QUICK IDL TUTORIAL NUMBER TWO: IDL DATATYPES AND
ORGANIZATIONAL STRUCTURES
February 10, 2003

By the term datatype we mean, for example, integers, floating point variables, strings, complex
numbers. By the term organizational structures we mean scalars, vectors, arrays, and structures.
We cover these in the following two sections. All available datatypes can be arranged in all
available organizational structures. For example, we can have arrays of strings, vectors of complex
numbers.

1. DATATYPES

Here we cover only the basic IDL datatypes. There are others, including unsigned integers
and complex numbers. In the last section here, we discuss structures; these are useful, almost
essential, for databases such as you might generate from a series of observations.

1.1. DIGITS, BITS, BYTES, AND WORDS

We have gotten to the place where you need to know a little about the internal workings of
computers. Specifically, how the computer stores numbers and characters.

Humans think of numbers expressed in powers-of-ten, or decimal numbers. This means that
there are 10 digits (0 — 9) and you begin counting with these digits. When you reach the highest
number expressible by a single digit, you use two digits and generate the next series of numbers,
10 — 99. Let f and s be the first and second digits, respectively; then the number is 10/ + s. And
so on with more digits.

Fundamentally, all computer information is stored in the form of binary numbers, meaning
powers-of-two. How many digits? Two! They are 0 and 1. The highest number expressible by a
single digit is 1. The two-digit numbers range from 10 to 11; the number is 2/ + 5. And so on with
more digits. But wait a minute! The word “digit” is a misnomer—it implies something about 10
fingers. Here it’s the word bit that counts. Each binary “digit” is really a bit. So the binary
number 1001 is a 4-bit number. What decimal number does the binary number 1001 equal?

For convenience, computers and their programmers group the bits into groups of eight.
Each group of 8 bits is called a byte. Consider, then, the binary number 11111111; it’s the
maximum-sized number that can be stored in a byte. What is this number?

Finally, computers group the bytes into words. The oldest PC’s dealt with 8-bit words—one
byte. The Pentiums and Sparcs deal with 32-bit words—four bytes. What’s the largest number
you can store in a 4-byte word? And how about negative numbers?

9

Below we describe how IDL (and everybody else) gets around this apparent upper limit on
numbers. They do this by defining different data types. Up to now, the details didn’t matter
much. But now...We don’t cover all datatypes below—specifically, we omit Complex (yes,
complex numbers!), Hexadecimal, Octal, and Structure datatypes, which you can look up if you
are interested.

1.2. INTEGER DATATYPES IN IDL

Integer datatypes store the numbers just like you’d expect. IDL supports integers of four
different lengths: 1, 2, 4, and 8 bytes. The shorter the word, the less memory required; the longer
the word, the larger the numbers can be. Different requirements require different compromises.

1.2.1. 1 byte: The Byte Datatype

The Byte datatype is a single byte long and always positive. Therefore, its values run
0 — 255. Images are always represented in bytes. The data might not be in bytes, but the numbers
that the computer sends to the video processor card are always bytes. Video screens require lots
of memory and really quick processing speed, so bytes are ideal. You generate an array using
bindgen; you can generate a single byte variable by saying x=3b. If, during a calculation, a byte
number exceeds 255, then it will “wrap around”; for example, 256 wraps to 0, 257 to 1, etc.

1.2.2. 2 bytes: Integers and Unsigned Integers

With 2 bytes, numbers that are always positive are called Unsigned Integers. They can
range from 0 — 2562 — 1, or 0 — 65535. You generate an array using uindgen. How do you think
unsigned integers wrap around?

Normally you want the possibility of negative numbers and you use Integers. The total
number of integer values is 2562 = 32768. One possible value is, of course, zero. So the number
of negative and positive values differ by one. The choice is to favor negative numbers, so Integers
cover the range —32768 — 32767. You generate an array using indgen. What happens with
wraparound? What if x=>5, y=380000 and z=x*y? Check it out!

1.2.3. 4 bytes: Long Integers and Unsigned Long Integers

The discussion here is exactly like that for 2-byte integers, except that 2562 becomes 2562
What are the limits on these numbers? See IDL help under “Data Types” and “Integer Constants”
for more information. You generate arrays using ulindgen and lindgen.

-3 -

1.2.4. 8 bytes: 64-bit Long Integers and Unsigned 64-bit Long Integers

The discussion here is exactly like that for 2-byte integers, except that 2562 becomes 2565.
What are the limits on these numbers? See IDL help under “Data Types” and “Integer Constants”
for more information. You generate arrays using ul64indgen and 164indgen.

1.3. FLOATING DATATYPES IN IDL

The problem with integer datatypes is that you can’t represent anything other than integral
numbers—no fractions! Moreover, if you divide two integer numbers and the result should
fractional, but it won’t be; instead, it will be rounded down (e.g. g is calculated as 1). To get
around this, the floating datatype uses some of the bits to store an exponent, which may be
positive or negative. You throw away some of the precision of the integer representation in favor

of being able to represent a much wider range of numbers.

1.3.1. 4 bytes: Floats

“Floating point” means floating decimal point—it can wash all around. With Floats, the
exponent can range from about —38 — +38 and there is about 6 digits of precision. You generate
an array using findgen and a single variable by including a decimal point (x=3.) or using
exponential notation (x=3e5).

1.3.2. 8 bytes: Double-Precision

Like Float, but the exponent can range from about —307 — +307 and there is about 16 digits

of precision. You generate an array using dindgen and a single variable by writing x=3d or
x=3d5.

1.4. STRINGS

Strings store characters—Iletters, symbols, and numbers (but numbers as characters—you
can’t calculate with strings! A string constant such as hello consists of five letters. It takes 5 bytes
to store this constant—one byte for each character. There are 256 possible characters for each
of the bytes; with 2*26 letters (smalls and caps) and 10 digits, this leaves 104 other possibilities,
which are used for things like semicolons and periods. You can generate an array of strings with
strarr and a single string with x = *Hi there!!!’.

_4 -

2. ORGANIZATIONAL STRUCTURES
2.1. SCALARS

A scalar is just a single number. For example, a string scalar is joename= ’joe’.

2.2. VECTORS

A vector is a one-dimensional array. For example, a three-element vector of names is
threenames = [’joe’, ’ivan’, 'mark’].

2.3. ARRAYS

IDL handles arrays up to 8 dimensions, i.e. with 8 subscripts. Arrays with two subscripts
can be mathematically treated a matrices using the # and ## operators, and various matrix
manipulation routines; see IDL help under matrices and matrix operators. You create vectors
and arrays using, for example, the fltarr or findgen commands (for floating point numbers;
equivalent commands exists for all variable types). You populate them as appropriate, but try to
avoid using for loops; instead, use where, appropriate use of the * operator, etc.

IDL provides a great deal of flexibility in using subscripts to address particular array elements,
and this flexibility is what makes IDL so useful. For example, consider a two-dimensional array
a=findgen(100,100). Then:

b = a[23:25, 67:69]
makes b a 3 x 3 2-d array equal to a’s array elements in the little box specified. The combination

indx = where(a gt 10.)
b = al[indx]

makes b a 1-d array equal to the elements of a that are larger than 10. The combination

indx = where(a gt 10.)
jndx = where(al indx] le 100.)
b = al indx[jndx]]

shows that you can subscript arrays with other arrays, and makes b equal to a 1-d array equal to
the elements of a that are both larger than 10 and less than or equal to 100.

-5

2.4. STRUCTURES

Structures are immensely useful for any project in which data of different types are related.
For example, if you have a catalog of stars with positions and reddenings, you can put the whole
catalog in a structure array in which each element of the array contains many quantities such as
the name and position. And you can have arrays of structures. Structures allow you to create and
customize your own data base. Having done this, using the where command allows you flexible
access to anything with a one-line command.

We refer you to Chapter 7 of Building IDL Applications for a complete discussion of structures.
Here we provide a quick example. For our star catalog, define the structure

{A = {star, name: ’alpha ori’, ra:5.3345, dec:-7.6568,reddening:fltarr(12)}
Now if you type help,/struct, a you will see on the screen

*x Structure STAR, 4 tags, length=64:

NAME STRING)

RA FLOAT 0.00000
DEC FLOAT 0.00000
REDDENING FLOAT Array[12]

This says that the structure A is a type defined as star, and it has four fields, the name the two
positions, and 12 different measurements of reddening. You could populate the 12 reddening
measurements by typing, for example,

a.reddening = [1.2, 1.4, 1.3, 1.6, 1.3, 1.4, 1.3, 1.3, 1.6, 1.3, 1.4, 1.3,]

and you could type

print, a.dec

to find the declination, and you could change things by typing

a.dec = 5.5
a.reddening[3] = 0.7

This example is a named structure, which means that all you cannot change the contents
of this structure after having defined it. You can also create an anonymous structure, without
a name:

-6 —

b = {name: ’alpha ori’, ra:5.3345, dec:-7.6568, reddening:fltarr(12)

Now if you type help, b, /str you see

** Structure <cb0d0>, 4 tags, length=64, refs=1:

NAME STRING ’alpha ori’
RA FLOAT 5.33450
DEC FLOAT -7.65680
REDDENING FLOAT Array[12]

and it has no given name. The contents of anonymous structures can be changed after they’ve
been defined.

If this is all there were to it, then structures wouldn’t be very useful because you have
observed 585 stars, say, and you’d need a separate structure for each. But you can create arrays
of structures, e.g.

cataloga = replicate({star}, 585) [OR cataloga = replicate(a, 585)]
replicate(b, 585)

catalogb

creates structure arrays of 565 elements for a and b. You can to them with a subscript, for
example you could write

catalogal 3] = a

to set the third element of the structure array equal to a. Or you could do it element-by-element,
for example

catalogal 3] .name = ’alpha ori’

Now you can print the star name of the third element by typing
print, catalogal 3].name

or, less conventionally. ..

print, (cataloga.name) [3]

Try using structures when taking data for your experiments. You'll grow to love them!

