
QUICK IDL TUTORIAL NUMBER TWO: IDL DATATYPES ANDORGANIZATIONAL STRUCTURESFebruary 10, 2003By the term datatype we mean, for example, integers,
oating point variables, strings,
omplexnumbers. By the term organizational stru
tures we mean s
alars, ve
tors, arrays, and stru
tures.We
over these in the following two se
tions. All available datatypes
an be arranged in allavailable organizational stru
tures. For example, we
an have arrays of strings, ve
tors of
omplexnumbers. 1. DATATYPESHere we
over only the basi
 IDL datatypes. There are others, in
luding unsigned integersand
omplex numbers. In the last se
tion here, we dis
uss stru
tures; these are useful, almostessential, for databases su
h as you might generate from a series of observations.1.1. DIGITS, BITS, BYTES, AND WORDSWe have gotten to the pla
e where you need to know a little about the internal workings of
omputers. Spe
i�
ally, how the
omputer stores numbers and
hara
ters.Humans think of numbers expressed in powers-of-ten, or de
imal numbers. This means thatthere are 10 digits (0! 9) and you begin
ounting with these digits. When you rea
h the highestnumber expressible by a single digit, you use two digits and generate the next series of numbers,10! 99. Let f and s be the �rst and se
ond digits, respe
tively; then the number is 10f + s. Andso on with more digits.Fundamentally, all
omputer information is stored in the form of binary numbers, meaningpowers-of-two. How many digits? Two! They are 0 and 1. The highest number expressible by asingle digit is 1. The two-digit numbers range from 10 to 11; the number is 2f + s. And so on withmore digits. But wait a minute! The word \digit" is a misnomer|it implies something about 10�ngers. Here it's the word bit that
ounts. Ea
h binary \digit" is really a bit. So the binarynumber 1001 is a 4-bit number. What de
imal number does the binary number 1001 equal?For
onvenien
e,
omputers and their programmers group the bits into groups of eight.Ea
h group of 8 bits is
alled a byte. Consider, then, the binary number 11111111; it's themaximum-sized number that
an be stored in a byte. What is this number?Finally,
omputers group the bytes into words. The oldest PC's dealt with 8-bit words|onebyte. The Pentiums and Spar
s deal with 32-bit words|four bytes. What's the largest numberyou
an store in a 4-byte word? And how about negative numbers?

{ 2 {Below we des
ribe how IDL (and everybody else) gets around this apparent upper limit onnumbers. They do this by de�ning di�erent data types. Up to now, the details didn't mattermu
h. But now. . .We don't
over all datatypes below|spe
i�
ally, we omit Complex (yes,
omplex numbers!), Hexade
imal, O
tal, and Stru
ture datatypes, whi
h you
an look up if youare interested. 1.2. INTEGER DATATYPES IN IDLInteger datatypes store the numbers just like you'd expe
t. IDL supports integers of fourdi�erent lengths: 1, 2, 4, and 8 bytes. The shorter the word, the less memory required; the longerthe word, the larger the numbers
an be. Di�erent requirements require di�erent
ompromises.1.2.1. 1 byte: The Byte DatatypeThe Byte datatype is a single byte long and always positive. Therefore, its values run0! 255. Images are always represented in bytes. The data might not be in bytes, but the numbersthat the
omputer sends to the video pro
essor
ard are always bytes. Video s
reens require lotsof memory and really qui
k pro
essing speed, so bytes are ideal. You generate an array usingbindgen; you
an generate a single byte variable by saying x=3b. If, during a
al
ulation, a bytenumber ex
eeds 255, then it will \wrap around"; for example, 256 wraps to 0, 257 to 1, et
.1.2.2. 2 bytes: Integers and Unsigned IntegersWith 2 bytes, numbers that are always positive are
alled Unsigned Integers. They
anrange from 0! 2562 � 1, or 0! 65535. You generate an array using uindgen. How do you thinkunsigned integers wrap around?Normally you want the possibility of negative numbers and you use Integers. The totalnumber of integer values is 2562 = 32768. One possible value is, of
ourse, zero. So the numberof negative and positive values di�er by one. The
hoi
e is to favor negative numbers, so Integers
over the range �32768 ! 32767. You generate an array using indgen. What happens withwraparound? What if x=5, y=30000 and z=x*y? Che
k it out!1.2.3. 4 bytes: Long Integers and Unsigned Long IntegersThe dis
ussion here is exa
tly like that for 2-byte integers, ex
ept that 2562 be
omes 2564.What are the limits on these numbers? See IDL help under \Data Types" and \Integer Constants"for more information. You generate arrays using ulindgen and lindgen.

{ 3 {1.2.4. 8 bytes: 64-bit Long Integers and Unsigned 64-bit Long IntegersThe dis
ussion here is exa
tly like that for 2-byte integers, ex
ept that 2562 be
omes 2568.What are the limits on these numbers? See IDL help under \Data Types" and \Integer Constants"for more information. You generate arrays using ul64indgen and l64indgen.1.3. FLOATING DATATYPES IN IDLThe problem with integer datatypes is that you
an't represent anything other than integralnumbers|no fra
tions! Moreover, if you divide two integer numbers and the result shouldfra
tional, but it won't be; instead, it will be rounded down (e.g. 53 is
al
ulated as 1). To getaround this, the
oating datatype uses some of the bits to store an exponent, whi
h may bepositive or negative. You throw away some of the pre
ision of the integer representation in favorof being able to represent a mu
h wider range of numbers.1.3.1. 4 bytes: Floats\Floating point" means
oating de
imal point|it
an wash all around. With Floats, theexponent
an range from about �38! +38 and there is about 6 digits of pre
ision. You generatean array using �ndgen and a single variable by in
luding a de
imal point (x=3.) or usingexponential notation (x=3e5). 1.3.2. 8 bytes: Double-Pre
isionLike Float, but the exponent
an range from about �307! +307 and there is about 16 digitsof pre
ision. You generate an array using dindgen and a single variable by writing x=3d orx=3d5. 1.4. STRINGSStrings store
hara
ters|letters, symbols, and numbers (but numbers as
hara
ters|you
an't
al
ulate with strings! A string
onstant su
h as hello
onsists of �ve letters. It takes 5 bytesto store this
onstant|one byte for ea
h
hara
ter. There are 256 possible
hara
ters for ea
hof the bytes; with 2*26 letters (smalls and
aps) and 10 digits, this leaves 104 other possibilities,whi
h are used for things like semi
olons and periods. You
an generate an array of strings withstrarr and a single string with x = 'Hi there!!!'.

{ 4 {2. ORGANIZATIONAL STRUCTURES2.1. SCALARSA s
alar is just a single number. For example, a string s
alar is joename= 'joe'.2.2. VECTORSA ve
tor is a one-dimensional array. For example, a three-element ve
tor of names isthreenames = ['joe', 'ivan', 'mark'℄.2.3. ARRAYSIDL handles arrays up to 8 dimensions, i.e. with 8 subs
ripts. Arrays with two subs
ripts
an be mathemati
ally treated a matri
es using the # and ## operators, and various matrixmanipulation routines; see IDL help under matri
es and matrix operators. You
reate ve
torsand arrays using, for example, the
tarr or �ndgen
ommands (for
oating point numbers;equivalent
ommands exists for all variable types). You populate them as appropriate, but try toavoid using for loops; instead, use where, appropriate use of the * operator, et
.IDL provides a great deal of
exibility in using subs
ripts to address parti
ular array elements,and this
exibility is what makes IDL so useful. For example,
onsider a two-dimensional arraya=�ndgen(100,100). Then:b = a[23:25, 67:69℄makes b a 3� 3 2-d array equal to a's array elements in the little box spe
i�ed. The
ombinationindx = where(a gt 10.)b = a[indx℄makes b a 1-d array equal to the elements of a that are larger than 10. The
ombinationindx = where(a gt 10.)jndx = where(a[indx℄ le 100.)b = a[indx[jndx℄℄shows that you
an subs
ript arrays with other arrays, and makes b equal to a 1-d array equal tothe elements of a that are both larger than 10 and less than or equal to 100.

{ 5 {2.4. STRUCTURESStru
tures are immensely useful for any proje
t in whi
h data of di�erent types are related.For example, if you have a
atalog of stars with positions and reddenings, you
an put the whole
atalog in a stru
ture array in whi
h ea
h element of the array
ontains many quantities su
h asthe name and position. And you
an have arrays of stru
tures. Stru
tures allow you to
reate and
ustomize your own data base. Having done this, using the where
ommand allows you
exiblea

ess to anything with a one-line
ommand.We refer you to Chapter 7 of Building IDL Appli
ations for a
omplete dis
ussion of stru
tures.Here we provide a qui
k example. For our star
atalog, de�ne the stru
ture{A = {star, name: 'alpha ori', ra:5.3345, de
:-7.6568,reddening:fltarr(12)}Now if you type help,/stru
t, a you will see on the s
reen** Stru
ture STAR, 4 tags, length=64:NAME STRING ''RA FLOAT 0.00000DEC FLOAT 0.00000REDDENING FLOAT Array[12℄This says that the stru
ture A is a type de�ned as star, and it has four �elds, the name the twopositions, and 12 di�erent measurements of reddening. You
ould populate the 12 reddeningmeasurements by typing, for example,a.reddening = [1.2, 1.4, 1.3, 1.6, 1.3, 1.4, 1.3, 1.3, 1.6, 1.3, 1.4, 1.3,℄and you
ould typeprint, a.de
to �nd the de
lination, and you
ould
hange things by typinga.de
 = 5.5a.reddening[3℄ = 0.7This example is a named stru
ture, whi
h means that all you
annot
hange the
ontentsof this stru
ture after having de�ned it. You
an also
reate an anonymous stru
ture, withouta name:

{ 6 {b = {name: 'alpha ori', ra:5.3345, de
:-7.6568, reddening:fltarr(12)Now if you type help, b, /str you see** Stru
ture <
b0d0>, 4 tags, length=64, refs=1:NAME STRING 'alpha ori'RA FLOAT 5.33450DEC FLOAT -7.65680REDDENING FLOAT Array[12℄and it has no given name. The
ontents of anonymous stru
tures
an be
hanged after they'vebeen de�ned.If this is all there were to it, then stru
tures wouldn't be very useful be
ause you haveobserved 585 stars, say, and you'd need a separate stru
ture for ea
h. But you
an
reate arraysof stru
tures, e.g.
ataloga = repli
ate({star}, 585) [OR
ataloga = repli
ate(a, 585) ℄
atalogb = repli
ate(b, 585)
reates stru
ture arrays of 565 elements for a and b. You
an to them with a subs
ript, forexample you
ould write
ataloga[3℄ = ato set the third element of the stru
ture array equal to a. Or you
ould do it element-by-element,for example
ataloga[3℄.name = 'alpha ori'Now you
an print the star name of the third element by typingprint,
ataloga[3℄.nameor, less
onventionally. . .print, (
ataloga.name)[3℄Try using stru
tures when taking data for your experiments. You'll grow to love them!

