
QUICK IDL TUTORIAL NUMBER TWO: IDL DATATYPES ANDORGANIZATIONAL STRUCTURESFebruary 10, 2003By the term datatype we mean, for example, integers, oating point variables, strings, omplexnumbers. By the term organizational strutures we mean salars, vetors, arrays, and strutures.We over these in the following two setions. All available datatypes an be arranged in allavailable organizational strutures. For example, we an have arrays of strings, vetors of omplexnumbers. 1. DATATYPESHere we over only the basi IDL datatypes. There are others, inluding unsigned integersand omplex numbers. In the last setion here, we disuss strutures; these are useful, almostessential, for databases suh as you might generate from a series of observations.1.1. DIGITS, BITS, BYTES, AND WORDSWe have gotten to the plae where you need to know a little about the internal workings ofomputers. Spei�ally, how the omputer stores numbers and haraters.Humans think of numbers expressed in powers-of-ten, or deimal numbers. This means thatthere are 10 digits (0! 9) and you begin ounting with these digits. When you reah the highestnumber expressible by a single digit, you use two digits and generate the next series of numbers,10! 99. Let f and s be the �rst and seond digits, respetively; then the number is 10f + s. Andso on with more digits.Fundamentally, all omputer information is stored in the form of binary numbers, meaningpowers-of-two. How many digits? Two! They are 0 and 1. The highest number expressible by asingle digit is 1. The two-digit numbers range from 10 to 11; the number is 2f + s. And so on withmore digits. But wait a minute! The word \digit" is a misnomer|it implies something about 10�ngers. Here it's the word bit that ounts. Eah binary \digit" is really a bit. So the binarynumber 1001 is a 4-bit number. What deimal number does the binary number 1001 equal?For onveniene, omputers and their programmers group the bits into groups of eight.Eah group of 8 bits is alled a byte. Consider, then, the binary number 11111111; it's themaximum-sized number that an be stored in a byte. What is this number?Finally, omputers group the bytes into words. The oldest PC's dealt with 8-bit words|onebyte. The Pentiums and Spars deal with 32-bit words|four bytes. What's the largest numberyou an store in a 4-byte word? And how about negative numbers?

{ 2 {Below we desribe how IDL (and everybody else) gets around this apparent upper limit onnumbers. They do this by de�ning di�erent data types. Up to now, the details didn't mattermuh. But now. . .We don't over all datatypes below|spei�ally, we omit Complex (yes,omplex numbers!), Hexadeimal, Otal, and Struture datatypes, whih you an look up if youare interested. 1.2. INTEGER DATATYPES IN IDLInteger datatypes store the numbers just like you'd expet. IDL supports integers of fourdi�erent lengths: 1, 2, 4, and 8 bytes. The shorter the word, the less memory required; the longerthe word, the larger the numbers an be. Di�erent requirements require di�erent ompromises.1.2.1. 1 byte: The Byte DatatypeThe Byte datatype is a single byte long and always positive. Therefore, its values run0! 255. Images are always represented in bytes. The data might not be in bytes, but the numbersthat the omputer sends to the video proessor ard are always bytes. Video sreens require lotsof memory and really quik proessing speed, so bytes are ideal. You generate an array usingbindgen; you an generate a single byte variable by saying x=3b. If, during a alulation, a bytenumber exeeds 255, then it will \wrap around"; for example, 256 wraps to 0, 257 to 1, et.1.2.2. 2 bytes: Integers and Unsigned IntegersWith 2 bytes, numbers that are always positive are alled Unsigned Integers. They anrange from 0! 2562 � 1, or 0! 65535. You generate an array using uindgen. How do you thinkunsigned integers wrap around?Normally you want the possibility of negative numbers and you use Integers. The totalnumber of integer values is 2562 = 32768. One possible value is, of ourse, zero. So the numberof negative and positive values di�er by one. The hoie is to favor negative numbers, so Integersover the range �32768 ! 32767. You generate an array using indgen. What happens withwraparound? What if x=5, y=30000 and z=x*y? Chek it out!1.2.3. 4 bytes: Long Integers and Unsigned Long IntegersThe disussion here is exatly like that for 2-byte integers, exept that 2562 beomes 2564.What are the limits on these numbers? See IDL help under \Data Types" and \Integer Constants"for more information. You generate arrays using ulindgen and lindgen.

{ 3 {1.2.4. 8 bytes: 64-bit Long Integers and Unsigned 64-bit Long IntegersThe disussion here is exatly like that for 2-byte integers, exept that 2562 beomes 2568.What are the limits on these numbers? See IDL help under \Data Types" and \Integer Constants"for more information. You generate arrays using ul64indgen and l64indgen.1.3. FLOATING DATATYPES IN IDLThe problem with integer datatypes is that you an't represent anything other than integralnumbers|no frations! Moreover, if you divide two integer numbers and the result shouldfrational, but it won't be; instead, it will be rounded down (e.g. 53 is alulated as 1). To getaround this, the oating datatype uses some of the bits to store an exponent, whih may bepositive or negative. You throw away some of the preision of the integer representation in favorof being able to represent a muh wider range of numbers.1.3.1. 4 bytes: Floats\Floating point" means oating deimal point|it an wash all around. With Floats, theexponent an range from about �38! +38 and there is about 6 digits of preision. You generatean array using �ndgen and a single variable by inluding a deimal point (x=3.) or usingexponential notation (x=3e5). 1.3.2. 8 bytes: Double-PreisionLike Float, but the exponent an range from about �307! +307 and there is about 16 digitsof preision. You generate an array using dindgen and a single variable by writing x=3d orx=3d5. 1.4. STRINGSStrings store haraters|letters, symbols, and numbers (but numbers as haraters|youan't alulate with strings! A string onstant suh as hello onsists of �ve letters. It takes 5 bytesto store this onstant|one byte for eah harater. There are 256 possible haraters for eahof the bytes; with 2*26 letters (smalls and aps) and 10 digits, this leaves 104 other possibilities,whih are used for things like semiolons and periods. You an generate an array of strings withstrarr and a single string with x = 'Hi there!!!'.

{ 4 {2. ORGANIZATIONAL STRUCTURES2.1. SCALARSA salar is just a single number. For example, a string salar is joename= 'joe'.2.2. VECTORSA vetor is a one-dimensional array. For example, a three-element vetor of names isthreenames = ['joe', 'ivan', 'mark'℄.2.3. ARRAYSIDL handles arrays up to 8 dimensions, i.e. with 8 subsripts. Arrays with two subsriptsan be mathematially treated a matries using the # and ## operators, and various matrixmanipulation routines; see IDL help under matries and matrix operators. You reate vetorsand arrays using, for example, the tarr or �ndgen ommands (for oating point numbers;equivalent ommands exists for all variable types). You populate them as appropriate, but try toavoid using for loops; instead, use where, appropriate use of the * operator, et.IDL provides a great deal of exibility in using subsripts to address partiular array elements,and this exibility is what makes IDL so useful. For example, onsider a two-dimensional arraya=�ndgen(100,100). Then:b = a[23:25, 67:69℄makes b a 3� 3 2-d array equal to a's array elements in the little box spei�ed. The ombinationindx = where(a gt 10.)b = a[indx℄makes b a 1-d array equal to the elements of a that are larger than 10. The ombinationindx = where(a gt 10.)jndx = where(a[indx℄ le 100.)b = a[indx[jndx℄℄shows that you an subsript arrays with other arrays, and makes b equal to a 1-d array equal tothe elements of a that are both larger than 10 and less than or equal to 100.

{ 5 {2.4. STRUCTURESStrutures are immensely useful for any projet in whih data of di�erent types are related.For example, if you have a atalog of stars with positions and reddenings, you an put the wholeatalog in a struture array in whih eah element of the array ontains many quantities suh asthe name and position. And you an have arrays of strutures. Strutures allow you to reate andustomize your own data base. Having done this, using the where ommand allows you exibleaess to anything with a one-line ommand.We refer you to Chapter 7 of Building IDL Appliations for a omplete disussion of strutures.Here we provide a quik example. For our star atalog, de�ne the struture{A = {star, name: 'alpha ori', ra:5.3345, de:-7.6568,reddening:fltarr(12)}Now if you type help,/strut, a you will see on the sreen** Struture STAR, 4 tags, length=64:NAME STRING ''RA FLOAT 0.00000DEC FLOAT 0.00000REDDENING FLOAT Array[12℄This says that the struture A is a type de�ned as star, and it has four �elds, the name the twopositions, and 12 di�erent measurements of reddening. You ould populate the 12 reddeningmeasurements by typing, for example,a.reddening = [1.2, 1.4, 1.3, 1.6, 1.3, 1.4, 1.3, 1.3, 1.6, 1.3, 1.4, 1.3,℄and you ould typeprint, a.deto �nd the delination, and you ould hange things by typinga.de = 5.5a.reddening[3℄ = 0.7This example is a named struture, whih means that all you annot hange the ontentsof this struture after having de�ned it. You an also reate an anonymous struture, withouta name:

{ 6 {b = {name: 'alpha ori', ra:5.3345, de:-7.6568, reddening:fltarr(12)Now if you type help, b, /str you see** Struture <b0d0>, 4 tags, length=64, refs=1:NAME STRING 'alpha ori'RA FLOAT 5.33450DEC FLOAT -7.65680REDDENING FLOAT Array[12℄and it has no given name. The ontents of anonymous strutures an be hanged after they'vebeen de�ned.If this is all there were to it, then strutures wouldn't be very useful beause you haveobserved 585 stars, say, and you'd need a separate struture for eah. But you an reate arraysof strutures, e.g.ataloga = repliate({star}, 585) [OR ataloga = repliate(a, 585) ℄atalogb = repliate(b, 585)reates struture arrays of 565 elements for a and b. You an to them with a subsript, forexample you ould writeataloga[3℄ = ato set the third element of the struture array equal to a. Or you ould do it element-by-element,for exampleataloga[3℄.name = 'alpha ori'Now you an print the star name of the third element by typingprint, ataloga[3℄.nameor, less onventionally. . .print, (ataloga.name)[3℄Try using strutures when taking data for your experiments. You'll grow to love them!

