
QUICK IDL TUTORIAL NUMBER ONEJanuary 3, 2002Carl Heiles1. THE VERY BASICSThis tutorial provides only those few things you need to get started and prepare your �rstlab report. IDL is far more powerful than you would guess from this tutorial, and as the courseevolves you will experience some of this power.In our tutorials, commands you enter are in bold type, our comments are in ordinary type,and when we refer to variables in our comments the variables are in italics. Go through thefollowing steps.print, 3*5 This command prints the integer 15, the result of 3 times 5. Integer numbers have nodecimal point.A = 3*5 Creates the variable A and sets it equal to 15.help, a Tells you about the variable A. In IDL, uppercase and lowercase are identical, so A is thesame as a.HELP, A Identical to the lowercase command above|IDL doesn't care about case.a = sqrt(a) & help, a Rede�nes A to be the square root of its previous value and also tell aboutA. Typing & allows you to put a second (or more) command on the same line. Note that, now, ahas a decimal point. Numbers with decimal points are called
oating point numbers.a = 4.3 De�nes a as a
oating point number equal to 4.3.a = 'Joe' de�nes a as a string variable|that is, ordinary text|and sets it equal to \Joe".a = [1,2,3,4,5,6] Make A a six-element array containing the integer values 1 through 6.print, a, 2*a prints the array A and, also, two times A.b = sqrt(A) Creates a new array, b, in which each element is the square root of the correspondingelement in a.c = a ^ 0:5 Creates a new array, c. The ^ symbol is how you raise something to a power. We'dbetter have b = c; test it by typingprint, max(b-c) & print, min(b-c) Prints the maximum and minimum values of the arrayb� c. Both b and c are 6-element arrays, so their di�erence b� c is also a 6-element array.print, total(b) Prints the sum of all elements in b. You'll need this for statistical analysis.

{ 2 {a =
tarr(100) De�ne a as an array of 100
oating point numbers, each element of which equalszero.a = �ndgen(100) De�ne a as an array of 100
oating point numbers in which the values increasesequentially from 0 to 99.print, a[0], a[99] Print the �rst and last elements of a. Elements of an array are designated by anumerical index. The index begins with zero; the last element of the array has index n� 1, wheren is the number of elements in the array. Why doesn't the index run from 1 ! 100 instead of0! 99? You'll appreciate why. . . later in the course.print, a[10:20] Prints a array elements 10! 20. Such printouts are often handy but it's hard toidentify each array element with its index. To get a printout in column format:for nr=0,99 do print, nr, a[nr] This uses a for loop to cycle through the indices numbered0! 99 and print a separate line with two numbers, the index number and the corresponding arrayelement.b = sin(a/5.)/exp(a/50.) De�nes the new array, b, in which each element is related to thecorresponding element in a by the mathematical expression. Note that when we divide anythingby a number we always express the denominator as a
oating point number. Always do this untilyou learn more.Plot, b Make a plot of b versus its index number.plot, a, b Make a plot of b versus a, with a on the horizontal (x) axis and b on the vertical axis.z =
tarr(3,7) De�nes a new, array, z, as a two-dimensional array with 3� 7 elements.help, z Tells about z.2. THINGS THAT YOU REALLY WANT TO KNOW2.1. Fundamental mathematical constantsA number of mathematical constants are stored in IDL's \internal variables", which arecharacterized by the �rst character being \!". Here's just a few:print, !pi (yep! this is just �)help, !dtor (degrees times !dtor gives radians)print, !radeg (radians times !radeg gives degrees)There's no variable for e, the base of natural logarithms; to get its numerical value, you have totake e1:

{ 3 {print, exp(1) (base of natural logarithms)2.2. The hypertext HELP facilityHypertext on-line documentation is provided by IDL's HELP facility. To access HELP, type?and after some hu�ng and pu�ng a hypertext window will come up. Click on \Navigate", thenon \Index Search", which puts the alphabetical list of help index words on the screen.The �rst batch are those beginning with \!", i.e. the system variables. You can click on oneto get the information. To access others, either use the scrollbar or type in the word.For example, in the following pages we will use the random number generator RANDOMU.Type this into the Index Search and there you are with several entries under random. To generaterandom numbers we will use RANDOMU, so click on that and then DISPLAY.In the documentation display, the �rst portion gives information about the function orprocedure. Then it de�nes the required input parameters. RANDOMU needs two inputparameters, the \seed" and the number of random numbers to generate. (All random numbergenerators use an input number, called a \seed", to begin the process of generating randomnumbers; they have to start somewhere!). In IDL, if you don't specify the numerical value of theseed, it sets seed equal to the time from the system clock, which means the numbers di�er eachtime you call RANDOMU. For example, with RANDOMU if you want 230 numbers distributedrandomly between 0 and 1, typeoutput = randomu(seed, 230)This generates a 230-element array called output.Next in the documentation comes the list of keywords, which are optional. WithRANDOMU you can not only generate numbers that are distributed uniformly, but also withother distributions. For example, you can get a normal (also called \Gaussian") distribution bysetting the normal keyword equal to unity:output = randomu(seed, 230, normal=1)or, equivalently when a keyword is equal to unity,output = randomu(seed, 230, /normal)After all this, the help facility provides an example, and then it gives related items that you canclick on if you wish.So why are you just sitting there? generate an array of random numbers, as in the last line

{ 4 {above for example, and plot them withhelp, output & plot, output 2.3. Command-line editingBy now you might be sick of typing. Typing involves making mistakes and then retyping thewhole line with yet di�erent mistakes; or perhaps wanting to enter a command that di�ers just abit from a previous one. The most important editing commands are:arrow keys move the cursor as you'd expectCtrl-d deletes the character under the cursor.backspace deletes the character behind the cursor.Ctrl-e moves the cursor to the end of the line.Ctrl-a moves the cursor to the beginning of the line.Ctrl-k deletes the the rest of the line.Sometimes, when command-line editing, you inadvertently hit Ctrl-s; this prevents the cursorfrom responding to your keystrokes. If you encounter this condition, type Ctrl-q, after whichthings will work normally again.***Important Caveat!!!*** Ctrl-d will knock you out of IDL unless you rede�ne its meaningwith the statementde�ne key, /control, '^D', /delete currentYou should put this statement in your idl startup �le. If you use my startup �le, it's done.2.4. Batch �lesSuppose you have entered a series of commands and want to repeat the series, perhaps aftermaking either small or large modi�cations. More typing! But you don't have to do all this typing!Create a �le containing this series of commands. This is called a batch �le, which is simplya �le that contains the list of IDL commands you wish to run. Once you have generated the �lewith a UNIX text editor (e.g., textedit or emacs), you invoke it in IDL using the @ symbol.For example, consider the following series of commands:original = sin((�ndgen(200)/35.)^2.5)original = original + 2time = 3 * �ndgen(200)

{ 5 {plot, time, original, xtitle="Time", ytitle="amplitude", $yrange=[0.5, 3.5], xrange=[0,600], ystyle=1, psym=-4In the above, the dollar sign $ is a continuation character, meaning that the line is continued onthe next line.Now, you could type each of these commands on the IDL screen. But you could also putthem in a batch �le called \test.idlbatch", or some other pet name. DO THIS NOW!!!.Then invoke the commands by typing in IDL@test.idlbatchand you can then edit the �le and re-invoke it at your pleasure. Saves huge amounts of time!One important point. As you write software you'll create dozens, if not hundreds, of �lescontaining software. You need to annotate those �les and explain what you've done so that, whenyou come back a day or week later, you can decipher what you've done. You can insert a commentin any IDL software �le by preceding the comment with a semicolon. For example, you ought toinsert at the very beginning of test.idlbatch the comment;This �le was made for tutorial number 1 at the;idiotic insistence of the professors involvedor something to that e�ect. You can also insert a semicolon anywhere in a line and the rest of theline will be ignored, e.g.original = original + 2 ;We could instead have added 3Heed the voice of experience: You can't have too many comments!2.5. I GOOFED!Sometimes we goof, and sometimes this puts IDL into some sort of bad state|usually doingsomething that seems to take forever. If you could only STOP it!You can stop it. To interrupt any IDL command or program typeCTRL-cwhich means: hold down the Control key and type the letter \c". (This works on UNIX systemcommands, too). In IDL, after you've done this it sometimes leaves IDL within a procedure, andyou need to get back to the main level by typingretall

{ 6 {which means \return all"|get out of all procedures and go back to the main level. Wheneverthings look weird in IDL, type retall.3. MAKING PLOTS3.1. Specifying data ranges, titles, etcIt's easy to make beautiful plots in IDL. First, generate the batch �le as discussed above(x2.4) and run it; you see the plot. It has the x- and y-ranges you speci�ed|titles too! Thoseaspects are speci�ed by the keywords in the plot procedure. The psym = �4 keyword puts eachpoint on the plot as a diamond; try it with psym = +4, too|and 2 and 0, too (psym = 0 isequivalent to not specifying psym as a keyword). The plot procedure has lots of keywords. For thedocumentation, use the HELP facility! In addition to those we've introduced above, take a lookat linestyle, title, and ystyle. 3.2. OverplottingOften you want to plot two graphs on the same plot|comparing the data with a theory, forexample. Just to illustrate this, suppose you want to compare your current plot of original withwhat you'd get by changing the 2.5 power to 2.0. You can do this by:original 2 = 2 + sin((�ndgen(200)/35.)^2.0)oplot, time, original 2, linestyle=2which will overplot original 2 using a dashed line. If you want to plot just a single point, you canuse plots. 3.3. Making a Hard Copy on PaperYou do this by making a postscript �le. We cover this is a separate tutorial.4. STARTUP FILEIf you have a good startup �le, you can do things like typeplot, x, y, color=redand the plot will come out in red. If you use my startup �le, you have these features and thecolors include red, green, blue, cyan, magenta, yellow, white, and black. To use my startup �le,

{ 7 {de�ne this alias in UNIX:setenv IDL_STARTUP ~heiles/idl/start.idl5. READING AND WRITING FORMATTED DATA ONTO DISKFormatted data �les are text �les of the sort made by a text editor. You can read such �lesthat you typed in by hand; you can generate such �les in IDL.5.1. Writing a �leSuppose you want to save the above arrays original and original 2 by writing them into adisk �le. This is a three-step process:openw, 1, 'original.dat' Opens logical unit number 1 for writing (the \w" in \openw" means\write") and equates it to the �lename \original.dat".printf, 1, original, original 2 Printf is like print, but the \f" on the end tells IDL to write thedata to logical unit number 1 in exactly the same format you'd see on the screen with print.close, 1 Closes logical unit number 1.To test this, make a directory from the UNIX prompt; you should see the �le nameoriginal.dat. Also, print the �le from the UNIX prompt by typingmore original.datYou see all those numbers...�rst the 200 numbers of original, then the 200 numbers of original 2.Quite a jumble, and you can't easily compare the two variables or read o� what the value of aparticular array element is. It's cleaner to write the numbers in column format using a for loop,by substituting for the above printf statement the following:for nr=0,199 do printf, 1, nr, original[nr], original 2[nr]Try it! 5.2. Formatting print statementsprint and printf don't necessarily give you what you want: you might want more or fewerdecimal points, for example. You can use these in conjunction with the format keyword; see

{ 8 {IDL's ?explicitly formated I/O help.15.3. Reading a �le IN COLUMN FORMATWhen you enter data by hand or write them out with a for loop as above, you have columnformat. There's an easy way to read column-formatted data. In the above example, we have threecolumns. Suppose we want to read these columns into arrays named a, b, and c. Then just typereadcol, 'original.dat', a, b, cTry it!!! This is not an IDL routine, but rather exists in the Goddard library. To get documentationon properly-documented non-IDL routines, typedoc library, 'readcol'Perhaps you are interested in looking at the code, or in importing it to your own directory so youcan make some changes for yourself. You can �nd where the procedure is located by typingwhich, 'readcolThis works for all code that is written in IDL, including IDL-supplied procedures. But it does notwork for IDL-supplied procedures that are not written in IDL (such as plot, for example).5.4. Reading a �le in yourself, without using readcolThis is similar to writing a �le and requires three statements. You can use free-format orspecify the format. See the documentation by typing ?read and then click on READF procedure.6. OPERATORS6.1. The < and > operatorsSuppose a and b are two arrays. The statement c=(a < b) sets the new array c equal toeither a or b, whichever is smaller. Ditto for >, except it's whichever is larger.Example: suppose you want to plot an array a, but restrict the range to the range (�1! +1).You could either use the yrange keyword or you could type plot; a < 1 > (�1).1Instead of typing ? and working with IDL's help windows for info on topic, you can just type ?topic.

{ 9 {6.2. Relational operatorsSuppose a is an array. The statement c=(a eq 5) sets the new array, c, equal to 1 for thoseelements where a is equal to 5 and zero elsewhere. In place of eq, you can write ne, lt, etc. SeeIDL's ?relational operators help.Why would you want to do this? Suppose a consists of angles that are in the range 0 ! 2�and you want to put them in the range �� ! �. The easy IDL command is c = a { 2*!pi*(a gt!pi) 6.3. The hugely important WhereSuppose you have an array a and you want to identify the indices of that array for which theelements exceed 10, say. They are given by indices = where(a gt 10). Then b=a[indices]contains only those elements. This is great for �nding bad data points!7. FOR LOOPS: USING THEM AND AVOIDING THEMFor loops are handy because you can repeat things easily and automatically; same for Whileloops. However, they are painfully slow. You should avoid them when possible. And IDL providessome very powerful tools to replace their use; speci�cally, the operators discussed above allow youto avoid the for/if combination that is so often a part of Fortran and C.However, sometimes you really do need to use loops. The example below is a case in whicha loop was not necessary; one could simply write a=indgen(6) and b=indgen(6)^2. To learnhow to use loops, see IDL's ?for help. Contrary to popular misconception, you can use a for loopin a command �le, but you have to put the special characters &$ at the end of each line to tellIDL that the statements are in a group. Example:for n=0 to 5 do begin &$a[n]=n &$b[n]=n^2 &$endfor

{ 10 {8. PROCEDURES, FUNCTIONS, AND MAIN PROGRAMS8.1. Procedures and functionsOften you �nd yourself invoking a speci�c calculation again and again. In this case, youshould de�ne a procedure or a function. We cannot overemphasize the importance of breakingdown your code into small segments, each of which is de�ned by a procedure or function thatresides ina separate �le, with each one thoroughly checked so that there is absolutely no doubtabout its reliability. This is called modular programming, and unless you get into the habityou'll �nd yourself dealing with undocumented, unreadable, unmodifyable software �les that arehundreds of lines long.8.2. DOCUMENTING your procedures; and reading other's documentationIDL provides an easy way for you to document any procedure or function that you write.To see how, look for doc library under IDL's hypertext help. This command also gives you thedocumentation for any procedure for which documentation has been provided; for example, all ofthe Goddard library's procedures are documented in this way.If you write a procedure and don't document it, you might as well forget it|because youWILL forget it! 8.3. Main programsA main program is exactly like a procedure, residing in a separate �le, except that there is noprocedure statement. This makes it very much like a batch �le; you invoke it from the keyboardby typing .run batch�lename (instead of using the @ symbol). However, there are crucialdi�erences: the main program doesn't need any special symbols in loops, and it must have an endstatement. When developing a procedure, it is often handy to work with it as a main program.

