
BIDIDL: BASIC IMAGE DISPLAY IN IDLMarh 18, 20031. COLOR DISPLAYS AND YOUR IDL START-UP FILEYour display sreen onsists of about a million little areas alled pixels. Eah pixel an showa di�erent olor/intensity ombination. Everything on your sreen|text, pitures, whatever|isdisplayed by �lling the appropriate pixels with the appropriate olor/intensity. Your sreendimensions are 1280� 1024 (or, if your researh advisor is heap, 1280� 768). So eah pixel issmall! But if you look arefully, you an see them|in partiular, on a �eld of uniform olor youan see thin vertial lines, and these mark the vertial pixel boundaries.All olors seen by the human eye an be produed by a suitable mixture of intensities of onlythree olors, red, green, and blue (RGB). Most ommon displays in use today allow 256 intensitiesof eah olor1. This gives a total of 2563 ombinations|this used to be billed in the PC worldas \millions of olors". However, some omputer sreens an't display this full range of olors.Instead, they an display only 256 di�erent ombinations. This may seem small, but for mostpurposes it's exatly what you need. For example, in a blak/white image there an be 256 (that's8 bits worth) di�erent intensity levels, ranging from blak, through the greys, to the brightestwhite.Our omputer sreens fall into several ategories. These depend on the apabilities of yourvideo ard and software driver.1. Pseudoolor, with 256 olors and a olor table (see below). Found mainly on older Sunmahines and also on urrent heap Sun mahines; if you have this you are in some senseluky. This mode allows you to use the ursor to hange the ontrast of images.2. Trueolor, with 2563 olors and no olor table. Found on urrent heap Sun mahines, on allPC's running windows, also on PC's running linux. This gives you millions of olors but noursor manipulation of image ontrast. Note: Current heap Sun mahines an run eitherpseudoolor or trueolor, but Kelley has to make the hange|meaning you have to hooseone and stik with it.3. Diretolor, with 2563 olors and three olor tables, one for eah primary olor. Found onSun mahines with \Creator 3D" graphis and, also, on PC's running Linux. This gives allapabilities.Portions of the �rst portion of this writeup deal with using the ursor to ontrol ontrast,1Note that 256 is the same as 28: it's 8 bits|or, alternatively, 1 byte

{ 2 {for whih you need either pseudoolor or diretolor. If you have only trueolor, some of thedisussion won't apply to you, but forge ahead anyway.IMPORTANT: You have to tell IDL what olor mode you want. To follow the writeup below,try to get into pseudoolor; you do this by making the �rst statement you type in after enteringIDL. . .devie, pseudo=8(The \8" stands for 8 bits; remember, 28 = 256). It's best to put this statement in your IDLstartup �le. This won't work if you have a PC under Linux, so instead trydevie, diret olor=24 , retain=2The retain=2 means that IDL will refresh the window if it gets overed up by another window;you don't need to do this on the Sun mahines beause Solaris takes are of this detail.If you request a olor mode that your omputer doesn't support, IDL will tell you so andrevert to the most apable mode that it does support. One you're in IDL, you an hek to seewhat you've told IDL. Enter the IDL ommand. . .help, /devieand IDL will tell you what display devie it is using. If you are in pseudoolor, the response willshow, among other things: Display Depth, Size: 8 bits, (xxxx, yyyy), where xxxx and yyyy arethe sreen pixel dimensions; Visual Class: PseudoColor (3); Colormap: Shared, zzz olors (zzz willprobably be about 228; see x7). It also lists all the windows you have open. If you are in postsriptmode, in whih it writes all output to a postsript �le instead of the sreen, it will tell you so.2. COLOR TABLESIn pseudoolor mode, the maximum number of olor/intensity ombinations that an bedisplayed simultaneously is 256.2 Therefore, images are represented by numbers that range0! 255. For this reason, displayed images are always represented by byte arrays. You an displayother array data types, but IDL will onvert whatever you give it to a byte array before displayingit. Therefore, if you display, say, an integer array (integers are two bytes long and range from�32768 ! 32767), and if numerial values in this array exeed 255, then the resulting imagedisplay will look weird. That's beause, in onverting from integer to byte, numbers that exeed255 will \wrap around". For example, integer 255 equals byte 255, but integer 256 equals byte 0,integer 257 equals byte 1, et. Below, we'll deal with these onversions in more detail.For now, let's restrit our attention to blak/white images|otherwise known as \grey-sale"2Atually, it's less|probably 228. See x6.

{ 3 {images. Grey, or white, is omposed of an equal mixture of red, green, and blue, and all we dealwith is the intensity I . In a grey-sale image, the intensity of eah pixel is related to the datavalue d in that pixel. Let's think of large intensity being white and small intensity being blak;there are 256 di�erent possible intensities, so I an range from 0! 255. Similarly, the data valuesd an range from 0! 255.An important onept is the relationship between I and d. This is known as the olor table.It spei�es the mapping between data value and olor/intensity|or, for a grey-sale image, themapping between data value and intensity.2.1. Linear Mapping, both Diret and ReversedThe simplest mapping between data value d and intensity I is a linear one withI = d (1)In this ase, a data value d = 255 gives white and d = 0 gives blak. This diret mapping is thedefault manner in whih images are displayed on the omputer sreen: there is a blak bakgroundon whih the image is painted with inreasing data values being inreasingly white. However, on apiee of paper the relationship is usually reversed, beause paper is white and provides a naturallywhite bakground. Thus, in this reversed mapping, we want to paint the image with inreasingdata values being inreasingly blak. This is also a linear mapping, but reversed:I = 255� d (2)NOTE: Printed images usually look muh better with the reversed mapping, beause printers havea hard time giving a uniformly blak area with no streaks. This is the �rst reason why printedimages should be made with a reversed mapping. The seond reason is that making the paperblak uses lots of printer toner, whih is expensive. The third reason is that in sienti� journals,images with the reversed mapping are reprodued muh better. To reverse the olortable, see x5.2.2. Nonlinear MappingThe linear mapping is often not very useful beause you usually want to highlight weakfeatures or bright features; we'll see an example below. The most ommonly used nonlinearmapping uses a power law (this is the photographer's \harateristi urve") together with a\streth", whih uts o� the image at dim and bright intensity levels:

{ 4 {I = 255 d� dbotdtop � dbot! ; d = dbot ! dtop (3a)I = 0; d � dbot (3b)I = 255; d � dtop (3)In a reversed mapping, you'd substitute (255� d) for d in the above equations.This partiular nonlinear mapping an be invoked easily and automatially in IDL by typingxloadt or, alternatively, by using our homegrown diddle. diddle works even on diretolor,while xloadt words only on pseudoolor. These programs allow you to manipulate olor tablewith the mouse: you an hange the values of ; dbot; dtop smoothly and wath the ontrast of yourimage hange. xloadt also allows you to selet a reversed mapping and to selet a multitudeof prede�ned olor tables, not only grey-sale but many others. One you get an image, it's funto experiment. xloadt also allows you to generate any ompletely arbitrary nonlinear mapping;lik on \Funtion" and experiment. Alternatively, you an load prede�ned olor tables; one ofmy favorites is \STD GAMMA II", whih you an load manually using loadt 5.There is one other ommonly used nonlinear mapping, the so-alled \histogram equalization"tehnique. In this tehnique, the mapping is modi�ed so that all of the 255 olors are used in anequal number of pixels. Read about it in IDL's doumentation on hist equal.3. LET'S TRY IT IN IDL!First, generate an image. There's a nie image of the X-ray sky, obtained by the GermanROSAT satellite, in /dzd2/heiles/ourses/handouts/rass .�ts. This �le is in a format alled\FITS" format, whih is the same format of many astronomial images. To read the data �le intoan array alled image, it is easiest to use the IDL proedure alled \read�ts", whih resides in theGoddard IDL library whih, in turn, is aleady in your IDL path. All you have to do is typeimage = read�ts(0=dzd2=heiles=ourses=handouts=rass :�ts0;headerinfo) (4a)on the astron luster, orimage = read�ts(0=home=ay120b=idl=rass :�ts0;headerinfo) (4b)

{ 5 {on the ugastro luster.This returns two arrays: the image array (image) and information about the image (headerinfo);type print, headerinfo to see the header information. Now type help, image and IDL will tellyou that it is a 480� 240 FLOAT array. You an use the max and min funtions (or, nier,Goddard's minmax funtion) to determine that the data values range from about �174! 45337,thus far exeeding the valid range for a byte array. Never mind! Display the image anyway bytyping tv; image (5)and you see a grey mishmash oval. The oval is the Aito� projetion of the entire sky in softX-rays. The mishmash ours beause the data values in image exeed the allowable 0 ! 255range of a byte array, so there's lots of wrapping.You an sale the data so that they all �t in the allowable byte range 0 ! 255. We'll �rstprodue a byte array, whih we'll all byteimage, from image. . .byteimage = bytsl(image) (6)This linearly sales image, whih ranges �174! 45337, into byteimage, ranging from 0! 255.To display this image. . . tv;byteimage (7)A quik alternative to the above is IDL's tvsl, whih ombines the two operations.All you see is two white dots! These two dots are the strongest X-ray soures in the sky|theone on the left is a point soure alled \Cygnus XR-1", and the one on the right is the Velasupernova remnant, home of the famous \Vela pulsar". In supernova remnants, the X-ray emissionis produed by hot, � 106 K gas heated by the expanding shok of the supernova remnant.These images ontain muh more! To see more, type xloadt and manipulate the sliders, oruse diddle . You an see that the sky ontains a weak, di�use glow in X-rays. Trouble is, though,that this glow is so weak that the intensity (I) values of this glow all lie in the range 0! 4. Thisprovides very little dynami range for this glow, so we need to expand this range so that we anits struture more learly.How muh should we expand the range? We might make a guess and try �174 ! 2000. Ifthat didn't give a nie result, we ould try some other values. But we don't have to guess! IDLprovides a nie way to interatively print the values of the image. We use rdpix, whih prints out

{ 6 {the pixel values of an image that one must speify as we move the ursor on the image. What wereally want is the values of the original data array, not its byte ounterpart, so we speify that bytyping. . . rdpix; image (8)and then the printed numbers will be of the original data array image. From this we see thatlimiting the data range to 0! 2000 would indeed be a good start.You an also get a quik feel for the interesting data range by just doing plot, image andvisually estimating the range of interest.Now, to display the data range 0 ! 2000, we again use the bytsl ommand as above butlimit the data range by typing. . .byteimage = bytsl(0 > (image < 2000)) (9)Here, the (image < 2000) means \take whihever number is smaller, either the data value inimage or the number 2000"; and the 0 > X means \take whihever number is larger, either thedata value in X or the number 0". So this performs a modi�ed saling, mapping the originaldata range 0 ! 2000 into the byte value range 0 ! 255. It also sets any original data numbersthat exeed 2000 equal to 255, and any that are smaller than zero equal to zero|so it obliteratesinformation on the strongest features.Now display this with tv;byteimage and use xloadt to play around with ontrast|looksgreat, eh? See that huge irular struture in the middle? That's the \North Polar Spur". Itoupies an angle of about 120Æ. It's lose|almost touhing our noses! It's aused by a severaldozen supernovae that have exploded, produing a \superbubble". These supernovae were loatedin the large luster of young stars in the Sorpio onstellation|some of the stars you see there ona dark night will explode as supernovae some day, adding to the energy stored in the hot gas andbrightening the X-ray emission. You also an see a bunh of fairly weak point soures and otherdi�use strutures.Nier than rdpix is pro�les, whih makes a plot of the pixel values along either a horizontalor vertial line, depending on what mouse buttons you push. This proedure an show the valuesof either the data array you are atually seeing (byteimage in this ase) or any other data arrayof the same dimensions (image in this ase). So trypro�les; image (10)and follow the printed instrutions. You get a plot of the original data array in its original units,either in the horizontal or vertial diretion, along a line you hoose with the ursor. This plot is

{ 7 {so ompressed that it is virtually worthless, beause the plot automatially sales to the minimumand maximum values of the array; you an get around this easily by using the < and > operators,as above; for example, pro�les; (0 > (image < 5000)) (11)Often even better is to make a histogram [e.g. histo = histogram(image)℄ of the originalimage; this tells you where most of the brightness data are onentrated. And if you're interestedin only a portion of the image, you an selet this portion with the ursor by typing. . .indies = defroi(xsize;ysize) (12)where (xsize, ysize) is the size of image; then image[indies℄ is an array ontaining only thoseimage pixels within the area you've seleted|try histo = histogram(image[indies℄).4. IMAGE SIZE AND WINDOW SIZEThis image that we've been playing with is a nie, onvenient size for viewing. But it probablydoesn't �ll the window area, or maybe the window is too small. We an reate a window of theappropriate size, that is with numbers of pixels equal to the same dimensions of the data array,by typing window;xsize = 480;ysize = 240 (13)and then redisplaying the image with tv;byteimage. Or, suppose you want to make this imagelarger so that you an see more details. You ould do this with zoom, but if you want to makethe whole image larger you need to inrease the size of the image as measured in pixels. IDL doesthis easily; suppose you want to inrease the size by a fator of 2 in the horizontal and 3.5 in thevertial diretions, i.e. to make an array of size 960� 840. Do this bybigimage = ongrid(byteimage; 960; 840) (14)Then reate an appropriately-sized window (e.g. with window, 5, xsize=960, ysize=840|whih reates a new window, numbered 5, and leaves the old ones in plae), use tv, bigimage,and...there you are. There's another routine alled rebin, whih works only for integral fators.CAUTION WITH ongrid and rebin: These routines handle enlargement and ensmallmentdi�erently, and treat the edges di�erently. You almost ertainly don't want to use the defaultoptions; look arefully at the keywords and try them out on a short 1-d array to see their e�ets.

{ 8 {5. MAKING HARD COPIES OF IMAGESOK. . . you've got a beautiful image and you want to make a hard opy on the printer. Someonsiderations:� The sreen usually shows white on blak. As we mentioned above in x2, This doesn't omeout very well on the printer; blak on white works better. Also, we use a lot less printertoner with blak on white. You an get blak on white with xloadt: lik on \Options"and hoose \Reverse Table". You'll have to play with the Gamma Corretion and Strethsliders again to get what you want.Alternatively, you an type tv;not(image) (15)beause the not operating on a byte array reverses the bits and maps 0! 255 into 255! 0.� How big do you want the printed image?5.1. Copying the sreen to PS with hardimageThe simplest and least elegant way to get a ps version is to opy the sreen pixels diretly ontopostsript. It's least elegant beause any notations you make get transferred to PS as pixellatedhataters, whih aren't very pretty.You might be tempted to use hardplot. But that's written mainly for line plots, whihusually don't have shades of grey. For images use hardimage. Using its keywords, you angenerate a postsript (PS) or enapsulated postsript (EPS) �le, make an image of size that youspeify, and other options. They you examine the �le using the unix ommand xv or display, andprint the �le using the UNIX ommand lp �lename. Note: hardimage gives you an exat opyof what you see on the sreen: to get the desired blak-on-white image you need from the printer,you need to reate this same version on the sreen. hardimage also does olor, and it works inall three olor modes.5.2. Generating PS diretly with openimagepsIt's muh better to write the image itself diretly onto PS instead of �rst onto X, to avoidpixellation with harater notation. To aomplish this, make PS the output devie; do all of youtv'ing and harater annotation; and then lose the PS devie.

{ 9 {To make PS the output devie, you need to reate a PS window with the set plot, ps anddevie ommands. In the devie ommand, you speify suh things as size of the window on theprinted page; it will look something like this:devie, filename=filenm, bits=8, landsape=lands, /inh, /olor, $xsize=xinh, xoff=xoffset, ysize=yinh, yoff=yoffsetwhere xsize is the size of the PS window (not the image) and xo�set is the horizontal o�setof the lower left-hand orner of the PS window from the orner of the page. The units here ininhes beause of the inh. There's also a landsape option; if you use it, look arefully at thedoumentation!You an save yourself a lot of grief by using our openimageps proedure, whih does all thisfor you, and you an look at that ode to see exatly how it's done. openimageps works in anyolor mode.After opening the PS window, do all the steps required to generate the image and its notation;then �nish with loseps6. ANNOTATING IMAGES WITH PLOT BORDERS AND LABELSMost of the time you will need to annotate an image with a plot border or other annotations.Here's a verbal desription of the basis, in whih we assume the image is the 480� 240 pixelimage from /dzd2/heiles/ourses/handouts/images/rass .�ts.The details depend on whether the output devie is X windows (X) or Postsript (PS). Morepreisely, what works for PS also works for X, so if you have the remotest idea that you'll want tomake a PS �le then you should use the more general notation.6.1. X-windows **ONLY**First, you need to make a large enough window to leave room for the plot border and labels.You an do this by opening a window that's larger than the image size. In the example, we makethe window 50 pixels larger all around than the image.You need to enter the image within this window. Do this with the x,y inputs to the TVommand:TV, image, 50, 50

{ 10 {Next, you need to reate a plot border that's aligned with the image. For this you use theposition keyword in the plot ommand. Also, you don't want the plot ommand to erase theimage, so you use the noerase keyword; and also you probably want to reate the plot borderwithout plotting data, so you use the nodata keyword. With all this, the plot ommand an looklike this:plot, [0,0℄, [0,0℄, xra=[360,0℄,yra=[-90,90℄, xsty=1, ysty=1, $/nodata, /noerase, position=[50,0,529,339℄,/devie, $xtit='GALACTIC LONGITUDE', ytit='GALACTIC LATITUDE'Here the devie keyword spei�es that the position oordinates are given in devie units, whihare pixels for the X window. 6.2. X **AND** PSThe main di�erene in PS is that you annot speify things in devie oordinates; rather,you must use normalized oordinates. In X, you an use either. Normalized oordinates runfrom 0! 1 and are the fration of the total image size in that partiular diretion. The neessityfor normalized oordinates arises beause PS uses salable pixels|meaning that pixels are notneessarily square beause the pixel shape depends on the ratio of X and Y sizes of the image thatyou speify in the TV ommand to the number of X and Y pixels in the image.You an use normalized oordinates with X, too. This means that you an use exatly thesame ode for image display for both X and PS, with the only exeption being that you open aPS window or an X window.To begin with, you need to position the image within the window (as opposed to the devieommand, whih positions the PS window on the page). In our example, you might wish to enterit. For PS (but not for X) You need to speify the image size. The following works in both:xoffset = 50/580.yoffset = 50/340.xplotsize=480/580.yplotsize=240/340.tv, image, xoffset, yoffset, xsize=xplotsize, ysize=yplotsize, /normalThis works for both beause, under X, TV ignores the xsize and ysize keywords (beause, underX, the image size is always in pixels, equal to the size of the array image).Now for the plot border. This is just like the desription above for X, exept that you needto use normalized oordinates. So you'd have

{ 11 {plot,x,y,xra=[360,0℄,yra=[-90,90℄, xsty=1, ysty=1,/nodata, /noerase, $position=[50/580., 50/340., 529/580., 289/340.℄,/norm, $xtit='GALACTIC LONGITUDE', ytit='GALACTIC LATITUDE'If you are attentive, then you will have asked: \Why divide by 580 instead of 579? Why divide by340 instead of 339?" Answer: \I don't know the answer, but that's what works!"If you're lazy, or lever, then you don't need to alulate the normalized oordinates yourself.Instead, you an use IDL's onvert oord funtion.Of ourse, you an annotate with xyouts; you just have to remember to use either norm ordevie oordinates! 6.3. ATVFor one-d images, ATV is a pakage you might �nd desireable for some purposes. Ito�ers a widget-based driver for many of the basi image display funtions. It's loated at/deep2/d�nk/vs/idlutils .7. 256 PSEUDOCOLORS? THIS IS A DETAIL THAT YOU CAN IGNOREUNLESS YOU WANT AN EXCELLENT POSTSCRIPT VERSION. . .Above, in x1 and x2, we disussed how your sreen, in pseudoolor mode, an show 256intensities (or, more generally, olor/intensity ombinations). That is absolutely orret!But IDL doesn't have all 256 ombinations available to it beause the operating system takesup some olors for itself3. It usually uses 28 olors for things like the bakground sreen olor,window olor, window borders, typesript olor, et. This leaves (usually) 228 olor/intensityombinations for IDL4. IDL takes are of this little detail automatially, so you don't have toworry about it. But this di�erene is frustratingly annoying when you are trying to make ahigh-quality postsript image.For the true a�ionado, you an get around this and fore IDL to use all of the available256 olor/intensity ombinations. If you do this, then the sreen olors will \ash" depending onwhether your ursor is on an IDL window or not|and also xloadt won't work the way you'dlike (but diddle will!). If you really want to invoke this option|and we don't usually reommend3see Quik IDL Tutorial: Color Images, 8-bit and 24-bit for a more omplete disussion.4When you type help, /devie, the number available to IDL is listed under \Colormap": \Shared" means IDLis sharing the olormap with the system, and then it gives the number of olors available to IDL.

{ 12 {it exept when you're making postsript �les|then when you enter IDL, after typing devie,pseudo=8, immediately reate the �rst window by typing window, olors=256. That foresIDL to use 256 olors for the whole session. With this, when you type type help, /devie,the \Colormap" listing says \Private, 256 olors.": IDL overrides the system's olor alloations.Private olormaps always ause ashing.Diretolor always has 256 intensities in eah olor|i.e. it always uses a private olormap.This means that you always have ashing. In ontrast, trueolor annot use a olormap, so therean be no ashing. 8. MORE, MORE, MORE. . .There's lots more in image proessing and display. Of ourse, you an manipulate imagesmathematially, just as you an any other IDL variable or array|but remember to manipulate theoriginal array instead of its byte ounterpart. You an play with olor tables with xloadt anddiddle. You an do \histogram equalization" with hist equal. You an rotate with rotate orrot, transpose, zoom, draw ontours, label your images and make oordinates using plot (withthe /noerase keyword) and xyouts, et., et., et. In the IDL Handiguide, look under \ArrayManipulation", \Array and Image Proessing", \Window Routines", \Diret Graphis PlottingRoutines, Two-Dimensional".Most importantly: if you are using olor for display purposes, then read our handout ColorImages to Represent One, Two, and Three Dimensional Data.

