probably want to
reate the plot borderwithout plotting data, so you use the nodata keyword. With all this, the plot
ommand
an looklike this:plot, [0,0℄, [0,0℄, xra=[360,0℄,yra=[-90,90℄, xsty=1, ysty=1, $/nodata, /noerase, position=[50,0,529,339℄,/devi
e, $xtit='GALACTIC LONGITUDE', ytit='GALACTIC LATITUDE'Here the devi
e keyword spe
i�es that the position
oordinates are given in devi
e units, whi
hare pixels for the X window. 6.2. X **AND** PSThe main di�eren
e in PS is that you
annot spe
ify things in devi
e
oordinates; rather,you must use normalized
oordinates. In X, you
an use either. Normalized
oordinates runfrom 0! 1 and are the fra
tion of the total image size in that parti
ular dire
tion. The ne
essityfor normalized
oordinates arises be
ause PS uses s
alable pixels|meaning that pixels are notne
essarily square be
ause the pixel shape depends on the ratio of X and Y sizes of the image thatyou spe
ify in the TV
ommand to the number of X and Y pixels in the image.You
an use normalized
oordinates with X, too. This means that you
an use exa
tly thesame
ode for image display for both X and PS, with the only ex
eption being that you open aPS window or an X window.To begin with, you need to position the image within the window (as opposed to the devi
e
ommand, whi
h positions the PS window on the page). In our example, you might wish to
enterit. For PS (but not for X) You need to spe
ify the image size. The following works in both:xoffset = 50/580.yoffset = 50/340.xplotsize=480/580.yplotsize=240/340.tv, image, xoffset, yoffset, xsize=xplotsize, ysize=yplotsize, /normalThis works for both be
ause, under X, TV ignores the xsize and ysize keywords (be
ause, underX, the image size is always in pixels, equal to the size of the array image).Now for the plot border. This is just like the des
ription above for X, ex
ept that you needto use normalized
oordinates. So you'd have

{ 11 {plot,x,y,xra=[360,0℄,yra=[-90,90℄, xsty=1, ysty=1,/nodata, /noerase, $position=[50/580., 50/340., 529/580., 289/340.℄,/norm, $xtit='GALACTIC LONGITUDE', ytit='GALACTIC LATITUDE'If you are attentive, then you will have asked: \Why divide by 580 instead of 579? Why divide by340 instead of 339?" Answer: \I don't know the answer, but that's what works!"If you're lazy, or
lever, then you don't need to
al
ulate the normalized
oordinates yourself.Instead, you
an use IDL's
onvert
oord fun
tion.Of
ourse, you
an annotate with xyouts; you just have to remember to use either norm ordevi
e
oordinates! 6.3. ATVFor one-d images, ATV is a pa
kage you might �nd desireable for some purposes. Ito�ers a widget-based driver for many of the basi
 image display fun
tions. It's lo
ated at/deep2/d�nk/
vs/idlutils .7. 256 PSEUDOCOLORS? THIS IS A DETAIL THAT YOU CAN IGNOREUNLESS YOU WANT AN EXCELLENT POSTSCRIPT VERSION. . .Above, in x1 and x2, we dis
ussed how your s
reen, in pseudo
olor mode,
an show 256intensities (or, more generally,
olor/intensity
ombinations). That is absolutely
orre
t!But IDL doesn't have all 256
ombinations available to it be
ause the operating system takesup some
olors for itself3. It usually uses 28
olors for things like the ba
kground s
reen
olor,window
olor, window borders, types
ript
olor, et
. This leaves (usually) 228
olor/intensity
ombinations for IDL4. IDL takes
are of this little detail automati
ally, so you don't have toworry about it. But this di�eren
e is frustratingly annoying when you are trying to make ahigh-quality posts
ript image.For the true a�
ionado, you
an get around this and for
e IDL to use all of the available256
olor/intensity
ombinations. If you do this, then the s
reen
olors will \
ash" depending onwhether your
ursor is on an IDL window or not|and also xload
t won't work the way you'dlike (but diddle will!). If you really want to invoke this option|and we don't usually re
ommend3see Qui
k IDL Tutorial: Color Images, 8-bit and 24-bit for a more
omplete dis
ussion.4When you type help, /devi
e, the number available to IDL is listed under \Colormap": \Shared" means IDLis sharing the
olormap with the system, and then it gives the number of
olors available to IDL.

{ 12 {it ex
ept when you're making posts
ript �les|then when you enter IDL, after typing devi
e,pseudo=8, immediately
reate the �rst window by typing window,
olors=256. That for
esIDL to use 256
olors for the whole session. With this, when you type type help, /devi
e,the \Colormap" listing says \Private, 256
olors.": IDL overrides the system's
olor allo
ations.Private
olormaps always
ause
ashing.Dire
t
olor always has 256 intensities in ea
h
olor|i.e. it always uses a private
olormap.This means that you always have
ashing. In
ontrast, true
olor
annot use a
olormap, so there
an be no
ashing. 8. MORE, MORE, MORE. . .There's lots more in image pro
essing and display. Of
ourse, you
an manipulate imagesmathemati
ally, just as you
an any other IDL variable or array|but remember to manipulate theoriginal array instead of its byte
ounterpart. You
an play with
olor tables with xload
t anddiddle. You
an do \histogram equalization" with hist equal. You
an rotate with rotate orrot, transpose, zoom, draw
ontours, label your images and make
oordinates using plot (withthe /noerase keyword) and xyouts, et
., et
., et
. In the IDL Handiguide, look under \ArrayManipulation", \Array and Image Pro
essing", \Window Routines", \Dire
t Graphi
s PlottingRoutines, Two-Dimensional".Most importantly: if you are using
olor for display purposes, then read our handout ColorImages to Represent One, Two, and Three Dimensional Data.

