
IDL Analyst
Reference Guide

0806IDL63AN

IDL Version 6.3
August 2006 Edition
Copyright © ITT Visual Information Solutions

All Rights Reserved

Restricted Rights Notice
The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures, functions, and documenta-
tion described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the restrictions
stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document at
any time and without notice.

Limitation of Warranty
ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in
the license agreement, including without limitation the condition of the software, merchantability, or fitness for any particu-
lar purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Lic-
ensee or any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties.
All such copies must contain the title page and this notice page in their entirety.

Export Control Information
This software and its associated documentation are subject to the controls of the Export Administration Regulations (EAR).
It has been determined that this software is classified as EAR99 under U.S. Export Control laws and regulations, and may
be re-transferred to any destination other than those expressly prohibited by U.S. laws and regulations. The recipient is
responsible for ensuring compliance to all applicable U.S. Export Control laws and regulations.

Acknowledgments
IDL® is a registered trademark and ION™, ION Script™, ION Java™, are trademarks of ITT Corporation, registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright © 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies Incorporated.

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

IMSL is a trademark of Visual Numerics, Inc. Copyright © 1970 - 2006 by Visual Numerics, Inc. All Rights Reserved.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Contents ... 3

Chapter 1
Preface ... 13
About IDL Analyst .. 14

Licensing ... 14
Using the IDL Analyst Documentation ... 15

Rows versus Columns ... 15
Error Handling ... 17

Underflow and Overflow .. 17
Missing Values ... 17
Errors in User Code .. 17
IDL Analyst Reference Guide 3

4

Chapter 2
Functional List of IMSL Routines .. 21
Linear Systems ... 23
Eigensystem Analysis .. 25
Interpolation and Approximation ... 26
Quadrature .. 27
Differential Equations .. 28
Transforms ... 29
Nonlinear Equations ... 30
Optimization .. 31
Special Functions ... 32
Basic Statistics and Random Number Generators ... 34
Regression .. 35
Correlation and Covariance ... 37
Analysis of Variance .. 38
Categorical and Discrete Data Analysis .. 39
Nonparametric Statistics .. 40
Goodness of Fit .. 41
Time Series and Forecasting .. 42
Multivariate Analysis ... 43
Survival Analysis ... 44
Probability Distribution Functions and Inverses .. 45
Random Number Generation ... 46
Math and Statistics Utilities ... 48

Chapter 3
Alphabetical Listing of IMSL Routines ... 49

Part I: Mathematics Routines

Chapter 4
Linear Systems ... 65
Overview: Linear Systems ... 66
Linear Systems Routines .. 77
IMSL_INV ... 79
IMSL_LUSOL ... 81
IMSL_LUFAC ... 87
IMSL_CHSOL ... 91
Contents IDL Analyst Reference Guide

5

IMSL_CHFAC .. 95
IMSL_QRSOL .. 98
IMSL_QRFAC .. 102
IMSL_SVDCOMP .. 106
IMSL_CHNNDSOL .. 110
IMSL_CHNNDFAC ... 114
IMSL_LINLSQ ... 118
IMSL_SP_LUSOL .. 123
IMSL_SP_LUFAC .. 129
IMSL_SP_BDSOL .. 136
IMSL_SP_BDFAC .. 140
IMSL_SP_PDSOL .. 144
IMSL_SP_PDFAC .. 149
IMSL_SP_BDPDSOL ... 153
IMSL_SP_BDPDFAC ... 156
IMSL_SP_GMRES ... 160
IMSL_SP_CG ... 164
IMSL_SP_MVMUL .. 168

Chapter 5
Eigensystem Analysis .. 173
Overview: Eigensystem Analysis .. 174
Eigensystem Routines ... 177
IMSL_EIG ... 178
IMSL_EIGSYMGEN .. 183
IMSL_GENEIG ... 186

Chapter 6
Interpolation and Approximation ... 191
Overview: Interpolation and Approximation .. 192
Interpolation and Approximation Routines ... 199
IMSL_CSINTERP ... 200
IMSL_CSSHAPE .. 205
IMSL_BSINTERP ... 210
IMSL_BSKNOTS ... 219
IMSL_SPVALUE ... 224
IMSL_SPINTEG ... 230
IDL Analyst Reference Guide Contents

6

IMSL_FCNLSQ ... 234
IMSL_BSLSQ .. 238
IMSL_CONLSQ .. 248
IMSL_CSSMOOTH .. 254
IMSL_SMOOTHDATA1D ... 258
IMSL_SCAT2DINTERP ... 262
IMSL_RADBF ... 266
IMSL_RADBE .. 277

Chapter 7
Quadrature .. 279
Overview: Quadrature .. 280
Quadrature Routines .. 283
IMSL_INTFCN .. 284
IMSL_INTFCNHYPER .. 315
IMSL_INTFCN_QMC .. 319
IMSL_GQUAD .. 322
IMSL_FCN_DERIV .. 326

Chapter 8
Differential Equations .. 329
Overview: Differential Equations .. 330
Differential Equations Routines ... 332
IMSL_ODE .. 333
IMSL_PDE_MOL .. 351
IMSL_POISSON2D .. 366

Chapter 9
Transforms .. 373
Overview: Transforms ... 374
Transforms Routines .. 376
IMSL_FFTCOMP .. 377
IMSL_FFTINIT ... 387
IMSL_CONVOL1D .. 390
IMSL_CORR1D .. 395
IMSL_LAPLACE_INV ... 398
Contents IDL Analyst Reference Guide

7

Chapter 10
Nonlinear Equations ... 407
Overview: Nonlinear Equations .. 408
Nonlinear Equations Routines ... 409
IMSL_ZEROPOLY ... 410
IMSL_ZEROFCN ... 413
IMSL_ZEROSYS .. 418

Chapter 11
Optimization .. 421
Overview: Optimization .. 422
Optimization Routines ... 424
IMSL_FMIN ... 425
IMSL_FMINV ... 433
IMSL_NLINLSQ .. 441
IMSL_LINPROG .. 449
IMSL_QUADPROG ... 454
IMSL_MINCONGEN ... 458
IMSL_CONSTRAINED_NLP .. 465

Chapter 12
Special Functions .. 473
Overview: Special Functions ... 474
Special Functions Routines ... 475
IMSL_ERF .. 477
IMSL_ERFC ... 480
IMSL_BETA ... 484
IMSL_LNBETA .. 487
IMSL_BETAI .. 489
IMSL_LNGAMMA .. 491
IMSL_GAMMA_ADV ... 493
IMSL_GAMMAI .. 495
IMSL_BESSI ... 498
IMSL_BESSJ .. 500
IMSL_BESSK ... 503
IMSL_BESSY ... 505
IMSL_BESSI_EXP ... 507
IDL Analyst Reference Guide Contents

8

IMSL_BESSK_EXP .. 509
IMSL_ELK .. 511
IMSL_ELE ... 513
IMSL_ELRF .. 515
IMSL_ELRD .. 517
IMSL_ELRJ ... 519
IMSL_ELRC .. 521
IMSL_FRESNEL_COSINE .. 523
IMSL_FRESNEL_SINE .. 525
IMSL_AIRY_AI .. 527
IMSL_AIRY_BI .. 529
IMSL_KELVIN_BER0 ... 532
IMSL_KELVIN_BEI0 ... 534
IMSL_KELVIN_KER0 ... 536
IMSL_KELVIN_KEI0 .. 538

Part II: Statistics Routines

Chapter 13
Basic Statistics ... 543
Overview: Basic Statistics ... 544
Basic Statistics Routines .. 545
IMSL_SIMPLESTAT .. 546
IMSL_NORM1SAMP ... 552
IMSL_NORM2SAMP ... 557
IMSL_FREQTABLE ... 565
IMSL_SORTDATA ... 572
IMSL_RANKS .. 579

Chapter 14
Regression .. 587
Overview: Regression .. 588
Regression Routines ... 601
IMSL_REGRESSORS ... 602
IMSL_MULTIREGRESS .. 609
IMSL_MULTIPREDICT ... 624
IMSL_ALLBEST .. 632
Contents IDL Analyst Reference Guide

9

IMSL_STEPWISE .. 641
IMSL_POLYREGRESS ... 651
IMSL_POLYPREDICT .. 659
IMSL_NONLINREGRESS ... 667
IMSL_HYPOTH_PARTIAL .. 677
IMSL_HYPOTH_SCPH ... 683
IMSL_HYPOTH_TEST .. 688
IMSL_NONLINOPT ... 695
IMSL_LNORMREGRESS ... 704

Chapter 15
Correlation and Covariance ... 721
Overview: Correlation and Covariance ... 722
Correlation and Covariance Routines .. 723
IMSL_COVARIANCES ... 724
IMSL_PARTIAL_COV .. 730
IMSL_POOLED_COV ... 736
IMSL_ROBUST_COV ... 740

Chapter 16
Analysis of Variance ... 749
Overview: Analysis of Variance ... 750
Analysis of Variance Routines .. 751
IMSL_ANOVA1 ... 752
IMSL_ANOVAFACT ... 762
IMSL_MULTICOMP ... 771
IMSL_ANOVANESTED .. 774
IMSL_ANOVABALANCED ... 783

Chapter 17
Categorical and Discrete Data Analysis ... 795
Overview: Categorical and Discrete Data Analysis .. 796
Categorical and Discrete Data Analysis Routines ... 797
IMSL_CONTINGENCY ... 798
IMSL_EXACT_ENUM .. 811
IMSL_EXACT_NETWORK .. 814
IMSL_CAT_GLM ... 819
IDL Analyst Reference Guide Contents

10
Chapter 18
Nonparametric Statistics ... 833
Overview .. 834
Nonparametric Statistics Routines ... 835
IMSL_SIGNTEST ... 836
IMSL_WILCOXON .. 839
IMSL_NCTRENDS ... 848
IMSL_CSTRENDS .. 851
IMSL_TIE_STATS .. 857
IMSL_KW_TEST .. 859
IMSL_FRIEDMANS_TEST ... 862
IMSL_COCHRANQ .. 867
IMSL_KTRENDS .. 870

Chapter 19
Goodness of Fit .. 875
Overview: Goodness of Fit .. 876
Goodness of Fit Routines ... 877
IMSL_CHISQTEST .. 878
IMSL_NORMALITY .. 884
IMSL_KOLMOGOROV1 ... 888
IMSL_KOLMOGOROV2 ... 891
IMSL_MVAR_NORMALITY .. 894
IMSL_RANDOMNESS_TEST ... 899

Chapter 20
Time Series and Forecasting ... 911
Overview: Time Series and Forecasting .. 912
Time Series and Forecasting Routines ... 914
IMSL_ARMA .. 915
IMSL_DIFFERENCE .. 931
IMSL_BOXCOXTRANS .. 937
IMSL_AUTOCORRELATION ... 942
IMSL_PARTIAL_AC .. 947
IMSL_LACK_OF_FIT .. 950
IMSL_GARCH .. 954
IMSL_KALMAN .. 959
Contents IDL Analyst Reference Guide

11
Chapter 21
Multivariate Analysis ... 969
Overview: Multivariate Analysis .. 970
Multivariate Analysis Routines ... 972
IMSL_K_MEANS ... 973
IMSL_PRINC_COMP .. 978
IMSL_FACTOR_ANALYSIS .. 983
IMSL_DISCR_ANALYSIS .. 994

Chapter 22
Survival Analysis ... 1005
Overview: Survival Analysis ... 1006
Survival Analysis Routines ... 1007
IMSL_SURVIVAL_GLM .. 1008

Chapter 23
Probability Distribution Functions and Inverses 1031
Overview: Probability Distribution Functions and Inverses 1032
Probability Distribution Functions and Inverses Routines .. 1033
IMSL_NORMALCDF .. 1034
IMSL_BINORMALCDF .. 1037
IMSL_CHISQCDF .. 1040
IMSL_FCDF ... 1045
IMSL_TCDF ... 1048
IMSL_GAMMACDF .. 1052
IMSL_BETACDF ... 1055
IMSL_BINOMIALCDF .. 1058
IMSL_BINOMIALPDF .. 1060
IMSL_HYPERGEOCDF .. 1062
IMSL_POISSONCDF ... 1065

Chapter 24
Random Number Generation ... 1067
Overview: Random Number Generation ... 1068
Random Number Generation Routines ... 1071
IMSL_RANDOMOPT .. 1073
IMSL_RANDOM_TABLE ... 1078
IDL Analyst Reference Guide Contents

12
IMSL_RANDOM .. 1082
IMSL_RANDOM_NPP ... 1102
IMSL_RANDOM_ORDER ... 1106
IMSL_RAND_TABLE_2WAY .. 1109
IMSL_RAND_ORTH_MAT ... 1111
IMSL_RANDOM_SAMPLE .. 1113
IMSL_RAND_FROM_DATA .. 1116
IMSL_CONT_TABLE .. 1119
IMSL_RAND_GEN_CONT .. 1121
IMSL_DISCR_TABLE ... 1124
IMSL_RAND_GEN_DISCR ... 1128
IMSL_RANDOM_ARMA .. 1132
IMSL_FAURE_INIT ... 1137
IMSL_FAURE_NEXT_PT .. 1141

Chapter 25
Math and Statistics Utilities ... 1145
Overview: Math and Statistics Utilities ... 1146
Math and Statistics Utilities Routines .. 1147
IMSL_DAYSTODATE ... 1148
IMSL_DATETODAYS ... 1150
IMSL_CONSTANT ... 1152
IMSL_MACHINE ... 1158
IMSL_STATDATA ... 1163
IMSL_BINOMIALCOEF .. 1166
IMSL_NORM .. 1168
IMSL_MATRIX_NORM .. 1171
PM .. 1176
RM ... 1178

Appendix A
References .. 1181

Index .. 1195
Contents IDL Analyst Reference Guide

Chapter 1

Preface
This section contains the following topics:
About IDL Analyst 14
Using the IDL Analyst Documentation 15

Error Handling . 17
IDL Analyst Reference Guide 13

14 Chapter 1: Preface
About IDL Analyst

IDL Analyst combines the power of IDL with the IMSL C Numerical Library
provided by Visual Numerics, Inc. The addition of the IMSL library gives IDL users
access to an extensive and powerful set of mathematical and statistical analysis
routines via the standard IDL programmer’s interface.

If you have used the IMSL libraries when creating C or FORTRAN applications,
much of the functionality in IDL Analyst will be familiar. But because the IMSL
functionality is exposed via an IDL interface, no linking or compiling is required. Use
the IMSL routines as you would any other IDL function or procedure.

IDL Analyst provides a subset of the full IMSL C Numerical Library version 5. See
Chapter 2, “Functional List of IMSL Routines” for a complete listing of the included
routines.

Licensing

IDL Analyst is a separately licensed IDL module. IDL applications that incorporate
IMSL functionality will not function if the IDL Analyst license is not present; this
means that if you distribute an application that uses IMSL functionality, the end-users
of your application must also have an IDL Analyst license. For information on
runtime licensing of IMSL functionality, contact your ITT Visual Information
Solutions sales representative.
About IDL Analyst IDL Analyst Reference Guide

Chapter 1: Preface 15
Using the IDL Analyst Documentation

The chapters of the IDL Analyst Reference Guide group routines with similar
computational or analytical capabilities. To locate the appropriate function for a given
problem, refer to Chapter 2, “Functional List of IMSL Routines”. If you know the
name of the routine you wish to use, consult Chapter 3, “Alphabetical Listing of
IMSL Routines” to locate the routine’s documentation.

Each chapter of the IDL Analyst Reference Guide provides an overview of the
functionality described in that chapter, along with information on the types of
problems addressed by that functionality.

Rows versus Columns

The IDL Analyst Reference Guide uses the standard linear algebraic convention for
two-dimensional arrays: “row” refers to the first index of the array and “column”
refers to the second. So for a 2D array A, A(i,j) is the element in row i and column j.
The PM procedure makes this easy to visualize:

a = INTARR(4, 8) & a(2,5) = 1 & PM, a

IDL Prints:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0

Note that this is the opposite of the standard image processing convention used in
most IDL documentation, where “column” refers to the first index of the array and
“row” refers to the second. Using the standard IDL PRINT procedure, the above
array would look like this:

a = INTARR(4, 8) & a(2,5) = 1 & PRINT, a

IDL Prints:

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
IDL Analyst Reference Guide Using the IDL Analyst Documentation

16 Chapter 1: Preface
For additional information, see “Columns, Rows, and Array Majority” (Chapter 15,
Building IDL Applications).

References

References are listed alphabetically by author in Appendix A, “References”.
Using the IDL Analyst Documentation IDL Analyst Reference Guide

Chapter 1: Preface 17
Error Handling

IDL Analyst uses IDL’s built-in error handling mechanisms for most errors. This
section describes areas in which IDL Analyst may provide a greater level of control
than IDL itself.

Underflow and Overflow

In most cases, IDL Analyst routines are written so that computations are not affected
by underflow, provided the system (hardware or software) replaces an underflow with
the value zero. Normally, system error messages indicating underflow can be ignored.

IDL Analyst routines also are written to avoid overflow. A program that produces
system error messages indicating overflow should be examined for programming
errors such as incorrect input data, mismatch of parameter types, or improper
dimensions.

In many cases, the documentation for a function points out common pitfalls that can
lead to failure of the algorithm.

Missing Values

Some IDL Analyst routines allow input data to contain missing values. These
routines recognize as a missing value the special floating-point value referred to as
“Not a Number” or NaN. The actual value varies on different computers, but it can be
obtained by reference to the IMSL_MACHINE function.

The manner in which missing values are treated depends on the individual function as
described in the documentation for that function.

For more information on special floating-point values (including NaN), see “Math
Errors” (Chapter 8, Building IDL Applications).

Errors in User Code

IDL Analyst functions attempt to detect user errors and handle them in a way that
provides as much information to the user as possible. In addition to the basic IDL
error-handling facility, five levels of Informational Error severity are recognized. The
error levels are described in Table 1-1.
IDL Analyst Reference Guide Error Handling

18 Chapter 1: Preface
Error Levels and Default Actions

The IMSL numerical library categorizes library errors with one of five severity levels:

Although IDL Analyst does not allow users to directly manipulate how these errors
are interpreted internally, you can control which errors are printed to the IDL output
log. All informational error messages are printed by default. Setting the system
variable !QUIET to a nonzero value suppresses output of Notes, Alerts, and
Warnings. Fatal and Terminal errors always halt execution of the IDL program and
change the value of !ERROR_STATE.

Type Meaning

Note A note is issued to indicate the possibility of a trivial error or simply
to provide information about the computations. A note does not
update !ERROR_STATE.

Alert An alert indicates that the user should be advised about conditions
that arise during computation. Underflow errors are generally
categorized as alerts. An alert does not update !ERROR_STATE.

Warning A warning indicates the existence of a condition that may require
corrective action by the user or calling routine. A warning error may
be issued because the results are accurate to only a few decimal
places, because some of the output may be erroneous but most of the
output is correct, or because some assumptions underlying the
analysis technique are violated. Often no corrective action is
necessary and the condition can be ignored. A warning does not
update !ERROR_STATE.

Fatal A fatal error indicates the existence of a condition that may be
serious. In most cases, the user or calling routine must take corrective
action to recover. A fatal error updates !ERROR_STATE.

Terminal A terminal error is serious. It usually is the result of an incorrect
specification, such as specifying a negative number as the number of
equations. Terminal errors may also be caused by various
programming errors that are impossible to diagnose correctly within
the IMSL library. If a terminal error occurs, first check that the
arguments passed to the routine are in the correct order and have the
correct data types. A terminal error updates !ERROR_STATE.

Table 1-1: Error levels generated by the IMSL numerical library
Error Handling IDL Analyst Reference Guide

Chapter 1: Preface 19
Handling Errors in IMSL Routines

When a fatal or terminal error occurs in an IMSL routine, the value of
!ERROR_STATE is updated to reflect the fact that the error occurred. If you have
implemented a CATCH block to handle errors in your own routine, you can use the
value of !ERROR_STATE to determine which fatal or terminal error occurred in the
IMSL library.

To determine whether the most recent error was generated by the IMSL library,
inspect the NAME field of the !ERROR_STATE structure. Errors generated by the
IMSL library will populate the NAME field with the string:

IDL_M_IMSL_LIBRARYERROR

If the error was generated in the IMSL library, inspect the MSG field of the
!ERROR_STATE structure for information on which specific fatal or terminal error
occurred. For example, attempting to invert a matrix in which every element is zero
will generate a fatal error with the following message:

IMSL Error: IMSL_INV: Fatal error: MATH_SINGULAR_MATRIX: The input
matrix is singular.

You could, for example, use the following code fragment to test for this particular
error:

IF (STRPOS(!error_state.msg,'MATH_SINGULAR_MATRIX') GE 0) THEN $
BEGIN
Error handling code here...

ENDIF
IDL Analyst Reference Guide Error Handling

20 Chapter 1: Preface
Error Handling IDL Analyst Reference Guide

Chapter 2

Functional List of
IMSL Routines
This chapter contains a list of IMSL routines included in the IDL Analyst package,
categorized by functional categories:

• “Linear Systems” on page 23

• “Eigensystem Analysis” on page 25

• “Interpolation and Approximation” on page 26

• “Quadrature” on page 27

• “Differential Equations” on page 28

• “Transforms” on page 29

• “Nonlinear Equations” on page 30

• “Optimization” on page 31

• “Special Functions” on page 32

• “Basic Statistics and Random Number Generators” on page 34

• “Regression” on page 35
IDL Analyst Reference Guide 21

22 Chapter 2: Functional List of IMSL Routines
• “Correlation and Covariance” on page 37

• “Analysis of Variance” on page 38

• “Categorical and Discrete Data Analysis” on page 39

• “Nonparametric Statistics” on page 40

• “Goodness of Fit” on page 41

• “Time Series and Forecasting” on page 42

• “Multivariate Analysis” on page 43

• “Survival Analysis” on page 44

• “Probability Distribution Functions and Inverses” on page 45

• “Random Number Generation” on page 46

• “Math and Statistics Utilities” on page 48
IDL Analyst Reference Guide

Chapter 2: Functional List of IMSL Routines 23
Linear Systems

See Chapter 4, “Linear Systems” or select a link below.

Matrix Inversion

IMSL_INV—General matrix inversion.

Linear Equations with Full Matrices

IMSL_LUSOL—Systems involving general matrices.

IMSL_LUFAC—LU factorization of general matrices.

IMSL_CHSOL—Systems involving symmetric positive definite matrices.

IMSL_CHFAC—Factorization of symmetric positive definite matrices.

Linear Least Squares with Full Matrices

IMSL_QRSOL—Least-squares solution.

IMSL_QRFAC—Least-squares factorization.

IMSL_SVDCOMP—Singular Value Decomposition (SVD) and generalized inverse.

IMSL_CHNNDSOL—Solve and generalized inverse for positive semidefinite
matrices.

IMSL_CHNNDFAC—Factor and generalized inverse for positive semidefinite
matrices.

IMSL_LINLSQ—Linear constraints.

Sparse Matrices

IMSL_SP_LUSOL—Solve a sparse system of linear equations Ax = b.

IMSL_SP_LUFAC—Compute an LU factorization of a sparse matrix stored in either
coordinate format or CSC format.

IMSL_SP_BDSOL—Solve a general band system of linear equations Ax = b.

IMSL_SP_BDFAC—Compute the LU factorization of a matrix stored in band
storage mode.
IDL Analyst Reference Guide Linear Systems

24 Chapter 2: Functional List of IMSL Routines
IMSL_SP_PDSOL—Solve a sparse symmetric positive definite system of linear
equations Ax = b.

IMSL_SP_PDFAC—Compute a factorization of a sparse symmetric positive definite
system of linear equations Ax = b.

IMSL_SP_BDPDSOL—Solve a symmetric positive definite system of linear
equations Ax = b in band symmetric storage mode.

IMSL_SP_BDPDFAC—Compute the RTR Cholesky factorization of symmetric
positive definite matrix, A, in band symmetric storage mode.

IMSL_SP_GMRES—Solve a linear system Ax = b using the restarted generalized
minimum residual (GMRES) method.

IMSL_SP_CG—Solve a real symmetric definite linear system using a conjugate
gradient method.

IMSL_SP_MVMUL—Compute a matrix-vector product involving a sparse matrix
and a dense vector.
Linear Systems IDL Analyst Reference Guide

Chapter 2: Functional List of IMSL Routines 25
Eigensystem Analysis

See Chapter 5, “Eigensystem Analysis” or select a link below.

Linear Eigensystem Problems

IMSL_EIG—General and symmetric matrices.

Generalized Eigensystem Problems

IMSL_EIGSYMGEN—Real symmetric matrices and B positive definite.

IMSL_GENEIG—General eigenexpansion of Ax=λBx.
IDL Analyst Reference Guide Eigensystem Analysis

26 Chapter 2: Functional List of IMSL Routines
Interpolation and Approximation

See Chapter 6, “Interpolation and Approximation” or select a link below.

Cubic Spline Interpolation

IMSL_CSINTERP—Derivative end conditions.

IMSL_CSSHAPE—Shape preserving.

B-spline Interpolation

IMSL_BSINTERP—One-dimensional and two-dimensional interpolation.

IMSL_BSKNOTS—Knot sequence given interpolation data.

B-spline and Cubic Spline Evaluation and Integration

IMSL_SPVALUE—Evaluation and differentiation.

IMSL_SPINTEG—Integration.

Least-squares Approximation and Smoothing

IMSL_FCNLSQ—General functions.

IMSL_BSLSQ—Splines with fixed knots.

IMSL_CONLSQ—Constrained spline fit.

IMSL_CSSMOOTH—Cubic-smoothing spline.

IMSL_SMOOTHDATA1D—Smooth one-dimensional data by error detection.

Scattered Data Interpolation

IMSL_SCAT2DINTERP—Akima’s surface-fitting method.

IMSL_RADBF—Computes a fit using radial-basis functions.

IMSL_RADBE—Evaluates a radial-basis fit.
Interpolation and Approximation IDL Analyst Reference Guide

Chapter 2: Functional List of IMSL Routines 27
Quadrature

See Chapter 7, “Quadrature” or select a link below.

Univariate and Bivariate Quadrature

IMSL_INTFCN—Integration of a user-defined univariate or bivariate function.

Arbitrary Dimension Quadrature

IMSL_INTFCNHYPER—Iterated integral on a hyper-rectangle.

IMSL_INTFCN_QMC—Intergrates a function on a hyper-rectangle using a Quasi
Monte Carlo method.

Gauss Quadrature

IMSL_GQUAD—Gauss quadrature formulas.

Differentiation

IMSL_FCN_DERIV—First, second, or third derivative of a function.
IDL Analyst Reference Guide Quadrature

28 Chapter 2: Functional List of IMSL Routines
Differential Equations

See Chapter 8, “Differential Equations” or select a link below.

IMSL_ODE—Adams-Gear or Runge-Kutta method.

IMSL_PDE_MOL—Solves a system of partial differential equations using the
method of lines.

IMSL_POISSON2D—Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle.
Differential Equations IDL Analyst Reference Guide

Chapter 2: Functional List of IMSL Routines 29
Transforms

See Chapter 9, “Transforms” or select a link below.

IMSL_FFTCOMP—Real or complex FFT.

IMSL_FFTINIT—Real or complex FFT initialization.

IMSL_CONVOL1D—Compute discrete convolution.

IMSL_CORR1D—Compute discrete correlation.

IMSL_LAPLACE_INV—Approximate inverse Laplace transform of a complex
function.
IDL Analyst Reference Guide Transforms

30 Chapter 2: Functional List of IMSL Routines
Nonlinear Equations

See Chapter 10, “Nonlinear Equations” or select a link below.

Zeros of a Polynomial

IMSL_ZEROPOLY—Real or complex coefficients.

Zeros of a Function

IMSL_ZEROFCN—Real zeros of a function.

Root of a System of Equations

IMSL_ZEROSYS—Powell’s hybrid method.
Nonlinear Equations IDL Analyst Reference Guide

Chapter 2: Functional List of IMSL Routines 31
Optimization

See Chapter 11, “Optimization” or select a link below.

Unconstrained Minimization

IMSL_FMIN—(Univariate Function) Using function and possibly first derivative
values.

IMSL_FMINV—(Multivariate Function) Using quasi-Newton method.

IMSL_NLINLSQ—(Nonlinear Least Squares) Using Levenberg-Marquardt
algorithm.

Linearly Constrained Minimization

IMSL_LINPROG—Dense linear programming.

IMSL_QUADPROG—Quadratic programming.

Nonlinearly Constrained Minimization

IMSL_MINCONGEN—Minimize a general objective function.

IMSL_CONSTRAINED_NLP—Using a sequential equality constrained quadratic
programming method.
IDL Analyst Reference Guide Optimization

32 Chapter 2: Functional List of IMSL Routines
Special Functions

See Chapter 12, “Special Functions” or select a link below.

Error Functions

IMSL_ERF—Error function.

IMSL_ERFC—Complementary error function.

IMSL_BETA—Beta function.

IMSL_LNBETA—Logarithmic beta function.

IMSL_BETAI—Incomplete beta function.

Gamma Functions

IMSL_LNGAMMA—Logarithmic gamma function.

IMSL_GAMMA_ADV—Real gamma function.

IMSL_GAMMAI—Incomplete gamma function.

Bessel Functions with Real Order and Complex
Argument

IMSL_BESSI—Modified Bessel function of the first kind.

IMSL_BESSJ—Bessel function of the first kind.

IMSL_BESSK—Modified Bessel function of the second kind.

IMSL_BESSY—Bessel function of the second kind.

IMSL_BESSI_EXP—Bessel function e-|x|I0(x), Bessel function e-|x|I1(x).

IMSL_BESSK_EXP—Bessel function exK0(x), Bessel function exK1(x).

Elliptic Integrals

IMSL_ELK—Complete elliptic integral of the first kind.

IMSL_ELE—Complete elliptic integral of the second kind.

IMSL_ELRF—Carlson's elliptic integral of the first kind.

IMSL_ELRD—Carlson's elliptic integral of the second kind.
Special Functions IDL Analyst Reference Guide

Chapter 2: Functional List of IMSL Routines 33
IMSL_ELRJ—Carlson's elliptic integral of the third kind.

IMSL_ELRC—Special case of Carlson's elliptic integral.

Fresnel Integrals

IMSL_FRESNEL_COSINE—Cosine Fresnel integral.

IMSL_FRESNEL_SINE—Sine Fresnel integral.

Airy Functions

IMSL_AIRY_AI—Airy function, and derivative of the Airy function.

IMSL_AIRY_BI—Airy function of the second find, and derivative of the Airy
function of the second kind.

Kelvin Functions

IMSL_KELVIN_BER0—Kelvin function ber of the first kind, order 0, and derivative
of the Kelvin function ber.

IMSL_KELVIN_BEI0—Kelvin function bei of the first kind, order 0, and derivative
of the Kelvin function bei.

IMSL_KELVIN_KER0—Kelvin function ker of the second kind, order 0, and
derivative of the Kelvin function ker.

IMSL_KELVIN_KEI0—Kelvin function kei of the second kind, order 0 and
derivative of the Kelvin function kei.
IDL Analyst Reference Guide Special Functions

34 Chapter 2: Functional List of IMSL Routines
Basic Statistics and Random Number
Generators

See Chapter 13, “Basic Statistics” or select a link below.

Simple Summary Statistics

IMSL_SIMPLESTAT—Univariate summary statistics.

IMSL_NORM1SAMP—Mean and variance inference for a single normal population.

IMSL_NORM2SAMP—Inferences for two normal populations.

Tabulate, Sort, and Rank

IMSL_FREQTABLE—Tallies observations into a one-way frequency table.

IMSL_SORTDATA—Sorts data with options to tally cases into a multiway frequency
table.

IMSL_RANKS—Ranks, normal scores, or exponential scores.
Basic Statistics and Random Number Generators IDL Analyst Reference Guide

Chapter 2: Functional List of IMSL Routines 35
Regression

See Chapter 14, “Regression” or select a link below.

Multiple Linear Regression

IMSL_REGRESSORS—Generates regressors for a general linear model.

IMSL_MULTIREGRESS—Fits a multiple linear regression model and optionally
produces summary statistics for a regression model.

IMSL_MULTIPREDICT—Computes predicted values, confidence intervals, and
diagnostics.

Variable Selection

IMSL_ALLBEST—All best regressions.

IMSL_STEPWISE—Stepwise regression.

Polynomial and Nonlinear Regression

IMSL_POLYREGRESS—Fits a polynomial regression model.

IMSL_POLYPREDICT—Computes predicted values, confidence intervals, and
diagnostics.

IMSL_NONLINREGRESS—Fits a nonlinear regression model.

Multivariate Linear Regression—Statistical Inference
and Diagnostics

IMSL_HYPOTH_PARTIAL—Construction of a completely testable hypothesis.

IMSL_HYPOTH_SCPH—Sums of cross products for a multivariate hypothesis.

IMSL_HYPOTH_TEST—Tests for the multivariate linear hypothesis.

Polynomial and Nonlinear Regression

IMSL_NONLINOPT—Fit a nonlinear regression model using Powell's algorithm.
IDL Analyst Reference Guide Regression

36 Chapter 2: Functional List of IMSL Routines
Alternatives to Least Squares Regression

IMSL_LNORMREGRESS—LAV, Lpnorm, and LMV criteria regression.
Regression IDL Analyst Reference Guide

Chapter 2: Functional List of IMSL Routines 37
Correlation and Covariance

See Chapter 15, “Correlation and Covariance” or select a link below.

IMSL_COVARIANCES—Variance-covariance or correlation matrix.

IMSL_PARTIAL_COV—Partial correlations and covariances.

IMSL_POOLED_COV—Pooled covariance matrix.

IMSL_ROBUST_COV—Robust estimate of covariance matrix.
IDL Analyst Reference Guide Correlation and Covariance

38 Chapter 2: Functional List of IMSL Routines
Analysis of Variance

See Chapter 16, “Analysis of Variance” or select a link below.

IMSL_ANOVA1—Analyzes a one-way classification model.

IMSL_ANOVAFACT—Analyzes a balanced factorial design with fixed effects.

IMSL_MULTICOMP—Performs Student-Newman-Keuls multiple comparisons test.

IMSL_ANOVANESTED—Nested random model.

IMSL_ANOVABALANCED—Balanced fixed, random, or mixed model.
Analysis of Variance IDL Analyst Reference Guide

Chapter 2: Functional List of IMSL Routines 39
Categorical and Discrete Data Analysis

See Chapter 17, “Categorical and Discrete Data Analysis” or select a link below.

Statistics in the Two-Way Contingency Table

IMSL_CONTINGENCY—Two-way contingency table analysis.

IMSL_EXACT_ENUM—Exact probabilities in a table; total enumeration.

IMSL_EXACT_NETWORK—Exact probabilities in a table.

Generalized Categorical Models

IMSL_CAT_GLM—Generalized linear models.
IDL Analyst Reference Guide Categorical and Discrete Data Analysis

40 Chapter 2: Functional List of IMSL Routines
Nonparametric Statistics

See Chapter 18, “Nonparametric Statistics” or select a link below.

One Sample Tests—Nonparametric Statistics

IMSL_SIGNTEST—Sign test.

IMSL_WILCOXON—Wilcoxon rank sum test.

IMSL_NCTRENDS—Noehter’s test for cyclical trend.

IMSL_CSTRENDS—Cox and Stuarts’ sign test for trends in location and dispersion.

IMSL_TIE_STATS—Tie statistics.

Two or More Samples Tests—Nonparametric
Statistics

IMSL_KW_TEST—Kruskal-Wallis test.

IMSL_FRIEDMANS_TEST—Friedman’s test.

IMSL_COCHRANQ—Cochran's Q test.

IMSL_KTRENDS—K-sample trends test.
Nonparametric Statistics IDL Analyst Reference Guide

Chapter 2: Functional List of IMSL Routines 41
Goodness of Fit

See Chapter 19, “Goodness of Fit” or select a link below.

General Goodness of Fit Tests

IMSL_CHISQTEST—Chi-squared goodness of fit test.

IMSL_NORMALITY—Shapiro-Wilk W test for normality.

IMSL_KOLMOGOROV1—One-sample continuos data Kolmogorov-Smirnov.

IMSL_KOLMOGOROV2—Two-sample continuos data Kolmogorov-Smirnov.

IMSL_MVAR_NORMALITY—Mardia’s test for multivariate normality.

Tests for Randomness

IMSL_RANDOMNESS_TEST—Runs test, Paris-serial test, d2 test or triplets tests.
IDL Analyst Reference Guide Goodness of Fit

42 Chapter 2: Functional List of IMSL Routines
Time Series and Forecasting

See Chapter 20, “Time Series and Forecasting” or select a link below.

IMSL_ARMA Models

IMSL_ARMA—Computes least-squares or method-of-moments estimates of
parameters and optionally computes forecasts and their associated probability limits.

IMSL_DIFFERENCE—Performs differencing on a time series.

IMSL_BOXCOXTRANS—Perform a Box-Cox transformation.

IMSL_AUTOCORRELATION—Sample autocorrelation function.

IMSL_PARTIAL_AC—Sample partial autocorrelation function.

IMSL_LACK_OF_FIT—Lack-of-fit test based on the corrleation function.

IMSL_GARCH—Compute estimates of the parameters of a GARCH(p,q) model.

IMSL_KALMAN—Performs Kalman filtering and evaluates the likelihood function
for the statespace model.
Time Series and Forecasting IDL Analyst Reference Guide

Chapter 2: Functional List of IMSL Routines 43
Multivariate Analysis

See Chapter 21, “Multivariate Analysis” or select a link below.

• IMSL_K_MEANS—Performs a K-means (centroid) cluster analysis.

• IMSL_PRINC_COMP—Computes principal components.

• IMSL_FACTOR_ANALYSIS—Extracts factor-loading estimates.

• IMSL_DISCR_ANALYSIS—Perform discriminant function analysis.
IDL Analyst Reference Guide Multivariate Analysis

44 Chapter 2: Functional List of IMSL Routines
Survival Analysis

See Chapter 22, “Survival Analysis” or select a link below.

• IMSL_SURVIVAL_GLM—Analyzes survival data using a generalized linear
model and estimates using various parametric modes.
Survival Analysis IDL Analyst Reference Guide

Chapter 2: Functional List of IMSL Routines 45
Probability Distribution Functions and
Inverses

See Chapter 23, “Probability Distribution Functions and Inverses” or select a link
below.

IMSL_NORMALCDF—Normal (Gaussian) distribution function.

IMSL_BINORMALCDF—Bivariate normal distribution.

IMSL_CHISQCDF—Chi-squared distribution function.

IMSL_FCDF—F distribution function.

IMSL_TCDF—Student’s t distribution function.

IMSL_GAMMACDF—Gamma distribution function.

IMSL_BETACDF—Beta distribution function.

IMSL_BINOMIALCDF—Binomial distribution function.

IMSL_BINOMIALPDF—Binomial probability function.

IMSL_HYPERGEOCDF—Hypergeometric distribution function.

IMSL_POISSONCDF—Poisson distribution function.
IDL Analyst Reference Guide Probability Distribution Functions and Inverses

46 Chapter 2: Functional List of IMSL Routines
Random Number Generation

See Chapter 24, “Random Number Generation” or select a link below.

Random Numbers

IMSL_RANDOMOPT—Retrieves uniform (0, 1) multiplicative, congruential
pseudorandom-number generator.

IMSL_RANDOM_TABLE—Sets or retrieves the current table used in either the
shuffled or GFSR random number generator.

IMSL_RANDOM—Generates pseudorandom numbers.

IMSL_RANDOM_NPP—Generates pseudorandom numbers from a nonhomo-
geneous Poisson proces.

IMSL_RANDOM_ORDER—Generates pseudorandom order statistics from a
uniform (0, 1) distribution, or optionally from a standard normal distribution.

IMSL_RAND_TABLE_2WAY—Generates a pseudorandom two-way table.

IMSL_RAND_ORTH_MAT—Generates a pseudorandom orthogonal matrix or a
correlation matrix.

IMSL_RANDOM_SAMPLE—Generates a simple pseudorandom sample from a
finite population.

IMSL_RAND_FROM_DATA—Generates pseudorandom numbers from a
multivariate distribution determined from a given sample.

IMSL_CONT_TABLE—Sets up table to generate pseudorandom numbers from a
general continuous distribution.

IMSL_RAND_GEN_CONT—Generates pseudorandom numbers from a general
continuous distribution.

IMSL_DISCR_TABLE—Sets up table to generate pseudorandom numbers from a
general discrete distribution.

IMSL_RAND_GEN_DISCR—Generates pseudorandom numbers from a general
discrete distribution using an alias method or optionally a table lookup method.

Stochastic Processes

IMSL_RANDOM_ARMA—Generate pseudorandom IMSL_ARMA process
numbers.
Random Number Generation IDL Analyst Reference Guide

Chapter 2: Functional List of IMSL Routines 47
Low-discrepancy Sequences

IMSL_FAURE_INIT—Initializes the structure used for computing a shuffled Faure
sequence.

IMSL_FAURE_NEXT_PT—Generates a shuffled Faure sequence.
IDL Analyst Reference Guide Random Number Generation

48 Chapter 2: Functional List of IMSL Routines
Math and Statistics Utilities

See Chapter 25, “Math and Statistics Utilities” or select a link below.

Dates

IMSL_DAYSTODATE—Days since epoch to date.

IMSL_DATETODAYS—Date to days since epoch.

Constants and Data Sets

IMSL_CONSTANT—Natural and mathematical constants.

IMSL_MACHINE—Machine constants.

IMSL_STATDATA—Commonly analyzed data sets.

Binomial Coefficient

IMSL_BINOMIALCOEF—Evaluates the binomial coefficient.

Geometry

IMSL_NORM—Vector norms.

Matrix Norm

IMSL_MATRIX_NORM—Real coordinate matrix.

Matrix Entry and Display

PM—Formatted output of arrays using the standard linear algebraic convention:
“row” refers to the first index of the array and “column” refers to the second.

RM—Formatted input of arrays using the standard linear algebraic convention: “row”
refers to the first index of the array and “column” refers to the second.
Math and Statistics Utilities IDL Analyst Reference Guide

Chapter 3

Alphabetical Listing of
IMSL Routines
This chapter contains an alphabetical listing of routines included in the IDL Analyst
module.

“IMSL_AIRY_AI” on page 527—Evaluates the Airy function.

“IMSL_AIRY_BI” on page 529—Evaluates the Airy function of the second kind.

“IMSL_ALLBEST” on page 632—Selects the best multiple linear regression
models.

“IMSL_ANOVA1” on page 752—Analyzes one-way classification model.

“IMSL_ANOVABALANCED” on page 783—Balanced fixed, random, or mixed
model.

“IMSL_ANOVAFACT” on page 762—Analyzes a balanced factorial design with
fixed effects.

“IMSL_ANOVANESTED” on page 774—Nested random mode.
IDL Analyst Reference Guide 49

50 Chapter 3: Alphabetical Listing of IMSL Routines
“IMSL_ARMA” on page 915—Computes method-of-moments or least-squares
estimates of parameters for a nonseasonal ARMA model.

“IMSL_AUTOCORRELATION” on page 942—Sample autocorrelation function.

“IMSL_BESSI” on page 498—Evaluates a modified Bessel function of the first kind
with real order and real or complex parameters.

“IMSL_BESSI_EXP” on page 507—Evaluates the exponentially scaled modified
Bessel function of the first kind of orders zero and one.

“IMSL_BESSJ” on page 500—Evaluates a Bessel function of the first kind with real
order and real or complex parameters.

“IMSL_BESSK” on page 503—Evaluates a modified Bessel function of the second
kind with real order and real or complex parameters.

“IMSL_BESSK_EXP” on page 509—Evaluates the exponentially scaled modified
Bessel function of the third kind of orders zero and one.

“IMSL_BESSY” on page 505—Evaluates a Bessel function of the second kind with
real order and real or complex parameters.

“IMSL_BETA” on page 484—Evaluates the real beta function B(x,y).

“IMSL_BETACDF” on page 1055—Evaluates the beta probability distribution
function.

“IMSL_BETACDF” on page 1055—Evaluates the beta probability distribution
function.

“IMSL_BETAI” on page 489—Evaluates the real incomplete beta function.

“IMSL_BINOMIALCDF” on page 1058—Evaluates the binomial distribution
function.

“IMSL_BINOMIALCDF” on page 1058—Evaluates the binomial distribution
function.

“IMSL_BINOMIALCOEF” on page 1166—Evaluate binomial coefficient.

“IMSL_BINOMIALPDF” on page 1060—Evaluates the binomial probability
function.

“IMSL_BINORMALCDF” on page 1037—Evaluates the bivariate normal
distribution function.

“IMSL_BINORMALCDF” on page 1037—Evaluates the bivariate normal
distribution function.

“IMSL_BOXCOXTRANS” on page 937—Perform Box-Cox transformation
IDL Analyst Reference Guide

Chapter 3: Alphabetical Listing of IMSL Routines 51
“IMSL_BSINTERP” on page 210—Computes a one- or two-dimensional spline
interpolant.

“IMSL_BSKNOTS” on page 219—Computes the knots for a spline interpolant.

“IMSL_BSLSQ” on page 238—Computes a one- or two-dimensional, least-squares
spline approximation.

“IMSL_CAT_GLM” on page 819—Generalized linear models.

“IMSL_CHFAC” on page 95—Computes the Cholesky factor, L, of a real or
complex symmetric positive definite matrix A, such that A = LLT.

“IMSL_CHISQCDF” on page 1040—Evaluates the chi-squared distribution
function. Using a keyword, the inverse of the chi-squared distribution can be
evaluated.

“IMSL_CHISQCDF” on page 1040—Evaluates the chi-squared distribution
function. Using a keyword, the inverse of the chi-squared distribution can be
evaluated.

“IMSL_CHISQTEST” on page 878—Performs a chi-squared goodness-of-fit test.

“IMSL_CHNNDFAC” on page 114—Computes the Cholesky factorization of the
real matrix A such that A = RTR = LLT.

“IMSL_CHNNDSOL” on page 110—Solves a real symmetric nonnegative definite
system of linear equations Ax = b. Computes the solution to Ax = b given the
Cholesky factor.

“IMSL_CHSOL” on page 91—Solves a symmetric positive definite system of real or
complex linear equations Ax = b.

“IMSL_COCHRANQ” on page 867—Cochran's Q test.

“IMSL_CONLSQ” on page 248—Computes a least-squares constrained spline
approximation.

“IMSL_CONSTANT” on page 1152—Returns the value of various mathematical and
physical constants.

“IMSL_CONT_TABLE” on page 1119—Sets up a table to generate pseudorandom
numbers from a general continuous distribution.

“IMSL_CONTINGENCY” on page 798—Performs a chi-squared analysis of a two-
way contingency table.

“IMSL_CONVOL1D” on page 390—Computes the discrete convolution of two one
dimensional arrays.
IDL Analyst Reference Guide

52 Chapter 3: Alphabetical Listing of IMSL Routines
“IMSL_CORR1D” on page 395—Compute the discrete correlation of two one-
dimensional arrays.

“IMSL_COVARIANCES” on page 724—Computes the sample variance-covariance
or correlation matrix.

“IMSL_CSINTERP” on page 200—Computes a cubic spline interpolant, specifying
various endpoint conditions. The default interpolant satisfies the not-a-knot
condition.

“IMSL_CSSHAPE” on page 205—Computes a shape-preserving cubic spline.

“IMSL_CSSMOOTH” on page 254—Computes a smooth cubic spline
approximation to noisy data by using cross-validation to estimate the smoothing
parameter or by directly choosing the smoothing parameter.

“IMSL_CSTRENDS” on page 851—Cox and Stuarts’ sign test for trends in location
and dispersion.

“IMSL_DATETODAYS” on page 1150—Computes the number of days from
January 1, 1900, to the given date.

“IMSL_DAYSTODATE” on page 1148—Gives the date corresponding to the
number of days since January 1, 1900.

“IMSL_DIFFERENCE” on page 931—Differences a seasonal or nonseasonal time
series.

“IMSL_DISCR_ANALYSIS” on page 994—Perform discriminant function analysis.

“IMSL_DISCR_TABLE” on page 1124—Sets or retrieves the current table used in
either the shuffled or GFSR random number generator

“IMSL_DISCR_TABLE” on page 1124—Sets up a table to generate pseudorandom
numbers from a general discrete distribution.

“IMSL_EIG” on page 178—Computes the eigenexpansion of a real or complex
matrix A. If the matrix is known to be symmetric or Hermitian, a keyword can be
used to trigger more efficient algorithms.

“IMSL_EIGSYMGEN” on page 183—Computes the generalized eigenexpansion of
a system Ax = λBx. The matrices A and B are real and symmetric, and B is positive
definite.

“IMSL_ELE” on page 513—Evaluates the complete elliptic integral of the second
kind E(x).

“IMSL_ELK” on page 511—Evaluates the complete elliptic integral of the kind K(x).
IDL Analyst Reference Guide

Chapter 3: Alphabetical Listing of IMSL Routines 53
“IMSL_ELRC” on page 521—Evaluates an elementary integral from which inverse
circular functions, logarithms and inverse hyperbolic functions can be computed.

“IMSL_ELRD” on page 517—Evaluates Carlson’s elliptic integral of the second
kind RD(x, y, z).

“IMSL_ELRF” on page 515—Evaluates Carlson’s elliptic integral of the first kind
RF(x, y, z).

“IMSL_ELRJ” on page 519—Evaluates Carlson’s elliptic integral of the third kind
RJ(x, y, z, r).

“IMSL_ERF” on page 477—Evaluates the real error function erf(x). Using a
keyword, the inverse error function erf-1(x) can be evaluated.

“IMSL_ERFC” on page 480—Evaluates the real complementary error function
erf(x). Using a keyword, the inverse complementary error function erf-1(x) can be
evaluated.

“IMSL_EXACT_ENUM” on page 811—Exact probabilities in a table; total
enumeration.

“IMSL_EXACT_NETWORK” on page 814—Exact probabilities in a table.

“IMSL_FACTOR_ANALYSIS” on page 983—Extracts initial factor-loading
estimates in factor analysis.

“IMSL_FAURE_INIT” on page 1137—Initializes the structure used for computing a
shuffled Faure sequence.

“IMSL_FAURE_NEXT_PT” on page 1141—Generates shuffled Faure sequence.

“IMSL_FCDF” on page 1045—Evaluates the F distribution function. Using a
keyword, the inverse of the F distribution function can be evaluated.

“IMSL_FCDF” on page 1045—Evaluates the F distribution function. Using a
keyword, the inverse of the F distribution function can be evaluated.

“IMSL_FCN_DERIV” on page 326—Computes the first, second, or third derivative
of a user-supplied function.

“IMSL_FCNLSQ” on page 234—Computes a least-squares fit using user-supplied
functions.

“IMSL_FFTCOMP” on page 377—Computes discrete Fourier transform of a real or
complex sequence. Using keywords, a real-to-complex transform or two-dimensional
complex Fourier transform can be computed.

“IMSL_FFTINIT” on page 387—Computes parameters for a one-dimensional FFT
to be used in the IMSL_FFTCOMP function with keyword Init_Params.
IDL Analyst Reference Guide

54 Chapter 3: Alphabetical Listing of IMSL Routines
“IMSL_FMIN” on page 425—Finds the minimum point of a smooth function f (x) of
a single variable using function evaluations and, optionally, through both function
evaluations and first derivative evaluations.

“IMSL_FMINV” on page 433—Minimizes a function f(x) of n variables using a
quasi-Newton method.

“IMSL_FREQTABLE” on page 565—Tallies observations into a one-way frequency
table.

“IMSL_FRESNEL_COSINE” on page 523—Evaluates cosine Fresnel integral.

“IMSL_FRESNEL_SINE” on page 525—Evaluates sine Fresnel integral.

“IMSL_FRIEDMANS_TEST” on page 862—Friedman’s test.

“IMSL_GAMMA_ADV” on page 493—Evaluate the real gamma function.

“IMSL_GAMMACDF” on page 1052—Evaluates the gamma distribution function.

“IMSL_GAMMACDF” on page 1052—Evaluates the gamma distribution function.

“IMSL_GAMMAI” on page 495—Evaluates the incomplete gamma function γ(a,x).

“IMSL_GAMMAI” on page 495—Evaluate incomplete gamma function.

“IMSL_GARCH” on page 954—Compute estimates of the parameters of a
GARCH(p,q) model

“IMSL_GENEIG” on page 186—Computes the generalized eigenexpansion of a
system Ax = λBx.

“IMSL_GQUAD” on page 322—Computes a Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule with various classical weight functions.

“IMSL_HYPERGEOCDF” on page 1062—Evaluates the hypergeometric
distribution function.

“IMSL_HYPERGEOCDF” on page 1062—Evaluates the hypergeometric
distribution function.

“IMSL_HYPOTH_PARTIAL” on page 677—Constructs an equivalent completely
testable multivariate general linear hypothesis HβU = G from a partially testable
hypothesis HpβU = Gp.

“IMSL_HYPOTH_SCPH” on page 683—Computes the matrix of sums of squares
and crossproducts for the multivariate general linear hypothesis HβU = G given the
regression fit.
IDL Analyst Reference Guide

Chapter 3: Alphabetical Listing of IMSL Routines 55
“IMSL_HYPOTH_TEST” on page 688—Performs tests for a multivariate general
linear hypothesis HβU = G given the hypothesis sums of squares and crossproducts
matrix SH.

“IMSL_INTFCN” on page 284—Integrates a user-supplied function using different
combinations of keywords and parameters.

“IMSL_INTFCN_QMC” on page 319—Integrates a function on a hyper-rectangle
using a quasi-Monte Carlo method.

“IMSL_INTFCNHYPER” on page 315—Integrates a function on a hyper-rectangle.

“IMSL_INV” on page 79—Computes the inverse of a real or complex, square matrix.

“IMSL_K_MEANS” on page 973—Performs a K-means (centroid) cluster analysis.

“IMSL_KALMAN” on page 959—Performs Kalman filtering and evaluates the
likelihood function or the state-space model.

“IMSL_KELVIN_BEI0” on page 534—Evaluates the Kelvin function of the first
kind, bei, of order zero.

“IMSL_KELVIN_BER0” on page 532—Evaluates the Kelvin function of the first
kind, ber, of order zero.

“IMSL_KELVIN_KEI0” on page 538—Evaluates the Kelvin function of the second
kind, kei, of order zero.

“IMSL_KELVIN_KER0” on page 536—Evaluates the Kelvin function of the second
kind, ker, of order zero.

“IMSL_KOLMOGOROV1” on page 888—One-sample continuos data Kolmogorov-
Smirnov.

“IMSL_KOLMOGOROV2” on page 891—Two-sample continuos data Kolmogorov-
Smirnov.

“IMSL_KTRENDS” on page 870—K-sample trends test.

“IMSL_KW_TEST” on page 859—Kruskal-Wallis test.

“IMSL_LAPLACE_INV” on page 398—Computes the inverse Laplace transform of
a complex function.

“IMSL_NLINLSQ” on page 441—Solves a linear least-squares problem with linear
constraints.

“IMSL_LACK_OF_FIT” on page 950—Lack-of-fit test based on the correlation
function
IDL Analyst Reference Guide

56 Chapter 3: Alphabetical Listing of IMSL Routines
“IMSL_LINPROG” on page 449—Solves a linear programming problem using the
revised simplex algorithm.

“IMSL_LNBETA” on page 487—Evaluates the logarithm of the real beta function ln
β(x,y).

“IMSL_LNBETA” on page 487—Evaluate the log of the real beta function.

“IMSL_LNGAMMA” on page 491—Evaluates the logarithm of the absolute value of
the gamma function log Γ(x).

“IMSL_LNGAMMA” on page 491—Evaluate the logarithm of the absolute value of
the gamma function.

“IMSL_LNORMREGRESS” on page 704—Fits a multiple linear regression model
using criteria other than least squares. Namely, LNORMREGRESS allows the user to
choose Least Absolute Value (L1), Least Lp norm (Lp), or Least Maximum Value
(Minimax or L∞) method of multiple linear regression.

“IMSL_LUFAC” on page 87—Computes the LU factorization of a real or complex
matrix.

“IMSL_LUSOL” on page 81—Solves a general system of real or complex linear
equations Ax = b.

“IMSL_MACHINE” on page 1158—Returns information describing the computer’s
arithmetic.

“IMSL_MATRIX_NORM” on page 1171—Computes various norms of a rectangular
matrix, a matrix stored in band format, and a matrix stored in coordinate format.

“IMSL_MINCONGEN” on page 458—Minimizes a general objective function
subject to linear equality/inequality constraints.

“IMSL_MULTICOMP” on page 771—Performs Student-Newman-Keuls multiple-
comparisons test.

“IMSL_MULTIPREDICT” on page 624—Computes predicted values, confidence
intervals, and diagnostics after fitting a regression model.

“IMSL_MULTIREGRESS” on page 609—Fits a multiple linear regression model
using least squares and optionally compute summary statistics for the regression
model.

“IMSL_MVAR_NORMALITY” on page 894—Mardia’s test for multivariate
normality.

“IMSL_NLINLSQ” on page 441—Solves a nonlinear least-squares problem using a
modified Levenberg-Marquardt algorithm.
IDL Analyst Reference Guide

Chapter 3: Alphabetical Listing of IMSL Routines 57
“IMSL_NCTRENDS” on page 848—Noehter’s test for cyclical trend.

“IMSL_NONLINOPT” on page 695—Fits data to a nonlinear model (possibly with
linear constraints) using the successive quadratic programming algorithm (applied to
the sum of squared errors, sse = Σ(yi − f(xi; θ))2) and either a finite difference gradient
or a user-supplied gradient.

“IMSL_NONLINREGRESS” on page 667—Fits a nonlinear regression model.

“IMSL_NORM” on page 1168—Computes various norms of a vector or the
difference of two vectors.

“IMSL_NORMALCDF” on page 1034—Evaluates the standard normal (Gaussian)
distribution function. Using a keyword, the inverse of the standard normal (Gaussian)
distribution can be evaluated.

“IMSL_NORMALCDF” on page 1034—Solves an initial value problem, which is
possibly stiff, using the Adams-Gear methods for ordinary differential equations.
Using keywords, the Runge-Kutta-Verner fifth-order and sixth-order method can be
used if the problem is known not to be stiff.

“IMSL_NORMALCDF” on page 1034—Evaluates the standard normal (Gaussian)
distribution function. Using a keyword, the inverse of the standard normal (Gaussian)
distribution can be evaluated.

“IMSL_NORM1SAMP” on page 552—Computes statistics for mean and variance
inferences using a sample from a normal population.

“IMSL_NORM2SAMP” on page 557—Computes statistics for mean and variance
inferences using samples from two independently normal populations.

“IMSL_NORMALITY” on page 884—Performs a test for normality.

“IMSL_PARTIAL_AC” on page 947—Sample partial autocorrelation function

“IMSL_PARTIAL_COV” on page 730—Partial correlations and covariances.

“IMSL_PDE_MOL” on page 351—Solves a system of partial differential equations
of the form ut = f(x, t, u, ux, uxx) using the method of lines. The solution is
represented with cubic Hermite polynomials.

“IMSL_POISSON2D” on page 366—Solves Poisson’s or Helmholtz’s equation on a
two-dimensional rectangle using a fast Poisson solver based on the HODIE finite-
difference scheme on a uniform mesh.

“IMSL_POISSONCDF” on page 1065—Evaluates the Poisson distribution function.

“IMSL_POISSONCDF” on page 1065—Evaluates the Poisson distribution function.
IDL Analyst Reference Guide

58 Chapter 3: Alphabetical Listing of IMSL Routines
“IMSL_POLYPREDICT” on page 659—Computes predicted values, confidence
intervals, and diagnostics after fitting a polynomial regression model.

“IMSL_POLYREGRESS” on page 651—Performs a polynomial least-squares
regression.

“IMSL_POOLED_COV” on page 736—Pooled covariance matrix.

“IMSL_PRINC_COMP” on page 978—Computes principal components.

“IMSL_QRFAC” on page 102—Computes the QR factorization of a real matrix A.

“IMSL_QRSOL” on page 98—Solves a real linear least-squares problem Ax = b.

“IMSL_QUADPROG” on page 454—Solves a quadratic programming (QP) problem
subject to linear equality or inequality constraints.

“IMSL_RADBE” on page 277—Evaluates a radial-basis fit computed by
IMSL_RADBF.

“IMSL_RADBF” on page 266—Computes an approximation to scattered data in Rn
for n ≥ 2 using radial-basis functions.

“IMSL_RAND_FROM_DATA” on page 1116—Generates pseudorandom numbers
from multivariate distribution determined from a given sample.

“IMSL_RAND_GEN_CONT” on page 1121—Generates pseudorandom numbers
from a general continuous distribution.

“IMSL_RAND_GEN_DISCR” on page 1128—Generates pseudorandom numbers
from a general discrete distribution using an alias method or optionally a table lookup
method.

“IMSL_RAND_ORTH_MAT” on page 1111—Generates a pseudorandom
orthogonal matrix or a correlation matrix

“IMSL_RAND_TABLE_2WAY” on page 1109—Generates a pseudorandom two-
way table.

“IMSL_RANDOM” on page 1082—Generates pseudorandom numbers. The default
distribution is a uniform (0, 1) distribution, but many different distributions can be
specified through the use of keywords.

“IMSL_RANDOM_ARMA” on page 1132—Generate pseudorandom
IMSL_ARMA process numbers

“IMSL_RANDOM_NPP” on page 1102—Generates pseudorandom numbers from a
nonhomogeneous Poisson process.
IDL Analyst Reference Guide

Chapter 3: Alphabetical Listing of IMSL Routines 59
“IMSL_RANDOM_ORDER” on page 1106—Generates pseudorandom order
statistics from a standard normal distribution.

“IMSL_RANDOM_SAMPLE” on page 1113—Generates a simple pseudorandom
sample from a finite population

“IMSL_RANDOMNESS_TEST” on page 899—Runs test, Paris-serial test, d2 test
or triplets tests.

“IMSL_RANDOMOPT” on page 1073—Uses keywords to set or retrieve the
random number seed or to select the uniform (0, 1) multiplicative, congruential
pseudorandom-number generator.

“IMSL_RANKS” on page 579—Computes the ranks, normal scores, or exponential
scores for a vector of observations.

“IMSL_REGRESSORS” on page 602—Generates regressors for a general linear
model.

“IMSL_ROBUST_COV” on page 740—Robust estimate of covariance matrix.

“IMSL_SCAT2DINTERP” on page 262—Computes a smooth bivariate interpolant
to scattered data that is locally a quintic polynomial in two variables.

“IMSL_SIGNTEST” on page 836—Performs a sign test.

“IMSL_SIMPLESTAT” on page 546—Computes basic univariate statistics.

“IMSL_SMOOTHDATA1D” on page 258—Smooth one-dimensional data by error
detection.

“IMSL_SORTDATA” on page 572—Sorts observations by specified keys, with
option to tally cases into a multiway frequency table.

“IMSL_SP_BDFAC” on page 140—Compute the LU factorization of a matrix stored
in band storage mode.

“IMSL_SP_BDPDFAC” on page 156—Compute the RTR Cholesky factorization of
symmetric positive definite matrix, A, in band symmetric storage mode.

“IMSL_SP_BDPDSOL” on page 153—Solve a symmetric positive definite system
of linear equations Ax = b in band symmetric storage mode.

 “IMSL_SP_BDSOL” on page 136—Solve a general band system of linear equations
Ax = b.

“IMSL_SP_CG” on page 164—Solve a real symmetric definite linear system using a
conjugate gradient method. Using keywords, a preconditioner can be supplied.
IDL Analyst Reference Guide

60 Chapter 3: Alphabetical Listing of IMSL Routines
“IMSL_SP_GMRES” on page 160—Solve a linear system Ax = b using the restarted
generalized minimum residual (GMRES) method.

“IMSL_SP_LUFAC” on page 129—Compute an LU factorization of a sparse matrix
stored in either coordinate format or CSC format.

“IMSL_SP_LUSOL” on page 123—Solve a sparse system of linear equations Ax =
b.

“IMSL_SP_MVMUL” on page 168—Compute a matrix-vector product involving
sparse matrix and a dense vector.

“IMSL_SP_PDFAC” on page 149—Solve a sparse symmetric positive definite
system of linear equations Ax = b.

“IMSL_SP_PDSOL” on page 144—Solve a sparse symmetric positive definite
system of linear equations Ax = b.

“IMSL_SPINTEG” on page 230—Computes the integral of a one- or two-
dimensional spline.

“IMSL_SPVALUE” on page 224—Computes values of a spline or values of one of
its derivatives.

“IMSL_STATDATA” on page 1163—Retrieves commonly analyzed data sets.

“IMSL_STEPWISE” on page 641—Builds multiple linear regression models using
forward, backward, or stepwise selection.

“IMSL_SURVIVAL_GLM” on page 1008—Analyzes survival data using a
generalized linear model and estimates using various parametric modes.

“IMSL_SVDCOMP” on page 106—Computes the singular value decomposition
(SVD), A=USVT, of a real or complex rectangular matrix A. An estimate of the rank
of A also can be computed.

“IMSL_TIE_STATS” on page 857—Tie statistics.

“IMSL_TCDF” on page 1048—Evaluates the Student’s t distribution function.

“IMSL_TCDF” on page 1048—Evaluates the Student’s t distribution function.

“IMSL_WILCOXON” on page 839—Performs a Wilcoxon rank sum test.

“IMSL_ZEROFCN” on page 413—Finds the real zeros of a real function using
Müller’s method.

“IMSL_ZEROPOLY” on page 410—Finds the zeros of a polynomial with real or
complex coefficients using the companion matrix method or, optionally, the Jenkins-
Traub, three-stage algorithm.
IDL Analyst Reference Guide

Chapter 3: Alphabetical Listing of IMSL Routines 61
“IMSL_ZEROSYS” on page 418—Solves a system of n nonlinear equations using a
modified Powell hybrid algorithm.
IDL Analyst Reference Guide

62 Chapter 3: Alphabetical Listing of IMSL Routines
IDL Analyst Reference Guide

Part I: Mathematics
Routines

Chapter 4

Linear Systems
This section contains the following topics:
Overview: Linear Systems 66 Linear Systems Routines 77
IDL Analyst Reference Guide 65

66 Chapter 4: Linear Systems
Overview: Linear Systems

This section introduces some of the mathematical concepts used with IDL Analyst.

Matrix Inversion

The IMSL_INV function inverts an n x n nonsingular matrix—either real or complex.
The inverse also can be obtained by using the INVERSE keyword in functions for
solving systems of linear equations. You do not need to compute the inverse of a
matrix if the purpose is to solve one or more systems of linear equations. Even with
multiple right-hand sides, solving a system of linear equations by computing the
inverse and performing matrix multiplication is usually more expensive than the
method discussed in the next section.

Solving Systems of Linear Equations

A square system of linear equations has the form Ax = b, where A is a user-specified
n x n matrix, b is a given n-vector, and x is the solution n-vector. You must specify
each entry of A and b. The entire vector x is returned as output.

When A is invertible, a unique solution to Ax = b exists. The most commonly used
direct method for solving Ax = b factors the matrix A into a product of triangular
matrices and solves the resulting triangular systems of linear equations. Functions
that use direct methods for solving systems of linear equations all compute the
solution to Ax = b. You can use IDL Analyst functions IMSL_LUSOL,
IMSL_CHSOL, and IMSL_CHNNDSOL to compute x.

Matrix Factorizations

In some applications, you may only want to factor the n x n matrix A into a product of
two triangular matrices. Functions and procedures that end with “FAC” are designed
to compute these factorizations. Suppose that in addition to the solution x of a linear
system of equations Ax = b, you want the LU factorization of A. First, use the
IMSL_LUFAC procedure to obtain the LU factorization in a condensed format, then
call IMSL_LUSOL with this factorization and a right-hand side b to compute the
solution. If the factorization is desired in separate, full matrices, call the
IMSL_LUFAC procedure with the keywords L and U to return L and U separately.

Besides the basic matrix factorizations, such as LU and LLT, additional matrix
factorizations also are provided. For a real matrix A, QR factorization can be
computed by the IMSL_QRFAC procedure. Functions for computing the Singular
Overview: Linear Systems IDL Analyst Reference Guide

Chapter 4: Linear Systems 67
Value Decomposition (SVD) of a matrix are discussed in “Singular Value
Decomposition and Generalized Inverse” on page 67.

Multiple Right-hand Sides

In a case in which a system of linear equations has more than one right-hand side
vector, it is most economical to find the solution vectors by first factoring the
coefficient matrix A into products of triangular matrices. Then, the resulting
triangular systems of linear equations are solved for each right-hand side. When A is
a real general matrix, compute access to the LU factorization of A by using the
IMSL_LUFAC procedure. The solution xk for the k-th right-hand side vector bk is
then found by two triangular solves, Lyk = bk and Uxk = yk. The IMSL_LUSOL
function is called with the computed factorization and is used to solve each right-
hand side. You can follow this process when using other functions for solving
systems of linear equations.

Least-squares Solution and QR Factorization

Least-squares solutions are usually computed for an over-determined system of linear
equations Am x n x = b, where m > n. A least-squares solution x minimizes the
Euclidean length of the residual vector r = Ax – b. The IMSL_QRSOL function
computes a unique least-squares solution for x when A has full-column rank. If A is
rank-deficient, then the base solution for some variables is computed. These variables
consist of the resulting columns after the interchanges. The QR decomposition, with
column interchanges or pivoting, is computed such that AP = QR. Here, Q is
orthogonal, R is upper-trapezoidal with its diagonal elements nonincreasing in
magnitude, and P is the permutation matrix determined by the pivoting. The base
solution xB is obtained by solving R(PT)x = QTb for the base variables. For details,
see “Discussion” on page 100. You can compute the QR factorization of a matrix A,
such that AP = QR with a user-specified P, using the IMSL_QRFAC procedure.

Singular Value Decomposition and Generalized
Inverse

The SVD of an m by n matrix A is a matrix decomposition, A = USVT. With
q = min(m, n), the factors Um x q and Vn x q are orthogonal matrices, and Sq x q is a
nonnegative diagonal matrix with nonincreasing diagonal terms. The
IMSL_SVDCOMP function computes the singular values of A by default. By using
keywords, you can also obtain part or all of the U and V matrices, an estimate of the
rank of A, and the generalized inverse of A.
IDL Analyst Reference Guide Overview: Linear Systems

68 Chapter 4: Linear Systems
Ill-conditioning and Singularity

An m x n matrix A is mathematically singular if an x ≠ 0 exists such that Ax = 0. In
this case, the system of linear equations Ax = b does not have a unique solution.
However, a matrix A is numerically singular if it is “close” to a mathematically
singular matrix. Such problems are called ill-conditioned. If the numerical results
with an ill-conditioned problem are unacceptable, either use more accuracy if
available (for type float switch to double) or obtain an approximate solution to the
system. One form of approximation can be obtained using the SVD of A: If
q = min(m, n) and:

then the approximate solution is given by the following:

The scalars ti,i are defined by:

Specify the value of tol. This value determines how “close” the given matrix is to a
singular matrix. Further restrictions may apply to the number of terms in the sum, k ≤
q. For example, there may be a value of k ≤ q such that the scalars | (bTui)|, i > k, are
smaller than the average uncertainty in the right-hand side b. This means that these
scalars can be replaced by zero, and b is replaced by a vector that is within the stated
uncertainty of the problem.

Notation

Since many functions and procedures described in this chapter operate on both real or
complex matrices, the notation AH is used to represent both the transpose of A if A is
real and the conjugate transpose if A is complex.

A si i, uivi
T

i 1=

q

∑=

xk ti i, b
T

ui()vi
i 1=

k

∑=

ti i,
si i,

1–
if si i, tol 0≥ ≥

0 otherwise

=

Overview: Linear Systems IDL Analyst Reference Guide

Chapter 4: Linear Systems 69
Sparse Matrices: Direct Methods

Several routines employ direct methods (as opposed to iterative methods) for solving
problems involving sparse matrices.

For general sparse linear systems, IMSL_SP_LUFAC and IMSL_SP_LUSOL form a
factor/solve function pair. If a sparse matrix the problem Ax = b is to be solved for a
single A, but multiple right-hand sides, b, then IMSL_SP_LUFAC should first be
used to compute an LU decomposition of A, then follow multiple calls to
IMSL_SP_LUSOL (one for each right-hand side, b). If only one right-hand side, b, is
involved then IMSL_SP_LUSOL can be called directly, in which case the factor step
is computed internally by IMSL_SP_LUSOL.

For general banded systems, IMSL_SP_BDSOL and IMSL_SP_BDFAC form a
factor/solve pair. The relationship between SP_BSFAC and IMSL_SP_BDSOL is
similar to that of IMSL_SP_LUFAC and IMSL_SP_LUSOL.

The functions IMSL_SP_PDFAC and IMSL_SP_PDSOL are provided for working
with systems involving sparse symmetric positive definite matrices. The relationship
between IMSL_SP_PDFAC and IMSL_SP_PDSOL is similar to that of
IMSL_SP_LUFAC and IMSL_SP_LUSOL.

The functions SP_BDDFAC and IMSL_SP_BDPDSOL are provided for working
with systems involving banded symmetric positive definite matrices. The relationship
between IMSL_SP_BDPDFAC and IMSL_SP_BDPDSOL is similar to that of
IMSL_SP_LUFAC and IMSL_SP_LUSOL.

• IMSL_SP_LUFAC—LU factorization of general matrices.

• IMSL_SP_LUSOL—Systems involving general matrices.

• IMSL_SP_BDFAC—LU factorization of band matrices.

• IMSL_SP_BDSOL—Systems involving band matrices.

• IMSL_SP_PDFAC—Factorization of symmetric positive definite matrices.

• IMSL_SP_PDSOL—Systems involving symmetric positive definite matrices.

• IMSL_SP_BDPDFAC—Cholesky factorization of symmetric positive definite
matrices in band symmetric storage mode.

• IMSL_SP_BDPDSOL— Systems involving symmetric positive definite
matrices in band symmetric storage mode
IDL Analyst Reference Guide Overview: Linear Systems

70 Chapter 4: Linear Systems
Sparse Matrices: Iterative Methods

Two routines employ iterative methods (as opposed to direct methods) for solving
problems involving sparse matrices.

The IMSL_SP_GMRES function, based on the FORTRAN subroutine GMRESD by
H. F. Walker, solves the linear system Ax = b using the GMRES method. This method
is described in detail by Saad and Schultz (1986) and Walker (1988).

The IMSL_SP_CG function solves the symmetric definite linear system Ax = b using
the conjugate gradient method with optional preconditioning. This method is
described in detail by Golub and Van Loan (1983, chapter 10), and in Hageman and
Young (1981, chapter 7).

• IMSL_SP_GMRES—Restarted generalized minimum residual (GMRES)
method.

• IMSL_SP_CG—Conjugate gradient method.

Sparse Matrices: Utilities

Utilities designed to aid with the manipulation of sparse matrices are also provided.
The common operation of matrix-vector multiplication can be efficiently executed
using the IMSL_SP_MVMUL function.

Sparse Matrices: Matrix Storage Modes

The dense linear algebra functions in IDL Analyst require input consisting of matrix
dimensions and all values for the matrix entries. This is not practical for sparse linear
algebra. Three different storage formats can be used for the functions in the sparse
matrix sections. These methods include:

• Sparse Coordinate Storage Format

• Band Storage Format

• Compressed Sparse Column (CSC) Format

Sparse Coordinate Storage Format

Only the non-zero elements of a sparse matrix need to be communicated to a
function. Sparse coordinate storage format stores the value of each matrix entry along
with that entry’s row and column index. The following structures are defined by IDL
Analyst to make it easy to store sparse matrices:
Overview: Linear Systems IDL Analyst Reference Guide

Chapter 4: Linear Systems 71
{imsl_f_sp_elem, row:0L, col:0L, val:float(0.0)}
{imsl_d_sp_elem, row:0L, col:0L, val:double(0.0)}
{imsl_c_sp_elem, row:0L, col:0L, val:complex(0.0)}
{imsl_z_sp_elem, row:0L, col:0L, val:dcomplex(0.0)}

As an example consider the 6 x 6 matrix:

The matrix A has 15 non-zero elements, and its sparse coordinate representation
would be:

Since this representation does not rely on order, an equivalent form would be:

There are different ways this data could be used to initialize. Consider the following
program fragment:

A = replicate(imsl_f_sp_elem, 15)
a(*).row = [0, 1, 1, 1, 2, $

 3, 3, 3, 4, 4, $
4, 4, 5, 5, 5]

a(*).col = [0, 1, 2, 3, 2, $
0, 3, 4, 0, 3, $

row 0 1 1 1 2 3 3 3 4 4 4 4 5 5 5

col 0 1 2 3 2 0 3 4 0 3 4 5 0 1 5

val 2 9 -3 -1 5 -2 -7 -1 -1 -5 1 -3 -1 -2 6

row 5 4 3 0 5 1 2 1 4 3 1 4 3 5 4

col 0 0 0 0 1 1 2 2 3 3 3 4 4 5 5

val -1 -1 -2 2 -2 9 5 -3 -5 -7 -1 1 -1 6 -3

A

2 0 0 0 0 0

0 9 3– 1– 0 0

0 0 5 0 0 0

2– 0 0 7– 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=

IDL Analyst Reference Guide Overview: Linear Systems

72 Chapter 4: Linear Systems
4, 5, 0, 1, 5]
a(*).val = [2, 9, -3, -1, 5,$

-2, -7, -1, -1, -5, 1, $
-3, -1, -2, 6]

B = replicate(imsl_f_sp_elem, 15)
b(*).row = [5, 4, 3, 0, 5, $

 1, 2, 1, 4, 3, $
1, 4, 3, 5, 4]

b(*).col = [0, 0, 0, 0, 1, $
1, 2, 2, 3, 3, $
 3, 4, 4, 5, 5]

b(*).val = [-1, -1, -2, 2, -2,$
9, 5, -3, -5, -7, -1, $
1, -1, 6, -3]

Both a and b represent the sparse matrix A.

A sparse symmetric or Hermitian matrix is a special case, since it is only necessary to
store the diagonal and either the upper or lower triangle. As an example, consider the
5 x 5 linear system:

The Hermitian and symmetric positive definite system solvers in this module expect
the diagonal and lower triangle to be specified. The sparse coordinate form for the
lower triangle is given by

The following program fragment will initialize H.

A = replicate(imsl_c_sp_elem, 7)
a(*).row = [0, 1, 2, 3, 1, 2, 3]
a(*).col = [0, 1, 2, 3, 0, 1, 2]
a(*).val = [COMPLEX(4, 0), COMPLEX(4, 0), $

row 0 1 2 3 1 2 3

col 0 1 2 3 0 1 2

val (4,0) (4,0) (4,0) (4,0) (1,1) (1,1) (1,1)

H

4 1 i– 0 0

1 i+ 4 1 i– 0

0 1 i+ 4 1 i–

0 0 1 i+ 4

=

Overview: Linear Systems IDL Analyst Reference Guide

Chapter 4: Linear Systems 73
COMPLEX(4, 0), COMPLEX(4, 0), $
COMPLEX(1, 1), COMPLEX(1, 1), $
COMPLEX(1, 1)]

There are some important points to note here. Note that H is not symmetric, but rather
Hermitian. The functions that accept Hermitian data understand this and operate
assuming that:

The Sparse Matrix Module cannot take advantage of the symmetry in matrices that
are not positive definite. A symmetric matrix that happens to be indefinite cannot be
stored in this compact symmetric form. Rather, both upper and lower triangles must
be specified and the sparse general solver called.

Band Storage Format

A band matrix is an M x N matrix A with all of its non-zero elements “close” to the
main diagonal. Specifically, values Aij = 0 if i – j > nlca or j – i > nuca. The integer
m = nlca + nuca + 1 is the total band width. The diagonals, other than the main
diagonal, are called codiagonals. While any M x N matrix is a band matrix, band
storage format is only useful when the number of non-zero codiagonals is much less
than N.

In band storage format, the nlca lower codiagonals and the nuca upper codiagonals
are stored in the rows of an array of size m x N. The elements are stored in the same
column of the array as they are in the matrix. The values Aij inside the band width are
stored in the linear array in positions [(i – j + nuca + 1)*i + j]. This results in a
row-major, one-dimensional mapping from the two-dimensional notion of the matrix.

For example, consider the 5 x 5 matrix A with 1 lower and 2 upper codiagonals:

hij hji=

A

A0 0, A0 1, A0 2, 0 0

A1 0, A1 1, A1 2, A1 3, 0

0 A2 1, A2 2, A2 3, A2 4,

0 0 A3 2, A3 3, A3 4,

0 0 0 A4 3, A4 4,

=

IDL Analyst Reference Guide Overview: Linear Systems

74 Chapter 4: Linear Systems
In band storage format, the data would be arranged as:

This data would be then be stored contiguously, row-major order, in an array of
length 20.

As an example, consider the following tridiagonal matrix:

The following code segment will store this matrix in band storage format:

a = [0, 1, 2, 3, 4, $
10, 20, 30, 40, 50, $
5, 6, 7, 8, 0]

As in the sparse coordinate representation, there is a space saving symmetric version
of band storage. As an example, we look at the following 5 x 5 symmetric problem:

0 0 A0 2, A1 3, A2 4,

0 A0 1, A1 2, A2 3, A3 4,

A0 0, A1 1, A2 2, A3 3, A4 4,

A1 0, A2 1, A3 2, A4 3, 0

A

10 1 0 0 0

5 20 2 0 0

0 6 30 3 0

0 0 7 40 4

0 0 0 8 50

=

A

A0 0, A0 1, A0 2, 0 0

A0 1, A1 1, A1 2, A1 3, 0

A0 2, A1 2, A2 2, A2 3, A2 4,

0 A1 3, A2 3, A3 3, A3 4,

0 0 A2 4, A3 4, A4 4,

=

Overview: Linear Systems IDL Analyst Reference Guide

Chapter 4: Linear Systems 75
In band symmetric storage format, the data would be arranged as:

The following Hermitian example illustrates the procedure:

The following program fragments stores H in h, using band symmetric storage
format:

h = complexarr(15)
h(0:1) = 0
h(2:4) = complex(1,1)
h(5) = 0
h(6:9) = complex(1,1)
h(10:14) = 8

Choosing Between Banded and Coordinate Forms

Any matrix can be stored in either sparse coordinate or band format; which format to
use depends on the sparsity pattern of the matrix. A matrix with all non-zero data
stored in bands close to the main diagonal is probably a good candidate for band
format. If non-zero information is scattered more or less uniformly through the
matrix, sparse coordinate format is the best choice. The following two cases are
extreme examples. First, consider an n x n matrix with all elements on the main
diagonal and the (0,n–1) and (n–1,0) entries non-zero. The sparse coordinate vector
would be n + 2 units long. An array of length 2n2 – n would be required to store the
band representation, nearly twice as much storage as a dense solver might require.
Second, consider a tridiagonal matrix with all diagonal, superdiagonal and
subdiagonal entries non-zero. In band format, an array of length 3n is needed. In
sparse coordinate format, a vector of length 3n – 2 is required. But the problem is
that, for instance with floating-point precision on a 32 bit machine, each of those 3n –

0 0 A0 2, A1 3, A2 4,

0 A0 1, A1 2, A2 3, A3 4,

A0 0, A1 1, A2 2, A3 3, A4 4,

H

8 1 i+ 1 i+ 0 0

1 i– 8 1 i+ 1 i+ 0

1 i– 1 i– 8 1 i+ 1 i+

0 1 i– 1 i– 8 1 i+

0 0 1 i– 1 i– 8

=

IDL Analyst Reference Guide Overview: Linear Systems

76 Chapter 4: Linear Systems
2 units in coordinate format requires three times as much storage as any of the 3n
units needed for band representation. This is due to carrying the row and column
indices in coordinate form. Band storage evades this requirement by being essentially
an ordered list, and defining location in the original matrix by position in the list.

Compressed Sparse Column (CSC) Format

Functions that accept data in coordinate format can also accept data stored in the
format described in the Users’ Guide for the Harwell-Boeing Sparse Matrix
Collection. The scheme is column oriented, with each column held as a sparse vector,
represented by a list of the row indices of the entries in an integer array and a list of
the corresponding values in a separate float (double, complex, dcomplex) array. Data
for each column are stored consecutively and in order. A separate integer array holds
the location of the first entry of each column and the first free location. Only entries
in the lower triangle and diagonal are stored for symmetric and Hermitian matrices.
All arrays are based at zero, which is in contrast to the Harwell-Boeing test suite’s
one-based arrays.

As in the Users’ Guide for the Harwell-Boeing Sparse Matrix Collection, we
illustrate the storage scheme with the following example. The 5x5 matrix:

would be stored in the arrays colptr (location of first entry), rowind (row indices), and
values (non-zero entries) as follows:

Subscripts 0 1 2 3 4 5 6 7 8 9 10

colptr 0 3 5 7 9 11

rowind 0 4 2 3 0 1 4 0 3 4 1

values 1 5 2 4 -3 -2 -5 -1 -4 6 3

1 3– 0 1– 0

0 0 2– 0 3

2 0 0 0 0

0 4 0 4– 0

5 0 5– 0 6
Overview: Linear Systems IDL Analyst Reference Guide

Chapter 4: Linear Systems 77
Linear Systems Routines

Matrix Inversion

IMSL_INV—General matrix inversion.

Linear Equations with Full Matrices

IMSL_LUSOL—Systems involving general matrices.

IMSL_LUFAC—LU factorization of general matrices.

IMSL_CHSOL—Systems involving symmetric positive definite matrices.

IMSL_CHFAC—Factorization of symmetric positive definite matrices.

Linear Least Squares with Full Matrices

IMSL_QRSOL—Least-squares solution.

IMSL_QRFAC—Least-squares factorization.

IMSL_SVDCOMP—Singular Value Decomposition (SVD) and generalized inverse.

IMSL_CHNNDSOL—Solve and generalized inverse for positive semidefinite
matrices.

IMSL_CHNNDFAC—Factor and generalized inverse for positive semidefinite
matrices.

IMSL_LINLSQ—Linear constraints.

Sparse Matrices

IMSL_SP_LUSOL—Solve a sparse system of linear equations Ax = b.

IMSL_SP_LUFAC—Compute an LU factorization of a sparse matrix stored in either
coordinate format or CSC format.

IMSL_SP_BDSOL—Solve a general band system of linear equations Ax = b.

IMSL_SP_BDFAC—Compute the LU factorization of a matrix stored in band
storage mode.

IMSL_SP_PDSOL—Solve a sparse symmetric positive definite system of linear
equations Ax = b.
IDL Analyst Reference Guide Linear Systems Routines

78 Chapter 4: Linear Systems
IMSL_SP_PDFAC—Compute a factorization of a sparse symmetric positive definite
system of linear equations Ax = b.

IMSL_SP_BDPDSOL—Solve a symmetric positive definite system of linear
equations Ax = b in band symmetric storage mode.

IMSL_SP_BDPDFAC—Compute the RTR Cholesky factorization of symmetric
positive definite matrix, A, in band symmetric storage mode.

IMSL_SP_GMRES—Solve a linear system Ax = b using the restarted generalized
minimum residual (GMRES) method.

IMSL_SP_CG—Solve a real symmetric definite linear system using a conjugate
gradient method.

IMSL_SP_MVMUL—Compute a matrix-vector product involving a sparse matrix
and a dense vector.
Linear Systems Routines IDL Analyst Reference Guide

Chapter 4: Linear Systems 79
IMSL_INV

The IMSL_INV function computes the inverse of a real or complex, square matrix.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_INV(a [,/DOUBLE])

Return Value

A two-dimensional matrix containing the inverse of the matrix A.

Arguments

a

Two-dimensional matrix containing the matrix to be inverted.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Example

RM, a, 3, 3
; Define the matrix to be inverted.
row 0: 1 3 3
row 1: 1 3 4
row 2: 1 4 4
ainv = IMSL_INV(a)
; Call IMSL_INV to perform the inversion.
PM, a
; Output the original matrix.
 1.00000 3.00000 3.00000
 1.00000 3.00000 4.00000
 1.00000 4.00000 4.00000
IDL Analyst Reference Guide IMSL_INV

80 Chapter 4: Linear Systems
PM, ainv
; Output the computed inverse.
 4.00000 -0.00000 -3.00000

 0.00000 -1.00000 1.00000
 -1.00000 1.00000 0.00000

PM, a # ainv
; Check the results.
 1.00000 0.00000 0.00000
 0.00000 1.00000 0.00000
 0.00000 0.00000 1.00000

Errors

Fatal Errors

MATH_SINGULAR_MATRIX—Input matrix is singular.

Version History

6.4 Introduced
IMSL_INV IDL Analyst Reference Guide

Chapter 4: Linear Systems 81
IMSL_LUSOL

The IMSL_LUSOL function solves a general system of real or complex linear
equations Ax = b.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LUSOL(b [, a] [, CONDITION=variable] [, /DOUBLE]
[, FACTOR=variable] [, INVERSE=variable] [, PIVOT=variable]
[, TRANSPOSE=value])

Return Value

A one-dimensional array containing the solution of the linear system Ax = b.

Arguments

b

One-dimensional matrix containing the right-hand side.

a

Two-dimensional matrix containing the coefficient matrix. Element A(i, j) contains
the j-th coefficient of the i-th equation.

Keywords

CONDITION

Named variable into which an estimate of the L1 condition number is stored. This
keyword cannot be used with keywords PIVOT and FACTOR.

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_LUSOL

82 Chapter 4: Linear Systems
FACTOR

Named variable in which the LU factorization of A, computed by the IMSL_LUFAC
procedure, is stored. The strictly lower-triangular part of this array contains
information necessary to construct L, and the upper-triangular part contains U. The
PIVOT and FACTOR keywords must be used together. The FACTOR and
CONDITION keywords cannot be used together.

INVERSE

Named variable into which the inverse of the matrix A is stored.

PIVOT

Named variable into which the pivot sequence for the factorization, computed by the
IMSL_LUFAC procedure, is stored. The PIVOT and FACTOR keywords must be
used together. The PIVOT and CONDITION keywords cannot be used together.

TRANSPOSE

If present and nonzero, AH x = b is solved.

Discussion

The IMSL_LUSOL function solves a system of linear algebraic equations with a real
or complex coefficient matrix A. Any of several related computations can be
performed by using keywords. These extra tasks include solving AHx = b or
computing the solution of Ax = b given the LU factorization of A. The function first
computes the LU factorization of A with partial pivoting such that L–1PA = U.

The matrix U is upper-triangular, while L–1A ≡ Pn – 1 Ln – 2Pn – 2...L0 P0 A ≡ U. The
factors Pi and Li are defined by the partial pivoting. Each Pi is an interchange of row i
with row j ≥ i. Thus, Pi is defined by that value of j. Every Li = miei

T is an elementary
elimination matrix. The vector mi is zero in entries 0, ... , i – 1. This vector is stored as
column i in the strictly lower-triangular part of the working matrix containing the
decomposition information.

The factorization efficiency is based on a technique of “loop unrolling and jamming”
by Dr. Leonard J. Harding of the University of Michigan, Ann Arbor, Michigan. The
solution of the linear system is then found by solving two simpler systems, y = L–1b
and x = U–1y. When the solution to the linear system or the inverse of the matrix is
sought, an estimate of the L1 condition number of A is computed using the same
algorithm as in Dongarra et al. (1979). If the estimated condition number is greater
than 1/ε (where ε is the machine precision), a warning message is issued. This
IMSL_LUSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 83
indicates that very small changes in A may produce large changes in the solution x.
The IMSL_LUSOL function fails if U, the upper-triangular part of the factorization,
has a zero diagonal element.

Examples

Example 1: Solving a System

This example solves a system of three linear equations. This is the simplest use of the
function. The equations are as follows:

x0 + 3x1 + 3x2 = 1

x0 + 3x1 + 4x2 = 4

x0 + 4x1 + 3x2 = –1

RM, a, 3, 3
; Input a matrix containing the coefficients.
row 0: 1 3 3
row 1: 1 3 4
row 2: 1 4 3
RM, b, 3, 1
; Input a vector containing the right-hand side.
row 0: 1
row 1: 4
row 2: -1
x = IMSL_LUSOL(b, a)
; Call IMSL_LUSOL to compute the solution.
PM, x, Title = 'Solution'
; Print solution and residual.
Solution

-2.00000
-2.00000
3.00000

PM, a # x - b, Title = 'Residual'
Residual

0.00000
0.00000
0.00000
IDL Analyst Reference Guide IMSL_LUSOL

84 Chapter 4: Linear Systems
Example 2: Transpose Problem

This example solves the transpose problem AHx = b.

RM, a, 3, 3
; Input the matrix containing the coefficients.
row 0: 1 3 3
row 1: 1 3 4
row 2: 1 4 3
RM, b, 3, 1
; Input the vector containing the right-hand side.
row 0: 1
row 1: 4
row 2: -1
x = IMSL_LUSOL(b, a, /Transpose)
; Call IMSL_LUSOL with keyword Transpose set.
PM, x, Title = 'Solution'
; Print the solution and the residual.
Solution

4.00000
-4.00000
1.00000

PM, TRANSPOSE(a) # x - b, Title = 'Residual'
Residual

0.00000
0.00000
0.00000

Example 3: Solving with Multiple Right-hand Sides

This example computes the solution of two systems. Only the right-hand sides differ.
The matrix and first right-hand side are given in the initial example. The second right-
hand side is the vector c = [0.5, 0.3, 0.4]T. The factorization information is computed
by the IMSL_LUFAC procedure and is used to compute the solutions in calls to
IMSL_LUSOL.

RM, a, 3, 3
; Input the coefficient matrix.
row 0: 1 3 3
row 1: 1 3 4
row 2: 1 4 3
RM, b, 3, 1
; Input the first right-hand side.
row 0: 1
row 1: 4
row 2: -1
RM, c, 3, 1
; Input the second right-hand side.
row 0: .5
IMSL_LUSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 85
row 1: .3
row 2: .4
IMSL_LUFAC, a, pvt, fac
; Call IMSL_LUFAC to factor the coefficient matrix.
x = IMSL_LUSOL(b, Factor = fac, Pivot = pvt)
; Call IMSL_LUSOL with factored form of the coefficient
; matrix and the first right-hand side.
PM, x, Title = 'Solution'
; Print the solution of Ax = b.
Solution

-2.00000
-2.00000
3.00000

PM, a # x - b, Title = 'Residual'
Residual

0.00000
0.00000
0.00000

y = IMSL_LUSOL(c, Factor = fac, Pivot = pvt)
; Call IMSL_LUSOL with factored form of the coefficient
; matrix and the second right-hand side.
PM, y, Title = 'Solution'
; Print the solution of Ax = b.
Solution

1.40000
-0.100000
-0.200000

PM, a # y - c, $
Title = 'Residual', Format = '(f8.5)'

Residual
0.00000
0.00000
0.00000

Errors

Warning Errors

MATH_ILL_CONDITIONED—Input matrix is too ill-conditioned. An estimate of the
reciprocal of its L1 condition number is #. The solution might not be accurate.

Fatal Errors

MATH_SINGULAR_MATRIX—Input matrix is singular.
IDL Analyst Reference Guide IMSL_LUSOL

86 Chapter 4: Linear Systems
Version History

See Also

IMSL_SP_LUFAC

6.4 Introduced
IMSL_LUSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 87
IMSL_LUFAC

The IMSL_LUFAC procedure computes the LU factorization of a real or complex
matrix.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_LUFAC, a[, pivot[, fac] [, CONDITION=variable] [, /DOUBLE]
[, INVERSE=variable] [, L=variable] [, PA=variable] [, TRANSPOSE=value]
[, U=variable]]

Arguments

a

Two-dimensional matrix containing the coefficient matrix. Element A (i, j) contains
the j-th coefficient of the i-th equation.

fac

A named variable that will contain a two-dimensional matrix containing the LU
factorization of A. The strictly lower-triangular part of this matrix contains
information necessary to construct L, and the upper-triangular part contains U.

pivot

A named variable that will contain a one-dimensional matrix containing the pivot
sequence of the factorization.

Keywords

CONDITION

Named variable into which an estimate of the L1 condition number is stored.

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_LUFAC

88 Chapter 4: Linear Systems
INVERSE

Named variable into which the inverse of the matrix A is stored.

L

Named variable into which the strictly lower-triangular matrix L of the LU
factorization is stored.

PA

Named variable into which the matrix resulting from applying the pivot permutation
to A is stored.

TRANSPOSE

If present and nonzero, ATX=b is solved.

U

Named variable into which the upper-triangular matrix U of the LU factorization is
stored.

Discussion

Any of several related computations can be performed by using keywords. These
extra tasks include computing the LU factorization of AT, computing an estimate of
the L1 condition number, and returning L or U separately.

The IMSL_LUFAC procedure computes the LU factorization of A with partial
pivoting such that L–1PA = U. The matrix U is upper-triangular, while
L–1A ≡ Pn – 1 Ln – 2Pn – 2...L0 P0 A ≡ U. The factors Pi and Li are defined by the partial
pivoting. Each Pi is an interchange of row i with row i ≥ j. Thus, Pi is defined by that
value of j. Every Li = miei

T is an elementary elimination matrix. The vector mi is zero
in entries 0, ..., i – 1. This vector is stored as column i in the strictly lower-triangular
part of the working array containing the decomposition information.

The factorization efficiency is based on a technique of “loop unrolling and jamming”
due to Dr. Leonard J. Harding of the University of Michigan, Ann Arbor, Michigan.
When the inverse of the matrix is sought, an estimate of the L1 condition number of A
is computed using the same algorithm as in Dongarra et al. (1979). If the estimated
condition number is greater than 1/ε (where ε is the machine precision), a warning
message is issued. This indicates that very small changes in A may produce large
changes in the solution x. The IMSL_LUFAC procedure fails if U, the upper-
triangular part of the factorization, has a zero diagonal element.
IMSL_LUFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 89
Examples

Example 1

This example computes the LU factorization of a matrix and prints it out in the
default form with the information needed to construct L and U combined in one array.
The matrix is as follows:

RM, a, 3, 3
; Input the matrix to be factored.
row 0: 1 3 3
row 1: 1 3 4
row 2: 1 4 3
IMSL_LUFAC, a, pvt, fac
; Factor the matrix by calling IMSL_LUFAC.
PM, fac, Title = 'LU factors of A'
; Print the results.
LU factors of A

1.00000 3.00000 3.00000
-1.00000 1.00000 0.00000
-1.00000 -0.00000 1.00000

PM, pvt, Title = 'Pivot sequence'
Pivot sequence

1
3
3

Example 2

This example computes the factorization, uses keywords to return the factorization in
separate named variables, and returns the original matrix after the pivot permutation
is applied.

RM, a, 3, 3
; Input the matrix to be factored.
row 0: 1 3 3

row 1: 1 3 4
row 2: 1 4 3

IMSL_LUFAC, a, L = l, U = u, PA = pa
; Call IMSL_LUFAC with the keywords L and U.
PM, l, Title = 'L'
; Print the results.
L

1 3 3

1 3 4

1 4 3
IDL Analyst Reference Guide IMSL_LUFAC

90 Chapter 4: Linear Systems
1.00000 0.00000 0.00000
1.00000 1.00000 0.00000
1.00000 0.00000 1.00000

PM, u, Title = 'U'

U
1.00000 3.00000 3.00000
0.00000 1.00000 0.00000
0.00000 0.00000 1.00000

PM, l # u - pa, $
Title = 'Residual: L # U - PA'
Residual: L # U - PA

0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000

Errors

Warning Errors

MATH_ILL_CONDITIONED—Input matrix is too ill-conditioned. An estimate of the
reciprocal of its L1 condition number is #. The solution might not be accurate.

Fatal Errors

MATH_SINGULAR_MATRIX—Input matrix is singular.

Version History

6.4 Introduced
IMSL_LUFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 91
IMSL_CHSOL

The IMSL_CHSOL function solves a symmetric positive definite system of real or
complex linear equations Ax = b.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CHSOL(b[, a] [, CONDITION=variable] [, /DOUBLE]
[, FACTOR=variable] [, INVERSE=variable])

Return Value

The solution of the linear system Ax = b.

Arguments

b

One-dimensional matrix containing the right-hand side.

a

Two-dimensional matrix containing the coefficient matrix. Matrix A (i, j) contains the
j-th coefficient of the i-th equation.

Keywords

CONDITION

Named variable into which an estimate of the L1 condition number is stored. The
CONDITION and FACTOR keywords cannot be used together.

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_CHSOL

92 Chapter 4: Linear Systems
FACTOR

Named variable in which the LLH factorization of A is stored. The lower-triangular
part of this matrix contains L, and the upper-triangular part contains LH. The
CONDITION and FACTOR keywords cannot be used together.

INVERSE

Specifies a named variable into which the inverse of the matrix A is stored. This
keyword is not allowed if A is complex.

Discussion

The IMSL_CHSOL function solves a system of linear algebraic equations having a
symmetric positive definite coefficient matrix A. The function first computes the
Cholesky factorization LLH of A. The solution of the linear system is then found by
solving the two simpler systems, y = L–1b and x = L–Hy. An estimate of the L1
condition number of A is computed using the same algorithm as in Dongarra et al.
(1979). If the estimated condition number is greater than 1/ε (where ε is the machine
precision), a warning message is issued. This indicates that very small changes in A
may produce large changes in the solution x.

The IMSL_CHSOL function fails if L, the lower-triangular matrix in the
factorization, has a zero diagonal element.

Examples

Example 1

RM, a, 3, 3
; Define the coefficient matrix.
row 0: 1 -3 2
row 1: -3 10 -5
row 2: 2 -5 6
RM, b, 3, 1
; Define the right-hand side.
row 0: 27
row 1: -78
row 2: 64
x = IMSL_CHSOL(b, a)
; Call IMSL_CHSOL to compute the solution.
PM, x, Title = 'Solution'
Solution

1.00000
-4.00000
IMSL_CHSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 93
7.00000
PM, a # x - b, Title = 'Residual'
Residual

0.00000
0.00000
0.00000

Example 2

This example solves a system of five linear equations with Hermitian positive definite
coefficient matrix. The equations are as follows:

2x0 + (–1 + i) x1 = 1 + 5i

(–1 –i) x0 + 4x1 + (1 + 2i) x2 = 12 – 6i

(–1 –2i) x1 + 10x2 + 4ix3 = 1 + (–16i)

(–4ix2) + 6x3 + (i + 1)x4 = –3 –3i

(1 – i) x3 + 9x4 = 25 + 16i

RM, a, 5, 5, /Complex
; Input the complex matrix A.
row 0: 2 (-1,1) 0 0 0
row 1: (-1,-1) 4 (1,2) 0 0
row 2: 0 (1,-2) 10 (0,4) 0
row 3: 0 0 (0,-4) 6 (1,1)
row 4: 0 0 0 (1,-1) 9
RM, b, 5, 1, /Complex
; Input the right-hand side.
row 0: (1, 5)
row 1: (12, -6)
row 2: (1, -16)
row 3: (-3, -3)
row 4: (25, 16)
x = IMSL_CHSOL(b, a)
; Compute the solution.
PM, x, Title = 'Solution', Format = '("(",f8.5,",",f8.5,")")'

; Output the results.
Solution

(2.00000, 1.00000)
(3.00000,-0.00000)
(-1.00000,-1.00000)
(0.00000,-2.00000)
(3.00000, 2.00000)

PM, a # x-b, Title = 'Residual', Format='("(",f8.5,",",f8.5,")")'
Residual

(0.00000, 0.00000)
(0.00000,-0.00000)
IDL Analyst Reference Guide IMSL_CHSOL

94 Chapter 4: Linear Systems
(0.00000, 0.00000)
(0.00000, 0.00000)
(0.00000, 0.00000)

Errors

Warning Errors

MATH_ILL_CONDITIONED—Input matrix is too ill-conditioned. An estimate of the
reciprocal of its L1 condition number is #. The solution might not be accurate.

Fatal Errors

MATH_NONPOSITIVE_MATRIX—Leading # by # submatrix of the input matrix is not
positive definite.

MATH_SINGULAR_MATRIX—Input matrix is singular.

MATH_SINGULAR_TRI_MATRIX—Input triangular matrix is singular. The index of
the first zero diagonal element is #.

Version History

6.4 Introduced
IMSL_CHSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 95
IMSL_CHFAC

The IMSL_CHFAC procedure computes the Cholesky factor, L, of a real or complex
symmetric positive definite matrix A, such that A = LLH.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_CHFAC, a, fac [, CONDITION=variable] [, /DOUBLE]
[, INVERSE=variable]

Arguments

a

Two-dimensional matrix containing the coefficient matrix. Element A (i, j) contains
the j-th coefficient of the i-th equation.

fac

A named variable that will contain a two-dimensional matrix containing the Cholesky
factorization of A. Note that fac contains L in the lower triangle and LH in the upper
triangle.

Keywords

CONDITION

Named variable into which an estimate of the L1 condition number is stored.

DOUBLE

If present and nonzero, double precision is used.

INVERSE

Named variable into which the inverse of the matrix A is stored. This keyword is not
allowed if A is complex.
IDL Analyst Reference Guide IMSL_CHFAC

96 Chapter 4: Linear Systems
Discussion

The IMSL_CHFAC procedure computes the Cholesky factorization LLH of a
symmetric positive definite matrix A. When the inverse of the matrix is sought, an
estimate of the L1 condition number of A is computed using the same algorithm as in
Dongarra et al. (1979). If the estimated condition number is greater than 1/ε (where ε
is the machine precision), a warning message is issued. This indicates that very small
changes in A may produce large changes in the solution x.

The IMSL_CHFAC function fails if L, the lower-triangular matrix in the
factorization, has a zero diagonal element.

Example

This example computes the Cholesky factorization of a 3 x 3 matrix.

RM, a, 3, 3
; Define the matrix A.
row 0: 1 -3 2
row 1: -3 10 -5
row 2: 2 -5 6
IMSL_CHFAC, a, fac
; Call IMSL_CHFAC to compute the factorization.
PM, fac, Title = 'Cholesky factor'
Cholesky factor

1.00000 -3.00000 2.00000
-3.00000 1.00000 1.00000
2.00000 1.00000 1.00000

Errors

Warning Errors

MATH_ILL_CONDITIONED—Input matrix is too ill-conditioned. An estimate of the
reciprocal of its L1 condition number is #. The solution might not be accurate.

Fatal Errors

MATH_NONPOSITIVE_MATRIX—Leading # by # submatrix of the input matrix is not
positive definite.

MATH_SINGULAR_MATRIX—Input matrix is singular.

MATH_SINGULAR_TRI_MATRIX—Input triangular matrix is singular. The index of
the first zero diagonal element is #.
IMSL_CHFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 97
Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_CHFAC

98 Chapter 4: Linear Systems
IMSL_QRSOL

The IMSL_QRSOL function solves a real linear least-squares problem Ax = b.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_QRSOL(b[, a] [, AUXQR=variable] [, BASIS=variable]
[, /DOUBLE] [, QR=variable] [, PIVOT=variable] [, RESIDUAL=variable]
[, TOLERANCE=value])

Return Value

The solution, x, of the linear least-squares problem Ax = b.

Arguments

b

Matrix containing the right-hand side.

a

(Optional) Two-dimensional matrix containing the coefficient matrix. Element A (i, j)
contains the j-th coefficient of the i-th equation.

Keywords

AUXQR

Named variable in which the matrix containing the scalars τk of the Householder
transformations that define the decomposition, as computed in the IMSL_QRFAC
procedure, is stored. The AUXQR, PIVOT, and QR keywords must be used together.

BASIS

Named variable containing an integer specifying the number of columns used in the
solution. The value BASIS = k, if |rk,k| < TOLERANCE*|r0,0| and
IMSL_QRSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 99
|ri,i| ≥ TOLERANCE*|r0,0| for i = 0, 1, ..., k – 1. For more information on the use of
this option, see “Discussion” on page 100.

DOUBLE

If present and nonzero, double precision is used.

QR

Named variable which stores the matrix containing Householder transformations that
define the decomposition, as computed in the IMSL_QRFAC procedure. The
AUXQR, PIVOT, and QR keywords must be used together.

PIVOT

Named variable in which the array containing the desired variable order and usage
information is stored. The AUXQR, PIVOT, and QR keywords must be used together.

• On input, if PIVOT (k) > 0, then column k of A is an initial column. If
PIVOT (k) = 0, then the column of A is a free column and can be interchanged
in the column pivoting. If PIVOT (k) < 0, then column k of A is a final column.
If all columns are specified as initial (or final) columns, then no pivoting is
performed. (The permutation matrix P is the identity matrix in this case.)

• On output, PIVOT (k) contains the index of the column of the original matrix
that has been interchanged into column k.

• Default: PIVOT (*) = 0

Note
If IMSL_QRSOL is used to solve a problem previously factored in IMSL_QRFAC,
the matrix specified by PIVOT should contain the same information that the
IMSL_QRFAC parameter PIVOT contained upon output.

RESIDUAL

Named variable in which the matrix containing the residual vector b – Ax is stored.

TOLERANCE

Nonnegative tolerance used to determine the subset of columns of A to be included in
the solution. Default: TOLERANCE = SQRT(ε), where ε is machine precision
IDL Analyst Reference Guide IMSL_QRSOL

100 Chapter 4: Linear Systems
Discussion

IMSL_QRSOL solves a system of linear least-squares problems Ax = b with column
pivoting. It computes a QR factorization of the matrix AP, where P is the permutation
matrix defined by the pivoting, and computes the smallest integer k satisfying
|rk,k| < TOLERANCE*|r0,0| to the output keyword BASIS.

Householder transformations:

Qk = I – τkukuk
T, k = 0, ..., min(m – 1, n) – 1

compute the factorization. The decomposition is computed in the form Qmin (m – 1, n)

– 1 ... Q0 AP = R, so AP = QR where Q = Q0 ... Qmin (m – 1, n) – 1. Since each
Householder vector uk has zeros in the first k + 1 entries, it is stored as part of column
k of QR. The upper-trapezoidal matrix R is stored in the upper-trapezoidal part of the
first min(m, n) rows of QR. The solution x to the least-squares problem is computed
by solving the upper-triangular system of linear equations R (0:k, 0:k) y (0:k) = (QTb)
(0:k) with k = Basis – 1. The solution is completed by setting y (k:n – 1) to zero and
rearranging the variables, x = Py.

If the QR and AUXQR keywords are specified, then the function computes the least-
squares solution to Ax = b given the QR factorization previously defined. There are
Basis columns used in the solution. Hence, in the case that all columns are free, x is
computed as described in the default case.

Example

This example illustrates the least-squares solution of four linear equations in three
unknowns by using column pivoting. This is equivalent to least-squares quadratic
polynomial fitting to four data values. The polynomial is written as
p(t) = x0 + tx1 + t2x2 and the data pairs (ti, bi), ti = 2(i + 1), i = 0, 1, 2, 3. The solution
to Ax = b is returned by the IMSL_QRSOL function.

RM, a, 4, 3
; Define the coefficient matrix.

row 0: 1 2 4
row 1: 1 4 16
row 2: 1 6 36
row 3: 1 8 64

RM, b, 4, 1
; Define the right-hand side.

row 0: 4.999
row 1: 9.001
row 2: 12.999
row 3: 17.001

x = IMSL_QRSOL(b, a)
IMSL_QRSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 101
; Call IMSL_QRSOL.
PM, x, Title = 'Solution', Format = '(f8.5)'
; Output the results.
Solution

0.99900
2.00020
0.00000

PM, a # x - b, Title = 'Residual', Format = '(f10.7)'
Residual

 0.0004015
-0.0011997
 0.0012007
-0.0004005

Errors

Fatal Errors

MATH_SINGULAR_TRI_MATRIX—Input triangular matrix is singular. The index of
the first zero diagonal term is #.

Version History

See Also

IMSL_SP_LUFAC

6.4 Introduced
IDL Analyst Reference Guide IMSL_QRSOL

102 Chapter 4: Linear Systems
IMSL_QRFAC

The IMSL_QRFAC procedure computes the QR factorization of a real matrix A.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_QRFAC, a [, pivot [, auxqr, qr] [, AP=variable] [, BASIS=variable] [, /
DOUBLE] [, Q=variable] [, R=variable] [, TOLERANCE=value]]

Arguments

a

A two-dimensional matrix containing the coefficient matrix. Element A(i,j) contains
the j-th coefficient of the i-th equation.

pivot

A one-dimensional matrix containing the desired variable order and usage
information.

• On input, if pivot (k) > 0, then column k of A is an initial column. If
pivot (k) = 0, then the column of A is a free column and can be interchanged in
the column pivoting. If pivot (k) < 0, then column k of A is a final column. If all
columns are specified as initial (or final) columns, then no pivoting is
performed. (The permutation matrix P is the identity matrix in this case.)
Default: pivot (*) = 0

• On output, pivot (k) contains the index of the column of the original matrix that
has been interchanged into column k.

auxqr

Matrix containing the scalars τk of the Householder transformations that define the
decomposition.

qr

Matrix containing the Householder transformations that define the decomposition.
IMSL_QRFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 103
Keywords

AP

Named variable into which the product AP of the identity AP = QR is stored. This
keyword is useful when attempting to compute the residual AP – QR.

BASIS

Named variable into which an integer containing the number of columns used in the
solution is stored. The value BASIS = k, if |rk,k| < TOLERANCE*|r0,0| and
|ri,i| ≥ TOLERANCE*|r0,0| for i = 0, 1, ..., k – 1. For more information, see
“Discussion” on page 103.

DOUBLE

If present and nonzero, double precision is used.

Q

Named variable in which the two-dimensional matrix containing the orthogonal
matrix of the AP = QR factorization is stored.

R

Named variable in which the two-dimensional matrix containing the upper-triangular
matrix of the AP = QR decomposition is stored.

TOLERANCE

Nonnegative tolerance used to determine the subset of columns of A to be included in
the solution. Default: TOLERANCE = SQRT(ε), where ε is machine precision

Discussion

The IMSL_QRFAC procedure computes a QR factorization of the matrix AP, where
P is the permutation matrix defined by the pivoting and computes the smallest integer
k satisfying |rk,k| < TOLERANCE*|r0,0| to the keyword BASIS.

Householder transformations:

Qk = I – τkukuk
T, k = 0, ..., min(m – 1, n) – 1

compute the factorization. The decomposition is computed in the form Qmin (m – 1, n)

– 1 ... Q0AP = R, so AP = QR where Q = Q0 ... Qmin (m – 1, n) – 1. Since each
IDL Analyst Reference Guide IMSL_QRFAC

104 Chapter 4: Linear Systems
Householder vector uk has zeros in the first k + 1 entries, it is stored as part of column
k of QR. The upper-trapezoidal matrix R is stored in the upper-trapezoidal part of the
first min(m, n) rows of QR.

When computing the factorization, the procedure computes the QR factorization of
AP with P defined by the input pivot and by column pivoting among “free” columns.
Before the factorization, initial columns are moved to the beginning of the array A
and the final columns to the end. Neither initial nor final columns are permuted
further during the computation. Only the free columns are moved.

Example

Using the same data as the first example given for the IMSL_QRSOL function, this
sample computes the QR factorization of the coefficient. Using keywords, the
factorization is returned in the full matrices, rather than the default condensed format.

RM, a, 4, 3
; Define the coefficient matrix.
row 0: 1 2 4
row 1: 1 4 16
row 2: 1 6 36
row 3: 1 8 64
IMSL_QRFAC, a, pvt, Q = q, R = r, AP = ap
; Call IMSL_QRFAC using keywords Q, R, and AP.
PM, q, Title = 'Q', Format = '(4f12.6)'
; Output the results.
Q

-0.053149 -0.542171 0.808224 -0.223607
-0.212598 -0.657436 -0.269408 0.670820
-0.478345 -0.345794 -0.449013 -0.670820
-0.850390 0.392754 0.269408 0.223607

PM, r, Title = 'R', Format = '(3f12.6)'
R

-75.259552 -10.629880 -1.594482
0.000000 -2.646819 -1.152647
0.000000 0.000000 0.359211
0.000000 0.000000 0.000000

PM, pvt, Title = 'Pvt'
Pvt

3
2
1

IMSL_QRFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 105
PM, q # r - ap, Title = 'Residual', Format = '(3f12.6)'
Residual

-0.000004 -0.000001 -0.000000
0.000000 -0.000000 0.000000
0.000000 -0.000000 -0.000000
0.000000 -0.000000 -0.000000

Errors

Fatal Errors

MATH_SINGULAR_TRI_MATRIX—Input triangular matrix is singular. The index of
the first zero diagonal term is #.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_QRFAC

106 Chapter 4: Linear Systems
IMSL_SVDCOMP

The IMSL_SVDCOMP function computes the singular value decomposition (SVD),
A = USVT, of a real or complex rectangular matrix A. An estimate of the rank of A
also can be computed.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SVDCOMP(a [, /DOUBLE] [, INVERSE=variable]
[, RANK=variable] [, TOL_RANK=variable] [, U=variable] [, V=variable])

Return Value

One-dimensional array containing ordered singular values of A.

Arguments

a

Two-dimensional matrix containing the coefficient matrix. Element A (i, j) contains
the j-th coefficient of the i-th equation.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

Named variable into which the generalized inverse of the matrix A is stored.

RANK

Named variable into which an estimate of the rank of A is stored.
IMSL_SVDCOMP IDL Analyst Reference Guide

Chapter 4: Linear Systems 107
TOL_RANK

Named variable containing the tolerance used to determine when a singular value is
negligible and replaced by the value zero. If TOL_RANK > 0, then a singular value
si,i is considered negligible if si,i ≤ TOL_RANK. If TOL_RANK < 0, then a singular
value si,i is considered negligible if si,i ≤ TOL_RANK * ||A||infinity.

In this case, |TOL_RANK| should be an estimate of relative error or uncertainty in the
data.

U

Named variable into which the left-singular vectors of A are stored.

V

Named variable into which the right-singular vectors of A are stored.

Discussion

The IMSL_SVDCOMP function computes the singular value decomposition of a real
or complex matrix A. It reduces the matrix A to a bidiagonal matrix B by pre- and
post-multiplying Householder transformations, then, it computes singular value
decomposition of B using the implicit-shifted QR algorithm. An estimate of the rank
of the matrix A is obtained by finding the smallest integer k such that
sk,k ≤ TOL_RANK or sk,k ≤ TOL_RANK * ||A||infinity.

Since si + 1, i + 1 ≤ s i,i , it follows that all the s i,i satisfy the same inequality for i = k,
..., min(m, n) – 2. The rank is set to the value k. If A = USVT, its generalized inverse is
A+ = VS+UT. Here, S+ = diag (s–1

0,0,..., s–1
i,i, 0, ..., 0). Only singular values that are

not negligible are reciprocated. If the keyword INVERSE is specified, the function
first computes the singular value decomposition of the matrix A, then computes the
generalized inverse. The IMSL_SVDCOMP function fails if the QR algorithm does
not converge after 30 iterations.

Examples

Example 1

This example computes the singular values of a 6-by-4 real matrix.

RM, a, 6, 4
; Define the matrix.
row 0: 1 2 1 4
row 1: 3 2 1 3
IDL Analyst Reference Guide IMSL_SVDCOMP

108 Chapter 4: Linear Systems
row 2: 4 3 1 4
row 3: 2 1 3 1
row 4: 1 5 2 2
row 5: 1 2 2 3
; Call IMSL_SVDCOMP and output the results.
singvals = IMSL_SVDCOMP(a)
PM, singvals

11.4850
3.26975
2.65336
2.08873

Example 2

This example computes the singular value decomposition of the 6-by-4 real matrix A.
Matrices U and V are returned using keywords U and V.

RM, a, 6, 4
; Define the matrix.
row 0: 1 2 1 4
row 1: 3 2 1 3
row 2: 4 3 1 4
row 3: 2 1 3 1
row 4: 1 5 2 2
row 5: 1 2 2 3
; Call IMSL_SVDCOMP with keywords U and V and output the results.
singvals = IMSL_SVDCOMP(a, U = u, V = v)
PM, singvals, Title = 'Singular values', Format = '(f12.6)'
Singular values

 11.485018
 3.269752
 2.653356
 2.088730

PM, u, Title = 'Left singular vectors, U', Format = '(4f12.6)'
Left singular vectors, U

-0.380476 0.119671 0.439083 -0.565399
-0.403754 0.345111 -0.056576 0.214776
-0.545120 0.429265 0.051392 0.432144
-0.264784 -0.068320 -0.883861 -0.215254
-0.446310 -0.816828 0.141900 0.321270
-0.354629 -0.102147 -0.004318 -0.545800

PM, v, Title = 'Right singular vectors, V', Format = '(4f12.6)'
Right singular vectors, V

-0.444294 0.555531 -0.435379 0.551754
-0.558067 -0.654299 0.277457 0.428336
-0.324386 -0.351361 -0.732099 -0.485129
-0.621239 0.373931 0.444402 -0.526066
IMSL_SVDCOMP IDL Analyst Reference Guide

Chapter 4: Linear Systems 109
Errors

Warning Errors

MATH_SLOWCONVERGENT_MATRIX—Convergence cannot be reached after 30
iterations.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_SVDCOMP

110 Chapter 4: Linear Systems
IMSL_CHNNDSOL

The IMSL_CHNNDSOL function solves a real symmetric nonnegative definite
system of linear equations Ax = b. Computes the solution to Ax = b given the
Cholesky factor.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CHNNDSOL(b[, a] [, /DOUBLE] [, FACTOR=value]
[, INVERSE=variable] [, TOLERANCE=value])

Return Value

A solution x of the linear system Ax = b.

Arguments

b

Matrix containing the right-hand side.

a

(Optional) Two-dimensional matrix containing the coefficient matrix. Element A(i, j)
contains the j-th coefficient of the i-th equation.

Keywords

DOUBLE

If present and nonzero, double precision is used.

FACTOR

The LLT factorization of A. The lower-triangular part of this matrix contains L, and
the upper-triangular part contains LT.
IMSL_CHNNDSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 111
INVERSE

Named variable into which the inverse of the matrix A is stored.

TOLERANCE

Tolerance used in determining linear dependence. Default: TOLERANCE = 100ε,
where ε is machine precision

Discussion

The IMSL_CHNNDSOL function solves a system of linear algebraic equations
having a symmetric nonnegative definite (positive semidefinite) coefficient matrix. It
first computes a Cholesky (LLH or RHR) factorization of the coefficient matrix A.

The factorization algorithm is based on the work of Healy (1968) and proceeds
sequentially by columns. The i-th column is declared to be linearly dependent on the
first i – 1 columns if:

where ε (specified by TOLERANCE) may be set. When a linear dependence is
declared, all elements in the i-th row of R (column of L) are set to zero.

Modifications due to Farebrother and Berry (1974) and Barrett and Healy (1978) for
checking for matrices that are not nonnegative definite also are incorporated. The
IMSL_CHNNDSOL function declares A to be not nonnegative definite and issues an
error message if either of the following conditions is satisfied:

1.

2.

aii rji
2

j 0=

i 1–

∑– ε aii≤

aii rii
2

j 0=

i 1–

∑ rii
2<=

aik rjirjk
j 0=

i 1–

∑– ε aiiakk> k i>,r 0= and
IDL Analyst Reference Guide IMSL_CHNNDSOL

112 Chapter 4: Linear Systems
Healy’s (1968) algorithm and the IMSL_CHNNDSOL function permit the matrices A
and R to occupy the same storage. Barrett and Healy (1978), in their remark, neglect
this fact. The IMSL_CHNNDSOL function uses:

in condition 2 above to remedy this problem.

If an inverse of the matrix A is required and the matrix is not (numerically) positive
definite, then the resulting inverse is a symmetric g2 inverse of A. For a matrix G to be
a g2 inverse of a matrix A, G must satisfy conditions 1 and 2 for the Moore-Penrose
inverse but generally fail conditions 3 and 4. The four conditions for G to be a Moore-
Penrose inverse of A are as follows:

1. AGA = A

2. GAG = G

3. AG is symmetric

4. GA is symmetric

The solution of the linear system Ax = b is computed by solving the factored version
of the linear system RTRx = b as two successive triangular linear systems. In solving
the triangular linear systems, if the elements of a row of R are all zero, the
corresponding element of the solution vector is set to zero. For a detailed description
of the algorithm, see Section 2 in Sallas and Lionti (1988). This routine is useful to
solve normal equations in a linear least-squares problem.

Example

A solution to a system of four linear equations is obtained. Maindonald (1984, pp.
83–86, 104–105) discusses the computations for the factorization and solution to this
problem.

RM, a, 4, 4
; Define the coefficient matrix.
row 0: 36 12 30 6
row 1: 12 20 2 10
row 2: 30 2 29 1
row 3: 6 10 1 14
RM, b, 4, 1
; Define the right-hand side.
row 0: 18
row 1: 22

rij
2

j 0=

i 1–

∑ for aii
IMSL_CHNNDSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 113
row 2: 7
row 3: 20
x = IMSL_CHNNDSOL(b, a)
; Define the right-hand side.
PM, x
; Output the results.

0.166667
0.500000
0.00000
1.00000

Errors

Warning Errors

MATH_INCONSISTENT_EQUATIONS_2—Linear system of equations is inconsistent.

MATH_NOT_NONNEG_DEFINITE—Matrix A is not nonnegative definite.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_CHNNDSOL

114 Chapter 4: Linear Systems
IMSL_CHNNDFAC

The IMSL_CHNNDFAC procedure computes the Cholesky factorization of the real
matrix A such that A = RTR = LLT.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_CHNNDFAC, a, fac [, /DOUBLE] [, INVERSE=variable]
[, TOLERANCE=value]

Arguments

a

Two-dimensional matrix containing the coefficient matrix. Element A(i, j) contains
the j-th coefficient of the i-th equation.

fac

Matrix containing the LLT factorization of A.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

Named variable into which the inverse of the matrix A is stored.

TOLERANCE

Used in determining linear dependence. Default: TOLERANCE = 100 ε, where ε is
machine precision
IMSL_CHNNDFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 115
Discussion

The factorization algorithm is based on the work of Healy (1968) and proceeds
sequentially by columns. The i-th column is declared to be linearly dependent on the
first i – 1 columns if:

where ε (specified in TOLERANCE) may be set. When a linear dependence is
declared, all elements in the i-th row of R (column of L) are set to zero.

Modifications due to Farebrother and Berry (1974) and Barrett and Healy (1978) for
checking for matrices that are not nonnegative definite also are incorporated. The
IMSL_CHNNDFAC procedure declares A to not be nonnegative definite and issues
an error message if either of the following conditions is satisfied:

1.

2.

Healy’s (1968) algorithm and the IMSL_CHNNDFAC procedure permit the matrices
A and R to occupy the same storage. Barrett and Healy (1978) in their remark neglect
this fact. The IMSL_CHNNDFAC procedure uses:

aii rji
2

j 0=

i 1–

∑– ε aii≤

aii rii
2

j 0=

i 1–

∑– ε aii–<

aik rjirjk
j 0=

i 1–

∑– ε aiiakk> k i>,r 0= and

rij
2

j 0=

i 1–

∑

IDL Analyst Reference Guide IMSL_CHNNDFAC

116 Chapter 4: Linear Systems
for

in condition 2 above to remedy this problem.

If an inverse of the matrix A is required and the matrix is not (numerically) positive
definite, then the resulting inverse is a symmetric g2 inverse of A. For a matrix G to be
a g2 inverse of a matrix A, G must satisfy conditions 1 and 2 for the Moore-Penrose
inverse, but generally fail conditions 3 and 4. The four conditions for G to be a
Moore-Penrose inverse of A are as follows:

1. AGA = A

2. GAG = G

3. AG is symmetric

4. GA is symmetric

Example

The symmetric nonnegative definite matrix in the initial example of
IMSL_CHNNDSOL is used to compute the factorization only in the first call to
IMSL_CHNNDFAC. Then, IMSL_CHNNDSOL is called with both the LLT
factorization and the right-hand side vector as the input to compute a solution x.

RM, a, 4, 4
; Define the coefficient matrix.
row 0: 36 12 30 6
row 1: 12 20 2 10
row 2: 30 2 29 1
row 3: 6 10 1 14
IMSL_CHNNDFAC, a, fac
PM, fac, Title = 'Factor', Format = '(4f12.3)'
Factor

6.000 2.000 5.000 1.000
2.000 4.000 -2.000 2.000
5.000 -2.000 0.000 0.000
1.000 2.000 0.000 3.000

RM, b, 4, 1
; Define the right-hand side.
row 0: 18
row 1: 22
row 2: 7
row 3: 20
; Compute the solution and output.
x = IMSL_CHNNDSOL(b, Factor = fac)

aii
IMSL_CHNNDFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 117
PM, x, Title = 'Solution'
Solution

0.166667
0.500000
0.00000
1.00000

Errors

Warning Errors

MATH_INCONSISTENT_EQUATIONS_2—Linear system of equations is inconsistent.

MATH_NOT_NONNEG_DEFINITE—Matrix A is not nonnegative definite.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_CHNNDFAC

118 Chapter 4: Linear Systems
IMSL_LINLSQ

The IMSL_LINLSQ function solves a linear least-squares problem with linear
constraints.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LINLSQ(b, a, c, bl, bu, contype [, ABS_TOLERANCE=value]
[, /DOUBLE] [, ITMAX=value] [, REL_TOLERANCE=value]
[, RESIDUAL=variable] [, XLB=array] [, XUB=array])

Return Value

One-dimensional array of length nca containing the approximate solution.

Arguments

a

Two-dimensional array of size nra by nca containing the coefficients of the least-
squares equations, where nra is the number of least-squares equations and nca is the
number of variables.

B

One-dimensional array of length nra containing the right-hand sides of the least-
squares equations.

C

Two-dimensional array of size ncon by nca containing the coefficients of the
constraints, where ncon is the number of constraints.

BL

One-dimensional array of length ncon containing the lower limit of the general
constraints. If there is no lower limit on the i-th constraint, then bl(i) will not be
referenced.
IMSL_LINLSQ IDL Analyst Reference Guide

Chapter 4: Linear Systems 119
BU

One-dimensional array of length ncon containing the upper limit of the general
constraints. If there is no upper limit on the i-th constraint, then bu(i) will not be
referenced.

CONTYPE

One-dimensional array of length ncon indicating the type of constraints exclusive of
simple bounds, where CONTYPE(i) = 0, 1, 2, 3 indicates =, ≤, ≥, and range
constraints, respectively.

contype(i) constraint

0

2

3

4

c i j,()
j 0=

nca 1–

∑ bl i()=

c i j,()
j 0=

nca 1–

∑ bu i()≤

bl i() c i j,()
j 0=

nca 1–

∑≤

bl i() c i j,()
j 0=

nca 1–

∑ bu i()≤ ≤
IDL Analyst Reference Guide IMSL_LINLSQ

120 Chapter 4: Linear Systems
Keywords

ABS_TOLERANCE

Absolute rank determination tolerance to be used. Default:
ABS_TOLERANCE = SQRT(machine epsilon).

DOUBLE

If present and nonzero, double precision is used.

ITMAX

Set the maximum number of iterations. Default: ITMAX = 5*max(nra, nca)

REL_TOLERANCE

Relative rank determination tolerance to be used. Default:
REL_TOLERANCE = SQRT(machine epsilon).

RESIDUAL

Named variable into which an one-dimensional array containing the residuals b − Ax
of the least-squares equations at the approximate solution is stored.

XLB

One-dimensional array of length nca containing the lower bound on the variables. If
there is no lower bound on the i-th variable, then Xlb(i) should be set to 1.0e30.

XUB

One-dimensional array of length nca containing the upper bound on the variables. If
there is no upper bound on the i-th variable, then XUB(i) should be set to −1.0e30.

Discussion

The IMSL_LINLSQ function solves linear least-squares problems with linear
constraints. These are systems of least-squares equations of the form

Ax ≅ b

subject to

bl ≤ Cx ≤ bu

xl ≤ x ≤ xu
IMSL_LINLSQ IDL Analyst Reference Guide

Chapter 4: Linear Systems 121
Here A is the coefficient matrix of the least-squares equations, b is the right-hand
side, and C is the coefficient matrix of the constraints. The vectors bl, bu, xl and xu are
the lower and upper bounds on the constraints and the variables, respectively. The
system is solved by defining dependent variables y ≡ Cx and then solving the least-
squares system with the lower and upper bounds on x and y. The equation Cx − y = 0
is a set of equality constraints. These constraints are realized by heavy weighting, i.e.,
a penalty method, Hanson (1986, pp. 826-834).

Examples

Example 1

This example solves the following problem in the least-squares sense:

3x1 + 2x2 + x3 = 3.3

4x1 +2x2 + x3 = 2.2

2x1 + 2x2 + x3 = 1.3

x1 + x2 + x3 = 1.0

Subject to:

x1 + x2 + x3 ≤ 1

0 ≤ x1 ≤ 0.5

0 ≤ x2 ≤ 0.5

0 ≤ x3 ≤ 0.5

a = TRANSPOSE([[3.0, 2.0, 1.0], [4.0, 2.0, 1.0], $
[2.0, 2.0, 1.0], [1.0, 1.0, 1.0]])

b = [3.3, 2.3, 1.3, 1.0]
c = [[1.0], [1.0], [1.0]]
xub = [0.5, 0.5, 0.5]
xlb = [0.0, 0.0, 0.0]
contype = [1]
bc = [1.0]
; Note that only upper bound is set for contype =1.
sol = IMSL_LINLSQ(b, a, c, bc, bc, contype, Xlb = xlb, Xub = xub)
PM, sol, Title = 'Solution'

0.500000
0.300000
0.200000
IDL Analyst Reference Guide IMSL_LINLSQ

122 Chapter 4: Linear Systems
Example 2

The same problem solved in the first example is solved again. This time residuals of
the least-squares equations at the approximate solution are returned, and the norm of
the residual vector is printed.

a = TRANSPOSE([[3.0, 2.0, 1.0], [4.0, 2.0, 1.0], $
[2.0, 2.0, 1.0], [1.0, 1.0, 1.0]])

b = [3.3, 2.3, 1.3, 1.0]
c = [[1.0], [1.0], [1.0]]
xub = [0.5, 0.5, 0.5]
xlb = [0.0, 0.0, 0.0]
contype = [1]
bc = [1.0]
sol = IMSL_LINLSQ(b, a, c, bc, bc, contype, Xlb = xlb, $

Xub = xub, Residual = residual)
PM, sol, Title = 'Solution'
Solution

0.500000
0.300000
0.200000

PM, residual, Title = 'Residual'
Residual

-1.00000
0.500000
0.500000
0.00000

PRINT, 'Norm of Residual =', IMSL_NORM(residual)
Norm of Residual = 1.22474

Version History

6.4 Introduced
IMSL_LINLSQ IDL Analyst Reference Guide

Chapter 4: Linear Systems 123
IMSL_SP_LUSOL

The IMSL_SP_LUSOL function solves a sparse system of linear equations Ax = b.
By using keywords, any of several related computations can be performed.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_LUSOL(b[, a] [, CONDITION=variable] [, /CSC_COL]
[, /CSC_ROW] [, /CSC_VAL] [, FACTOR_COORD=value]
[, GWTH_FACTOR=variable] [, GWTH_LIM=value] [, /HYBRID_DENSITY]
[, /HYBRID_ORDER] [, ITER_REFINE=value] [, PIVOTING=value]
[, MEMORY_BLOCK=value] [, N_NONZERO=variable]
[, N_SEARCH_ROWS=value] [, SMALLEST_PVT=variable]
[, STABILITY=value] [, TOL_DROP=value] [, TRANSPOSE=value])

Return Value

A one-dimensional array containing the solution of the linear system Ax = b.

Arguments

b

One-dimensional matrix containing the right-hand side.

A

(Optional) Sparse matrix stored as an array of structures containing the coefficient
matrix A(i,j). See “Sparse Matrices: Direct Methods” on page 69 and its related
sections for a description of structures used for sparse matrices.

Keywords

CONDITION

Named variable into which an estimate of the L1 condition number is stored. The
FACTOR_COORD and CONDITION keywords cannot be used together.
IDL Analyst Reference Guide IMSL_SP_LUSOL

124 Chapter 4: Linear Systems
CSC_COL

Accept the coefficient matrix in compressed sparse column (CSC) format. See
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used
together.

CSC_ROW

Accept the coefficient matrix in compressed sparse column (CSC) format. See
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used
together.

CSC_VAL

Accept the coefficient matrix in compressed sparse column (CSC) format.
See“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used
together.

FACTOR_COORD

The LU factorization of A as computed by IMSL_SP_LUFAC. If this keyword is
used, then the argument A should not be used. This keyword is useful if solutions to
systems involving the same coefficient matrix and multiple right-hand sides will be
solved. The keywords FACTOR_COORD and CONDITION cannot be used together.

GWTH_FACTOR

Named variable into which the largest element in absolute value at any stage of the
Gaussian elimination divided by the largest element in absolute value in A is stored.

GWTH_LIM

The computation stops if the growth factor exceeds GWTH_LIMIT. Default:
GWTH_LIMIT = 1.0e16

HYBRID_DENSITY

Enable the function to switch to a dense factorization method when the density of the
active submatrix reaches 0.0 ≤ Hybrid_density ≤ 1.0 and the order of the active
submatrix is less than or equal to Hybrid_order. The keywords HYBRID_DENSITY
and HYBRID_ORDER must be used together.
IMSL_SP_LUSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 125
HYBRID_ORDER

Enable the function to switch to a dense factorization method when the density of the
active submatrix reaches 0.0 ≤ Hybrid_density ≤ 1.0 and the order of the active
submatrix is less than or equal to Hybrid_order. The keywords HYBRID_DENSITY
and HYBRID_ORDER must be used together.

ITER_REFINE

If present and nonzero, iterative refinement will be applied.

PIVOTING

Scalar value specifying the pivoting method to use. For Row Markowitz, set
PIVOTING to 1; for Column Markowitz, set PIVOTING to 2; and for Symmetric
Markowitz, set PIVOTING to 3. Default: PIVOTING = 3

MEMORY_BLOCK

Supply the number of non-zeros which will be added to the factor if current
allocations are inadequate. Default: MEMORY_BLOCK = N_ELEMENTS(a)

N_NONZERO

Named variable into which the total number of non-zeros in the factor is stored.

N_SEARCH_ROWS

The number of rows which have the least number of non-zero elements that will be
searched for a pivot element. Default: N_SEARCH_ROWS = 3

SMALLEST_PVT

Named variable into which the value of the pivot element of smallest magnitude that
occurred during the factorization is stored.

STABILITY

The absolute value of the pivot element must be bigger than the largest element in
absolute value in its row divided by STABILITY. Default: STABILITY = 10.0

TOL_DROP

Possible fill-in is checked against this tolerance. If the absolute value of the new
element is less than TOL_DROP, it will be discarded. Default: TOL_DROP = 0.0
IDL Analyst Reference Guide IMSL_SP_LUSOL

126 Chapter 4: Linear Systems
TRANSPOSE

If present and nonzero, ATx = b is solved.

Discussion

The IMSL_SP_LUSOL function solves a system of linear equations Ax = b, where A
is sparse. In its default usage, it solves the so-called one off problem, by first
performing an LU factorization of A using the improved generalized symmetric
Markowitz pivoting scheme. The factor L is not stored explicitly because the saxpy
operations performed during the elimination are extended to the right-hand side,
along with any row interchanges. Thus, the system Ly = b is solved implicitly. The
factor U is then passed to a triangular solver which computes the solution x from
Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually
more efficient to compute the factorization once, and perform multiple forward and
back solves with the various right-hand sides. In this case the factor L is explicitly
stored and a record of all row as well as column interchanges is made. The solve step
then solves the two triangular systems Ly = b and Ux = y. In this case, you should
first call IMSL_SP_LUFAC to compute the factorization, then use the keyword
FACTOR_COORD with the IMSL_SP_LUSOL function.

If the solution to ATx = b is required, specify the keyword Transpose. This keyword
only alters the forward elimination and back substitution so that the operations
UTy = b and LTx = y are performed to obtain the solution. So, with one call to
IMSL_SP_LUFAC to produce the factorization, solutions to both Ax = b and ATx = b
can be obtained.

The keyword CONDITION is used to calculate and return an estimation of the L1
condition number of A. The algorithm used is due to Higham. Specifying
CONDITION causes a complete L to be computed and stored, even if a one-off
problem is being solved. This is due to the fact that Higham’s method requires a
solution to problems of the form Az = r and ATz = b .

The default pivoting strategy is symmetric Markowitz (PIVOTING = 3). If a row or
column oriented problem is encountered, there may be some reduction in fill-in by
selecting either PIVOTING = 1 for Row Markowitz, or PIVOTING = 2 for column
Markowitz. The Markowitz strategy will search a pre-elected number of rows or
columns for pivot candidates. The default number is three, but this can be changed by
using the keyword N_SEARCH_ROWS.

The keyword TOL_DROP can be used to set a tolerance which can reduce fill-in.
This works by preventing any new fill element which has magnitude less than the
IMSL_SP_LUSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 127
specified drop tolerance from being added to the factorization. Since this can
introduce substantial error into the factorization, it is recommended that the keyword
ITER_REFINE be used to recover more accuracy in the final solution. The trade-off
is between space savings from the drop tolerance and the extra time needed in
repeated solve steps needed for refinement.

The IMSL_SP_LUSOL function provides the option of switching to a dense
factorization method at some point during the decomposition. This option is enabled
by specifying the keywords HYBRID_DENSITY and HYBRID_ORDER.
HYBRID_DENSITY specifies a minimum density for the active submatrix before a
format switch will occur. A density of 1.0 indicates complete fill-in.
HYBRID_ORDER places an upper bound of the order of the active submatrix which
will be converted to dense format. This is used to prevent a switch from occurring too
early, possibly when the O(n3) nature of the dense factorization will cause
performance degradation. Note that this option can significantly increase heap
storage requirements.

Example

As an example, consider the following matrix:

Let xT = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33, –34, 31)T. The number of
nonzeros in A is 15.

A = replicate(imsl_f_sp_elem, 15)
; Define the sparse matrix A using coordinate storage format.
a(*).row = [0, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5]
a(*).col = [0, 1, 2, 3, 2, 0, 3, 4, 0, 3, 4, 5, 0, 1, 5]
a(*).val = [10, 10, -3, -1, 15, -2, 10, -1, -1, -5, $

1, -3, -1, -2, 6]
b = [10, 7, 45, 33, -34, 31]
; Define the right-hand side.
x = IMSL_SP_LUSOL(b, a)
; Call IMSL_SP_LUSOL, then print out result and the residual.
PM, x

A

10 0 0 0 0 0

0 10 3– 1– 0 0

0 0 15 0 0 0
2– 0 0 10 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=

IDL Analyst Reference Guide IMSL_SP_LUSOL

128 Chapter 4: Linear Systems
1.0000000
2.0000000
3.0000000
4.0000000
5.0000000
6.0000000

PM, IMSL_SP_MVMUL(6, 6, a, x) - b
0.0000000
-8.8817842e-16
0.0000000
0.0000000
0.0000000
0.0000000

Version History

See Also

IMSL_SP_LUFAC

6.4 Introduced
IMSL_SP_LUSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 129
IMSL_SP_LUFAC

The IMSL_SP_LUFAC function computes an LU factorization of a sparse matrix
stored in either coordinate format or CSC format. Using keywords, any of several
related computations can be performed.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_LUFAC(a, n_rows [, CONDITION=variable] [, /CSC_COL]
[, /CSC_ROW] [, /CSC_VAL] [, GWTH_FACTOR=variable]
[, GWTH_LIM=value] [, /HYBRID_DENSITY] [, /HYBRID_ORDER]
[,/ITER_REFINE=value] [, MEMORY_BLOCK=value]
[, N_NONZEROS=variable] [, N_SEARCH_ROWS=value]
[, PIVOTING=value] [, SMALLEST_PVT=variable] [, STABILITY=value]
[, TOL_DROP=value] [, TRANSPOSE=value])

Return Value

Structure containing the LU factorization of A.

Arguments

a

Sparse matrix stored as an array of structures containing the coefficient matrix A(i,j).
See “Sparse Matrices: Direct Methods” on page 69 and its related sections for a
description of structures used for sparse matrices.

n_rows

The number of rows in a.

Keywords

CONDITION

Named variable into which an estimate of the L1 condition number is stored.
IDL Analyst Reference Guide IMSL_SP_LUFAC

130 Chapter 4: Linear Systems
CSC_COL

Accept the coefficient matrix in compressed sparse column (CSC) format. See
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used
together.

CSC_ROW

Accept the coefficient matrix in compressed sparse column (CSC) format. See
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used
together.

CSC_VAL

Accept the coefficient matrix in compressed sparse column (CSC) format. See
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used
together.

GWTH_FACTOR

Named variable into which the largest element in absolute value at any stage of the
Gaussian elimination divided by the largest element in absolute value in A is stored.

GWTH_LIM

The computation stops if the growth factor exceeds GWTH_LIMIT. Default:
GWTH_LIMIT = 1.0e16

HYBRID_DENSITY

Enable the function to switch to a dense factorization method when the density of the
active submatrix reaches 0.0 ≤ HYBRID_DENSITY ≤ 1.0 and the order of the active
submatrix is less than or equal to HYBRID_ORDER. The keywords
HYBRID_DENSITY and HYBRID_ORDER must be used together.

HYBRID_ORDER

Enable the function to switch to a dense factorization method when the density of the
active submatrix reaches 0.0 ≤ HYBRID_DENSITY ≤ 1.0 and the order of the active
submatrix is less than or equal to HYBRID_ORDER. The keywords
HYBRID_DENSITY and HYBRID_ORDER must be used together.
IMSL_SP_LUFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 131
ITER_REFINE

If present and nonzero, iterative refinement will be applied.

MEMORY_BLOCK

Supply the number of non-zeros which will be added to the factor if current
allocations are inadequate. Default: MEMORY_BLOCK = N_ELEMENTS(a)

N_NONZEROS

Named variable into which the total number of non-zeros in the factor is stored.

N_SEARCH_ROWS

The number of rows which have the least number of non-zero elements that will be
searched for a pivot element. Default: N_SEARCH_ROWS = 3

PIVOTING

Scalar value specifying the pivoting method to use. For Row Markowitz, set
PIVOTING to 1; for Column Markowitz, set PIVOTING to 2; and for Symmetric
Markowitz, set PIVOTING to 3. Default: PIVOTING = 3

SMALLEST_PVT

Named variable into which the value of the pivot element of smallest magnitude that
occurred during the factorization is stored.

STABILITY

The absolute value of the pivot element must be bigger than the largest element in
absolute value in its row divided by STABILITY. Default: STABILITY = 10.0

TOL_DROP

Possible fill-in is checked against this tolerance. If the absolute value of the new
element is less than TOL_DROP, it will be discarded. Default: TOL_DROP = 0.0

TRANSPOSE

If present and nonzero, ATx = b is solved.
IDL Analyst Reference Guide IMSL_SP_LUFAC

132 Chapter 4: Linear Systems
Discussion

The IMSL_SP_LUFAC function computes an LU factorization of A using the
improved generalized symmetric Markowitz pivoting scheme.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually
more efficient to compute the factorization once, and perform multiple forward and
back solves with the various right-hand sides. In this case, the factor L is explicitly
stored and a record of all rows as well as column interchanges is made. The solve step
then solves the two triangular systems Ly = b and Ux = y. In this case, first call
IMSL_SP_LUFAC to compute the factorization, then use the keyword
FACTOR_COORD with the IMSL_SP_LUSOL function.

If the solution to ATx = b is required, specify the keyword TRANSPOSE. This
keyword only alters the forward elimination and back substitution so that the
operations UTy = b and LTx = y are performed to obtain the solution. So, with one call
to IMSL_SP_LUFAC to produce the factorization, solutions to both Ax = b and ATx
= b can be obtained.

The keyword CONDITION is used to calculate and return an estimation of the L1
condition number of A. The algorithm used is due to Higham. Specifying
CONDITION causes a complete L to be computed and stored, even if a one-off
problem is being solved. This is due to the fact that Higham’s method requires
solution to problems of the form Az = r and ATz = r.

The default pivoting strategy is symmetric Markowitz (PIVOTING = 3). If a row or
column oriented problem is encountered, there may be some reduction in fill-in by
selecting either PIVOTING = 1 for row Markowitz, or PIVOTING = 2 for column
Markowitz. The Markowitz strategy will search a pre-elected number of rows or
columns for pivot candidates. The default number is three, but this can be changed by
using the keyword N_SEARCH_ROWS.

The keyword TOL_DROP can be used to set a tolerance which can reduce fill-in.
This works by preventing any new fill element which has magnitude less than the
specified drop tolerance from being added to the factorization. Since this can
introduce substantial error into the factorization, it is recommended that the keyword
ITER_REFINE be used to recover more accuracy in the final solution. The trade-off
is between space savings from the drop tolerance and the extra time needed in
repeated solve steps needed for refinement.

The IMSL_SP_LUFAC function provides the option of switching to a dense
factorization method at some point during the decomposition. This option is enabled
by specifying the keywords HYBRID_DENSITY and HYBRID_ORDER.
HYBRID_DENSITY specifies a minimum density for the active submatrix before a
IMSL_SP_LUFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 133
format switch will occur. A density of 1.0 indicates complete fill-in.
HYBRID_ORDER places an upper bound of the order of the active submatrix which
will be converted to dense format. This is used to prevent a switch from occurring too
early, possibly when the O(n3) nature of the dense factorization will cause
performance degradation. Note that this option can significantly increase heap
storage requirements.
IDL Analyst Reference Guide IMSL_SP_LUFAC

134 Chapter 4: Linear Systems
Example

As an example, consider the following matrix:

Let:

x1
T = (1, 2, 3, 4, 5, 6)

so that:

x1 = (10, 7, 45, 33, –34, 31)T,

and let:

x2
T = (5, 10, 15, 15, 10, 5)

so that:

Ax2 = (50, 40, 225, 130, –85, 5)T

This example factors A using IMSL_SP_LUFAC, and computes solutions to the
systems Ax1 = b1 and Ax2 = b2 using the computed factor as input to
IMSL_SP_LUSOL.

A = replicate(imsl_f_sp_elem, 15)
; Define the sparse matrix A using coordinate storage format.
a(*).row = [0, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5]
a(*).col = [0, 1, 2, 3, 2, 0, 3, 4, 0, 3, 4, 5, 0, 1, 5]
a(*).val = [10, 10, -3, -1, 15, -2, 10, -1, -1, -5, $

1, -3, -1, -2, 6]
b1 = [10, 7, 45, 33, -34, 31]
b2 = [50, 40, 225, 130, -85, 5]
; Define the right-hand sides.
factor = IMSL_SP_LUFAC(a, 6)
; Compute the LU factorization.
x1 = IMSL_SP_LUSOL(b1, factor_coord = factor)
; Call IMSL_SP_LUSOL with factor and b1, then print result
; and the sum of the residuals.
PM, x1

A

10 0 0 0 0 0

0 10 3– 1– 0 0

0 0 15 0 0 0

2– 0 0 10 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=

IMSL_SP_LUFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 135
1.0000000
2.0000000
3.0000000
4.0000000
5.0000000
6.0000000

PM, TOTAL(ABS(IMSL_SP_MVMUL(6, 6, a, x1) - b1))
8.8817842e-16

x2 = IMSL_SP_LUSOL(b2, factor_coord = factor)
; Call IMSL_SP_LUSOL with factor and b2, then print out
; result and the sum of the residuals.
PM, x2

5.0000000
10.000000
15.000000
15.000000
10.000000
5.0000000

PM, TOTAL(ABS(IMSL_SP_MVMUL(6, 6, a, x2) - b2))
1.4210855e-14

Version History

See Also

IMSL_SP_LUSOL

6.4 Introduced
IDL Analyst Reference Guide IMSL_SP_LUFAC

136 Chapter 4: Linear Systems
IMSL_SP_BDSOL

The IMSL_SP_BDSOL function solves a general band system of linear equations
Ax = b. By using keywords, any of several related computations can be performed.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_BDSOL(b, nlca, nuca[, a] [, BLK_FACTOR=value]
[, CONDITION=variable] [, /DOUBLE] [, FACTOR=array] [, PIVOT=array]
[, TRANSPOSE=value])

Return Value

A one-dimensional array containing the solution of the linear system Ax = b.

Arguments

b

One-dimensional matrix containing the right-hand side.

nlca

Number of lower codiagonals in a.

nuca

Number of upper codiagonals in a.

a

(Optional) Array of size (nlca + nuca + 1) x n containing the n x n banded coefficient
matrix in band storage mode A(i, j). See “Band Storage Format” on page 73 for a
description of band storage mode.
IMSL_SP_BDSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 137
Keywords

BLK_FACTOR

The blocking factor. This keyword must be set no larger than 32. Default:
BLK_FACTOR = 1.

CONDITION

Named variable into which an estimate of the L1 condition number is stored. This
keyword cannot be used with PIVOT and FACTOR.

DOUBLE

If present and nonzero, double precision is used.

FACTOR

An array of size (2*nlca + nuca + 1) x N_ELEMENTS(b) containing the LU
factorization of A with column pivoting, as returned from IMSL_SP_BDFAC. The
keywords PIVOT and FACTOR must be used together. The keywords FACTOR and
CONDITION cannot be used together.

PIVOT

One-dimensional array containing the pivot sequence. The keywords PIVOT and
FACTOR must be used together. The keywords PIVOT and CONDITION cannot be
used together.

TRANSPOSE

If present and nonzero, ATx = b is solved.

Discussion

The IMSL_SP_BDSOL function solves a system of linear algebraic equations with a
real or complex band matrix A. It first computes the LU factorization of A with based
on the blocked LU factorization algorithm given in Du Croz, et al, (1990). Level-3
BLAS invocations were replaced by in-line loops. The blocking factor
BLK_FACTOR has the default value of 1, but can be reset to any positive value not
exceeding 32.

The solution of the linear system is then found by solving two simpler systems,
y = L–1b and x = U–1y. When the solution to the linear system or the inverse of the
IDL Analyst Reference Guide IMSL_SP_BDSOL

138 Chapter 4: Linear Systems
matrix is sought, an estimate of the L1 condition number of A is computed using
Higham’s modifications to Hager’s method, as given in Higham (1988). If the
estimated condition number is greater than 1/ε (where ε is the machine precision), a
warning message is issued. This indicates that very small changes in A may produce
large changes in the solution x. The IMSL_SP_BDSOL function fails if U, the upper
triangular part of the factorization, has a zero diagonal element.

Example

Consider the 1000 x 1000 banded matrix below:

This example computes the solution to Ax = b, where b is a random vector.

n_rows = 1000L
nlca = 1L
nuca = 1L
a = DBLARR(n_rows*(nlca+nuca+1))
a(1:n_rows-1) = 4
a(n_rows:2*n_rows-1) = -1
a(2*n_rows:*) = 4
; Fill A with the values of the bands.
seed = 123L
b = RANDOMU(seed, n_rows)
; Compute a random right-hand side.
x = IMSL_SP_BDSOL(b, nlca, nuca, a)
; Compute the solution using IMSL_SP_BDSOL above,
; and output residual.
PM, TOTAL(ABS(IMSL_SP_MVMUL(n_rows, n_rows, nlca, nuca, a, x)-b))

1.2367884e-13

A

1– 4
4 1– 4

4 1– .

. . .

. –1 4

4 1– 4

4 1–

=

IMSL_SP_BDSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 139
Version History

See Also

IMSL_SP_BDFAC

6.4 Introduced
IDL Analyst Reference Guide IMSL_SP_BDSOL

140 Chapter 4: Linear Systems
IMSL_SP_BDFAC

The IMSL_SP_BDFAC procedure computes the LU factorization of a matrix stored
in band storage mode.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_SP_BDFAC, nlca, nuca, n_rows, a, pivot, factor [, BLK_FACTOR=value]
[, CONDITION=variable] [, /DOUBLE]

Arguments

a

Array of size (nlca + nuca + 1) x n containing the n x n banded coefficient matrix in
band storage mode A(i,j). See “Band Storage Format” on page 73 for a description of
band storage mode.

factor

A named variable that will contain an array of size (2*nlca + nuca + 1) x n_rows
containing the LU factorization of A with column pivoting. The keywords FACTOR
and CONDITION cannot be used together.

n_rows

Number of rows in a.

nlca

Number of lower codiagonals in a.

nuca

Number of upper codiagonals in a.
IMSL_SP_BDFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 141
pivot

A named variable that will contain a one-dimensional array containing the pivot
sequence. The keywords PIVOT and CONDITION cannot be used together.

Keywords

BLK_FACTOR

The blocking factor. This keyword must be set no larger than 32. Default:
BLK_FACTOR = 1.

CONDITION

Named variable into which an estimate of the L1 condition number is stored. The
keyword CONDITION cannot be used with arguments pivot or factor.

DOUBLE

If present and nonzero, double precision is used.

Discussion

The IMSL_SP_BDFAC function computes the LU factorization of A with based on
the blocked LU factorization algorithm given in Du Croz, et al, (1990). Level-3
BLAS invocations were replaced by in-line loops. The blocking factor
BLK_FACTOR has the default value of 1, but can be reset to any positive value not
exceeding 32.

An estimate of the L1 condition number of A is computed using Higham’s
modifications to Hager’s method, as given in Higham (1988). If the estimated
condition number is greater than 1/ε (where ε is the machine precision), a warning
message is issued. This indicates that very small changes in A may produce large
changes in the solution x.
IDL Analyst Reference Guide IMSL_SP_BDFAC

142 Chapter 4: Linear Systems
Example

Consider the 1000 x 1000 banded matrix below:

This example computes the solution to Ax1 = b1 and Ax2 = b2, where b1 and b2 are
random vectors. The factorization is computed just once, using IMSL_SP_BDFAC,
and the solutions are computed using IMSL_SP_BDSOL.

n_rows = 1000L
nlca = 1L
nuca = 1L
a = DBLARR(n_rows*(nlca+nuca+1))
a(1:n_rows-1) = 4
a(n_rows:2*n_rows-1) = -1
a(2*n_rows:*) = 4
; Fill A with the values of the bands.
seed = 123L
b1 = RANDOMU(seed, n_rows)
b2 = RANDOMU(seed, n_rows)
; Fill random vectors
IMSL_SP_BDFAC, nlca, nuca, n_rows, a, pivot, factor
; Compute the factorization using IMSL_SP_BDFAC.
x1 = IMSL_SP_BDSOL(b1, nlca, nuca, Factor = factor, Pivot = pivot)
; Compute solution of Ax1 = b1 above, and output residual below.
PM, TOTAL(ABS(IMSL_SP_MVMUL(n_rows, n_rows, nlca, nuca, $

a, x1)-b1))

1.2367884e-13

x2 = IMSL_SP_BDSOL(b2, nlca, nuca, Factor = factor, Pivot = pivot)
; Compute the solution of Ax2 = b2 above, and output residual.
PM, TOTAL(ABS(IMSL_SP_MVMUL(n_rows, n_rows, nlca, nuca, $

a, x2)-b2))

9.1537888e-14

A

1– 4

4 1– 4

4 1– .

. . .

. –1 4

4 1– 4

4 1–

=

IMSL_SP_BDFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 143
Version History

See Also

IMSL_SP_BDSOL

6.4 Introduced
IDL Analyst Reference Guide IMSL_SP_BDFAC

144 Chapter 4: Linear Systems
IMSL_SP_PDSOL

The IMSL_SP_PDSOL function solves a sparse symmetric positive definite system
of linear equations Ax = b.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_PDSOL(b,[, a] [, /CSC_COL] [, /CSC_ROW] [, /CSC_VAL]
[, FACTOR=value] [, LG_DIAG=value] [, MULTIFRONTAL=value]
[, N_NONZERO=variable] [, SM_DIAG=value])

Return Value

A one-dimensional array containing the solution of the linear system Ax = b.

Arguments

b

One-dimensional matrix containing the right-hand side.

a

(Optional) Sparse matrix stored as an array of structures containing non-zeros in
lower triangle of the coefficient matrix A(i,j). See “Sparse Matrices: Direct Methods”
on page 69 and its related sections for a description of structures used for sparse
matrices.

Keywords

CSC_COL

Accept the coefficient matrix in compressed sparse column (CSC) format. See
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used
together.
IMSL_SP_PDSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 145
CSC_ROW

Accept the coefficient matrix in compressed sparse column (CSC) format. See
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used
together.

CSC_VAL

Accept the coefficient matrix in compressed sparse column (CSC) format. See
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used
together.

FACTOR

The factorization of A as computed by IMSL_SP_PDFAC. If this keyword is used,
then the argument a should not be used. This keyword is useful if solutions to systems
involving the same coefficient matrix and multiple right-hand sides will be solved.

LG_DIAG

The largest diagonal element that occurred during the numeric factorization. This
keyword is not valid if the keyword FACTOR is used.

MULTIFRONTAL

If present and nonzero, perform the numeric factorization using a multifrontal
technique. By default a standard factorization is computed based on a sparse
compressed storage scheme. The keywords MULTIFRONTAL and FACTOR cannot
be used together.

N_NONZERO

Named variable into which the total number of non-zeros in the factor is stored. This
keyword is not valid if the keyword FACTOR is used.

SM_DIAG

The smallest diagonal element that occurred during the numeric factorization. This
keyword is not valid if the keyword FACTOR is used.
IDL Analyst Reference Guide IMSL_SP_PDSOL

146 Chapter 4: Linear Systems
Discussion

The IMSL_SP_PDSOL function solves a system of linear algebraic equations having
a sparse symmetric positive definite coefficient matrix A. In IMSL_SP_PDSOL
default usage, a symbolic factorization of a permutation of the coefficient matrix is
computed first, then a numerical factorization is performed. The solution of the linear
system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a
minimum degree ordering and then setting up a sparse data structure for the Cholesky
factor, L. This step only requires the “pattern” of the sparse coefficient matrix, that is,
the locations of the non-zero elements but not any of the elements themselves.

The numerical factorization can be carried out in one of two ways. By default, the
standard factorization is performed based on a sparse compressed storage scheme.
This is fully described in George and Liu (1981). Optionally, a multifrontal technique
can be used. The multifrontal method requires more storage but will be faster in
certain cases. The multifrontal factorization is based on the routines in Liu (1987).
For a detailed description of this method, see Liu (1990), also Duff and Reid (1983,
1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989).

If an application requires that several linear systems be solved where the coefficient
matrix is the same but the right-hand sides change, the IMSL_SP_PDFAC function
can be used to precompute the Cholesky factor. Then the keyword FACTOR can be
used in IMSL_SP_PDSOL to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following
calculations:

Ly1 = Pb

LTy2 = y1

x = PTy2

The permutation information, P, is carried in the numeric factor structure.
IMSL_SP_PDSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 147
Example

As an example consider the 5 x 5 coefficient matrix:

Let xT = (5, 4, 3, 2, 1) so that Ax = (55, 83, 103, 97, 82)T. The number of non-zeros in
the lower triangle of A is nz = 10. The sparse coordinate form for the lower triangle is
given by:

Since this representation is not unique, an equivalent form would be:

A = REPLICATE(imsl_f_sp_elem, 10)
a(*).row = [0, 1, 2, 2, 3, 3, 4, 4, 4, 4]
a(*).col = [0, 1, 0, 2, 2, 3, 0, 1, 3, 4]
a(*).val = [10, 20, 1, 30, 4, 40, 2, 3, 5, 50]
b = [55.0d0, 83, 103, 97, 82]
x = IMSL_SP_PDSOL(b, a)
PM, x

5.0000000
4.0000000
3.0000000
2.0000000

row 0 1 2 2 3 3 4 4 4 4

col 0 1 0 2 2 3 0 1 3 4

val 10 20 1 30 4 40 2 3 5 50

row 3 4 4 4 0 1 2 2 3 4

col 3 0 1 3 0 1 0 2 2 4

val 40 2 3 5 10 20 1 30 4 50

a

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

=

IDL Analyst Reference Guide IMSL_SP_PDSOL

148 Chapter 4: Linear Systems
1.0000000

Version History

See Also

IMSL_SP_PDFAC

6.4 Introduced
IMSL_SP_PDSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 149
IMSL_SP_PDFAC

The IMSL_SP_PDFAC function computes a factorization of a sparse symmetric
positive definite system of linear equations Ax = b.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_PDFAC(a, n_rows [, /CSC_COL] [, /CSC_ROW] [, /CSC_VAL]
[, LG_DIAG=value] [, MULTIFRONTAL=value] [, N_NONZERO=variable]
[, SM_DIAG=value])

Return Value

The factorization of Ax = b.

Arguments

a

Sparse matrix stored as an array of structures containing non-zeros in lower triangle
of the coefficient matrix A(i,j). See “Sparse Matrices: Direct Methods” on page 69
and its related sections for a description of structures used for sparse matrices.

n_rows

The number of rows in a.

Keywords

CSC_COL

Accept the coefficient matrix in compressed sparse column (CSC) format. See
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used
together.
IDL Analyst Reference Guide IMSL_SP_PDFAC

150 Chapter 4: Linear Systems
CSC_ROW

Accept the coefficient matrix in compressed sparse column (CSC) format. See
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used
together.

CSC_VAL

Accept the coefficient matrix in compressed sparse column (CSC) format. See
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used
together.

LG_DIAG

The largest diagonal element that occurred during the numeric factorization.

MULTIFRONTAL

If present and nonzero, perform the numeric factorization using a multifrontal
technique. By default a standard factorization is computed based on a sparse
compressed storage scheme

N_NONZERO

Specifies a named variable into which the total number of non-zeros in the factor is
stored.

SM_DIAG

The smallest diagonal element that occurred during the numeric factorization.

Discussion

The IMSL_SP_PDFAC function computes a factorization of a sparse symmetric
positive definite coefficient matrix A. In this function’s default usage, a symbolic
factorization of a permutation of the coefficient matrix is computed first. Then a
numerical factorization is performed.

The symbolic factorization step of the computation consists of determining a
minimum degree ordering and then setting up a sparse data structure for the Cholesky
factor, L. This step only requires the “pattern” of the sparse coefficient matrix, that is,
the locations of the non-zero elements but not any of the elements themselves.
IMSL_SP_PDFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 151
The numerical factorization can be carried out in one of two ways. By default, the
standard factorization is performed based on a sparse compressed storage scheme.
This is fully described in George and Liu (1981). Optionally, a multifrontal technique
can be used. The multifrontal method requires more storage but will be faster in
certain cases. The multifrontal factorization is based on the routines in Liu (1987).
For a detailed description of this method, see Liu (1990), also Duff and Reid (1983,
1984), Ashcraft (1987), Ashcraft, et al. (1987), and Liu (1986, 1989).

If an application requires that several linear systems be solved where the coefficient
matrix is the same but the right-hand sides change, IMSL_SP_PDFAC can be used to
precompute the Cholesky factor. Then the keyword Factor can be used in
IMSL_SP_PDSOL to efficiently solve all subsequent systems.

Given numeric factorization, x is obtained by the following calculations:

Ly1 = Pb

LTy2 = y1

x = PTy2

The permutation information, P, is carried in the numeric factor structure.

Example

As an example consider the 5 x 5 coefficient matrix:

Let x1
T = (5, 4, 3, 2, 1) so that Ax1 = (55, 83, 103, 97, 82)T. Let x2

T = (1, 2, 3, 4, 5) so
that Ax2 = (23, 55, 107, 197, 278)T. The number of non-zeros in the lower triangle of
A is nz = 10. The sparse coordinate form for the lower triangle is given by:

row 0 1 2 2 3 3 4 4 4 4

col 0 1 0 2 2 3 0 1 3 4

val 10 20 1 30 4 40 2 3 5 50

a

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

=

IDL Analyst Reference Guide IMSL_SP_PDFAC

152 Chapter 4: Linear Systems
Since this representation is not unique, an equivalent form would be:

A = REPLICATE(imsl_f_sp_elem, 10)
a(*).row = [0, 1, 2, 2, 3, 3, 4, 4, 4, 4]
a(*).col = [0, 1, 0, 2, 2, 3, 0, 1, 3, 4]
a(*).val = [10, 20, 1, 30, 4, 40, 2, 3, 5, 50]
b1 = [55, 83, 103, 97, 82]
b2 = [23, 55, 107, 197, 278]
factor = IMSL_SP_PDFAC(a, 5)
x1 = IMSL_SP_PDSOL(b1, FACTOR = factor)
PM, x1

5.0000000
4.0000000
3.0000000
2.0000000
1.0000000

x2 = IMSL_SP_PDSOL(b2, FACTOR = factor)
PM, x2

1.0000000
2.0000000
3.0000000
4.0000000
5.0000000

Version History

See Also

IMSL_SP_PDSOL

row 3 4 4 4 0 1 2 2 3 4

col 3 0 1 3 0 1 0 2 2 4

val 40 2 3 5 10 20 1 30 4 50

6.4 Introduced
IMSL_SP_PDFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 153
IMSL_SP_BDPDSOL

The IMSL_SP_BDPDSOL function solves a symmetric positive definite system of
linear equations Ax = b in band symmetric storage mode. Using keywords, any of
several related computations can be performed.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_BDPDSOL(b, ncoda[, a] [, CONDITION=variable]
[, /DOUBLE] [, FACTOR=array])

Return Value

A one-dimensional array containing the solution of the linear system Ax = b.

Arguments

b

One-dimensional matrix containing the right-hand side.

ncoda

Number of upper codiagonals in a.

a

(Optional) Array of size (ncoda + 1) x n containing the n x n banded coefficient
matrix in band symmetric storage mode A(i, j). See “Band Storage Format” on
page 73 for a description of band symmetric storage mode.
IDL Analyst Reference Guide IMSL_SP_BDPDSOL

154 Chapter 4: Linear Systems
Keywords

CONDITION

Named variable into which an estimate of the L1 condition number is stored. This
keyword cannot be used if a previously computed factorization is specified with the
keyword FACTOR.

DOUBLE

If present and nonzero, double precision is used.

FACTOR

An array of size (ncoda + 1) x N_ELEMENTS(b) containing the RTR factorization of
A in band symmetric storage mode, as returned from IMSL_SP_BDPDFAC.

Discussion

The IMSL_SP_BDPDSOL function solves a system of linear algebraic equations
with a symmetric positive definite band coefficient matrix A. It computes the RTR
Cholesky factorization of A. R is an upper triangular band matrix.

The L1 condition number of A is computed using Higham’s modifications to Hager’s
method, as given in Higham (1988). If the estimated condition number is greater than
1/ε (where ε is the machine precision), a warning message is issued. This indicates
that very small changes in A may produce large changes in the solution x.

The IMSL_SP_BDPDSOL function fails if any submatrix of R is not positive definite
or if R has a zero diagonal element. These errors occur only if A is very close to a
singular matrix or to a matrix which is not positive definite.

The IMSL_SP_BDPDSOL function is partially based on the LINPACK subroutines
CPBFA and SPBSL; see Dongarra et al. (1979).
IMSL_SP_BDPDSOL IDL Analyst Reference Guide

Chapter 4: Linear Systems 155
Example

Solve a system of linear equations Ax = b, where:

n = 4L
ncoda = 2L
a = DBLARR((ncoda+1)*n)
a(0:n-1) = [0, 0, -1, 1]
a(n:2L*n-1) = [0, 0, 2, -1]
a(2L*n:*) = [2, 4, 7, 3]
; Define A in band symmetric storage mode.
b = [6, -11, -11, 19]
x = IMSL_SP_BDPDSOL(b, ncoda, a)
; Compute the solution
PM, x

4.0000000
-6.0000000
2.0000000
9.0000000

Version History

See Also

IMSL_SP_BDFAC

IMSL_SP_BDPDFAC

6.4 Introduced

A

2 0 1– 0

0 4 2 1

1– 2 7 1–

0 1 1– 3

=

b

6

11–

11–

19

=

IDL Analyst Reference Guide IMSL_SP_BDPDSOL

156 Chapter 4: Linear Systems
IMSL_SP_BDPDFAC

The IMSL_SP_BDPDFAC function computes the RTR Cholesky factorization of
symmetric positive definite matrix, A, in band symmetric storage mode.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_BDPDFAC(a, n, ncoda [, CONDITION=variable]
[, /DOUBLE])

Return Value

An array of size (ncoda + 1) x n containing the RTR factorization of A in band
symmetric storage mode.

Arguments

a

Array of size (ncoda + 1) x n containing the n x n banded coefficient matrix in band
symmetric storage mode A(i,j). See “Band Storage Format” on page 73 for a
description of band symmetric storage mode.

n

Number rows in a.

ncoda

Number of upper codiagonals in a.

Keywords

CONDITION

Specifies a named variable into which an estimate of the L1 condition number is
stored.
IMSL_SP_BDPDFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 157
DOUBLE

If present and nonzero, double precision is used.

Discussion

The IMSL_SP_BDPDFAC function computes the RTR Cholesky factorization of A. R
is an upper triangular band matrix.

The L1 condition number of A is computed using Higham’s modifications to Hager’s
method, as given in Higham (1988). If the estimated condition number is greater than
1/ε (where ε is the machine precision), a warning message is issued. This indicates
that very small changes in A may produce large changes in the solution x.

The IMSL_SP_BDPDFAC function fails if any submatrix of R is not positive definite
or if R has a zero diagonal element. These errors occur only if A is very close to a
singular matrix or to a matrix which is not positive definite.

The IMSL_SP_BDPDFAC function is partially based on the LINPACK subroutines
CPBFA and SPBSL; see Dongarra et al. (1979).
IDL Analyst Reference Guide IMSL_SP_BDPDFAC

158 Chapter 4: Linear Systems
Example

Solve a system of linear equations Ax = b, using both IMSL_SP_BDPDFAC and
IMSL_SP_BDPDSOL, where:

n = 4L
ncoda = 2L
a = DBLARR((ncoda+1)*n)
a(0:n-1) = [0, 0, -1, 1]
a(n:2L*n-1) = [0, 0, 2, -1]
a(2L*n:*) = [2, 4, 7, 3]
; Define A in band symmetric storage mode.
b = [6, -11, -11, 19]
factor = IMSL_SP_BDPDFAC(a, n, ncoda)
; Use IMSL_SP_BDPDFAC to compute the factorization.
x = IMSL_SP_BDPDSOL(b, ncoda, Factor=factor)
; Compute the solution
PM, x

4.0000000
-6.0000000
2.0000000
9.0000000

Version History

6.4 Introduced

A

2 0 1– 0

0 4 2 1

1– 2 7 1–

0 1 1– 3

=

b

6

11–

11–

19

=

IMSL_SP_BDPDFAC IDL Analyst Reference Guide

Chapter 4: Linear Systems 159
See Also

IMSL_SP_BDFAC

IMSL_SP_BDPDSOL
IDL Analyst Reference Guide IMSL_SP_BDPDFAC

160 Chapter 4: Linear Systems
IMSL_SP_GMRES

The IMSL_SP_GMRES function solves a linear system Ax = b using the restarted
generalized minimum residual (GMRES) method.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_GMRES(amultp, b [, /DOUBLE] [, HH_REORTH=value]
[, ITMAX=value] [, MAX_KRYLOV=value] [, PRECOND=value]
[, TOLERANCE=value])

Return Value

A one-dimensional array containing the solution of the linear system Ax = b.

Arguments

amultp

Scalar string specifying a user supplied function that computes z = Ap. The function
accepts the argument p, and returns the vector Ap.

b

One-dimensional matrix containing the right-hand side.

Keywords

DOUBLE

If present and nonzero, double precision is used.

HH_REORTH

If present and nonzero, perform orthogonalization by Householder transformations,
replacing the Gram-Schmidt process.
IMSL_SP_GMRES IDL Analyst Reference Guide

Chapter 4: Linear Systems 161
ITMAX

Initially set to the maximum number of GMRES iterations allowed. On exit, the
number of iterations used is returned. Default: ITMAX = 1000

MAX_KRYLOV

The maximum Krylov subspace dimension, that is, the maximum allowable number
of GMRES iterations allowed before restarting. Default:
MAX_KRYLOV = Minimum(N_ELEMENTS(b), 20).

PRECOND

Scalar sting specifying a user supplied function which sets z = M–1r, where M is the
preconditioning matrix.

TOLERANCE

The algorithm attempts to generate x such that:

where t = TOLERANCE. Default: TOLERANCE = SQRT(machine precision).

Discussion

The IMSL_SP_GMRES, function based on the FORTRAN subroutine GMRESD by
H. F. Walker, solves the linear system Ax = b using the GMRES method. This method
is described in detail by Saad and Schultz (1986) and Walker (1988).

The GMRES method begins with an approximate solution x0 and an initial residual
r0 = b – Ax0. At iteration m, a correction zm is determined in the Krylov subspace:

κm(v) = span(v, Av, ..., Am–1v)

v = r0 which solves the least squares problem:

Then at iteration m, xm = x0 + zm.

Orthogonalization by Householder transformations requires less storage but more
arithmetic than Gram-Schmidt. However, Walker (1988) reports numerical

b Ax– 2 τ b 2≤

min
z κm r0()∈()

b A x0 z+()– 2
IDL Analyst Reference Guide IMSL_SP_GMRES

162 Chapter 4: Linear Systems
experiments which suggest the Householder approach is more stable, especially as
the limits of residual reduction are reached.

Example

This example finds the solution to a linear system. The coefficient matrix is stored in
coordinate format. Consider the following matrix:

Let xT = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33, –34, 31)T. The number of
nonzeros in A is 15.

FUNCTION Amultp, p
; This function uses IMSL_SP_MVMUL to multiply a sparse
; matrix stored in coordinate storage mode and a vector.
; The common block holds the sparse matrix.

COMMON Gmres_ex1, nrows, ncols, a
RETURN, IMSL_SP_MVMUL(nrows, ncols, a, p)

END

PRO Gmres1
; This procedure defines the sparse matrix A stored in coordinate
; storage mode, and then calls IMSL_SP_GMRES to compute the
; solution to Ax = b.

COMMON Gmres_ex1, nrows, ncols, a
; Initialize sparse matrix structure variables
@imsl_init

A = REPLICATE(imsl_f_sp_elem, 15)
a(*).row = [0, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5]
a(*).col = [0, 1, 2, 3, 2, 0, 3, 4, 0, 3, 4, 5, 0, 1, 5]
a(*).val = [10, 10, -3, -1, 15, -2, 10, -1, -1, -5, $

1, -3, -1, -2, 6]
nrows = 6
ncols = 6
b = [10, 7, 45, 33, -34, 31]
itmax = 10
; Itmax is input/output.

A

10 0 0 0 0 0

0 10 3– 1– 0 0

0 0 15 0 0 0

2– 0 0 10 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=

IMSL_SP_GMRES IDL Analyst Reference Guide

Chapter 4: Linear Systems 163
x = IMSL_SP_GMRES('amultp', b, Itmax = itmax)
pm, x, title = 'Solution to Ax = b'
pm, itmax, title = 'Number of iterations'

END
; Output of this procedure:
Solution to Ax = b

1.0000000
2.0000000
3.0000000
4.0000000
5.0000000
6.0000000

Number of iterations
6

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_SP_GMRES

164 Chapter 4: Linear Systems
IMSL_SP_CG

The IMSL_SP_CG function solves a real symmetric definite linear system using a
conjugate gradient method. A preconditioner can be supplied by using keywords.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_CG(amultp, b [, /DOUBLE] [, ITMAX=value]
[, JACOBI=vector] [, PRECOND=value] [, REL_ERR=value])

Return Value

A one-dimensional array containing the solution of the linear system Ax = b.

Arguments

amultp

Scalar string specifying a user supplied function which computes z = Ap. The
function accepts the argument p, and returns the vector Ap.

b

One-dimensional matrix containing the right-hand side.

Keywords

DOUBLE

If present and nonzero, double precision is used.

ITMAX

Initially set to the maximum number of GMRES iterations allowed. On exit, the
number of iterations used is returned. Default: ITMAX = 1000
IMSL_SP_CG IDL Analyst Reference Guide

Chapter 4: Linear Systems 165
JACOBI

If present, use the Jacobi preconditioner, that is, M = diag(A). The supplied vector
Jacobi should be set so that JACOBI(i) = Ai,i.

PRECOND

Scalar string specifying a user supplied function which sets z = M –1r, where M is the
preconditioning matrix.

REL_ERR

Initially set to relative error desired. On exit, the computed relative error is returned.
Default: REL_ERR = SQRT(machine precision)

Discussion

The IMSL_SP_CG function solves the symmetric definite linear system Ax = b using
the conjugate gradient method with optional preconditioning. This method is
described in detail by Golub and Van Loan (1983, chapter 10), and in Hageman and
Young (1981, chapter 7).

The preconditioning matrix M, is a matrix that approximates A, and for which the
linear system Mz = r is easy to solve. These two properties are in conflict; balancing
them is a topic of much current research. In the default usage of IMSL_SP_CG,
M = I. If the keyword JACOBI is selected, M is set to the diagonal of A.

The number of iterations needed depends on the matrix and the error tolerance. As a
rough guide:

for

See the academic references for details.

Let M be the preconditioning matrix, let b, p, r, x, and z be vectors and let t be the
desired relative error. Then the algorithm used is as follows:

Itmax n=

n 1»

λ 1–=

p0 x0=

r1 b Ap–=
IDL Analyst Reference Guide IMSL_SP_CG

166 Chapter 4: Linear Systems

Here λ is an estimate of λmax(G), the largest eigenvalue of the iteration matrix G = I –
M–1A. The stopping criterion is based on the result (Hageman and Young, 1981,
pages 148-151):

where . It is also known that:

for k 1 … itmax, ,=

zk M
1–
rk=

if k 1then=

βk 1=

pk zk=

else

βk zk
T

rk() zk 1–
T

rk 1–()⁄=
pk zk βkpk+=

endif

zk Ap=

αk zk 1–
T

zk 1–() zk
T

pk()⁄=

xk xk αkpk+=
rk rk αkzk–=

if zk 2 τ 1 λ–() xk 2≤()then

recompute λ
if zk 2 τ 1 λ–() xk 2≤()exit

endif

endfor

xk x– M

x M
----------------------- 1

1 λmax G()–

 zk M

xk M

≤

x M
2

x
T

Mx=

λmax T1() λmax T2() … λmax G() 1<≤ ≤≤
IMSL_SP_CG IDL Analyst Reference Guide

Chapter 4: Linear Systems 167
where the Tn are the symmetric, tridiagonal matrices:

with µk = 1 – βk/αk–1, µ1 = 1 – 1/α1, and ωk = SQRT(βk)/αk–1. Usually the eigenvalue
computation is needed for only a few of the iterations.

Example

This example finds the solution to a linear system. The coefficient matrix is stored as
a full matrix.

FUNCTION Amultp, p
; Since A is in dense form, we use the # operator to perform the
; matrix-vector product. The common block us used to hold A.

COMMON Cg_comm1, a
RETURN, a#p

END
Pro CG_EX1

COMMON Cg_comm1, a
a = TRANSPOSE([[1, -3, 2], [-3, 10, -5], [2, -5, 6]])
b = [27, -78, 64]
x = IMSL_SP_CG('amultp', b)
; Use IMSL_SP_CG to compute the solution, then output
; the result.
PM, x, title = 'Solution to Ax = b'

END
; Output of this procedure:
Solution to Ax = b

1.0000000
-4.0000000
7.0000000

Version History

6.4 Introduced

Tn

µ1 ω2

ω2 µ2 ω3

ω3 µ3 ω4

=

IDL Analyst Reference Guide IMSL_SP_CG

168 Chapter 4: Linear Systems
IMSL_SP_MVMUL

The IMSL_SP_MVMUL function computes a matrix-vector product involving sparse
matrix and a dense vector.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Matrix stored in coordinate format:

Result = IMSL_SP_MVMUL(n_rows, n_cols, a, x [, SYMMETRIC=value])

Matrix stored in band format:

Result = IMSL_SP_MVMUL(n_rows, n_cols, nlca, nuca, a, x
[, SYMMETRIC=value])

Return Value

A one-dimensional array containing the product Ax = b.

Arguments

nrows

Number of rows in the matrix a.

ncols

Number of columns in the matrix a.

nlca

Number of lower codiagonals in a. nuca should be used if a is stored in band format.

nuca

Number of upper codiagonals in a. nlca should be used if a is stored in band format.
IMSL_SP_MVMUL IDL Analyst Reference Guide

Chapter 4: Linear Systems 169
a

If in coordinate format, a sparse matrix stored as an array of structures. If banded, an
array of size (nlca + nuca + 1) x nrows containing the nrows x ncols banded
coefficient matrix in band storage mode. If banded, and the keyword SYMMETRIC
is set, an array of size (nlca + 1) x nrows containing the nrows x ncols banded
coefficient matrix in band symmetric storage mode A(i,j). See “Band Storage
Format” on page 73 for a description of band storage mode.

x

One-dimensional matrix containing the vector to be multiplied by a.

Keywords

SYMMETRIC

If present and nonzero, then a is stored in symmetric mode. If A is in coordinate
format, then Ax + ATx – diag(A) is returned. If A is banded, then it must be in band
symmetric storage mode. See “Band Storage Format” on page 73 for a description of
band storage modes.

Discussion

The IMSL_SP_MVMUL function computes a matrix-vector product involving a
sparse matrix and a dense vector.

If A is stored in coordinate format, then the arguments nrows, ncols, a, and x should
be used. If the keyword SYMMETRIC is set, then Ax + ATx – diag(A) is returned.

If A is a banded, then the arguments nrows, ncols, nlca, nuca, a, and x should be used.
If the keyword SYMMETRIC is set, then A must be in band symmetric storage mode,
and the number of codiagonals should be used for both nlca and nuca.
IDL Analyst Reference Guide IMSL_SP_MVMUL

170 Chapter 4: Linear Systems
Examples

Example 1

This example computes Ax, where A is stored in coordinate format.

Let xT = (1, 2, 3, 4, 5, 6)

A = replicate(imsl_f_sp_elem, 15)
; Define the sparse matrix A using coordinate storage format.
a(*).row = [0, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5]
a(*).col = [0, 1, 2, 3, 2, 0, 3, 4, 0, 3, 4, 5, 0, 1, 5]
a(*).val = [10, 10, -3, -1, 15, -2, 10, -1, -1, -5, $

1, -3, -1, -2, 6]
x = [1, 2, 3, 4, 5, 6]
ax = IMSL_SP_MVMUL(6, 6, a, x)
PM, ax

10.000000
7.0000000
45.000000
33.000000
-34.000000
31.000000

A

10 0 0 0 0 0

0 10 3– 1– 0 0

0 0 15 0 0 0

2– 0 0 10 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=

IMSL_SP_MVMUL IDL Analyst Reference Guide

Chapter 4: Linear Systems 171
Example 2

This example computes Ax, where A is stored in band mode. Consider the 1000 x
1000 banded matrix below:

Let x(*) = 2.

n_rows = 1000L
nlca = 1L
nuca = 1L
a = DBLARR(n_rows*(nlca+nuca+1))
a(1:n_rows-1) = 4
a(n_rows:2*n_rows-1) = -1
a(2*n_rows:*) = 4
; Fill A with the values of the bands.
x = DBLARR(n_rows)
x(*) = 2
; Fill up x.
expected = DBLARR(n_rows)
expected(*) = 14
expected(0) = 6
expected(n_rows-1) = 6
; Define the expected result.
ax = IMSL_SP_MVMUL(n_rows, n_rows, nlca, nuca, a, x)
; Compute the product, then output the difference between the
; computed result and the expected result.
PRINT, TOTAL(ABS(ax-expected))

0.0000000

A

1– 4

4 1– 4

4 1– .

. . .
. –1 4

4 1– 4

4 1–

=

IDL Analyst Reference Guide IMSL_SP_MVMUL

172 Chapter 4: Linear Systems
Example 3

This example computes Ax, where A is stored in band symmetric mode. Let ,

n = 4L
ncoda = 2L
a = DBLARR((ncoda+1)*n)
a(0:n-1) = [0, 0, -1, 1]
a(n:2L*n-1) = [0, 0, 2, -1]
a(2L*n:*) = [2, 4, 7, 3]
; Fill up contents of A.
x = [4, -6, 2, 9]
ax = IMSL_SP_MVMUL(n, n, ncoda, ncoda, a, x, /Symmetric)
; Call IMSL_SP_MVMUL with the keyword Symmetric set.
PM, ax

6.0000000
-11.000000
-11.000000
19.000000

Version History

6.4 Introduced

A

2 0 1– 0

0 4 2 1

1– 2 7 1–

0 1 1– 3

=

x

4

6–

2

9

=

IMSL_SP_MVMUL IDL Analyst Reference Guide

Chapter 5

Eigensystem Analysis
This section contains the following topics:
Overview: Eigensystem Analysis 174 Eigensystem Routines 177
IDL Analyst Reference Guide 173

174 Chapter 5: Eigensystem Analysis
Overview: Eigensystem Analysis

An ordinary linear eigensystem problem is represented by the equation Ax = λx,
where A denotes an n x n matrix. The value λ is an eigenvalue, and x ≠ 0 is the
corresponding eigenvector. The eigenvector is determined up to a scalar factor. In all
functions, this factor is chosen so that x has Euclidean length 1, and the component of
x of largest magnitude is positive. If x is a complex vector, this component of largest
magnitude is scaled to be real and positive. The entry where this component occurs
can be arbitrary for eigenvectors having non-unique maximum magnitude values.

A generalized linear eigensystem problem is represented by Ax = λBx, where A and B
are n x n matrices. The value λ is a generalized eigenvalue, and x is the corresponding
generalized eigenvector. The generalized eigenvectors are normalized in the same
manner as for ordinary eigensystem problems.

Error Analysis and Accuracy

This section discusses ordinary eigenvalue problems. Except in special cases,
functions do not return the exact eigenvalue-eigenvector pair for the ordinary
eigenvalue problem Ax = λx. Typically, the computed pair:

is an exact eigenvector-eigenvalue pair for a “nearby” matrix A + E. Information
about E is known only in terms of bounds of the form:

|| E ||2 ≤ f(n) || A ||2 ε

The value of f (n) depends on the algorithm but is typically a small fractional power
of n. The parameter ε is the machine precision. The following is by a theorem due to
Bauer and Fike (see Golub and Van Loan 1989, p. 342):

 for all λ in

where σ (A) is the set of all eigenvalues of A (called the spectrum of A), X is the
matrix of eigenvectors:

|| · ||2

is Euclidean length, and κ (X) is the condition number of X defined as:

κ (X) = || X ||2 || X–1 ||2

If A is a real symmetric or complex Hermitian matrix, then its eigenvector matrix X is
respectively orthogonal or unitary. For these matrices, κ (X) = 1.

x̃ λ̃,

min λ̂ λ– κ X() E 2≤ σ A()
Overview: Eigensystem Analysis IDL Analyst Reference Guide

Chapter 5: Eigensystem Analysis 175
The accuracy of the computed eigenvalues:

 and eigenvectors

can be checked by computing their performance index τ. The performance index is
defined to be:

where ε is again the machine precision.

The performance index τ is related to the error analysis because:

where E is the “nearby” matrix discussed above.

While the exact value of τ is precision and data dependent, the performance of an
eigensystem analysis function is defined as excellent if τ < 1, good if 1 ≤ τ ≤ 100, and
poor if τ > 100. This is an arbitrary definition, but large values of τ can serve as a
warning that there is a significant error in the calculation.

If the condition number κ (X) of the eigenvector matrix X is large, there can be large
errors in the eigenvalues even if τ is small. In particular, it is often difficult to
recognize near-multiple eigenvalues or unstable mathematical problems from
numerical results. This facet of the eigenvalue problem is often difficult for users to
understand. Suppose the accuracy of an individual eigenvalue is desired. This can be
answered approximately by computing the condition number of an individual
eigenvalue (see Golub and Van Loan 1989, pp. 344–345). For matrices A such that
the computed array of normalized eigenvectors X is invertible, the condition number
of λj is:

the Euclidean length of the j-th row of X –1. An approximate bound for the accuracy
of a computed eigenvalue is then given by:

κ ∈ || A ||

To compute an approximate bound for the relative accuracy of an eigenvalue, divide
this bound by |λj|.

Reformulating Generalized Eigenvalue Problems

The generalized eigenvalue problem Ax = λBx is often difficult to analyze because it
is frequently ill-conditioned. Occasionally, there are changes of variables that can be

λ̃ j x̃j

τ
max Ax̃j λ̃j x̃j– 2

nε A 2 x̃j 2

-------------------------------=
1 j n≤ ≤

Ex̃j 2 Ax̃j λ̃ jx̃j– 2=

κ j ej
T

X
1–

=

IDL Analyst Reference Guide Overview: Eigensystem Analysis

176 Chapter 5: Eigensystem Analysis
performed on the given problem to ease this ill-conditioning. Using an example
where B is singular, but A is nonsingular, define the reciprocal µ = λ–1, then the roles
of A and B are interchanged so that the reformulated problem Bx = µAx is solved.
Those generalized eigenvalues µj = 0 correspond to eigenvalues λj = infinity. The
remaining λj = µj

–1. The generalized eigenvectors for λj correspond to those for µj.

If B is nonsingular, you can solve the ordinary eigenvalue problem Cx = λx, where
C = B–1A. Matrix C is subject to perturbations due to ill-conditioning and rounding
errors when computing B–1A. Computing condition numbers of the eigenvalues for C
may, however, be helpful for analyzing the accuracy of results for the generalized
problem.

Another method to consider to reduce the generalized problem to an alternate
ordinary problem: first compute a matrix decomposition B = PQ, where both P and Q
are matrices that are “simple” to invert. Then, the given generalized problem is
equivalent to the ordinary eigenvalue problem Fy = λy. The matrix F = P–1AQ–1 and
the unnormalized eigenvectors of the generalized problem are given by x = Q–1y. An
example of this reformulation is used in the case where A and B are real and
symmetric, with B positive definite. IMSL_EIGSYMGEN uses P = RT and Q = R,
where R is an upper-triangular matrix obtained from a Cholesky decomposition, B =
RTR. The matrix F = R–TAR–1 is symmetric and real. Computation of the eigenvalue-
eigenvector expansion for F is based on the IMSL_EIG function.
Overview: Eigensystem Analysis IDL Analyst Reference Guide

Chapter 5: Eigensystem Analysis 177
Eigensystem Routines

Linear Eigensystem Problems

IMSL_EIG—General and symmetric matrices.

Generalized Eigensystem Problems

IMSL_EIGSYMGEN—Real symmetric matrices and B positive definite.

IMSL_GENEIG—General eigenexpansion of Ax=λBx.
IDL Analyst Reference Guide Eigensystem Routines

178 Chapter 5: Eigensystem Analysis
IMSL_EIG

The IMSL_EIG function computes the eigenexpansion of a real or complex matrix A.
If the matrix is known to be symmetric or Hermitian, a keyword can be used to trigger
more efficient algorithms.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_EIG(a [, /DOUBLE] [, /LOWER_LIMIT] [, NUMBER=value]
[, SYMMETRIC=value] [, /UPPER_LIMIT] [, VECTORS=variable])

Return Value

A one-dimensional matrix containing the complex eigenvalues of the matrix.

Arguments

a

Two-dimensional matrix containing the data.

Keywords

DOUBLE

If present and nonzero, double precision is used.

LOWER_LIMIT

Forces the IMSL_EIG function to return the eigenvalues and, optionally, eigenvectors
that lie in the interval within the lower limit LOWER_LIMIT and upper limit
UPPER_LIMIT. If LOWER_LIMIT is specified, the keywords UPPER_LIMIT and
SYMMETRIC must also be specified. Default: (LOWER_LIMIT, UPPER_LIMIT) =
(-infinity, +infinity)
IMSL_EIG IDL Analyst Reference Guide

Chapter 5: Eigensystem Analysis 179
NUMBER

Number of eigenvalues and eigenvectors in the range
(LOWER_LIMIT, UPPER_LIMIT). This keyword is only available if also using the
keyword SYMMETRIC.

SYMMETRIC

If present and nonzero, a is assumed to be symmetric in the real case and Hermitian
in the complex case. Using SYMMETRIC triggers the use of a more appropriate
algorithm for symmetric and Hermitian matrices.

UPPER_LIMIT

Forces the IMSL_EIG function to return the eigenvalues and, optionally, eigenvectors
that lie in the interval within the lower limit LOWER_LIMIT and upper limit
UPPER_LIMIT. If UPPER_LIMIT is specified, SYMMETRIC and LOWER_LIMIT
must also be specified. Default: (LOWER_LIMIT, UPPER_LIMIT) =
(-infinity, +infinity)

VECTORS

The named variable into which the two-dimensional array containing the
eigenvectors of the matrix a is stored.

Discussion

If A is a real, general matrix, the IMSL_EIG function computes the eigenvalues of A
by a two-phase process. The matrix is reduced to upper Hessenberg form by
elementary orthogonal or Gauss similarity transformations, then the eigenvalues are
computed using a QR or combined LR-QR algorithm (Golub and Van Loan 1989,
pp. 373–382, and Watkins and Elsner 1990). The combined LR-QR algorithm is
based on an implementation by Jeff Haag and David Watkins. Eigenvectors are then
calculated as required. When eigenvectors are computed, the QR algorithm is used to
compute the eigenexpansion. When only eigenvalues are required, the combined
LR-QR algorithm is used.

If A is a complex, general matrix, the IMSL_EIG function computes the eigenvalues
of A by a two-phase process. The matrix is reduced to upper Hessenberg form by
elementary Gauss transformations, then the eigenvalues are computed using an
explicitly shifted LR algorithm. Eigenvectors are calculated during the iterations for
the eigenvalues (Martin and Wilkinson 1971).
IDL Analyst Reference Guide IMSL_EIG

180 Chapter 5: Eigensystem Analysis
If A is a real, symmetric matrix and the keyword SYMMETRIC is used, the
IMSL_EIG function computes the eigenvalues of A by a two-phase process. The
matrix is reduced to tridiagonal form by elementary orthogonal similarity
transformations, then the eigenvalues are computed using a rational QR or bisection
algorithm. Eigenvectors are calculated as required (see Parlett 1980, pp. 169–173).

If A is a complex, Hermitian matrix and the keyword SYMMETRIC is used, the
IMSL_EIG function computes the eigenvalues of A by a two-phase process. The
matrix is reduced to tridiagonal form by elementary orthogonal similarity
transformations, then the eigenvalues are computed using a rational QR or bisection
algorithm. Eigenvectors are calculated as required.

If keyword SYMMETRIC is used, it is possible to force the IMSL_EIG function to
return the eigenvalues and, optionally, eigenvectors that lie in a specified interval. The
interval is defined using keywords LOWER_LIMIT and UPPER_LIMIT. The
NUMBER keyword is provided to return the number of elements of the returned
array that contain valid eigenvalues. The first NUMBER elements of the returned
array contain the computed eigenvalues, and all remaining elements contain NaN
(Not a Number).

Examples

Example 1

This example computes the eigenvalues of a real 3-by-3 matrix.

RM, a, 3, 3
; Define the matrix.
row 0: 8 -1 -5
row 1: -4 4 -2
row 2: 18 -5 -7
eigval = IMSL_EIG(a)
; Call IMSL_EIG to compute the eigenvalues.
PM, eigval, Title = 'Eigenvalues of A'
; Output the results.
Eigenvalues of A

(2.00000, 4.00001)
(2.00000, -4.00001)
(1.00000, 0.00000)
IMSL_EIG IDL Analyst Reference Guide

Chapter 5: Eigensystem Analysis 181
Example 2

This example is a variation of the first example. It computes the eigenvectors as well
as the eigenvalues.

RM, a, 3, 3
; Define the 3-by-3 matrix.
row 0: 8 -1 -5
row 1: -4 4 -2
row 2: 18 -5 -7
eigval = IMSL_EIG(a, Vectors = eigvec)
; Call IMSL_EIG using keyword Vectors to specify named
; variable into which the eigenvectors are stored.
PM, eigval, Title = 'Eigenvalues of A'
; Output the eigenvalues.
Eigenvalues of A

(2.00000, 4.00000)
(2.00000, -4.00000)
(1.00001, 0.00000)

PM, eigvec, Title = 'Eigenvectors of A'
; Output the eigenvectors.
Eigenvectors of A

(0.316228, 0.316228)(0.316228, -0.316228)
(0.408248, 0.00000)
(2.08616e-07, 0.632455)(2.08616e-07, -0.632455)
(0.816497, 0.00000)
(0.632456, 0.00000)(0.632456, 0.00000)
(0.408247, 0.00000)

Example 3

This example computes Eigenvalues of a complex matrix.

RM, a, 4, 4, /Complex
; Define a complex matrix.
row 0: (5, 9) (5, 5) (-6, -6) (-7, -7)
row 1: (3, 3) (6, 10) (-5, -5) (-6, -6)
row 2: (2, 2) (3, 3) (-1, 3) (-5, -5)
row 3: (1, 1) (2, 2) (-3, -3) (0, 4)
eigval = IMSL_EIG(a)
; Call IMSL_EIG to compute the eigenvalues.
PM, eigval, Title = 'Eigenvalues of A'
; Output the results.
Eigenvalues of A

(4.00000, 8.00000)
(3.00000, 7.00000)
(2.00000, 6.00000)
(1.00000, 5.00000)
IDL Analyst Reference Guide IMSL_EIG

182 Chapter 5: Eigensystem Analysis
Errors

Warnings

MATH_SLOW_CONVERGENCE_GEN—Iteration for an eigenvalue did not converge after
iterations.

Version History

6.4 Introduced
IMSL_EIG IDL Analyst Reference Guide

Chapter 5: Eigensystem Analysis 183
IMSL_EIGSYMGEN

The IMSL_EIGSYMGEN function computes the generalized eigenexpansion of a
system Ax = λBx. The matrices A and B are real and symmetric, and B is positive
definite.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_EIGSYMGEN(a, b [, /DOUBLE] [, VECTORS=array])

Return Value

One-dimensional array containing the eigenvalues of the symmetric matrix.

Arguments

a

Two-dimensional matrix containing symmetric coefficient matrix A.

b

Two-dimensional matrix containing the positive definite symmetric coefficient matrix
B.

Keywords

DOUBLE

If present and nonzero, double precision is used.

VECTORS

Compute eigenvectors of the problem. A two-dimensional array containing the
eigenvectors is returned in the variable name specified by VECTORS.
IDL Analyst Reference Guide IMSL_EIGSYMGEN

184 Chapter 5: Eigensystem Analysis
Discussion

The IMSL_EIGSYMGEN function computes the eigenvalues of a symmetric,
positive definite eigenvalue problem by a three-phase process (Martin and Wilkinson
1971). Matrix B is reduced to factored form using the Cholesky decomposition.
These factors are used to form a congruence transformation that yields a symmetric
real matrix whose eigenexpansion is obtained. The problem is then transformed back
to the original coordinates. Eigenvectors are calculated and transformed as required.

Examples

Example 1

This example computes the generalized eigenexpansion of a system Ax = λBx, where
A and B are 3-by-3 matrices.

RM, a, 3, 3
; Define the matrix A.
row 0: 1.1 1.2 1.4
row 1: 1.2 1.3 1.5
row 2: 1.4 1.5 1.6
RM, b, 3, 3
; Define the matrix B.
row 0: 2 1 0
row 1: 1 2 1
row 2: 0 1 2
eigval = IMSL_EIGSYMGEN(a, b)
; Call IMSL_EIGSYMGEN to compute the eigenexpansion.
PM, eigval, Title = 'Eigenvalues'
; Output the results.
Eigenvalues

1.38644
-0.0583479
-0.00309042

Example 2

This example is a variation of the first example. It computes the eigenvectors as well
as the eigenvalues.

RM, a, 3, 3
; Define the matrix A.
row 0: 1.1 1.2 1.4
row 1: 1.2 1.3 1.5
row 2: 1.4 1.5 1.6
RM, b, 3, 3
; Define the matrix B.
IMSL_EIGSYMGEN IDL Analyst Reference Guide

Chapter 5: Eigensystem Analysis 185
row 0: 2 1 0
row 1: 1 2 1
row 2: 0 1 2
eigval = IMSL_EIGSYMGEN(a, b, Vectors = eigvec)
; Call IMSL_EIGSYMGEN with keyword Vectors to specify the named
; variable in which the vectors are stored.
PM, eigval, Title = 'Eigenvalues'
; Output the eigenvalues.

Eigenvalues
 1.38644
 -0.0583478
 -0.00309040

PM, eigvec, Title = 'Eigenvectors'
; Output the eigenvectors.
Eigenvectors

0.643094 -0.114730 -0.681688
-0.0223849 -0.687186 0.726597
0.765460 0.717365 -0.0857800

Errors

Warning Errors

MATH_SLOW_CONVERGENCE_SYM—Iteration for an eigenvalue failed to converge in
100 iterations before deflating.

Fatal Errors

MATH_SUBMATRIX_NOT_POS_DEFINITE—Leading submatrix of the input matrix is
not positive definite.

MATH_MATRIX_B_NOT_POS_DEFINITE—Matrix B is not positive definite.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_EIGSYMGEN

186 Chapter 5: Eigensystem Analysis
IMSL_GENEIG

The IMSL_GENEIG procedure computes the generalized eigenexpansion of a
system Ax = λBx.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_GENEIG, a, b, alpha, beta [, /DOUBLE] [, VECTORS=variable]

Arguments

a

Two-dimensional array of size n-by-n containing coefficient matrix A.

alpha

One-dimensional array of size n containing scalars αi. If βi ≠ 0, λi = αi /βi for i = 0,
..., n – 1 are the eigenvalues of the system.

b

Two-dimensional array of size n-by-n containing coefficient matrix B.

beta

One-dimensional array of size n.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IMSL_GENEIG IDL Analyst Reference Guide

Chapter 5: Eigensystem Analysis 187
VECTORS

Named variable into which a two-dimensional array of size n-by-n containing
eigenvectors of the problem is stored. Each vector is normalized to have Euclidean
length equal to one.

Discussion

The IMSL_GENEIG function uses the QZ algorithm to compute the eigenvalues and
eigenvectors of the generalized eigensystem Ax = λBx, where A and B are matrices of
order n. The eigenvalues for this problem can be infinite, so α and β are returned
instead of λ. If β is nonzero, λ = α/β.

The QZ algorithm first simultaneously reduces A to upper-Hessenberg form and B to
upper-triangular form, then it uses orthogonal transformations to reduce A to quasi-
upper-triangular form while keeping B upper triangular. The generalized eigenvalues
and eigenvectors for the reduced problem are then computed.

The IMSL_GENEIG function is based on the QZ algorithm due to Moler and Stewart
(1973), as implemented by the EISPACK routines QZHES, QZIT and QZVAL; see
Garbow et al. (1977).

Examples

Example 1

This example computes the eigenvalue, λ, of system Ax = λBx, where:

a = TRANSPOSE([[1.0, 0.5, 0.0], [-10.0, 2.0, 0.0], $
[5.0, 1.0, 0.5]])

b = TRANSPOSE([[0.5, 0.0, 0.0], [3.0, 3.0, 0.0], $
[4.0, 0.5, 1.0]])

; Compute eigenvalues
IMSL_GENEIG, a, b, alpha, beta
; Print eigenvalues
PM, alpha/beta, Title = 'Eigenvalues'
Eigenvalues

(0.833334, 1.99304)
(0.833333, -1.99304)
(0.500000, 0.00000)

A
1.0 0.5 0.0

10.0– 2.0 0.0
5.0 1.0 0.5

= and B
0.5 0.0 0.0

3.0 3.0 0.0
4.0 0.5 1.0

=

IDL Analyst Reference Guide IMSL_GENEIG

188 Chapter 5: Eigensystem Analysis
Example 2

This example finds the eigenvalues and eigenvectors of the same eigensystem given
in the last example.

a = TRANSPOSE([[1.0, 0.5, 0.0], [-10.0, 2.0, 0.0], $
[5.0, 1.0, 0.5]])

b = TRANSPOSE([[0.5, 0.0, 0.0], [3.0, 3.0, 0.0], $
[4.0, 0.5, 1.0]])

; Compute eigenvalues
IMSL_GENEIG, a, b, alpha, beta, Vectors = vectors
; Print eigenvalues
PM, alpha/beta, Title = 'Eigenvalues'
Eigenvalues

(0.833332, 1.99304)
(0.833332, -1.99304)
(0.500000, -0.00000)

; Print eigenvectors
PM, vectors, Title = 'Eigenvectors'
Eigenvectors

(-0.197112, 0.149911)(-0.197112, -0.149911)
(-1.53306e-08, 0.00000)
(-0.0688163, -0.567750)(-0.0688163, 0.567750)
(-4.75248e-07, 0.00000)
(0.782047, 0.00000)(0.782047, 0.00000)
(1.00000, 0.00000)

Example 3

This example solves the eigenvalue, λ, of system Ax = λBx, where:

a = TRANSPOSE([$
 [COMPLEX(1.0, 0.0), COMPLEX(0.5, 1.0), COMPLEX(0.0, 5.0)], $
 [COMPLEX(-10.0, 0.0), COMPLEX(2.0, 1.0), COMPLEX(0.0, 0.0)], $
 [COMPLEX(5.0, 1.0), COMPLEX(1.0, 0.0), COMPLEX(0.5, 3.0)]])
b = TRANSPOSE([$
 [COMPLEX(0.5, 0.0), COMPLEX(0.0, 0.0), COMPLEX(0.0, 0.0)], $
 [COMPLEX(3.0, 3.0), COMPLEX(3.0, 3.0), COMPLEX(0.0, 1.0)], $
 [COMPLEX(4.0, 2.0), COMPLEX(0.5, 1.0), COMPLEX(1.0, 1.0)]])
; Compute eigenvalues
IMSL_GENEIG, a, b, alpha, beta
; Print eigenvalues
PM, alpha/beta, Title = 'Eigenvalues'
Eigenvalues

A
1 0.5 i+ 5i

10– 2 i+ 0

5 i+ 1 0.5 3i+

= and B
0.5 0 0

3 3i+ 3 3i+ i

4 2i+ 0.5 i+ 1 i+

=

IMSL_GENEIG IDL Analyst Reference Guide

Chapter 5: Eigensystem Analysis 189
(-8.18016, -25.3799)
(2.18006, 0.609113)
(0.120108, -0.389223)

Example 4

This example finds the eigenvalues and eigenvectors of the same eigensystem given
in the last example.

a = TRANSPOSE([$
 [COMPLEX(1.0, 0.0), COMPLEX(0.5, 1.0), COMPLEX(0.0, 5.0)], $
 [COMPLEX(-10.0, 0.0), COMPLEX(2.0, 1.0), COMPLEX(0.0, 0.0)], $
 [COMPLEX(5.0, 1.0), COMPLEX(1.0, 0.0), COMPLEX(0.5, 3.0)]])
b = TRANSPOSE([$
 [COMPLEX(0.5, 0.0), COMPLEX(0.0,0.0), COMPLEX(0.0, 0.0)], $
 [COMPLEX(3.0,3.0), COMPLEX(3.0,3.0), COMPLEX(0.0, 1.0)], $
 [COMPLEX(4.0, 2.0), COMPLEX(0.5, 1.0), COMPLEX(1.0, 1.0)]])
; Compute eigenvalues
IMSL_GENEIG, a, b, alpha, beta, Vectors = vectors
; Print eigenvalues
PM, alpha/beta, Title = 'Eigenvalues'
Eigenvalues

(-8.18018, -25.3799)
(2.18006, 0.609112)
(0.120109, -0.389223)

; Print eigenvecters
PM, vectors, Title = 'Eigenvectors'
Eigenvectors

(-0.326709, -0.124509)(-0.300678, -0.244401)
(0.0370698, 0.151778)
(0.176670, 0.00537758)(0.895923, 0.00000)
(0.957678, 0.00000)
(0.920064, 0.00000)(-0.201900, 0.0801192)
(-0.221511, 0.0968290)

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_GENEIG

190 Chapter 5: Eigensystem Analysis
IMSL_GENEIG IDL Analyst Reference Guide

Chapter 6

Interpolation and
Approximation
This section contains the following topics:
Overview: Interpolation and Approximation . .
192

Interpolation and Approximation Routines 199
IDL Analyst Reference Guide 191

192 Chapter 6: Interpolation and Approximation
Overview: Interpolation and Approximation

Many functions in this chapter produce cubic piecewise polynomial or general spline
functions that either interpolate or approximate given data or are support functions
for the evaluation and integration of these functions. Three major subdivisions of
functions are provided. The cubic spline functions begin with the prefix CS and use
the piecewise polynomial representation. The spline functions begin with the prefix
BS and use the B-spline representation. The third major subdivision includes
functions that operate on the output of both the cubic spline and B-spline functions.
Most spline functions are based on routines documented by de Boor (1978).

General purpose routines also are provided for general least-squares fit to data and
routines to interpolate or approximate scattered data in Rn for n ≥ 1.

Piecewise Polynomials

A univariate piecewise polynomial function, p, is specified by giving its breakpoint
sequence , the order k (degree k – 1) of its polynomial pieces, and the k x (n –
1) matrix C of its local polynomial coefficients. In terms of this information, the
piecewise polynomial (ppoly) function is given by the following equation:

The breakpoint sequence ξ is assumed to be strictly increasing, and the ppoly
function is extended to the entire real axis by extrapolation from the first and last
intervals. This representation is redundant when the ppoly function is known to be
smooth. For example, if p is known to be continuous, then c1, i+1 can be computed
from the cji as follows:

For smooth ppoly, the nonredundant representation is used in terms of the “basis” or
B-splines, at least when such a function is first to be determined.

ζ R
n∈

p x() cij

x ξ i–()j 1–

j 1–()!

j 1=

k

∑= for ξ i x ξ i 1+≤ ≤

c1 i 1+, p ξ i 1+() cij

ξ i 1+ ξ i–()j 1–

j 1–()!

j 1=

k

∑= =
Overview: Interpolation and Approximation IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 193
Splines and B-splines

B-splines provide a particularly convenient and suitable basis for a given class of
smooth ppoly functions. Such a class is specified by giving its breakpoint sequence,
its order k, and the required smoothness across each of the interior breakpoints. The
corresponding B-spline basis is specified by giving its knot sequence . The
specification rule is the following: If the class is to have all derivatives up to and
including the j-th derivative continuous across the interior breakpoint ξi, then the
number ξi should occur k – j – 1 times in the knot sequence. Assuming that ξ1 and ξn
are the endpoints of the interval of interest, choose the first k knots equal to ξ1 and the
last k knots equal to ξn. This can be done since the B-splines are defined to be right
continuous near ξ1 and left continuous near ξn.

When the above construction is completed, a knot sequence t of length M is
generated and m: = M – k B-splines of order k (for example, B0, ..., Bm – 1) span the
ppoly functions on the interval with the indicated smoothness. That is, each ppoly
function in this class has a unique representation:

as a linear combination of B-splines. A B-spline is a particularly compact ppoly
function. The function Bi is a nonnegative function that is nonzero only on the
interval [ti, ti + k]. More precisely, the support of the i-th B-spline is [ti, ti + k]. No
ppoly function in the same class (other than the zero function) has smaller support
(i.e., vanishes on more intervals) than a B-spline. This makes B-splines particularly
attractive basis functions since the influence of any particular B-spline coefficient
extends only over a few intervals. When it is necessary to emphasize the dependence
of the B-spline on its parameters, the notation:

Bi, k, t

is used to denote the i-th B-spline of order k for the knot sequence t.

Cubic Splines

Cubic splines are smooth (i.e., C1 or C2), fourth-order ppoly functions. For historical
and other reasons, cubic splines are the most frequently used ppoly functions.
Therefore, special functions are provided for their construction and evaluation. These
routines use the ppoly representation as described above for general ppoly functions
(with k = 4).

Two cubic spline interpolation functions, IMSL_CSINTERP and IMSL_CSSHAPE,
are provided. The IMSL_CSINTERP function allows the user to specify various
endpoint conditions (such as the value of the first or second derivative at the right and

t R
m∈

p a0B0 a1B1 … am 1– Bm 1–+ + +=
IDL Analyst Reference Guide Overview: Interpolation and Approximation

194 Chapter 6: Interpolation and Approximation
left points). This means that the natural cubic spline can be obtained using this
function by setting the second derivative to zero at both endpoints. The
IMSL_CSSHAPE function is designed so that the shape of the curve matches the
shape of the data. In particular, one option of this function preserves the convexity of
the data while the default attempts to minimize oscillations.

It is possible that the cubic spline interpolation functions will produce unsatisfactory
results. For example, the interpolant may not have the shape required by the user, or
the data may be noisy and require a least-squares fit. The IMSL_BSINTERP
interpolation function is more flexible, as it allows the user to choose the knots and
order of the spline interpolant. The user is encouraged to use this routine and exploit
the flexibility provided.

Tensor-product Splines

The simplest method of obtaining multivariate interpolation and approximation
functions is to take univariate methods and form a multivariate method via tensor
products. In the case of two-dimensional spline interpolation, the derivation proceeds
as follows: Let tx be a knot sequence for splines of order kx and ty be a knot sequence
for splines of order ky. Let Nx + kx be the length of tx and Ny + ky be the length of ty.
Then, the tensor-product spline has the following form:

Given two sets of points:

 and

for which the corresponding univariate interpolation problem can be solved, the
tensor-product interpolation problem finds the coefficients cnm, so that the following
is true:

This problem can be solved efficiently by repeatedly solving univariate interpolation
problems as described in de Boor (1978, p. 347). Three-dimensional interpolation can
be handled in an analogous manner. This chapter provides functions that compute the

cnmBn kx tx, , x()Bm ky ty, , y()
n 0=

Nx 1–

∑
m 0=

Ny 1–

∑

xi{ } i 1=
Nx yi{ } i 1=

Ny

cnmBn kx tx, , xi()Bm ky ty, , yj()
n 0=

Nx 1–

∑
m 0=

Ny 1–

∑ fij=
Overview: Interpolation and Approximation IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 195
two-dimensional, tensor-product spline coefficients given two-dimensional
interpolation data (IMSL_BSINTERP) and functions that compute the two-
dimensional, tensor-product spline coefficients for a tensor-product, least-squares
problem (IMSL_BSLSQ). In addition, evaluation, differentiation, and integration
routines (IMSL_SPVALUE and IMSL_SPINTEG) are provided for the two-
dimensional, tensor-product spline functions.

Scattered-data Interpolation and Approximation

IDL Analyst provides functions to interpolate and approximate scattered data in Rn
for n ≥ 1. The IMSL_SCAT2DINTERP function interpolates scattered data in the
plane and is based on work by Akima (1978), which uses C1 piecewise quintics on a
triangular mesh. The IMSL_RADBF function can be used to either interpolate or
approximate scattered data in Rn for n ≥ 1. The IMSL_RADBF function computes
approximations based on radial-basis functions. The fit computed by IMSL_RADBF
can be evaluated using the IMSL_RADBE function.

Least Squares

IDL Analyst includes functions for smoothing noisy data. The IMSL_FCNLSQ
function computes regressions with user-supplied functions. The IMSL_BSLSQ
function computes a one- or two-dimensional, least-squares fit using splines with
fixed knots or variable knots. This function produces cubic-spline, least-squares fit by
default. Keywords allow the user to choose the order and the knot sequence.

IDL Analyst contains many functions that provide for polynomial regression and
general linear regression.

Smoothing by Cubic Splines

One “smoothing spline” function is provided. The default action of
IMSL_CSSMOOTH estimates a smoothing parameter by cross-validation, then
returns the cubic spline that smooths the data. If the user chooses to supply a
smoothing parameter, this function returns the appropriate cubic spline.

Structures for Splines and Piecewise Polynomials

This section is optional and is intended for users interested in more details concerning
the structures for splines and piecewise polynomials.
IDL Analyst Reference Guide Overview: Interpolation and Approximation

196 Chapter 6: Interpolation and Approximation
A spline can be viewed as a mapping with domain Rd and target Rr, where d and r are
positive integers. For this version of IDL Analyst, only r = 1 is supported. Thus, if s is
a spline, then the following is true for some d and r:

This implies that such a spline s must have d knot sequences and orders (one for each
domain dimension). Thus, associated with s, knots and orders are as follows:

t0, ..., td – 1

k0, ..., kd – 1

The precise form of the spline follows:

s(x) = (s0(x), ..., sr – 1(x))

where:

Note that ni is the number of knots in ti minus the order ki.

All the information for a spline is stored in a structure. Since the components of this
structure are generally of varying lengths, an anonymous structure is defined for each
spline. An example of the information returned by the HELP command with the
keyword STRUCTURES set and an argument containing a spline structure follows:

x = FINDGEN(10)
y = IMSL_RANDOM(10)
spline = IMSL_BSINTERP(x, y)
HELP, spline, /Structure
** Structure $1, 7 tags, 116 length:
DOMAIN_DIM LONG 1
TARGET_DIM LONG 1
ORDER LONG 4
NUM_COEF LONG 10
NUM_KNOTS LONG 14
KNOTS FLOAT Array(14)
COEF FLOAT Array(10)

s: R
d

R
r→

x x1 … xd, ,() R
d∈=

si x() := … cj0 … jd 1–, ,
i

B
j0 k0 t0, ,

…B
jd 1– kd 1– td 1–, ,

j0 0=

n0 1–

∑
jd 1– 0=

nd 1– 1–

∑

Overview: Interpolation and Approximation IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 197
For ppoly functions, a ppoly is viewed as a mapping with domain Rd and target Rr,
where d and r are positive integers. Thus, if p is a ppoly, then the following is true for
some d and r:

For this version of IDL Analyst, only r = 1 is supported. This implies that such a
ppoly p must have d breakpoint sequences and orders (one for each domain
dimension). Thus, associated with p, breakpoints and orders are as follows:

ξ1, ..., ξd

k1, ..., kd

The precise form of the ppoly follows:

p(x) = (p0(x), ..., pr(x))

where:

with:

L j :=max {1, min{M j, nj – 1}}

where M j is chosen so that:

(with and).

Note that nj is the number of breakpoints in ξ j.

p: R
d

R
r→

x x1 … xd, ,() R
d∈=

pi x() := … c
L1 … Ld l1 … ld, , , , ,
i x1 ξL1

1
–()l1

l1!
---------------------------…

xd ξLd
d–()

ld

ld!

l1 0=

k1 1–

∑
ld 0=

kd 1–

∑

ξ
M j
j

 xj ξM j 1+
j<≤ j 1 … d, ,=

ξ0
j ∞–= ξnj 1+

j ∞=
IDL Analyst Reference Guide Overview: Interpolation and Approximation

198 Chapter 6: Interpolation and Approximation
All the information for a spline is stored in a structure. Since the components of this
structure are generally of varying lengths, an anonymous structure is defined for each
spline. An example of the information returned by the HELP command with the
keyword STRUCTURES set and an argument containing a spline structure is as
follows:

x = FINDGEN(10)
y = IMSL_RANDOM(10)
ppoly = IMSL_CSINTERP(x, y)
HELP, ppoly, /Structure
Structure <103bc00>, 7 tags, length=204, data length=204, refs=1:
DOMAIN_DIM LONG 1
TARGET_DIM LONG 1
ORDER LONG Array[1]
NUM_COEF LONG Array[1]
NUM_BREAKPOINTS LONG Array[1]
BREAKPOINTS FLOAT Array[10]
COEF FLOAT Array[36]
Overview: Interpolation and Approximation IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 199
Interpolation and Approximation Routines

Cubic Spline Interpolation

IMSL_CSINTERP—Derivative end conditions.

IMSL_CSSHAPE—Shape preserving.

B-spline Interpolation

IMSL_BSINTERP—One-dimensional and two-dimensional interpolation.

IMSL_BSKNOTS—Knot sequence given interpolation data.

B-spline and Cubic Spline Evaluation and Integration

IMSL_SPVALUE—Evaluation and differentiation.

IMSL_SPINTEG—Integration.

Least-squares Approximation and Smoothing

IMSL_FCNLSQ—General functions.

IMSL_BSLSQ—Splines with fixed knots.

IMSL_CONLSQ—Constrained spline fit.

IMSL_CSSMOOTH—Cubic-smoothing spline.

IMSL_SMOOTHDATA1D—Smooth one-dimensional data by error detection.

Scattered Data Interpolation

IMSL_SCAT2DINTERP—Akima’s surface-fitting method.

IMSL_RADBF—Computes a fit using radial-basis functions.

IMSL_RADBE—Evaluates a radial-basis fit.
IDL Analyst Reference Guide Interpolation and Approximation Routines

200 Chapter 6: Interpolation and Approximation
IMSL_CSINTERP

The IMSL_CSINTERP function computes a cubic spline interpolant, specifying
various endpoint conditions. The default interpolant satisfies the not-a-knot
condition.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CSINTERP(xdata, fdata [, /DOUBLE] [, /ILEFT=value]
[, /IRIGHT=value] [, /LEFT=value] [, /PERIODIC] [, /RIGHT=value])

Return Value

A structure that represents the cubic spline interpolant.

Arguments

xdata

One-dimensional array containing the abscissas of the interpolation problem.

fdata

One-dimensional array containing the ordinates for the interpolation problem.

Keywords

DOUBLE

If present and nonzero, double precision is used.

ILEFT

Sets the value for the first or second derivative of the interpolant at the left endpoint.
The keyword ILEFT is used to specify which derivative is set: ILEFT = 1 for the first
derivative and ILEFT = 2 for the second derivative. The only valid values for ILEFT
are 1 or 2. If ILEFT is specified, then the keyword LEFT also must be used.
IMSL_CSINTERP IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 201
IRIGHT

Sets the value for the first or second derivative of the interpolant at the right endpoint.
The keyword IRIGHT is used to specify which derivative is set: IRIGHT = 1 for the
first derivative and IRIGHT = 2 for the second derivative. The only valid values for
IRIGHT are 1 or 2. If IRIGHT is specified, then the keyword RIGHT also must be
used.

LEFT

Sets the value for the first or second derivative of the interpolant at the left endpoint.
Use with the keyword ILEFT. If ILEFT = i, then the interpolant s satisfies
s(i)(xL) = LEFT. Here, xL is the leftmost abscissa.

PERIODIC

If present and nonzero, computes the C2 periodic interpolant to the data. The
following is satisfied:

s(i)
 (xL) = s(i) (xR) i = 0, 1, 2

where s, xL, and xR are defined above.

RIGHT

Sets the value for the first or second derivative of the interpolant at the right endpoint.
Use with the keyword IRIGHT. If IRIGHT = i, then the interpolant s satisfies
s(i)(xR) = RIGHT. Here, xR is the rightmost abscissa.

Discussion

The IMSL_CSINTERP function computes a C2 cubic spline interpolant to a set of
data points (xi, fi) for the following:

i = 0, ..., (N_ELEMENTS(xdata) – 1) = (n – 1)

The breakpoints of the spline are the abscissas. For all univariate interpolation
functions, the abscissas need not be sorted. Endpoint conditions are to be selected by
the user. The user can specify not-a-knot, or first or second derivatives at each
endpoint or C2 periodicity can be requested (see de Boor 1978, Chapter 4). If no
defaults are selected, then the not-a-knot spline interpolant is computed. If the
PERIODIC keyword is selected, then all other keywords are ignored and a C2 is
computed. In this case, if the fdata values at the left and right endpoints are not the
same, a warning message is issued and the right value is set equal to the left. If the
LEFT and ILEFT or RIGHT and IRIGHT keywords are used, the user has the ability
IDL Analyst Reference Guide IMSL_CSINTERP

202 Chapter 6: Interpolation and Approximation
to select the values of the first or second derivative at either endpoint. The default
case (when the keyword is not used) is the not-a-knot condition on that endpoint.
Thus, when no keywords are chosen, this function produces the not-a-knot
interpolant.

If the data (including the endpoint conditions) arise from the values of a smooth (for
example, C4) function f, i.e., fi = f(xi), then the error behaves in a predictable fashion.
Let ξ be the breakpoint vector for the above spline interpolant. Then, the maximum
absolute error satisfies:

where the following is true:

Examples

Example 1

In this example, a cubic spline interpolant, as shown in Figure 6-1, to function values
is computed and plotted along with the original data. Since the default settings are
used, the interpolant is determined by the not-a-knot condition (see de Boor 1978).

x = FINDGEN(11)/10
; Generate the abscissas.
f = SIN(15 * x)
; Generate the function values.
pp = IMSL_CSINTERP(x, f)
; Compute the spline interpolant.
ppval = IMSL_SPVALUE(FINDGEN(100)/99, pp)
PLOT, FINDGEN(100)/99, ppval
; Plot the results.
OPLOT, x, f, Psym = 6

f s– ξ0 ξn,[] C f
4()

ξ0 ξn,[] ξ 4≤

ξ := max ξ i 1+ ξ i– .

i 0 … n 1–, ,=
IMSL_CSINTERP IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 203
Example 2

In this example, a cubic spline interpolant to function values is computed. The value
of the derivative at the left endpoint and the value of the second derivative at the right
endpoint are specified. The resulting spline and original data are then plotted as
shown in Figure 6-2.

x = FINDGEN(11)/10
y = SIN(15 * x)
pp = IMSL_CSINTERP(x, y, ILeft = 1, Left = 0, $
IRight = 2, Right = -225 * SIN(15))
ppval = IMSL_SPVALUE(FINDGEN(100)/99, pp)
PLOT, FINDGEN(100)/99, ppval
OPLOT, x, y, Psym = 6

Figure 6-1: Cubic Spline Interpolant
IDL Analyst Reference Guide IMSL_CSINTERP

204 Chapter 6: Interpolation and Approximation
Errors

Warning Errors

MATH_NOT_PERIODIC—Data are not periodic. The rightmost fdata value is set to the
leftmost fdata value.

Fatal Errors

MATH_DUPLICATE_XDATA_VALUES—The xdata values must be distinct.

Version History

Figure 6-2: Cubic Spline Interpolant with Endpoint Conditions

6.4 Introduced
IMSL_CSINTERP IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 205
IMSL_CSSHAPE

The IMSL_CSSHAPE function computes a shape-preserving cubic spline.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CSSHAPE(xdata, fdata [, /CONCAVE] [, /DOUBLE]
[, ITMAX=value])

Return Value

A structure that represents the cubic spline interpolant.

Arguments

xdata

One-dimensional array containing the abscissas of the interpolation problem.

fdata

One-dimensional array containing the ordinates for the interpolation problem.

Keywords

CONCAVE

If present and nonzero, IMSL_CSSHAPE produces a cubic interpolant that preserves
the concavity of the data.

DOUBLE

If present and nonzero, double precision is used.

ITMAX

Allows the user to set the maximum number of iterations of Newton’s Method. To use
ITMAX, the keyword CONCAVE must also be set. Default: ITMAX = 25.
IDL Analyst Reference Guide IMSL_CSSHAPE

206 Chapter 6: Interpolation and Approximation
Discussion

The IMSL_CSSHAPE function computes a C1 cubic spline interpolant to a set of
data points (xi, fi) for the following:

i = 0, ..., (N_ELEMENTS(xdata) – 1) = (n – 1)

The breakpoints of the spline are the abscissas. This computation is based on a
method by Akima (1970) to combat wiggles in the interpolant. Endpoint conditions
are automatically determined by the program (see Akima 1970, de Boor 1978).

If the CONCAVE keyword is set, then this function computes a cubic spline
interpolant to the data. For ease of explanation, xi < xi + 1 is assumed, although it is
not necessary for the user to sort these data values. If the data are strictly convex, then
the computed spline is convex, C2, and minimizes the expression

over all convex C1 functions that interpolate the data. In the general case, when the
data have both convex and concave regions, the convexity of the spline is consistent
with the data, and the above integral is minimized under the appropriate constraints.
For more information on this interpolation scheme, refer to Micchelli et al. (1985)
and Irvine et al. (1986).

One important feature of the splines produced by this function is that it is not
possible, a priori, to predict the number of breakpoints of the resulting interpolant. In
most cases, there will be breakpoints at places other than data locations. This function
should be used when it is important to preserve the convex and concave regions
implied by the data.

Both methods are nonlinear, and although the interpolant is a piecewise cubic, cubic
polynomials are not reproduced. (However, linear polynomials are reproduced.) This
explains the theoretical error estimate below.

If the data points arise from the values of a smooth (for example, C4) function f, i.e.,
fi = f(xi), then the error behaves in a predictable fashion. Let ξ be the breakpoint
vector for either of the above spline interpolants. Then, the maximum absolute error
satisfies:

g″()2

x1

xn

∫

f s– ξ0 ξn,[] C f
2()

ξ0 ξn,[] ξ 2≤
IMSL_CSSHAPE IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 207
where:

and ξm is the last breakpoint.

The returned value for this function is a structure. This structure contains all the
information to determine the spline (stored as a piecewise polynomial) that is
computed by this function. For example, the following code sequence evaluates this
spline at x and returns the value in y:

y = IMSL_SPVALUE(x, spline)

Examples

Example 1

In this example, a cubic spline interpolant to function values is computed.
Evaluations of the computed spline are plotted along with the original data values.

x = FINDGEN(10)/9
; Define the abscissas.
f = FLTARR(10)
f(0:4) = 0.25
f(5:9) = 0.75
; Define the function values.
pp = IMSL_CSSHAPE(x, f)
; Compute the interpolant.
ppval = IMSL_SPVALUE(FINDGEN(100)/99, pp)
; Evaluate the interpolant at 100 values in [0,1].
PLOT, FINDGEN(100)/99, ppval
; Plot the results.
OPLOT, x, f, Psym = 6

ξ := max ξ i 1+ ξ i–

i 0 … n 1–, ,=
IDL Analyst Reference Guide IMSL_CSSHAPE

208 Chapter 6: Interpolation and Approximation
Example 2

This example compares interpolants computed by IMSL_CSINTERP and
IMSL_CSSHAPE with the keyword CONCAVE, as shown in Figure 6-4.

x = [0, .1, .2, .3, .4, .5, .6, .8, 1]
y = [0, .9, .95, .9, .1, .05, .05, .2, 1]
; Define the data set and compute interpolant from IMSL_CSINTERP.
pp1 = IMSL_CSINTERP(x, y)
pp2 = IMSL_CSSHAPE(x, y, /Concave)
; Compute the interpolant from IMSL_CSSHAPE with keyword Concave.
x2 = FINDGEN(100)/99
PLOT, x2, IMSL_SPVALUE(x2, pp1), Linestyle = 2
OPLOT, x2, IMSL_SPVALUE(x2, pp2)
OPLOT, x, y, Psym = 6
XYOUTS, .4, .9, 'IMSL_CSINTERP', Charsize = 1.2
OPLOT, [.73, .85], [.925, .925], Linestyle = 2
XYOUTS, .4, .8, 'IMSL_CSSHAPE !cwith CONCAVE', Charsize = 1.2
OPLOT, [.73, .85], [.8, .8]
XYOUTS, .4, .6, 'Original data', Charsize = 1.2
OPLOT, [.73], [.622], Psym = 6

Figure 6-3: Shape-Preserving Cubic Spline
IMSL_CSSHAPE IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 209
Errors

Warning Errors

MATH_MAX_ITERATIONS_REACHED—Maximum number of iterations has been
reached. The best approximation is returned.

Fatal Errors

MATH_DUPLICATE_XDATA_VALUES—The xdata values must be distinct.

Version History

Figure 6-4: Cubic Spline Comparison

6.4 Introduced
IDL Analyst Reference Guide IMSL_CSSHAPE

210 Chapter 6: Interpolation and Approximation
IMSL_BSINTERP

The IMSL_BSINTERP function computes a one- or two-dimensional spline
interpolant.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BSINTERP(xdata, fdata [, /DOUBLE] [, XKNOTS=value]
[, XORDER=value] [, YKNOTS=value] [, YORDER=value])

or

Result = IMSL_BSINTERP(xdata, ydata, fdata [, DOUBLE=value]
[, XKNOTS=value] [, XORDER=value] [, YKNOTS=value]
[, YORDER=value])

Return Value

A structure containing information that defines the one- or two-dimensional spline.

Arguments

If a one-dimensional spline is desired, then the arguments xdata and fdata are
required. If a two-dimensional, tensor-product spline is desired, then xdata, ydata,
and fdata are required.

xdata

Array containing the abscissas in the x-direction of the interpolation problem.

ydata

Array containing the abscissas in the y-direction of the interpolation problem.

fdata

Array containing the ordinates of the interpolation problem. If a one-dimensional
spline is being computed, then fdata (i) is the data value at xdata (i). If a two-
IMSL_BSINTERP IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 211
dimensional spline is being computed, then fdata is a two-dimensional array, where
fdata (i, j) is the data value at (xdata (i), ydata (i)).

Keywords

DOUBLE

If present and nonzero, double precision is used.

XKNOTS

Specifies the array of knots in the x-direction to be used when computing the
definition of the spline. Default: knots are selected by the IMSL_BSKNOTS function
using its defaults.

XORDER

Specifies the order of the spline in the x-direction. Default: XORDER = 4, i.e., cubic
splines.

YKNOTS

Specifies the array of knots in the y-direction to be used when computing the
definition of the spline. Default: knots are selected by the IMSL_BSKNOTS function
using its defaults.

YORDER

Specifies the order of the spline in the y-direction. If a one-dimensional spline is
being computed, then YORDER has no effect on the computations. Default:
YORDER = 4, i.e., cubic splines.

Discussion

The IMSL_BSINTERP function is designed to compute either a one-dimensional
spline interpolant or two-dimensional, tensor-product spline interpolant to input data.
The decision of whether to compute the one- or two-dimensional spline is based on
the number of arguments passed to the function. Keywords are provided to allow the
user to specify the order of the spline and the knots used for the spline. When
computing a one-dimensional spline, the available keywords are XORDER and
XKNOTS. When computing a two-dimensional spline, the order and knots in
x-direction and/or y-direction can be specified using the keywords XORDER,
XKNOTS, YORDER, and YKNOTS.
IDL Analyst Reference Guide IMSL_BSINTERP

212 Chapter 6: Interpolation and Approximation
Separate discussions on one- and two-dimensional splines follow.

One-dimensional B-splines

Given the data points x = xdata, f = fdata, and the number of elements (n) in xdata
and fdata, the default action of IMSL_BSINTERP computes a cubic (k = 4) spline
interpolant s to the data using the default knot sequence generated by the
IMSL_BSKNOTS function.

Optional keyword XORDER allows the user to choose the order, k, of the spline
interpolant; optional keyword XKNOTS allows user specification of knots.

The IMSL_BSINTERP function is based on the routine SPLINT by de Boor (1978, p.
204).

First, IMSL_BSINTERP sorts the xdata vector and stores the result in x. The
elements of the fdata vector are permuted appropriately and stored in f, yielding the
equivalent data (xi, fi) for i = 0 to n – 1.

The following preliminary checks are performed on the data:

xi < xi + 1 i = 0, ..., n – 2

ti < ti + k i = 0, ..., n – 1

tt ≤ ti + 1 i = 0, ..., n + k – 2

The first test checks to see that the abscissas are distinct. The second and third
inequalities verify that a valid knot sequence has been specified.

In order for the interpolation matrix to be nonsingular, tk – 1 ≤ xi ≤ tn is also checked
for i = 0 to n – 1. This first inequality in the last check is necessary since the method
used to generate the entries of the interpolation matrix requires that the k possibly
nonzero B-splines at xi:

Bj – k + 1, ..., Bj where j satisfies tj ≤ xi < tj + 1

be well-defined (that is, j – k + 1 ≥ 0).

General conditions are not known for the exact behavior of the error in spline
interpolation; however, if t and x are selected properly and the data points arise from
the values of a smooth (for example, Ck) function f, i.e., fi = f(xi), then the error
behaves in a predictable fashion. The maximum absolute error satisfies:

f s– tk 1– tn,[] C f
k()

tk 1– tn,[] t
k≤
IMSL_BSINTERP IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 213
where the following is true:

For more information on this, see de Boor (1978, Chapter 13) and the references
therein. This function can be used in place of the IMSL_CSINTERP function.

The returned value for this function is a structure. This structure contains all the
information to determine the spline (stored as a linear combination of B-splines) that
is computed by this function. For example, the following code sequence evaluates this
spline at x and returns the value in y:

y = IMSL_SPVALUE(x, spline)

Two-dimensional, Tensor-product B-splines

If arguments xdata, ydata, and fdata are all included in the call to the
IMSL_BSINTERP function, the function computes a two-dimensional, tensor-
product spline interpolant. The tensor-product spline interpolant to data {(xi, yj, fij)},
where 0 ≤ i ≤ nx – 1 and 0 ≤ j ≤ ny – 1, has the form:

where kx and ky are the orders of the splines. These numbers are defaulted to 4 but can
be set to any positive integer using keywords XORDER and YORDER. Likewise, tx
and ty are the corresponding knot sequences (XKNOTS and YKNOTS). These values
are defaulted to the knots returned by the IMSL_BSKNOTS function. The algorithm
requires that the following is true:

tx (kx – 1) ≤ xi ≤ tx (nx) 0 ≤ i ≤ nx – 1

ty (ky – 1) ≤ yj ≤ ty (ny) 0 ≤ j ≤ ny – 1

t := max ti 1+ ti–
i k 1– … n 1–, ,=

cnm Bn kx tx, , x()Bm ky ty, , y()
n 0=

nx 1–

∑
m 0=

ny 1–

∑

IDL Analyst Reference Guide IMSL_BSINTERP

214 Chapter 6: Interpolation and Approximation
Tensor-product spline interpolants in two dimensions can be computed quite
efficiently by solving (repeatedly) two univariate interpolation problems. The
computation is motivated by the following observations:

Setting:

note that for each fixed i from 0 to nx – 1, there are ny linear equations in the same
number of unknowns as can be seen below:

The same matrix appears in the previous equation.

Thus, this matrix is factored only once, then the factorization to solve the nx right-
hand sides is applied. Once this is done and hmi is computed, then the coefficients cnm
are solved using the relation:

for m from 0 to ny – 1, which involves one factorization and ny solutions to the
different right-hand sides. This ability of the IMSL_BSINTERP function is based on
the SPLI2D routine by de Boor (1978, p. 347).

cnm Bn kx tx, , xi()Bm ky ty, , yj()
n 0=

nx 1–

∑
m 0=

ny 1–

∑ fij=

hmi cnmBn kx tx, , xi()
n 0=

nx 1–

∑=

hmiBm ky ty, , yi()
m 0=

ny 1–

∑ fij=

Bm ky ty, , yj()[] 1 m j ny 1–≤,≤

cnmBn kx tx, , xi()
n 0=

nx 1–

∑ hmi=
IMSL_BSINTERP IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 215
The returned value is a structure containing all the information to determine the
spline (stored in B-spline format) that is computed by this function. For example, the
following code sequence evaluates this spline at (x, y) and returns the value in z:

z = IMSL_SPVALUE(x, y, spline)

Examples

Example 1

In this example, a one-dimensional B-spline interpolant to function values is
computed, as shown in Figure 6-5. Evaluations of the computed spline are then
plotted along with the original data values. Since the default settings are being used,
the interpolant is determined by the not-a-knot condition (see de Boor 1978).

x = FINDGEN(11)/10
; Define data values.
f = SIN(15 * x)
bs = IMSL_BSINTERP(x, f)
; Compute interpolant.
bsval = IMSL_SPVALUE(FINDGEN(100)/99, bs)
PLOT, FINDGEN(100)/99, bsval
; Output results.
OPLOT, x, f, Psym = 6
IDL Analyst Reference Guide IMSL_BSINTERP

216 Chapter 6: Interpolation and Approximation
Example 2

In this example, a two-dimensional, tensor-product B-spline interpolant to gridded
data is computed as shown in Figure 6-6.

x = FINDGEN(5)/4
; Define the abscissas in the x-direction.
y = FINDGEN(5)/4
; Define the abscissas in the y-direction.
f = FLTARR(5, 5)
; Define the sample function values.
FOR i = 0, 4 DO $

f(i, *) = SIN(2 * x(i)) - COS(5 * y)
bs = IMSL_BSINTERP(x, y, f)
; Compute the spline interpolant.
bsval = IMSL_SPVALUE(FINDGEN(20)/19, FINDGEN(20)/19, bs)
; Use IMSL_SPVALUE to evaluate the computed spline.
!P.Charsize = 1.5
!P.Multi = [0, 1, 2]
WINDOW, XSize = 400, YSize = 800
; Plot the original and computed surfaces in a tall window.

Figure 6-5: B-Spline Interpolant
IMSL_BSINTERP IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 217
SURFACE, f, x, y
SURFACE, bsval, FINDGEN(20)/19, $
FINDGEN(20)/19

Figure 6-6: Two-Dimensional B-Spline
IDL Analyst Reference Guide IMSL_BSINTERP

218 Chapter 6: Interpolation and Approximation
Errors

Warning Errors

MATH_ILL_COND_INTERP_PROB—Interpolation matrix is ill-conditioned. Solution
might not be accurate.

Fatal Errors

MATH_DUPLICATE_XDATA_VALUES—The xdata values must be distinct.

MATH_YDATA_NOT_INCREASING—The ydata values must be strictly increasing.

MATH_KNOT_MULTIPLICITY—Multiplicity of the knots cannot exceed the order of
the spline.

MATH_KNOT_NOT_INCREASING—Knots must be nondecreasing.

MATH_KNOT_XDATA_INTERLACING—The i-th smallest element of xdata (xi) must
satisfy ti ≤ xi < ti + Order, where t is the knot sequence.

MATH_XDATA_TOO_LARGE—Array xdata must satisfy
xdatai ≤ tndata, for i = 1, ..., ndata.

MATH_XDATA_TOO_SMALL—Array xdata must satisfy
xdatai ≥ tOrder – 1, for i = 1, ..., ndata.

MATH_KNOT_DATA_INTERLACING—The i-th smallest element of the data arrays
xdata and ydata must satisfy ti ≤ datai + Order, where t is the knot sequence.

MATH_DATA_TOO_LARGE—Data arrays xdata and ydata must satisfy
datai ≤ tnum_data, for i = 1, ..., num_data.

MATH_DATA_TOO_SMALL—Data arrays xdata and ydata must satisfy
datai ≥ tOrder – 1, for i = 1, ..., num_data.

Version History

6.4 Introduced
IMSL_BSINTERP IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 219
IMSL_BSKNOTS

The IMSL_BSKNOTS function computes the knots for a spline interpolant.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BSKNOTS(xdata [, /DOUBLE] [, ITMAX=value]
[, ORDER=value] [, /OPTIMUM])

Return Value

A one-dimensional array containing the computed knots.

Arguments

xdata

One-dimensional array containing the abscissas of the interpolation problem.

Keywords

DOUBLE

If present and nonzero, double precision is used.

ITMAX

Integer value used to set the maximum number of iterations of Newton’s method. To
use this keyword, the keyword OPTIMUM must also be set. Default: ITMAX = 10.

ORDER

Order of the spline subspace for which the knots are desired. Default: ORDER = 4,
i.e., cubic splines.
IDL Analyst Reference Guide IMSL_BSKNOTS

220 Chapter 6: Interpolation and Approximation
OPTIMUM

If present and nonzero, knots that satisfy an optimal criterion are computed. See
“Discussion” on page 220 for more information.

Discussion

Given the data points x = xdata, the order of the spline k = ORDER, and the number
n = N_ELEMENTS (xdata) of elements in xdata, the default action of
IMSL_BSKNOTS returns a knot sequence that is appropriate for interpolation of data
on x by splines of order k (the default order is k = 4). The knot sequence is contained
in its n + k elements. If k is even and it is assumed that the entries in the input vector x
are increasing, then the resulting knot sequence t is returned as follows:

ti = x0 for i = 0, ..., k – 1

ti = xi – k/2 – 1 for i = k, ..., n – 1 (1)

ti = xn – 1 for i = n, ..., n + k – 1

There is some discussion concerning this selection of knots in de Boor (1978, p. 211).
If k is odd, then t is returned as follows:

It is not necessary to sort the values in xdata.

If keyword OPTIMUM is set, then the knot sequence returned minimizes the constant
c in the error estimate:

|| f – s || ≤ c || f (k) ||

where f is any function in Ck and s is the spline interpolant to f at the abscissa x with
knot sequence t.

The algorithm is based on a routine described by de Boor (1978, p. 204), which in
turn is based on a theorem of Micchelli et al. (1976).

ti x0=

ti xn 1–=

ti
1
2
--- x

i k 1–
2

------------– 1–
x

i 1– k 2–
2

------------–
+

=

for i 0 … k 1–, ,=

for i k … n 1–, ,=

for i n … n k 1–+, ,=
IMSL_BSKNOTS IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 221
Examples

Example 1

In this example, knots for a cubic spline are generated and printed. Notice that the
knots are stacked at the endpoints; also, the second and next-to-last data points are
not knots.

x = FINDGEN(6)
knots = IMSL_BSKNOTS(x)

PM, knots, FORMAT = '(f5.2)'
 0.00
 0.00
 0.00
 0.00
 2.00
 3.00
 5.00
 5.00
 5.00
 5.00

Example 2

This example compares the default knots with the knots returned using keyword
OPTIMIZE as shown in Figure 6-7. The order is changed from the default value of 4
to 3.

x = FINDGEN(11)/10
; Define the abscissa values.
f = FLTARR(11)
; Define the function values.
f(0:3) = .25
f(4:7) = .5
f(8:10) = .25
sp1 = IMSL_BSINTERP(x, f)
; Compute the default spline.
knots2 = IMSL_BSKNOTS(x, /OPTIMUM, ORDER = 3)
; Compute the optimum knots of order 3.
sp2 = IMSL_BSINTERP(x, f, XKNOTS = knots2, XORDER = 3)
; Compute the spline of order 3, with the optimum knots.
x2 = FINDGEN(100)/99
; Evaluate the two splines for plotting.
sp1eval = IMSL_SPVALUE(x2, sp1)
sp2eval = IMSL_SPVALUE(x2, sp2)
PLOT, x2, sp1eval, Linestyle = 2
; Plot the results.
OPLOT, x2, sp2eval
IDL Analyst Reference Guide IMSL_BSKNOTS

222 Chapter 6: Interpolation and Approximation
OPLOT, x, f, PSYM = 6
XYOUTS, .25, .18, 'With optimum knots:', CHARSIZE = 1.5
OPLOT, [.65, .75], [.188, .188]
XYOUTS, .25, .135, 'With default knots:', CHARSIZE = 1.5
OPLOT, [.65, .75], [.143, .143], LINESTYLE = 2
XYOUTS, .3, .09, 'Original data', CHARSIZE = 1.5
OPLOT, [.70], [.098], PSYM = 6

Errors

Warning Errors

MATH_NO_CONV_NEWTON—Newton’s method iteration did not converge.

Fatal Errors

MATH_DUPLICATE_XDATA_VALUES—The xdata values must be distinct.

MATH_ILL_COND_LIN_SYS—Interpolation matrix is singular. The xdata values may
be too close together.

Figure 6-7: Optimum Knot Placement
IMSL_BSKNOTS IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 223
Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_BSKNOTS

224 Chapter 6: Interpolation and Approximation
IMSL_SPVALUE

The IMSL_SPVALUE function computes values of a spline or values of one of its
derivatives.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SPVALUE(x, spline [, XDERIV=value] [, YDERIV=value])

or

Result = IMSL_SPVALUE(x, y, spline [, XDERIV=value] [, YDERIV=value])

Return Value

The values of a spline or one of its derivatives.

Arguments

If evaluation of a one-dimensional spline is desired, then arguments x and spline are
required. If evaluation of a two-dimensional spline is desired, then x, y, and spline are
required.

x

Scalar value or an array of values at which the spline is to be evaluated in the x-
direction. If x is an array, then x must be strictly increasing, i.e., x (i) < x (i + 1) for
i = 0, (N_ELEMENTS (x) – 2).

y

Scalar value or an array of values at which the spline is to be evaluated in the y-
direction. This argument should only be used if spline is a two-dimensional, tensor-
product spline. If y is an array, then x must be strictly increasing, i.e., y (i) < y (i + 1)
for i = 0, (N_ELEMENTS (y) – 2).

spline

Structure that represents the spline.
IMSL_SPVALUE IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 225
Keywords

XDERIV

Let XDERIV = p, and let s be the spline that is represented by spline. If s is a one-
dimensional spline, this keyword produces the p-th derivative of s at x, s(p) (x). If s is
a two-dimensional spline, this keyword specifies the order of the partial derivative in
the x-direction. Let q = YDERIV, which has a default value of 0. Then,
IMSL_SPVALUE produces the (p, q)-th derivative of s at (x, y), s(p, q)(x, y). Default:
XDERIV = 0

YDERIV

If s = spline is a two-dimensional spline, this keyword specifies the order of the
partial derivative in the y-direction. Let p = XDERIV, which has a default value of
zero, and q = YDERIV. Then, IMSL_SPVALUE produces the (p, q)-th derivative of s
at (x, y), s(p, q)(x, y). If spline is a one-dimensional spline, this keyword has no effect
on computations. Default: YDERIV = 0

Discussion

The IMSL_SPVALUE function can be used to evaluate splines of the following type:

• Piecewise polynomials returned by IMSL_CSINTERP, IMSL_CSSHAPE, and
IMSL_CSSMOOTH.

• One-dimensional B-splines returned by IMSL_BSINTERP, IMSL_BSLSQ,
and IMSL_CONLSQ.

• Two-dimensional, tensor-product B-splines returned from IMSL_BSINTERP
and IMSL_BSLSQ.

If spline is a piecewise polynomial, the IMSL_SPVALUE function computes the
values of a cubic spline or one of its derivatives. In this case, supply the arguments x
and spline, but do not supply the argument y. If x is a scalar, then a scalar is returned.
If x is a one-dimensional array, then a one-dimensional array of values is returned.
The first and last pieces of the cubic spline are extrapolated so that the cubic spline
structures returned by the cubic spline routines are defined and can be evaluated on
the entire real line. This ability is based on the routine PPVALU by de Boor (1978, p.
89).

If spline is a one-dimensional B-spline, the IMSL_SPVALUE function computes the
values of a spline or one of its derivatives. In this case, the user is required to supply
the arguments x and spline and must not supply the argument y. If x is a scalar, then a
IDL Analyst Reference Guide IMSL_SPVALUE

226 Chapter 6: Interpolation and Approximation
scalar is returned. If x is a one-dimensional array, then a one-dimensional array of
values is returned. This ability is based on the routine BVALUE by de Boor (1978, p.
144).

If spline is a two-dimensional, tensor-product B-spline, the IMSL_SPVALUE
function computes the values of a tensor-product spline or one of its derivatives. In
this case, the user is required to supply the arguments x, y, and spline. If x and y are
both scalars, then a scalar is returned. If x and y are both one-dimensional arrays, then
a two-dimensional array of values is returned, where the (i, j)-th element of the
returned matrix is the desired value of spline (x (i), y (j)). This ability is based on the
discussion in de Boor (1978, pp. 351–353).

Examples

Example 1

This example computes a cubic spline interpolant to function values. The spline is
then evaluated, and the results are plotted as shown in Figure 6-8. Since the default
settings are used, the interpolant is determined by the not-a-knot condition (see
de Boor 1978).

x = FINDGEN(10)/9
f = SIN(15 * x)
pp = IMSL_CSINTERP(x, f)
x2 = FINDGEN(100)/99
ppeval = IMSL_SPVALUE(x2, pp)
PLOT, x2, ppeval
IMSL_SPVALUE IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 227
Example 2

This example computes a two-dimensional, tensor-product B-spline using
IMSL_BSINTERP, then uses IMSL_SPVALUE to evaluate the spline on a grid, and
plots the results as shown in Figure 6-9.

x = FINDGEN(5)/4
y = FINDGEN(5)/4
f = FLTARR(5, 5)
FOR i = 0, 4 DO f(i,*) = SIN(2 * !Pi * x(i)) * (-COS(!Pi*y/2))
; Generate the data.
bs = IMSL_BSINTERP(x, y, f)
; Compute the spline by calling IMSL_BSINTERP.
bsval = FLTARR(20, 20)
FOR i = 0, 19 DO BSVAL(i, *) = IMSL_SPVALUE(i/19., FINDGEN(20)/19,
bs)
; Evaluate the spline on a grid.
!P.Multi = [0, 1, 2]
WINDOW, XSize = 400, YSize = 800
; Plot the original data and the evaluations of the spline in the
; same plot window.
ax = 50
; The angle of rotation about x-axis in plots is defined by ax.

Figure 6-8: Spline Evaluation Plot
IDL Analyst Reference Guide IMSL_SPVALUE

228 Chapter 6: Interpolation and Approximation
!P.Charsize = 1.5
SURFACE, f, x, y, Ax = ax, XTitle = 'X', YTitle = 'Y'
SURFACE, bsval, FINDGEN(20)/19, FINDGEN(20)/19, Ax = ax, $

XTitle = 'X', YTitle = 'Y'

Figure 6-9: Two-Dimensional Spline Plot Evaluation
IMSL_SPVALUE IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 229
Errors

Warning Errors

MATH_X_NOT_WITHIN_KNOTS—Value of x does not lie within the knot sequence.

MATH_Y_NOT_WITHIN_KNOTS—Value of y does not lie within the knot sequence.

Fatal Errors

MATH_KNOT_MULTIPLICITY—Multiplicity of the knots cannot exceed the order of
the spline.

MATH_KNOT_NOT_INCREASING—Knots must be nondecreasing.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_SPVALUE

230 Chapter 6: Interpolation and Approximation
IMSL_SPINTEG

The IMSL_SPINTEG function computes the integral of a one- or two-dimensional
spline.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SPINTEG(a, b, spline)

Result = IMSL_SPINTEG(a, b, c, d, spline)

Return Value

If spline is a one-dimensional spline, then the returned value is the integral from a to
b of spline. If spline is a two-dimensional, tensor-product spline, then the returned
value is the value of the integral of spline over the rectangle [a, b] x [c, d]. If no value
can be computed, NaN (Not a Number) is returned.

Arguments

If integration of a one-dimensional spline is desired, then arguments a, b, and spline
are required. If integration of a two-dimensional spline is desired, then a, b, c, d, and
spline are required.

a

Right endpoint of integration.

b

Left endpoint of integration.

c

Right endpoint of integration for the second variable of the tensor-product spline.
This argument should only be used if spline is a two-dimensional, tensor-product
spline.
IMSL_SPINTEG IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 231
d

Left endpoint of integration for the second variable of the tensor-product spline. This
argument should only be used if spline is a two-dimensional, tensor-product spline.

spline

Structure that represents the spline to be integrated.

Discussion

The IMSL_SPINTEG function can be used to integrate splines of the following type:

• Piecewise polynomials returned by IMSL_CSINTERP, IMSL_CSSHAPE, and
IMSL_CSSMOOTH.

• One-dimensional B-splines returned by IMSL_BSINTERP, IMSL_BSLSQ,
and IMSL_CONLSQ.

• Two-dimensional, tensor-product B-splines returned from IMSL_BSINTERP
and IMSL_BSLSQ.

If s = spline is a one-dimensional piecewise polynomial or B-spline, then
IMSL_SPINTEG computes:

If spline is a one-dimensional B-spline, then this function uses identity (22) of
de Boor (1978, p. 115).

If s = spline is a two-dimensional, tensor-product spline, then the arguments c and d
are required, and IMSL_SPINTEG computes:

This function uses the (univariate integration) identity (22) of de Boor (1978, p. 151):

where t0 ≤ x ≤ tr. It assumes (for all knot sequences) that the first and last k knots are
stacked; that is, t0 = . . . = tk – 1 and tn = . . . = tn + k – 1, where k is the order of the
spline in the x or y direction.

s x() xd
a

b
∫

s x y,() y xdd
c
d∫a

b∫

α iBi k, τ() τd
i 0=

n 1–

∑
t0

x
∫ α j

tj k+ tj–

k

j 0=

i

∑ Bi k 1+, x()
i 0=

r 1–

∑=
IDL Analyst Reference Guide IMSL_SPINTEG

232 Chapter 6: Interpolation and Approximation
Example

This example computes a cubic spline interpolant to function values. The values of
the integral of this spline are then compared with the exact integral values. Since the
default settings are being used, the interpolant is determined by the not-a-knot
condition (de Boor 1978).

n = 21
; Generate the data.
x = FINDGEN(n)/(n - 1)
f = SIN(15 * x)
pp = IMSL_CSINTERP(x, f)
; Compute the interpolant.
results = FLTARR(22, 4)
; Define an array to hold some results to be output later.
FOR i = n/2, 3 * n/2 DO BEGIN $
x2 = i/FLOAT(2 * n - 2) &$

y = IMSL_SPINTEG(0, x2, pp) &$
results(i - n/2, *) = &$
[x2, (1 - COS(15 * x2))/15, y, &$
ABS((1 - COS(15 * x2))/15 - y)] &$

; Loop over different limits of integration and compare the
; results with the true answer.
ENDFOR
PM, results, FORMAT = '(4f12.4)', $

Title = ' X True Approx Error'
; Output the results.

X True Approx Error
0.2500 0.1214 0.1215 0.0001
0.2750 0.1036 0.1037 0.0001
0.3000 0.0807 0.0808 0.0001
0.3250 0.0559 0.0560 0.0001
0.3500 0.0325 0.0327 0.0001
0.3750 0.0139 0.0141 0.0002
0.4000 0.0027 0.0028 0.0002
0.4250 0.0003 0.0004 0.0002
0.4500 0.0071 0.0073 0.0002
0.4750 0.0223 0.0224 0.0001
0.5000 0.0436 0.0437 0.0001
0.5250 0.0681 0.0682 0.0001
0.5500 0.0924 0.0925 0.0001
0.5750 0.1131 0.1132 0.0001
0.6000 0.1274 0.1275 0.0001
0.6250 0.1333 0.1333 0.0001
0.6500 0.1298 0.1299 0.0001
0.6750 0.1176 0.1177 0.0001
0.7000 0.0984 0.0985 0.0001
IMSL_SPINTEG IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 233
0.7250 0.0747 0.0748 0.0001
0.7500 0.0499 0.0500 0.0001
0.7750 0.0274 0.0276 0.0001

Errors

Warning Errors

MATH_SPLINE_LEFT_ENDPT—Left endpoint of x integration is not within the knot
sequence. Integration occurs only from tOrder – 1 to b.

MATH_SPLINE_RIGHT_ENDPT—Right endpoint of x integration is not within the
knot sequence. Integration occurs only from tOrder – 1 to a.

MATH_SPLINE_LEFT_ENDPT_1—Left endpoint of x integration is not within the
knot sequence. Integration occurs only from b to tSpline_Space_Dim – 1.

MATH_SPLINE_RIGHT_ENDPT_1—Right endpoint of x integration is not within the
knot sequence. Integration occurs only from a to tSpline_Space_Dim – 1.

MATH_SPLINE_LEFT_ENDPT_2—Left endpoint of y integration is not within the
knot sequence. Integration occurs only from tOrder – 1 to d.

MATH_SPLINE_RIGHT_ENDPT_2—Right endpoint of y integration is not within the
knot sequence. Integration occurs only from tOrder – 1 to c.

MATH_SPLINE_LEFT_ENDPT_3—Left endpoint of y integration is not within the
knot sequence. Integration occurs only from d to tSpline_Space_Dim – 1.

MATH_SPLINE_RIGHT_ENDPT_3—Right endpoint of y integration is not within the
knot sequence. Integration occurs only from c to tSpline_Space_Dim – 1.

Fatal Errors

MATH_KNOT_MULTIPLICITY—Multiplicity of the knots cannot exceed the order of
the spline.

MATH_KNOT_NOT_INCREASING—Knots must be nondecreasing.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_SPINTEG

234 Chapter 6: Interpolation and Approximation
IMSL_FCNLSQ

The IMSL_FCNLSQ function computes a least-squares fit using user-supplied
functions.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FCNLSQ(f, nbasis, xdata, fdata [, /DOUBLE]
[, INTERCEPT=variable] [, SSE=variable] [, WEIGHTS=value])

Return Value

A one-dimensional array containing the coefficients of the basis functions.

Arguments

f

Scalar string specifying the name of a user-supplied function that defines the
subspace from which the least-squares fit is to be performed. The k-th basis function
evaluated at x is f (k, x), where k = 1, 2, ..., nbasis.

nbasis

Number of basis functions.

xdata

One-dimensional array containing the abscissas of the least-squares problem.

fdata

One-dimensional array containing the ordinates of the least-squares problem.
IMSL_FCNLSQ IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 235
Keywords

DOUBLE

If present and nonzero, double precision is used.

INTERCEPT

Named variable into which the coefficient of a constant function used to augment the
user-supplied basis functions in the least-squares fit is stored. Setting this keyword
forces an intercept to be added to the model.

SSE

Named variable into which the error sum of squares is stored.

WEIGHTS

Array of weights used in the least-squares fit.

Discussion

The IMSL_FCNLSQ function computes a best least-squares approximation to given
univariate data of the form:

by M basis functions:

(where M = nbasis). In particular, the default for this function returns the coefficients
a which minimize:

where w = WEIGHTS, n = N_ELEMENTS (xdata), x = xdata, and f = fdata.

xi fi,(){ } i 0=
n 1–

Fj{ }
j 1=
M

wi fi aj 1– Fj xi()
j 1=

M

∑–

 2

i 0=

n 1–

∑

IDL Analyst Reference Guide IMSL_FCNLSQ

236 Chapter 6: Interpolation and Approximation
If the optional keyword INTCERCEPT is used, then an intercept is placed in the
model and the coefficients a, returned by IMSL_FCNLSQ, minimize the error sum of
squares as indicated below:

Example

In this example, the following function is fit:

1 + sinx + 7sin3x

This function is evaluated at 90 equally spaced points on the interval [0, 6]. Four basis
functions, 1, sinx, sin2x, and sin3x, are used.

.RUN
; Define the basis functions.
FUNCTION f, k, x
IF (k EQ 1) THEN RETURN, 1. $

ELSE RETURN, SIN((k - 1) * x)
END

n = 90
xdata = 6 * FINDGEN(n)/(n - 1)
fdata = 1 + SIN(xdata) + 7 * SIN(3 * xdata)
nbasis = 4
; Generate the data.
coefs = IMSL_FCNLSQ('f', nbasis, xdata, fdata)
; Compute the coefficients summing IMSL_FCNLSQ.
PM, coefs, FORMAT = '(f10.5)'

; Print the results.
1.00000
1.00000
0.00000
7.00000

wi fi intercept– aj 1– Fj xi()
j 1=

M

∑–

 2

i 0=

n 1–

∑

IMSL_FCNLSQ IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 237
Errors

Warning Errors

MATH_LINEAR_DEPENDENCE—Linear dependence of the basis functions exists. One
or more components of coef are set to zero.

MATH_LINEAR_DEPENDENCE_CONST—Linear dependence of the constant function
and basis functions exists. One or more components of coef are set to zero.

Fatal Errors

MATH_NEGATIVE_WEIGHTS_2—All weights must be greater than or equal to zero.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_FCNLSQ

238 Chapter 6: Interpolation and Approximation
IMSL_BSLSQ

The IMSL_BSLSQ function computes a one- or two-dimensional, least-squares
spline approximation.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BSLSQ(xdata, fdata, xspacedim [, /DOUBLE] [, OPTIMIZE=value]
[, SSE=variable] [, XKNOTS=value] [, XORDER=value] [, XWEIGHTS=value]
[, YKNOTS=value] [, YORDER=value] [, YWEIGHTS=value])

or

Result = IMSL_BSLSQ(xdata, ydata, fdata, xspacedim, yspacedim
[, DOUBLE=value] [, OPTIMIZE=value] [, SSE=variable] [, XKNOTS=value]
[, XORDER=value] [, XWEIGHTS=value] [, YKNOTS=value]
[, YORDER=value] [, YWEIGHTS=value])

Return Value

A structure containing all the information to determine the spline fit.

Arguments

If a one-dimensional B-spline is desired, then arguments xdata, fdata, and xspacedim
are required. If a two-dimensional, tensor-product B-spline is desired, then arguments
xdata, ydata, fdata, xspacedim, and yspacedim are required.

xdata

One-dimensional array containing the data points in the x-direction.

ydata

One-dimensional array containing the data points in the y-direction.
IMSL_BSLSQ IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 239
fdata

Array containing the values to be approximated. If a one-dimensional approximation
is to be computed, then fdata is a one-dimensional array. If a two-dimensional
approximation is to be computed, then fdata is a two-dimensional array, where fdata
(i, j) contains the value at (xdata (i), ydata(j)).

xspacedim

Linear dimension of the spline subspace for the x variable. It should be smaller than
the number of data points in the x-direction and greater than or equal to the order of
the spline in the x-direction (whose default value is 4).

yspacedim

Linear dimension of the spline subspace for the y variable. It should be smaller than
the number of data points in the y-direction and greater than or equal to the order of
the spline in the y-direction (whose default value is 4).

Keywords

DOUBLE

If present and nonzero, double precision is used.

OPTIMIZE

If present and nonzero, optimizes the knot locations by attempting to minimize the
least-squares error as a function of the knots. This keyword is only active if a one-
dimensional spline is being computed.

SSE

Set this keyword equal to a named variable that will contain the weighted error sum
of squares is stored.

XKNOTS

Specifies the array of knots in the x-direction to be used when computing the
definition of the spline. Default: knots are equally spaced in the x-direction.

XORDER

Specifies the order of the spline in the x-direction. Default: XORDER = 4, i.e., cubic
splines.
IDL Analyst Reference Guide IMSL_BSLSQ

240 Chapter 6: Interpolation and Approximation
XWEIGHTS

Array containing the weights to use in the x-direction. Default: all weights equal to 1.

YKNOTS

Specifies the array of knots in the y-direction to be used when computing the
definition of the spline. Default: knots are equally spaced in the y-direction.

YORDER

Specifies the order of the spline in the y-direction. If a one-dimensional spline is
being computed, then YORDER has no effect on the computations. Default:
YORDER = 4, i.e., cubic splines.

YWEIGHTS

Array containing the weights to use in the y-direction. If a one-dimensional spline is
being computed, then YWEIGHTS has no effect on the computations. Default: all
weights equal to 1.

Discussion

The IMSL_BSLSQ function computes a least-squares approximation to weighted
data returning either a one-dimensional B-spline or a two-dimensional, tensor-
product B-spline. The determination of whether to return a one- or two-dimensional
spline is made based on the number of arguments passed to the function.

One-dimensional, B-spline Least-squares Approximation

Make the following identifications:

n = N_ELEMENTS(xdata)

x = xdata

f = fdata

m = xspacedim

k = XOrder

For convenience, assume that the sequence x is increasing (although the function does
not require this).

By default, k = 4 and the knot sequence selected equally distributes the knots through
the distinct xi’s. In particular, the m + k knots are generated in [x0 , xn – 1] with k
IMSL_BSLSQ IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 241
knots stacked at each of the extreme values. The interior knots are equally spaced in
the interval.

Once knots t and weights w are determined (and assuming that keyword OPTIMIZE
is not set), then the function computes the spline least-squares fit to the data by
minimizing over the linear coefficients aj, such that:

where Bj, j = 0, . . ., m – 1, is a (B-spline) basis for the spline subspace.

The XORDER keyword allows the user to choose the order of the spline fit. The
XKNOTS keyword allows user specification of knots. The one-dimensional
functionality of IMSL_BSLSQ is based on the routine L2APPR by de Boor (1978, p.
255).

If the keyword OPTIMIZE is used, the function attempts to find the best placement of
knots that minimizes the least-squares error to the given data by a spline of order k
with m coefficients. For this problem, it is necessary that m > k. Then, to find the
minimum of the functional, use the following:

The technique employed here uses the fact that for a fixed-knot sequence t the
minimization in a is a linear least-squares problem that is easily solved. Thus,
objective function F is a function of only t by setting the following:

G(t) = minF(a, t)

A Gauss-Seidel (cyclic coordinate) method is then used to reduce the value of the
new objective function G. In addition to this local method, there is a global heuristic
built into the algorithm that is useful if the data arise from a smooth function. This
heuristic is based on the routine NEWNOT of de Boor (1978, pp. 184, 258–261).

The guess, tg, for the knot sequence is either provided by the user or is the default.
This must be a valid knot sequence for splines of order k with:

wi fi aj Bj xi()
j 0=

m 1–

∑–

 2

i 0=

n 1–

∑

F a t,() wi fi ajBj k t, , xi()
j 0=

m 1–

∑–

 2

i 0=

n 1–

∑=

 … tk 1–
g

 xi tm
g

 … tm k 1–+
g

≤ ≤ ≤ ≤ ≤ ≤ i 1 ..., ,=
IDL Analyst Reference Guide IMSL_BSLSQ

242 Chapter 6: Interpolation and Approximation
with tg nondecreasing and tg
i < tg

i + k for i = 0, ..., m – 1.

In regard to execution speed, this function can be several orders of magnitude slower
than a simple least-squares fit.

The return value for this function is a structure containing all the information to
determine the spline (stored in B-spline form) that is computed by this function.

In Figure 6-10, two cubic splines are fit to SQRT(|x|). Both splines are cubics with
the same xspacedim = 8. The first spline is computed with the default settings, while
the second spline is computed by optimizing the knot locations using the OPTIMIZE
keyword.

Two-dimensional, B-spline Least-squares Approximation

If a two-dimensional, tensor-product B-spline is desired, the IMSL_BSLSQ function
computes a tensor-product spline, least-squares approximation to weighted, tensor-
product data. The input for this function consists of data vectors to specify the tensor-
product grid for the data, two vectors with the weights (optional, the default is 1), the
values of the surface on the grid, and the specification for the tensor-product spline
(optional, a default is chosen). The grid is specified by the two vectors x = xdata and
y = ydata of length n = N_ELEMENTS(xdata) and m= N_ELEMENTS(ydata),

Figure 6-10: Two Fits to Noisy SQRT(|x|)
IMSL_BSLSQ IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 243
respectively. A two-dimensional array f = fdata contains the data values to be fit. The
two vectors wx = XWEIGHTS and wy = YWEIGHTS contain the weights for the
weighted, least-squares problem. The information for the approximating tensor-
product spline can be provided using keywords XORDER, YORDER, XKNOTS, and
YKNOTS. This information is contained in kx = XORDER, tx = XKNOTS, and n =
xspacedim for the spline in the first variable, and in ky = YOrder, ty = YKnots, and
m = yspacedim for the spline in the second variable.

This function computes coefficients for the tensor-product spline by solving the
normal equations in tensor-product form as discussed in de Boor (1978, Chapter 17).
For more information, see the paper by Grosse (1980).

As the computation proceeds, coefficients c are obtained minimizing:

where the function Bkl is the tensor-product of two B-splines of order kx and ky:

The spline:

and its partial derivatives can be evaluated using IMSL_SPVALUE.

The return value for this function is a structure containing all the information to
determine the spline that is computed by this function. For example, the following
code sequence evaluates this spline (stored in the structure sp) at (x, y) and returns the
value in v:

v = IMSL_SPVALUE(x, y, sp)

Examples

Example 1

This example fits data generated from a trigonometric polynomial:

1 + sinx + 7sin3x + ε

wx i()wy j() ckl Bkl xi yi,()
l 0=

M 1–

∑
k 0=

N 1–

∑ fij–

2

j 0=

m 1–

∑
i 0=

n 1–

∑

Bkl x y,() Bk kx tx, , x()Bl ky ty, , y()=

cklBkl
l 0=

M 1–

∑
k 0=

N 1–

∑

IDL Analyst Reference Guide IMSL_BSLSQ

244 Chapter 6: Interpolation and Approximation
where ε is a random uniform deviate over the range [–1, 1]. The data is obtained by
evaluating this function at 90 equally spaced points on the interval [0, 6]. This data is
fit with a cubic spline with 12 degrees of freedom (eight equally spaced interior
knots). The computed fit and original data are then plotted, as shown in Figure 6-11,
as follows:

n = 90
x = 6 * FINDGEN(n)/(n - 1)
f = 1 + SIN(x) + 7 * SIN(3 * x) + (1 - 2 * IMSL_RANDOM(n))
; Set up the data.
sp = IMSL_BSLSQ(x, f, 8)
; Compute the spline fit.
speval = IMSL_SPVALUE(x, sp)
; Evaluate the computed spline at the original data abscissa.
PLOT, x, speval
; Plot the results.
OPLOT, x, f, Psym = 6

Figure 6-11: One-Dimensional Least-Squares B-Spline Fit
IMSL_BSLSQ IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 245
Example 2

This example fits noisy data that arises from the function exsin (x + y) + ε, where ε is
a random uniform deviate in the range (–1, 1), on the rectangle [0, 3] x [0, 5]. This
function is sampled on a 50 x 25 grid and the original data and the evaluations of the
computed spline are plotted as shown in Figure 6-12.

nx = 50
ny = 25
; Generate noisy data on a 50 x 25 grid.
x = 3 * FINDGEN(nx)/(nx - 1)
y = 5 * FINDGEN(ny)/(ny - 1)
f = FLTARR(nx, ny)
FOR i = 0, nx - 1 DO f(i, *) = EXP(x(i)) * $

SIN(x(i) + y) + 2 * IMSL_RANDOM(ny) - 1
sp = IMSL_BSLSQ(x, y, f, 5, 7)
; Call IMSL_BSLSQ to compute the least-squares fit. Notice that
; xspacedim = 5 and yspacedim = 7.
speval = IMSL_SPVALUE(x, y, sp)
; Evaluate the fit on the original grid.
!P.Multi = [0, 1, 2]
WINDOW, XSize = 500, YSize = 800
; Plot the original data and the fit in the same window.
SURFACE, f, x, y, Ax = 45, XTitle = 'X', YTitle = 'Y'
SURFACE, speval, x, y, Ax = 45, XTitle = 'X', YTitle = 'Y'
IDL Analyst Reference Guide IMSL_BSLSQ

246 Chapter 6: Interpolation and Approximation
Figure 6-12: Two-Dimensional B-Spline Fit to Noisy Data
IMSL_BSLSQ IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 247
Errors

Warning Errors

MATH_ILL_COND_LSQ_PROB—Least-squares matrix is ill-conditioned. Solution
might not be accurate.

MATH_SPLINE_LOW_ACCURACY—There may be less than one digit of accuracy in
the least-squares fit. Try using higher precision if possible.

MATH_OPT_KNOTS_STACKED_1—Knots found to be optimal are stacked more than
Order. This indicates that fewer knots will produce the same error sum of squares.
Knots have been separated slightly.

Fatal Errors

MATH_KNOT_MULTIPLICITY—Multiplicity of the knots cannot exceed the order of
the spline.

MATH_KNOT_NOT_INCREASING—Knots must be nondecreasing.

MATH_SPLINE_LRGST_ELEMNT—Data arrays xdata and ydata must satisfy datai ≤
tSpline_Space_Dim, for i = 1, ..., num_data.

MATH_SPLINE_SMLST_ELEMNT—Data arrays xdata and ydata must satisfy datai ≥
tOrder – 1, for i = 1, ..., num_data.

MATH_NEGATIVE_WEIGHTS—All weights must be greater than or equal to zero.

MATH_DATA_DECREASING—The xdata values must be nondecreasing.

MATH_XDATA_TOO_LARGE—Array xdata must satisfy
xdatai ≤ tndata, for i = 1, ..., ndata.

MATH_XDATA_TOO_SMALL—Array xdata must satisfy
xdatai ≥ tOrder – 1, for i = 1, ..., ndata.

MATH_OPT_KNOTS_STACKED_2—Knots found to be optimal are stacked more than
Order. This indicates fewer knots will produce the same error sum of squares.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_BSLSQ

248 Chapter 6: Interpolation and Approximation
IMSL_CONLSQ

The IMSL_CONLSQ function computes a least-squares constrained spline
approximation.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CONLSQ(xdata, fdata, spacedim, constraints[, nhard] [, /DOUBLE]
[, KNOTS=value] [, ORDER=value] [, WEIGHTS=value])

Return Value

A structure that represents the spline fit.

Arguments

xdata

One-dimensional array containing the abscissas of the least-squares problem.

fdata

One-dimensional array containing the ordinates of the least-squares problem.

spacedim

Linear dimension of the spline subspace. It should be smaller than the number of data
points and greater than or equal to the order of the spline (whose default value is 4).

constraints

Array of structures containing the abscissas at which the fit is to be constrained, the
derivative of the spline that is to be constrained, the type of constraints, and any lower
or upper limits. A description of the structure fields follows.

• XVAL—Point at which fit is constrained (float).

• DER—Derivative value of the spline to be constrained (long int).
IMSL_CONLSQ IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 249
• TYPE—Types of the general constraints (long int).

• BL—Lower limit of the general constraints (float).

• BU—Upper limit of the general constraints (float).

Note
To constrain the integral of the spline over the closed interval (c, d), set constraints
(i).XVAL = c and constraints (i + 1).XVAL = d. For consistency, insist that
constraints (i).TYPE = constraints (i + 1).TYPE = 5, 6, 7, or 8 and c ≤ d.

constraints(i).TYPE-th constraint

1

2

3

4

5

6

7

8

20 periodic end conditions

99 disregard this constraint

In order to have two-point constraints,
constraints(i).TYPE = constraints(i + 1).TYPE is needed.

constraints(i).TYPE i-th constraint

9

10

11

12

nhard

(Optional) Number of entries of constraints involved in the “hard” constraints. Note
that 0 ≤ nhard ≤ (SIZE (constraints)) (1). The default, nhard = 0, always results in a
fit, while setting nhard = (SIZE (constraints)) (1) forces all constraints to be met. The
“hard” constraints must be met or the function signals fail. The “soft” constraints

bli f
di()

xi()=

f
di()

xi() bui≤
f

di()
xi() bli≥

bli f
di()

xi() bu≤≤
bli f t()dt

c

d
∫=

f t()dt bui≤
c

d
∫

f t()dt bli≥
c

d
∫

bli f t()dt bui≤
c

d
∫≤

bli f
di()

xi() f
di 1+()

xi 1+()–=

f
di()

xi() f
di 1+()

xi 1+() bui≤–

f
di()

xi() f
di 1+()

xi 1+()– bli≥
bli f

di()
xi() f

di 1+()
xi 1+()– bu≤ ≤
IDL Analyst Reference Guide IMSL_CONLSQ

250 Chapter 6: Interpolation and Approximation
need not be satisfied, but there is an attempt to satisfy the “soft” constraints. The
constraints must be listed in terms of priority with the most important constraints
first. Thus, all “hard” constraints must precede “soft” constraints. If infeasibility is
detected among the “soft” constraints, the function satisfies, in order, as many of the
“soft” constraints as possible. Default: nhard = 0

Keywords

DOUBLE

If present and nonzero, double precision is used.

KNOTS

Specifies the array of knots to be used when computing the spline. Default: knots are
equally spaced.

ORDER

Specifies the order of the spline. Default: ORDER = 4, i.e., cubic splines.

WEIGHTS

Array containing the weights to be used. Default: all weights equal 1.

Discussion

The IMSL_CONLSQ function produces a constrained, weighted, least-squares fit to
data from a spline subspace. Constraints involving one-point, two-points, or integrals
over an interval are allowed.

The types of constraints supported by the functions are of four types:

An interval, Ip, (which may be a point, a finite interval, or a semi-infinite interval) is
associated with each of these constraints.

or f t()
yp

yp 1+∫ dt=

or periodic end conditions=

or f
jp()

yp() f
jp 1+()

yp 1+()–=

Ep f[] f
jp()

yp()=
IMSL_CONLSQ IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 251
The input for this function consists of the data set (xi, fi) for i = 1, ..., N (where
N = N_ELEMENTS(xdata)); that is, the data which is to be fit and the dimension of
the spline space from which a fit is to be computed, spacedim. The constraints
argument is an array of structures that contains the abscissas of the points involved in
specifying the constraints, as well as information relating the type of constraints and
the constraint interval. The optional argument nhard allows users of this code to
specify which constraints must be met and which constraints can be removed in order
to compute a fit. The algorithm tries to satisfy all the constraints, but if the constraints
are inconsistent, then it drops constraints in the reverse order specified, until either a
consistent set of constraints is found or the “hard” constraints are determined to be
inconsistent (the “hard” constraints are those involving constraints(0), ...,
constraints(nhard – 1)).

Let nf denote the number of feasible constraints as described above. The function
solved the problem:

subject to:

This linearly constrained least-squares problem is treated as a quadratic program and
is solved by invoking IMSL_QUADPROG.

The choice of weights depends on the data uncertainty in the problem. In some cases,
there is a natural choice for the weights based on the estimates of errors in the data
points.

Determining feasibility of linear constraints is a numerically sensitive task. If
difficulties are encountered, a quick fix is to widen the constraint intervals Ip.

Example

This example is a simple application of IMSL_CONLSQ. Data from the function
x/2 + sin(x/2) contaminated with random noise is generated and then fit with cubic
splines. The function is increasing so it is hoped that the least-squares fit also is

fi ajBj xi()
j 1=

m

∑–

2

wi
i 1=

n

∑

Ep ajBj
j 1=

m

∑ Ip p∈ 1 … nf, ,=
IDL Analyst Reference Guide IMSL_CONLSQ

252 Chapter 6: Interpolation and Approximation
increasing. This is not the case for the unconstrained least-squares fit generated by the
IMSL_BSLSQ function. The derivative is then forced to be greater than zero at 15
equally spaced points and IMSL_CONLSQ is called. The resulting curve is
monotone as shown in Figure 6-13.

IMSL_RANDOMOPT, Set = 234579
; Set the random seed.
ndata = 15;
spacedim = 8;
; Generate the data to be fit.
x = 10 * FINDGEN(ndata)/(ndata - 1)
y = .5 * (x) + SIN(.5 * (x)) + IMSL_RANDOM(ndata) - .5
sp1 = IMSL_BSLSQ(x, y, spacedim)
; Compute the unconstrained least-squares fit.
nconstraints = 15
; Define the constraints to be used by IMSL_CONLSQ.
constraints = REPLICATE({constraint, $

XVAL:0.0, DER:0L, TYPE:0L, BL:0.0, BU:0.0}, nconstraints)
; Define an array of constraint structures. Each element of the
; array contains one structure that defines a constraint.
constraints.XVAL = 10*FINDGEN(nconstraints)/(nconstraints-1)
; Put a constant at 15 equally spaced points.
FOR i = 0, nconstraints - 1 DO BEGIN &$

constraints(i).DER = 1 &$
constraints(i).TYPE = 3 &$
constraints(i).BL = 0. &$

ENDFOR
; Define constraints to force the second derivative to be greater
; than zero at the 15 equally spaced points.
sp2 = IMSL_CONLSQ(x, y, spacedim, constraints)
; Call IMSL_CONLSQ.
nplot = 100
xplot = 10 * FINDGEN(nplot)/(nplot - 1)
yplot1 = IMSL_SPVALUE(xplot, sp1)
yplot2 = IMSL_SPVALUE(xplot, sp2)
PLOT, xplot, yplot1, Linestyle = 2
; Plot the results.
OPLOT, xplot, yplot2
OPLOT, x, y, Psym = 6
XYOUTS, 1, 4.5, 'IMSL_CONLSQ', Charsize = 2
XYOUTS, 1, 4, 'IMSL_BSLSQ', Charsize = 2
OPLOT, [5.0, 6.0], [4.6, 4.6]
OPLOT, [5.0, 6.0], [4.1, 4.1], Linestyle = 2
IMSL_CONLSQ IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 253
Version History

Figure 6-13: Monotonic B-Spline Fit to Noisy Data

6.4 Introduced
IDL Analyst Reference Guide IMSL_CONLSQ

254 Chapter 6: Interpolation and Approximation
IMSL_CSSMOOTH

The CSSMOTH function computes a smooth cubic spline approximation to noisy
data by using cross-validation to estimate the smoothing parameter or by directly
choosing the smoothing parameter.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CSSMOOTH(xdata, fdata [, /DOUBLE] [, SMPAR=value]
[, WEIGHTS=value])

Return Value

The structure that represents the cubic spline.

Arguments

xdata

One-dimensional array containing the abscissas of the problem.

fdata

One-dimensional array containing the ordinates of the problem.

Keywords

DOUBLE

If present and nonzero, double precision is used.

SMPAR

Specifies the real, scalar smoothing parameter explicitly. See “Discussion” on
page 255 for more details.
IMSL_CSSMOOTH IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 255
WEIGHTS

Array containing the weights to be used in the problem. Default: all weights are equal
to 1

Discussion

The IMSL_CSSMOOTH function is designed to produce a C2 cubic spline
approximation to a data set in which the function values are noisy. This spline is
called a smoothing spline.

Consider first the situation when the optional keyword SMPAR is selected. Then, a
natural cubic spline with knots at all the data abscissas x = xdata is computed, but it
does not interpolate the data (xi, fi). The smoothing spline s is the unique C2 function
which minimizes:

subject to the constraint:

where w = WEIGHTS, σ = SMPAR is the smoothing parameter, and
n = N_ELEMENTS(xdata).

Recommended values for σ depend on the weights w. If an estimate for the standard
deviation of the error in the value fi is available, then wi should be set to the inverse of
this value. The smoothing parameter σ should be chosen in the confidence interval
corresponding to the left side of the above inequality; that is:

The IMSL_CSSMOOTH function is based on an algorithm of Reinsch (1967). This
algorithm also is discussed in de Boor (1978, pp. 235–243).

The default for this function chooses the smoothing parameter σ by a statistical
technique called cross-validation. For more information on this topic, refer to Craven
and Wahba (1979).

s″ x()2
xd

a

b

∫

s xi() fi–()wi
2

i 0=

n 1–

∑ σ≤

n 2n– σ n 2n+≤ ≤)
IDL Analyst Reference Guide IMSL_CSSMOOTH

256 Chapter 6: Interpolation and Approximation
The return value for this function is a structure containing all the information to
determine the spline (stored as a piecewise polynomial) that is computed by this
procedure.

Example

In this example, function values are contaminated by adding a small “random”
amount to the correct values. The IMSL_CSSMOOTH function is used to
approximate the original, uncontaminated data as shown in Figure 6-14.

n = 25
x = 6 * FINDGEN(n)/(n - 1)
f = SIN(x) + .5 * (IMSL_RANDOM(n) - .5)
; Generate the data.
pp = IMSL_CSSMOOTH(x, f)
; Compute the fit.
x2 = 6 * FINDGEN(100)/99
; Evaluate the computed fit at 100 values in [0, 6].
ppeval = IMSL_SPVALUE(x2, pp)
PLOT, x2, ppeval
; Plot the results.
OPLOT, x, f, Psym = 6, Symsize = .5

Figure 6-14: Smoothing Spline
IMSL_CSSMOOTH IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 257
Errors

Warning Errors

MATH_MAX_ITERATIONS_REACHED—Maximum number of iterations has been
reached. The best approximation is returned.

Fatal Errors

MATH_DUPLICATE_XDATA_VALUES—The xdata values must be distinct.

MATH_NEGATIVE_WEIGHTS—All weights must be greater than or equal to zero.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_CSSMOOTH

258 Chapter 6: Interpolation and Approximation
IMSL_SMOOTHDATA1D

The IMSL_SMOOTHDATA1D function smooths one-dimensional data by error
detection.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SMOOTHDATA1D(x, y [, DISTANCE=value] [, /DOUBLE]
[, ITMAX=value] [, SC=value])

Return Value

One-dimensional array containing the smoothed data.

Arguments

x

One-dimensional array containing the abscissas of the data points.

y

One-dimensional array containing the ordinates of the data points.

Keywords

DISTANCE

Proportion of the distance the ordinate in error is moved to its interpolating curve. It
must be in the range 0.0 to 1.0. Default: DISTANCE = 1.0

DOUBLE

If present and nonzero, double precision is used.

ITMAX

The maximum number of iterations allowed. Default: ITMAX = 500
IMSL_SMOOTHDATA1D IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 259
SC

The stopping criterion. SC should be greater than or equal to zero. Default: SC = 0.0

Discussion

The IMSL_SMOOTHDATA1D function is designed to smooth a data set that is
mildly contaminated with isolated errors. In general, the routine will not work well if
more than 25% of the data points are in error. The routine IMSL_SMOOTHDATA1D
is based on an algorithm of Guerra and Tapia (1974).

Setting N_ELEMENTS(x) = n, Y = f, Result = s and X= x, the algorithm proceeds as
follows. Although the user need not an ordered x sequence, we will assume that x is
increasing for simplicity. The algorithm first sorts the x values into an increasing
sequence and then continues. A cubic spline interpolant is computed for each of the
6-point data sets (initially setting s = f):

(xj, sj) j = i – 3, ... , i + 3 j ≠ i

where i = 4, ... , n – 3. For each i the interpolant, which we will call Si, is compared
with the current value of si, and a ‘point energy’ is computed as:

pei = Si(xi) – si

Setting sc = SC, the algorithm terminates either if ITMAX iterations have taken place
or if:

If the above inequality is violated for any i, then we update the i-th element of s by
setting si = si + d(pei), where d = DISTANCE. Note that neither the first three nor the
last three data points are changed. Thus, if these points are inaccurate, care must be
taken to interpret the results.

The choice of the parameters DISTANCE, SC and ITMAX are crucial to the
successful usage of this subroutine. If the user has specific information about the
extent of the contamination, then he should choose the parameters as follows:
DISTANCE = 1, SC = 0 and ITMAX to be the number of data points in error. On the
other hand, if no such specific information is available, then choose
DISTANCE = 0.5, ITMAX ≤ 2n, and:

In any case, we would encourage the user to experiment with these values.

pei sc
xi 3+ xi 3––()

6
---------------------------------- i≤ 4 … n 3–, ,=

Sc 0.5
maxs mins–

xn x1–()
-------------------------------=
IDL Analyst Reference Guide IMSL_SMOOTHDATA1D

260 Chapter 6: Interpolation and Approximation
Example

We take 91 uniform samples from the function 5 + (5 + t2 sin t)/t on the interval
[1, 10]. First, define function F from which samples will be taken

FUNCTION F, xdata
RETURN, (xdata*xdata*SIN(xdata) + 5)/xdata + 5

END

Next, we contaminate 10 of the samples and try to recover the original function
values.

isub = [5, 16, 25, 33, 41, 48, 55, 61, 74, 82]
rnoise = [2.5, -3.0, -2.0, 2.5, 3.0, -2.0, -2.5, 2.0, -2.0, 3.0]

; Example 1: No specific information available.
dis = 0.5
sc = 0.56
itmax = 182
; Set values for xdata and fdata.
xdata = 1 + 0.1*FINDGEN(91)
fdata = f(xdata)

; Contaminate the data.
fdata(isub) = fdata(isub) + rnoise

; Smooth the data.
sdata = IMSL_SMOOTHDATA1D(xdata, fdata, Itmax = itmax, $

Distance = dis, Sc = sc)

; Output the results.
PM, [[f(xdata(isub))], [fdata(isub)], [sdata(isub)]], $

Title = ' F(X) F(X) + noise sdata'
 F(X) F(X) + noise sdata
 9.82958 12.3296 9.87030
 8.26338 5.26338 8.21537
 5.20083 3.20083 5.16823
 2.22328 4.72328 2.26399
 1.25874 4.25874 1.30825
 3.16738 1.16738 3.13830
 7.16751 4.66751 7.13076
 10.8799 12.8799 10.9092
 12.7739 10.7739 12.7075
 7.59407 10.5941 7.63885

; Example 2: Specific information available.
dis = 1.0
sc = 0.0
IMSL_SMOOTHDATA1D IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 261
itmax = 10.0
; A warning message is produce because the maximum number
; of iterations is reached.
sdata = IMSL_SMOOTHDATA1D(xdata, fdata, Itmax = itmax, $

Distance = dis, Sc = sc)
% IMSL_SMOOTHDATA1D: Warning: MATH_ITMAX_EXCEEDED
; Maximum number of iterations limit 'ITMAX' = 10 exceeded. The
; best answer found is returned. Output the results.
PM, [[f(xdata(isub))], [fdata(isub)], [sdata(isub)]], $

 Title = ' F(X) F(X) + noise sdata'
 F(X) F(X) + noise sdata
 9.82958 12.3296 9.83127
 8.26338 5.26338 8.26223
 5.20083 3.20083 5.19946
 2.22328 4.72328 2.22495
 1.25874 4.25874 1.26142
 3.16738 1.16738 3.16958
 7.16751 4.66751 7.16986
 10.8799 12.8799 10.8779
 12.7739 10.7739 12.7699
 7.59407 10.5941 7.59194

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_SMOOTHDATA1D

262 Chapter 6: Interpolation and Approximation
IMSL_SCAT2DINTERP

The IMSL_SCAT2DINTERP function computes a smooth bivariate interpolant to
scattered data that is locally a quintic polynomial in two variables.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SCAT2DINTERP(xydata, fdata, xout, yout [, /DOUBLE])

Return Value

A two-dimensional array containing the grid of values of the interpolant.

Arguments

xydata

Two-dimensional array containing the data points for the interpolation problem.
Argument xydata is dimensioned (2, N_ELEMENTS (fdata)). The i-th data point (xi,
yi) is stored in xydata (0, i) = xi and xydata (1, i) = yi.

fdata

One-dimensional array containing the values to be interpolated.

xout

One-dimensional array specifying the x values for the output grid. It must be strictly
increasing.

yout

One-dimensional array specifying the y values for the output grid. It must be strictly
increasing.
IMSL_SCAT2DINTERP IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 263
Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The IMSL_SCAT2DINTERP function computes a C1 interpolant to scattered data in
the plane. Given the data points (in R3):

where n = N_ELEMENTS(xydata) / 2, IMSL_SCAT2DINTERP returns the values of
the interpolant s on the user-specified grid. The computation of s is as follows.

First, the Delaunay triangulation of the points:

is computed. On each triangle T in this triangulation, s has the following form:

Thus, s is a bivariate quintic polynomial on each triangle of the triangulation. In
addition:

and s is continuously differentiable across the boundaries of neighboring triangles.
These conditions do not exhaust the freedom implied by the above representation.
This additional freedom is exploited in an attempt to produce an interpolant that is
faithful to the global shape properties implied by the data. For more information on
this procedure, refer to the article by Akima (1978). The output grid is specified by
the two real vectors, xout and yout, that represent the first (second) coordinates of the
grid.

Example

In this example, IMSL_SCAT2DINTERP is used to fit a surface to randomly
scattered data. The resulting surface and the original data points are then plotted as
shown in Figure 6-15.

xi yi fi, ,(){ }
i 0=

n 1–

xi yi,(){ }
i 0=

n 1–

s x y,() cmn
T

x
m

y
n

m n+ 5≤
∑= x y,() T∈∀

s xi yi,() fi= for i 0 … n 1–, ,=
IDL Analyst Reference Guide IMSL_SCAT2DINTERP

264 Chapter 6: Interpolation and Approximation
IMSL_RANDOMOPT, Set = 12345
ndata = 15
xydata = FLTARR(2, ndata)
xydata(*) = IMSL_RANDOM(2 * ndata)
fdata = IMSL_RANDOM(ndata)
x = xydata(0, *)
y = xydata(1, *)
ngrid = 20
xout = FINDGEN(ngrid)/(ngrid - 1)
yout = FINDGEN(ngrid)/(ngrid - 1)
; Define the grid used to evaluate the computed surface.
surf = IMSL_SCAT2DINTERP(xydata, fdata, xout, yout)
; Call IMSL_SCAT2DINTERP.
SURFACE, surf, xout, yout, /Save, Ax = 45, Charsize = 1.5
; Plot the computed surface.
PLOTS, x, y, fdata, /T3d, Symsize = 2, Psym = 2
; Plot the original data points.

Errors

Fatal Errors

MATH_DUPLICATE_XYDATA_VALUES—Two-dimensional data values must be
distinct.

MATH_XOUT_NOT_STRICTLY_INCRSING—Vector xout must be strictly increasing.

Figure 6-15: Fit to Scattered Data
IMSL_SCAT2DINTERP IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 265
MATH_YOUT_NOT_STRICTLY_INCRSING—Vector yout must be strictly increasing.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_SCAT2DINTERP

266 Chapter 6: Interpolation and Approximation
IMSL_RADBF

The IMSL_RADBF function computes an approximation to scattered data in Rn for
n ≥ 2 using radial-basis functions.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RADBF(abscissa, fdata, num_centers [, BASIS=string]
[, CENTERS=value] [, DELTA=value] [, /DOUBLE]
[, RANDOM_SEED=value] [, RATIO_CENTERS=value] [, WEIGHTS=value])

Return Value

A structure that represents the radial-basis fit.

Arguments

abscissa

Two-dimensional array containing the abscissas of the data points. Parameter
abscissa (i, j) is the abscissa value of the j-th data point in the i-th dimension.

fdata

One-dimensional array containing the ordinates for the problem.

num_centers

Number of centers to be used when computing the radial-basis fit. The num_centers
argument should be less than or equal to N_ELEMENTS (fdata).
IMSL_RADBF IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 267
Keywords

BASIS

Character string specifying a user-supplied function to compute the values of the
radial functions. The form of the input function is ϕ (r). Default: the Hardy
multiquadratic

CENTERS

User-supplied centers. See “Discussion” below for details.

DELTA

Delta used in the default basis function, φ (r) = SQRT(r2 + δ2). Default:
DELTA = 1.

DOUBLE

If present and nonzero, double precision is used.

RANDOM_SEED

Value of the random seed used when determining the random subset of abscissa to
use as centers. By changing the value of seed on different calls to IMSL_RADBF,
with the same data set, a different set of random centers are chosen. Setting
RANDOM_SEED to zero forces the random number seed to be based on the system
clock, so possibly, a different set of centers is chosen each time the program is
executed. Default: RANDOM_SEED = 234579.

RATIO_CENTERS

Desired ratio of centers placed on an evenly spaced grid to the total number of
centers. There is a condition: The same number of centers placed on a grid for each
dimension must be equal. Thus, the actual number of centers placed on a grid is
usually less than RATIO_CENTERS * num_centers, but is never more than
RATIO_CENTERS * num_centers. The remaining centers are randomly chosen from
the set of abscissa given in abscissa. Default: RATIO_CENTERS = 0.5

WEIGHTS

Requires the user to provide the weights. Default: all weights equal 1.
IDL Analyst Reference Guide IMSL_RADBF

268 Chapter 6: Interpolation and Approximation
Discussion

The IMSL_RADBF function computes a least-squares fit to scattered data in Rd.
More precisely, let n = N_ELEMENTS (fdata), x = abscissa, f = fdata, and
d = N_ELEMENTS (abscissa (0, *)). Then:

This function computes a function F which approximates the above data in the sense
that it minimizes the sum-of-squares error:

where w = WEIGHTS.

The functional form of F is, of course, restricted as follows:

The function φ is called the radial function. It maps R1 into R1. It needs to be defined
only for the nonnegative reals. For the purpose of this routine, the user supplied a
function:

Note that the value of delta is defaulted to 1. It can be set by the user by using
keyword Delta.

The default-basis function is called the Hardy multiquadric and is defined as:

A key feature of this routine is the user’s control over the selection of the basis
function.

In order to obtain the default selection of centers, first compute the number of centers
that will be on a grid and the number that will be on a random subset of the abscissa.
Next, compute those centers on a grid. Finally, a random subset of abscissa is

x
0

... x
n 1–, , IR

d∈
f0 ... fn 1–, , IR

1∈

wi F x
i() fi–()

2

i 0=

n 1–

∑

F x(): α j x cj–
2 δ2

+

j 0=

k 1–

∑ djφ x cj–()
j 0=

k 1–

∑= =

φ r() r2 δ2+()=

φ r() r2 δ2+()=
IMSL_RADBF IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 269
obtained. This determines where the centers are placed. The selection of centers is
discussed in more detail below.

First, the computed grid is restricted to have the same number of grid values in each
of the “dimension” directions. Then, the number of centers placed on a grid,
num_gridded, is computed as follows:

Note that there are β grid values in each of the “dimension” directions. Then:

num_random = (num_centers) – (num_gridded)

How many centers are placed on a grid and how many are placed on a random subset
of the abscissa is now known. The gridded centers are computed such that they are
equally spaced in each of the “dimension” directions. The last problem is to compute
a random subset, without replacement, of the abscissa. The selection is based on a
random seed. The default seed is 234579. The user can change this using optional
keyword IMSL_RANDOM_SEED. Once the subset is computed, the abscissa as
centers is used.

Since the selection of good centers for a specific problem is an unsolved problem at
this time, ultimate flexibility is given to the user; that is, the user can select centers
using keyword CENTERS. As a rule of thumb, the centers should be interspersed
with the abscissa.

The return value for this function is a pointer to the structure containing all the
information necessary to evaluate the fit. This pointer is then passed to the
IMSL_RADBE function to produce values of the fitted function.

Examples

Example 1: Fitting Noisy Data with Default Radial Function

In this example, IMSL_RADBF is used to fit noisy data. Four plots are generated
using different values for num_centers as shown in Figure 6-16. The plots generated
by running this example are included after the code. Note that the triangles represent
the placement of the centers.

PRO radbf_ex1
!P.Multi = [0, 2, 2]
ndata = 10
noise_size = .05
xydata = DBLARR(1, ndata)

α Ratio_Centers() num_centers()=

β α1 dimension⁄
=

num_gridded βdimension
=

IDL Analyst Reference Guide IMSL_RADBF

270 Chapter 6: Interpolation and Approximation
fdata = DBLARR(ndata)
; Set up parameters.
IMSL_RANDOMOPT, Set = 234579
; Set the random number seed.
noise = 1 - 2 * IMSL_RANDOM(ndata, /Double)
; Generate the noisy data.
xydata(0, *) = 15 * IMSL_RANDOM(ndata)
fdata = REFORM(COS(xydata(0, *)) + noise_size * noise, ndata)
FOR i = 0, 3 DO BEGIN

num_centers = ndata/3 + i
; Loop on different values of num_centers.
radial_struct = IMSL_RADBF(xydata, fdata, num_centers)
; Compute the fit.
a = DBLARR(1, 100)
a(0, *) = 15 * FINDGEN(100)/99.
fit = IMSL_RADBE(a, radial_struct)
; Evaluate fit.
title = 'Fit with NUM_CENTERS = ' + $

STRCOMPRESS(num_centers, /Remove_All)
PLOT, xydata(0, *), fdata, Title = title, $

Psym = 6, Yrange = [-1.25, 1.25]
; Plot results.
OPLOT, a(0, *), fit
; Plot the original data as squares.
OPLOT, radial_struct.CENTERS, $

MAKE_ARRAY(num_centers, Value=-1.25), Psym = 5
; Plot the x-values of the centers as triangles.

END
END
IMSL_RADBF IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 271
Figure 6-16: Fits using Differential Values for Num_centers
IDL Analyst Reference Guide IMSL_RADBF

272 Chapter 6: Interpolation and Approximation
Example 2: Fitting Noisy Data with User-supplied Radial
Function

This example fits the same data as the first example, but the user supplies the radial
function and sets RATIO_CENTERS to zero. The radial function used in this
example is φ (r) = ln (1 + r2). Four plots are generated using different values for
num_centers as shown in Figure 6-17. The plots generated by running this example
are included after the code. Note that the triangles represent the placement of the
centers.

FUNCTION user_fcn, distance
; Define the radial function.
RETURN, ALOG(1 + distance^2)

END

PRO radbf_ex2
; Set up parameters.
!P.Multi = [0, 2, 2]
ndata = 10
noise_size = .05
xydata = DBLARR(1, ndata)
fdata = DBLARR(ndata)
IMSL_RANDOMOPT, Set = 234579
; Set the random number seed.
noise = 1 - 2 * IMSL_RANDOM(ndata, /Double)
; Generate the noisy data.
xydata(0, *) = 15 * IMSL_RANDOM(ndata)
fdata = REFORM(COS(xydata(0,*)) + noise_size * noise, ndata)
FOR i = 0, 3 DO BEGIN

; Loop on different values of num_centers.
num_centers = ndata/3 + i
radial_struct = IMSL_RADBF(xydata, fdata, $

num_centers, Ratio_Centers = 0, Basis = 'user_fcn')
; Compute the fit.
a = DBLARR(1, 100)
a(0, *) = 15 * FINDGEN(100)/99.
fit = IMSL_RADBE(a, radial_struct)
; Evaluate fit.
title = 'Fit with NUM_CENTERS = ' + $

STRCOMPRESS(num_centers, /Remove_All)
PLOT, xydata(0,*), fdata, Title = title, $

Psym = 6, Yrange = [-1.25, 1.25]
; Plot results.
OPLOT, a(0, *), fit
OPLOT, radial_struct.CENTERS, $

MAKE_ARRAY(num_centers,Value = -1.25), Psym = 5
END
IMSL_RADBF IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 273
END

Example 3: Fitting a Surface to Three-dimensional Scattered
Data

This example fits a surface to scattered data. The scattered data is generated using the
function f (x, y) = exp (ln (y + 1) sin (x)). The plots generated by running this example
are included after the code as shown in Figure 6-18 and Figure 6-19.

FUNCTION f, x1, x2
; This function generates the scattered data function values.
RETURN, EXP(ALOG10(x2 + 1)) * SIN(x1)

END

PRO radbf_ex3
; Set up initial parameters.
IMSL_RANDOMOPT, Set = 123457
ndata = 50
num_centers = ndata
xydata = DBLARR(2, ndata)
fdata = DBLARR(ndata)

Figure 6-17: Fit using a User-Defined Radial Function
IDL Analyst Reference Guide IMSL_RADBF

274 Chapter 6: Interpolation and Approximation
xrange = 8
yrange = 5
xydata(0,*) = xrange * IMSL_RANDOM(ndata, /Double)
xydata(1,*) = yrange * IMSL_RANDOM(ndata, /Double)
fdata(*) = f(xydata(0, *), xydata(1, *))
; Generate data.
radial_struct = IMSL_RADBF(xydata, fdata, num_centers, Ratio=0)
; Compute fit using IMSL_RADBF.
WINDOW, /Free
; Plot results.
nx = 25
ny = 25
; Variables nx and ny are coarseness of the plotted surfaces.
xyfit = DBLARR(2, nx * ny)
xyfit(0, *) = xrange * (FINDGEN(nx * ny)/ny)/(nx - 1)
xyfit(1, *) = yrange * (FINDGEN(nx * ny) MOD ny)/(ny - 1)

zfit = TRANSPOSE(REFORM(IMSL_RADBE(xyfit, Radial_Struct), $
ny, nx))

; Use TRANSPOSE and REFORM in order to get the results
; into a form that SURFACE can use.
xt = xrange * FINDGEN(nx)/(nx-1)
yt = yrange * FINDGEN(ny)/(ny-1)
SURFACE, zfit, xt, yt, /Save, Zrange = [MIN(zfit), MAX(zfit)]
PLOTS, xydata(0, *), xydata(1, *), fdata, $

/T3d, Psym = 4, Symsize = 2
; Plot the original data points over the surface plot.
WINDOW, /Free
orig = DBLARR(nx, ny)
FOR i = 0, (nx-1) DO FOR j = 0, (ny-1) DO $

orig(i, j) = f(xt(i), yt(j))
SURFACE, orig, xt, yt, Zrange = [MIN(zfit), MAX(zfit)]
; Plot original function.

END
IMSL_RADBF IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 275
Figure 6-18: Surface Fit to Scattered Data
IDL Analyst Reference Guide IMSL_RADBF

276 Chapter 6: Interpolation and Approximation
Version History

Figure 6-19: Function used to Generate Scattered Data

6.4 Introduced
IMSL_RADBF IDL Analyst Reference Guide

Chapter 6: Interpolation and Approximation 277
IMSL_RADBE

The IMSL_RADBE function evaluates a radial-basis fit computed by
IMSL_RADBF.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RADBE(abscissa, radial_fit)

Return Value

An array containing the values of the radial-basis fit at the desired values.

Arguments

abscissa

Two-dimensional array containing the abscissa of the data points at which the fit is
evaluated. Argument abscissa (i, j) is the abscissa value of the j-th data point in the
i-th dimension.

radial_fit

Radial-basis structure to be used for the evaluation.

Discussion

The IMSL_RADBE function evaluates a radial-basis fit from data generated by
IMSL_RADBF.

Example

See “IMSL_RADBF” on page 266 for examples using IMSL_RADBE.
IDL Analyst Reference Guide IMSL_RADBE

278 Chapter 6: Interpolation and Approximation
Version History

6.4 Introduced
IMSL_RADBE IDL Analyst Reference Guide

Chapter 7

Quadrature
This section contains the following topics:
Overview: Quadrature 280 Quadrature Routines 283
IDL Analyst Reference Guide 279

280 Chapter 7: Quadrature
Overview: Quadrature

This section introduces some of the mathematical concepts used in the IDL Analyst
integration routines.

Univariate and Bivariate Quadrature

The first function in this chapter, IMSL_INTFCN, is designed to compute
approximations to integrals of the following form:

or:

The weight function w is used to incorporate known singularities (either algebraic or
logarithmic) or to incorporate oscillations. The default action of this function
assumes univariate quadrature, a weight function w(x) = 1, and the existence of
endpoint singularities. Even if no endpoint singularities exist, the default method is
still effective for general-purpose integration. If more efficiency is desired, then a
more specialized method can be specified through the use of specific parameter and
keyword combinations. The available methods can be summarized as follows, where
the description refers to subsections of the documentation for the IMSL_INTFCN
function:

• w(x) = 1

• Integration of a function with endpoint singularities (default method)

• Integration of a function based on Gauss-Kronrod rules

• Integration of a function with singular points given

• Integration of a function over an infinite or semi-infinite interval

• Integration of a smooth function using a nonadaptive method

• Integration of a two-dimensional iterated integral

• w(x) = sinωx or w(x) = cosωx

• Integration of a function containing a sine or cosine factor

f x()w x() xd
a

b

∫

f x y,() xd yd
g x()

h x()

∫
a

b

∫

Overview: Quadrature IDL Analyst Reference Guide

Chapter 7: Quadrature 281
• Computing the Fourier sine or cosine transform

• , where the ln factors are optional

• Integration of functions with algebraic-logarithmic singularities

• w(x) = 1/(x – c)

• Integrals in the Cauchy principle value sense

The IMSL_INTFCN function returns an estimated answer R and provides keywords
to specify a requested absolute error ε, the requested relative error ρ, and a named
variable in which to return an estimate of the error E. These numbers are related in
the equation:

One situation that arises in univariate quadrature concerns the approximation of
integrals when only tabular data is given. The functions above do not directly address
this question. However, the standard method for handling this problem is to
interpolate the data then integrate the interpolant. This can be accomplished by using
the IDL Analyst spline interpolation functions with the spline integration function,
“IMSL_SPINTEG” on page 230.

Multivariate Quadrature

Two functions, IMSL_INTFCN and IMSL_INTFCNHYPER, have been included in
this chapter that can be used to approximate certain multivariate integrals.

IMSL_INTFCN can be called with additional parameters and keywords to return an
approximation to a two-dimensional iterated integral of the form:

The IMSL_INTFCNHYPER function returns an approximation to the integral of a
function of n variables over a hyper-rectangle as shown in the equation:

When working with two-dimensional, tensor-product tabular data, use the IDL
Analyst spline interpolation the IMSL_BSINTERP function, followed by the spline
integration the IMSL_SPINTEG function.

w x() x a–()α
b x–()β

x a–() b x–()lnln=

f x()w x() x R–d
a

b

∫ E max ε ρ f x y,() yd xd
a

b

∫,

≤ ≤

f x y,() yd xd
g x()

h x()

∫
a

b

∫

… f x0 … xn 1–, ,() xn 1– …d x0d
an 1–

bn 1–

∫
a0

b0

∫

IDL Analyst Reference Guide Overview: Quadrature

282 Chapter 7: Quadrature
Gauss Quadrature

For a fixed number of nodes, N, the Gauss quadrature rule is the unique rule that
integrates polynomials of degree less than 2N. These quadrature rules can be easily
computed using the IMSL_GQUAD procedure, which produces the points {xi} and
weights {wi} for i = 1, ..., N that satisfy:

for all functions f that are polynomials of degree less than 2N. The weight functions w
can be selected from Table 7-1:

Where permissible, IMSL_GQUAD also computes Gauss-Radau and Gauss-Lobatto
quadrature rules.

w(x) Interval Name

1 (–1, 1) Legendre

 (–1, 1) Chebyshev 1st kind

 (–1, 1) Chebyshev 2nd kind

 (–infinity,
infinity)

Hermite

 (–1, 1) Jacobi

 (0, infinity) Generalized Laguerre

1/cosh(x) (–infinity,
infinity)

Hyperbolic cosine

Table 7-1: Weight Functions

f x()w x() xd
a

b

∫ f xi()wi
i 1=

N

∑=

1 1 x2–()⁄

1 x
2

–

e
x– 2

1 x+()α
1 x–()β

e
x–
x

a

Overview: Quadrature IDL Analyst Reference Guide

Chapter 7: Quadrature 283
Quadrature Routines

Univariate and Bivariate Quadrature

IMSL_INTFCN—Integration of a user-defined univariate or bivariate function.

Arbitrary Dimension Quadrature

IMSL_INTFCNHYPER—Iterated integral on a hyper-rectangle.

IMSL_INTFCN_QMC—Intergrates a function on a hyper-rectangle using a Quasi
Monte Carlo method.

Gauss Quadrature

IMSL_GQUAD—Gauss quadrature formulas.

Differentiation

IMSL_FCN_DERIV—First, second, or third derivative of a function.
IDL Analyst Reference Guide Quadrature Routines

284 Chapter 7: Quadrature
IMSL_INTFCN

The IMSL_INTFCN function integrates a user-supplied function. Using different
combinations of keywords and parameters, several types of integration can be
performed including the following:

• IMSL_INTFCN: Functions with Endpoint Singularities (the default method)

• IMSL_INTFCN: Functions Based on Gauss-Kronrod Rules

• IMSL_INTFCN: Functions with Singular Points Given

• IMSL_INTFCN: Functions with Algebraic-logarithmic Singularities

• IMSL_INTFCN: Functions Over an Infinite or Semi-infinite Interval

• IMSL_INTFCN: Functions Containing a Sine or Cosine Factor

• IMSL_INTFCN: Computation of Fourier Sine or Cosine Transforms

• IMSL_INTFCN: Integrals in the Cauchy Principle Value Sense

• IMSL_INTFCN: Smooth Functions Using Nonadaptive Rule

• IMSL_INTFCN: Two-dimensional Iterated Integrals

Different types of integration are specified by supplying different sets of parameters
and keywords to the IMSL_INTFCN function. Refer to the discussion that pertains to
the type of integration you wish to perform for the corresponding function syntax.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_INTFCN(f, a, b [, /DOUBLE] [, ERR_ABS=value]
[, ERR_EST=variable] [, ERR_REL=value] [, MAX_SUBINTER=value]
[, N_SUBINTER=variable] [, N_EVALS=variable])

Return Value

An estimate of the desired integral. If no value can be computed, the floating-point
value NaN (Not a Number) is returned.
IMSL_INTFCN IDL Analyst Reference Guide

Chapter 7: Quadrature 285
Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

Keywords

The following keywords can be used in any combination with each method of
integration except the nonadaptive method, which is triggered by the keyword
SMOOTH.

DOUBLE

Set this keyword to perform computations using double precision.

ERR_ABS

Set this keyword to a value specifying the accuracy desired. Default:
ERR_ABS=SQRT(ε), where ε is the machine precision.

ERR_EST

Set this keyword equal to a named variable that will contain an estimate of the
absolute value of the error.

ERR_REL

Set this keyword to a value specifying the relative accuracy desired. Default:
ERR_REL=SQRT(ε), where ε is the machine precision

MAX_SUBINTER

Set this keyword equal to the number of subintervals allowed. Default:
MAX_SUBINTER=500.
IDL Analyst Reference Guide IMSL_INTFCN

286 Chapter 7: Quadrature
N_SUBINTER

Set this keyword equal to a named variable that will contain the number of
subintervals generated.

N_EVALS

Set this keyword equal to a named variable that will contain the number of
evaluations of Function.

Discussion of Default Method

The default method used by IMSL_INTFCN is a general-purpose integrator that uses
a globally adaptive scheme to reduce the absolute error. It subdivides the interval
[a, b] and uses a 21-point Gauss-Kronrod rule to estimate the integral over each
subinterval. The error for each subinterval is estimated by comparison with the 10-
point Gauss quadrature rule. The subinterval with the largest estimated error is then
bisected, and the same procedure is applied to both halves. The bisection process is
continued until either the error criterion is satisfied, the roundoff error is detected, the
subintervals become too small, or the maximum number of subintervals allowed is
reached. This method uses an extrapolation procedure known as the ε-algorithm. This
method is based on the subroutine QAGS by Piessens et al. (1983).

Should the default method fail to produce acceptable results, consider one of the
more specialized methods available by using method-specific keywords for this
function.

Example

An estimate of:

is computed, then compared to the actual value.

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, x^2
END

ans = IMSL_INTFCN('f', 0, 3)
; Call IMSL_INTFCN to compute the integral.
PM, 'Computed Answer:', ans
; Output the results.
Computed Answer:

x2 xd
0

3
∫

IMSL_INTFCN IDL Analyst Reference Guide

Chapter 7: Quadrature 287
9.00000
PM, 'Exact - Computed:', 3^2 - ans
Exact - Computed:

0.00000

Errors

The integration methods supported by IMSL_INTFCN may generate any of the
following errors.

Warning Errors

MATH_ROUNDOFF_CONTAMINATION—Roundoff error, preventing the requested
tolerance from being achieved, has been detected.

MATH_PRECISION_DEGRADATION—Degradation in precision has been detected.

MATH_EXTRAPOLATION_ROUNDOFF—Roundoff error in the extrapolation table,
preventing requested tolerance from being achieved, has been detected.

MATH_EXTRAPOLATION_PROBLEMS—Extrapolation table, constructed for
convergence acceleration of the series formed by the integral contributions of the
cycles, does not converge to the requested accuracy.

MATH_BAD_INTEGRAND_BEHAVIOR—Bad integrand behavior occurred in one or
more cycles.

Fatal Errors

MATH_DIVERGENT—Integral is probably divergent or slowly convergent.

MATH_MAX_SUBINTERVALS—Maximum number of subintervals allowed has been
reached.

MATH_MAX_CYCLES—Maximum number of cycles allowed has been reached.

MATH_MAX_STEPS—Maximum number of steps allowed have been taken. The
integrand is too difficult for this routine.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_INTFCN

288 Chapter 7: Quadrature
IMSL_INTFCN:
Functions Based on Gauss-Kronrod Rules

This version of the IMSL_INTFCN function integrates functions using a globally
adaptive scheme based on Gauss-Kronrod rules.

Note
The RULE keyword must be supplied to use this integration method.

Syntax

Result = IMSL_INTFCN(f, a, b, RULE = {1-6} [, RULE=value])

Return Value

The value of:

is returned. If no value can be computed, the floating-point value NaN (Not a
Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

f x() xd
a

b

∫

IMSL_INTFCN: Functions Based on Gauss-Kronrod Rules IDL Analyst Reference Guide

Chapter 7: Quadrature 289
Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under
“Keywords” on page 285, the following keywords are available:

RULE

Set this keyword equal to an integer representing the Gauss-Kronrod rule to use.
Possible values are:

Discussion

This method is a general-purpose integrator that uses a globally adaptive scheme to
reduce the absolute error. It subdivides the interval [a, b] and uses a (2k+1)-point
Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each
subinterval is estimated by comparison with the k-point Gauss quadrature rule. The
subinterval with the largest estimated error is then bisected, and the same procedure is
applied to both halves. The bisection process is continued until either the error
criterion is satisfied, roundoff error is detected, the subintervals become too small, or
the maximum number of subintervals allowed is reached. This method is based on the
subroutine QAG by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singularities
if they exist.

Rule Gauss-Kronrod Rule

1 7-15 points

2 10-21 points

3 15-31 points

4 20-41 points

5 25-51 points

6 30-61 points

Table 7-2: Corresponding Gauss-Kronrod Rules
IDL Analyst Reference Guide IMSL_INTFCN: Functions Based on Gauss-Kronrod Rules

290 Chapter 7: Quadrature
Example

The value of:

is computed. Since the integrand is oscillatory, RULE = 6 is used. The exact value is
0.50406706. The values of the actual and estimated error are machine dependent.

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, SIN(1/x)
END

ans = IMSL_INTFCN('f', 0, 1, RULE=6)
; Call IMSL_INTFCN, to compute the integral based on the
; specified Gauss-Kronrod rule.
PM, 'Computed Answer:',ans
; Output the results.
Computed Answer:

0.504051
exact = .50406706

PM, 'EXACT - COMPUTED:', exact - ans
Exact - Computed:

1.62125e-05

Errors

See “Errors” on page 287.

1 x⁄()sin xd
0

1

∫

IMSL_INTFCN: Functions Based on Gauss-Kronrod Rules IDL Analyst Reference Guide

Chapter 7: Quadrature 291
IMSL_INTFCN:
Functions with Singular Points Given

This version of the IMSL_INTFCN function integrates functions with singularity
points given.

Note
The SING_PTS keyword must be supplied to use this integration method.

Syntax

Result = IMSL_INTFCN(f, a, b, SING_PTS=points [, SING_PTS=vector])

Return Value

The value of:

is returned. If no value can be computed, the floating-point value NaN (Not a
Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

f x() xd
a

b

∫

IDL Analyst Reference Guide IMSL_INTFCN: Functions with Singular Points Given

292 Chapter 7: Quadrature
Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under
“Keywords” on page 285, the following keywords are available:

SING_PTS

Set this keyword equal to a vector of abcissa values for the singularities. The values
should be interior to the interval [a, b].

Discussion

This method is a special-purpose integrator that uses a globally adaptive scheme to
reduce the absolute error. It subdivides the interval [a, b] into N+1 user-supplied
subintervals, where N is the number of singular points, and uses a 21-point
Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each
subinterval is estimated by comparison with the 10-point Gauss quadrature rule. The
subinterval with the largest estimated error is then bisected, and the same procedure is
applied to both halves. The bisection process is continued until either the error
criterion is satisfied, the roundoff error is detected, the subintervals become too small,
or the maximum number of subintervals allowed is reached. This method uses an
extrapolation procedure known as the ε-algorithm. This method is based on the
subroutine QAGP by Piessens et al. (1983).

Example

The value of:

is computed. The values of the actual and estimated error are machine dependent.
Note that this subfunction never evaluates the user-supplied function at the user-
supplied breakpoints.

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, x^3 * ALOG(ABS((x^2 - 1) * $
(x^ 2 - 2)))

END

ans = IMSL_INTFCN('f', 0, 3, $
Sing_Pts = [1, SQRT(2)], N_Evals = nevals)
; Call IMSL_INTFCN using keyword Sing_Pts to specify
; the singular points.

x
3
ln x

2
1–() x

2
2–() xd

0

3
∫ 61ln2

77
4
------ln7 27–+=
IMSL_INTFCN: Functions with Singular Points Given IDL Analyst Reference Guide

Chapter 7: Quadrature 293
PM, 'Computed Answer:', ans
; Output the results.
Computed Answer:

52.7408
exact = 61 * ALOG(2) + (77/4.) * ALOG(7) - 27
PM, 'Exact - Computed:', exact - ans
Exact - Computed:

-2.67029e-05
PM, 'Number of Function Evaluations:', nevals
Number of Function Evaluations:

819

Errors

See “Errors” on page 287.
IDL Analyst Reference Guide IMSL_INTFCN: Functions with Singular Points Given

294 Chapter 7: Quadrature
IMSL_INTFCN:
Functions with Algebraic-logarithmic Singularities

This version of the IMSL_INTFCN function integrates functions with algebraic-
logarithmic singularities.

Note
The Alpha and Beta arguments must be supplied to use this integration method.

Syntax

Result = IMSL_INTFCN(f, a, b, Alpha, Beta,
/ALGEBRAIC | /ALG_LEFT_LOG | /ALG_LOG | /ALG_RIGHT_LOG)

Return Value

The value of:

is returned, where w (x) is defined by one of the keywords below. If no value can be
computed, the floating-point value NaN (Not a Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

Alpha

The strength of the singularity at a. Must be greater than –1.

f x()w x() xd
a

b

∫

IMSL_INTFCN: Functions with Algebraic-logarithmic Singularities IDL Analyst Reference Guide

Chapter 7: Quadrature 295
Beta

Strength of the singularity at b. Must be greater than –1.

Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under
“Keywords” on page 285, exactly one of the following keywords may be specified:

ALGEBRAIC

Set this keyword to use the weight function . This is the default weight
function for this method.

ALG_LEFT_LOG

Set this keyword to use the weight function .

ALG_LOG

Set this keyword to use the weight function .

ALG_RIGHT_LOG

Set this keyword to use the weight function .

Discussion

This method is a special-purpose integrator that uses a globally adaptive scheme to
reduce the absolute error. It computes integrals whose integrands have the special
form w (x) f (x), where w (x) is a weight function. A combination of modified
Clenshaw-Curtis and Gauss-Kronrod formulas is employed. This method is based on
the subroutine QAWS, which is fully documented by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singularities
if they exist.

Example

The value of:

x a–()α
b x–()β

x a–()α
b x–()β

x a–()log

x a–()α
b x–()β

x a–() x b–()loglog

x a–()α
b x–()β

x b–()log

1 x+() 1 x–()[] 1 2⁄
x()ln xd

0

1

∫ 3 2() 4–ln()
9

------------------------------=
IDL Analyst Reference Guide IMSL_INTFCN: Functions with Algebraic-logarithmic Singularities

296 Chapter 7: Quadrature
is computed.

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, SQRT((1 + x))
END

ans = $
IMSL_INTFCN('f', 0, 1, /Alg_Left_Log, 1.0, .5)
; Call IMSL_INTFCN with keyword Alg_Left_Log set and values for the
; method parameters alpha and beta.
PM, 'Computed Answer:', ans
; Output the results.
; Computed Answer: -0.213395
exact = (3 * ALOG(2) - 4)/9
PM, 'Exact - Computed:', exact - ans
; Exact - Computed: 1.49012e-08

Errors

See “Errors” on page 287.
IMSL_INTFCN: Functions with Algebraic-logarithmic Singularities IDL Analyst Reference Guide

Chapter 7: Quadrature 297
IMSL_INTFCN:
Functions Over an Infinite or Semi-infinite Interval

This version of the IMSL_INTFCN function integrates functions over an infinite or
semi-infinite interval.

Note
One of the INF_INF, INF_BOUND, or BOUND_INF keywords must be supplied to
use this integration method.

Syntax

Result = IMSL_INTFCN(f, /INF_INF)

or

Result = IMSL_INTFCN(f, Bound, /INF_BOUND | /BOUND_INF)

Return Value

The value of:

is returned, where a and b are appropriate integration limits. If no value can be
computed, the floating-point value NaN (Not a Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The
function f accepts one scalar parameter and returns a single scalar of the same type.

Bound

A scalar value specifying the finite limit of integration. If either of the keywords
INF_BOUND or BOUND_INF are specified, this argument is required.

f x() xd
a

b
∫

IDL Analyst Reference Guide IMSL_INTFCN: Functions Over an Infinite or Semi-infinite Interval

298 Chapter 7: Quadrature
Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under
“Keywords” on page 285, exactly one of the following keywords may be specified:

INF_INF

Set this keyword to integrate f over the range (–infinity, infinity).

INF_BOUND

Set this keyword to integrate f over the range (–infinity,bound).

BOUND_INF

Set this keyword to integrate f over the range (bound, infinity).

Discussion

This method is a special-purpose integrator that uses a globally adaptive scheme to
reduce the absolute error. It initially transforms an infinite or semi-infinite interval
into the finite interval [0, 1]. It then uses the same strategy that is used when
integrating functions with singularity points given (see “IMSL_INTFCN: Functions
with Singular Points Given” on page 291). This method is based on the subroutine
QAGI by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singularities
if they exist.

Example

The value of:

is computed.

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, ALOG(x)/(1 + (10 * x)^2)
END

ans = IMSL_INTFCN('f', 0, /Bound_Inf)
; Call IMSL_INTFCN with keyword Bound_Inf set. Notice that
; only lower limit of integration is given.

ln x()
1 10x()2+
-------------------------- xd

0

∞
∫ πln 10()–

20
---------------------=
IMSL_INTFCN: Functions Over an Infinite or Semi-infinite Interval IDL Analyst Reference Guide

Chapter 7: Quadrature 299
PM, 'Computed Answer:', ans
; Output the results.
Computed Answer:

-0.361689
exact = -!Pi * ALOG(10)/20
PM, 'Exact - Computed:', exact - ans
Exact - Computed:

5.96046e-08

Errors

See “Errors” on page 287.
IDL Analyst Reference Guide IMSL_INTFCN: Functions Over an Infinite or Semi-infinite Interval

300 Chapter 7: Quadrature
IMSL_INTFCN:
Functions Containing a Sine or Cosine Factor

This version of the IMSL_INTFCN function integrates functions containing a sine or
a cosine factor.

Note
The Omega argument and one of the SINE, or COSINE keywords must be supplied
to use this integration method.

Syntax

Result = IMSL_INTFCN(f, a, b, Omega
, /SINE | /COSINE [, MAX_MOMENTS=value])

Return Value

The value of:

where the weight function w (ωx) is defined by the keywords below, is returned. If no
value can be computed, the floating-point value NaN (Not a Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

Omega

A scalar expression specifying the frequency of the trigonometric weighting function.

f x()w ωx() xd
a

b

∫

IMSL_INTFCN: Functions Containing a Sine or Cosine Factor IDL Analyst Reference Guide

Chapter 7: Quadrature 301
Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under
“Keywords” on page 285, the following keywords may be specified:

SINE

Set this keyword to use sin (ωx) for the integration weight function. If SINE is
supplied, COSINE must not be present.

COSINE

Set this keyword to use cos (ωx) for the integration weight function. IF COSINE is
supplied, SINE must not be present.

MAX_MOMENTS

Set this keyword equal to a scalar expression specifying an upper bound on the
number of Chebyshev moments that can be stored. Increasing (decreasing) this
number may increase (decrease) execution speed and space used. Default:
MAX_MOMENTS = 21

Discussion

This method is a special-purpose integrator that uses a globally adaptive scheme to
reduce the absolute error. It computes integrals whose integrands have the special
form w (x) f (x), where w (x) is either cos (ωx) or sin (ωx). Depending on the length of
the subinterval in relation to the size of ω, either a modified Clenshaw-Curtis
procedure or a Gauss-Kronrod 7/15 rule is employed to approximate the integral on a
subinterval. This method is based on the subroutine QAWO by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singularities
if they exist.

Example

The value of:

x
2

3πx()sin xd
0

1

∫

IDL Analyst Reference Guide IMSL_INTFCN: Functions Containing a Sine or Cosine Factor

302 Chapter 7: Quadrature
is computed. The exact answer is:

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, x^2
END

ans = IMSL_INTFCN('f', 0, 1, 3 * !Pi, /Sine)
; Call IMSL_INTFCN with Sine set and value for method
; parameter omega.
PM, 'Computed Answer:', ans
; Output the results.
Computed Answer:

0.101325
exact = ((3 * !Pi)^2 - 2)/((3 * !pi)^3) - 2/(3 * !Pi)^3
PM, 'Exact - Computed:', exact - ans
Exact - Computed:

0.00000

Errors

See “Errors” on page 287.

3π()2
4–

3π()3

IMSL_INTFCN: Functions Containing a Sine or Cosine Factor IDL Analyst Reference Guide

Chapter 7: Quadrature 303
IMSL_INTFCN:
Computation of Fourier Sine or Cosine Transforms

This version of the IMSL_INTFCN function computes Fourier sine or cosine
transforms.

Note
The Omega argument and one of the SINE, or COSINE keywords must be supplied
to use this integration method.

Syntax

Result = IMSL_INTFCN(f, a, Omega, /SINE | /COSINE
[, MAX_MOMENTS=value] [, N_CYCLES=variable])

Return Value

The value of:

where the weight function w (ωx) is defined by the keywords below, is returned. If no
value can be computed, the floating-point value NaN (Not a Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

Omega

A scalar expression specifying the frequency of the trigonometric weighting function.

f x()w ωx() xd
a

∞

∫

IDL Analyst Reference Guide IMSL_INTFCN: Computation of Fourier Sine or Cosine Transforms

304 Chapter 7: Quadrature
Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under
“Keywords” on page 285, the following keywords may be specified:

SINE

Set this keyword to use sin (ωx) for the integration weight function. If SINE is
supplied, COSINE must not be present.

COSINE

Set this keyword to use cos (ωx) for the integration weight function. IF COSINE is
supplied, SINE must not be present.

MAX_MOMENTS

Set this keyword equal to a scalar expression specifying an upper bound on the
number of Chebyshev moments that can be stored. Increasing (decreasing) this
number may increase (decrease) execution speed and space used. Default:
MAX_MOMENTS = 21

N_CYCLES

Set this keyword equal to a named variable that will contain the number of cycles.

Discussion

This method is a special-purpose integrator that uses a globally adaptive scheme to
reduce the absolute error. It computes integrals whose integrands have the special
form w (x) f (x), where w (x) is either cos (ωx) or sin (ωx). The integration interval is
always semi-infinite of the form [a, infinity]. This method is based on the subroutine
QAWF by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singularities
if they exist.

Example

The value of:

πx
2

 cos

x
--------------------- xd

0

∞

∫ 1=
IMSL_INTFCN: Computation of Fourier Sine or Cosine Transforms IDL Analyst Reference Guide

Chapter 7: Quadrature 305
is computed. Notice that the function is coded to protect for the singularity at zero.

.RUN
; Define the function to be integrated.
FUNCTION f, x

IF (x EQ 0) THEN RETURN, x $
ELSE RETURN, 1/SQRT(x)

END

ans = IMSL_INTFCN('f', 0, !Pi/2, /Cosine)
; Call IMSL_INTFCN with keyword Cosine set and a value for
; the method specific parameter omega.
PM, 'Computed Answer:', ans
; Output the results.
Computed Answer:

1.00000
exact = 1.0

PM, 'Exact - Computed:', exact - ans
Exact - Computed:

-1.19209e-007

Errors

See “Errors” on page 287.
IDL Analyst Reference Guide IMSL_INTFCN: Computation of Fourier Sine or Cosine Transforms

306 Chapter 7: Quadrature
IMSL_INTFCN:
Integrals in the Cauchy Principle Value Sense

This version of the IMSL_INTFCN function computes integrals of the form:

in the Cauchy principal value sense.

Note
The Singular_Pt argument and the CAUCHY keyword must be supplied to use this
integration method.

Syntax

Result = IMSL_INTFCN(f, a, b, Singular_Pt, /CAUCHY)

Return Value

The value of:

is returned. If no value can be computed, the floating-point value NaN (Not a
Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

f x()
x c–
----------- xd

a

b

∫

f x()
x c–
----------- xd

a

b

∫

IMSL_INTFCN: Integrals in the Cauchy Principle Value Sense IDL Analyst Reference Guide

Chapter 7: Quadrature 307
Singular_Pt

A scalar expression specifying the singular point. The singular point must not equal a
or b.

Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under
“Keywords” on page 285, the following keywords may be specified:

CAUCHY

Set this keyword to compute the specified integral in the Cauchy principal value
sense.

Discussion

This method uses a globally adaptive scheme in an attempt to reduce the absolute
error. It computes integrals whose integrands have the special form w (x) f (x), where
w (x) = 1/(x – Singular_Pt). If Singular_Pt lies in the interval of integration, then the
integral is interpreted as a Cauchy principal value. A combination of modified
Clenshaw-Curtis and Gauss-Kronrod formulas is employed. The method is an
implementation of the subroutine QAWC by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singularities
if they exist.

Example

The Cauchy principal value of:

is computed.

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, 1/(5 * x^3 + 6)
END

ans = IMSL_INTFCN('f', -1, 5, 0, /Cauchy)
; Call IMSL_INTFCN with keyword Cauchy set.
PM, 'Computed Answer:', ans

1

x 5x
3

6+()
-------------------------- xd

1–

5
∫ ln 25 631⁄()

18
---------------------------=
IDL Analyst Reference Guide IMSL_INTFCN: Integrals in the Cauchy Principle Value Sense

308 Chapter 7: Quadrature
; Output the results.
Computed Answer:

-0.0899440
exact = ALOG(125/631.)/18

PM, 'Exact - Computed:', exact - ans
Exact - Computed:

1.49012e-08

Errors

See “Errors” on page 287.
IMSL_INTFCN: Integrals in the Cauchy Principle Value Sense IDL Analyst Reference Guide

Chapter 7: Quadrature 309
IMSL_INTFCN:
Smooth Functions Using Nonadaptive Rule

This version of the IMSL_INTFCN function integrates smooth functions using a
nonadaptive rule.

Note
The SMOOTH keyword must be supplied to use this integration method.

Syntax

Result = IMSL_INTFCN(f, a, b, [, /SMOOTH] [, /DOUBLE] [, ERR_ABS=value]
[, ERR_EST=variable] [, ERR_REL=value])

Return Value

The value of:

is returned. If no value can be computed, the floating-point value NaN (Not a
Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

f x() xd
a

b

∫

IDL Analyst Reference Guide IMSL_INTFCN: Smooth Functions Using Nonadaptive Rule

310 Chapter 7: Quadrature
Keywords

Because this integration method is nonadaptive, the global IMSL_INTFCN keywords
listed in the main section do not apply. A complete list of the available keywords is
given below. This method requires the use of keyword SMOOTH.

SMOOTH

Set this keyword to use a nonadaptive rule to compute the integral.

DOUBLE

Set this keyword to perform computations using double precision.

ERR_ABS

Set this keyword to a value specifying the accuracy desired. Default:
ERR_ABS=SQRT(ε), where ε is the machine precision

ERR_EST

Set this keyword equal to a named variable that will contain an estimate of the
absolute value of the error.

ERR_REL

Set this keyword to a value specifying the relative accuracy desired. Default:
ERR_REL=SQRT(ε), where ε is the machine precision

Discussion

This method is designed to integrate smooth functions. It implements a nonadaptive
quadrature procedure based on nested Paterson rules of order 10, 21, 43, and 87.
These rules are positive quadrature rules with degree of accuracy 19, 31, 64, and 130,
respectively. This method applies these rules successively, estimating the error until
either the error estimate satisfies the user-supplied constraints or the last rule is
applied.

This method is not very robust, but for certain smooth functions, it can be efficient.
This method is based on the subroutine QNG by Piessens et al. (1983). If this method
is used, the function should be coded to protect endpoint singularities if they exist.
IMSL_INTFCN: Smooth Functions Using Nonadaptive Rule IDL Analyst Reference Guide

Chapter 7: Quadrature 311
Example

The value of:

is computed.

.RUN
; Define the function to integrate.
FUNCTION f, x

RETURN, x * EXP(x)
END

ans = IMSL_INTFCN('f', 0, 2, /Smooth)
; Call IMSL_INTFCN with keyword Smooth set.
PM, 'Computed Answer:', ans
Computed Answer:

8.38906
exact = EXP(2) + 1

PM, 'Exact - Computed:', exact - ans
Exact - Computed:

9.53674e-07

Errors

See “Errors” on page 287.

xe
x

xd
0

2

∫ e
2

1+=
IDL Analyst Reference Guide IMSL_INTFCN: Smooth Functions Using Nonadaptive Rule

312 Chapter 7: Quadrature
IMSL_INTFCN:
Two-dimensional Iterated Integrals

This version of the IMSL_INTFCN function integrates two-dimensional iterated
integrals.

Note
The TWO_DIMENSIONAL keyword must be supplied to use this integration
method.

Syntax

Result = IMSL_INTFCN(f, a, b, g, h, /TWO_DIMENSIONAL)

Return Value

The value of:

is returned. If no value can be computed, the floating-point value NaN (Not a
Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

f x y,() yd xd
g x()

h x()

∫
a

b

∫

IMSL_INTFCN: Two-dimensional Iterated Integrals IDL Analyst Reference Guide

Chapter 7: Quadrature 313
g

Scalar string specifying the name of a user-supplied IDL Analyst function used to
evaluate the lower limit of the inner integral. Function g accepts one scalar parameter
and returns a single scalar of the same type.

h

Scalar string specifying the name of a user-supplied IDL Analyst function used to
evaluate the upper limit of the inner integral. Function h accepts one scalar parameter
and returns a single scalar of the same type.

Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under
“Keywords” on page 285, the following keyword must be specified:

TWO_DIMENSIONAL

Set this keyword to integrate a two-dimensional iterated integral.

Discussion

This method approximates the following two-dimensional iterated integral:

The lower-numbered rules are used for less smooth integrands, while the higher-order
rules are more efficient for smooth (oscillatory) integrands.

If this method is used, the function should be coded to protect endpoint singularities
if they exist.

Example

This example computes the value of the integral:

.RUN
; Define the function to be integrated.
FUNCTION f, x, y

f x y,() yd xd
g x()

h x()

∫
a

b

∫

x y+()sin yd xd
x

2x

∫
0

1

∫

IDL Analyst Reference Guide IMSL_INTFCN: Two-dimensional Iterated Integrals

314 Chapter 7: Quadrature
RETURN, SIN(x + y)
END

.RUN
; Define the function for the lower limit of the inner integral.
FUNCTION g, x

RETURN, x
END

.RUN
; Define the function for the upper limit of the inner integral.
FUNCTION h, x

RETURN, 2 * x
END

ans = IMSL_INTFCN('f',0,1,'g','h',/Two_Dimensional)
; Call IMSL_INTFCN with keyword Two_Dimensional set and the names
; of the functions defining the limits of the inner integral.
PM, 'Computed Answer:', ans
Computed Answer:

0.407609
exact = -SIN(3)/3 + SIN(2)/2

PM, 'Exact - Computed:', exact - ans
Exact - Computed:

-5.96046e-08

Errors

See “Errors” on page 287.
IMSL_INTFCN: Two-dimensional Iterated Integrals IDL Analyst Reference Guide

Chapter 7: Quadrature 315
IMSL_INTFCNHYPER

The IMSL_INTFCNHYPER function integrates a function on a hyper-rectangle as
follows:

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_INTFCNHYPER(f, a, b [, ERR_ABS=value] [, ERR_EST=variable]
[, ERR_REL=value] [, MAX_EVALS=value])

Return Value

The value of the hyper-rectangle function is returned. If no value can be computed,
the floating-point value NaN (Not a Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The
function f accepts an array of data points at which the function is to be evaluated and
returns the scalar value of the function.

a

A vector specifying the lower limit of integration.

b

A vector specifying the upper limit of integration.

… f x0 …xn 1–,() xn 1– …d x0d
an 1–

bn 1–

∫
a0

b0

∫

IDL Analyst Reference Guide IMSL_INTFCNHYPER

316 Chapter 7: Quadrature
Keywords

ERR_ABS

Set this keyword to a value specifying the accuracy desired. Default:
ERR_ABS=SQRT(ε), where ε is the machine precision

ERR_EST

Set this keyword equal to a named variable that will contain an estimate of the
absolute value of the error.

ERR_REL

Set this keyword to a value specifying the relative accuracy desired. Default:
ERR_REL=SQRT(ε), where ε is the machine precision

MAX_EVALS

Set this keyword to a scalar value specifying the number of evaluations allowed.
Default: MAX_EVALS = 1,000,000 for n ≤ 2 and MAX_EVALS = 256n for n > 2,
where n is the number of independent variables of f.

Discussion

The IMSL_INTFCNHYPER function approximates the following n-dimensional
iterated integral:

An estimate of the error is returned in the optional keyword ERR_EST. The
approximation is achieved by iterated applications of product Gauss formulas. The
integral is first estimated by a two-point, tensor-product formula in each direction.
Then, for (i = 0, ..., n – 1), the function calculates a new estimate by doubling the
number of points in the i-th direction, but halving the number immediately afterwards
if the new estimate does not change appreciably. This process is repeated until either
one complete sweep results in no increase in the number of sample points in any
dimension, the number of Gauss points in one direction exceeds 256, or the number
of function evaluations needed to complete a sweep exceeds MAX_EVALS.

… f x0 …xn 1–,() xn 1– …d x0d
an 1–

bn 1–

∫
a0

b0

∫

IMSL_INTFCNHYPER IDL Analyst Reference Guide

Chapter 7: Quadrature 317
Example

This example computes the integral of:

on an expanding cube. The values of the error estimates are machine dependent. The
exact integral over R is π3/2.

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, EXP(-TOTAL(x^2))
END

limit = !Pi^1.5
; Compute the exact value of the integral.
PM, ' Limit:', limit

Limit: 5.56833
FOR i = 1, 6 DO BEGIN $

a = [-i/2., -i/2., -i/2.] &$
b = [i/2., i/2., i/2.] &$
ans = IMSL_INTFCNHYPER('f', a, b) &$
PRINT, 'integral = ', ans, ' limit = ', limit
; Compute values of the integral over expanding cubes and
; output the results after each call to IMSL_INTFCNHYPER.
integral = 0.785213 limit = 5.56833
 integral = 3.33231 limit = 5.56833
 integral = 5.02107 limit = 5.56833
 integral = 5.49055 limit = 5.56833
 integral = 5.56135 limit = 5.56833
 integral = 5.56771 limit = 5.56833

Errors

Warning Errors

MATH_MAX_EVALS_TOO_LARGE—The keyword MAX_EVALS was set too large.

Fatal Errors

MATH_NOT_CONVERGENT—Maximum number of function evaluations has been
reached, and convergence has not been attained.

e
x0

2 x1
2 x2

2+ +()–
IDL Analyst Reference Guide IMSL_INTFCNHYPER

318 Chapter 7: Quadrature
Version History

6.4 Introduced
IMSL_INTFCNHYPER IDL Analyst Reference Guide

Chapter 7: Quadrature 319
IMSL_INTFCN_QMC

The IMSL_INTFCN_QMC function integrates a function on a hyper-rectangle using
a quasi-Monte Carlo method.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_INTFCN_QMC(f, a, b [, BASE=value] [, /DOUBLE]
[, ERR_ABS=value] [, ERR_EST=variable] [, ERR_REL=value]
[, MAX_EVALS=value] [, SKIP=value])

Return Value

The value of:

is returned. If no value can be computed, the floating-point value NaN (Not a
Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The
function f accepts an array of data points at which the function is to be evaluated and
returns the scalar value of the function.

a

A vector specifying the lower limit of integration.

b

A vector specifying the upper limit of integration.

… f x0 …xn 1–,() xn 1– …d x0d
an 1–

bn 1–

∫
a0

b0

∫

IDL Analyst Reference Guide IMSL_INTFCN_QMC

320 Chapter 7: Quadrature
Keywords

BASE

Set this keyword equal to the value of BASE used to compute the Faure sequence.

DOUBLE

Set this keyword to perform computations using double precision.

ERR_ABS

Set this keyword to a value specifying the accuracy desired. Default:
ERR_ABS=1 × e-4.

ERR_EST

Set this keyword equal to a named variable that will contain an estimate of the
absolute value of the error.

ERR_REL

Set this keyword to a value specifying the relative accuracy desired. Default:
ERR_REL=1 × e-4.

MAX_EVALS

Set this keyword equal to the number of evaluations allowed. If MAX_EVALS is not
supplied, the number of evaluations is unlimited.

SKIP

Set this keyword equal to the value of SKIP used to compute the Faure sequence.

Discussion

Integration of functions over hypercubes by direct methods, such as
IMSL_INTFCNHYPER, is practical only for fairly low dimensional hypercubes.
This is because the amount of work required increases exponential as the dimension
increases.

An alternative to direct methods is Monte Carlo, in which the integral is evaluated as
the value of the function averaged over a sequence of randomly chosen points. Under
mild assumptions on the function, this method will converge like 1/n1/2, where n is
the number of points at which the function is evaluated.
IMSL_INTFCN_QMC IDL Analyst Reference Guide

Chapter 7: Quadrature 321
It is possible to improve on the performance of Monte Carlo by carefully choosing
the points at which the function is to be evaluated. Randomly distributed points tend
to be non-uniformly distributed. The alternative to at sequence of random points is a
low-discrepancy sequence. A low-discrepancy sequence is one that is highly uniform.

This function is based on the low-discrepancy Faure sequence, as computed by
IMSL_FAURE_NEXT_PT.

Example

FUNCTION F, x
S = 0.0
sign = -1.0
FOR i = 0, N_ELEMENTS(x)-1 DO BEGIN

prod = 1.0
FOR j = 0, i DO BEGIN

prod = prod*x(j)
END
S = S + sign*prod
sign = -sign

END
RETURN, s

END
ndim = 10
a = FLTARR(ndim)
a(*) = 0
b = FLTARR(ndim)
b(*) = 1
result = IMSL_INTFCN_QMC('f', a, b)
PM, result
 -0.333010

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_INTFCN_QMC

322 Chapter 7: Quadrature
IMSL_GQUAD

The IMSL_GQUAD procedure computes a Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule with various classical weight functions.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_GQUAD, n, weights, points [, /CHEBY_FIRST] [, /CHEBY_SECOND] [, /
COSH] [, /DOUBLE] [, /HERMITE] [, JACOBI=vector]
[, LAGUERRE=parameter] [, FIXED_POINTS=vector]

Arguments

n

The number of quadrature points.

weights

A named variable that will contain an array of length n containing the quadrature
weights.

points

A named variable that will contain an array of length n containing quadrature points.
The default action of this routine is to produce the Gauss Legendre points and
weights.

Keywords

CHEBY_FIRST

Set this keyword to compute the Gauss points and weights using the weight function:

on the interval (–1, 1).

1 1 x2–⁄
IMSL_GQUAD IDL Analyst Reference Guide

Chapter 7: Quadrature 323
CHEBY_SECOND

Set this keyword to compute the Gauss points and weights using the weight function:

on the interval (–1, 1).

COSH

Set this keyword to computes the Gauss points and weights using the weight function
1/cosh (x) on the interval (–infinity, infinity).

DOUBLE

Set this keyword to perform computations using double precision.

HERMITE

Set this keyword to compute the Gauss points and weights using the weight function
exp (–x2) on the interval (–infinity, infinity).

JACOBI

Set this keyword equal to a two-element vector containing the parameters α and β to
be used in the weight function . If this keyword is present,
IMSL_GQUAD computes the Gauss points and weights using the weight function

 on the interval (–1, 1).

LAGUERRE

Set this keyword equal to a scalar parameter α to be used in the weight function
exp (–x) xα. If this keyword is present, IMSL_GQUAD computes the Gauss points
and weights using the weight function exp (–x) xa on the interval (0, infinity).

FIXED_POINTS

Set this keyword equal to a one- or two-element vector specifying the fixed points.

• If FIXED_POINTS is a scalar or one-element vector, IMSL_GQUAD
computes the Gauss-Radau points and weights using the specified weight
function and the fixed point. This formula integrates polynomials of degree
less than 2N–1 exactly.

• If FIXED_POINTS is a two-element vector, IMSL_GQUAD computes the
Gauss-Lobatto points and weights using the specified weight function and the

1 x
2

–

1 x–()α
1 x+()β

1 x–()α
1 x+()β
IDL Analyst Reference Guide IMSL_GQUAD

324 Chapter 7: Quadrature
fixed points. This formula integrates polynomials of degree less than 2N–2
exactly.

Discussion

The IMSL_GQUAD procedure produces the points and weights for the Gauss,
Gauss-Radau, or Gauss-Lobatto quadrature formulas for some of the most popular
weights. The default weight is the weight function identically equal to 1 on the
interval (–1, 1). In fact, it is slightly more general than this suggests because the extra
one or two points that can be specified do not have to lie at the endpoints of the
interval. This procedure is a modification of the subroutine GAUSSQUADRULE
(Golub and Welsch 1969).

In the default case, the procedure returns points in x = points and weights in
w = weights so that:

for all functions f that are polynomials of degree less than 2N.

If the keyword FIXED_POINTS is specified, then one or two of the above xi is equal
to the values specified by FIXED_POINTS. In general, the accuracy of the above
quadrature formula degrades when n increases. The quadrature rule integrates all
functions f that are polynomials of degree less than 2N – F, where F is the number of
fixed points.

Example

This example computes the three-point Gauss Legendre quadrature points and
weights, then uses them to approximate the integrals as follows:

Notice that the integrals are exact for the first six monomials, but the last
approximation is in error. In general, the Gauss rules with k-points integrate
polynomials with degree less than 2k exactly.

IMSL_GQUAD, 3, weights, points
; Call IMSL_GQUAD to get the weights and points.
error = FLTARR(7)
; Define an array to hold the errors.
FOR i = 0, 6 DO error(i) = $

(TOTAL(weights*(points^i))-(1-(i MOD 2))*2./(i+1))

f x()w x() xd
a

b

∫ f xi()wi
i 0=

N 1–

∑=

x
i

x i=0,… 6,d
1–

1

∫

IMSL_GQUAD IDL Analyst Reference Guide

Chapter 7: Quadrature 325
; Compute the errors for seven monomials.
PM, 'Error:', error
; Output the results.
Error:

 -2.38419e-07
 2.68221e-07
 -5.96046e-08
 2.08616e-07
 2.98023e-08
 1.78814e-07
 -0.0457142

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_GQUAD

326 Chapter 7: Quadrature
IMSL_FCN_DERIV

The IMSL_FCN_DERIV function computes the first, second, or third derivative of a
user-supplied function.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FCN_DERIV(f, x [, /DOUBLE] [, ORDER=value]
[, STEPSIZE=value] [, TOLERANCE=value])

Return Value

An estimate of the first, second or third derivative of f at x. If no value can be
computed, NaN is returned.

Arguments

f

A scalar string specifying a user-supplied function whose derivative at x will be
computed.

x

The point at which the derivative will be evaluated.

Keywords

DOUBLE

Set this keyword to perform computations using double precision.

ORDER

Set this keyword equal to the order of the desired derivative (1, 2 or 3). Default:
ORDER = 1
IMSL_FCN_DERIV IDL Analyst Reference Guide

Chapter 7: Quadrature 327
STEPSIZE

Set this keyword equal to the beginning value used to compute the size of the interval
for approximating the derivative. STEPSIZE must be chosen small enough that f is
defined and reasonably smooth in the interval (x – 4.0*STEPSIZE,
x + 4.0*STEPSIZE), yet large enough to avoid roundoff problems. Default:
STEPSIZE = 0.01

TOLERANCE

Set this keyword equal to the relative error desired in the derivative estimate.
Convergence is assumed when (2/3) |d2 – d1| < TOLERANCE, for two successive
derivative estimates, d1 and d2. Default: TOLERANCE = where ε is machine
epsilon.

Discussion

The IMSL_FCN_DERIV function produces an estimate to the first, second, or third
derivative of a function. The estimate originates from first computing a spline
interpolant to the input function using values within the interval (x – 4.0*STEPSIZE,
x + 4.0*STEPSIZE), then differentiating the spline at x.

Examples

Example 1

This example obtains the approximate first derivative of the function
f(x) = –2sin(3x/2) at the point x = 2.

FUNCTION fcn, x
f = -2*SIN(1.5*x)

 RETURN, f
END

deriv1 = IMSL_FCN_DERIV('fcn', 2.0)
PRINT, "f'(x) = ", deriv1
f'(x) = 2.97008

Example 2

This example obtains the approximate first, second, and third derivative of the
function f(x) = –2sin(3x/2) at the point x = 2.

FUNCTION fcn, x
f = -2*SIN(1.5*x)

ε4
IDL Analyst Reference Guide IMSL_FCN_DERIV

328 Chapter 7: Quadrature
 RETURN, f
END

deriv1 = IMSL_FCN_DERIV('fcn', 2.0, /Double)
deriv2 = IMSL_FCN_DERIV('fcn', 2.0, ORDER = 2, /Double)
deriv3 = IMSL_FCN_DERIV('fcn', 2.0, ORDER = 3, /Double)
PRINT, "f'(x) = ", deriv1, ', error =', $

ABS(deriv1 + 3.0*COS(1.5*2.0))
f'(x) = 2.9699775, error = 1.1094893e-07
PRINT, "f''(x) = ", deriv2, ', error =', $

ABS(deriv2 - 4.5*SIN(1.5*2.0))
f''(x) = 0.63504004, error = 5.1086361e-08
PRINT, "f'''(x) = ", deriv3, ', error =', $

ABS(deriv3 - 6.75*COS(1.5*2.0))
f'''(x) = -6.6824494, error = 1.1606068e-08

Version History

6.4 Introduced
IMSL_FCN_DERIV IDL Analyst Reference Guide

Chapter 8

Differential Equations
This section contains the following topics:
Overview: Differential Equations 330 Differential Equations Routines 332
IDL Analyst Reference Guide 329

330 Chapter 8: Differential Equations
Overview: Differential Equations

This section introduces some of the mathematical concepts used with IDL Analyst.

Ordinary Differential Equations

An ordinary differential equation is an equation involving one or more dependent
variables called yi, one independent variable, t, and derivatives of the yi with respect
to t.

In the initial value problem (IVP), the initial or starting values of the dependent
variables yi at a known value t = t0 are given. Values of yi(t) for t > t0 or t < t0 are
required.

The IMSL_ODE function solves the IVP for ODEs of the form:

with yi(t = t0) specified. Here, fi is a user-supplied function that must be evaluated at
any set of values (t, y0, ..., yN – 1), i = 0, ..., N – 1.

The previous problem statement is abbreviated by writing it as a system of first-order
ODEs, y(t) = [y0(t), ..., yN – 1(t)]T , f(t, y) = [f0(t, y), ..., fN – 1(t, y)]T, so that the
problem becomes y' = f(t, y) with initial values y(t0).

The system:

is said to be stiff if some of the eigenvalues of the Jacobian matrix:

are large and negative. This is frequently the case for differential equations modeling
the behavior of physical systems such as chemical reactions proceeding to
equilibrium where subspecies effectively complete their reactions in different epochs.
An alternate model concerns discharging capacitors such that different parts of the
system have widely varying decay rates (or time constants).

Users typically identify stiff systems by the fact that certain numerical differential
equation solvers, such as the Runge-Kutta-Verner fifth-order and sixth-order method,
are inefficient or they fail completely. Special methods are often required. The most
common inefficiency is that a large number of evaluations of f(t, y) and, hence, an
excessive amount of computer time are required to satisfy the accuracy and stability
requirements of the software. In such cases, the keyword R_K_V should not be

dyi

dt
------- yi ′ fi t y0…yn 1–,()= = i 0 …N 1–,=

td
dy y ′ f t y,()= =

∂yi′() ∂yj()⁄{ }
Overview: Differential Equations IDL Analyst Reference Guide

Chapter 8: Differential Equations 331
specified when using the IMSL_ODE function. For more about stiff systems, see
Gear (1971, Chapter 11) or Shampine and Gear (1979).

Partial Differential Equations

The routine IMSL_PDE_MOL solves the IVP problem for systems of the form:

subject to the boundary conditions:

and subject to the initial conditions:

ui(x, t = t0) = gi(x)

for i = 1, …, N. Here, fi, gi,:

are user-supplied, j = 1, 2.

The routine IMSL_POISSON2D solves Laplace’s, Poisson’s, or Helmholtz’s
equation in two dimensions. This routine uses a fast Poisson method to solve a PDE
of the form:

over a rectangle, subject to boundary conditions on each of the four sides. The scalar
constant c and the function f are user specified.

ui∂
t∂

------- fi x t u1, ..., un,
u1∂
x∂

--------, ...,
uN∂
x∂

---------,
u

2
1∂

x
2∂

----------, ...,
u

2
N∂

x
2∂

-----------, ,

=

α
i()
1

ui a() β+
i()
1

ui∂
x∂

------- a() γ1 t()=

α
i()
2

ui b() β+
i()
2

ui∂
x∂

------- b() γ2 t()=

α
i()
j

, and β
i()
j

u
2∂
x

2∂

u
2

1∂

y
2∂

---------- cu+ + f x y,()=
IDL Analyst Reference Guide Overview: Differential Equations

332 Chapter 8: Differential Equations
Differential Equations Routines

IMSL_ODE—Adams-Gear or Runge-Kutta method.

IMSL_PDE_MOL—Solves a system of partial differential equations using the
method of lines.

IMSL_POISSON2D—Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle.
Differential Equations Routines IDL Analyst Reference Guide

Chapter 8: Differential Equations 333
IMSL_ODE

The IMSL_ODE function solves an initial value problem, which is possibly stiff,
using the Adams-Gear methods for ordinary differential equations. Using keywords,
the Runge-Kutta-Verner fifth-order and sixth-order method can be used if you know
the problem is not stiff.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ODE(t, y, f [, /DOUBLE] [, FLOOR=value] [, HINIT=value]
[, HMAX=value] [, HMIN=value] [, MAX_EVALS=value]
[, MAX_STEPS=value] [, N_STEP=variable] [, N_EVALS=variable]
[, NORM=value] [, R_K_V=value] [, SCALE=value] [, TOLERANCE=value]
[, JACOBIAN=string] [, MAX_ORD=value] [, METHOD=value]
[, MITER=value] [, N_JEVALS=value])

Return Value

A two-dimensional array containing the approximate solutions for each specified
value of the independent variable. The elements (i, *) are the solutions for the i-th
variable.

Arguments

t

One-dimensional array containing values of the independent variable. Parameter t(0)
should contain the initial independent variable value, and the remaining elements of t
should be filled with values of the independent variable at which a solution is desired.

y

Array containing the initial values of the dependent variables.
IDL Analyst Reference Guide IMSL_ODE

334 Chapter 8: Differential Equations
f

Scalar string specifying a user-supplied function to evaluate the right-hand side. This
function takes two parameters, t and y, where t is the current value of the independent
variable and y is defined above.

The return value of this function is an array defined by the following equation:

Keywords

DOUBLE

If present and nonzero, double precision is used.

FLOOR

Used with IMSL_NORM. Provides a positive lower bound for the error norm option
with value 2. Default: FLOOR = 1.0

HINIT

Scalar value used for the initial value for the step size h. Steps are applied in the
direction of integration. Default: HINIT = 0.001 | t (i + 1) – t (i) |

HMAX

Scalar value used as the maximum value for the step size h. If keyword R_K_V is set,
HMAX = 2.0 is used. Default: largest machine-representable number

HMIN

Scalar value used as the minimum value for the step size h. Default: HMIN = 0.0

MAX_EVALS

Integer value used in the maximum number of function evaluations allowed per time
step. Default: MAX_EVALS = no enforced limit

MAX_STEPS

Integer value used in the maximum number of steps allowed per time step. Default:
MAX_STEPS = 500

f t y,() dy
dt
------ y'= =
IMSL_ODE IDL Analyst Reference Guide

Chapter 8: Differential Equations 335
N_STEP

Named variable into which the array containing the number of steps taken at each
value of t is stored.

N_EVALS

Named variable into which the array containing the number of function evaluations
used at each value of t is stored.

NORM

Switch determining the error norm. In the following, ei is the absolute value of the
error estimate for yi.

• 0—Minimum of the absolute error and the relative error equals the maximum
of ei/max (|yi|, 1) for i = 0, ..., N_ELEMENTS (y) – 1.

• 1—Absolute error, equals maxiei.

• 2—The error norm is maxi(ei/wi), where wi = max (|yi|, Floor).

• Default: NORM = 0.

R_K_V

If present and nonzero, uses the Runge-Kutta-Verner fifth-order and sixth-order
method.

SCALE

Scalar value used as a measure of the scale of the problem, such as an approximation
to the Jacobian along the trajectory. Default: SCALE = 1

TOLERANCE

Scalar value used to set the tolerance for error control. An attempt is made to control
the norm of the local error such that the global error is proportional to TOLERANCE.
Default: TOLERANCE = 0.001

Adams Gear (Default) Method Only

JACOBIAN

Scalar string specifying a user-supplied function to evaluate the Jacobian matrix. This
function takes three parameters, x, y, and yprime, where x and y are defined in the
IDL Analyst Reference Guide IMSL_ODE

336 Chapter 8: Differential Equations
description of the user-supplied function f of the Arguments section and yprime is the
array returned by the user-supplied function f. The return value of this function is a
two-dimensional array containing the partial derivatives. Each derivative ∂y'i / ∂yj is
evaluated at the provided (x, y) values and is returned in array location (i, j).

MAX_ORD

Defines the highest order formula of implicit Adams type or BDF type to use.
Default: value 12 for Adams formulas; value 5 for BDF formulas

METHOD

Chooses the class of integration methods:

• 1—Uses implicit Adams method.

• 2—Uses backward differentiation formula (BDF) methods.

• Default: METHOD = 2.

MITER

Chooses the method for solving the formula equations:

• 1—Uses function iteration or successive substitution.

• 2—Uses chord or modified Newton method and a user-supplied Jacobian
matrix.

• 3—Same as 2 except Jacobian is approximated within the function by divided
differences.

• Default: MITER = 3.

Adams Gear (Default) Method Only

N_JEVALS

Named variable into which the array containing the number of Jacobian function
evaluations used at each value of t is stored. The values returned are nonzero only if
the keyword JACOBIAN is also used.

Discussion

The IMSL_ODE function finds an approximation to the solution of a system of first-
order differential equations of the form:
IMSL_ODE IDL Analyst Reference Guide

Chapter 8: Differential Equations 337

with given initial conditions for y at the starting value for t. The function attempts to
keep the global error proportional to a user-specified tolerance. The proportionality
depends on the differential equation and the range of integration.

The function returns a two-dimensional array with the (i, j)-th component containing
the i-th approximate solution at the j-th time step. Thus, the returned matrix has
dimension (N_ELEMENTS (y), N_ELEMENTS (t)). It is important to notice here
that the initial values of the problem also are included in this two-dimensional matrix.

The code is based on using backward differentiation formulas not exceeding order
five as outlined in Gear (1971) and implemented by Hindmarsh (1974). There is an
optional use of the code that employs implicit Adams formulas. This use is intended
for nonstiff problems with expensive functions y′ = f(t, y).

If the keyword R_K_V is set, the IMSL_ODE function uses the Runge-Kutta-Verner
fifth-order and sixth-order method and is efficient for nonstiff systems where the
evaluations of f(t, y) are not expensive. The code is based on an algorithm designed
by Hull et al. (1976) and Jackson et al. (1978) and uses Runge-Kutta formulas of
order five and six developed by J.H. Verner.

Examples

Example 1

This is a mildly stiff example problem (F2) from the test set of Enright and Pryce
(1987).

y'0 = – y0 – y0y1 + k0y1

y'1 = –k1y1 + k2 (1 – y1) y0

y0(0) = 1

y1(0) = 0

k0 = 294.

k1 = 3.

k2 = 0.01020408

.RUN
; Define function f.
FUNCTION f, t, y

 RETURN, [-y(0) - y(0) * y(1) + 294. * y(1), $
 -3.*y(1) + 0.01020408*(1. - y(1)) * y(0)]

END

td
dy y ′ f t y,()= =
IDL Analyst Reference Guide IMSL_ODE

338 Chapter 8: Differential Equations
yp = IMSL_ODE([0, 120, 240], [1, 0], 'f')
; Call the IMSL_ODE code with the values of the independent
; variable at which a solution is desired and the initial
; conditions.
PM, yp, FORMAT = '(3f10.6)', $

Title = ' y(0) y(120) y(240)'
; Output results.

 y(0) y(120) y(240)
 1.000000 0.514591 0.392082
0.000000 0.001749 0.001333

Now solve the same problem but with a user supplied Jacobian.

.RUN
; Define function f.
FUNCTION f, t, y

RETURN, [-y(0)-y(0)*y(1)+294.0*y(1), $
-3.0*y(1)+0.01020408*(1.0-y(1))*y(0)]

END

.RUN
FUNCTION jacob, x, y, dydx

dydx = [[-y(1)-1,0.01020408*(1-y(1))], $
[294-y(0),-0.01020408*y(0)-3]]

 RETURN, dydx
END

yp = IMSL_ODE([0,120,240], [1,0], 'f', JACOBIAN='jacob', MITER=2)
PM, yp, FORMAT='(3f10.6)', TITLE=' y(0) y(120) y(240)'

Example 2: Runge-Kutta Method

This example solves:

over the interval [0, 1] with the initial condition y(0) = 1 using the Runge-Kutta-
Verner fifth-order and sixth-order method. The solution is y(t) = e–t.

.RUN
; Define function f.
FUNCTION f, t, y

 RETURN, -y
END

yp = IMSL_ODE([0, 1], [1], 'f', /R_K_V)
; Call IMSL_ODE with the keyword R_K_V set.

td
dy y–=
IMSL_ODE IDL Analyst Reference Guide

Chapter 8: Differential Equations 339
PM, yp, Title = 'Solution'
; Output results.
Solution

 1.00000 0.367879
PM, yp(1) - EXP(-1), Title = 'Error'
Error

 0.00000
IDL Analyst Reference Guide IMSL_ODE

340 Chapter 8: Differential Equations
Example 3: Predator-Prey Problem

Consider a predator-prey problem with rabbits and foxes. Let r be the density of
rabbits, and let f be the density of foxes. In the absence of any predator-prey
interaction, the rabbits would increase at a rate proportional to their number, and the
foxes would die of starvation at a rate proportional to their number. Mathematically,
the model without species interaction is approximated by the following equations:

With species interaction, the rate at which the rabbits are consumed by the foxes is
assumed to equal the value 2rf. The rate at which the foxes increase because they are
consuming the rabbits, is equal to rf. Thus, the model differential equations to be
solved are as follows:

For illustration, the initial conditions are taken to be r(0) = 1 and f (0) = 3. The
interval of integration is 0 ≤ t ≤ 40. In the program, y(0) = r and y(1) = f. The
IMSL_ODE function is then called with 100 time values from 0 to 40. The results are
shown in Figure 8-1.

.RUN
; Define the function f.
FUNCTION f, t, y

yp = y
yp(0) = 2 * y(0) * (1 - y(1))
yp(1) = -y(1) * (1 - y(0))
RETURN, yp

END

y = [1, 3]
; Set the initial values and time values.
t = 40 * FINDGEN(100)/99
y = IMSL_ODE(t, y, 'f', /R_K_V)
; Call IMSL_ODE with R_K_V set to use the Runge-Kutta method.
PLOT, y(0, *), y(1, *), Psym = 2, XTitle = 'Density of Rabbits', $

YTitle = 'Density of Foxes'
; Plot the result.

r ′ 2r=

f ′ f–=

r ′ 2r 2rf–=

f ′ f– rf+=
IMSL_ODE IDL Analyst Reference Guide

Chapter 8: Differential Equations 341
Example 4: Stiff Problems and Changing Defaults

This problem is a stiff example (F5) from the test set of Enright and Pryce (1987). An
initial step size of h = 10–7 is suggested by these authors. When solving a problem
that is known to be stiff, using double precision is advisable. The IMSL_ODE
function is forced to use the suggested initial step size and double precision by using
keywords.

y'0 = k0 (–k1y0y1 + k2y3 – k3 y0y2)

y'1 = – k0k1y0y1 + k4y3

y'2 = k0 (–k3y0y2 + k5y3)

y'3 = k0 (k1y0y1 – k2y3 + k3 y0y2)

y0(0) = 3.365 x 10–7

y1(0) = 8.261 x 10–3

y2(0) = 1.641 x 10–3

y3(0) = 9.380 x 10–6

Figure 8-1: Predator-Prey Plot
IDL Analyst Reference Guide IMSL_ODE

342 Chapter 8: Differential Equations
k0 = 1011

k1 = 3.

k2 = 0.0012

k3 = 9.

k4 = 2 x 107

k5 = 0.001

The results are shown in Figure 8-2.

.RUN
; Define the function.
FUNCTION f, t, y

k = [1d11, 3., .0012, 9., 2d7, .001]
yp = [k(0)*(-k(1)*y(0)*y(1)+k(2)*y(3)- $

k(3)*y(0)*y(2)),-k(0)*k(1)*y(0)*y(1)+ $
k(4)*y(3),k(0)*(-k(3)*y(0)*y(2) + $
k(5)*y(3)),k(0)* (k(1)*y(0)*y(1)- $
k(2)*y(3)+k(3)*y(0)*y(2))]

RETURN, yp
END

t = FINDGEN(500)/5e6
; Set up the values of the independent variable.
y = [3.365e-7, 8.261e-3, 1.641e-3, 9.380e-6]
; Set the initial values.
y = IMSL_ODE(t, y, 'f', Hinit = 1d-7, /Double)
; Call IMSL_ODE.
!P.Multi = [0, 2, 2]
!P.Font = 0
PLOT, t, y(0, *), Title = '!8y!I0!5', XTICKS=2
PLOT, t, y(1, *), Title = '!8y!I1!5', XTICKS=2
PLOT, t, y(2, *), Title = '!8y!I2!5', XTICKS=2
PLOT, t, y(3, *), Title = '!8y!I3!5', XTICKS=2
; Plot each variable on a separate axis.
IMSL_ODE IDL Analyst Reference Guide

Chapter 8: Differential Equations 343
Example 5: Strange Attractors—The Rossler System

This example illustrates a strange attractor. The strange attractor used is the Rossler
system, a simple model of a truncated Navier-Stokes equation. The Rossler system is
given by relation below.

y'0 = – y1 – y2

y'1 = y0 + a y1

y'2 = b + y0 y2 – c y2

The initial conditions and constants are shown below.

y0(0) = 1

y1(0) = 0

y2(0) = 0

a = 0.2

b = 0.2

Figure 8-2: Plot for Each Variable
IDL Analyst Reference Guide IMSL_ODE

344 Chapter 8: Differential Equations
c = 5.7

The results are shown in Figure 8-3.

.RUN
; Define function f.
FUNCTION f, t, y

COMMON constants, a, b, c
; Define some common variables.
yp = y
yp(0) = -y(1) - y(2)
yp(1) = y(0) + a * y(1)
yp(2) = b + y(0) * y(2) - c * y(2)
RETURN, yp

END

COMMON constants, a, b, c
a = .2
b = .2
c = 5.7

; Assign values to the common variables.
ntime = 5000
; Set the number of values of the independent variable.
time_range = 200
; Set the range of the independent variable to 0, ..., 200.
max_steps = 20000
; Allow up to 20,000 steps per value of the independent variable.
t = FINDGEN(ntime)/(ntime - 1) * time_range
y = [1, 0, 0]
; Set the initial conditions.
y = IMSL_ODE(t, y, 'f', Max_Steps = max_steps, /Double)
; Call IMSL_ODE using keywords Max_Steps and Double.
!P.Charsize = 1.5
SURFACE, FINDGEN(2, 2), /Nodata, $
XRange = [MIN(y(0, *)), MAX(y(0, *))], $
YRange = [MIN(y(1, *)), MAX(y(1, *))], $
ZRange = [MIN(y(2, *)), MAX(y(2, *))], $
XTitle = '!6y!i0', YTitle = 'y!i1', $
ZTitle = 'y!i2', Az = 25, /Save
PLOTS, y(0, *), y(1, *), y(2, *), /T3d
; Set up axes to plot solution. SURFACE draws the axes and defines
; the transformation used in PLOTS. The transformation is saved
; using keyword Save in SURFACE, then applied in PLOTS using T3d.
IMSL_ODE IDL Analyst Reference Guide

Chapter 8: Differential Equations 345
Example 6: Coupled, Second-order System

Consider the two-degrees-of-freedom system represented by the model (and
corresponding free-body diagrams) in Figure 8-4. Assuming y1 is greater than y0
causes the spring k1 to be in tension, as seen by the tensile force k1 (y1 – y0).

Figure 8-3: Rossler System Plot
IDL Analyst Reference Guide IMSL_ODE

346 Chapter 8: Differential Equations
Note
If y0 is taken to be greater than y1, then spring k1 is in compression, with the spring
force k1 (y0 – y1). Both methods give correct results when a summation of forces is
written.

The differential equations of motion for the system are written as follows:

Figure 8-4: Two-Degrees of Freedom System

m0y··0 k– 0y0 k1 y1 y0–()+=

m1y··1 k– 1 y1 y0–() k– 2y1=
IMSL_ODE IDL Analyst Reference Guide

Chapter 8: Differential Equations 347
Thus:

If given the mass and spring constant values:

the following is true:

Now, in order to convert this problem into one which IMSL_ODE can be used to
solve, choose the following variables:

y··0
k0 k1+

m0

 y0–

k1

m0

 y1+=

y··1
k1

m1

 y0

k1 k2+

m1

 – y1=

m0 m1 1kg= =

k0 k1 k2 1000
N
m
----= = =

y··0 2000–()y0 1000()y1+=

y··1 1000()y0 2000y1–=

z 0() y0=

z 1() y1=

z 2() y· 0=

z 3() y· 1=

k 0() 2000–=

k 1() 1000=
IDL Analyst Reference Guide IMSL_ODE

348 Chapter 8: Differential Equations
which yields the following equations:

The last four equations are the object of the return values of the user-supplied
function in the exact order as previously specified.

The example below loops through four different sets of initial values for z. The results
are shown in Figure 8-5.

.RUN
; Define a function.
FUNCTION f, t, z

k = [-2000, 1000]
RETURN, [z(2), z(3), k(0) * z(0) + k(1) * $

z(1), k(1) * z(0) + k(0) * z(1)]
END

.RUN
t = FINDGEN(1000)/999
; Independent variable, t, is between 0 and 1.
!P.MULTI = [0, 2, 2]
; Place all four plots in one window.
FOR i = 0, 3 DO BEGIN

z = [1, i/3., 0, 0]
z = IMSL_ODE(t, z, 'f', Max_Steps = 1000, Hinit = 0.001, /R_K_V)
PLOT, t, z(0, *), Thick = 2, Title = 'Displacement of Mass'
; Plot the displacement of m0 as a solid line.
OPLOT, t, z(1, *), Linestyle = 1, Thick = 2
; Overplot the displacement of m1 as a dotted line.

ENDFOR
END

y· 0 z 2()=

y· 1 z 3()=

y··0 k 0()z 0() k 1()z 1()+=

y··1 k 1()z 0() k 0()z 1()+=
IMSL_ODE IDL Analyst Reference Guide

Chapter 8: Differential Equations 349
The displacement for m0 is the solid line, and the dotted line represents the
displacement for m1. Note that when the initial conditions for:

 and

are equal, the displacement of the masses is equal for all values of the independent
variable (as seen in the fourth plot). Also, the two principal modes of this problem
occur when the following is true:

Figure 8-5: Second Order Systems with Differential Initial Values

y· 0 y· 1

y· 0 y· 1 1= =

y··0 1= y··1, 1=
IDL Analyst Reference Guide IMSL_ODE

350 Chapter 8: Differential Equations
Errors

Fatal Errors

MATH_ODE_TOO_MANY_EVALS—Completion of the next step would make the
number of function evaluations #, but only # evaluations are allowed.

MATH_ODE_TOO_MANY_STEPS—Maximum number of steps allowed; # used. The
problem may be stiff.

MATH_ODE_FAIL—Unable to satisfy the error requirement. TOLERANCE = # may
be too small.

Version History

6.4 Introduced
IMSL_ODE IDL Analyst Reference Guide

Chapter 8: Differential Equations 351
IMSL_PDE_MOL

The IMSL_PDE_MOL function solves a system of partial differential equations of
the form ut = f(x, t, u, ux, uxx) using the method of lines. The solution is represented
with cubic Hermite polynomials.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_PDE_MOL(t, y, xbreak, f_ut, f_bc [, /DOUBLE]
[, DERIV_INIT=array] [, HINIT=value] [, TOLERANCE=value])

Return Value

Three-dimensional array of size npde by nx by N_ELEMENTS(t) containing the
approximate solutions for each specified value of the independent variable.

Arguments

t

One-dimensional array containing values of independent variable. Element t(0)
should contain the initial independent variable value (the initial time, t0) and the
remaining elements of t should be values of the independent variable at which a
solution is desired.

y

Two-dimensional array of size npde by nx containing the initial values, where npde is
the number of differential equations and nx is the number of mesh points or lines. It
must satisfy the boundary conditions.

xbreak

One-dimensional array of length nx containing the breakpoints for the cubic Hermite
splines used in the x discretization. The points in xbreak must be strictly increasing.
The values xbreak(0) and xbreak(nx − 1) are the endpoints of the interval.
IDL Analyst Reference Guide IMSL_PDE_MOL

352 Chapter 8: Differential Equations
f_ut

Scalar string specifying an user-supplied function to evaluate ut. Function f_ut
accepts the following arguments:

• npde—Number of equations.

• x—Space variable, x.

• t—Time variable, t.

• u—One-dimensional array of length npde containing the dependent values, u.

• ux—One-dimensional array of length npde containing the first derivatives, ux.

• uxx—One-dimensional array of length npde containing the second derivative,
uxx.

The return value of this function is an one-dimensional array of length npde
containing the computed derivatives ut.

f_bc—Scalar string specifying user-supplied procedure to evaluate boundary
conditions. The boundary conditions accepted by IMSL_PDE_MOL are:

Note
Users must supply the values αk and βk, which determine the values γk. Since γk can
depend on t values, γk' also are required.

• npde—Number of equations. (Input)

• x—Space variable, x. (Input)

• t—Time variable, t. (Input)

• alpha—Named variable into which an one-dimensional array of length npde
containing the αk values is stored. (Output)

• beta—Named variable into which an one-dimensional array of length npde
containing the βk values is stored. (Output)

α β
∂
∂

γk k k
k

ku
u
x

+ =
IMSL_PDE_MOL IDL Analyst Reference Guide

Chapter 8: Differential Equations 353
gammap

Named variable into which an one-dimensional array of length npde containing the
derivatives is stored. (Output):

Keywords

DOUBLE

If present and nonzero, double precision is used.

DERIV_INIT

Two-dimensional array that supplies the derivative values ux(x, t(0)). This derivative
information is input as:

Default: Derivatives are computed using cubic spline interpolation

HINIT

Initial step size in the t integration. This value must be nonnegative. If HINIT is zero,
an initial step size of 0.001|ti+1 - ti| will be arbitrarily used. The step will be applied in
the direction of integration. Default: HINIT = 0.0

TOLERANCE

Differential equation error tolerance. An attempt to control the local error in such a
way that the global relative error is proportional to TOLERANCE. Default:
TOLERANCE = 100.0*ε, where ε is machine epsilon.

dγk

dt
-------- γ′k=

Deriv_Init k i,()
uk∂
ux∂

-------- x t 0(),()=
IDL Analyst Reference Guide IMSL_PDE_MOL

354 Chapter 8: Differential Equations
Discussion

Let M = npde, N = nx and xi = xbreak(i). The routine IMSL_PDE_MOL uses the
method of lines to solve the partial differential equation system:

with the initial conditions:

uk = uk(x, t) at t = t0, where t0 = t(0)

and the boundary conditions:

for k = 1, ..., M.

Cubic Hermite polynomials are used in the x variable approximation so that the trial
solution is expanded in the series:

where φi(x) and ψi(x) are standard basis functions for cubic Hermite polynomials
with the knots x1 < x2 < ... < xN. These are piecewise cubic polynomials with
continuous first derivatives. At the breakpoints, they satisfy:

According to the collocation method, the coefficients of the approximation are
obtained so that the trial solution satisfies the differential equation at the two
Gaussian points in each subinterval:

uk∂
t∂

-------- fk x t u1, ..., uM,
u1∂
x∂

--------, ...,
uM∂
x∂

----------,
u

2
1∂

x
2∂

----------, ...,
u

2
M∂

x
2∂

------------, ,

=

αkuk βk

u∂ k

x∂
--------+ γk at x x1 and at x xN== =

uk
ˆ x t,() ai k, t()φi x() bi k, t()ψi x()+()

i 1=

N

∑=

φi xl() δil= ψi xl() 0=

φid

xd
------- xl() 0=

ψid

xd
-------- xl() δil=

p2j 1– xj
3 3–

6
---------------- xj 1+ xj–()+=

p2j xj
3 3–

6
---------------- xj 1+ xj+()+=
IMSL_PDE_MOL IDL Analyst Reference Guide

Chapter 8: Differential Equations 355
for j = 1, ..., N. The collocation approximation to the differential equation is:

for k = 1, ..., M and j = 1, ..., 2(N − 1).

This is a system of 2M(N − 1) ordinary differential equations in 2M N unknown
coefficient functions, ai,k and bi,k. This system can be written in the matrix−vector
form as A dc/dt = F (t, y) with c(t0) = c0 where c is a vector of coefficients of length
2M N and c0 holds the initial values of the coefficients. The last 2M equations are
obtained by differentiating the boundary conditions:

for k = 1, ..., M.

The initial conditions uk(x, t0) must satisfy the boundary conditions. Also, the γk(t)
must be continuous and have a smooth derivative, or the boundary conditions will not
be properly imposed for t > t0.

If αk = βk = 0, it is assumed that no boundary condition is desired for the k-th
unknown at the left endpoint. A similar comment holds for the right endpoint. Thus,
collocation is done at the endpoint. This is generally a useful feature for systems of
first-order partial differential equations.

If the number of partial differential equations is M = 1 and the number of breakpoints
is N = 4, then:

The vector c is:

c = [a1, b1, a2, b2, a3, b3, a4, b4]T

ai k,d

td
-----------φi pj()

bi k,d

td
------------ψi pj()+ fk pj t û1 pj(), ..., ûM pj(), ..., û1()

xx
pj(), ..., ûM()

xx
pj(), ,()=

α β
γ

k
k

k
k kda

dt
db
dt

d
dt

+ =

A

α1 β1

φ1 p1() ψ1 p1() φ2 p1() ψ2 p1()

φ1 p2() ψ1 p2() φ2 p2() ψ2 p2()

φ3 p3() ψ3 p3() φ4 p3() ψ4 p3()

φ3 p4() ψ3 p4() φ4 p4() ψ4 p4()

φ5 p5() ψ5 p5() φ6 p5() ψ6 p5()

φ5 p6() ψ5 p6() φ6 p6() ψ6 p6()

α4 β4

=

IDL Analyst Reference Guide IMSL_PDE_MOL

356 Chapter 8: Differential Equations
and the right-side F is:

If M > 1, then each entry in the above matrix is replaced by an M x M diagonal
matrix. The element α1 is replaced by diag(α1,1, ..., α1,M). The elements αN, β1 and
βN are handled in the same manner. The φi(pj) and ψi(pj) elements are replaced by
φi(pj)IM and ψi(pj)IM where IM is the identity matrix of order M. See Madsen and
Sincovec (1979) for further details about discretization errors and Jacobian matrix
structure.

The input array y contains the values of the ak,i. The initial values of the bk,i are
obtained by using the IDL Analyst cubic spline routine IMSL_CSINTERP to
construct functions:

such that:

The IDL Analyst routine IMSL_SPVALUE is used to approximate the values:

There is an optional use of IMSL_PDE_MOL that allows the user to provide the
initial values of bk,i.

The order of matrix A is 2MN and its maximum bandwidth is 6M − 1. The band
structure of the Jacobian of F with respect to c is the same as the band structure of A.
This system is solved using a modified version of IMSL_ODE. Some of the linear
solvers were removed. Numerical Jacobians are used exclusively. The algorithm is
unchanged. Gear’s BDF method is used as the default because the system is typically
stiff.

Four examples of PDEs are now presented that illustrate how users can interface their
problems with IMSL_PDE_MOL. The examples are small and not indicative of the
complexities that most practitioners will face in their applications.

F γ'1 x1() f p1() f p2() f p3() f p4() f p5() f p6() γ'1 x1(), , , , , , ,[] T
=

ûk x t0,()

ûk xi t0,() aki=

ûkd

xd
-------- xi t0,() bk i,≡
IMSL_PDE_MOL IDL Analyst Reference Guide

Chapter 8: Differential Equations 357
Examples

Example 1

This equation solves the normalized linear diffusion PDE, ut = uxx, 0 ≤ x ≤ 1, t > t0.
The initial values are t0 = 0, u(x, t0) = u0 = 1. There is a “zero-flux” boundary
condition at x = 1, namely ux(1, t) = 0, (t > t0). The boundary value of u(0, t) is
abruptly changed from u0 to the value u1 = 0.1. This transition is completed by
t = tδ = 0.09.

Due to restrictions in the type of boundary conditions successfully processed by
IMSL_PDE_MOL, it is necessary to provide the derivative boundary value function
γ′ at x = 0 and at x = 1. The function γ at x = 0 makes a smooth transition from the
value u0 at t = t0 to the value u1 at t = tδ. The transition phase for γ′ is computed by
evaluating a cubic interpolating polynomial. For this purpose, the function
subprogram IMSL_SPVALUE. The interpolation is performed as a first step in the
user-supplied procedure f_bc. The function and derivative values γ(t0) = u0, γ′(t0) = 0,
γ(tδ) = u1, and γ′(tδ) = 0, are used as input to routine IMSL_CSINTERP to obtain the
coefficients evaluated by IMSL_SPVALUE. Notice that γ′(t) = 0, t > tδ. The
evaluation routine IMSL_SPVALUE will not yield this value so logic in the
procedure f_bc assigns γ′(t) = 0, t > tδ.

Save the following code as pde_mol_example1, then compile and run:

FUNCTION f_ut, npde, x, t, u, ux, uxx
; Define the PDE
 ut = uxx
 RETURN, ut
END

PRO f_bc, npde, x, t, alpha, beta, gammap
COMMON ex1_pde, first, ppoly
first = 1
alpha = FLTARR(npde)
beta = FLTARR(npde)
gammap = FLTARR(npde)
delta = 0.09
; Compute interpolant first time only
IF (first EQ 1) THEN BEGIN

first = 0
ppoly = IMSL_CSINTERP([0.0, delta], [1.0, 0.1], $

ileft = 1, left = 0.0, iright = 1, right = 0.0)
ENDIF
; Define the boundary conditions.
IF (x EQ 0.0) THEN BEGIN

alpha(0) = 1.0
IDL Analyst Reference Guide IMSL_PDE_MOL

358 Chapter 8: Differential Equations
beta(0) = 0.0
gammap(0) = 0.0
; If in the boundary layer, compute nonzero gamma prime
IF (t LE delta) THEN gammap(0) = $

IMSL_SPVALUE(t, ppoly, xderiv = 1)
END ELSE BEGIN

; These are for x = 1
alpha(0) = 0.0
beta(0) = 1.0
gammap(0) = 0.0

END
RETURN

END

PRO pde_mol_example1
COMMON ex1_pde, first, ppoly
npde = 1
nx = 8
nstep = 10
; Set breakpoints and initial conditions
xbreak = FINDGEN(nx)/(nx - 1)
y = FLTARR(npde, nx)
y(*) = 1.0
; Initialize the solver
t = FINDGEN(nstep)/(nstep) + 0.1
t = [0.0, t*t]
; Solve the problem
res = IMSL_PDE_MOL(t, y, xbreak, 'f_ut', 'f_bc')
num = INDGEN(8) + 1
FOR i = 1, 10 DO BEGIN

PRINT, 'solution at t = ', t(i)
PRINT, num, FORMAT = '(8I7)'
PM, res(0, *, i), FORMAT = '(8F7.4)'

ENDFOR
END

IDL Prints:

solution at t = 0.0100000
 1 2 3 4 5 6 7 8
 0.9691 0.9972 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
solution at t = 0.0400000
 1 2 3 4 5 6 7 8
 0.6247 0.8708 0.9624 0.9908 0.9981 0.9997 1.0000 1.0000
solution at t = 0.0900000
 1 2 3 4 5 6 7 8
 0.1000 0.4602 0.7169 0.8671 0.9436 0.9781 0.9917 0.9951
solution at t = 0.160000
 1 2 3 4 5 6 7 8
 0.1000 0.3130 0.5071 0.6681 0.7893 0.8708 0.9168 0.9315
IMSL_PDE_MOL IDL Analyst Reference Guide

Chapter 8: Differential Equations 359
solution at t = 0.250000
 1 2 3 4 5 6 7 8
 0.1000 0.2567 0.4045 0.5354 0.6428 0.7224 0.7710 0.7874
solution at t = 0.360000
 1 2 3 4 5 6 7 8
 0.1000 0.2176 0.3292 0.4292 0.5125 0.5751 0.6139 0.6270
solution at t = 0.490000
 1 2 3 4 5 6 7 8
 0.1000 0.1852 0.2661 0.3386 0.3992 0.4448 0.4731 0.4827
solution at t = 0.640000
 1 2 3 4 5 6 7 8
 0.1000 0.1588 0.2147 0.2648 0.3066 0.3381 0.3577 0.3643
solution at t = 0.810000
 1 2 3 4 5 6 7 8
 0.1000 0.1387 0.1754 0.2083 0.2358 0.2565 0.2694 0.2738
solution at t = 1.00000
 1 2 3 4 5 6 7 8
 0.1000 0.1242 0.1472 0.1678 0.1850 0.1980 0.2060 0.2087

Example 2

This example solves Problem C from Sincovec and Madsen (1975). The equation is
of diffusion-convection type with discontinuous coefficients. This problem illustrates
a simple method for programming the evaluation routine for the derivative, ut. Note
that the weak discontinuities at x = 0.5 are not evaluated in the expression for ut. The
results are shown in Figure 8-6. The problem is defined as:

Save the following code as pde_mol_example2, then compile and run:

FUNCTION f_ut, npde, x, t, u, ux, uxx

ut u∂ t∂⁄ ∂ x∂ D x() u∂ x∂⁄()⁄ v x() u∂ x∂⁄–= =

x 0 1,[] ,t 0>∈

D x()
5 if 0 x 0.5 <≤
1 if 0.5 x 1.0≤<

=

v x()
1000.0 if 0 x 0.5 <≤
1 if 0.5 x 1.0≤<

=

u x 0,()
1 if x 0=

0 if x 0<

=

u 0 t,() 1,= u 1 t,() 0=
IDL Analyst Reference Guide IMSL_PDE_MOL

360 Chapter 8: Differential Equations
; Define the PDE
ut = FLTARR(npde)
IF (x LE 0.5) THEN BEGIN

d = 5.0
v = 1000.0

END ELSE BEGIN
d = 1.0
v = 1.0

END
ut(0) = d*uxx(0) - v*ux(0)
RETURN, ut

END

PRO f_bc, npde, x, t, alpha, beta, gammap
; Define the Boundary Conditions
alpha = FLTARR(npde)
beta = FLTARR(npde)
gammap = FLTARR(npde)
alpha(0) = 1.0
beta(0) = 0.0
gammap(0) = 0.0
RETURN

END

PRO pde_mol_example2
npde = 1
nx = 100
nstep = 10
; Set breakpoints and initial conditions
xbreak = FINDGEN(nx)/(nx - 1)
y = FLTARR(npde, 100)
y(*) = 0.0
y(0) = 1.0
; Initialize the solver
mach = IMSL_MACHINE(/FLOAT)
tol = SQRT(mach.MAX_REL_SPACE)
hinit = 0.01*tol
PRINT, 'tol = ', tol, ' and hinit = ', hinit
t = [0.0, FINDGEN(nstep)/(nstep) + 0.1]
; Solve the problem
res = IMSL_PDE_MOL(t, y, xbreak, 'f_ut', 'f_bc', $

tolerance = tol, hinit = hinit)
; Plot results at current ti=ti+1
PLOT, xbreak, res(0,*,10), psym = 3, yrange=[0 , 1.25], $

title = 'Solution at t = 1.0'
END
IMSL_PDE_MOL IDL Analyst Reference Guide

Chapter 8: Differential Equations 361
Example 3

In this example, using IMSL_PDE_MOL, the linear normalized diffusion PDE
ut = uxx is solved but with an optional use that provides values of the derivatives, ux,
of the initial data. Due to errors in the numerical derivatives computed by spline
interpolation, more precise derivative values are required when the initial data is
u(x, 0) = 1 + cos[(2n − 1)πx], n > 1. The boundary conditions are “zero flux”
conditions ux(0, t) = ux(1, t) = 0 for t > 0. Note that the initial data is compatible with
these end conditions since the derivative function:

vanishes at x = 0 and x = 1.

This optional usage signals that the derivative of the initial data is passed by the user.

Figure 8-6: Diffusion-Convection Type with Discontinuous Coefficients

ux x 0,() u x 0,()d
xd

-------------------- 2n 1–()– π 2n 1–()πx[]sin= =
IDL Analyst Reference Guide IMSL_PDE_MOL

362 Chapter 8: Differential Equations
Save the following code as pde_mol_example3, then compile and run:

FUNCTION f_ut, npde, x, t, u, ux, uxx
; Define the PDE
ut = fltARR(npde)
ut(0) = uxx(0)
RETURN, ut

END

PRO f_bc, npde, x, t, alpha, beta, gammap
; Define the boundary conditions
alpha = FLTARR(npde)
beta = FLTARR(npde)
gammap = FLTARR(npde)
alpha(0) = 0.0
beta(0) = 1.0
gammap(0) = 0.0
RETURN

END

PRO pde_mol_example3
npde = 1
nx = 10
nstep = 10
arg = 9.0*!Pi
; Set breakpoints and initial conditions
xbreak = FINDGEN(nx)/(nx - 1)
y = FLTARR(npde, nx)
y(0, *) = 1.0 + COS(arg*xbreak)
di = y
di(0, *) = -arg*SIN(arg*xbreak)
; Initialize the solver
mach = IMSL_MACHINE(/FLOAT)
tol = SQRT(mach.MAX_REL_SPACE)
t = [FINDGEN(nstep + 1)*(nstep*0.001)/(nstep)]
; Solve the problem
res = IMSL_PDE_MOL(t, y, xbreak, 'f_ut', 'f_bc', $

Tolerance = tol, Deriv_Init = di)
; Print results at every other ti=ti+1
FOR i = 2, 10, 2 DO BEGIN

PRINT, 'solution at t = ', t(i)
PM, res(0, *, i), FORMAT = '(10F10.4)'
PRINT, 'derivative at t = ', t(i)
PM, di(0, *, i)
PRINT

ENDFOR
END

IDL Prints:
IMSL_PDE_MOL IDL Analyst Reference Guide

Chapter 8: Differential Equations 363
solution at t = 0.00200000
 1.2329 0.7671 1.2329 0.7671 1.2329
 0.7671 1.2329 0.7671 1.2329 0.7671
derivative at t = 0.00200000
 0.00000 9.58505e-07 7.96148e-09 1.25302e-06
 -1.61002e-07 1.91968e-06 -1.60244e-06 3.85856e-06
 -4.83314e-06 2.02301e-06

solution at t = 0.00400000
 1.0537 0.9463 1.0537 0.9463 1.0537
 0.9463 1.0537 0.9463 1.0537 0.9463
derivative at t = 0.00400000
 0.00000 6.64098e-07 -5.12883e-07 8.55131e-07
 -6.11177e-07 -2.76893e-06 7.84288e-08 2.97113e-06
 -2.32777e-07 2.02301e-06

solution at t = 0.00600000
 1.0121 0.9879 1.0121 0.9879 1.0121
 0.9879 1.0121 0.9879 1.0121 0.9879
derivative at t = 0.00600000
 0.00000 7.42109e-07 -5.29244e-08 -1.98559e-07
 -1.19702e-06 -8.66795e-07 1.17180e-07 7.09625e-07
 4.31432e-07 2.02301e-06

solution at t = 0.00800000
 1.0027 0.9973 1.0027 0.9973 1.0027
 0.9973 1.0027 0.9973 1.0027 0.9973
derivative at t = 0.00800000
 0.00000 3.56892e-07 -3.80790e-07 -9.99308e-07
 -1.96765e-07 7.72356e-07 8.50576e-08 1.11979e-07
 4.74838e-07 2.02301e-06
solution at t = 0.0100000
 1.0008 0.9992 1.0008 0.9992 1.0008
 0.9992 1.0008 0.9992 1.0008 0.9992
derivative at t = 0.0100000
 0.00000 2.40533e-07 -4.27171e-07 -1.25933e-06
 3.60702e-08 6.42627e-07 -1.00818e-07 2.08207e-07
 1.12973e-06 2.02301e-06

Example 4

In this example, consider the linear normalized hyperbolic PDE, utt = uxx, the
“vibrating string” equation. This naturally leads to a system of first order PDEs.
Define a new dependent variable ut = v. Then, vt = uxx is the second equation in the
system. Take as initial data u(x, 0) = sin(πx) and ut(x, 0) = v(x, 0) = 0. The ends of the
string are fixed so u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0. The exact solution to this
problem is u(x, t) = sin(πx) cos(πt). Residuals are computed at the output values of t
for 0 < t ≤ 2. Output is obtained at 200 steps in increments of 0.01.
IDL Analyst Reference Guide IMSL_PDE_MOL

364 Chapter 8: Differential Equations
Even though the sample code IMSL_PDE_MOL gives satisfactory results for this
PDE, users should be aware that for nonlinear problems, “shocks” can develop in the
solution. The appearance of shocks may cause the code to fail in unpredictable ways.
See Courant and Hilbert (1962), pp 488-490, for an introductory discussion of shocks
in hyperbolic systems.

Save the following code as pde_mol_example4, then compile and run:

FUNCTION f_ut, npde, x, t, u, ux, uxx
; Define the PDE
ut = FLTARR(npde)
ut(0) = u(1)
ut(1) = uxx(0)
RETURN, ut

END

PRO f_bc, npde, x, t, alpha, beta, gammap
; Define the boundary conditions
alpha = FLTARR(npde)
beta = FLTARR(npde)
gammap = FLTARR(npde)
alpha(0) = 1
alpha(1) = 1
beta(0) = 0
beta(1) = 0
gammap(0) = 0
gammap(1) = 0
RETURN

END

PRO pde_mol_example4
npde = 2
nx = 10
nstep = 200
; Set breakpoints and initial conditions
xbreak = FINDGEN(nx)/(nx - 1)
y = FLTARR(npde, nx)
y(0, *) = SIN(!Pi*xbreak)
y(1, *) = 0
di = y
di(0, *) = !Pi*COS(!Pi*xbreak)
di(1, *) = 0.0
; Initialize the solver
mach = IMSL_MACHINE(/FLOAT)
tol = SQRT(mach.MAX_REL_SPACE)
t = [0.0, 0.01 + FINDGEN(nstep)*2.0/(nstep)]
; Solve the problem
u = IMSL_PDE_MOL(t, y, xbreak, 'f_ut', 'f_bc', $

Tolerance = tol, Deriv_Init = di)
IMSL_PDE_MOL IDL Analyst Reference Guide

Chapter 8: Differential Equations 365
err = 0.0
pde_error = FLTARR(nstep)
FOR j = 1, N_ELEMENTS(t) - 1 DO BEGIN

FOR i = 0, nx - 1 DO BEGIN
err = (err) > (u(0, i, j) - $

SIN(!Pi*xbreak(i))*COS(!Pi*t(j)))
ENDFOR

ENDFOR
PRINT, 'Maximum error in u(x, t) = ', err

END

IDL Prints:

Maximum error in u(x, t) = 0.000626385

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_PDE_MOL

366 Chapter 8: Differential Equations
IMSL_POISSON2D

The IMSL_POISSON2D function solves Poisson’s or Helmholtz’s equation on a
two-dimensional rectangle using a fast Poisson solver based on the HODIE finite-
difference scheme on a uniform mesh.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_POISSON2D(rhs_pde, rhs_bc, coef_u, nx, ny, ax, bx, ay, by, bc_type
[, /DOUBLE] [, ORDER=value])

Return Value

Two-dimensional array of size nx by ny containing solution at the grid points.

Arguments

rhs_pde

Scalar string specifying the name of the user-supplied function to evaluate the right-
hand side of the partial differential equation at a scalar value x and scalar value y.

rhs_bc

Scalar string specifying the name of the user-supplied function to evaluate the right-
hand side of the boundary conditions, on side side, at scalar value x and scalar value y.
The value of side will be one of the integer values shown in Table 8-1.

Integer Side

0 right side

1 bottom side

Table 8-1: Integer Values
IMSL_POISSON2D IDL Analyst Reference Guide

Chapter 8: Differential Equations 367
coef_u

Value of the coefficient of u in the differential equation.

nx

Number of grid lines in the x-direction. nx must be at least 4. See “Discussion” on
page 369 section for further restrictions on nx.

ny

Number of grid lines in the y-direction. ny must be at least 4. See “Discussion” on
page 369 section for further restrictions on ny.

ax

The value of x along the left side of the domain.

bx

The value of x along the right side of the domain.

ay

The value of y along the bottom of the domain.

by

The value of y along the top of the domain.

2 left side

3 top side

Integer Side

Table 8-1: Integer Values
IDL Analyst Reference Guide IMSL_POISSON2D

368 Chapter 8: Differential Equations
bc_type

One-dimensional array of size 4 indicating the type of boundary condition on each
side of the domain or that the solution is periodic. The sides are numbered as shown
in Table 8-2.

The three possible boundary condition types are shown in Table 8-3.

Keywords

DOUBLE

If present and nonzero, double precision is used.

ORDER

Order of accuracy of the finite-difference approximation. It can be either 2 or 4.
Default: ORDER = 4

Array Side Location

bc_type(0) right x = bx

bc_type(1) bottom y = ay

bc_type(2) left x = ax

bc_type(3) top y = by

Table 8-2: Side Numbering

Type Condition

bc_type(i) = 1 Dirichlet condition. Value of u is given.

bc_type(i) = 2 Neuman condition. Value of du/dx is given (on the right or
left sides) or du/dy (on the bottom or top of the domain).

bc_type(i) = 3 Periodic condition.

Table 8-3: Boundary Condition Types
IMSL_POISSON2D IDL Analyst Reference Guide

Chapter 8: Differential Equations 369
Discussion

Let c = coef_u, ax = ax, bx = bx, ay = ay, by = by, nx = nx and ny = ny.

IMSL_POISSON2D is based on the code HFFT2D by Boisvert (1984). It solves the
equation:

on the rectangular domain (ax, bx) x (ay, by) with a user-specified combination of
Dirichlet (solution prescribed), Neumann (first-derivative prescribed), or periodic
boundary conditions. The sides are numbered clockwise, starting with the right side,
as shown in Figure 8-7.

When c = 0 and only Neumann or periodic boundary conditions are prescribed, then
any constant may be added to the solution to obtain another solution to the problem.
In this case, the solution of minimum ∞-norm is returned.

The solution is computed using either a second-or fourth-order accurate finite-
difference approximation of the continuous equation. The resulting system of linear

Figure 8-7: Side Numbering

x
2

2

∂
∂ u

y
2

2

∂
∂ u cu+ + p=
IDL Analyst Reference Guide IMSL_POISSON2D

370 Chapter 8: Differential Equations
algebraic equations is solved using fast Fourier transform techniques. The algorithm
relies on the fact that nx – 1 is highly composite (the product of small primes). For
details of the algorithm, see Boisvert (1984). If nx – 1 is highly composite then the
execution time of IMSL_POISSON2D is proportional to nxny log2 nx. If evaluations
of p(x, y) are inexpensive, then the difference in running time between ORDER = 2
and ORDER = 4 is small.

The grid spacing is the distance between the (uniformly spaced) grid lines. It is given
by the formulas hx = (bx – ax)/(nx – 1) and hy = (by – ay)/(ny – 1). The grid spacings
in the x and y directions must be the same, i.e., nx and ny must be such that hx is equal
to hy. Also, as noted above, nx and ny must be at least 4. To increase the speed of the
fast Fourier transform, nx – 1 should be the product of small primes. Good choices
are 17, 33, and 65.

If –coef_u is nearly equal to an eigenvalue of the Laplacian with homogeneous
boundary conditions, then the computed solution might have large errors.

Example

This example solves the equation:

with the boundary conditions:

on the bottom side and:

on the other three sides. The domain is the rectangle [0, 1/4] x [0, 1/2]. The output of
IMSL_POISSON2D is a 17 x 33 table of values. The functions IMSL_SPVALUE are
used to print a different table of values.

FUNCTION rhs_pde, x, y
; Define the right side of the PDE
f = (-2.0*SIN(x + 2.0*y) + 16.0*EXP(2.0*x + 3.0*y))
RETURN, f

END

FUNCTION rhs_bc, side, x, y
; Define the boundary conditions
IF (side EQ 1) THEN $

; Bottom side

u
2∂
x2∂

-------- u
2∂
y

2∂
-------- 3u+ + 2– x 2y+()sin 16e

2x 3y+
+=

u∂
y∂

----- 2 x 2y+()cos 3e
2x 3y+

+=

m x 2y+() e
2x 3y+

+()sin=
IMSL_POISSON2D IDL Analyst Reference Guide

Chapter 8: Differential Equations 371
f = 2.0*COS(x + 2.0*y) + 3.0*EXP(2.0*x + 3.0*y) $
ELSE $

; All other sides, 0, 2, 3
f = SIN(x + 2.0*y) + EXP(2.0*x + 3.0*y)

RETURN, f
END

PRO print_results, x, y, utable
FOR j = 0, 4 DO FOR i = 0, 4 DO $

PRINT, x(i), y(j), utable(i, j), $
ABS(utable(i, j) - SIN(x(i) + 2.0*y(j)) - $
EXP(2.0*x(i) + 3.0*y(j)))

END
nx = 17
nxtable = 5
ny = 33
nytable = 5
; Set rectangle size
ax = 0.0
bx = 0.25
ay = 0.0
by = 0.5
; Set boundary conditions
bc_type = [1, 2, 1, 1]
; Coefficient of u
coef_u = 3.0
; Solve the PDE
u = IMSL_POISSON2D('rhs_pde', 'rhs_bc', coef_u, nx, ny, ax, $

bx, ay, by, bc_type)
; Set up for interpolation
xdata = ax + (bx - ax)*FINDGEN(nx)/(nx - 1)
ydata = ay + (by - ay)*FINDGEN(ny)/(ny - 1)
; Compute interpolant
sp = IMSL_BSINTERP(xdata, ydata, u)
x = ax + (bx - ax)*FINDGEN(nxtable)/(nxtable - 1)
y = ay + (by - ay)*FINDGEN(nytable)/(nytable - 1)
utable = IMSL_SPVALUE(x, y, sp)
; Print computed answer and absolute on nxtabl by nytabl grid
PRINT,' X Y U Error'
print_results, x, y, utable
 X Y U Error
 0.00000 0.00000 1.00000 0.00000
 0.0625000 0.00000 1.19560 4.88758e-06
 0.125000 0.00000 1.40869 7.39098e-06
 0.187500 0.00000 1.64139 4.88758e-06
 0.250000 0.00000 1.89613 1.19209e-07
 0.00000 0.125000 1.70240 1.19209e-07
 0.0625000 0.125000 1.95615 6.55651e-06
 0.125000 0.125000 2.23451 9.53674e-06
IDL Analyst Reference Guide IMSL_POISSON2D

372 Chapter 8: Differential Equations
 0.187500 0.125000 2.54067 6.67572e-06
 0.250000 0.125000 2.87830 0.00000
 0.00000 0.250000 2.59643 4.76837e-07
 0.0625000 0.250000 2.93217 9.05991e-06
 0.125000 0.250000 3.30337 1.31130e-05
 0.187500 0.250000 3.71482 8.82149e-06
 0.250000 0.250000 4.17198 2.38419e-07
 0.00000 0.375000 3.76186 2.38419e-07
 0.0625000 0.375000 4.21634 9.05991e-06
 0.125000 0.375000 4.72261 1.31130e-05
 0.187500 0.375000 5.28776 8.58307e-06
 0.250000 0.375000 5.91989 4.76837e-07
 0.00000 0.500000 5.32316 4.76837e-07
 0.0625000 0.500000 5.95199 0.00000
 0.125000 0.500000 6.65687 4.76837e-07
 0.187500 0.500000 7.44826 0.00000
 0.250000 0.500000 8.33804 1.43051e-06

Version History

6.4 Introduced
IMSL_POISSON2D IDL Analyst Reference Guide

Chapter 9

Transforms
This section contains the following topics:
Overview: Transforms 374 Transforms Routines 376
IDL Analyst Reference Guide 373

374 Chapter 9: Transforms
Overview: Transforms

This section introduces some of the mathematical concepts used with IDL Analyst.

Fast Fourier Transforms

A fast Fourier transform (FFT) is a discrete Fourier transform that is computed
efficiently. The straightforward method for computing the Fourier transform takes
approximately n2 operations, where n is the number of points in the transform, while
the FFT (which computes the same values) takes approximately nlogn operations.
The algorithms in this chapter are modeled after the Cooley-Tukey (1965) algorithm.
These functions are most efficient for integers that are highly composite, that is,
integers that are a product of the small primes 2, 3, and 5.

For the IMSL_FFTCOMP function, there is a corresponding initialization function
(IMSL_FFTINIT). Use IMSL_FFTINIT only when repeatedly transforming one-
dimensional sequences of the same data type and length. In this situation, the
initialization function computes the initial setup once; subsequently, the user calls the
main function with the appropriate keyword. This may result in substantial
computational savings. In addition to the one-dimensional transformation described
above, the IMSL_FFTCOMP function also can be used to compute a complex two-
dimensional FFT and its inverse.

Continuous Versus Discrete Fourier Transform

There is a close connection between the discrete Fourier transform and the
continuous Fourier transform. The continuous Fourier transform is defined by
Brigham (1974) as follows:

f̂ ω() Ff() ω() f t()e
2πiωt–

td
∞–

∞

∫= =
Overview: Transforms IDL Analyst Reference Guide

Chapter 9: Transforms 375
Begin by making the following approximation:

If the last integral approximated using the rectangle rule with spacing h = T/n, the
result is given below:

Finally, setting ω = j / T for j = 0, ..., n – 1 yields:

where the vector f h = (f (–T / 2), ..., f ((n – 1) h – T / 2)). Thus, after scaling the
components by (–1) jh, the discrete Fourier transform as computed in
IMSL_FFTCOMP (with input f h) is related to an approximation of the continuous
Fourier transform by the above formula.

If the function f is expressed as a function, then the continuous Fourier transform:

can be approximated using the IDL Analyst IMSL_INTFCN function to compute a
Fourier transform as described in “IMSL_INTFCN” on page 284.

f̂ ω() f t()e
2πiωt–

td
T 2⁄–

T 2⁄

∫≈

 f t T 2⁄–()e
2πiω t T 2⁄–()–

td
0

T

∫=

 e
πiωT

f t T 2⁄–()e
2πiωt–

td
0

T

∫=

f
ˆ ω() e

πiωT
h e

2πiωkh–
f kh T 2⁄–()

k 0=

n 1–

∑≈

f
ˆ

j T⁄() e
πij

h e
2πij k n⁄()–

f kh T 2⁄–()
k 0=

n 1–

∑≈ 1–
j
h e

2πij k n⁄()–
f k

h

k 0=

n 1–

∑=

f̂

IDL Analyst Reference Guide Overview: Transforms

376 Chapter 9: Transforms
Transforms Routines

IMSL_FFTCOMP—Real or complex FFT.

IMSL_FFTINIT—Real or complex FFT initialization.

IMSL_CONVOL1D—Compute discrete convolution.

IMSL_CORR1D—Compute discrete correlation.

IMSL_LAPLACE_INV—Approximate inverse Laplace transform of a complex
function.
Transforms Routines IDL Analyst Reference Guide

Chapter 9: Transforms 377
IMSL_FFTCOMP

The IMSL_FFTCOMP function computes the discrete Fourier transform of a real or
complex sequence. Using keywords, a real-to-complex transform or a two-
dimensional complex Fourier transform can be computed.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FFTCOMP(a [, COSINE=value] [, SINE=value] [, /DOUBLE]
[, COMPLEX=value] [, BACKWARD=value] [, INIT_PARAMS=array])

Return Value

Transformed sequence. If A is one-dimensional, type of A determines whether the
real or complex transform is computed, where A is array a. If A is two-dimensional,
complex transform is always computed.

Arguments

a

Array containing the periodic sequence.

Keywords

COSINE

If present and nonzero, then IMSL_FFTCOMP computes the discrete Fourier cosine
transformation of an even sequence.

SINE

If present and nonzero, then IMSL_FFTCOMP computes the discrete Fourier sine
transformation of an odd sequence.
IDL Analyst Reference Guide IMSL_FFTCOMP

378 Chapter 9: Transforms
DOUBLE

If present and nonzero, double precision is used.

COMPLEX

If present and nonzero, the complex transform is computed. If A is complex, this
keyword is not required to ensure that a complex transform is computed. If A is real,
it is promoted to complex internally.

BACKWARD

If present and nonzero, the backward transform is computed. See “Discussion” below
for more details on this option.

INIT_PARAMS

Array containing parameters used when computing a one-dimensional FFT. If
IMSL_FFTCOMP is used repeatedly with arrays of the same length and data type, it
is more efficient to compute these parameters only once with a call to the
IMSL_FFTINIT function.

Discussion

The IMSL_FFTCOMP function’s default action is to compute the FFT of array A,
with the type of FFT performed dependent upon the data type of the input array A. (If
A is a one-dimensional real array, the real FFT is computed; if A is a one-dimensional
complex array, the complex FFT is computed; and if A is a two-dimensional real or
complex array, the complex FFT is computed.) If the complex FFT of a one-
dimensional real array is desired, the keyword COMPLEX should be specified. The
keywords SINE and COSINE allow IMSL_FFTCOMP to be used to compute the
discrete Fourier sine or cosine transformation of a one dimensional real array. The
remainder of this section is divided into separate discussions of the various uses of
IMSL_FFTCOMP.

Case 1: One-dimensional Real FFT

If A is one-dimensional and real, the IMSL_FFTCOMP function computes the
discrete Fourier transform of a real array of length n = N_ELEMENTS (a). The
method used is a variant of the Cooley-Tukey algorithm, which is most efficient when
n is a product of small prime factors. If n satisfies this condition, then the
computational effort is proportional to nlogn.
IMSL_FFTCOMP IDL Analyst Reference Guide

Chapter 9: Transforms 379
By default, IMSL_FFTCOMP computes the forward transform. If n is even, the
forward transform is as follows:

If n is odd, qm is defined as above for m from 1 to (n – 1) / 2.

Let f be a real-valued function of time. Suppose f is sampled at n equally spaced time
intervals of length ∆ seconds starting at time t0:

pi = f(t0 + i∆) i = 0, 1, ..., n – 1

Assume that n is odd for the remainder of the discussion for the case in which A is
real. The IMSL_FFTCOMP function treats this sequence as if it were periodic of
period n. In particular, it assumes that f(t0) = f(t0 + n∆). Hence, the period of the
function is assumed to be T = n∆. The above transform is inverted for the following:

This formula can be interpreted in the following manner: The coefficients q produced
by IMSL_FFTCOMP determine an interpolating trigonometric polynomial to the
data. That is, if the equations are defined as:

then the result is as follows:

f(t0 + i∆) = g(t0 + i∆)

q2m 1– pk
2πkm

n
---------------cos

k 0=

n 1–

∑=

q2m pk
2πkm

n
---------------sin

k 0=

n 1–

∑–=

q0 pk
k 0=

n 1–

∑=

pm
1
n
--- q0 2 q2k 1+

2π k 1+()m
n

-----------------------------cos

k 0=

n 3–() 2⁄

∑ 2 q2k 2+
2π k 1+()m

n
-----------------------------sin

k 0=

n 3–() 2⁄

∑–+=

g t()
1
n
--- q0 2 q2k 1+

2π k 1+() t t0–()
n∆

---cos

k 0=

n 3–() 2⁄

∑ 2 q2k 2+

2π k 1+() t t0–()
n∆

---sin

k 0=

n 3–() 2⁄

∑–+=

g t() 1
n
--- q0 2 q2k 1+

2π k 1+() t t0–()
T

---cos

k 0=

n 3–() 2⁄

∑ 2 q2k 2+

2π k 1+() t t0–()
T

---sin

k 0=

n 3–() 2⁄

∑–+=
IDL Analyst Reference Guide IMSL_FFTCOMP

380 Chapter 9: Transforms
Now suppose the dominant frequencies are to be obtained. Form the array P of length
(n + 1) / 2 as follows:

These numbers correspond to the energy in the spectrum of the signal. In particular,
Pk corresponds to the energy level at the following frequency:

Furthermore, note that there are only:

resolvable frequencies when n observations are taken. This is related to the Nyquist
phenomenon, which is induced by discrete sampling of a continuous signal. Similar
relations hold for the case when n is even.

If the keyword BACKWARD is specified, the backward transform is computed. If n
is even, the backward transform is as follows:

If n is odd, the following is true:

The backward Fourier transform is the unnormalized inverse of the forward Fourier
transform.

IMSL_FFTCOMP is based on the real FFT in FFTPACK, which was developed by
Paul Swarztrauber at the National Center for Atmospheric Research.

Case 2: One-dimensional Complex FFT

If A is one-dimensional and complex, the IMSL_FFTCOMP function computes the
discrete Fourier transform of a complex array of size n = N_ELEMENTS (a). The
method used is a variant of the Cooley Tukey algorithm, which is most efficient when

P0 q0=

Pk q2k 1+
2

q2k
2

+= k 1 2 ... n 1–() 2⁄, , ,=

k
T
--- k

n∆
-------= k 0 1 ...

n 1–
2

------------, , ,=

n 1+() 2⁄ T 2∆()⁄≈

qm p0 1–()m 1+
pn 1– 2 p2k 1+

2π k 1+()m
n

-----------------------------cos

k 0=

n 2⁄ 2–

∑ 2 p2k 2+
2π k 1+()m

n
-----------------------------sin

k 0=

n 2⁄ 2–

∑–+ +=

qm p0 2 p2k 1+ cos
2π k 1+()m

n

k 0=

n 3–() 2⁄

∑ 2 p2k 2+
2π k 1+()m

n
-----------------------------sin

k 0=

n 3–() 2⁄

∑–+=
IMSL_FFTCOMP IDL Analyst Reference Guide

Chapter 9: Transforms 381
n is a product of small prime factors. If n satisfies this condition, the computational
effort is proportional to nlogn.

By default, IMSL_FFTCOMP computes the forward transform as in the equation
below:

Note, the Fourier transform can be inverted as follows:

This formula reveals the fact that, after properly normalizing the Fourier coefficients,
you have coefficients for a trigonometric interpolating polynomial to the data.

If the keyword BACKWARD is used, the following computation is performed:

Furthermore, the relation between the forward and backward transforms is that they
are unnormalized inverses of each other. In other words, the following code fragment
begins with an array p and concludes with an array p2 = np:

q = IMSL_FFTCOMP(p)
p2 = IMSL_FFTCOMP(q, /Backward)

Case 3: Two-dimensional FFT

If A is two-dimensional and real or complex, the IMSL_FFTCOMP function
computes the discrete Fourier transform of a two-dimensional complex array of size n
x m where n = N_ELEMENTS (a (*, 0)) and m = N_ELEMENTS (a (0, *)). The
method used is a variant of the Cooley-Tukey algorithm, which is most efficient when
both n and m are a product of small prime factors. If n and m satisfy this condition,
then the computational effort is proportional to nmlognm.

qj pme
2πimj–() n⁄

m 0=

n 1–

∑=

pm
1
n
--- qje

2πij m n⁄()

j 0=

n 1–

∑=

qj pme
2πim j n⁄()

m 0=

n 1–

∑=
IDL Analyst Reference Guide IMSL_FFTCOMP

382 Chapter 9: Transforms
By default, given a two-dimensional array, IMSL_FFTCOMP computes the forward
transform as in the following equation:

Note, the Fourier transform can be inverted as follows:

This formula reveals the fact that, after properly normalizing the Fourier coefficients,
you have the coefficients for a trigonometric interpolating polynomial to the data.

If the keyword BACKWARD is used, the following computation is performed:

Case 4: Cosine Transform of a Real Sequence:

If the keyword COSINE is present and nonzero, the IMSL_FFTCOMP function
computes the discrete Fourier cosine transform of a real vector of size N. The method
used is a variant of the Cooley-Tukey algorithm, which is most efficient when N – 1 is
a product of small prime factors. If N satisfies this condition, then the computational
effort is proportional to N logN. Specifically, given an N-vector p, IMSL_FFTCOMP
returns in q:

where p = array a and q = result.

Finally, note that the Fourier cosine transform is its own (unnormalized) inverse.

qjk pste
2πijs/n–

e
2πikt/m–

t 0=

m 1–

∑
s 0=

n 1–

∑=

pjk
1

nm
-------- qste

2πijs/n
e

2πikt/m

t 0=

m 1–

∑
s 0=

n 1–

∑=

pjk qste
2πijs/n

e
2πikt/m

t 0=

m 1–

∑
s 0=

n 1–

∑=

qm 2 pn

n 1=

N 2–

∑
mnπ
N 1–

 sin s0 sN 1– 1–()m

+ +=
IMSL_FFTCOMP IDL Analyst Reference Guide

Chapter 9: Transforms 383
Case 5: Sine Transform of a Real Sequence

If the keyword SINE is present and nonzero, the IMSL_FFTCOMP function
computes the discrete Fourier sine transform of a real vector of size N. The method
used is a variant of the Cooley-Tukey algorithm, which is most efficient when N + 1
is a product of small prime factors. If N satisfies this condition, then the
computational effort is proportional to N logN. Specifically, given an N-vector p,
IMSL_FFTCOMP returns in q:

where p = array a and q = result.

Finally, note that the Fourier sine transform is its own (unnormalized) inverse.

Examples

Example 1

This example uses a pure cosine wave as a data array, and its Fourier series is
recovered. The Fourier series is an array with all components zero except at the
appropriate frequency where it has an n/2.

n = 7
; Fill up the data array with a pure cosine wave.
p = COS(FINDGEN(n) * 2 * !Pi/n)
PM, p

1.00000
0.623490
-0.222521
-0.900969
-0.900969
-0.222521
0.623490

q = IMSL_FFTCOMP(p)
; Call IMSL_FFTCOMP to compute the FFT.
PM, q, FORMAT = '(f8.3)'
; Output results.
0.000
3.500

qm 2 pn

n 0=

N 2–

∑
m 1+() n 1+()π

N 1+
--
 sin=
IDL Analyst Reference Guide IMSL_FFTCOMP

384 Chapter 9: Transforms
0.000
-0.000
-0.000
0.000
-0.000

Example 2: Resolving Dominant Frequencies

The following procedure demonstrates how the FFT can be used to resolve the
dominant frequency of a signal. Call IMSL_FFTCOMP with a data vector of length
n = 15, filled with pure, exponential signals of increasing frequency and decreasing
strength. Using the computed FFT, the relative strength of the frequencies is resolved.
It is important to note that for an array of length n, at most (n + 1)/2 frequencies can
be resolved using the computed FFT.

.RUN
PRO power_spectrum

n = 15
; Define the length of the signal.
num_freq = n/2 + (n MOD 2)
z = COMPLEX(0, FINDGEN(n) * 2 * !Pi/n)
p = COMPLEXARR(n)
FOR i = 0, num_freq - 1 DO p = p + EXP(i * z)/(i + 1)
; Fill up the data array.
q = IMSL_FFTCOMP(p)
; Compute the FFT.
power = FLTARR(num_freq)
IF ((n MOD 2) EQ 0) THEN BEGIN

power(0) = ABS(q(0))^2
FOR i = 1,(num_freq - 2) DO $

power(i) = q(i) * CONJ(q(i)) + q(n-i-1) * CONJ(q(n-i-1))
power(num_freq - 1)=q(num_freq - 1)*CONJ(q(num_freq - 1))

ENDIF
; Determine the strengths of the frequencies. The method is
; dependent upon whether n is even or odd.
IF ((n MOD 2) EQ 1) THEN BEGIN

FOR i = 1,(num_freq - 1) DO power(i) = $
q(i)^2 + q(n - i)^2

power(0) = q(0)^2
ENDIF
PRINT, ' frequency strength' &$
PRINT, ' --------- --------' &$
FOR i = 0,7 DO PRINT, i, power(i)
; Display frequencies and strengths.

END

frequency strength
--------- --------
IMSL_FFTCOMP IDL Analyst Reference Guide

Chapter 9: Transforms 385
 0 225.000
 1 56.2500
 2 25.0000
 3 14.0625
 4 9.00000
 5 6.25000
 6 4.59183
 7 3.51562

Example 3: Computing a Two-dimensional FFT

This example computes the forward transform of a two-dimensional matrix followed
by the backward transform. Notice that the process of computing the forward
transform followed by the backward transform multiplies the entries of the original
matrix by the product of the lengths of the two dimensions.

n = 4
m = 5
p = COMPLEXARR(n, m)
FOR i = 0, n - 1 DO BEGIN &$

z = COMPLEX(0, 2 * i * 2 * !Pi/n) &$
FOR j = 0, m - 1 DO BEGIN &$

w = COMPLEX(0, 5 * j * 2 * !Pi/m) &$
p(i, j) = EXP(z) * EXP(w) &$

ENDFOR &$
ENDFOR
q = IMSL_FFTCOMP(p)
p2 = IMSL_FFTCOMP(q, /Backward)
FORMAT = '(4("(",f6.2,",",f5.2,")",2x))'
PM, p, FORMAT = format, TITLE = 'p'
p

(1.0, 0.0)(1.0, 0.0)(1.0, 0.0)(1.0, 0.0)
(1.0, 0.0)(-1.0,-0.0)(-1.0,-0.0)(-1.0,-0.0)
(-1.0,-0.0)(-1.0,-0.0)(1.0, 0.0)(1.0, 0.0)
(1.0, 0.0)(1.0, 0.0)(1.0, 0.0)(-1.0,-0.0)
(-1.0,-0.0)(-1.0,-0.0)(-1.0,-0.0)(-1.0,-0.0)

PM, q, FORMAT = format, TITLE = 'q = IMSL_FFTCOMP(p)'
q = IMSL_FFTCOMP(p)

(0.0, 0.0)(-0.0, 0.0)(0.0, 0.0)(-0.0, 0.0)
(0.0, 0.0)(-0.0,-0.0)(0.0,-0.0)(0.0,-0.0)
(0.0, 0.0)(-0.0, 0.0)(20.0, 0.0)(-0.0,-0.0)
(-0.0,-0.0)(0.0,-0.0)(0.0,-0.0)(0.0,-0.0)
(0.0, 0.0)(-0.0, 0.0)(-0.0,-0.0)(-0.0,-0.0)

PM, p2, FORMAT = format, TITLE = 'p2 = IMSL_FFTCOMP(q, /BACKWARD)'
p2 = IMSL_FFTCOMP(q, /Backward)

(20., 0.)(20., 0.)(20., 0.)(20., 0.)
(20., 0.)(-20.,-0.)(-20.,-0.)(-20.,-0.)
(-20.,-0.)(-20.,-0.)(20., 0.)(20., 0.)
(20., 0.)(20., 0.)(20., 0.)(-20.,-0.)
IDL Analyst Reference Guide IMSL_FFTCOMP

386 Chapter 9: Transforms
(-20.,-0.)(-20.,-0.)(-20.,-0.)(-20.,-0.)

Version History

6.4 Introduced
IMSL_FFTCOMP IDL Analyst Reference Guide

Chapter 9: Transforms 387
IMSL_FFTINIT

The IMSL_FFTINIT function computes the parameters for a one-dimensional FFT to
be used in the IMSL_FFTCOMP function with the keyword INIT_PARAMS.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FFTINIT(n [, /DOUBLE] [, COMPLEX=value] [, SINE=value]
[, COSINE=value])

Return Value

A one-dimensional array of length 2n + 15 that can then be used by
IMSL_FFTCOMP when the optional parameter INIT_PARAMS is specified.

Arguments

n

Length of the sequence to be transformed.

Keywords

DOUBLE

If present and nonzero, double precision is used and the returned array is double
precision. This keyword does not have an effect if the initialization is being computed
for a complex FFT.

COMPLEX

If present and nonzero, the parameters for a complex transform are computed.

SINE

If present and nonzero, then parameters for a discrete Fourier cosine transformation
are returned. See the IMSL_FFTCOMP keyword SINE.
IDL Analyst Reference Guide IMSL_FFTINIT

388 Chapter 9: Transforms
COSINE

If present and nonzero, then parameters for a discrete Fourier cosine transformation
are returned. See the IMSL_FFTCOMP keyword SINE.

Discussion

The IMSL_FFTINIT function should be used when many calls are to be made to
IMSL_FFTCOMP without changing the data type of the array and the length of the
sequence. The default action of IMSL_FFTINIT is to compute the parameters
necessary for a real FFT. If parameters for a complex FFT are needed, the keyword
COMPLEX should be specified.

The IMSL_FFTINIT function is based on the routines RFFTI and RFFTI in
FFTPACK, which was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example

In this example, two distinct, real FFTs are computed by calling IMSL_FFTINIT
once, then calling IMSL_FFTCOMP twice.

.RUN
n = 7
; Define the length of the signals.
init_params = IMSL_FFTINIT(7)
; Initialize the parameters by calling IMSL_FFTINIT.
FOR j = 0, 2 DO BEGIN

p = COS(j * FINDGEN(n) * 2 * !Pi/n)
q = IMSL_FFTCOMP(p, Init_Params = init_params)
PM, 'p', 'q', FORMAT = '(7x, a1, 10x, a1)'
FOR i = 0, n - 1 DO PM, p(i), q(i), FORMAT = '(f10.5, f10.2)'

ENDFOR
END

; For each pass through loop, compute a real FFT of an array of
; length n and output both original signal and computed FFT.

 p q
 1.00000 7.00
 1.00000 0.00
 1.00000 0.00
 1.00000 0.00
 1.00000 0.00
 1.00000 -0.00
 1.00000 0.00
 p q
IMSL_FFTINIT IDL Analyst Reference Guide

Chapter 9: Transforms 389
 1.00000 0.00
 0.62349 3.50
 -0.22252 0.00
 -0.90097 -0.00
 -0.90097 -0.00
 -0.22252 0.00
 0.62349 -0.00
 p q
 1.00000 -0.00
 -0.22252 0.00
 -0.90097 -0.00
 0.62349 3.50
 0.62349 -0.00
 -0.90097 0.00
 -0.22252 0.00

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_FFTINIT

390 Chapter 9: Transforms
IMSL_CONVOL1D

The IMSL_CONVOL1D function computes the discrete convolution of two one-
dimensional arrays.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CONVOL1D(x, y [, DIRECT=value] [, PERIODIC=value])

Return Value

A one-dimensional array containing the discrete convolution of x and y.

Arguments

x

One-dimensional array.

y

One-dimensional array.

Keywords

DIRECT

If present and nonzero, causes the computations to be done by the direct method
instead of the FFT method regardless of the size of the vectors passed in.

PERIODIC

If present and nonzero, then a circular convolution is computed.
IMSL_CONVOL1D IDL Analyst Reference Guide

Chapter 9: Transforms 391
Discussion

The IMSL_CONVOL1D function computes the discrete convolution of two
sequences x and y.

Let nx be the length of x, and ny denote the length of y. If the keyword PERIODIC is
set, then nz = max{nx, ny}, otherwise nz is set to the smallest whole number,
nz ≥ nx + ny – 1, of the form:

The arrays x and y are then zero-padded to a length nz. Then, we compute:

where the index on x is interpreted as a nonnegative number between 0 and nz – 1.

The technique used to compute the zi’s is based on the fact that the (complex discrete)
Fourier transform maps convolution into multiplication. Thus, the Fourier transform
of z is given by:

where the following equation is true:

The technique used here to compute the convolution is to take the discrete Fourier
transform of x and y, multiply the results together component-wise, and then take the
inverse transform of this product. It is very important to make sure that nz is the
product of small primes if PERIODIC is set. If nz is a product of small primes, then
the computational effort will be proportional to nzlog (nz). If PERIODIC is not set,
then nz is chosen to be a product of small primes.

We point out that if x and y are not complex, then no complex transforms of x or y are
taken, since a real transforms can simulate the complex transform above. Such a
strategy is six times faster and requires less space than when using the complex
transform.

nz 2
α

3
β
5

γ
= : α β, γ nonnegative integers,

zi xi j– yj
j 0=

nz 1–

∑=

ẑ n() x̂ n()ŷ n()=

ẑ n() zme
2πimnnz⁄–

m 0=

nz 1–

∑=
IDL Analyst Reference Guide IMSL_CONVOL1D

392 Chapter 9: Transforms
Example

This example computes simple moving-average digital filter plots of 5-point and 25-
point moving-average filters of noisy data. Results are shown in figures Figure 9-1
and Figure 9-2.

PRO Convol1d_ex1
IMSL_RANDOMOPT, SET = 1234579L
; Set the random number seed.
ny = 100
t = FINDGEN(ny)/(ny-1)
y = SIN(2*!PI*t) + .5*IMSL_RANDOM(ny, /Uniform) -.25
; Define a 1-period sine wave with added noise.
win=0
FOR nfltr = 5, 25, 20 DO BEGIN

nfltr_str = strcompress(nfltr,/Remove_All)
fltr = fltarr(nfltr)
fltr(*) = 1./nfltr
; Define the NFLTR-point moving average array.
z = IMSL_CONVOL1D(fltr, y, /Periodic)
; Convolve filter and signal, using keyword Periodic.
WINDOW, win++
PLOT, y, LINESTYLE = 1, TITLE = nfltr_str + $

'-point Moving Average'
OPLOT, shift(z, -nfltr/2)

ENDFOR
END
IMSL_CONVOL1D IDL Analyst Reference Guide

Chapter 9: Transforms 393
Figure 9-1: 5 Point Moving Average
IDL Analyst Reference Guide IMSL_CONVOL1D

394 Chapter 9: Transforms
Version History

Figure 9-2: 25 Point Moving Average

6.4 Introduced
IMSL_CONVOL1D IDL Analyst Reference Guide

Chapter 9: Transforms 395
IMSL_CORR1D

The IMSL_CORR1D function computes the discrete correlation of two one-
dimensional arrays.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CORR1D(x[, y] [, PERIODIC=value])

Return Value

A one-dimensional array containing the discrete convolution of x and x, or x and y if y
is supplied.

Arguments

x

One-dimensional array.

y

(Optional) One-dimensional array.

Keywords

PERIODIC

If present and nonzero, then the input data is periodic.

Discussion

The IMSL_CORR1D function computes the discrete correlation of two sequences x
and y. If only one argument is passed, then IMSL_CORR1D computes the discrete
correlation of x and x.
IDL Analyst Reference Guide IMSL_CORR1D

396 Chapter 9: Transforms
More precisely, let n be the length of x and y. If PERIODIC is set, then nz = n,
otherwise nz is set to the smallest whole number, nz ≥ 2n – 1, of the form:

The arrays x and y are then zero-padded to a length nz. Then, we compute:

where the index on x is interpreted as a positive number between 0 and nz – 1.

The technique used to compute the zi’s is based on the fact that the (complex discrete)
Fourier transform maps correlation into multiplication. Thus, the Fourier transform of
z is given by:

where the following equation is true:

Thus, the technique used here to compute the correlation is to take the discrete
Fourier transform of x and the conjugate of the discrete Fourier transform of y,
multiply the results together component-wise, and then take the inverse transform of
this product. It is very important to make sure that nz is the product of small primes if
the keyword PERIODIC is selected. If nz is the product of small primes, then the
computational effort will be proportional to nzlog(nz). If PERIODIC is not set, then a
good value is chosen for nz so that the Fourier transforms are efficient and nz ≥ 2n – 1.
This will mean that both vectors may be padded with zeros.

If x and y are not complex, then no complex transforms of x or y are taken, since a real
transforms can simulate the complex transform above. Such a strategy is six times
faster and requires less space than when using the complex transform.

nz 2
α

3
β
5

γ
= : α β, γ nonnegative integers,

zi xi j+ yj
j 0=

nz 1–

∑=

ẑj x̂jyj
ˆ=

ẑj zme
2πimn nz⁄–

m 0=

nz 1–

∑=
IMSL_CORR1D IDL Analyst Reference Guide

Chapter 9: Transforms 397
Example

This example computes a periodic correlation between two distinct signals x and y.
We have 100 equally spaced points on the interval [0, 2π] and f1(x) = sin (x). We
define x and y as follows:

Note that the maximum value of z (the correlation of x with y) occurs at i = 25, which
corresponds to the offset.

n = 100
t = 2*!DPI*FINDGEN(n)/(n-1)
x = SIN(t)
y = SIN(t+!dpi/2)
; Define the signals and compute the norms of the signals.
xnorm = IMSL_NORM(x)
ynorm = IMSL_NORM(y)
z = IMSL_CORR1D(x, y, /Periodic)/(xnorm*ynorm)
; Compute periodic correlation, and find the largest normalized
; element of the result.
max_z = (SORT(z))(N_ELEMENTS(z)-1)
PRINT, max_z, z(max_z)

25 1.00

Version History

6.4 Introduced

xi f1
2πi

n 1–

i 0 ... n 1–, ,= =

yi f1
2πi

n 1–
------------ π

2
---+

i 0 ... n 1–, ,= =
IDL Analyst Reference Guide IMSL_CORR1D

398 Chapter 9: Transforms
IMSL_LAPLACE_INV

The IMSL_LAPLACE_INV function computes the inverse Laplace transform of a
complex function.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LAPLACE_INV(f, sigma0, t [, BIG_COEF_LOG=variable]
[, BVALUE=parameter] [, COND_ERR=variable] [, DISC_ERR=variable]
[, /DOUBLE] [, ERR_EST=variable] [, INDICATORS=variable] [, K=variable]
[, MTOP=value] [, PSEUDO_ACC=value] [, R=variable] [, SIGMA=parameter]
[, SMALL_COEF_LOG=variable] [, TRUNC_ERR=variable])

Return Value

One-dimensional array of length n whose i-th component contains the approximate
value of the inverse Laplace transform at the point t(i).

Arguments

f

Scalar string specifying the user-supplied function for which the inverse Laplace
transform will be computed.

sigma0

An estimate for the maximum of the real parts of the singularities of f. If unknown,
set sigma0 = 0.0.

t

One-dimensional array of size n containing the points at which the inverse Laplace
transform is desired.
IMSL_LAPLACE_INV IDL Analyst Reference Guide

Chapter 9: Transforms 399
Keywords

BIG_COEF_LOG

Named variable into which the logarithm of the largest coefficient in the decay
function is stored. See “Discussion” on page 401 for details.

BVALUE

The second parameter of the Laguerre expansion. If BVALUE is less than
2.0*(Sigma − sigma0), it is reset to 2.5*(Sigma − sigma0). Default:
BVALUE = 2.5*(Sigma − sigma0)

COND_ERR

Named variable into which the estimate of the pseudo condition error on the basis of
minimal noise levels in the function values is stored.

DISC_ERR

Named variable into which the estimate of the pseudo discretization error is stored.

DOUBLE

If present and nonzero, double precision is used.

ERR_EST

Named variable into which an overall estimate of the pseudo error, DISC_EST +
TRUNC_ERR + COND_ERR is stored. See “Discussion” on page 401 for details.

INDICATORS

Named variable into which an one-dimensional array of length n containing the
overflow/underflow indicators for the computed approximate inverse Laplace
transform is stored. Table 9-1 shows, for the i-th point at which the transform is
computed, what INDICATORS(i) signifies.
IDL Analyst Reference Guide IMSL_LAPLACE_INV

400 Chapter 9: Transforms
K

Named variable into which the coefficient of the decay function is stored. See
“Discussion” on page 401 for details.

MTOP

An upper limit on the number of coefficients to be computed in the Laguerre
expansion. The keyword MTOP must be a multiple of four. Default: MTOP = 1024

PSEUDO_ACC

The required absolute uniform pseudo accuracy for the coefficients and inverse
Laplace transform values. Default: PSEUDO_ACC = SQRT(ε), where ε is machine
epsilon

R

Named variable into which the base of the decay function is stored. See “Discussion”
on page 401 for details.

Indicators(i) Meaning

1 Normal termination.

2 The value of the inverse Laplace transform is too large to be
representable. This component of the result is set to NaN.

3 The value of the inverse Laplace transform is found to be too
small to be representable. This component of the result is set to
0.0.

4 The value of the inverse Laplace transform is estimated to be too
large, even before the series expansion, to be representable. This
component of the result is set to NaN.

5 The value of the inverse Laplace transform is estimated to be too
small, even before the series expansion, to be representable. This
component of the result is set to 0.0.

Table 9-1: Indicator Meanings
IMSL_LAPLACE_INV IDL Analyst Reference Guide

Chapter 9: Transforms 401
SIGMA

The first parameter of the Laguerre expansion. If SIGMA is not greater than sigma0,
it is reset to sigma0+ 0.7. Default: Sigma = sigma0+ 0.7

SMALL_COEF_LOG

Named variable into which the logarithm of the smallest nonzero coefficient in the
decay function is stored. See “Discussion” on page 401 for details.

TRUNC_ERR

Named variable into which the estimate of the pseudo truncation error is stored.

Discussion

The IMSL_LAPLACE_INV function computes the inverse Laplace transform of a
complex-valued function. Recall that if f is a function that vanishes on the negative
real axis, then the Laplace transform of f is defined by:

It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on a modification of
Weeks’ method (see Weeks (1966)) due to Garbow et al. (1988). This method is
suitable when f has continuous derivatives of all orders on [0, ∞). In particular, given
a complex-valued function F(s) = L[f] (s), f can be expanded in a Laguerre series
whose coefficients are determined by F. This is fully described in Garbow et al.
(1988) and Lyness and Giunta (1986).

The algorithm attempts to return approximations g(t) to f(t) satisfying:

where ε = PSEUDO_ACC and σ = Sigma > sigma0. The expression on the left is
called the pseudo error. An estimate of the pseudo error is available in ERR_EST.

The first step in the method is to transform F to φ where:

L f[] s() e
sx–

f x() xd
0

∞

∫=

g t() f t()–

e
σt

------------------------ ε<

φ z() b
1 z–
-----------F b

1 z–
----------- b

2
--- σ+–

 =
IDL Analyst Reference Guide IMSL_LAPLACE_INV

402 Chapter 9: Transforms
Then, if f is smooth, it is known that φ is analytic in the unit disc of the complex plane
and hence has a Taylor series expansion:

φ z() asz
s

s 0=

∞

∑=
IMSL_LAPLACE_INV IDL Analyst Reference Guide

Chapter 9: Transforms 403
which converges for all z whose absolute value is less than the radius of convergence
Rc. This number is estimated in the output keyword R. Using the output keyword K,
the smallest number K is estimated which satisfies:

for all R < Rc.

The coefficients of the Taylor series for φ can be used to expand f in a Laguerre
series:

Examples

Example 1

This example computes the inverse Laplace transform of the function (s – 1)−2, and
prints the computed approximation, true transform value, and difference at five
points. The correct inverse transform is xex. From Abramowitz and Stegun (1964).

.RUN
FUNCTION fcn, x

; Return 1/(s - 1)**2
one = COMPLEX(1.0, 0.0)
f = one/((x - one)*(x - 1))
RETURN, f

END

.RUN
n = 5
; Initialize t and compute inverse.
t = FINDGEN(n) + 0.5
l_inverse = IMSL_LAPLACE_INV('fcn', 1.5, t)
; Compute true inverse, relative difference.
true_inverse = t*EXP(t)
relative_diff = ABS((l_inverse - true_inverse) / true_inverse)
PM, [[t(0:*)], [l_inverse(0:*)], [true_inverse(0:*)], $

[relative_diff(0:*)]], $
Title = ' t f_inv true diff'

END

 t f_inv true diff
 0.500000 0.824348 0.824361 1.48223e-05
 1.50000 6.72247 6.72253 1.01432e-05

| |a K
R

s s<

f t() ase
bt 2⁄–

s 0=

∞

∑ Ls bt()=
IDL Analyst Reference Guide IMSL_LAPLACE_INV

404 Chapter 9: Transforms
 2.50000 30.4562 30.4562 2.50504e-07
 3.50000 115.906 115.904 1.84310e-05
 4.50000 405.053 405.077 5.90648e-05

Example 2

This example computes the inverse Laplace transform of e−1/s/s, and prints the
computed approximation, true transform value, and difference at five points.
Additionally, the inverse is returned, and a required accuracy for the inverse
transform values is specified. The correct inverse transform is:

.RUN
FUNCTION fcn, x

; Return (1/s)(exp(-1/s)
one = COMPLEX(1.0, 0.0)
s_inverse = one / x
f = s_inverse*EXP(-1*(s_inverse))
RETURN, f

END

.RUN
n = 5
; Initialize t and compute inverse.
t = FINDGEN(n) + 0.5
l_inverse = IMSL_LAPLACE_INV('fcn', 0.0, t, $

Pseudo_Acc = 1.0e-6, Indicator = indicator)
true_inverse = FLOAT(IMSL_BESSJ(0, 2.0*SQRT(t)))
relative_diff = ABS((l_inverse - true_inverse) / true_inverse)
FOR i = 0, 4 DO BEGIN

IF (indicator(i) EQ 0) THEN BEGIN
PM, t(i), l_inverse(i), true_inverse(i), $

relative_diff(i), $
Title = ' t f_inv true diff'

ENDIF ELSE BEGIN
PRINT, 'Overflow or underflow noted.'

ENDELSE
ENDFOR
END

 t f_inv true diff
 0.500000 0.559134 0.559134 1.06602e-07
 t f_inv true diff
 1.50000 -0.0229669 -0.0229670 4.21725e-06
 t f_inv true diff
 2.50000 -0.310045 -0.310045 9.61226e-08
 t f_inv true diff

J0 2 x()
IMSL_LAPLACE_INV IDL Analyst Reference Guide

Chapter 9: Transforms 405
 3.50000 -0.401115 -0.401115 2.22896e-07
 t f_inv true diff
 4.50000 -0.370335 -0.370336 4.02369e-07

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_LAPLACE_INV

406 Chapter 9: Transforms
IMSL_LAPLACE_INV IDL Analyst Reference Guide

Chapter 10

Nonlinear Equations
This section contains the following topics:
Overview: Nonlinear Equations 408 Nonlinear Equations Routines 409
IDL Analyst Reference Guide 407

408 Chapter 10: Nonlinear Equations
Overview: Nonlinear Equations

This section introduces some of the mathematical concepts used with IDL Analyst.

Zeros of a Polynomial

A polynomial function of degree n can be expressed as follows:

p(z) = anzn + an–1zn – 1 + ... + a1z + a0

where an ≠ 0. The IMSL_ZEROPOLY function finds zeros of a polynomial with real
or complex coefficients using either the companion method or the Jenkins-Traub
three-stage algorithm.

Zeros of a Function

The IMSL_ZEROFCN function uses Müller’s method to find the real zeros of a real-
valued function.

Root of System of Equations

A system of equations can be stated as follows:

fi(x) = 0, for i = 0, 1, ..., n – 1

where , and fi : R
n → R.

The IMSL_ZEROSYS function uses a modified hybrid method due to M.J.D. Powell
to find the zero of a system of nonlinear equations.

x R
n∈
Overview: Nonlinear Equations IDL Analyst Reference Guide

Chapter 10: Nonlinear Equations 409
Nonlinear Equations Routines

Zeros of a Polynomial

IMSL_ZEROPOLY—Real or complex coefficients.

Zeros of a Function

IMSL_ZEROFCN—Real zeros of a function.

Root of a System of Equations

IMSL_ZEROSYS—Powell’s hybrid method.
IDL Analyst Reference Guide Nonlinear Equations Routines

410 Chapter 10: Nonlinear Equations
IMSL_ZEROPOLY

The IMSL_ZEROPOLY function finds the zeros of a polynomial with real or
complex coefficients using the companion matrix method or, optionally, the Jenkins-
Traub, three-stage algorithm.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ZEROPOLY(coef [, /DOUBLE] [, COMPANION=value]
[, JENKINS_TRAUB=value])

Return Value

The complex array of zeros of the polynomial.

Arguments

coef

Array containing coefficients of the polynomial in increasing order by degree. The
polynomial is coef (n) zn + coef (n – 1) zn – 1 + ... + coef (0).

Keywords

DOUBLE

If present and nonzero, double precision is used.

COMPANION

If present and nonzero, the companion matrix method is used. Default: companion
matrix method

JENKINS_TRAUB

If present and nonzero, the Jenkins-Traub, three-stage algorithm is used.
IMSL_ZEROPOLY IDL Analyst Reference Guide

Chapter 10: Nonlinear Equations 411
Discussion

The IMSL_ZEROPOLY function computes the n zeros of the polynomial:

p (z) = an zn + an – 1zn – 1 + ... + a1 z + a0

where the coefficients ai for i = 0, 1, ..., n are real and n is the degree of the
polynomial.

The default method used by IMSL_ZEROPOLY is the companion matrix method.
The companion matrix method is based on the fact that if Ca denotes the companion
matrix associated with p(z), then det (zI – Ca) = a(z), where I is an n x n identity
matrix. Thus, det (z0I – Ca) = 0 if, and only if, z0 is a zero of p(z). This implies that
computing the eigenvalues of Ca will yield the zeros of p(z). This method is thought
to be more robust than the Jenkins-Traub algorithm in most cases, but the companion
matrix method is not as computationally efficient. Thus, if speed is a concern, the
Jenkins-Traub algorithm should be considered.

If the keyword JENKINS_TRAUB is set, then IMSL_ZEROPOLY function uses the
Jenkins-Traub three-stage algorithm (Jenkins and Traub 1970, Jenkins 1975). The
zeros are computed one-at-a-time for real zeros or two-at-a-time for a complex
conjugate pair. As the zeros are found, the real zero or quadratic factor is removed by
polynomial deflation.

Example

This example finds the zeros of the third-degree polynomial:

p (z) = z3 – 3z2 + 4z – 2

where z is a complex variable.

coef = [-2, 4, -3, 1]
; Set the coefficients.
zeros = IMSL_ZEROPOLY(coef)
; Compute the zeros.
PM, zeros, Title = $
'The complex zeros found are: '
; Print results.
The complex zeros found are:
(1.00000, 0.00000)
(1.00000, -1.00000)
(1.00000, 1.00000)
IDL Analyst Reference Guide IMSL_ZEROPOLY

412 Chapter 10: Nonlinear Equations
Errors

Warning Errors

MATH_ZERO_COEFF—First several coefficients of the polynomial are equal to zero.
Several of the last roots are set to machine infinity to compensate for this problem.

MATH_FEWER_ZEROS_FOUND—Fewer than (N_ELEMENTS (coef) – 1) zeros were
found. The root vector contains the value for machine infinity in the locations that do
not contain zeros.

Version History

6.4 Introduced
IMSL_ZEROPOLY IDL Analyst Reference Guide

Chapter 10: Nonlinear Equations 413
IMSL_ZEROFCN

The IMSL_ZEROFCN function finds the real zeros of a real function using Müller’s
method.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ZEROFCN(f [, /DOUBLE] [, ERR_ABS=value]
[, ERR_REL=value] [, ETA=value] [, EPS=value] [, INFO=array]
[, ITMAX=value] [, N_ROOTS=value] [, XGUESS=array])

Return Value

An array containing the zeros x of the function.

Arguments

f

Scalar string specifying a user-supplied function for which the zeros are to be found.
The f function accepts one scalar parameter from which the function is evaluated and
returns a scalar of the same type.

Keywords

DOUBLE

If present and nonzero, double precision is used.

ERR_ABS

First stopping criterion. A zero, xi, is accepted if | f (xi) | < ERR_ABS. Default:
ERR_ABS = SQRT(ε), where ε is the machine precision
IDL Analyst Reference Guide IMSL_ZEROFCN

414 Chapter 10: Nonlinear Equations
ERR_REL

Second stopping criterion. A zero, xi, is accepted if the relative change of two
successive approximations to xi is less than ERR_REL. Default:
ERR_REL = SQRT(ε), where ε is the machine precision

ETA

Spread criteria for multiple zeros. If the zero, xi, has been computed and
| xi – xj | < EPS, where xj is a previously computed zero, then the computation is
restarted with a guess equal to xi + ETA. Default: ETA = 0.01

EPS

See ETA. Default: EPS = SQRT(ε), where ε is the machine precision.

INFO

Array of length N_ROOTS containing convergence information. The value INFO
(j – 1) is the number of iterations used in finding the j-th zero when convergence is
achieved. If convergence is not obtained in ITMAX iterations, INFO (j – 1) is greater
than ITMAX.

ITMAX

Maximum number of iterations per zero. Default: ITMAX = 100.

N_ROOTS

Number of roots for IMSL_ZEROFCN to find. Default: N_ROOTS = 1.

XGUESS

Array with N_ROOTS components containing the initial guesses for the zeros.
Default: XGUESS = 0

Discussion

The IMSL_ZEROFCN function computes n real zeros of a real function f. Given a
user-supplied function f (x) and an n-vector of initial guesses x0, x1, ..., xn–1, the
function uses Müller’s method to locate n real zeros of f. The function has two
convergence criteria. The first criterion requires that | f (xi

(m)) | be less than
ERR_ABS. The second criterion requires that the relative change of any two
successive approximations to an xi be less than ERR_REL. Here, xi

(m) is the m-th
IMSL_ZEROFCN IDL Analyst Reference Guide

Chapter 10: Nonlinear Equations 415
approximation to xi. Let ERR_ABS be denoted by ε1, and ERR_REL be denoted by
ε2. The criteria can be stated mathematically as follows.
IDL Analyst Reference Guide IMSL_ZEROFCN

416 Chapter 10: Nonlinear Equations
IMSL_ZEROFCN has two convergence criteria; “convergence” is the satisfaction of
either criterion.

Criterion 1:

Criterion 2:

“Convergence” is the satisfaction of either criterion.

Example

This example finds a real zero of the third-degree polynomial:

f(x) = x3 – 3x2 + 3x – 1

The results are shown in Figure 10-1.

.RUN
; Define function f.
FUNCTION f, x

return, x^3 - 3 * x^2 + 3 * x - 1
END

zero = IMSL_ZEROFCN('f')
; Compute the real zero(s).
x = 2 * FINDGEN(100)/99
PLOT, x, f(x)
; Plot results.
OPLOT, [zero], [f(zero)], Psym = 6
XYOUTS, .5, .5, 'Computed zero is at x = ' + $

STRING(zero(0)), Charsize = 1.5

f xi
m()

() ε1<

xi
m 1+()

xi
m()

–

xi
m()

--------------------------------- ε2<
IMSL_ZEROFCN IDL Analyst Reference Guide

Chapter 10: Nonlinear Equations 417
Errors

Warning Errors

MATH_NO_CONVERGE_MAX_ITER—Function failed to converge within ITMAX
iterations for at least one of the N_ROOTS roots.

Version History

Figure 10-1: IMSL_ZEROFCN Function

6.4 Introduced
IDL Analyst Reference Guide IMSL_ZEROFCN

418 Chapter 10: Nonlinear Equations
IMSL_ZEROSYS

The IMSL_ZEROSYS function solves a system of n nonlinear equations, fi (x) = 0,
using a modified Powell hybrid algorithm.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ZEROSYS(f, n [, /DOUBLE] [, ERR_REL=value]
[, FNORM=value] [, JACOBIAN=string] [, ITMAX=value] [, XGUESS=array])

Return Value

An array containing a solution of the system of equations.

Arguments

f

Scalar string specifying a user-supplied function to evaluate the system of equations
to be solved. The f function accepts one parameter containing the point at which the
functions are to be evaluated and returns the computed function values at the given
point.

n

Number of equations to be solved and the number of unknowns.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IMSL_ZEROSYS IDL Analyst Reference Guide

Chapter 10: Nonlinear Equations 419
ERR_REL

Stopping criterion. The root is accepted if the relative error between two successive
approximations to this root is less than ERR_REL. Default: ERR_REL = SQRT(ε),
where ε is the machine precision.

FNORM

Scalar with the value f
2

0 + ... + f 2n–1
 at the point x.

JACOBIAN

Scalar string specifying a user-supplied function to evaluate the x n Jacobian. The
function accepts as parameter the point at which the Jacobian is to be evaluated and
returns a two-dimensional matrix defined by result (i, j) = ∂fi/∂xj.

ITMAX

Maximum allowable number of iterations. Default: ITMAX = 200.

XGUESS

Array with N components containing the initial estimate of the root. Default:
XGUESS = 0.

Discussion

The IMSL_ZEROSYS function is based on the MINPACK subroutine HYBRDJ,
which uses a modification of the hybrid algorithm due to M.J.D. Powell. This
algorithm is a variation of Newton’s Method, which takes precautions to avoid
undesirable large steps or increasing residuals. For further discussion, see Moré et al.
(1980).

Example

The following 2 x 2 system of nonlinear equations is solved:

f(x) = x0 + x1 – 3

f(x) = x0
2 + x1

2 – 9

.RUN
; Define the system through the function f.
FUNCTION f, x

RETURN, [x(0)+x(1)-3, x(0)^2+x(1)^2-9]
END
IDL Analyst Reference Guide IMSL_ZEROSYS

420 Chapter 10: Nonlinear Equations
PM, IMSL_ZEROSYS('f', 2), $
Title = 'Solution of the system:', FORMAT = '(f10.5)'
; Compute the solution and output the results.
Solution of the system:

 0.00000
 3.00000

Errors

Warning Errors

MATH_TOO_MANY_FCN_EVALS—Number of function evaluations has exceeded
ITMAX. A new initial guess can be tried.

MATH_NO_BETTER_POINT—Keyword ERR_REL is too small. No further
improvement in the approximate solution is possible.

MATH_NO_PROGRESS—Iteration has not made good progress. A new initial guess
can be tried.

Version History

6.4 Introduced
IMSL_ZEROSYS IDL Analyst Reference Guide

Chapter 11

Optimization
This section contains the following topics:
Overview: Optimization 422 Optimization Routines 424
IDL Analyst Reference Guide 421

422 Chapter 11: Optimization
Overview: Optimization

This section introduces some of the mathematical concepts used with IDL Analyst.

Unconstrained Minimization

The unconstrained minimization problem can be stated as follows:

where f : Rn → R is continuous and has derivatives of all orders required by the
algorithms. The functions for unconstrained minimization are grouped into three
categories: univariate functions, multivariate functions, and nonlinear least-squares
functions.

For the univariate functions, it is assumed that the function is unimodal within the
specified interval. For discussion on unimodality, see Brent (1973).

A quasi-Newton method is used for the multivariate IMSL_FMINV function. The
default is to use a finite-difference approximation of the gradient of f(x). Here, the
gradient is defined to be the following vector:

When the exact gradient can be easily provided, the grad argument should be used.

The nonlinear least-squares function uses a modified Levenberg-Marquardt
algorithm. The most common application of the function is the nonlinear data-fitting
problem where the user is trying to fit the data with a nonlinear model.

These functions are designed to find only a local minimum point. However, a
function may have many local minima. Try different initial points and intervals to
obtain a better local solution.

Double-precision arithmetic is recommended for the functions when the user
provides only the function values.

Linearly Constrained Minimization

The linearly constrained minimization problem can be stated as follows:

min f x()
x IRn∈

f x()∇ f x()∂
x1∂

----------- f x()∂
x2∂

----------- ...
f x()∂
xn∂

-----------, , ,=

min f x()
x IRn∈
Overview: Optimization IDL Analyst Reference Guide

Chapter 11: Optimization 423
subject to:

where f : Rn → R, A1 and A2 are coefficient matrices and b1 and b2 are vectors. If f(x)
is linear, then the problem is a linear programming problem; if f(x) is quadratic, the
problem is a quadratic programming problem.

The IMSL_LINPROG function uses a revised simplex method to solve small- to
medium-sized linear programming problems. No sparsity is assumed since the
coefficients are stored in full matrix form.

The IMSL_QUADPROG function is designed to solve convex quadratic
programming problems using a dual quadratic programming algorithm. If the given
Hessian is not positive definite, then IMSL_QUADPROG modifies it to be positive
definite. In this case, output should be interpreted with care because the problem has
been changed slightly. Here, the Hessian of f(x) is defined to be the n x n matrix as
follows:

Nonlinearly Constrained Minimization

The nonlinearly constrained minimization problem can be stated as follows:

subject to:

where f : Rn → R and gi : R
n → R for i = 1, 2, ..., m .

The routine IMSL_CONSTRAINED_NLP uses a sequential equality constrained
quadratic programming method. A more complete discussion of this algorithm is in
“IMSL_CONSTRAINED_NLP” on page 465.

A1x b1=

A2x b2≥

f x()∇ 2
xi xj∂

2

∂
∂ f x()=

min f x()
x IRn∈

gi x() 0= for i 1 2 ... m1, , ,=

gi x() 0≥ for i m1 1 ...,+ m,=
IDL Analyst Reference Guide Overview: Optimization

424 Chapter 11: Optimization
Optimization Routines

Unconstrained Minimization

IMSL_FMIN—(Univariate Function) Using function and possibly first derivative
values.

IMSL_FMINV—(Multivariate Function) Using quasi-Newton method.

IMSL_NLINLSQ—(Nonlinear Least Squares) Using Levenberg-Marquardt
algorithm.

Linearly Constrained Minimization

IMSL_LINPROG—Dense linear programming.

IMSL_QUADPROG—Quadratic programming.

Nonlinearly Constrained Minimization

IMSL_MINCONGEN—Minimize a general objective function.

IMSL_CONSTRAINED_NLP—Using a sequential equality constrained quadratic
programming method.
Optimization Routines IDL Analyst Reference Guide

Chapter 11: Optimization 425
IMSL_FMIN

The IMSL_FMIN function finds the minimum point of a smooth function f (x) of a
single variable using function evaluations and, optionally, through both function
evaluations and first derivative evaluations.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FMIN(f, a, b[, grad] [, /DOUBLE] [, ERR_ABS=value]
[, ERR_REL=value] [, FVALUE=value] [, GVALUE=value]
[, MAX_EVALS=value] [, STEP=value] [, TOL_GRAD=value]
[, XGUESS=value])

Return Value

The point at which a minimum value of f is found. If no value can be computed, then
NaN (Not a Number) is returned.

Arguments

f

Scalar string specifying a user-supplied function to compute the value of the function
to be minimized. Function f accepts the point at which the function is to be evaluated
and returns the computed function value at this point.

a

Lower endpoint of the interval in which the minimum point of f is to be located.

b

Upper endpoint of the interval in which the minimum point of f is to be located.
IDL Analyst Reference Guide IMSL_FMIN

426 Chapter 11: Optimization
grad

Scalar string specifying a user-supplied function to compute the first derivative of the
function. The grad function accepts the point at which the derivative is to be
evaluated and returns the computed derivative at this point.

Keywords

DOUBLE

If present and nonzero, double precision is used.

ERR_ABS

Required absolute accuracy in the final value of x. On a normal return, there are
points on either side of x within a distance ERR_ABS at which f is no less than f at x.
The keyword ERR_ABS cannot be used if the optional argument grad is supplied.
Default: ERR_ABS = 0.0001.

ERR_REL

Required relative accuracy in the final value of x. This is the first stopping criterion.
On a normal return, the solution x is in an interval that contains a local minimum and
is less than or equal to max (1.0, | x |) * ERR_REL. When the given ERR_REL is less
than zero, SQRT(ε) is used as ERR_REL, where ε is the machine precision. The
keyword ERR_REL can only be used if the optional argument grad is supplied.
Default: ERR_REL = SQRT(ε).

FVALUE

Function value at point x. The keyword FVALUE can only be used if the optional
argument grad is supplied.

GVALUE

Derivative value at point x. The keyword GVALUE can only be used if the optional
argument grad is supplied.

MAX_EVALS

Maximum number of function evaluations allowed. Default: MAX_EVALS = 1000.
IMSL_FMIN IDL Analyst Reference Guide

Chapter 11: Optimization 427
STEP

Order of magnitude estimate of the required change in x. The keyword STEP cannot
be used if the optional argument grad is supplied. Default: STEP = 1.0

TOL_GRAD

Derivative tolerance used to decide if the current point is a local minimum. This is the
second stopping criterion. Parameter x is returned as a solution when grad is less than
or equal to TOL_GRAD. The keyword TOL_GRAD should be nonnegative;
otherwise, zero is used. The keyword TOL_GRAD can only be used if the optional
argument grad is supplied. Default: TOL_GRAD = SQRT(ε), where ε is the machine
precision.

XGUESS

Initial guess of the minimum point of f. Default: XGUESS = (a + b)/2

Discussion

The IMSL_FMIN function uses a safeguarded, quadratic interpolation method to find
a minimum point of a univariate function. Both the code and the underlying algorithm
are based on the subroutine ZXLSF written by M.J.D. Powell at the University of
Cambridge.

The IMSL_FMIN function finds the least value of a univariate function, f, which is
specified by the function f. (Other required data are two points A and B that define an
interval for finding a minimum point from an initial estimate of the solution, x0,
where x0 = XGUESS.) The algorithm begins the search by moving from x0 to
x = x0 + s, where s = STEP is an estimate of the required change in x and may be
positive or negative. The first two function evaluations indicate the direction to the
minimum point, and the search strides out along this direction until a bracket on a
minimum point is found or until x reaches one of the endpoints a or b. During this
stage, the step length increases by a factor of between 2 and 9 per function evaluation.
The factor depends on the position of the minimum point that is predicted by
quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, the three points are as
follows:

x1, x2, x3, with x1 < x2 < x3, f(x1) ≥ f(x2), and f(x2) ≥ f(x3)
IDL Analyst Reference Guide IMSL_FMIN

428 Chapter 11: Optimization
Considered the following rules when choosing the new x from these three points:

• The estimate of the minimum point that is given by quadratic interpolation of
the three function values

• A tolerance parameter η, which depends on the closeness of |f| to a quadratic

• Whether x2 is near the center of the range between x1 and x3 or is relatively
close to an end of this range

In outline, the value of x is as near as possible to predicted minimum point, subject to
being at least ε from x2 and subject to being in the longer interval between x1 and x2
or x2 and x3, when x2 is close to x1 or x3.

The algorithm is intended to provide fast convergence when f has a positive and
continuous second derivative at the minimum and to avoid gross inefficiencies in
pathological cases, such as the following:

f(x) = x + 1.001 | x |

The algorithm can automatically make ε large in the pathological cases. In this case,
it is usual for a new value of x to be at the midpoint of the longer interval that is
adjacent to the least calculated function value. The midpoint strategy is used
frequently when changes to f are dominated by computer rounding errors, which
happens if the user requests an accuracy that is less than the square root of the
machine precision. In such cases, the subroutine claims to have achieved the required
accuracy if it decides that there is a local minimum point within distance δ of x,
where δ = ERR_ABS, even though the rounding errors in f may cause the existence of
other local minimum points nearby. This difficulty is inevitable in minimization
routines that use only function values, so high-precision arithmetic is recommended.

If the argument grad is supplied, then the IMSL_FMIN function uses a descent
method with either the secant method or cubic interpolation to find a minimum point
of a univariate function. It starts with an initial guess and two endpoints. If any of the
three points is a local minimum point and has least function value, the function
terminates with a solution; otherwise, the point with least function value is used as
the starting point.
IMSL_FMIN IDL Analyst Reference Guide

Chapter 11: Optimization 429
From the starting point, for example xc, the function value fc = f (xc), the derivative
value gc = g (xc), and a new point xn, defined by xn = xc – gc, are computed. The
function fn = f (xn) and the derivative gn = g (xn) are then evaluated. If either fn ≥ f c or
gn has the opposite sign of gc, then a minimum point exists between xc and xn, and an
initial interval is obtained; otherwise, since xc is kept as the point that has lowest
function value, an interchange between xn and xc is performed. The secant method is
then used to get a new point:

Let xn <− xs. Repeat this process until an interval containing a minimum is found or
one of the following convergence criteria is satisfied:

Criterion 1: | xc – xn | ≤ εc

Criterion 2: | gc | ≤ εg

where εc = max {1.0, | xc |} * ε, ε is a relative error tolerance and εg is a gradient
tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new
point. The function and derivative are then evaluated at that point; accordingly, a
smaller interval that contains a minimum point is chosen. A safeguarded method is
used to ensure that the interval be reduced by at least a fraction of the previous
interval. Another cubic interpolation is then performed, and this function is repeated
until one of the stopping criteria is met.

Examples

Example 1

This example finds a minimum point of f(x) = ex – 5x. The results are shown in Figure
11-1.

.RUN
; Define the function to be used.
FUNCTION f, x

RETURN, EXP(x) - 5 * x
END

xmin = IMSL_FMIN('f', -100, 100)
; Call IMSL_FMIN to compute the minimum.
PM, xmin
; Print results.

 1.60943

x s xc gc–
gn gc–

xn xc–

=

IDL Analyst Reference Guide IMSL_FMIN

430 Chapter 11: Optimization
x = 10 * FINDGEN(100)/99 - 5
!P.Font = 0
PLOT, x, f(x), Title = '!8f(x) = e!Ex!N-5x!3', XTitle = 'x', $

YTitle = 'f(x)'
; Plot results.
OPLOT, [xmin], [f(xmin)], Psym = 6
str = '(' + STRCOMPRESS(xmin) + ',' + STRCOMPRESS(f(xmin)) + ')'
OPLOT, [xmin],[f(xmin)], Psym = 6
XYOUTS, -5, 80, 'Minimum point:!C' + str, Charsize = 1.2

Example 2

This example supplies the grad argument and finds a minimum point of
f(x) = x (x3 – 1) + 10 with an initial guess x0 = 3. The results are shown in Figure 11-
2.

.RUN
FUNCTION f, x

RETURN, x * (x^3 - 1) + 10
END

Figure 11-1: Minimum Point of a Smooth Function
IMSL_FMIN IDL Analyst Reference Guide

Chapter 11: Optimization 431
.RUN
FUNCTION grad, x

RETURN, 4 * x^3 - 1
END

xmin = IMSL_FMIN('f', -10, 10, 'grad')
x = 4 * FINDGEN(100)/99 - 2
PLOT, x, f(x), Title = '!8f(x) = x(x!E3!N-1)+10!3', $

XTitle ='x', YTitle = 'f(x)'
OPLOT, [xmin], [f(xmin)], Psym = 6
str = '(' + STRCOMPRESS(xmin) + ',' + STRCOMPRESS(f(xmin)) + ')'
XYOUTS, -1.5, 25, 'Minimum point:'+str, Charsize = 1.2

Errors

Warning Errors

MATH_MIN_AT_LOWERBOUND—Final value of x is at the lower bound.

Figure 11-2: Minimum Point of a Smooth Function
IDL Analyst Reference Guide IMSL_FMIN

432 Chapter 11: Optimization
MATH_MIN_AT_UPPERBOUND—Final value of x is at the upper bound.

MATH_MIN_AT_BOUND—Final value of x is at a bound.

MATH_NO_MORE_PROGRESS—Computer rounding errors prevent further refinement
of x.

MATH_TOO_MANY_FCN_EVAL—Maximum number of function evaluations exceeded.

Version History

6.4 Introduced
IMSL_FMIN IDL Analyst Reference Guide

Chapter 11: Optimization 433
IMSL_FMINV

The IMSL_FMINV function minimizes a function f(x) of n variables using a quasi-
Newton method.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FMINV(f, n [, /DOUBLE] [, GRAD=string] [, FSCALE=string]
[, FVALUE=variable] [, IHESS=parameter] [, ITMAX=value]
[, MAX_EVALS=value] [, MAX_GRAD=value] [, MAX_STEP=value]
[, N_DIGIT=value] [, TOL_GRAD=value] [, TOL_RFCN=value]
[, TOL_STEP=value] [, XGUESS=array] [, XSCALE=array])

Return Value

The minimum point x of the function. If no value can be computed, NaN is returned.

Arguments

f

Scalar string specifying a user-supplied function to evaluate the function to be
minimized. Function f accepts the point at which the function is evaluated and returns
the computed function value at the point.

n

Number of variables.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_FMINV

434 Chapter 11: Optimization
GRAD

Scalar string specifying a user-supplied function to compute the gradient. The GRAD
function accepts the point at which the gradient is evaluated and returns the computed
gradient at the point.

FSCALE

Scalar containing the function scaling. The keyword FSCALE is used mainly in
scaling the gradient. See the keyword TOL_GRAD for more detail. Default:
FSCALE = 1.0.

FVALUE

Name of a variable into which the value of the function at the computed solution is
stored.

IHESS

Hessian initialization parameter. If IHESS is zero, the Hessian is initialized to the
identity matrix; otherwise, it is initialized to a diagonal matrix containing max
(f (t), fs) * si on the diagonal, where t = XGUESS, fs = FSCALE, and s = XSCALE.
Default: IHESS = 0.

ITMAX

Maximum number of iterations. Default: ITMAX = 100.

MAX_EVALS

Maximum number of function evaluations. Default: MAX_EVALS = 400.

MAX_GRAD

Maximum number of gradient evaluations. Default: MAX_GRAD = 400.

MAX_STEP

Maximum allowable step size. Default: MAX_STEP = 1000max(ε1, ε2), where:

ε2 = || s ||2, s = XSCALE, and t = XGUESS

ε1 siti()2

i 1=

n

∑=
IMSL_FMINV IDL Analyst Reference Guide

Chapter 11: Optimization 435
N_DIGIT

Number of good digits in function. Default: machine dependent.

TOL_GRAD

Scaled gradient tolerance.

The i-th component of the scaled gradient at x is calculated as:

where:

s = XSCALE, and fs = FSCALE. Default: TOL_GRAD = ε1/2 (ε1/3 in double)
where ε is the machine precision.

TOL_RFCN

Relative function tolerance. Default:
TOL_RFCN = max(10–10, ε 2/3), max(10–20, ε 2/3) in double.

TOL_STEP

Scaled step tolerance.

The i-th component of the scaled step between two points x and y is computed
as:

where s = XSCALE. Default: TOL_STEP = ε 2/3

XGUESS

Array with n components containing an initial guess of the computed solution.
Default: XGUESS (*) = 0.

XSCALE

Array with n components containing the scaling vector for the variables. The
keyword XSCALE is used mainly in scaling the gradient and the distance between

gi max xi 1 si⁄,()×
max f x() fs,()

--

g f x()∇=

xi yi–

max xi 1 si⁄,()

IDL Analyst Reference Guide IMSL_FMINV

436 Chapter 11: Optimization
two points (see the keywords TOL_GRAD and TOL_STEP for more detail). Default:
XSCALE (*) = 1.0.

Discussion

The IMSL_FMINV function uses a quasi-Newton method to find the minimum of a
function f (x) of n variables. The problem is stated below:

Given a starting point xc, the search direction is computed according to the formula:

d = –B–1gc

where B is a positive definite approximation of the Hessian and gc is the gradient
evaluated at xc.

A line search is then used to find a new point:

xn = xc + λ d, λ > 0

such that:

f(xn) ≤ f(xc) α gTd

where .

Finally, the optimality condition:

|| g(x) || ≤ ε

is checked, where ε is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula:

where s = xn – xc and y = gn – gc. Another search direction is then computed to begin
the next iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

In this implementation, the first stopping criterion for IMSL_FMINV occurs when
the norm of the gradient is less than the given gradient tolerance TOL_GRAD. The
second stopping criterion for IMSL_FMINV occurs when the scaled distance
between the last two steps is less than the step tolerance TOL_STEP.

Since by default, a finite-difference method is used to estimate the gradient for some
single-precision calculations, an inaccurate estimate of the gradient may cause the

min f x()
x IRn∈

α 0 0.5,()∈

B B Bss
T

B

s
T

Bs
----------------– yy

T

y
T

s
---------+←
IMSL_FMINV IDL Analyst Reference Guide

Chapter 11: Optimization 437
algorithm to terminate at a noncritical point. In such cases, high-precision arithmetic
is recommended or keyword GRAD is used to provide more accurate gradient
evaluation.

Examples

Example 1

The function f(x) = 100 (x2 – x1
2)2 + (1 – x1)2 is minimized.

.RUN
; Define the function.
FUNCTION f, x

xn = x
xn(0) = x(1) - x(0)^2
xn(1) = 1 - x(0)
RETURN, 100 * xn(0)^2 + xn(1)^2

END

xmin = IMSL_FMINV('f', 2)
; Call IMSL_FMINV to compute the minimum.
PM, xmin, Title = 'Solution:'
; Output the solution.
Solution:

 0.999986
 0.999971

PM, f(xmin), Title = 'Function value:'
Function value:

 2.09543e-10

Example 2

The function f(x) = 100 (x2 – x1
2)2 + (1 – x1)2 is minimized with the initial guess

x = (–1.2, 1.0). In the following plot, the asterisk marks the minimum. The results are
shown in Figure 11-3.

.RUN
; Define the function.
FUNCTION f, x

xn = x
xn(0) = x(1) - x(0)^2
xn(1) = 1 - x(0)
RETURN, 100 * xn(0)^2 + xn(1)^2

END

.RUN
; Define the gradient function.
FUNCTION grad, x
IDL Analyst Reference Guide IMSL_FMINV

438 Chapter 11: Optimization
g = x
g(0) = -400 * (x(1) - x(0)^2) * x(0) - 2 * (1 - x(0))
g(1) = 200 * (x(1) - x(0)^2)
RETURN, g

END

xmin = IMSL_FMINV('f', 2, grad = 'grad',$
XGuess = [-1.2, 1.0], Tol_Grad = .0001)

; Call IMSL_FMINV with the gradient function, an initial guess,
; and a scaled gradient tolerance.
x = 4 * FINDGEN(100)/99 - 2
y = x
surf = FLTARR(100, 100)
FOR i = 0, 99 DO FOR j = 0, 99 do $

surf(i, j) = f([x(i), y(j)])
; Evaluate function f on 100 x 100 grid for use in CONTOUR.
str = '(' + STRCOMPRESS(xmin(0)) + ',' + $
STRCOMPRESS(xmin(1)) + ',' + STRCOMPRESS(f(xmin)) + ')'
!P.Charsize = 1.5
CONTOUR, surf, x, y, Levels = [20*FINDGEN(6), $

500 + FINDGEN(7)*500], /C_Annotation, $
Title='!18Rosenbrock Function!C' + 'Minimum Point:!C' + $
str, Position = [.1, .1, .8, .8]

; Call CONTOUR. Customize the contour plot, including the title
; of the plot.
OPLOT, [xmin(0)], [xmin(1)], Psym = 2, Symsize = 2
; Plot the solution as an asterisk.
IMSL_FMINV IDL Analyst Reference Guide

Chapter 11: Optimization 439
Errors

Informational Errors

MATH_STEP_TOLERANCE—Scaled step tolerance satisfied. Current point may be an
approximate local solution, but it is also possible that the algorithm is making very
slow progress and is not near a solution or that TOL_STEP is too big.

Warning Errors

MATH_REL_FCN_TOLERANCE—Relative function convergence. Both the actual and
predicted relative reductions in the function are less than or equal to the relative
function convergence tolerance.

Figure 11-3: Rosenbrock Function Plot
IDL Analyst Reference Guide IMSL_FMINV

440 Chapter 11: Optimization
MATH_TOO_MANY_ITN—Maximum number of iterations exceeded.

MATH_TOO_MANY_FCN_EVAL—Maximum number of function evaluations exceeded.

MATH_TOO_MANY_GRAD_EVAL—Maximum number of gradient evaluations
exceeded.

MATH_UNBOUNDED—Five consecutive steps have been taken with the maximum step
length.

MATH_NO_FURTHER_PROGRESS—Last global step failed to locate a point lower than
the current x value.

Fatal Errors

MATH_FALSE_CONVERGENCE—Iterates appear to converge to a noncritical point. It
is possible that incorrect gradient information is used, or the function is
discontinuous, or the other stopping tolerances are too tight.

Version History

6.4 Introduced
IMSL_FMINV IDL Analyst Reference Guide

Chapter 11: Optimization 441
IMSL_NLINLSQ

The IMSL_NLINLSQ function solves a nonlinear least-squares problem using a
modified Levenberg-Marquardt algorithm.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NLINLSQ(f, m, n [, /DOUBLE] [, FJAC=variable]
[, FSCALE=array] [, FVEC=variable] [, INTERN_SCALE=variable]
[, ITMAX=value] [, JACOBIAN=string] [, JTJ_INVERSE=variable]
[, MAX_EVALS=value] [, MAX_JACOBIAN=value] [, MAX_STEP=value]
[, N_DIGITS=value] [, RANK=value] [, TOL_AFCN=value]
[, TOL_GRAD=value] [, TOL_RFCN=value] [, TOLERANCE=value]
[, TRUST_REGION=value] [, XGUESS=array] [, XLB=array]
[, XSCALE=array] [, XUB=array])

Return Value

The solution x of the nonlinear least-squares problem. If no solution can be
computed, NULL is returned.

Arguments

f

Scalar string specifying a user-supplied function to evaluate the function that defines
the least-squares problem. Function f accepts the following two parameters and
returns an array of length m containing the function values at x:

m—Number of functions.

x—Array length n containing the point at which the function is evaluated.

m

Number of functions.
IDL Analyst Reference Guide IMSL_NLINLSQ

442 Chapter 11: Optimization
n

Number of variables where n ≤ m.

Keywords

DOUBLE

If present and nonzero, double precision is used.

FJAC

Name of the variable into which an array of size m x n containing the Jacobian at the
approximate solution is stored.

FSCALE

Array with m components containing the diagonal scaling matrix for the functions.
The i-th component of FSCALE is a positive scalar specifying the reciprocal
magnitude of the i-th component function of the problem. Default: FSCALE (*) = 1.

FVEC

Name of the variable into which a real array of length m containing the residuals at
the approximate solution is stored.

INTERN_SCALE

Internal variable scaling option. With this keyword, the values for XSCALE are set
internally.

ITMAX

Maximum number of iterations. Default: ITMAX = 100.

JACOBIAN

Scalar string specifying a user-supplied function to compute the Jacobian. This
function accepts two parameters and returns an n x m array containing the Jacobian at
the point s input point. Note that each derivative ∂fi/∂xj should be returned in the (i, j)
element of the returned matrix. The parameters of the function are as follows:

m—Number of equations.

x—Array of length n at which the point Jacobian is evaluated.
IMSL_NLINLSQ IDL Analyst Reference Guide

Chapter 11: Optimization 443
JTJ_INVERSE

Name of the variable into which an array of size n x n containing the inverse matrix of
JTJ, where J is the final Jacobian, is stored. If JTJ is singular, the inverse is a
symmetric g2 inverse of JTJ. (See “IMSL_CHNNDSOL” on page 110 for a
discussion of generalized inverses and the definition of the g2 inverse.)

MAX_EVALS

Maximum number of function evaluations. Default: MAX_EVALS = 400.

MAX_JACOBIAN

Maximum number of Jacobian evaluations. Default: MAX_JACOBIAN = 400.

MAX_STEP

Maximum allowable step size. Default: MAX_STEP = 1000 max(ε1, ε2), where:

s = XSCALE, and t = XGUESS

N_DIGITS

Number of good digits in the function. Default: machine dependent.

RANK

Name of the variable into which the rank of the Jacobian is stored.

TOL_AFCN

Absolute function tolerance. Default: TOL_AFCN = max(10–20, ε2), [max(10–40, ε2)
in double], where ε is the machine precision.

TOL_GRAD

Scaled gradient tolerance.

The i-th component of the scaled gradient at x is calculated as:

ε1 siti
2

i 1=

n

∑=

ε2 s 2=
IDL Analyst Reference Guide IMSL_NLINLSQ

444 Chapter 11: Optimization
where , s = XScale, and:

Default: TOL_GRAD = ε1/2 (ε1/3 in double), where ε is the machine precision.

TOL_RFCN

Relative function tolerance. Default: TOL_RFCN = max(10–10, ε2/3),
[max(10–40, ε2/3) in double], where ε is the machine precision.

TOLERANCE

Tolerance used in determining linear dependence for the computation of the inverse
of JTJ. If the keyword JACOBIAN is specified, the default is TOLERANCE = 100ε,
where ε is the machine precision; otherwise, the default is SQRT(ε), where ε is the
machine precision.

TRUST_REGION

Size of initial trust-region radius. Default: based on the initial scaled Cauchy step.

XGUESS

Array with n components containing an initial guess. Default: XGUESS (*) = 0.

Tol_Step—Scaled step tolerance.

The i-th component of the scaled step between two points x and y is computed
as:

where s = XSCALE.

Default: Tol_Step = ε2/3, where ε is the machine precision

gi max xi 1 si⁄,()×
1
2
--- F x()

2

2
--

g F x()∇=

F x()
2

2
fi

i 1=

m

∑ x()2
=

xi yy–

max xi 1 si⁄,()

IMSL_NLINLSQ IDL Analyst Reference Guide

Chapter 11: Optimization 445
XLB

One dimensional array with n components containing the lower bounds on the
variables. The keywords Xlb and Xub must be used together.

XSCALE

Array with n components containing the scaling vector for the variables. The
keyword XSCALE is used mainly in scaling the gradient and the distance between
two points (see the keywords TOL_GRAD and TOL_STEP for more detail). Default:
XSCALE (*) = 1.

XUB

One dimensional array with n components containing the upper bounds on the
variables. The keywords XLB and XUB must be used together.

Discussion

The specific algorithm used in IMSL_NLINLSQ is dependent on whether the
keywords XLB and XUB are supplied. If the keywords XLB and XUB are not
supplied, then the IMSL_NLINLSQ function is based on the MINPACK routine
LMDER by Moré et al. (1980).

The IMSL_NLINLSQ function, based on the MINPACK routine LMDER by Moré et
al. (1980), uses a modified Levenberg-Marquardt method to solve nonlinear least-
squares problems. The problem is stated as follows:

where m ≥ n, F : Rn → Rm and fi (x) is the i-th component function of F(x). From
a current point, the algorithm uses the trust region approach:

subject to

to get a new point xn. Compute xn as:

xn = xc – (J(xc)
T J(xc) + µc I)

–1 J(xc)
TF(xc)

where µc = 0 if δc ≥ || (J(xc)
T J(xc))

–1 J(xc)
TF(xc) ||2 and µc > 0 otherwise.

min
1
2
---F x()

T
F x()

1
2
--- fi x()

2

i 1=

m

∑=

min F xc() J xc() xn xc–()+ 2x IRn∈

xn xc– 2 δc≤
IDL Analyst Reference Guide IMSL_NLINLSQ

446 Chapter 11: Optimization
The value µc is defined by the function. The vector and matrix F(xc) and J(xc) are the
function values and the Jacobian evaluated at the current point xc. This function is
repeated until the stopping criteria are satisfied.

The first stopping criterion for IMSL_NLINLSQ occurs when the norm of the
function is less than the absolute function tolerance, TOL_AFCN. The second
stopping criterion occurs when the norm of the scaled gradient is less than the given
gradient tolerance TOL_GRAD. The third stopping criterion for IMSL_NLINLSQ
occurs when the scaled distance between the last two steps is less than the step
tolerance TOL_STEP. For more details, see Levenberg (1944), Marquardt (1963), or
Dennis and Schnabel (1983, Chapter 10).

If the keywords XLB and XUB are supplied, then the IMSL_NLINLSQ function uses
a modified Levenberg-Marquardt method and an active set strategy to solve nonlinear
least-squares problems subject to simple bounds on the variables. The problem is
stated as follows:

subject to l ≤ x ≤ u where m ≥ n, F : Rn → Rm, and fi(x) is the i-th component function
of F(x). From a given starting point, an active set IA, which contains the indices of
the variables at their bounds, is built. A variable is called a “free variable” if it is not
in the active set. The routine then computes the search direction for the free variables
according to the formula:

d = – (JTJ + µI)–1 JTF

where µ is the Levenberg-Marquardt parameter, F = F(x), and J is the Jacobian with
respect to the free variables. The search direction for the variables in IA is set to zero.
The trust region approach discussed by Dennis and Schnabel (1983) is used to find
the new point. Finally, the optimality conditions are checked. The conditions are:

||g (xi)|| ≤ ε, li < xi < ui

g (xi) < 0, xi = ui

g (xi) > 0, xi = li

where ε is a gradient tolerance. This process is repeated until the optimality criterion
is achieved.

The active set is changed only when a free variable hits its bounds during an iteration
or the optimality condition is met for free variables but not for all variables in IA, the
active set. In the latter case, a variable that violates the optimality condition will be
dropped out of IA. For more detail on the Levenberg-Marquardt method, see

min
1
2
---F x()T

F x() 1
2
--- fi x()2

i 1=

m

∑=
IMSL_NLINLSQ IDL Analyst Reference Guide

Chapter 11: Optimization 447
Levenberg (1944) or Marquardt (1963). For more detail on the active set strategy, see
Gill and Murray (1976).

Since a finite-difference method is used to estimate the Jacobian for some single-
precision calculations, an inaccurate estimate of the Jacobian may cause the
algorithm to terminate at a noncritical point. In such cases, high-precision arithmetic
is recommended. Also, whenever the exact Jacobian can be easily provided, the
keyword JACOBIAN should be used.

Example

In this example, the nonlinear data-fitting problem found in Dennis and Schnabel
(1983, p. 225):

is solved with the data t = [1, 2, 3] and y = [2, 4, 3].

.RUN
; Define the function that defines the least-squares problem.
FUNCTION f, m, x

y = [2, 4, 3]
t = [1, 2, 3]
RETURN, EXP(x(0) * t) - y

END

solution = IMSL_NLINLSQ('f', 3, 1)
; Call IMSL_NLINLSQ.
PM, solution, Title = 'The solution is:'

; Output the results.
The solution is:

 0.440066
PM, f(m, solution), Title = 'The function values are:'

The function values are:
 -0.447191
 -1.58878
 0.744159

min
1
2
--- fi x()

2
 where fi x()

i 0=

3

∑ fi x() etix yi–= =
IDL Analyst Reference Guide IMSL_NLINLSQ

448 Chapter 11: Optimization
Errors

Informational Errors

MATH_STEP_TOLERANCE—Scaled step tolerance satisfied. The current point may be
an approximate local solution, but it is also possible that the algorithm is making very
slow progress and is not near a solution or that TOL_STEP is too big.

Warning Errors

MATH_LITTLE_FCN_CHANGE—Both the actual and predicted relative reductions in
the function are less than or equal to the relative function tolerance.

MATH_TOO_MANY_ITN—Maximum number of iterations exceeded.

MATH_TOO_MANY_FCN_EVAL—Maximum number of function evaluations exceeded.

MATH_TOO_MANY_JACOBIAN_EVAL—Maximum number of Jacobian evaluations
exceeded.

MATH_UNBOUNDED—Five consecutive steps have been taken with the maximum step
length.

Fatal Errors

MATH_FALSE_CONVERGE—Iterates appear to be converging to a noncritical point.

Version History

6.4 Introduced
IMSL_NLINLSQ IDL Analyst Reference Guide

Chapter 11: Optimization 449
IMSL_LINPROG

The IMSL_LINPROG function solves a linear programming problem using the
revised simplex algorithm.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LINPROG(a, b, c [, BU=array] [, /DOUBLE] [, DUAL=variable]
[, IRTYPE=array] [, ITMAX=value] [, OBJ=variable] [, XLB=array]
[, XUB=array])

Return Value

The solution x of the linear programming problem.

Arguments

a

Two-dimensional matrix containing the coefficients of the constraints. The
coefficient for the i-th constraint is contained in A (i, *).

b

One-dimensional matrix containing the right-hand side of the constraints. If there are
limits on both sides of the constraints, b contains the lower limit of the constraints.

c

One-dimensional array containing the coefficients of the objective function.
IDL Analyst Reference Guide IMSL_LINPROG

450 Chapter 11: Optimization
Keywords

BU

Array with N_ELEMENTS(b) elements containing the upper limit of the constraints
that have both the lower and the upper bounds. If no such constraint exists, BU is not
needed.

DOUBLE

If present and nonzero, double precision is used.

DUAL

Name of the variable into which the array with N_ELEMENTS(c) elements,
containing the dual solution, is stored.

IRTYPE

Array with N_ELEMENTS(b) elements indicating the types of general constraints in
the matrix A. Let ri = Ai0x0 + ... + Ain–1 xn–1. The value of IRTYPE (i) is described in
Table 11-1.

Default: IRTYPE (*) = 0

ITMAX

Maximum number of iterations. Default: ITMAX = 10,000

OBJ

Name of the variable into which the optimal value of the objective function is stored.

Irtype (i) Constraints

0 ri = bi

1 ri ≤ bu

2 ri ≥ bi

3 bi ≤ ri ≤ bu

Table 11-1: Constraint Types
IMSL_LINPROG IDL Analyst Reference Guide

Chapter 11: Optimization 451
XLB

Array with N_ELEMENTS(c) elements containing the lower bound on the variables.
If there is no lower bound on a variable, 1030 should be set as the lower bound.
Default: XLB (*) = 0

XUB

Array with N_ELEMENTS(c) elements containing the upper bound on the variables.
If there is no upper bound on a variable, –1030 should be set as the upper bound.
Default: XUB (*) = infinity

Discussion

The IMSL_LINPROG function uses a revised simplex method to solve linear
programming problems; i.e., problems of the form:

subject to:

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors
bl, bu, xl, and xu are the lower and upper bounds on the constraints and the variables.

For a complete discussion of the revised simplex method, see Murtagh (1981) or
Murty (1983). This problem can be solved more efficiently.

Example

In this example, the linear programming problem in the standard form:

min f(x) = –x0 – 3x1

subject to:

is solved.

RM, a, 4, 6
; Define the coefficients of the constraints.
row 0: 1 1 1 0 0 0
row 1: 1 1 0 -1 0 0
row 2: 1 0 0 0 1 0
row 3: 0 1 0 0 0 1

min c
T

x
x IRn∈

bl Ax bu≤ ≤

xl x xu≤ ≤
IDL Analyst Reference Guide IMSL_LINPROG

452 Chapter 11: Optimization
RM, b, 4, 1
; Define the right-hand side of the constraints.
row 0: 1.5
row 1: .5
row 2: 1
row 3: 1
RM, c, 6, 1
; Define the coefficients of the objective function.
row 0: -1
row 1: -3
row 2: 0
row 3: 0
row 4: 0
row 5: 0
PM, IMSL_LINPROG(a, b, c), Title = 'Solution'
; Call IMSL_LINPROG and print the solution.
Solution

0.500000
1.00000
0.00000
1.00000
0.500000
0.00000

Errors

Warning Errors

MATH_PROB_UNBOUNDED—Problem is unbounded.

MATH_TOO_MANY_ITN—Maximum number of iterations exceeded.

MATH_PROB_INFEASIBLE—Problem is infeasible.

Fatal Errors

MATH_NUMERIC_DIFFICULTY—Numerical difficulty occurred. If float is currently
being used, using double may help.

x0 + x1 + x2 = 1.5

x0 + x1 – x3 = 0.5

x0 + x4 = 1.0

x1 + x5 = 1.0

xi 0 for i,≥ 0 ... 5, ,=
IMSL_LINPROG IDL Analyst Reference Guide

Chapter 11: Optimization 453
MATH_BOUNDS_INCONSISTENT—Bounds are inconsistent.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_LINPROG

454 Chapter 11: Optimization
IMSL_QUADPROG

The IMSL_QUADPROG function solves a quadratic programming (QP) problem
subject to linear equality or inequality constraints.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_QUADPROG(a, b, g, h [, DIAG=variable] [, /DOUBLE]
[, DUAL=variable] [, MEQ=value] [, OBJ=variable])

Return Value

The solution x of the QP problem.

Arguments

a

Two-dimensional matrix containing the linear constraints.

b

One-dimensional matrix of the right-hand sides of the linear constraints.

g

One-dimensional array of the coefficients of the linear term of the objective function.

h

Two-dimensional array of size N_ELEMENTS(g) x N_ELEMENTS(g) containing
the Hessian matrix of the objective function. It must be symmetric positive definite. If
h is not positive definite, the algorithm attempts to solve the QP problem with h
replaced by h + Diag*I, such that h + Diag*I is positive definite.
IMSL_QUADPROG IDL Analyst Reference Guide

Chapter 11: Optimization 455
Keywords

DIAG

Name of the variable into which the scalar, equal to the multiple of the identity matrix
added to h to give a positive definite matrix, is stored.

DOUBLE

If present and nonzero, double precision is used.

DUAL

Name of the variable into which an array with N_ELEMENTS(g) elements,
containing the Lagrange multiplier estimates, is stored.

MEQ

Number of linear equality constraints. If MEQ is used, then the equality constraints
are located at a(i, *) for i = 0, ..., Meq – 1.
Default: MEQ = N_ELEMENTS(a(*, 0)) n; i.e., all constraints are equality
constraints.

OBJ

Name of variable into which optimal object function found is stored.

Discussion

The IMSL_QUADPROG function is based on M.J.D. Powell’s implementation of the
Goldfarb and Idnani dual quadratic programming (QP) algorithm for convex QP
problems subject to general linear equality/inequality constraints (Goldfarb and
Idnani 1983). That is, problems of the form:

subject to:

given the vectors b0, b1, and g, and the matrices H, A0, and A1. Matrix H is required to
be positive definite. In this case, a unique x solves the problem, or the constraints are

min g
T

x
1
2
---x

T
Hx+

x IRn∈

A1x b1=

A2x b2≥
IDL Analyst Reference Guide IMSL_QUADPROG

456 Chapter 11: Optimization
inconsistent. If H is not positive definite, a positive definite perturbation of H is used
in place of H. For more details, see Powell (1983, 1985).

If a perturbation of H, H + αI, is used in the QP problem, H + αI also should be used
in the definition of the Lagrange multipliers.

Example

In this example, the QP problem:

min f(x) = –x2
0 + x2

1
 + x2

2 + x2
3 + x2

4 – 2x1x2
 – 2x3x4

 –2x0

subject to:

x0 + x1 + x2 + x3 + x4 = 5

x2 – 2x3 – 2x4 = –3

is solved.

RM, a, 2, 5
; Define the coefficient matrix A.
row 0: 1 1 1 1 1
row 1: 0 0 1 -2 -2
h = [[2, 0, 0, 0, 0], [0, 2, -2, 0, 0], $

[0, -2, 2, 0, 0], [0, 0, 0, 2, -2], $
[0, 0, 0, -2, 2]]

; Define the Hessian matrix of the objective function. Notice
; that since h is symmetric, the array concatenation operators
; “[]” are used to define it.
b = [5, -3]
; Define b.
g = [-2, 0, 0, 0, 0]
; Define g.
x = IMSL_QUADPROG(a, b, g, h)
; Call IMSL_QUADPROG.
PM, x
; Output solution.
Solution:

 1.00000
 1.00000
 1.00000
 1.00000
 1.00000
IMSL_QUADPROG IDL Analyst Reference Guide

Chapter 11: Optimization 457
Errors

Warning Errors

MATH_NO_MORE_PROGRESS—Due to the effect of computer rounding error, a change
in the variables fails to improve the objective function value. Usually, the solution is
close to optimum.

Fatal Errors

MATH_SYSTEM_INCONSISTENT—System of equations is inconsistent. There is no
solution.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_QUADPROG

458 Chapter 11: Optimization
IMSL_MINCONGEN

The IMSL_MINCONGEN function minimizes a general objective function subject to
linear equality/inequality constraints.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_MINCONGEN(f, a, b, xlb, xub [, ACTIVE_CONST=variable]
[, /DOUBLE] [, GRAD=string] [, LAGRANGE_MULT=variable]
[, MAX_FCN=value] [, MEQ=value] [, NUM_ACTIVE=variable]
[, OBJ=variable] [, TOLERANCE=value] [, XGUESS=array])

Return Value

One-dimensional array of length nvar containing the computed solution.

Arguments

a

Two-dimensional array of size ncon by nvar containing the equality constraint
gradients in the first MEQ rows followed by the inequality constraint gradients,
where ncon is the number of linear constraints (excluding simple bounds) and nvar is
the number of variables. See the keyword MEQ for setting the number of equality
constraints.

b

One-dimensional array of size ncon containing the right-hand sides of the linear
constraints. Specifically, the constraints on the variables xi, i = 0, nvar – 1,
are ak,0x0 + ... + ak,nvar–1xnvar–1 = bk, k = 0, ..., Meq – 1 and
ak,0x0 + ... + ak,nvar–1xnvar–1 ≤ bk, k = Meq, ..., ncon – 1. Note that the data that define
the equality constraints come before the data of the inequalities.
IMSL_MINCONGEN IDL Analyst Reference Guide

Chapter 11: Optimization 459
f

Scalar string specifying a user-supplied function to evaluate the function to be
minimized. Function f accepts a one-dimensional array of length
n = N_ELEMENTS(x) containing the point at which the function is evaluated. The
return value of this function is the function value at x.

xlb

One-dimensional array of length nvar containing the lower bounds on the variables;
choose a very large negative value if a component should be unbounded below or set
xlb(i) = xub(i) to freeze the i-th variable. Specifically, these simple bounds are xlb(i) ≤
xi, for i = 0, ..., nvar–1.

xub

One-dimensional array of length nvar containing the upper bounds on the variables;
choose a very large positive value if a component should be unbounded above.
Specifically, these simple bounds are xi ≤ xub(i), for i = 0, nvar – 1.

Keywords

ACTIVE_CONST

Named variable into which an one-dimensional array of length NUM_ACTIVE
containing the indices of the final active constraints is stored.

DOUBLE

If present and nonzero, double precision is used.

GRAD

Scalar string specifying the name of the user-supplied function to compute the
gradient at the point x. The GRAD function accepts a one-dimensional array of length
nvar. The return value of this function is a one-dimensional array of length nvar
containing the values of the gradient of the objective function.

LAGRANGE_MULT

Named variable into which an one-dimensional array of length NUM_ACTIVE
containing the Lagrange multiplier estimates of the final active constraints is stored.
IDL Analyst Reference Guide IMSL_MINCONGEN

460 Chapter 11: Optimization
MAX_FCN

Maximum number of function evaluations. Default: MAX_FCN = 400

MEQ

Number of linear equality constraints. Default: MEQ = 0

NUM_ACTIVE

Named variable into which the final number of active constraints is stored.

OBJ

Named variable into which the value of the objective function is stored.

TOLERANCE

The nonnegative tolerance on the first order conditions at the calculated solution.
Default: TOLERANCE = SQRT(ε), where ε is machine epsilon.

XGUESS

One-dimensional array with nvar components containing an initial guess. Default:
XGUESS = 0

Discussion

The IMSL_MINCONGEN function is based on M.J.D. Powell’s TOLMIN, which
solves linearly constrained optimization problems, i.e., problems of the form:

min f(x)

subject to:

A1x = b1

A2x ≤ b2

xl ≤ x ≤ xu

given the vectors b1, b2, xl , and xu and the matrices A1 and A2.

The algorithm starts by checking the equality constraints for inconsistency and
redundancy. If the equality constraints are consistent, the method will revise x0, the
initial guess, to satisfy:

A1x = b1
IMSL_MINCONGEN IDL Analyst Reference Guide

Chapter 11: Optimization 461
Next, x0 is adjusted to satisfy the simple bounds and inequality constraints. This is
done by solving a sequence of quadratic programming subproblems to minimize the
sum of the constraint or bound violations.

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality
constraints that have small residuals. Here, the simple bounds are treated as
inequality constraints. Let Ik be the set of indices of active constraints. The following
quadratic programming problem:

subject to:

ajd = 0,

ajd ≤ 0,

is solved to get (dk, λk) where aj is a row vector representing either a constraint in A1
or A2 or a bound constraint on x. In the latter case, the aj = ei for the bound constraint
xi ≤ (xu)i and aj = -ei for the constraint -xi ≤ (xl)i. Here, ei is a vector with 1 as the i-th
component, and zeros elsewhere. Variables λk are the Lagrange multipliers, and Bk is
a positive definite approximation to the second derivative ∇ 2 f(xk).

After the search direction dk is obtained, a line search is performed to locate a better
point. The new point xk+1 = xk +αkdk has to satisfy the conditions:

f(xk + αkdk) ≤ f(xk) + 0.1 αk (dk)T ∇ f(xk)

and:

(dK)T∇ f(xk + αkdk) ≤ 0.7 (dk)T∇ f(xK)

The main idea in forming the set Jk is that, if any of the equality constraints restricts
the step-length αk, then its index is not in Jk. Therefore, small steps are likely to be
avoided.

Finally, the second derivative approximation BK, is updated by the BFGS formula, if
the condition:

(dK)T∇ f(xk + αkdk) − ∇ f(xk) > 0

holds. Let xk ← xk+1, and start another iteration.

The iteration repeats until the stopping criterion:

|| ∇ f(xk) - AkλK||2 ≤ τ

is satisfied. Here τ is the supplied tolerance. For more details, see Powell (1988,
1989).

minf x
k() d

T
f∇ x

k() 1
2
---d

T
B

k
d+ +

j Ik∈

j Jk∈
IDL Analyst Reference Guide IMSL_MINCONGEN

462 Chapter 11: Optimization
Since a finite difference method is used to approximate the gradient for some single
precision calculations, an inaccurate estimate of the gradient may cause the algorithm
to terminate at a noncritical point. In such cases, high precision arithmetic is
recommended. Also, if the gradient can be easily provided, the input keyword GRAD
should be used.

Examples

Example 1

In this example, the problem:

.RUN
FUNCTION fcn, x

 f = x(0)*x(0) + x(1)*x(1) + x(2)*x(2) + x(3)*x(3) + $
 x(4)*x(4) - 2.0*x(1)*x(2) - 2.0*x(3) * x(4) - $
 2.0*x(0)
 RETURN, f

END

meq = 2
a = TRANSPOSE([[1.0, 1.0, 1.0, 1.0, 1.0], $

[0.0, 0.0, 1.0, -2.0, -2.0]])
b = [5.0, -3.0]
xlb = FLTARR(5)
xlb(*) = 0.0
xub = FLTARR(5)
xub(*) = 10.0
; Set !QUIET to suppress note errors
!QUIET = 1
x = IMSL_MINCONGEN('fcn', a, b, xlb, xub, Meq = meq)
PM, x, Title = 'Solution'

Solution
 1.00000
 1.00000
 1.00000
 1.00000

minf x() x
2

1
x

2

2
x

2

3
x

2

3
x

2

3
2x2x3 2x4x5 2x1–––+ + + +=

subject to x1 x2 x3 x4 x5+ + + + 5=

x3 2x4– 2x5– 3–=

0 x 10≤ ≤
IMSL_MINCONGEN IDL Analyst Reference Guide

Chapter 11: Optimization 463
 1.00000

Example 2

In this example, the problem from Schittkowski (1987):

min f(x) = -x0x1x2

subject to –x0 – 2x1 – 2x2 ≤ 0

x0 + 2x1 + 2x2 ≤ 72

0 ≤ x0 ≤ 20

0 ≤ x1 ≤ 11

0 ≤ x2 ≤ 42

is solved with an initial guess of x0 = 10, x1 = 10 and x2 = 10.

.RUN
FUNCTION fcn, x

f = -x(0)*x(1)*x(2)
RETURN, f

END

.RUN
FUNCTION gradient, x

g = FLTARR(3)
g(0) = -x(1)*x(2)
g(1) = -x(0)*x(2)
g(2) = -x(0)*x(1)
RETURN, g

END

meq = 0
a = TRANSPOSE([[-1.0, -2.0, -2.0], [1.0, 2.0, 2.0]])
b = [0.0, 72.0]
xlb = FLTARR(3)
xlb(*) = 0.0
xub = [20.0, 11.0, 15.0]
xguess = FLTARR(3)
xguess(*) = 10.0
; Set !QUIET to suppress note errors
!QUIET = 1
x = IMSL_MINCONGEN('fcn', a, b, xlb, xub, Meq = meq, $

Grad = 'gradient', Xguess = xguess, Obj = obj)
PM, x, Title = 'Solution'

Solution
20.0000
IDL Analyst Reference Guide IMSL_MINCONGEN

464 Chapter 11: Optimization
11.0000
15.0000

PRINT, 'Objective value =', obj

Objective value = -3300.00

Version History

6.4 Introduced
IMSL_MINCONGEN IDL Analyst Reference Guide

Chapter 11: Optimization 465
IMSL_CONSTRAINED_NLP

The IMSL_CONSTRAINED_NLP function solves a general nonlinear programming
problem using a sequential equality constrained quadratic programming method.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CONSTRAINED_NLP (f, m, n [, /DOUBLE] [, DEL0=value]
[, DELMIN=string] [, DIFFTYPE=value] [, EPSDIF=value] [, EPSFCN=value]
[, GRAD=value] [, IBTYPE=string] [, ITMAX=value] [, MEQ=value]
[, OBJ=value] [, SCFMAX=string] [, SMALLW=string] [, TAU0=value]
[, TAUBND=value] [, XGUESS=array] [, XLB=variable] [, XSCALE=vector]
[, XUB=variable])

Return Value

The solution of the nonlinear programming problem.

Arguments

f

Scalar string specifying a user-supplied procedure to evaluate the objective function
and constraints at a given point. The input parameters are:

• x—One dimensional array at which the objective function or a constraint is
evaluated.

• iact—Integer indicating whether evaluation of the objective function is
requested or evaluation of a constraint is requested. If iact is zero, then an
objective function evaluation is requested. If iact is nonzero then the value if
iact indicates the index of the constraint to evaluate.

• result—If iact is zero, then Result is the computed objective function at the
point x. If iact is nonzero, then Result is the requested constraint value at the
point x.
IDL Analyst Reference Guide IMSL_CONSTRAINED_NLP

466 Chapter 11: Optimization
• ierr—Integer variable. On input ierr is set to 0. If an error or other undesirable
condition occurs during evaluation, then ierr should be set to 1. Setting ierr to
1 will result in the step size being reduced and the step being tried again. (If
ierr is set to 1 for XGUESS, then an error is issued.)

m

Total number of constraints.

n

Number of variables.

Keywords

DOUBLE

If present and nonzero, double precision is used.

DEL0

In the initial phase of minimization, a constraint is considered binding if:

Good values are between .01 and 1.0. If DEL0 is too small, then identification
of the correct set of binding constraints may be delayed. Conversely, if DEL0
is too large, then the method will often escape to the full regularized SQP
method. This method uses individual slack variables for any active constraint,
which is quite costly. For well-scaled problems DEL0 = 1.0 is reasonable.
Default: DEL0 = .5* Tau0.

DELMIN

Scalar which defines allowable constraint violations of the final accepted result.
Constraints are satisfied if |gi(x)| is less than or equal to DELMIN, and gi(x) is greater
than or equal to (-Delmin) respectively. Default: DELMIN = min(Del0/10,
max(epsdif, min(del0/10, max(1.E-6* del0, smallw))

DIFFTYPE

Type of numerical differentiation to be used. Default: DIFFTYPE = 1

gi x()
max 1 gi∇ x(),()
--- Del0≤ i Me 1 ... M, ,+=
IMSL_CONSTRAINED_NLP IDL Analyst Reference Guide

Chapter 11: Optimization 467
• 1—Use a forward difference quotient with discretization stepsize
0.1(epsfcn1/2) component-wise relative.

• 2—Use the symmetric difference quotient with discretization stepsize
0.1(epsfcn1/3) component-wise relative.

• 3—Use the sixth order approximation computing a Richardson extrapolation
of three symmetric difference quotient values. This uses a discretization
stepsize 0.01(epsfcn1/7).

This keyword is not valid if the keyword GRAD is supplied.

EPSDIF

Relative precision in gradients. Default: EPSDIF = eps where eps is the machine
precision. This keyword is not valid if the keyword GRAD is supplied.

EPSFCN

Relative precision of the function evaluation routine. Default: EPSFCN = eps where
eps is the machine precision. This keyword is not valid if the keyword GRAD is
supplied.

GRAD

Scalar string specifying a user-supplied procedure to evaluate the gradients at a given
point. The procedure specified by GRAD has the following parameters:

• x—One dimensional array at which the gradient of the objective function or
gradient of a constraint is evaluated.

• iact—Integer indicating whether evaluation of the gradient of the objective
function is requested or evaluation of gradient of a constraint is requested. If
iact is zero, then an objective function evaluation is requested. If iact is
nonzero then the value if iact indicates the index of the constraint to evaluate.

• result—If iact is zero, then Result is the computed gradient of the objective
function at the point x. If iact is nonzero, then Result is the gradient of the
requested constraint value at the point x.

IBTYPE

Scalar indicating the types of bounds on variables.

• 0—User supplies all the bounds.

• 1—All variables are non-negative.
IDL Analyst Reference Guide IMSL_CONSTRAINED_NLP

468 Chapter 11: Optimization
• 2—All variables are nonpositive.

• 3—User supplies only the bounds on first variable; all other variables have the
same bounds.

• Default: no bounds are enforced

ITMAX

Maximum number of iterations allowed. Default: ITMAX = 200

MEQ

Number of equality constraints. Default: MEQ = m

OBJ

Name of a variable into which a scalar containing the value of the objective function
at the computed solution is stored.

SCFMAX

Scalar containing the bound for the internal automatic scaling of the objective
function. Default: SCFMAX = 1.0e4

SMALLW

Scalar containing the error allowed in the multipliers. For example, a negative
multiplier of an inequality constraint is accepted (as zero) if its absolute value is less
than SMALLW. Default: SMALLW = exp(2*log(eps/3)) where eps is the machine
precision.

TAU0

A universal bound describing how much the unscaled penalty-term may deviate from
zero.

IMSL_CONSTRAINED_NLP assumes that within the region described by:

all functions may be evaluated safely. The initial guess, however, may violate these
requirements. In that case, an initial feasibility improvement phase is run by
IMSL_CONSTRAINED_NLP until such a point is found. A small TAU0 diminishes
the efficiency of IMSL_CONSTRAINED_NLP, because the iterates then will follow

gi x()
i 1=

Me

∑ min 0 gi x(),()
i Me 1+=

M

∑ Tau0≤–
IMSL_CONSTRAINED_NLP IDL Analyst Reference Guide

Chapter 11: Optimization 469
the boundary of the feasible set closely. Conversely, a large TAU0 may degrade the
reliability of the code. Default TAU0 = 1.0

TAUBND

Amount by which bounds may be violated during numerical differentiation. Bounds
are violated by TAUBND (at most) only if a variable is on a bound and finite
differences are taken for gradient evaluations. This keyword is not valid if the
keyword GRAD is supplied. Default: TAUBND = 1.0.

XGUESS

Array with n components containing an initial guess of the computed solution.
Default: XGUESS = X, with the smallest value of that satisfies the bounds.

XLB

Named variable, containing a one-dimensional array with n components, containing
the lower bounds on the variables. (Input, if IBTYPE = 0; Output, if IBTYPE = 1 or
2; Input/Output, if IBTYPE = 3). If there is no lower bound on a variable, the
corresponding XLB value should be set to negative machine infinity. Default: no
lower bounds are enforced on the variables

XSCALE

Vector of length n setting the internal scaling of the variables. The initial value given
and the objective function and gradient evaluations however are always in the original
unscaled variables. The first internal variable is obtained by dividing values x(I) by
XSCALE(I). This keyword is not valid if the keyword GRAD is supplied.

In the absence of other information, set all entries to 1.0. Default: XSCALE(*) = 1.0.

XUB

Named variable, containing a one-dimensional array with n components, containing
the upper bounds on the variables. (Input, if IBTYPE = 0; Output, if IBTYPE = 1 or
2; Input/Output, if IBTYPE = 3). If there is no upper bound on a variable, the
corresponding XUB value should be set to positive machine infinity. Default: no
upper bounds are enforced on variables.

Description

The routine IMSL_CONSTRAINED_NLP provides an interface to a licensed version
of subroutine DONLP2, a code developed by Peter Spellucci (1998). It uses a

X 2
IDL Analyst Reference Guide IMSL_CONSTRAINED_NLP

470 Chapter 11: Optimization
sequential equality constrained quadratic programming method with an active set
technique, and an alternative usage of a fully regularized mixed constrained
subproblem in case of nonregular constraints (for example, linear dependent
gradients in the “working sets”). It uses a slightly modified version of the Pantoja-
Mayne update for the Hessian of the Lagrangian, variable dual scaling and an
improved Armjijo-type stepsize algorithm. Bounds on the variables are treated in a
gradient-projection like fashion. Details may be found in the following two papers:

• P. Spellucci: An SQP method for general nonlinear programs using only
equality constrained subproblems. Math. Prog. 82, (1998), 413-448.

• P. Spellucci: A new technique for inconsistent problems in the SQP method.
Math. Meth. of Oper. Res. 47, (1998), 355-500. (published by Physica Verlag,
Heidelberg, Germany).

The problem is stated as follows:

subject to:

,

,

Although default values are provided for input keywords, it may be necessary to
adjust these values for some problems. Through the use of keywords,
IMSL_CONSTRAINED_NLP allows for several parameters of the algorithm to be
adjusted to account for specific characteristics of problems. The DONLP2 Users
Guide provides detailed descriptions of these parameters as well as strategies for
maximizing the performance of the algorithm. The DONLP2 Users Guide is
available in the “manuals” subdirectory of the main product installation directory. In
addition, the following are guidelines to consider when using
IMSL_CONSTRAINED_NLP.

• A good initial starting point is very problem-specific and should be provided
by the calling program whenever possible. For more details, see the keyword
XGUESS.

• Gradient approximation methods can have an effect on the success of
IMSL_CONSTRAINED_NLP. Selecting a higher order approximation
method may be necessary for some problems. For more details, see the
keyword DIFFTYPE.

• If a two-sided constraint:

min f x()
x IRn∈

gj x() 0= for j 1 ... me, ,=

gj x() 0≥ for j me 1+ ... m, ,=

xl x xu≤ ≤)
IMSL_CONSTRAINED_NLP IDL Analyst Reference Guide

Chapter 11: Optimization 471

is transformed into two constraints:

then choose:

or at least try to provide an estimate for that value. This will increase the
efficiency of the algorithm. For more details, see the keyword DEL0.

• The parameter ierr provided in the interface to the user supplied function f can
be very useful in cases when evaluation is requested at a point that is not
possible or reasonable. For example, if evaluation at the requested point would
result in a floating point exception, then setting ierr to 1 and returning without
performing the evaluation will avoid the exception.
IMSL_CONSTRAINED_NLP will then reduce the stepsize and try the step
again. Note, if ierr is set to 1 for the initial guess, then an error is issued.

Example

The problem:

min F(x) = (x1 – 2)2 + (x2 – 1)2

subject to:

g1(x) = x1 – 2x2 + 1 = 0

g2(x) = –x2
1 /4 – x2

2 + 1 ≥ 0

is solved first with finite difference gradients, then with analytic gradients.

PRO Nlp_grad, x, iact, result
CASE iact OF

0:result = [2 * (x(0) - 2.), 2 * (x(1)-1.)]
1:result = [1., -2.]
2:result = [-0.5*x(0), -2.0*x(1)]

 ENDCASE
 RETURN
END

PRO Nlp_fcn, x, iact, result, ierr
tmp1 = x(0)-2.
tmp2 = x(1) - 1.
CASE iact OF

0:result = tmp1^2 + tmp2^2
1:result = x(0) -2.*x(1) + 1.

i gi x() u≤ ≤

g2i x() 0≥ and g2i 1+ x() 0≥

Del0
1
2
--- ui li–() max 1 gi∇ x(),{ }⁄<
IDL Analyst Reference Guide IMSL_CONSTRAINED_NLP

472 Chapter 11: Optimization
2:result = -(x(0)^2)/4. - x(1)^2 + 1.
ENDCASE
ierr = 0

END

; Ex #1, Finite difference gradients
ans1 = IMSL_CONSTRAINED_NLP('nlp_fcn', 2, 2, MEQ = 1)
PM, ans1, title='X with finite difference gradient'

; Ex #2, Analytic gradients
ans2 = IMSL_CONSTRAINED_NLP('nlp_fcn', 2, 2, MEQ = 1, $

GRAD = 'nlp_grad')
PM, ans2, title='X with Analytic gradient'

Output

X with finite difference gradient
 0.822877
 0.911439
X with Analytic gradient
 0.822877
 0.911438

Version History

6.4 Introduced
IMSL_CONSTRAINED_NLP IDL Analyst Reference Guide

Chapter 12

Special Functions
This section contains the following topics:
Overview: Special Functions 474 Special Functions Routines 475
IDL Analyst Reference Guide 473

474 Chapter 12: Special Functions
Overview: Special Functions

This chapter describes special functions included in IDL Analyst. See “Special
Functions Routines” on page 475 for a list of the included routines.
Overview: Special Functions IDL Analyst Reference Guide

Chapter 12: Special Functions 475
Special Functions Routines

Error Functions

IMSL_ERF—Error function.

IMSL_ERFC—Complementary error function.

IMSL_BETA—Beta function.

IMSL_LNBETA—Logarithmic beta function.

IMSL_BETAI—Incomplete beta function.

Gamma Functions

IMSL_LNGAMMA—Logarithmic gamma function.

IMSL_GAMMA_ADV—Real gamma function.

IMSL_GAMMAI—Incomplete gamma function.

Bessel Functions with Real Order and Complex
Argument

IMSL_BESSI—Modified Bessel function of the first kind.

IMSL_BESSJ—Bessel function of the first kind.

IMSL_BESSK—Modified Bessel function of the second kind.

IMSL_BESSY—Bessel function of the second kind.

IMSL_BESSI_EXP—Bessel function e-|x|I0(x), Bessel function e-|x|I1(x).

IMSL_BESSK_EXP—Bessel function exK0(x), Bessel function exK1(x).

Elliptic Integrals

IMSL_ELK—Complete elliptic integral of the first kind.

IMSL_ELE—Complete elliptic integral of the second kind.

IMSL_ELRF—Carlson's elliptic integral of the first kind.

IMSL_ELRD—Carlson's elliptic integral of the second kind.

IMSL_ELRJ—Carlson's elliptic integral of the third kind.
IDL Analyst Reference Guide Special Functions Routines

476 Chapter 12: Special Functions
IMSL_ELRC—Special case of Carlson's elliptic integral.

Fresnel Integrals

IMSL_FRESNEL_COSINE—Cosine Fresnel integral.

IMSL_FRESNEL_SINE—Sine Fresnel integral.

Airy Functions

IMSL_AIRY_AI—Airy function, and derivative of the Airy function.

IMSL_AIRY_BI—Airy function of the second find, and derivative of the Airy
function of the second kind.

Kelvin Functions

IMSL_KELVIN_BER0—Kelvin function ber of the first kind, order 0, and derivative
of the Kelvin function ber.

IMSL_KELVIN_BEI0—Kelvin function bei of the first kind, order 0, and derivative
of the Kelvin function bei.

IMSL_KELVIN_KER0—Kelvin function ker of the second kind, order 0, and
derivative of the Kelvin function ker.

IMSL_KELVIN_KEI0—Kelvin function kei of the second kind, order 0 and
derivative of the Kelvin function kei.
Special Functions Routines IDL Analyst Reference Guide

Chapter 12: Special Functions 477
IMSL_ERF

The IMSL_ERF function evaluates the real error function erf(x). Using a keyword,
the inverse error function erf –1(x) can be evaluated.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ERF(x [, /DOUBLE] [, /INVERSE])

Return Value

The value of the error function erf(x).

Arguments

x

Expression for which the error function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

Evaluates the real inverse error function erf–1(x). The inverse error function is defined
only for –1 < x < 1.

Discussion

The error function erf(x) is defined below:

erf x() 2

π
------- e

t2–
td

0

x

∫=
IDL Analyst Reference Guide IMSL_ERF

478 Chapter 12: Special Functions
All values of x are legal. The inverse error function y = erf –1(x) is such that x = erf (y).

Examples

Example 1

Plot the error function over [–3, 3]. The results are shown in Figure 12-1.

x = 6 * FINDGEN(100)/99 - 3
PLOT, x, IMSL_ERF(x), XTitle = 'x', YTitle = 'erf(x)'

Example 2

Plot the inverse of the error function over (–1, –1). The results are shown in Figure
12-2.

x = 2 * FINDGEN(100)/99 - 1
PLOT, x, IMSL_ERF(x(1:98), /Inverse), XTitle = 'x', $

YTitle = 'erf!E-1!N(x)'

Figure 12-1: Plot of erf(x)
IMSL_ERF IDL Analyst Reference Guide

Chapter 12: Special Functions 479
Version History

Figure 12-2: Plot of erf–1(x)

6.4 Introduced
IDL Analyst Reference Guide IMSL_ERF

480 Chapter 12: Special Functions
IMSL_ERFC

The IMSL_ERFC function evaluates the real complementary error function erfc(x).
Using a keyword, the inverse complementary error function erfc–1(x) can be
evaluated.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ERFC(x [, /DOUBLE] [, /INVERSE])

Return Value

The value of the complementary error function erfc(x).

Arguments

x

Expression for which the complementary error function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

Evaluates the inverse complementary error function erfc–1(x). The parameter must
be in the range 0 < x < 2.
IMSL_ERFC IDL Analyst Reference Guide

Chapter 12: Special Functions 481
Discussion

The complementary error function erfc(x) is defined as:

where parameter x must not be so large that the result underflows. Approximately, x
should be less than:

where s is the smallest representable floating-point number.

The inverse complementary error function y = erfc–1(x) is such that x = erfc(y).

Examples

Example 1

Plot the complementary error function over [–3, 3]. The results are shown in Figure
12-3.

x = FINDGEN(100)/99
PLOT, 6 * x - 3, IMSL_ERFC(6 * x - 3), XTitle = 'x', $

YTitle = 'erfc(x)'

Figure 12-3: Plot of erf(x)

erfc x() 2

π
------- e

t2–
td

x

∞

∫=

-ln π s()[] 1 2⁄
IDL Analyst Reference Guide IMSL_ERFC

482 Chapter 12: Special Functions
Example 2

Plot the inverse of the complementary error function over (0, 2). The results are
shown in Figure 12-4.

x = FINDGEN(100)/99
PLOT, 2 * x(1:98), IMSL_ERFC(2 * x(1:98), /Inverse), $

XTitle = 'x', YTitle = 'erfc!E-1!N(x)'

Errors

Alert Errors

MATH_LARGE_ARG_UNDERFLOW—Parameter x must not be so large that the result
underflows. Very approximately, x should be less than:

where ε is the machine precision.

Warning Errors

MATH_LARGE_ARG_WARN—Parameter |x| should be less than

where ε is the machine precision, to prevent the answer from being less accurate than
half precision.

Figure 12-4: Plot of erfc–1(x)

2 ε 4π()⁄–

1 ε()⁄
IMSL_ERFC IDL Analyst Reference Guide

Chapter 12: Special Functions 483
Fatal Errors

MATH_ERF_ALGORITHM—Algorithm failed to converge.

MATH_SMALL_ARG_OVERFLOW—Computation of:

must not overflow.

MATH_REAL_OUT_OF_RANGE—Function is defined only for 0 < x < 2.

Version History

6.4 Introduced

e
x2

erfc x()
IDL Analyst Reference Guide IMSL_ERFC

484 Chapter 12: Special Functions
IMSL_BETA

The IMSL_BETA function evaluates the real beta function β(x, y).]

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BETA(x, y [, /DOUBLE])

Return Value

The value of the beta function β(x, y). If no result can be computed, then NaN (Not a
Number) is returned.

Arguments

x

First beta parameter. It must be positive.

y

Second beta parameter. It must be positive.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The beta function, β(x, y), is defined as:

requiring that x > 0 and y > 0. It underflows for large parameters.

β x y,() Γ x()Γ y()
Γ x y+()
--------------------- t

x 1–
1 t–()y 1–

td
0

1
∫= =
IMSL_BETA IDL Analyst Reference Guide

Chapter 12: Special Functions 485
Example

Plot the beta function over [ε, 1/4 + ε] x [ε, 1/4 + ε] for ε = 0.01. The results are
shown in Figure 12-5.

x = 1e-2 + .25 * FINDGEN(25)/24
y = x
b = FLTARR(25, 25)
FOR i = 0, 24 DO b(i, *) = IMSL_BETA(x(i), y)
; Compute values of the beta function.
SURFACE, b, x, y, XTitle = 'X', YTitle = 'Y', Az = 320, ZAxis = 2
; Plot the computed values as a surface and rotate the plot.

Figure 12-5: Real Beta Function Plot
IDL Analyst Reference Guide IMSL_BETA

486 Chapter 12: Special Functions
Errors

Alert Errors

MATH_BETA_UNDERFLOW—Parameters must not be so large that the result
underflows.

Fatal Errors

MATH_ZERO_ARG_OVERFLOW—One of the parameters is so close to zero that the
result overflows.

Version History

6.4 Introduced
IMSL_BETA IDL Analyst Reference Guide

Chapter 12: Special Functions 487
IMSL_LNBETA

The IMSL_LNBETA function evaluates the logarithm of the real beta function ln
β(x, y).

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LNBETA(x, y [, /DOUBLE])

Return Value

The value of the logarithm of the beta function β(x, y).

Arguments

x

First argument of the beta function. It must be positive.

y

Second argument of the beta function. It must be positive.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The beta function, β(x, y), is defined as:

and IMSL_LNBETA returns ln β(x, y). The logarithm of the beta function requires
that x > 0 and y > 0. It can overflow for very large parameters.

β x y,() Γ x()Γ y()
Γ x y+()
--------------------- t

x 1–
1 t–()y 1–

td
0

1
∫= =
IDL Analyst Reference Guide IMSL_LNBETA

488 Chapter 12: Special Functions
Example

Evaluate the log of the beta function ln β (0.5, 0.2).

PM, IMSL_LNBETA(.5, .2)
 1.83556

Errors

Warning Errors

MATH_X_IS_TOO_CLOSE_TO_NEG_1—Result is accurate to less than one precision
because the expression –x / (x + y) is too close to –1.

Version History

6.4 Introduced
IMSL_LNBETA IDL Analyst Reference Guide

Chapter 12: Special Functions 489
IMSL_BETAI

The IMSL_BETAI function evaluates the real incomplete beta function.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BETAI(x, a, b [, /DOUBLE])

Return Value

The value of the incomplete beta function.

Arguments

x

Upper limit of integration.

a

First beta distribution parameter.

b

Second beta distribution parameter.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_BETAI

490 Chapter 12: Special Functions
Discussion

The incomplete beta function is defined as:

requiring that 0 ≤ x ≤ 1, a > 0, and b > 0. It underflows for sufficiently small x and
large a. This underflow is not reported as an error. Instead, the value zero is returned.

Example

In this example, I0.61(2.2, 3.7) is computed and printed.

PM, IMSL_BETAI(.61, 2.2, 3.7)
 0.882172

Version History

6.4 Introduced

Ix a b,()
βx a b,()

β a b,()

1
β a b,()
--------------- t

a 1–
1 t–()b 1–

td
0

x
∫= =
IMSL_BETAI IDL Analyst Reference Guide

Chapter 12: Special Functions 491
IMSL_LNGAMMA

The IMSL_LNGAMMA function evaluates the logarithm of the absolute value of the
gamma function log|Γ(x)|.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LNGAMMA(x [, /DOUBLE])

Return Value

The value of the logarithm of gamma function log|Γ(x)|.

Arguments

x

Expression for which the logarithm of the absolute value of the gamma function is to
be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The logarithm of the absolute value of the gamma function log|Γ(x)| is computed.

Example

In this example, log|Γ(3.5)| is computed and printed.

PM, IMSL_LNGAMMA(3.5)
 1.20097
IDL Analyst Reference Guide IMSL_LNGAMMA

492 Chapter 12: Special Functions
Errors

Warning Errors

MATH_NEAR_NEG_INT_WARN—Result is accurate to less than one-half precision
because x is too close to a negative integer.

Fatal Errors

MATH_NEGATIVE_INTEGER—Parameter for the function cannot be a negative
integer.

MATH_NEAR_NEG_INT_FATAL—Parameter for the function is too close to a negative
integer.

MATH_LARGE_ABS_ARG_OVERFLOW—Parameter |x| must not be so large that the
result overflows.

Version History

6.4 Introduced
IMSL_LNGAMMA IDL Analyst Reference Guide

Chapter 12: Special Functions 493
IMSL_GAMMA_ADV

The IMSL_GAMMA_ADV function evaluates the real gamma function.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_GAMMA_ADV(x [, /DOUBLE])

Return Value

The value of the gamma function Γ(x).

Arguments

x

Point at which the gamma function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The gamma function, Γ(x), is defined to be:

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It
underflows for x << 0 and overflows for large x. It also overflows for values near
negative integers.

Γ x() t
x 1–

e
t–

td
0

∞

∫=
IDL Analyst Reference Guide IMSL_GAMMA_ADV

494 Chapter 12: Special Functions
Example

In this example, Γ(1.5) is computed and printed.

x = 1.5
ans = IMSL_GAMMA_ADV(x)
PRINT, 'Gamma(', x, ') =', ans
Gamma(1.50000) = 0.886227

Errors

Alert Errors

STAT_SMALL_ARG_UNDERFLOW—The parameter x must be large enough that
Γ(x) does not underflow. The underflow limit occurs first for parameters close to
large negative half integers. Even though other parameters away from these half
integers may yield machine-representable values of Γ(x), such parameters are
considered illegal.

Warning Errors

STAT_NEARR_NEG_INT_WARN—The result is accurate to less than one-half
precision because x is too close to a negative integer.

Fatal Errors

STAT_ZERO_ARG_OVERFLOW—The parameter for the gamma function is too
close to zero.

STAT_NEAR_NEG_INT_FATAL—The parameter for the function is too close to a
negative integer.

STAT_LARGE_ARG_OVERFLOW—The function overflows because x is too large.

STAT_CANNOT_FIND_XMIN—The algorithm used to find xmin failed. This error
should never occur.

STAT_CANNOT_FIND_XMAX—The algorithm used to find xmax failed. This error
should never occur.

Version History

6.4 Introduced
IMSL_GAMMA_ADV IDL Analyst Reference Guide

Chapter 12: Special Functions 495
IMSL_GAMMAI

The IMSL_GAMMAI function evaluates the incomplete gamma function γ(a, x).

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_GAMMAI(a, x [, /DOUBLE])

Return Value

The value of the incomplete gamma function γ(a, x).

Arguments

a

Integrand exponent parameter. It must be positive.

x

Upper limit of integration. It must be nonnegative.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The incomplete gamma function, γ(a, x), is defined as follows:

γ a x,() t
a 1–

e
t–

td
0

x

∫=
IDL Analyst Reference Guide IMSL_GAMMAI

496 Chapter 12: Special Functions
The incomplete gamma function is defined only for a > 0. Although γ(a, x) is well-
defined for x > –infinity, this algorithm does not calculate γ(a, x) for negative x. For
large a and sufficiently large x, γ(a, x) may overflow. Gamma function γ(a, x) is
bounded by Γ(a), and users may find this bound a useful guide in determining legal
values for a.

Example

Plot the incomplete gamma function over [0.1, 1.1] x [0, 4]. The results are shown in
Figure 12-6.

x = 4. * FINDGEN(25)/24
a = 1e-1 + FINDGEN(25)/24
b = FLTARR(25, 25)
FOR i = 0, 24 DO b(i, *) = IMSL_GAMMAI(a(i), x)
!P.Charsize = 2.5
SURFACE, b, a, x, XTitle = 'a', YTitle = 'X'

Figure 12-6: Incomplete Gamma Function Plot
IMSL_GAMMAI IDL Analyst Reference Guide

Chapter 12: Special Functions 497
Errors

Fatal Errors

MATH_NO_CONV_200_TS_TERMS—Function did not converge in 200 terms of Taylor
series.

MATH_NO_CONV_200_CF_TERMS—Function did not converge in 200 terms of the
continued fraction.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_GAMMAI

498 Chapter 12: Special Functions
IMSL_BESSI

The IMSL_BESSI function evaluates a modified Bessel function of the first kind with
real order and real or complex parameters.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BESSI(order, z [, /DOUBLE] [, SEQUENCE=value])

Return Value

The desired value of the modified Bessel function.

Arguments

order

Real parameter specifying the desired order. The argument order must be greater than
–1/2.

z

Real or complex parameter for which the Bessel function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

SEQUENCE

If present and nonzero, a one-dimensional array of length n containing the values of
the Bessel function through the series is returned by IMSL_BESSI, where
n = N_ELEMENTS(SEQUENCE). The i-th element of this array is the Bessel
function of order (order + i) at z for i = 0, ... (n – 1).
IMSL_BESSI IDL Analyst Reference Guide

Chapter 12: Special Functions 499
Discussion

The IMSL_BESSI function evaluates a modified Bessel function of the first kind with
real order and real or complex parameters. The data type of the returned value is
always complex.

The Bessel function, Iv(z), is defined as follows:

For large parameters, z, Temme’s (1975) algorithm is used to find Iv(z). The Iv(z)
values are recurred upward (if stable). This involves evaluating a continued fraction.
If this evaluation fails to converge, the answer may not be accurate. For moderate and
small parameters, Miller’s method is used.

Example

In this example, J0.3 + v–1(1.2 + 0.5i), v = 1, ... 4 is computed and printed first by
calling IMSL_BESSI four times in a row, then by using the keyword SEQUENCE.

z = COMPLEX(1.2, .5)
FOR i = 0, 3 DO PM, IMSL_BESSI(i + .3, z)

(1.16339, 0.396301)
(0.447264, 0.332142)
(0.0821799, 0.127165)
(0.00577678, 0.0286277)

PM, IMSL_BESSI(.3, z, Sequence = 4), Title = 'With SEQUENCE:'
With SEQUENCE:

(1.16339, 0.396301)
(0.447264, 0.332142)
(0.0821799, 0.127165)
(0.00577678, 0.0286277)

Version History

6.4 Introduced

Iν z() e νπi 2⁄– Jν ze
πi 2⁄() for π– argz

π
2
---≤<=
IDL Analyst Reference Guide IMSL_BESSI

500 Chapter 12: Special Functions
IMSL_BESSJ

The IMSL_BESSJ function evaluates a Bessel function of the first kind with real
order and real or complex parameters.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BESSJ(order, z [, /DOUBLE] [, SEQUENCE=value])

Return Value

The desired value of the Bessel function.

Arguments

order

Real parameter specifying the desired order. The argument order must be greater than
–1/2.

z

Real or complex parameter for which the Bessel function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

SEQUENCE

If present and nonzero, a one-dimensional array of length n containing the values of
the Bessel function through the series is returned by IMSL_BESSJ, where
n = NELEMENTS(SEQUENCE). The i-th element of this array is the Bessel
function of order (order + i) at z for i = 0, ... (n – 1).
IMSL_BESSJ IDL Analyst Reference Guide

Chapter 12: Special Functions 501
Discussion

The IMSL_BESSJ function evaluates a Bessel function of the first kind with real
order and real or complex parameters. The data type of the returned value is always
complex.

The Bessel function, Jv(z), is defined as follows:

for:

This function is based on the code BESSCC of Barnett (1981) and Thompson and
Barnett (1987). This code computes Jv(z) from the modified Bessel function Iv(z),
using the following relation with:

Example

In this example, J0.3 + v–1(1.2 + 0.5i), v = 1, ..., 4 is computed and printed.

z = COMPLEX(1.2, .5)
FOR i = 0, 3 DO PM, IMSL_BESSJ(i + .3, z)

(0.773756, -0.106925)
(0.400001, 0.158598)
(0.0867063, 0.0920276)
(0.00844932, 0.0239868)

PM, IMSL_BESSJ(.3, z, Sequence = 4), Title = 'With SEQUENCE:'
With SEQUENCE:

(0.773756, -0.106925)
(0.400001, 0.158598)
(0.0867063, 0.0920276)
(0.00844932, 0.0239868)

Jν z() 1
π
--- z θ νθ–sin()dθ γπ()sin

π
------------------ e

z t νt–sinh
dt

0

∞
∫–cos

0

π
∫=

argz
π
2
---<

ρ eiπ 2⁄=

Jν z()
ρIν z ρ⁄() for π 2⁄ argz π≤<–

ρ3Iν ρ3z() for π argz π 2⁄≤<–

=

IDL Analyst Reference Guide IMSL_BESSJ

502 Chapter 12: Special Functions
Version History

6.4 Introduced
IMSL_BESSJ IDL Analyst Reference Guide

Chapter 12: Special Functions 503
IMSL_BESSK

The IMSL_BESSK function evaluates a modified Bessel function of the second kind
with real order and real or complex parameters.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BESSK(order, z [, /DOUBLE] [, SEQUENCE=value])

Return Value

The desired value of the modified Bessel function.

Arguments

order

Real parameter specifying the desired order. The argument order must be greater than
–1/2.

z

Real or complex parameter for which the Bessel function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

SEQUENCE

If present and nonzero, a one-dimensional array of length n containing the values of
the Bessel function through the series is returned by IMSL_BESSK, where
n = NELEMENTS(SEQUENCE). The i-th element of this array is the Bessel
function of order (order + i) at z for i = 0, ... (n – 1).
IDL Analyst Reference Guide IMSL_BESSK

504 Chapter 12: Special Functions
Discussion

The IMSL_BESSK function evaluates a modified Bessel function of the second kind
with real order and real or complex parameters. The data type of the returned value is
always complex.

The Bessel function, Kv(z), is defined as follows:

This function is based on the code BESSCC of Thompson (1981) and Thompson and
Barnett (1987). For moderate or large parameters, z, Temme’s (1975) algorithm is
used to find Kv (z). This involves evaluating a continued fraction. If this evaluation
fails to converge, the answer may not be accurate. For small z, a Neumann series is
used to compute Kv (z). Upward recurrence of the Kv (z) is always stable.

Example

In this example, K0.3 + v–1(1.2 + 0.5i), v = 1, ..., 4 is computed and printed.

z = COMPLEX(1.2, .5)
FOR i = 0, 3 DO PM, IMSL_BESSK(i + .3, z)

(0.245546, -0.199599)
(0.335637, -0.362005)
(0.586718, -1.12610)
(0.719457, -4.83864)

PM, IMSL_BESSK(.3, z, Sequence = 4), Title = 'With SEQUENCE:'
With SEQUENCE:

(0.245546, -0.199599)
(0.335637, -0.362005)
(0.586718, -1.12610)
(0.719456, -4.83864)

Version History

6.4 Introduced

Kν z() π
2
---e

νπi 2⁄
iJν iz() Yν iz()–[] for π argz

π
2
---≤<–=
IMSL_BESSK IDL Analyst Reference Guide

Chapter 12: Special Functions 505
IMSL_BESSY

The IMSL_BESSY function evaluates a Bessel function of the second kind with real
order and real or complex parameters.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BESSY(order, z [, /DOUBLE] [, SEQUENCE=value])

Return Value

The desired value of the modified Bessel function.

Arguments

order

Real parameter specifying the desired order. The argument order must be greater than
–1/2.

z

Real or complex parameter for which the Bessel function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

SEQUENCE

If present and nonzero, a one-dimensional array of length n containing the values of
the Bessel function through the series is returned by IMSL_BESSY, where
n = NELEMENTS(SEQUENCE). The i-th element of this array is the Bessel
function of order (order + i) at z for i = 0, ... (n – 1).
IDL Analyst Reference Guide IMSL_BESSY

506 Chapter 12: Special Functions
Discussion

The IMSL_BESSY function evaluates a Bessel function of the second kind with real
order and real or complex parameters. The data type of the returned value is always
complex.

The Bessel function, Yv(z), is defined as follows:

This function is based on the code BESSCC of Thompson (1981) and Thompson and
Barnett (1987). This code computes Yv(z) from the modified Bessel functions Iv(z)
and Kv(z), using the following relation:

Example

In this example, Y0.3 + v–1(1.2 + 0.5i), v = 1, ..., 4 is computed and printed.

z = COMPLEX(1.2, .5)
FOR i = 0, 3 DO PM, IMSL_BESSY(i + .3, z)

(-0.0131453, 0.379593)
(-0.715533, 0.338082)
(-1.04777, 0.794969)
(-1.62487, 3.68447)

PM, IMSL_BESSY(.3, z, Sequence = 4), Title = 'With SEQUENCE:'
With SEQUENCE:

(-0.0131453, 0.379593)
(-0.715533, 0.338082)
(-1.04777, 0.794969)
(-1.62487, 3.68447)

Version History

6.4 Introduced

Yν z() 1
π
--- z θ νθ–sin()sin θ γπ()sin

π
------------------ e

νt
e

νt– υ t()cos+[] e
z tsinh

td∫–d
0

π

∫=

for zarg
π
2
---<

Yν z() e
ν 1+()πi 2⁄

Iν z() 2
π
---e

νπi 2⁄–
Kν z() for π argz

π
2
---≤<––=
IMSL_BESSY IDL Analyst Reference Guide

Chapter 12: Special Functions 507
IMSL_BESSI_EXP

The IMSL_BESSI_EXP function evaluates the exponentially scaled modified Bessel
function of the first kind of orders zero and one.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BESSI_EXP(order, x [, /DOUBLE])

Return Value

The value of the exponentially scaled modified Bessel function of the first kind of
order zero or one evaluated at x.

Arguments

order

Order of the function. The order must be either zero or one.

x

Argument for which the function value is desired.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

If the argument order is zero, the Bessel function is I0(x) is defined to be:

I0 x() 1
π
--- x θcos()cos θd

0

π

∫=
IDL Analyst Reference Guide IMSL_BESSI_EXP

508 Chapter 12: Special Functions
If order is one, the function I1(x) is defined to be:

If order is one then IMSL_BESSI_EXP underflows if |x|/2 underflows.

Example

The expression e-4.5I0 (4.5) is computed directly by calling IMSL_BESSI_EXP and
indirectly by calling IMSL_BESSI. The absolute difference is printed. For large x, the
internal scaling provided by IMSL_BESSI_EXP avoids overflow that may occur in
IMSL_BESSI.

Output

ans = IMSL_BESSI_EXP(0, 4.5)
error = ABS(ans - EXP(-4.5)*IMSL_BESSI(0, 4.5))
PRINT, ans
 0.194198
PRINT, 'Error =', error
Error = 4.4703484e-08

Version History

6.4 Introduced

I1 x() 1
π
--- e

x θcos θcos θd
0

π

∫=
IMSL_BESSI_EXP IDL Analyst Reference Guide

Chapter 12: Special Functions 509
IMSL_BESSK_EXP

The IMSL_BESSK_EXP function evaluates the exponentially scaled modified
Bessel function of the third kind of orders zero and one.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BESSK_EXP(order, x [, /DOUBLE])

Return Value

The value of the exponentially scaled Bessel function exK0(x) or exK1(x)

Arguments

order

Order of the function. The order must be either zero or one.

x

Argument for which the function value is desired.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

If the argument order is zero, the Bessel function K0(x) is defined to be:

K0 x() x tsin()cos td
0

∞

∫=
IDL Analyst Reference Guide IMSL_BESSK_EXP

510 Chapter 12: Special Functions
If order is one, the value of the Bessel function K1(x):

The argument x must be greater than zero for the result to be defined.

Example

The expression:

is computed directly by calling IMSL_BESSK_EXP, and indirectly by calling
IMSL_BESSK. The absolute difference is printed. For large x, the internal scaling
provided by IMSL_BESSK_EXP avoids underflow that may occur in IMSL_BESSK.

ans = IMSL_BESSK_EXP(0, 0.5)
error = ABS(ans - (EXP(0.5))*IMSL_BESSK(0, 0.5))
PRINT, ans

1.52411
PRINT, 'Error =', error
Error = 1.1920929e-07

Errors

Fatal Errors

MATH_SMALL_ARG_OVERFLOW—The argument x must be large enough (x > max
(1/b, s) where s is the smallest representable positive number and b is the largest
representable number) that K1(x) does not overflow.

Version History

6.4 Introduced

K1 x() 1
π
--- e

x θcos θcos θd
0

π

∫=

eK0 05().
IMSL_BESSK_EXP IDL Analyst Reference Guide

Chapter 12: Special Functions 511
IMSL_ELK

The IMSL_ELK function evaluates the complete elliptic integral of the kind K(x).

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ELK(x [, /DOUBLE])

Return Value

The complete elliptic integral K(x).

Arguments

x

Argument for which the function value is desired.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The complete elliptic integral of the first kind is defined to be:

The argument x must satisfy 0 ≤ x < 1; otherwise, IMSL_ELK returns the largest
representable floating-point number.

The function K(x) is computed using IMSL_ELRF and the relation
K(x) = RF(0, 1 − x, 1).

K x() θd

1 x θ2
sin–[]

1 2⁄
-------------------------------------- for 0 x 1<≤

0

π 2⁄

∫=
IDL Analyst Reference Guide IMSL_ELK

512 Chapter 12: Special Functions
Example

The integral K(0) is evaluated.

PRINT, IMSL_ELK(0.0)
 1.57080

Version History

6.4 Introduced
IMSL_ELK IDL Analyst Reference Guide

Chapter 12: Special Functions 513
IMSL_ELE

The IMSL_ELE function evaluates the complete elliptic integral of the second kind
E(x).

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ELE(x [, /DOUBLE])

Return Value

The complete elliptic integral E(x).

Arguments

x

Argument for which the function value is desired.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The complete elliptic integral of the second kind is defined to be:

The argument x must satisfy 0 ≤ x < 1; otherwise, IMSL_ELE returns the largest
representable floating-point number.

E x() 1 x θ2
sin–[]

1 2⁄
θ for 0 x 1<≤d

0

π 2⁄

∫=
IDL Analyst Reference Guide IMSL_ELE

514 Chapter 12: Special Functions
The function E(x) is computed using the routine IMSL_ELRF and IMSL_ELRD. The
computation is done using the relation:

Example

The integral E(0.33) is evaluated.

PRINT, IMSL_ELE(0.33)
 1.43183

Version History

6.4 Introduced

E x() RF 01 x1,–,() x
3
---R

D
01 x1,–,()–=
IMSL_ELE IDL Analyst Reference Guide

Chapter 12: Special Functions 515
IMSL_ELRF

The IMSL_ELRF function evaluates Carlson’s elliptic integral of the first kind RF(x,
y, z).

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ELRF(x, y, z [, /DOUBLE])

Return Value

The complete elliptic integral RF(x, y, z).

Arguments

x

First argument for which the function value is desired. It must be nonnegative.

y

Second argument for which the function value is desired. It must be nonnegative.

z

Third argument for which the function value is desired. It must be nonnegative.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_ELRF

516 Chapter 12: Special Functions
Discussion

Carlson’s elliptic integral of the second kind is defined to be:

The arguments must be nonnegative and less than or equal to b/5. In addition, x + y,
x + z, and y + z must be greater than or equal to 5s. Should any of these conditions
fail, IMSL_ELRF is set to b. Here, b is the largest and is the smallest representable
number.

The IMSL_ELRF function is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

Example

The integral RF(0, 1, 2) is computed.

PRINT, IMSL_ELRF(0.0, 1.0, 2.0)
 1.31103

Version History

6.4 Introduced

RF x y z, ,() 1
2
--- td

t x+() t y+() t z+()[] 1 2⁄
--

0

∞

∫=
IMSL_ELRF IDL Analyst Reference Guide

Chapter 12: Special Functions 517
IMSL_ELRD

The IMSL_ELRD function evaluates Carlson’s elliptic integral of the second kind
RD(x, y, z).

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ELRD(x, y, z [, /DOUBLE])

Return Value

The complete elliptic integral RD(x, y, z)

Arguments

x

First argument for which the function value is desired. It must be nonnegative.

y

Second argument for which the function value is desired. It must be nonnegative.

z

Third argument for which the function value is desired. It must be positive.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_ELRD

518 Chapter 12: Special Functions
Discussion

Carlson’s elliptic integral of the second kind is defined to be:

Arguments must be nonnegative and less than or equal to 0.69(−lnε)1/9s-2/3 where e is
the machine precision, s is the smallest representable positive number. Furthermore, x
+ y and z must be greater than max{3s2/3, 3/b2/3}, where b is the largest floating point
number. If any of these conditions is false, then IMSL_ELRD returns b.

The IMSL_ELRD function is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

Example

The integral RD(0, 2, 1) is computed.

PRINT, IMSL_ELRD(0.0, 2.0, 1.0)
 1.79721

Version History

6.4 Introduced

RD x y z, ,() 3
2
--- td

t x+() t y+() t z+()3[]
1 2⁄

0

∞

∫=
IMSL_ELRD IDL Analyst Reference Guide

Chapter 12: Special Functions 519
IMSL_ELRJ

The IMSL_ELRJ function evaluates Carlson’s elliptic integral of the third kind RJ (x,
y, z, ρ).

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ELRJ(x, y, z, rho [, /DOUBLE])

Return Value

The complete elliptic integral RJ (x, y, z, ρ).

Arguments

rho

Fourth argument for which the function value is desired. It must be positive.

x

First argument for which the function value is desired. It must be nonnegative.

y

Second argument for which the function value is desired. It must be nonnegative.

z

Third argument for which the function value is desired. It must be positive.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_ELRJ

520 Chapter 12: Special Functions
Discussion

Carlson’s elliptic integral of the third kind is defined to be:

The arguments must be nonnegative. In addition, x + y, x + z, y + z and ρ must be
greater than or equal to (5s)1/3 and less than or equal to 0.3(b/5)1/3, where s is the
smallest representable floating-point number. Should any of these conditions fail
IMSL_ELRJ is set to b, the largest floating-point number.

The IMSL_ELRJ function is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

Example

The integral RJ (2, 3, 4, 5) is computed.

PRINT, IMSL_ELRJ(2.0, 3.0, 4.0, 5.0)
 0.142976

Version History

6.4 Introduced

RJ x y z, , ρ,() 3
2
--- td

t x+() t y+() t z+() t ρ+()3[]
1 2⁄

0

∞

∫=
IMSL_ELRJ IDL Analyst Reference Guide

Chapter 12: Special Functions 521
IMSL_ELRC

The IMSL_ELRC function evaluates an elementary integral from which inverse
circular functions, logarithms and inverse hyperbolic functions can be computed.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ELRC(x, y [, /DOUBLE])

Return Value

The elliptic integral RC (x, y).

Arguments

x

First argument for which the function value is desired. It must be nonnegative and
must satisfy the conditions given below.

y

Second argument for which the function value is desired. It must be nonnegative and
must satisfy the conditions given below.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_ELRC

522 Chapter 12: Special Functions
Discussion

Carlson’s elliptic integral of the third kind is defined to be:

The argument x must be nonnegative, y must be positive, and x + y must be less than
or equal to b/5 and greater than or equal to 5s. If any of these conditions are false, the
IMSL_ELRC is set to b. Here, b is the largest and s is the smallest representable
floating-point number.

The IMSL_ELRC function is based on the code by Carlson and Notis (1981) and the
work of Carlson (1979).

Example

The integral RC (2.25, 2) is computed.

PRINT, IMSL_ELRC(2.25, 2.0)
 0.693147

Version History

6.4 Introduced

RC x y(,)
1
2
--- td

t x+() t y+()2[]
1 2⁄

0

∞

∫=
IMSL_ELRC IDL Analyst Reference Guide

Chapter 12: Special Functions 523
IMSL_FRESNEL_COSINE

The IMSL_FRESNEL_COSINE function evaluates the cosine Fresnel integral.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FRESNEL_COSINE(x [, /DOUBLE])

Return Value

The value of the cosine Fresnel integral evaluated at x.

Arguments

x

Argument for which the function value is desired.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The cosine Fresnel integral is defined to be

Example

The Fresnel integral C(1.75) is evaluated.

PRINT, IMSL_FRESNEL_COSINE(1.75)
 0.321935

C x() π
2
---t

2

 cos td

0

x

∫=
IDL Analyst Reference Guide IMSL_FRESNEL_COSINE

524 Chapter 12: Special Functions
Version History

6.4 Introduced
IMSL_FRESNEL_COSINE IDL Analyst Reference Guide

Chapter 12: Special Functions 525
IMSL_FRESNEL_SINE

The IMSL_FRESNEL_SINE function evaluates the sine Fresnel integral.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FRESNEL_SINE(x [, /DOUBLE])

Return Value

The value of the sine Fresnel integral evaluated at x.

Arguments

x

Argument for which the function value is desired.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The sine Fresnel integral is defined to be:

Example

The Fresnel integral S(1.75) is evaluated.

PRINT, IMSL_FRESNEL_SINE(1.75)
 0.499385

S x() π
2
---t

2

 sin td

0

x

∫=
IDL Analyst Reference Guide IMSL_FRESNEL_SINE

526 Chapter 12: Special Functions
Version History

6.4 Introduced
IMSL_FRESNEL_SINE IDL Analyst Reference Guide

Chapter 12: Special Functions 527
IMSL_AIRY_AI

The IMSL_AIRY_AI function evaluates the Airy function.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_AIRY_AI(x [, DERIVATIVE=value] [, /DOUBLE])

Return Value

The value of the Airy function evaluated at x, Ai(x).

Arguments

x

Argument for which the function value is desired.

Keywords

DERIVATIVE

If present and nonzero, then the derivative of the Airy function is computed.

DOUBLE

If present and nonzero, double precision is used.

Discussion

The airy function Ai(x) is defined to be:

Ai x() 1
π
--- xt

1
3
---t

3
+

 cos td
0

∞

∫ x

3π2
---------K1 3⁄

2
3
---x

3 2⁄

 = =
IDL Analyst Reference Guide IMSL_AIRY_AI

528 Chapter 12: Special Functions
The Bessel function Kv(x) is defined in “IMSL_BESSK” on page 503.

If x < −1.31ε-2/3, then the answer will have no precision. If x < −1.31ε-1/3, the answer
will be less accurate than half precision. Here ε is the machine precision.

x should be less than xmax so the answer does not underflow. Very approximately,
xmax = {−1.5lns}2/3, where s = the smallest representable positive number.

If the keyword DERIVATIVE is set, then the airy function Ai′(x) is defined to be the
derivative of the Airy function, Ai(x) (see the “IMSL_AIRY_AI” on page 527). If
x < −1.31ε-2/3, then the answer will have no precision. If x < −1.31ε-1/3, the answer
will be less accurate than half precision. Here ε is the machine precision. x should be
less than xmax so the answer does not underflow. Very approximately,
xmax = {−1.51lns}, where s is the smallest representable positive number.

Example

In this example, Ai(−4.9) and Ai'(−4.9) are evaluated.

PRINT, IMSL_AIRY_AI(-4.9)
 0.374536
PRINT, IMSL_AIRY_AI(-4.9, /Derivative)
 0.146958

Version History

6.4 Introduced
IMSL_AIRY_AI IDL Analyst Reference Guide

Chapter 12: Special Functions 529
IMSL_AIRY_BI

The IMSL_AIRY_BI function evaluates the Airy function of the second kind.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_AIRY_BI(x [, DERIVATIVE=value] [, /DOUBLE])

Return Value

The value of the Airy function evaluated at x, Bi(x).

Arguments

x

Argument for which the function value is desired.

Keywords

DERIVATIVE

If present and nonzero, then the derivative of the Airy function of the second kind is
computed.

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_AIRY_BI

530 Chapter 12: Special Functions
Discussion

The airy function Bi(x) is defined to be:

It can also be expressed in terms of modified Bessel functions of the first kind, Iv(x),
and Bessel functions of the first kind Jv(x) (see “IMSL_BESSI” on page 498, and
“IMSL_BESSJ” on page 500):

and:

Here ε is the machine precision. If x < −1.31ε–2/3, then the answer will have no
precision. If x < −1.31ε–1/3, the answer will be less accurate than half precision. In
addition, x should not be so large that exp[(2/3)x3/2] overflows.

If the keyword DERIVATIVE is set, the airy function Bi′(x) is defined to be the
derivative of the Airy function of the second kind, Bi(x) (see “IMSL_AIRY_BI” on
page 529). If x < −1.31ε–2/3, then the answer will have no precision. If x < −1.31ε–1/3,
the answer will be less accurate than half precision. Here ε is the machine precision.
In addition, x should not be so large that exp[(2/3)x3/2] overflows.

Example

In this example, Bi(−4.9) and Bi′(-4.9) are evaluated.

PRINT, IMSL_AIRY_BI(-4.9)
 -0.0577468
PRINT, IMSL_AIRY_BI(-4.9, /Derivative)
 0.827219

Bi x() 1
π
--- xt

1
3
---t

3
–

 exp td
0

∞

∫
1
π
--- xt

1
3
---t

3
+

 sin td
0

∞

∫= =

Bi x() x
3
--- I 1 3⁄–

2
3
---x

3 2⁄

 I1 3⁄

2
3
---x

3 2⁄

 + for x 0>=

Bi x() x–
3

------ J 1 3⁄–
2
3
--- x

3 2⁄

 J1 3⁄

2
3
--- x

3 2⁄

 – for x 0<=
IMSL_AIRY_BI IDL Analyst Reference Guide

Chapter 12: Special Functions 531
Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_AIRY_BI

532 Chapter 12: Special Functions
IMSL_KELVIN_BER0

The IMSL_KELVIN_BER0 function evaluates the Kelvin function of the first kind,
ber, of order zero.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_KELVIN_BER0(x [, DERIVATIVE=value] [, /DOUBLE])

Return Value

The value of the Kelvin function of the first kind, ber, of order zero evaluated at x.

Arguments

x

Argument for which the function value is desired.

Keywords

DERIVATIVE

If present and nonzero, then the derivative of the Kelvin function of the first kind, ber,
of order zero evaluated at x is computed.

DOUBLE

If present and nonzero, double precision is used.

Discussion

The Kelvin function ber0(x) is defined to be ℜ J0(xe3πi/4). The Bessel function J0(x) is
defined:

J0 x() 1
π
--- x θsin()cos θd

0

π

∫=
IMSL_KELVIN_BER0 IDL Analyst Reference Guide

Chapter 12: Special Functions 533
If the keyword DERIVATIVE is set, the function ber0′(x) is defined to be:

If |x| > 119, NaN is returned.

The IMSL_KELVIN_BER0 function is based on the work of Burgoyne (1963).

Example

In this example, ber0 (0.4) and ber0′ (0.6) are evaluated.

PRINT, IMSL_KELVIN_BER0(0.4)
 0.999600
PRINT, IMSL_KELVIN_BER0(0.6, /DERIVATIVE)
 -0.0134985

Version History

6.4 Introduced

xd
d ber0 x()
IDL Analyst Reference Guide IMSL_KELVIN_BER0

534 Chapter 12: Special Functions
IMSL_KELVIN_BEI0

The IMSL_KELVIN_BEI0 function evaluates the Kelvin function of the first kind,
bei, of order zero.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_KELVIN_BEI0(x [, DERIVATIVE=value] [, /DOUBLE])

Return Value

The value of the Kelvin function of the first kind, bei, of order zero evaluated at x.

Arguments

x

Argument for which the function value is desired.

Keywords

DERIVATIVE

If present and nonzero, then the derivative of the Kelvin function of the first kind, bei,
of order zero evaluated at x is computed.

DOUBLE

If present and nonzero, double precision is used.

Discussion

The Kelvin function bie0(x) is defined to be . The Bessel function J0(x)
is defined:

ℑ J0 xe
3πι 4⁄()

J0 x() 1
π
--- x θsin()cos θd

0

π

∫=
IMSL_KELVIN_BEI0 IDL Analyst Reference Guide

Chapter 12: Special Functions 535
In IMSL_KELVIN_BEI0, x must be less than 119.

If the keyword DERIVATIVE is set, the function bei0′(x) is defined to be:

If the keyword DERIVATIVE is set and |x| > 119, NaN is returned.

The IMSL_KELVIN_BEI0 function is based on the work of Burgoyne (1963).

Example

In this example, bei0(0.4) and bei0′(0.6) are evaluated.

PRINT, IMSL_KELVIN_BEI0(0.4)
 0.0399982
PRINT, IMSL_KELVIN_BEI0(0.6, /DERIVATIVE)
 0.299798

Version History

6.4 Introduced

d
dx

xbei0()
IDL Analyst Reference Guide IMSL_KELVIN_BEI0

536 Chapter 12: Special Functions
IMSL_KELVIN_KER0

The KELVIN_KERO function evaluates the Kelvin function of the second kind, ker,
of order zero.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_KELVIN_KER0(x [, DERIVATIVE=value] [, /DOUBLE])

Return Value

The value of the Kelvin function of the second kind, ker, of order zero evaluated at x.

Arguments

x

Argument for which the function value is desired.

Keywords

DERIVATIVE

If present and nonzero, then the derivative of the Kelvin function of the second kind,
ker, of order zero evaluated at x is computed.

DOUBLE

If present and nonzero, double precision is used.

Discussion

The modified Kelvin function ker0(x) is defined to be ℜ K0(xepi/4). The Bessel
function K0(x) is defined:

K0 x() x tsin()cos td
0

π

∫=
IMSL_KELVIN_KER0 IDL Analyst Reference Guide

Chapter 12: Special Functions 537
If the keyword DERIVATIVE is set, the function ker0′(x) is defined to be:

If x < 0, NaN (Not a Number) is returned. If x ≥ 119, then zero is returned.

The IMSL_KELVIN_KER0 function is based on the work of Burgoyne (1963).

Example

In this example, ker0(0.4) and ker0′(0.6) are evaluated.

PRINT, IMSL_KELVIN_KER0(0.4)
 1.06262
PRINT, IMSL_KELVIN_KER0(0.6, /DERIVATIVE)
 -1.45654

Version History

6.4 Introduced

d
dx

xker0()
IDL Analyst Reference Guide IMSL_KELVIN_KER0

538 Chapter 12: Special Functions
IMSL_KELVIN_KEI0

The IMSL_KELVIN_KEI0 function evaluates the Kelvin function of the second
kind, kei, of order zero.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_KELVIN_KEI0(x [, DERIVATIVE=value] [, /DOUBLE])

Return Value

The value of the Kelvin function of the second kind, kei, of order zero evaluated at x.

Arguments

x

Argument for which the function value is desired.

Keywords

DERIVATIVE

If present and nonzero, then the derivative of the Kelvin function of the second kind,
kei, of order zero evaluated at x is computed.

DOUBLE

If present and nonzero, double precision is used.

Discussion

The modified Kelvin function kei0(x) is defined to be . The Bessel
function K0(x) is defined as:

ℑ K0 xe
3πι 4⁄()

K0 x() x tsin()cos td
0

∞

∫=
IMSL_KELVIN_KEI0 IDL Analyst Reference Guide

Chapter 12: Special Functions 539
If the keyword DERIVATIVE is set, the function kei0′(x) is defined to be:

The IMSL_KELVIN_KEI0 function is based on the work of Burgoyne (1963).

If x < 0, NaN (Not a Number) is returned. If x ≥ 119, zero is returned.

Example

In this example, kei0(0.4) and kei0′(0.6) are evaluated.

PRINT, IMSL_KELVIN_KEI0(0.4)
 -0.703800
PRINT, IMSL_KELVIN_KEI0(0.6, /DERIVATIVE)
 0.348164

Version History

6.4 Introduced

d
dx

xkei0()
IDL Analyst Reference Guide IMSL_KELVIN_KEI0

540 Chapter 12: Special Functions
IMSL_KELVIN_KEI0 IDL Analyst Reference Guide

Part II: Statistics
Routines

Chapter 13

Basic Statistics
This section contains the following topics:
Overview: Basic Statistics 544 Basic Statistics Routines 545
IDL Analyst Reference Guide 543

544 Chapter 13: Basic Statistics
Overview: Basic Statistics

The functions for computations of basic statistics generally have relatively simple
input parameters. The data are input in either a one- or two-dimensional array. As
usual, when a two-dimensional array is used, the rows contain observations and the
columns represent variables. Most of the functions in this chapter allow for missing
values. Missing value codes can be set using IMSL_MACHINE.

Several functions in this chapter perform statistical tests. These functions generally
return a “p-value” for the test, often as the return value for the C function. The
p-value is between 0 and 1 and is the probability of observing data that would yield a
test statistic as extreme or more extreme under the assumption of the null hypothesis.
Hence, a small p-value is evidence for the rejection of the null hypothesis.
Overview: Basic Statistics IDL Analyst Reference Guide

Chapter 13: Basic Statistics 545
Basic Statistics Routines

Simple Summary Statistics

IMSL_SIMPLESTAT—Univariate summary statistics.

IMSL_NORM1SAMP—Mean and variance inference for a single normal population.

IMSL_NORM2SAMP—Inferences for two normal populations.

Tabulate, Sort, and Rank

IMSL_FREQTABLE—Tallies observations into a one-way frequency table.

IMSL_SORTDATA—Sorts data with options to tally cases into a multiway frequency
table.

IMSL_RANKS—Ranks, normal scores, or exponential scores.
IDL Analyst Reference Guide Basic Statistics Routines

546 Chapter 13: Basic Statistics
IMSL_SIMPLESTAT

The IMSL_SIMPLESTAT function computes basic univariate statistics.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SIMPLESTAT(x)

Return Value

A two-dimensional matrix containing some simple statistics for each variable x. If
Median and Median_And_Scale are not used as keywords, then element (i, j) of the
returned matrix contains the i-th statistic of the j-th variable. Refer to Table 13-1 for a
list of results.

i Statistic Returned in Element (i, *)

0 mean

1 variance

2 standard deviation

3 coefficient of skewness

4 coefficient of excess (kurtosis)

5 minimum value

6 maximum value

7 range

8 coefficient of variation (when defined)

If the coefficient of variation is not defined, zero is returned.

Table 13-1: IMSL_SIMPLESTAT Results
IMSL_SIMPLESTAT IDL Analyst Reference Guide

Chapter 13: Basic Statistics 547
Arguments

x

Data matrix. The data value for the i-th observation of the j-th variable should be in
the matrix element (i, j).

Keywords

CONF_MEANS

Scalar specifying the confidence level for a two-sided interval estimate of the means
(assuming normality) in percent. The CONF_MEANS keyword must be between 0.0
and 100.0 and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with
confidence level c, set CONF_MEANS = 100.0 – 2.0(100.0 – c) (at least 50 percent).
Default: 95-percent confidence interval is computed

CONF_VARIANCES

Confidence level for a two-sided interval estimate of the variances (assuming
normality) in percent. The confidence intervals are symmetric in probability (rather
than in length). For one-sided confidence interval with confidence level c, set
CONF_MEANS = 100.0 – 2.0(100.0 – c) (at least 50 percent). Default: 95-percent
confidence interval is computed.

DOUBLE

If present and nonzero, double precision is used.

9 number of observations (the counts)

10 lower confidence limit for the mean (assuming normality)

The default is a 95-percent confidence interval.

11 upper confidence limit for the mean (assuming normality)

12 lower confidence limit for the variance (assuming normality)

The default is a 95-percent confidence interval.

13 upper confidence limit for the variance (assuming normality)

i Statistic Returned in Element (i, *)

Table 13-1: IMSL_SIMPLESTAT Results (Continued)
IDL Analyst Reference Guide IMSL_SIMPLESTAT

548 Chapter 13: Basic Statistics
ELEMENTWISE

If present and nonzero, all nonmissing data for any variable is used in computing the
statistics for that variable. Default action: if an observation (row of x) contains a
missing value, the observation is excluded from computations for all variables. In
either case, if weights and/or frequencies are specified and the value of the weight
and/or frequency is missing, the observation is excluded from computations for all
variables.

FREQUENCIES

One-dimensional array containing the frequency for each observation. Default: each
observation has a frequency of 1

MEDIAN_ONLY

If present and nonzero, medians are computed and stored in elements (14, *) of the
returned matrix of simple statistics. The MEDIAN_ONLY and
MEDIAN_AND_SCALE keywords cannot be used together.

MEDIAN_AND_SCALE

If present and nonzero, specified, the medians, the medians of the absolute deviations
from the medians, and a simple robust estimate of scale are computed and stored in
elements (14, *), (15, *), and (16, *) of the returned matrix of simple statistics. The
MEDIAN_ONLY and MEDIAN_AND_SCALE keywords cannot be used together.

WEIGHTS

One-dimensional array containing the weight for each observation. Default: each
observation has a weight of 1.

Discussion

The IMSL_SIMPLESTAT function computes the sample mean, variance, minimum,
maximum, and other basic statistics for the data in x. It also computes confidence
intervals for the mean and variance (under the hypothesis that the sample is from a
normal population).

Frequencies, fi’s, are interpreted as multiple occurrences of the other values in the
observations. In other words, a row of x with a frequency variable having a value of 2
has the same effect as two rows with frequencies of 1. The total of the frequencies is
used in computing all the statistics based on moments (mean, variance, skewness, and
kurtosis). Weights, wi’s, are not viewed as replication factors. The sum of the weights
IMSL_SIMPLESTAT IDL Analyst Reference Guide

Chapter 13: Basic Statistics 549
is used only in computing the mean (the weighted mean is used in computing the
central moments). Both weights and frequencies can be zero, but neither can be
negative. In general, a zero frequency means that the row is to be eliminated from the
analysis; no further processing or error checking is done on the row. A weight of zero
results in the row being counted, and updates are made of the statistics.

The definitions of some of the statistics are given below in terms of a single variable x
of which the i-th datum is xi.

Mean

Variance

Skewness

Excess or Kurtosis

Minimum

xmin = min(xi)

Maximum

xmax = max(xi)

Range

xmax – xmin

xw

fiwixi∑
fiwi∑

---------------------=

sw
2 fiwi xi xw–()2

∑
n 1–

---=

fiwi xi xw–()3
n⁄∑

fiwi xi xw–()2
n⁄∑

3 2⁄
--

fiwi xi xw–()4
n⁄∑

fiwi xi xw–()2
n⁄∑

2
--- 3–
IDL Analyst Reference Guide IMSL_SIMPLESTAT

550 Chapter 13: Basic Statistics
Coefficient of Variation

Median

Median Absolute Deviation

Simple Robust Estimate of Scale

where

is the inverse of the standard normal distribution function evaluated at 3/4. This
standardizes MAD in order to make the scale estimate consistent at the normal
distribution for estimating the standard deviation (Huber 1981, pp. 107–108).

Example

This example uses data from Draper and Smith (1981). There are five variables and
13 observations.

x = IMSL_STATDATA(5)
stats = IMSL_SIMPLESTAT(x)
; Call IMSL_SIMPLESTAT.
labels = ['means', 'variances', 'std. dev', $

'skewness', 'kurtosis', 'minima', $
'maxima', 'ranges', 'C.V.', 'counts', $
'lower mean', 'upper mean', 'lower var', 'upper var']

; Define the character strings that will be used as labels for the
; rows of the output.
FOR i = 0, 13 DO PM, labels(i), stats(i, *), $

FORMAT = '(a10, 5f9.3)'
; Output the results.
means 7.462 48.154 11.769 30.000 95.423
variances 34.603 242.141 41.026 280.167 226.314
std. dev 5.882 15.561 6.405 16.738 15.044
skewness 0.688 -0.047 0.611 0.330 -0.195
kurtosis 0.075 -1.323 -1.079 -1.014 -1.342

sw

xw
------ for x 0≠

median xi{ }
middle xi after sorting if n is odd

average of middle two xi 's if n is even

=

MAD median xi median xj{ } –{=

MAD Φ 1–
3 4⁄()⁄

Φ 1–
3 4⁄() 0.6745≈
IMSL_SIMPLESTAT IDL Analyst Reference Guide

Chapter 13: Basic Statistics 551
minima 1.000 26.000 4.000 6.000 72.500
maxima 21.000 71.000 23.000 60.000 115.900
ranges 20.000 45.000 19.000 54.000 43.400
C.V. 0.788 0.323 0.544 0.558 0.158
counts 13.000 13.000 13.000 13.000 13.000
lower mean 3.907 38.750 7.899 19.885 86.332
upper mean 11.016 57.557 15.640 40.115 104.514
lower var 17.793 124.512 21.096 144.065 116.373
upper var 94.289 659.817 111.792 763.434 616.688

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_SIMPLESTAT

552 Chapter 13: Basic Statistics
IMSL_NORM1SAMP

The IMSL_NORM1SAMP function computes statistics for mean and variance
inferences using a sample from a normal population.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NORM1SAMP(x [, CHI_SQ_NULL_HYP=value]
[, CI_MEAN=variable] [, CI_VAR=variable] [, CHI_SQ_TEST=variable]
[, CONF_MEAN=value] [, CONF_VAR=value] [, /DOUBLE]
[, STDEV=variable] [, T_NULL_HYP=value] [, T_TEST=variable])

Return Value

The mean of the sample.

Arguments

x

One-dimensional array containing the observed values.

Keywords

CHI_SQ_NULL_HYP

Null hypothesis value for the chi-squared test for the variance. Default:
CHI_SQ_NULL_HYP = 1.0

CI_MEAN

Named variable into which the two-element array containing the lower confidence
limit for the mean, and the upper confidence limit for the mean is stored.
IMSL_NORM1SAMP IDL Analyst Reference Guide

Chapter 13: Basic Statistics 553
CI_VAR

Named variable into which the two-element array containing lower and upper
confidence limits for the variance is stored.

CHI_SQ_TEST

Named variable into which the three-element array containing statistics associated
with the chi-squared test is stored. The first element contains the degrees of freedom
associated with the chi-squared test for variances, the second element contains the
test statistic, and the third element contains the probability of a larger chi-squared
value. The chi-squared test is a test of the hypothesis σ2 = σ2

0, where σ2
0 is the null

hypothesis value as described in CHI_SQ_NULL_HYP.

CONF_MEAN

Confidence level (in percent) for two-sided interval estimate of the mean. The
keyword CONF_MEAN must be between 0.0 and 100.0 and is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence level c (at least 50 percent),
set CONF_MEAN = 100.0 – 2.0 x (100.0 – c). Default: 95-percent confidence
interval is computed.

CONF_VAR

Confidence level (in percent) for two-sided interval estimate of the variances.
Keyword CONF_VAR must be between 0.0 and 100.0 and is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence level c (at least 50 percent),
set CONF_VAR = 100.0 – 2.0 x (100.0 – c). Default: 95-percent confidence interval
is computed.

DOUBLE

If present and nonzero, double precision is used.

STDEV

Variable into which the standard deviation of the sample is stored.

T_NULL_HYP

Null hypothesis value for t test for the mean. Default: T_NULL_HYP = 0.0
IDL Analyst Reference Guide IMSL_NORM1SAMP

554 Chapter 13: Basic Statistics
T_TEST

Named variable into which the three-element array containing statistics associated
with the t test is stored. The first element contains the degrees of freedom associated
with the t test for the mean, the second element contains the test statistic, and the third
element contains the probability of a larger t in absolute value. The t test is a test of
the hypothesis µ = µ0, where µ0 is the null hypothesis value as described in
T_NULL_HYP.

Discussion

Statistics for mean and variance inferences using a sample from a normal population
are computed, including confidence intervals and tests for both mean and variance.
The definitions of mean and variance are given below. The summation in each case is
over the set of valid observations, based on the presence of missing values in the data.

Mean, return value

Standard deviation

The t statistic for the two-sided test concerning the population mean is given by:

where s and

are given above. This quantity has a T distribution with n – 1 degrees of freedom.

The chi-squared statistic for the two-sided test concerning the population variance is
given by:

where s is given above. This quantity has a χ2 distribution with n – 1 degrees of
freedom.

x
xi∑

n----------=

s
xi x–()2

∑
n 1–

--------------------------=

t
x µ0–

s n⁄
--------------=

x

χ2 n 1–()s
2

σ0
2

---------------------=
IMSL_NORM1SAMP IDL Analyst Reference Guide

Chapter 13: Basic Statistics 555
Examples

Example 1

This example uses data from Devore (1982, p. 335), which is based on data published
in the Journal of Materials. There are 15 observations; the mean is the only output.

x = [26.7, 25.8, 24.0, 24.9, 26.4, $
25.9, 24.4, 21.7, 24.1, 25.9, $
27.3, 26.9, 27.3, 24.8, 23.6]
PRINT, 'Sample Mean = ', IMSL_NORM1SAMP(x)
Sample Mean = 25.3133

Example 2

This example uses the same data as the initial example. The hypothesis H0: µ = 20.0
is tested. The extremely large t value and the correspondingly small p-value provide
strong evidence to reject the null hypothesis. First, a procedure to print the results is
defined.

.RUN
PRO print_results, mean, stdev, $

ci_mean, t_test
PM, mean, Title = 'Sample Mean:'
PM, stdev, Title = 'Sample Standard Deviation:'
PM, '(', ci_mean(0), ci_mean(1), ')', $

Title = '95% CI for the mean:'
PM, ' '
PM, ' df = ', t_test(0), Title = 't-test statistics:'
PM, ' t = ', t_test(1)
PM, ' p-value = ', t_test(2)

END

x = [26.7, 25.8, 24.0, 24.9, 26.4, 25.9, 24.4,$
21.7, 24.1, 25.9, 27.3, 26.9, 27.3, 24.8, 23.6]

mean = IMSL_NORM1SAMP(x, Stdev = stdev, Ci_Mean = ci_mean, $
T_Null_Hyp = 40.0, T_Test = t_test)

print_results, mean, stdev, ci_mean, t_test

Sample Mean:
 25.3133

Sample Standard Deviation:
 1.57882

95% CI for the mean:
(24.4390 26.1877)

t-test statistics:
 df = 14.0000
IDL Analyst Reference Guide IMSL_NORM1SAMP

556 Chapter 13: Basic Statistics
 t = -36.0277
 p-value = 0.00000

Version History

6.4 Introduced
IMSL_NORM1SAMP IDL Analyst Reference Guide

Chapter 13: Basic Statistics 557
IMSL_NORM2SAMP

The IMSL_NORM2SAMP function computes statistics for mean and variance
inferences using samples from two independently normal populations.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NORM2SAMP(x1, x2 [, CI_DIFF_EQ_VAR=variable]
[, CI_DIFF_NE_VAR=variable] [, CONF_MEAN=value] [, CONF_VAR=value]
[, CI_COMM_VAR=variable] [, CI_RATIO_VAR=variable]
[, CHI_SQ_NULL_HYP=value] [, CHI_SQ_TEST=variable] [, /DOUBLE]
[, F_TEST=variable] [, MEAN_X1=value] [, MEAN_X2=value]
[, POOLED_VAR=variable] [, STDEV_X1=variable] [, STDEV_X2=variable]
[, T_TEST_EQ_VAR=variable] [, T_TEST_NE_VAR=variable]
[, T_TEST_NULL_HYP=value])

Return Value

Difference in means of the mean of the second sample from the first sample.

Arguments

x1

One-dimensional array containing the first sample.

x2

One-dimensional array containing the second sample.

Keywords

CI_DIFF_EQ_VAR

Named variable into which the two-element array containing the lower confidence
limit and the upper limit for the mean of the first population minus the mean of the
second, assuming equal variances is stored.
IDL Analyst Reference Guide IMSL_NORM2SAMP

558 Chapter 13: Basic Statistics
CI_DIFF_NE_VAR

Named variable into which the two-element array containing the lower confidence
limit and the upper limit for the mean of the first population minus the mean of the
second, assuming unequal variances, is stored.

CONF_MEAN

Confidence level for two-sided interval estimate of the mean of x1 minus the mean of
x2, in percent. The keyword CONF_MEAN must be between 0.0 and 100.0 and is
often 90.0, 95.0, or 99.0. For a one-sided confidence interval with confidence level c
(at least 50 percent), set CONF_MEAN = 100.0 – 2.0 x (100.0 – c). Default:
CONF_MEAN = 95.0

CONF_VAR

Confidence level for inference on variances. Under the assumption of equal
variances, the pooled variance is used to obtain a two-sided CONF_VAR percent
confidence interval for the common variance if CI_COMM_VAR is specified.
Without making the assumption of equal variances, the ratio of the variances is of
interest. A two-sided CONF_VAR percent confidence interval for the ratio of the
variance of the first sample to that of the second sample is computed and is returned if
CI_RATIO_VAR is specified. The confidence intervals are symmetric in probability.
Default: CONF_VAR = 95.0

CI_COMM_VAR

Named variable into which the two-element array containing the lower confidence
limit and the upper confidence limit for the common (or pooled) variance is stored.

CI_RATIO_VAR

Named variable into which the two-element array containing the approximate lower
confidence limit and the approximate upper confidence limit for the ratio of the
variance of the first population to the second is stored.

CHI_SQ_NULL_HYP

Null hypothesis value for the chi-squared test. Default: CHI_SQ_NULL_HYP = 1.0

CHI_SQ_TEST

Named variable into which the three-element array containing statistics associated
with the chi-squared test for σ2 = σ2

0, where σ2 is the common (or pooled) variance
and σ2

0 is the null hypothesis value, is stored. (See the description for
IMSL_NORM2SAMP IDL Analyst Reference Guide

Chapter 13: Basic Statistics 559
CHI_SQ_NULL_HYP.) The first element contains the degrees of freedom, the
second element contains the chi-squared value, and the third element contains the
probability of a larger chi-squared value, p-value. This test assumes equal variances.

DOUBLE

If present and nonzero, double precision is used.

F_TEST

Named variable into which the four-element array containing statistics associated
with the F test for equality of variances is stored. The first element contains the
degrees of freedom for the numerator, the second element contains the degrees of
freedom for the denominator, the third element contains the F test value, and the
fourth element contains the probability of a larger F value, p-value, assuming the null
hypothesis (H0: σ2

1 = σ2
2) is true.

MEAN_X1

Means of the first sample.

MEAN_X2

Means of the second sample.

POOLED_VAR

Named variable into which the pooled variance for the two samples is stored.

STDEV_X1

Named variable into which the standard deviation of the first sample is stored.

STDEV_X2

Named variable into which the standard deviation of the second sample is stored.

T_TEST_EQ_VAR

Variable into which the three-element array containing statistics associated with a t
test for µ1 – µ2 = d, where d is the null hypothesis value, is stored. (See the
description of T_TEST_NULL_HYP.) The first element contains degrees of freedom,
second element contains the t value, and third element contains the probability of a
larger t in absolute value, assuming the null hypothesis is true. This test assumes
equal variances.
IDL Analyst Reference Guide IMSL_NORM2SAMP

560 Chapter 13: Basic Statistics
T_TEST_NE_VAR

Named variable into which the three-element array containing statistics associated
with a t test for µ1 – µ2 = d, where d is the null hypothesis value, is stored. (See the
description for T_TEST_NULL_HYP.) The first element contains the degrees of
freedom for Satterthwaite’s approximation, the second element contains the t value,
and the third element contains the probability of a larger t in absolute value, assuming
the null hypothesis is true. This test does not assume equal variances.

T_TEST_NULL_HYP

Null hypothesis value for the t test. Default: T_TEST_NULL_HYP = 0.0

Discussion

The IMSL_NORM2SAMP function computes statistics for making inferences about
the means and variances of two normal populations, using independent samples in x1
and x2. For inferences concerning parameters of a single normal population, see
“IMSL_NORM1SAMP” on page 552.

Let µ1 and σ2
1 be the mean and variance of the first population, and let µ2 and σ2

2 be
the corresponding quantities of the second population. The function contains test
statistics and confidence intervals for difference in means, equality of variances, and
the pooled variance.

The means and variances for the two samples are as follows:

and:

Inferences about the Means

The test that the difference in means equals a certain value, for example, µ0, depends
on whether or not the variances of the two populations can be considered equal. If the
variances are equal and T_TEST_NULL_HYP equals zero, the test is the two-sample
t test, which is equivalent to an analysis-of-variance test. The pooled variance for the
difference-in-means test is as follows:

x1 x1i n1⁄∑
 , = x2 x2i∑

 n2⁄=

s1
2

x1i x1–()2

n1 1–()
------------------------- s2

2
x2i x2–()2

n2 1–()
-------------------------∑=,∑=
IMSL_NORM2SAMP IDL Analyst Reference Guide

Chapter 13: Basic Statistics 561
The t statistic is as follows:

Also, the confidence interval for the difference in means can be obtained by
specifying CI_DIFF_EQ_VAR.

If the population variances are not equal, the ordinary t statistic does not have a t
distribution and several approximate tests for the equality of means have been
proposed. (For example, see Anderson and Bancroft 1952, and Kendall and Stuart
1979.) One of the earliest tests devised for this situation is the Fisher-Behrens test,
based on Fisher’s concept of fiducial probability. A procedure used if
T_TEST_NE_VAR and/or CI_DIFF_NE_VAR are specified is the Satterthwaite’s
procedure, as suggested by H.F. Smith and modified by F.E. Satterthwaite (Anderson
and Bancroft 1952, p. 83).

The test statistic is:

where:

Under the null hypothesis of µ1 – µ2 = d, this quantity has an approximate t
distribution with degrees of freedom given by the following equation:

s
2 n1 1–()s1 n2 1–()s2+

n1 n2 2–+
---=

t
x1 x2– d–

s 1 n1⁄() 1 n2⁄()+
---=

t ′ x1 x2– d–() sd⁄=

sd s1
2

n1⁄() s2
2

n2⁄()+=

df
sd

4

s1
2

n1⁄()
2

n1 1–

s2
2

n2⁄()
2

n2 1–
---------------------+

--=
IDL Analyst Reference Guide IMSL_NORM2SAMP

562 Chapter 13: Basic Statistics
Inferences about the Variances

The F statistic for testing the equality of variances is given by:

F = s2
max / s

2
min,

where s2
max is the maximum of s2

1 and s2
2. If the variances are equal, this quantity

has an F distribution with n1 – 1 and n2 – 1 degrees of freedom, where n1 is the
sample size corresponding to s2

max.

Generally, it is not recommended that the results of the F test be used to decide
whether to use the regular t test or the modified t′ on a single set of data. The
modified t′ (Satterthwaite’s procedure) is the more conservative approach to use if
there is doubt about the equality of the variances.

Examples

Example 1

This example, taken from Conover and Iman (1983, p. 294), involves scores on
arithmetic tests of two grade-school classes. The question is whether a group taught
by an experimental method has a higher mean score. Only the difference in means is
output. The data are shown in Table 13-2.

Scores for Standard Group Scores for Experimental
Group

72 111

75 118

77 128

80 138

104 140

110 150

125 163

 164

 169

Table 13-2: Class Scores
IMSL_NORM2SAMP IDL Analyst Reference Guide

Chapter 13: Basic Statistics 563
x1 = [72, 75, 77, 80, 104, 110, 125]
x2 = [111, 118, 128, 138, 140, 150, 163, 164, 169]
PRINT, 'difference of means = ', IMSL_NORM2SAMP(x1, x2)
difference of means = -50.4762

Example 2

The same data is used for this example as for the initial example. Here, the results of
the t test are output. The variances of the two populations are assumed to be equal. It
is seen from the output that there is strong reason to believe that the two means are
different (t value of –4.804). Since the lower 97.5-percent confidence limit does not
include zero, the null hypothesis is that µ1 ≤ µ2 would be rejected at the 0.05
significance level. (The closeness of the values of the sample variances provides
some qualitative substantiation of the assumption of equal variances.) First, define a
procedure to print the results.

PRO print_results, diff, sp, ci, t
PM, diff, Title = 'Difference of Means: '
PM, sp, Title = 'Pooled Variance: '
PM, 'CI for Difference of Means is (', ci(0), ',', ci(1), ')'
PM, ' '
PM, 't-test for Equal Variances:'
PM, t(0), Title = 'Degrees of Freedom:'
PM, t(1), Title = 't statistic: '
PM, t(2), Title = 'P-Value:'

END
x1 = [72, 75, 77, 80, 104, 110, 125]
x2 = [111, 118, 128, 138, 140, 150, 163, 164, 169]
diff = IMSL_NORM2SAMP(x1, x2, Pooled_Var = sp, $

Ci_Diff_Eq_Var = ci, T_Test_Eq_Var = t)
print_results, diff, sp, ci, t
Difference of Means:
 -50.4762
Pooled Variance:
 434.633
CI for Difference of Means is

(-73.0100, -27.9424)
t-test for Equal Variances:
Degrees of Freedom:
 14.0000
t statistic:
 -4.80436
P-Value:
 0.000280258
IDL Analyst Reference Guide IMSL_NORM2SAMP

564 Chapter 13: Basic Statistics
Version History

6.4 Introduced
IMSL_NORM2SAMP IDL Analyst Reference Guide

Chapter 13: Basic Statistics 565
IMSL_FREQTABLE

The IMSL_FREQTABLE function tallies observations into a one-way or two-way
frequency table.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FREQTABLE(x, nxbins[, y, nybins] [, CUTPOINTS=array]
[, CUTPOINTS=array] [, CLASS_MARKS=array] [, /DOUBLE]
[, LOWER_BOUND=value] [, UPPER_BOUND=value])

Return Value

One-dimensional or two-dimensional array containing the counts.

Arguments

nxbins

Number of intervals (bins) for x.

nybins

(Optional) Number of intervals (bins) for y.

x

One-dimensional array containing the observations for the first variable.

y

(Optional) One-dimensional array containing the observations for the second
variable.
IDL Analyst Reference Guide IMSL_FREQTABLE

566 Chapter 13: Basic Statistics
Keywords

CUTPOINTS

(Use this keyword if two positional arguments are used) Specifies a one-dimensional
array of length nxbins containing the cutpoints to use. This option allows unequal
intervals. The initial interval is closed on the right and contains the initial cutpoint as
its right endpoint. The last interval is open on the left and includes all values greater
than the last cutpoint. The remaining nxbins − 2 intervals are open on the left and
closed on the right. The argument nxbins must be greater than 3 for this option. If
CUTPOINTS is used, no other keywords should be specified.

CUTPOINTS

(Use this keyword if four positional arguments are used.) Specifies a one-dimensional
array of cutpoints (boundaries). CUTPOINTS must be a one-dimensional array of
length (nxbins – 1) + (nybins – 1) containing the cutpoints for x in the first (nxbins–1)
elements followed by the cutpoints for y in the final (nybins–1) elements.

CLASS_MARKS

If two positional arguments are used, this keyword specifies a one-dimensional array
containing equally spaced class marks in ascending order. The class marks are the
midpoints of each of the nxbins, and each interval is taken to have length
(CLASS_MARKS(1) – CLASS_MARKS(0)). The argument nxbins must be greater
than or equal to 2 for this option. If CLASS_MARKS is used, then no other keywords
should be specified.

If four positional arguments are used, this keyword specifies a one-dimensional array
containing equally spaced class marks in ascending order. The class marks are the
midpoints of each interval. The keyword CLASS_MARKS must be a one-
dimensional array of length (nxbins + nybins) containing the class marks for x in the
first nxbins elements followed by the class marks for y in the final nybins elements.

DOUBLE

If present and nonzero, double precision is used.

LOWER_BOUND

If two positional arguments are used, use this keyword and the UPPER_BOUND
keyword together to specify two semi-infinite intervals that are used as the initial and
last interval. The LOWER_BOUND and UPPER_BOUND keywords must be used
together. The initial interval is closed on the right and includes LOWER_BOUND as
IMSL_FREQTABLE IDL Analyst Reference Guide

Chapter 13: Basic Statistics 567
its right endpoint. The last interval is open on the left and includes all values greater
than UPPER_BOUND. The remaining nxbins − 2 intervals are of length.
(UPPER_BOUND – LOWER_BOUND)/(nxbins – 2) and are open on the left and
closed on the right. The argument nxbins must be greater than or equal to 3 for this
option.

If four positional arguments are used, use this keyword with the UPPER_BOUND
keyword to specify intervals of equal lengths. The LOWER_BOUND and
UPPER_BOUND keywords must be used together. See “Discussion” below for
details.

UPPER_BOUND

If two positional arguments are used, use this keyword along with the
LOWER_BOUND keyword to specify two semi-infinite intervals that are used as the
initial and last interval. The UPPER_BOUND and LOWER_BOUND keywords
must be used together. The initial interval is closed on the right and includes
LOWER_BOUND as its right endpoint. The last interval is open on the left and
includes all values greater than UPPER_BOUND. The remaining nxbins − 2 intervals
are of length (UPPER_BOUND – LOWER_BOUND)/(nxbins – 2)and are open on
the left and closed on the right. LOWER_BOUND must also be specified with this
keyword. The argument nxbins must be greater than or equal to 3 for this option.

If four positional arguments are used, use this keyword with the LOWER_BOUND
keyword to specify intervals of equal lengths. The UPPER_BOUND and
LOWER_BOUND keywords must be used together. See “Discussion” below for
details.

Discussion

If Two Positional Arguments Are Used

The default action of IMSL_FREQTABLE is to group data into nxbins categories of
size (max (x) – min (x))/nxbins. The initial interval is closed on the left and open on
the right. The remaining intervals are open on the left and closed on the right. Using
keywords, the types of intervals used may be changed.

If UPPER_BOUND and LOWER_BOUND are specified, two semi-infinite intervals
are used as the initial and last interval. The initial interval is closed on the right and
includes LOWER_BOUND as its right endpoint. The last interval is open on the left
and includes all values greater than UPPER_BOUND. The remaining nxbins – 2
intervals are of length (UPPER_BOUND – LOWER_BOUND)/(nxbins – 2) and are
open on the left and closed on the right. The argument nxbins must be greater than or
equal to 3 for this option.
IDL Analyst Reference Guide IMSL_FREQTABLE

568 Chapter 13: Basic Statistics
If the keyword CLASS_MARKS is used, equally spaced class marks in ascending
order must be provided in an array of length nxbins. The class marks are the
midpoints of each of the nxbins, and each interval is taken to have the following
length:

(CLASS_MARKS(1) – CLASS_MARKS(0))

The argument nxbins must be greater than or equal to 2 for this option.

If the keyword CUTPOINTS is used, cutpoints (bounders) must be provided in an
array of length nxbins. This option allows unequal intervals. The initial interval is
closed on the right and contains the initial cutpoint as its right endpoint. The last
interval is open on the left and includes all values greater than the last cutpoint. The
remaining nxbins − 2 intervals are open on the left and closed on the right. The
argument nxbins must be greater than 3 for this option.

If Four Positional Arguments Are Used

By default, nxbins intervals of equal length are used. Let xmin and xmax be the
minimum and maximum values in x, respectively, with similar meanings for ymin and
ymax. Then, table(0, 0) is the tally of observations with the x value less than or equal
to xmin + (xmax–xmin)/nxbins, and the y value less than or equal to ymin + (ymax–
ymin)/ny.

If UPPER_BOUND and LOWER_BOUND are specified, intervals of equal lengths
are used just as in the default case, except the upper and lower bounds are taken as
supplied keywords xmin = LOWER_BOUND(0), xmax = UPPER_BOUND(0),
ymin = LOWER_BOUND(1), and ymax = UPPER_BOUND(1), instead of the actual
minima and maxima in the data. Therefore, the first and last intervals for both
variables are semi-infinite in length.

If CUTPOINTS is specified, cutpoints (boundaries) must be provided. The keyword
CUTPOINTS must be a one-dimensional array of length (nxbins – 1) + (nybins – 1)
containing the cutpoints for x in the first (nxbins–1) elements followed by the
cutpoints for y in the final (nybins–1) elements.

If CLASS_MARKS is specified, equally spaced class marks in ascending order must
be provided. The class marks are the midpoints of each interval. The keyword
CLASS_MARKS must be a one-dimensional array of length (nxbins + nybins)
containing the class marks for x in the first nxbins elements followed by the class
marks for y in the final nybins elements.
IMSL_FREQTABLE IDL Analyst Reference Guide

Chapter 13: Basic Statistics 569
Examples

Example 1: One-way Frequency Table

The data for this example is from Hinkley (1977) and Velleman and Hoaglin (1981).
Data includes measurements (in inches) of precipitation in Minneapolis/St. Paul
during the month of March for 30 consecutive years.

x = [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, $
3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, $
2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05]

; Define the data set.
table = IMSL_FREQTABLE(x, 10)
; Call IMSL_FREQTABLE with nxbins = 10.
PRINT, ' Bin Number Count' &$

PRINT, ' ---------- -----' &$
FOR i = 0, 9 DO PRINT, i + 1, table(i)

Bin Number Count
---------- -----
 1 4.00000
 2 8.00000
 3 5.00000
 4 5.00000
 5 3.00000
 6 1.00000
 7 3.00000
 8 0.00000
 9 0.00000
 10 1.00000

Example 2: Two-way Frequency Table

The data for x in this example is the same as in the example above. The data for y
were created by adding small integers to x.

nxbins = 5
nybins = 6
; Define the data set.
x = [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, $

2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, $
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, $
1.89, 0.90, 2.05]

y = [1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, $
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, $
1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, $
IDL Analyst Reference Guide IMSL_FREQTABLE

570 Chapter 13: Basic Statistics
2.89, 2.90, 5.05]

; Default usage of IMSL_FREQTABLE
table = IMSL_FREQTABLE(x, nxbins, y, nybins)
PM, table, FORMAT = '(6(F8.5, 2X))', $

Title = ' counts'
 counts
 4.00000 2.00000 4.00000 2.00000 0.00000 0.00000
 0.00000 4.00000 3.00000 2.00000 1.00000 0.00000
 0.00000 0.00000 1.00000 2.00000 0.00000 1.00000
 0.00000 0.00000 0.00000 0.00000 1.00000 2.00000
 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
lb = [1, 2]
up = [4, 6]
; Using user-defined bounds
table = IMSL_FREQTABLE(x, nxbins, y, nybins, Upper_Bound = up, $

Lower_Bound = lb)
PM, table, FORMAT = '(6(F8.5, 2X))', $

Title = ' counts'
 counts
 3.00000 2.00000 4.00000 0.00000 0.00000 0.00000
 0.00000 5.00000 5.00000 2.00000 0.00000 0.00000
 0.00000 0.00000 1.00000 3.00000 2.00000 0.00000
 0.00000 0.00000 0.00000 0.00000 0.00000 2.00000
 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000
cm = [0.5, 1.5, 2.5, 3.5, 4.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5]
; Using class-marks
table = IMSL_FREQTABLE(x, nxbins, y, nybins, Class_Marks = cm)
PM, table, FORMAT = '(6(F8.5, 2X))', $

Title = ' counts'
 counts
 3.00000 2.00000 4.00000 0.00000 0.00000 0.00000
 0.00000 5.00000 5.00000 2.00000 0.00000 0.00000
 0.00000 0.00000 1.00000 3.00000 2.00000 0.00000
 0.00000 0.00000 0.00000 0.00000 0.00000 2.00000
 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000
cp = [1, 2, 3, 4, 2, 3, 4, 5, 6]
; Using cutpoints
table = IMSL_FREQTABLE(x, nxbins, y, nybins, Cutpoints = cp)
PM, table, FORMAT = '(6(F8.5, 2X))', $

Title = ' counts'
 counts
 3.00000 2.00000 4.00000 0.00000 0.00000 0.00000
 0.00000 5.00000 5.00000 2.00000 0.00000 0.00000
 0.00000 0.00000 1.00000 3.00000 2.00000 0.00000
 0.00000 0.00000 0.00000 0.00000 0.00000 2.00000
 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000
IMSL_FREQTABLE IDL Analyst Reference Guide

Chapter 13: Basic Statistics 571
Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_FREQTABLE

572 Chapter 13: Basic Statistics
IMSL_SORTDATA

The IMSL_SORTDATA function sorts observations by specified keys, with option to
tally cases into a multiway frequency table.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SORTDATA(x, n_keys [, ASCENDING=value]
[, DESCENDING=value] [, /DOUBLE] [, FREQUENCIES=array]
[, INDICES_KEYS=array] [, LIST_CELLS=variable] [, N_CELLS=variable]
[, N_LIST_CELLS=variable] [, PERMUTATION=variable]
[, TABLE_BAL=variable] [, TABLE_N=variable]
[, TABLE_VALUES=variable] [, TABLE_UNBAL=variable])

Return Value

The sorted array.

Arguments

n_keys

Number of columns of x on which to sort. The first n_keys columns of x are used as
the sorting keys. (Exception: See the keyword INDICES_KEYS).

x

One- or two-dimensional array containing the observations to be sorted.

Keywords

ASCENDING

If present and nonzero, the sort is in ascending order. (Default) The keywords
ASCENDING and DESCENDING cannot be used together.
IMSL_SORTDATA IDL Analyst Reference Guide

Chapter 13: Basic Statistics 573
DESCENDING

If present and nonzero, the sort is in descending order. The keywords ASCENDING
and DESCENDING cannot be used together.

DOUBLE

If present and nonzero, double precision is used.

FREQUENCIES

One-dimensional array containing the frequency for each observation in x. Default:
FREQUENCIES (*) = 1

INDICES_KEYS

One-dimensional array of length n_keys giving the column numbers of x which are to
be used in the sort. Default: INDICES_KEYS(*) = 0, 1, ..., n_keys – 1

LIST_CELLS

Named variable into which the two-dimensional array of length N_LIST_CELLS x
n_keys containing, for each row, a list of the levels of n_keys corresponding
classification variables that describe a cell, is stored. The keywords N_LIST_CELLS,
LIST_CELLS, and TABLE_UNBAL must be used together.

N_CELLS

Named variable into which the a one-dimensional array containing the number of
observations per group is stored. A group contains observations (rows) in x that are
equal with respect to the method of comparison. The first N_CELLS (0) rows of the
sorted x are in group number 1. The next N_CELLS (1) rows of the sorted x are in
group number 2, etc. The last N_Cells(N_ELEMENTS(N_Cells) – 1) rows of the
sorted x are in group number N_ELEMENTS(N_Cells).

N_LIST_CELLS

Named variable into which the number of nonempty cells is stored. The keywords
N_LIST_CELLS, LIST_CELLS, and TABLE_UNBAL must be used together.

PERMUTATION

Named variable into which a one-dimensional array containing the rearrangement
(permutation) of the observations (rows) is stored.
IDL Analyst Reference Guide IMSL_SORTDATA

574 Chapter 13: Basic Statistics
TABLE_BAL

Named variable into which an array of length
Table_N(0) + Table_N(1) + ... + Table_N(n_keys – 1), containing the frequencies in
the cells of the table to be fit, is stored. Empty cells are included in TABLE_BAL,
and each element of TABLE_BAL is nonnegative. The cells of TABLE_BAL are
sequenced so that the first variable cycles through its Table_N(0) categories one time,
the second variable cycles through its Table_N(1) categories Table_N(0) times, the
third variable cycles through its Table_N(2) categories Table_N(0) x Table_N(1)
times, etc., up to the n_keys-th variable, which cycles through its
Table_N(n_keys – 1) categories:

Table_N(0) + Table_N(1) + Table_N(n_keys – 2)

times. The keywords TABLE_N, TABLE_VALUES, and TABLE_BAL must be used
together.

TABLE_N

Named variable into which a one-dimensional array of length n_keys, containing in
its i-th element (i = 0, 1, ..., (n_keys – 1)) the number of levels or categories of the i-th
classification variable (column), is stored. The keywords TABLE_N,
TABLE_VALUES, and TABLE_BAL must be used together.

TABLE_VALUES

Named variable into which an array of length
Table_N(0) + Table_N(1) + ... + Table_N(n_keys – 1), containing the values of the
classification variables, is stored. The first Table_N(0) elements of TABLE_VALUES
contain the values for the first classification variable. The next Table_N(1) contain the
values for the second variable. The last Table_N(n_keys – 1) positions contain the
values for the last classification variable. The keywords TABLE_N,
TABLE_VALUES, and TABLE_BAL must be used together.

TABLE_UNBAL

Named variable into which the one-dimensional array of length N_LIST_CELLS
containing the frequency for each cell is stored. The keywords N_LIST_CELLS,
LIST_CELLS, and TABLE_UNBAL must be used together.

Discussion

The IMSL_SORTDATA function can perform both a key sort and/or tabulation of
frequencies into a multiway frequency table.
IMSL_SORTDATA IDL Analyst Reference Guide

Chapter 13: Basic Statistics 575
Sorting

The IMSL_SORTDATA function sorts the rows of real matrix x using particular
columns in x as the keys. The sort is algebraic with the first key as the most
significant, the second key as the next most significant, etc. When x is sorted in
ascending order, the resulting sorted array is such that the following is true:

• For i = 0, 1, ..., N_ELEMENTS (x(*, 0)) – 2,
x(1, INDICES_KEYS(0)) ≤ x(i + 1, INDICES_KEYS(0))

• For k = 1, ..., n_keys – 1, if
x(1, INDICES_KEYS(j)) = x(i + 1, INDICES_KEYS(j)) for
j = 0, 1, ..., k – 1, then
x(1, INDICES_KEYS(j)) = x(i + 1, INDICES_KEYS(k))

The observations also can be sorted in descending order.

The rows of x containing the missing value code NaN in at least one of the specified
columns are considered as an additional group. These rows are moved to the end of
the sorted x.

The sorting algorithm is based on a quicksort method given by Singleton (1969) with
modifications by Griffin and Redish (1970) and Petro (1970).

Frequency Tabulation

The IMSL_SORTDATA function determines the distinct values in multivariate data
and computes frequencies for the data. This function accepts the data in the matrix x
but performs computations only for the variables (columns) in the first n_keys
columns of x (Exception: see optional the keyword INDICES_KEYS). In general, the
variables for which frequencies should be computed are discrete; they should take on
a relatively small number of different values. Variables that are continuous can be
grouped first. The IMSL_FREQTABLE function can be used to group variables and
determine the frequencies of groups.

When the TABLE_N, TABLE_VALUES, and TABLE_BAL keywords are specified,
IMSL_SORTDATA fills the vector TABLE_VALUES with the unique values of the
variables and tallies the number of unique values of each variable in the vector
TABLE_BAL. Each combination of one value from each variable forms a cell in a
multiway table. The frequencies of these cells are entered in TABLE_BAL so that the
first variable cycles through its values exactly once and the last variable cycles
through its values most rapidly. Some cells cannot correspond to any observations in
the data; in other words, “missing cells” are included in the TABLE_BAL table and
have a value of zero.
IDL Analyst Reference Guide IMSL_SORTDATA

576 Chapter 13: Basic Statistics
When N_LIST_CELLS, LIST_CELLS, and TABLE_UNBAL are specified, the
frequency of each cell is entered in TABLE_UNBAL so that the first variable cycles
through its values exactly once and the last variable cycles through its values most
rapidly. All cells have a frequency of at least 1, i.e., there is no “missing cell.” The
array LIST_CELLS can be considered “parallel” to TABLE_UNBAL because row i
of LIST_CELLS is the set of n_keys values that describes the cell for which row i of
TABLE_UNBAL contains the corresponding frequency.

Examples

Example 1

The rows of a 10 x 3 matrix x are sorted in ascending order using Columns 0 and 1 as
the keys. There are two missing values (NaNs) in the keys. The observations
containing these values are moved to the end of the sorted array.

f = IMSL_MACHINE(/Float)
c0 =[1.0, 2.0, 1.0, 1.0, 2.0, 1.0, f.NaN, 1.0, 2.0, 1.0]
c1 =[1.0, 1.0, 1.0, 1.0, f.NaN, 2.0, 2.0, 1.0, 2.0, 1.0]
c2 =[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 9.0]
x = [[c0], [c1], [c2]]
PM, x, Title = 'Unsorted Matrix'
Unsorted Matrix
 1.00000 1.00000 1.00000
 2.00000 1.00000 2.00000
1.00000 1.00000 3.00000
 1.00000 1.00000 4.00000
 2.00000 NaN 5.00000
 1.00000 2.00000 6.00000
 NaN 2.00000 7.00000
 1.00000 1.00000 8.00000
 2.00000 2.00000 9.00000
 1.00000 1.00000 9.00000
PM, IMSL_SORTDATA(x, 2), Title = 'Sorted Matrix'
Sorted Matrix:
 1.00000 1.00000 1.00000
 1.00000 1.00000 9.00000
 1.00000 1.00000 3.00000
 1.00000 1.00000 4.00000
 1.00000 1.00000 8.00000
 1.00000 2.00000 6.00000
 2.00000 1.00000 2.00000
 2.00000 2.00000 9.00000
 NaN 2.00000 7.00000
 2.00000 NaN 5.00000
IMSL_SORTDATA IDL Analyst Reference Guide

Chapter 13: Basic Statistics 577
Example 2

This example uses the same data as the previous example. The permutation of the
rows is output using the keyword Permutation.

f = IMSL_MACHINE(/Float)
c0 =[1.0, 2.0, 1.0, 1.0, 2.0, 1.0, f.NaN, 1.0, 2.0, 1.0]
c1 =[1.0, 1.0, 1.0, 1.0, f.NaN, 2.0, 2.0, 1.0, 2.0, 1.0]
c2 =[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 9.0]
; Fill up a matrix, including some missing values.
x = [[c0], [c1], [c2]]
PM, x, Title = 'Unsorted Matrix'
; Output the unsorted matrix.
Unsorted Matrix
 1.00000 1.00000 1.0000
 2.00000 1.00000 2.00000
 1.00000 1.00000 3.00000
 1.00000 1.00000 4.00000
 2.00000 NaN 5.00000
 1.00000 2.00000 6.00000
 NaN 2.00000 7.00000
 1.00000 1.00000 8.00000
 2.00000 2.00000 9.00000
 1.00000 1.00000 9.00000
y = IMSL_SORTDATA(x, 2, Permutation = permutation)
; Use IMSL_SORTDATA to sort x.
PM, y, Title = 'Sorted Matrix:'
Sorted Matrix:
 1.00000 1.00000 1.00000
 1.00000 1.00000 9.00000
 1.00000 1.00000 3.00000
 1.00000 1.00000 4.00000
 1.00000 1.00000 8.00000
 1.00000 2.00000 6.00000
 2.00000 1.00000 2.00000
 2.00000 2.00000 9.00000
 NaN 2.00000 7.00000
 2.00000 NaN 5.00000
PM, permutation, Title = 'Permutation Matrix:'
; Print the permutation vector.
Permutation Matrix:
 0
 9
 2
 3
 7
 5
 1
 8
IDL Analyst Reference Guide IMSL_SORTDATA

578 Chapter 13: Basic Statistics
 6
 4
z = x(permutation, *)
PM, z, Title = 'Sorted Matrix'
; Use the permutation vector to sort the data.
Sorted Matrix
 1.00000 1.00000 1.00000
 1.00000 1.00000 9.00000
 1.00000 1.00000 3.00000
 1.00000 1.00000 4.00000
 1.00000 1.00000 8.00000
 1.00000 2.00000 6.00000
 2.00000 1.00000 2.00000
 2.00000 2.00000 9.00000
 NaN 2.00000 7.00000
 2.00000 NaN 5.00000

Version History

6.4 Introduced
IMSL_SORTDATA IDL Analyst Reference Guide

Chapter 13: Basic Statistics 579
IMSL_RANKS

The IMSL_RANKS function computes the ranks, normal scores, or exponential
scores for a vector of observations.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RANKS(x [, AVERAGE_TIE=value] [, BLOM_SCORES=value]
[, /DOUBLE] [, EXP_NORM_SCORES=value] [, FUZZ=value]
[, HIGHEST=value] [, LOWEST=value] [, RANDOM_SPLIT=value]
[, RANKS=value] [, SAVAGE_SCORES=value] [, TUKEY_SCORES=value]
[, VDW_SCORES=value])

Return Value

A one-dimensional array containing the rank (or optionally, a transformation of the
rank) of each observation.

Arguments

x

One-dimensional array containing the observations to be ranked.

Keywords

AVERAGE_TIE

Average of the scores of the tied observations (default).

Note
At most, one of these keywords (AVERAGE_TIE, HIGHEST, LOWEST,
RANDOM_SPLIT) can be set to a nonzero value to change the method used to
assign a score to tied observations.
IDL Analyst Reference Guide IMSL_RANKS

580 Chapter 13: Basic Statistics
BLOM_SCORES

Blom version of normal scores.

Note
At most, one of these keywords (RANKS, BLOM_SCORES, TUKEY_SCORES,
VDW_SCORES, EXP_NORM_SCORES, SAVAGE_SCORES) can be set to a
nonzero value to specify the type of values returned.

DOUBLE

If present and nonzero, double precision is used.

EXP_NORM_SCORES

Expected value of normal order statistics (for tied observations, the average of the
expected normal scores)

Note
At most, one of these keywords (RANKS, BLOM_SCORES, TUKEY_SCORES,
VDW_SCORES, EXP_NORM_SCORES, SAVAGE_SCORES) can be set to a
nonzero value to specify the type of values returned.

FUZZ

Value used to determine when two items are tied. If ABS(x(I) – x(J)) is less than or
equal to FUZZ, then x(I) and x(J) are said to be tied. Default: FUZZ = 0.0

HIGHEST

Highest score in the group of ties.

Note
At most, one of these keywords (AVERAGE_TIE, HIGHEST, LOWEST,
RANDOM_SPLIT) can be set to a nonzero value to change the method used to
assign a score to tied observations.

LOWEST

Lowest score in the group of ties.
IMSL_RANKS IDL Analyst Reference Guide

Chapter 13: Basic Statistics 581
Note
At most, one of these keywords (AVERAGE_TIE, HIGHEST, LOWEST,
RANDOM_SPLIT) can be set to a nonzero value to change the method used to
assign a score to tied observations.

RANDOM_SPLIT

Tied observations are randomly split using a random-number generator.

Note
At most, one of these keywords (AVERAGE_TIE, HIGHEST, LOWEST,
RANDOM_SPLIT) can be set to a nonzero value to change the method used to
assign a score to tied observations.

RANKS

Ranks (default).

Note
At most, one of these keywords (RANKS, BLOM_SCORES, TUKEY_SCORES,
VDW_SCORES, EXP_NORM_SCORES, SAVAGE_SCORES) can be set to a
nonzero value to specify the type of values returned.

SAVAGE_SCORES

Savage scores (expected value of exponential order statistics).

Note
At most, one of these keywords (RANKS, BLOM_SCORES, TUKEY_SCORES,
VDW_SCORES, EXP_NORM_SCORES, SAVAGE_SCORES) can be set to a
nonzero value to specify the type of values returned.

TUKEY_SCORES

Tukey version of normal scores.

Note
At most, one of these keywords (RANKS, BLOM_SCORES, TUKEY_SCORES,
VDW_SCORES, EXP_NORM_SCORES, SAVAGE_SCORES) can be set to a
nonzero value to specify the type of values returned.
IDL Analyst Reference Guide IMSL_RANKS

582 Chapter 13: Basic Statistics
VDW_SCORES

Van der Waerden version of normal scores.

Note
At most, one of these keywords (RANKS, BLOM_SCORES, TUKEY_SCORES,
VDW_SCORES, EXP_NORM_SCORES, SAVAGE_SCORES) can be set to a
nonzero value to specify the type of values returned.

Discussion

Ties

If the assignment RANK = IMSL_RANKS(x) is made, then in data without ties, the
output values are the ordinary ranks (or a transformation of the ranks) of the data in x.
If x(i) has the smallest value among the values in x and there is no other element in x
with this value, then RANK(i) = 1. If both x(i) and x(j) have the same smallest value,
then the output value depends on the option used to break ties. Table 13-3 shows the
results for some of the keywords.

When the ties are resolved randomly, IMSL_RANDOM is used to generate random
numbers. Different results occur from different executions of the program unless the
“seed” of the random-number generator is set explicitly by use of
IMSL_RANDOMOPT ().

Scores

Normal and other functions of the ranks can optionally be returned. Normal scores
can be defined as the expected values, or approximations to the expected values, of
order statistics from a normal distribution. The simplest approximations are obtained

Keyword Result

Average_Tie Result (i) = Result (j) = 1.5

Highest Result (i) = Result (j) = 2.0

Lowest Result (i) = Result (j) = 1.0

Random_Split Result (i) = 1.0 and Result (j) = 2.0

or, randomly, Result (i) = 2.0 and Result (j) = 1.0

Table 13-3: Tie Results
IMSL_RANKS IDL Analyst Reference Guide

Chapter 13: Basic Statistics 583
by evaluating the inverse cumulative normal distribution function,
IMSL_NORMALCDF (with the keyword INVERSE), at the ranks scaled into the
open interval (0,1).

In the Blom version (Blom 1958), the scaling transformation for the rank
ri (1 ≤ ri ≤ n, where n is the sample size) is (ri – 3/8) / (n + 1/4). The Blom normal
score corresponding to the observation with rank ri is:

where Φ(⋅) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation; that is, if x(i)
equals x(j) (within FUZZ) and their value is the k-th smallest in the data set, the Blom
normal scores are determined for ranks of k and k + 1. Then, these normal scores are
averaged or selected in the manner specified. (Whether the transformations are made
first or the ties are resolved first is irrelevant, except when Average_Tie is specified.)

In the Tukey version (Tukey 1962), the scaling transformation for the rank ri is
(ri – 1/3) / (n + 1/3). The Tukey normal score corresponding to the observation with
rank ri follows:

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling
transformation for the rank ri is ri /(n + 1). The Van der Waerden normal score
corresponding to the observation with rank ri is as follows:

Ties are handled in the same way as for the Blom normal scores.

When option EXP_NORM_SCORES is nonzero, the output values are the expected
values of the normal order statistics from a sample of size n = N_ELEMNTS(x). If
the value in x(i) is the k-th smallest, then the value output in RANK (i) is E(zk), where
E(·) is the expectation operator, and zk is the k-th order statistic in a sample of size n
from a standard normal distribution. Ties are handled in the same way as for the Blom
normal scores.

Φ 1– ri 3 8⁄–

n 1 4⁄+

Φ 1– ri 1 3⁄–

n 1 3⁄+

Φ 1– ri

n 1+

IDL Analyst Reference Guide IMSL_RANKS

584 Chapter 13: Basic Statistics
Savage scores are the expected values of the exponential order statistics from a
sample of size n. These values are called Savage scores because of their use in a test
discussed by Savage (1956) and Lehmann (1975). If the value in x(i) is the k-th
smallest, then the value output in RANK (i) is E(yk) where yk is the k-th order statistic
in a sample of size n from a standard exponential distribution. The expected value of
the k-th order statistic from an exponential sample of size n follows:

Ties are handled in the same way as for the Blom normal scores.

Example

The data for this example, from Hinkley (1977), contains 30 observations. Note that
the fourth and sixth observations are tied, and the third and twentieth observations are
tied.

x = [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,$
1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,$
0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,$
1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05]

r = IMSL_RANKS(x)
; Call IMSL_RANKS.
FOR i = 0, 29 DO PM, i + 1, r(i), FORMAT = '(i5, f7.1)'

 1 5.0
 2 18.0
 3 6.5
 4 11.5
 5 21.0
 6 11.5
 7 2.0
 8 15.0
 9 29.0
 10 24.0
 11 27.0
 12 28.0
 13 16.0
 14 23.0
 15 3.0
 16 17.0

1
n
--- 1

n 1–
------------ … 1

n k– 1+
---------------------+ + +
IMSL_RANKS IDL Analyst Reference Guide

Chapter 13: Basic Statistics 585
 17 13.0
 18 1.0
 19 4.0
 20 6.5
 21 26.0
 22 19.0
 23 10.0
 24 14.0
 25 30.0
 26 25.0
 27 9.0
 28 20.0
 29 8.0
 30 22.0

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_RANKS

586 Chapter 13: Basic Statistics
IMSL_RANKS IDL Analyst Reference Guide

Chapter 14

Regression
This section contains the following topics:
Overview: Regression 588 Regression Routines 601
IDL Analyst Reference Guide 587

588 Chapter 14: Regression
Overview: Regression

The regression models in this chapter include the simple and multiple linear
regression models, the multivariate general linear model, the polynomial model, and
the nonlinear regression model. Functions for fitting regression models, computing
summary statistics from a fitted regression, computing diagnostics, and computing
confidence intervals for individual cases are provided. Also provided are methods for
building a model from a set of candidate variables.

Simple and Multiple Linear Regression

The simple linear regression model is:

yi = β0 + β1xi + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable, the xi’s are the settings of the independent (explanatory) variable,
β0 and β1 are the intercept and slope parameters (respectively), and the εi’s are
independently distributed normal errors, each with mean zero and variance σ2. The
multiple linear regression model is:

yi = β0 + β1xi1 + β2xi2 + ... + βkxik + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable; the xi1’s, xi2’s, ..., xik’s are the settings of the k independent
(explanatory) variables; β0, β1, ... , βk are the regression coefficients; and the εi’s are
independently distributed normal errors, each with mean zero and variance σ2.

“IMSL_MULTIREGRESS” on page 609 fits both the simple and multiple linear
regression models using a fast Given’s transformation and includes an option for
excluding the intercept β0. The responses are input in array y, and the independent
variables are input in array x, where the individual cases correspond to the rows and
the variables correspond to the columns. In addition to computing the fit,
MULTIREGRESS also can optionally compute summary statistics.

After the model has been fitted using IMSL_MULTIREGRESS,
“IMSL_MULTIPREDICT” on page 624 computes predicted values, confidence
intervals, and case statistics for the fitted model. The information about the fit is
communicated from IMSL_MULTIREGRESS to MULTIPREDICT by using
keyword Predict_Info.
Overview: Regression IDL Analyst Reference Guide

Chapter 14: Regression 589
No Intercept Model

Several functions provide the option for excluding the intercept from a model. In
most practical applications, the intercept should be included in the model. For
functions that use the sum-of-squares and crossproducts matrix as input, the no-
intercept case can be handled by using the raw sum-of-squares and crossproducts
matrix as input in place of the corrected sum-of-squares and crossproducts. The raw
sum-of-squares and crossproducts matrix can be computed as:

(x1, x2, ... , xk, y)T (x1, x2, ... , xk, y)

Variable Selection

Variable selection can be performed by “IMSL_ALLBEST” on page 632, which
computes all best-subset regressions, or by “IMSL_STEPWISE” on page 641, which
computes stepwise regression. The method used by ALLBEST is generally preferred
over that used by STEPWISE because ALLBEST implicitly examines all possible
models in the search for a model that optimizes some criterion while stepwise does
not examine all possible models. However, the computer time and memory
requirements for ALLBEST can be much greater than that for STEPWISE when the
number of candidate variables is large.

Polynomial Model

The polynomial model is:

yi = β0 + β1 xi + β2 x
2

i + ... + βk x
k

i + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable; the xi’s are the settings of the independent (explanatory) variable;
β0, β1, ..., βk are the regression coefficients; and the εi’s are independently distributed
normal errors each with mean zero and variance σ2.

Function “IMSL_POLYREGRESS” on page 651 fits a polynomial regression model
with the option of determining the degree of the model and also produces summary
information. Function “IMSL_POLYPREDICT” on page 659 computes predicted
values, confidence intervals, and case statistics for the model fit by POLYREGRESS.

The information about the fit is communicated from IMSL_POLYREGRESS to
IMSL_POLYPREDICT by using keyword Predict_Info.
IDL Analyst Reference Guide Overview: Regression

590 Chapter 14: Regression
Specification of X for the General Linear Model

Variables used in the general linear model are either continuous or classification
variables. Typically, multiple regression models use continuous variables, whereas
analysis of variance models use classification variables. Although the notation used
to specify analysis of variance models and multiple regression models may look quite
different, the models are essentially the same. The term “general linear model”
emphasizes that a common notational scheme is used for specifying a model that may
contain both continuous and classification variables.

A general linear model is specified by its effects (sources of variation). An effect is
referred to in this text as a single variable or a product of variables. (The term “effect”
is often used in a narrower sense, referring only to a single regression coefficient.) In
particular, an “effect” is composed of one of the following:

• a single continuous variable

• a single classification variable

• several different classification variables

• several continuous variables, some of which may be the same

• continuous variables, some of which may be the same, and classification
variables, which must be distinct

Effects of the first type are common in multiple regression models. Effects of the
second type appear as main effects in analysis of variance models. Effects of the third
type appear as interactions in analysis of variance models. Effects of the fourth type
appear in polynomial models and response surface models as powers and
crossproducts of some basic variables. Effects of the fifth type appear in analysis of
covariance models as regression coefficients that indicate lack of parallelism of a
regression function across the groups.

The analysis of a general linear model occurs in two stages. The first stage calls
function “IMSL_REGRESSORS” on page 602 to specify all regressors except the
intercept. The second stage calls “IMSL_MULTIREGRESS” on page 609, at which
point the model is specified as either having (default) or not having an intercept.
Overview: Regression IDL Analyst Reference Guide

Chapter 14: Regression 591
For the sake of this discussion, define a variable intcep as shown in Table 14-1:

The remaining parameters and keywords (n_continuous, n_class, Class_Columns,
Var_Effects, and Indices_Effects) are defined for IMSL_REGRESSORS. All have
defaults except for n_continuous and n_class, both of which must be specified. (See
the documentation for the “IMSL_REGRESSORS” on page 602 for a discussion of
the defaults.) The meaning of each of these input parameters is as follows:

n_continuous—Number of continuous variables.

n_class—Number of classification variables.

Class_Columns—Index vector containing the column numbers of x that are the
classification variables.

Var_Effects—Vector containing the number of variables associated with each effect
in the model.

Indices_Effects—Index vector containing the column numbers of x for each variable
for each effect.

Suppose the data matrix has as its first four columns two continuous variables in
Columns 0 and 1 and two classification variables in Columns 2 and 3. The data might
appear as shown in Table 14-2:

Option intcep Action

No intercept 0 An intercept is not in the model.

Intercept (default) 1 An intercept is in the model.

Table 14-1: intcep Definitions

Column 0 Column 1 Column 2 Column 3

11.23 1.23 1.0 5.0

12.12 2.34 1.0 4.0

12.34 1.23 1.0 4.0

4.34 2.21 1.0 5.0

5.67 4.31 2.0 4.0

4.12 5.34 2.0 1.0

Table 14-2: Data Matrix
IDL Analyst Reference Guide Overview: Regression

592 Chapter 14: Regression
Each distinct value of a classification variable determines a level. The classification
variable in Column 2 has two levels. The classification variable in Column 3 has three
levels. (Integer values are recommended, but not required, for values of the
classification variables. The values of the classification variables corresponding to the
same level must be identical.)

Some examples of regression functions and their specifications are as shown in Table
14-3:

Functions for Fitting the Model

“IMSL_MULTIREGRESS” on page 609 fits a multiple general linear model, where
regressors for the general linear model have been generated using
“IMSL_REGRESSORS” on page 602.

4.89 9.31 2.0 1.0

9.12 3.71 2.0 1.0

Regression
Functions

intce
p

n_clas
s

Class_
Column

s

Var_Effect
s

Indices
_

Effects

β0 + β1x1 1 0 1 0

β0 + β1x1 + β2x2
1 1 0 1, 2 0, 0, 0

µ + αi 1 1 2 1 2

µ + αi + βj + γij 1 2 2, 3 1, 1, 2 2, 3, 2, 3

µij 0 2 2, 3 2 2, 3

β0 + β1x1 + β2x2 + β3x1x2 1 0 1, 1, 2 0, 1, 0, 1

µ + αi + βx1i + βix1i 1 1 2 1, 1, 2 2, 0, 0, 2

Table 14-3: Regression Functions

Column 0 Column 1 Column 2 Column 3

Table 14-2: Data Matrix (Continued)
Overview: Regression IDL Analyst Reference Guide

Chapter 14: Regression 593
Linear Dependence and the R Matrix

Linear dependence of the regressors frequently arises in regression models—
sometimes by design and sometimes by accident. The functions in this chapter are
designed to handle linear dependence of the regressors; i.e., the n x p matrix X (the
matrix of regressors) in the general linear model can have rank less than p. Often, the
models are referred to as nonfull rank models.

As discussed in Searle (1971, Chapter 5), be careful to correctly use the results of the
fitted nonfull rank regression model for estimation and hypothesis testing. In the
nonfull rank case, not all linear combinations of the regression coefficients can be
estimated. Those linear combinations that can be estimated are called “estimable
functions.” If the functions are used to attempt to estimate linear combinations that
cannot be estimated, error messages are issued. A good general discussion of
estimable functions is given by Searle (1971, pp. 180–188).

The check used by functions in this chapter for linear dependence is sequential. The j-
th regressor is declared linearly dependent on the preceding j – 1 regressors if 1 – R2

j

(1, 2, ..., j – 1) is less than or equal to keyword Tolerance. Here, Rj (1, 2, ..., j – 1) is the
multiple correlation coefficient of the j-th regressor with the first j – 1 regressors.
When a function declares the j-th regressor to be linearly dependent on the first j – 1,
the j-th regression coefficient is set to zero. Essentially, this removes the j-th regressor
from the model.

The reason a sequential check is used is that practitioners frequently include the
preferred variables to remain in the model first. Also, the sequential check is based on
many of the computations already performed as this does not degrade the overall
efficiency of the functions. There is no perfect test for linear dependence when finite
precision arithmetic is used. Keyword Tolerance allows you some control over the
check for linear dependence. If a model is full rank, input Tolerance = 0.0. However,
Tolerance should be input as approximately 100 times the machine precision. (See
IMSL_MACHINE.)

Functions performing least squares are based on the QR decomposition of X or on a
Cholesky factorization RTR of XTX. Maindonald (1984, Chapters 1–5) discusses these
methods extensively. The R matrix used by the regression function is a p x p upper-
triangular matrix, i.e., all elements below the diagonal are zero. The signs of the
diagonal elements of R are used as indicators of linearly dependent regressors and as
indicators of parameter restrictions imposed by fitting a restricted model. The rows of
R can be partitioned into three classes by the sign of the corresponding diagonal
element:

1. A positive diagonal element means the row corresponds to data.
IDL Analyst Reference Guide Overview: Regression

594 Chapter 14: Regression
2. A negative diagonal element means the row corresponds to a linearly
independent restriction imposed on the regression parameters by AB = Z in a
restricted model.

3. A zero diagonal element means a linear dependence of the regressors was
declared. The regression coefficients in the corresponding row of:

are set to zero. This represents an arbitrary restriction that is imposed to obtain
a solution for the regression coefficients. The elements of the corresponding
row of R also are set to zero.

Nonlinear Regression Model

The nonlinear regression model is

yi = f(xi ; θ) + ε i i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable, the xi’s are the known vectors of values of the independent
(explanatory) variables, f is a known function of an unknown regression parameter
vector θ, and the εi’s are independently distributed normal errors each with mean zero
and variance σ2.

“IMSL_NONLINREGRESS” on page 667 performs the least-squares fit to the data
for this model.

Weighted Least Squares

Functions throughout this chapter generally allow weights to be assigned to the
observations. Keyword Weights is used throughout to specify the weighting for each
row of X.

Computations that relate to statistical inference—e.g., t tests, F tests, and confidence
intervals—are based on the multiple regression model except that the variance of εi is
assumed to equal σ2 times the reciprocal of the corresponding weight.

If a single row of the data matrix corresponds to ni observations, keyword
Frequencies can be used to specify the frequency for each row of X. Degrees of
freedom for error are affected by frequencies but are unaffected by weights.

Summary Statistics

“IMSL_MULTIREGRESS” on page 609 can be used to compute statistics related to
a regression for each of the q dependent variables fitted. The summary statistics
include the model analysis of variance table, sequential sum of squares and F-

B̂

Overview: Regression IDL Analyst Reference Guide

Chapter 14: Regression 595
statistics, coefficient estimates, estimated standard errors, t-statistics, variance
inflation factors, and estimated variance-covariance matrix of the estimated
regression coefficients. “IMSL_POLYREGRESS” on page 651 includes most of the
same functionality for polynomial regressions.

The summary statistics are computed under the model y = Xβ + ε, where y is the n x 1
vector of responses, X is the n x p matrix of regressors with rank (X) = r, β is the p x 1
vector of regression coefficients, and ε is the n x 1 vector of errors whose elements
are independently normally distributed with mean zero and variance σ2/wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the
weights), most of the computed summary statistics are output in the following
keywords:

Anova_Table—One-dimensional array, usually of length 15. In IMSL_STEPWISE,
Anova_Table is of length 13 because the last two elements of the array cannot be
computed from the input. The array contains statistics related to the analysis of
variance. The sources of variation examined are the regression, error, and total. The
first 10 elements of Anova_Table and the notation frequently used for these is
described in Table 14-4 (here, Aov replaces Anova_Table):

If the model has an intercept (default), the total sum of squares is the sum of squares
of the deviations of yi from its (weighted) mean:

the so-called corrected total sum of squares denoted by the following:

Source
of

Variation

Degrees of
Freedom

Sum of
Squares

Mean
Square F

p-
value

Regression DFR = Aov (0) SSR = Aov (3) MSR = Aov (6) Aov (8) Aov (9)

Error DFE = Aov (1) SSE = Aov (4) s2 = Aov (7)

Total DFT = Aov (2) SST = Aov (5)

Table 14-4: Model Analysis of Variance

y

SST wi yi y–()2

i 1=

n

∑=
IDL Analyst Reference Guide Overview: Regression

596 Chapter 14: Regression
If the model does not have an intercept (No_Intercept), the total sum of squares is the
sum of squares of yi—the so-called uncorrected total sum of squares denoted by the
following:

The error sum of squares is given as follows:

The error degrees of freedom is defined by DFE = n – r.

The estimate of σ2 is given by s2 = SSE/DFE, which is the error mean square.

The computed F statistic for the null hypothesis, H0:β1 = β2 = ... = βk = 0, versus the
alternative that at least one coefficient is nonzero is given by F = MSR/s2. The p-
value associated with the test is the probability of an F larger than that computed
under the assumption of the model and the null hypothesis. A small p-value (less than
0.05) is customarily used to indicate there is sufficient evidence from the data to
reject the null hypothesis.

The remaining five elements in Anova_Table frequently are displayed together with
the actual analysis of variance table. The quantities R-squared (R2 =
Anova_Table(10)) and adjusted R-squared
(R2

a = Anova_Table(11)) are expressed as a percentage and are defined as follows:

The square root of s2 (s = Anova_Table(12)) is frequently referred to as the estimated
standard deviation of the model error.

The overall mean of the responses:

is output in Anova_Table (13).

The coefficient of variation (CV = Anova_Table(14)) is expressed as a percentage and
defined by:

SST wiyi
2

i 1=

n

∑=

SSE wi yi ŷi–()2

i 1=

n

∑=

R
2

100 SSR/SST() 100 1 SSE/SST–()= =

Ra
2

100 1 s
2

SST DFT⁄
-------------------------–

 =

y

CV 100s/y=
Overview: Regression IDL Analyst Reference Guide

Chapter 14: Regression 597
T_Tests—Two-dimensional matrix containing the regression coefficient vector

as one column and associated statistics (estimated standard error, t statistic and p-
value) in the remaining columns.

Coef_Covariances—Estimated variance-covariance matrix of the estimated
regression coefficients.

Tests for Lack-of-Fit

Tests for lack-of-fit are computed for the polynomial regression by
“IMSL_POLYREGRESS” on page 651. Output keyword Ssq_Lof returns the lack-of-
fit F tests for each degree polynomial 1, 2, ..., k, that is fit to the data. These tests are
used to indicate the degree of the polynomial required to fit the data well.

Diagnostics for Individual Cases

Diagnostics for individual cases (observations) are computed by two functions in the
regression chapter: “IMSL_MULTIPREDICT” on page 624 for linear and nonlinear
regressions and “IMSL_POLYPREDICT” on page 659 for polynomial regressions.

Statistics computed include predicted values, confidence intervals, and diagnostics
for detecting outliers and cases that greatly influence the fitted regression.

The diagnostics are computed under the model y = Xβ + ε, where y is the n x 1 vector
of responses, X is the n x p matrix of regressors with rank (X) = r, β is the p x 1 vector
of regression coefficients, and ε is the n x 1 vector of errors whose elements are
independently normally distributed with mean zero and variance σ2/wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the
weights), the following five diagnostics are computed:

1. leverage

2. standardized residual

3. jackknife residual

4. Cook’s distance

5. DFFITS

The definitions of these terms are given in the discussion below.

β̂

IDL Analyst Reference Guide Overview: Regression

598 Chapter 14: Regression
Let xi be a column vector containing the elements of the i-th row of X. A case can be
unusual either because of xi or because of the response yi. The leverage hi is a
measure of uniqueness of the xi. The leverage is defined by:

where W = diag(w1, w2, ..., wn) and (XTWX)– denotes a generalized inverse of XTWX.
The average value of the hi’s is r/n. Regression functions declare xi unusual if hi > 2r/
n. Hoaglin and Welsch (1978) call a data point highly influential (i.e., a leverage
point) when this occurs.

Let ei denote the residual

for the i-th case.

The estimated variance of ei is (1 – hi)s
2/wi, where s2 is the estimated standard

deviation of the model error. The i-th standardized residual (also called the internally
studentized residual) is by definition

and ri follows an approximate standard normal distribution in large samples.

The i-th jackknife residual or deleted residual involves the difference between yi and
its predicted value, based on the data set in which the i-th case is deleted. This
difference equals ei/(1 – hi). The jackknife residual is obtained by standardizing this
difference. The residual mean square for the regression in which the i-th case is
deleted is as follows:

The jackknife residual is defined as

and ti follows a t distribution with n – r – 1 degrees of freedom.

hi xi
T

X
T

WX()
_
xi[] wi=

yi ŷi–

ri ei
wi

s
2

1 hi–()
-----------------------=

si
2 n r–()s

2
wiei

2
/ 1 hi–()–

n r– 1–
---=
Overview: Regression IDL Analyst Reference Guide

Chapter 14: Regression 599
Cook’s distance for the i-th case is a measure of how much an individual case affects
the estimated regression coefficients. It is given as follows:

Weisberg (1985) states that if Di exceeds the 50-th percentile of the F(r, n – r)
distribution, it should be considered large. (This value is about 1. This statistic does
not have an F distribution.)

DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case,
DFFITS is computed by the following formula:

Hoaglin and Welsch (1978) suggest that DFFITS greater than:

is large.

Transformations

Transformations of the independent variables are sometimes useful in order to satisfy
the regression model. The inclusion of squares and crossproducts of the variables (x1,
x2, x2

1, x2
2, x1x2) often is needed. Logarithms of the independent variables also are

used. (See Draper and Smith 1981, pp. 218–222; Box and Tidwell 1962; Atkinson
1985, pp. 177–180; and Cook and Weisberg 1982, pp. 78–86.)

When the responses are described by a nonlinear function of the parameters, a
transformation of the model equation often can be selected so that the transformed
model is linear in the regression parameters. For example, by taking natural
logarithms on both sides of the equation, the exponential model:

can be transformed to a model that satisfies the linear regression model provided the
εi’s have a log-normal distribution (Draper and Smith 1981, pp. 222–225).

ti ei
wi

si
2

1 hi–()
-----------------------=

Di
wihiei

2

rs
2

1 hi–()2
----------------------------=

DFFITSi ei
wihi

si
2

1 hi–()2
-------------------------=

2 r/n

y e
β0 β1x1+

ε=
IDL Analyst Reference Guide Overview: Regression

600 Chapter 14: Regression
When the responses are nonnormal and their distribution is known, a transformation
of the responses often can be selected so that the transformed responses closely
satisfy the regression model assumptions. The square-root transformation for counts
with a Poisson distribution and the arc-sine transformation for binomial proportions
are common examples (Snedecor and Cochran 1967, pp. 325–330; Draper and Smith
1981, pp. 237–239).

Alternatives to Least Squares

The method of least squares has desirable characteristics when the errors are
normally distributed, e.g., a least-squares solution produces maximum likelihood
estimates of the regression parameters. However, when errors are not normally
distributed, least squares may yield poor estimators. The IMSL_LNORMREGRESS
function offers three alternatives to least squares methodology, Least Absolute Value,
Lp Norm, and Least Maximum Value.

The least absolute value (LAV, L1) criterion yields the maximum likelihood estimate
when the errors follow a Laplace distribution. Keyword Lav (706) is often used when
the errors have a heavy tailed distribution or when a fit is needed that is resistant to
outliers.

A more general approach, minimizing the Lp norm (p ≤ 1), is given by keyword Llp
(705). Although the routine requires about 30 times the CPU time for the case p = 1
than would the use of keyword Lav, the generality of Llp allows you to try several
choices for p ≥ 1 by simply changing the input value of p in the calling program. The
CPU time decreases as p gets larger. Generally, choices of p between 1 and 2 are of
interest. However, the Lp norm solution for values of p larger than 2 can also be
computed.

The minimax (LMV, , Chebyshev) criterion is used by setting keyword Lmv. Its
estimates are very sensitive to outliers, however, the minimax estimators are quite
efficient if the errors are uniformly distributed.

Missing Values

NaN (Not a Number) is the missing value code used by the regression functions. Use
IMSL_MACHINE to retrieve NaN. Any element of the data matrix that is missing
must be set to NaN. In fitting regression models, any observation containing NaN for
the independent, dependent, weight, or frequency variables is omitted from the
computation of the regression parameters.

L∞
Overview: Regression IDL Analyst Reference Guide

Chapter 14: Regression 601
Regression Routines

Multiple Linear Regression

IMSL_REGRESSORS—Generates regressors for a general linear model.

IMSL_MULTIREGRESS—Fits a multiple linear regression model and optionally
produces summary statistics for a regression model.

IMSL_MULTIPREDICT—Computes predicted values, confidence intervals, and
diagnostics.

Variable Selection

IMSL_ALLBEST—All best regressions.

IMSL_STEPWISE—Stepwise regression.

Polynomial and Nonlinear Regression

IMSL_POLYREGRESS—Fits a polynomial regression model.

IMSL_POLYPREDICT—Computes predicted values, confidence intervals, and
diagnostics.

IMSL_NONLINREGRESS—Fits a nonlinear regression model.

Multivariate Linear Regression—Statistical Inference
and Diagnostics

IMSL_HYPOTH_PARTIAL—Construction of a completely testable hypothesis.

IMSL_HYPOTH_SCPH—Sums of cross products for a multivariate hypothesis.

IMSL_HYPOTH_TEST—Tests for the multivariate linear hypothesis.

Polynomial and Nonlinear Regression

IMSL_NONLINOPT—Fit a nonlinear regression model using Powell's algorithm.

Alternatives to Least Squares Regression

IMSL_LNORMREGRESS—LAV, Lpnorm, and LMV criteria regression.
IDL Analyst Reference Guide Regression Routines

602 Chapter 14: Regression
IMSL_REGRESSORS

The IMSL_REGRESSORS function generates regressors for a general linear model.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_REGRESSORS(x, n_class, n_continuous
[, CLASS_COLUMNS=array] [, /DOUBLE] [, DUMMY_METHOD=variable]
[, INDICES_EFFECTS=array] [, ORDER=value] [, VAR_EFFECTS=array])

Return Value

A two-dimensional array containing the regressor variables generated from x.

Arguments

x

Two-dimensional array containing the data. The columns must be ordered such that
the first n_class columns contain the class variables and the next n_continuous
columns contain the continuous variables. (Exception: See keyword Class_Columns.)

n_class

Number of classification variables.

n_continuous

Number of continuous variables.

Keywords

CLASS_COLUMNS

One-dimensional array of length n_class containing the column numbers of x that are
the classification variables. The remaining n_continuous variables are assumed to
IMSL_REGRESSORS IDL Analyst Reference Guide

Chapter 14: Regression 603
correspond to the columns of x in the range 0, ..., n_class – 1 that are not listed in
Class_Columns. Default: Class_Columns = [0, 1, ..., n_class – 1]

DOUBLE

If present and nonzero, double precision is used.

DUMMY_METHOD

Dummy variable option. Indicator variables are defined for each class variable as
described in the Discussion section. Dummy variables are then generated from the n
indicator variables in one of the following three ways:

• (Default)—The n indicator variables are the dummy variables.

• 1—Dummies are the first n – 1 indicator variables.

• 2—The n – 1 dummies are defined in terms of the indicator variables so that
for balanced data, the usual summation restrictions are imposed on the
regression coefficients.

INDICES_EFFECTS

One-dimensional array of length Var_Effects (0) + Var_Effects (1) + ... Var_Effects
(N_ELEMENTS (Var_Effects) – 1). The first Var_Effects(0) elements give the
column numbers of x for each variable in the first effect. The next Var_Effects(1)
elements give the column numbers for each variable in the second effect. The last
Var_Effects (N_ELEMENTS (Var_Effects) – 1) elements give the column numbers
for each variable in the last effect. Keywords Var_Effects and Indices_Effects must be
used together.

ORDER

Order of the model. Model order can be specified as 1 or 2. Use keyword
Indices_Effects to specify more complicated models. The keywords Var_Effects and
Indices_Effects must be used together. Default: Order = 1

VAR_EFFECTS

One-dimensional array containing the number of variables associated with each
effect in the model. The keywords Var_Effects and Indices_Effects must be used
together.
IDL Analyst Reference Guide IMSL_REGRESSORS

604 Chapter 14: Regression
Discussion

The IMSL_REGRESSORS function generates regressors for a general linear model
from a data matrix. The data matrix can contain classification variables as well as
continuous variables. Regressors for effects composed solely of continuous variables
are generated as powers and crossproducts. Consider a data matrix containing
continuous variables as Columns 3 and 4. The effect indices (3, 3) generate a
regressor whose i-th value is the square of the i-th value in Column 3. The effect
indices (3, 4) generates a regressor whose i-th value is the product of the i-th value in
Column 3 with the i-th value in Column 4.

Regressors for an effect (source of variation) composed of a single classification
variable are generated using indicator variables. Let the classification variable A take
on values a1, a2, ..., an. From this classification variable, IMSL_REGRESSORS
creates n indicator variables. For k = 1, 2, ..., n:

For each classification variable, another set of variables is created from the indicator
variables. These new variables are called dummy variables. Dummy variables are
generated from the indicator variables in one of three manners:

1. The dummies are the n indicator variables. (Default method)

2. The dummies are the first n – 1 indicator variables. (Dummy_Method = 1)

3. The n – 1 dummies are defined in terms of the indicator variables so that for
balanced data, the usual summation restrictions are imposed on the regression
coefficients. (Dummy_Method = 2)

In particular, for the default case, the dummy variables are
Ak = Ik (k = 1, 2, ..., n). For Dummy_Method = 1, the dummy variables are Ak = Ik (k =
1, 2, ..., n – 1). For Dummy_Method = 2, the dummy variables are Ak = Ik – In (k = 1,
2, ..., n – 1). The regressors generated for an effect composed of a single-
classification variable are the associated dummy variables.

Let mj be the number of dummies generated for the j-th classification variable.
Suppose there are two classification variables A and B with dummies:

 and

The regressors generated for an effect composed of two classification variables A and
B are:

Ik

1 if A = ak

0 otherwise

=

A1 A2 ... Am
1

, , , B1 B2 ... Bm2
, , ,
IMSL_REGRESSORS IDL Analyst Reference Guide

Chapter 14: Regression 605

=

More generally, the regressors generated for an effect composed of several
classification variables and several continuous variables are given by the Kronecker
products of variables, where the order of the variables is specified in Indices_Effects.
Consider a data matrix containing classification variables in Columns 0 and 1 and
continuous variables in Columns 2 and 3. Label these four columns A, B, X1, and X2.
The regressors generated by the effect indices (0, 1, 2, 2, 3) are:

Remarks

Let the data matrix x = (A, B, X1), where A and B are classification variables and X1 is
a continuous variable. The model containing the effects A, B, AB, X1, AX1, BX1, and
ABX1 is specified as follows (use optional keyword Indices_Effects):

n_class = 2

n_continuous = 1

Var_Effects = [1, 1, 2, 1, 2, 2, 3]

Indices_Effects = [0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2]

For this model, suppose that variable A has two levels, A1 and A2, and that variable B
has three levels, B1, B2, and B3. For each Dummy_Method option, the regressors in
their order of appearance in IMSL_REGRESSORS are given below

• (Default)—A1, A2, B1, B2, B3, A1 B1, A1 B2, A1 B3, A2 B1, A2 B2,
A2 B3, X1, A1 X1, A2 X1, B1 X1, B2 X1, B3 X1, A1 B1 X1,
A1 B2 X1, A1 B3 X1, A2 B1 X1, A2 B2 X1, A2 B3 X1

• 1—A1, B1, B2, A1 B1, A1 B2, X1, A1 X1, B1 X1, B2 X1, —A1 B1 X1, A1 B2 X1

• 2—A1 – A2, B1 – B3, B2 – B3, (A1 – A2) (B1 – B2), (A1 – A2) (B2 – B3), X1, (A1 –
A2) X1, (B1 – B3) X1, (B2 – B3) X1, (A1 – A2) (B1 – B2) X1, (A1 – A2) (B2 – B3)
X1

Within a group of regressors corresponding to an interaction effect, the indicator
variables composing the regressors vary most rapidly for the last classification
variable, next most rapidly for the next to last classification variable, etc.

By default, IMSL_REGRESSORS internally generates values for Var_Effects and
Indices_Effects, which correspond to a first order model with

A B⊗ A1 A2 ... Am1
, , ,() B1 B2 ... Bm2

, , ,()⊗=

A1B1 A1B2 ... A1Bm2
A2B1 A2B2 ... A2Bm2

..., , , ,, , , ,(
Am1

B1 Am1
B2 ... Am1

Bm2
), , ,

A B X1X1X2⊗ ⊗
IDL Analyst Reference Guide IMSL_REGRESSORS

606 Chapter 14: Regression
NEF = n_continuous + n_class. The variables then are used to create the regressor
variables. The effects are ordered such that the first effect corresponds to the first
column of x, the second effect corresponds to the second column of x, etc. A second
order model corresponding to the columns (variables) of x is generated if Order with
Order = 2 is specified.

There are:

effects, where NVAR = n_continuous + n_class. The first NVAR effects correspond
to the columns of x, such that the first effect corresponds to the first column of x, the
second effect corresponds to the second column of x, ..., the NVAR-th effect
corresponds to the NVAR-th column of x (i.e., x (NVAR – 1)). The next n_continuous
effects correspond to squares of the continuous variables. The last:

effects correspond to the two-variable interactions.

• Let the data matrix x = (A, B, X1), where A and B are classification variables
and X1 is a continuous variable. The effects generated and order of appearance
is A, B, X1, X2

1, AB, AX1, BX1.

• Let the data matrix x = (A, X1, X2), where A is a classification variable and X1
and X2 are continuous variables. The effects generated and order of appearance
is A, X1, X2, X2

1, X2
2, AX1, AX2, X1X2.

• Let the data matrix x = (X1, A, X2) (see Class_Columns), where A is a
classification variable and X1 and X2 are continuous variables. The effects
generated and order of appearance is X1, A, X2, X2

1, X2
2, X1A, X1X2, AX2.

Higher-order and more complicated models can be specified using Indices_Effects.

Examples

Example 1

In the following example, there are two classification variables, A and B, with two
and three values, respectively. Regressors for a one-way model (the default model
order) are generated using the ALL dummy method (the default dummy method).
The five regressors generated are A1, A2, B1, B2, B3.

NEF n_class 2*n_continuous NVAR

2

+ +=

NVAR

2

IMSL_REGRESSORS IDL Analyst Reference Guide

Chapter 14: Regression 607
labels = ['A1', 'A2', 'B1', 'B2', 'B3']
; Define some labels for printing later.
RM, x, 6, 2
; Enter the data.
row 0: 10 5
row 1: 20 15
row 2: 20 10
row 3: 10 10
row 4: 10 15
row 5: 20 5
reg = IMSL_REGRESSORS(x, 2, 0)
; Call IMSL_REGRESSORS.
PM, labels, reg, FORMAT = '(5a8, /, 6(5f8.1, /))'
; Print the results.

A1 A2 B1 B2 B3
1.0 0.0 1.0 0.0 0.0
0.0 1.0 0.0 0.0 1.0
0.0 1.0 0.0 1.0 0.0
1.0 0.0 0.0 1.0 0.0
1.0 0.0 0.0 0.0 1.0
0.0 1.0 1.0 0.0 0.0

Example 2

In this example, a two-way analysis of covariance model containing all the
interaction terms is fit. First, IMSL_REGRESSORS is called to produce a matrix of
regressors, reg, from the data x. The regressors, generated using Dummy_Method = 1,
are the model whose mean function is:

µ + αi + βj + γ ij + δ xij + ζixij + η j xij + θ ijxij i = 1, 2; j = 1, 2, 3

where α2 = β3 = γ21 = γ22 = γ23 = ζ2 = η3 = θ21 = θ22 = θ23 = 0.

labels = ['Alpha1', 'Beta1', 'Beta2', 'Gamma11', 'Gamma12', $
'Delta', 'Zeta1', 'Eta1', 'Eta2', 'Theta11', 'Theta12']

; Define some labels to use in printing the results.
x = transpose([[1.0, 1.0, 1.11], [1.0, 1.0, 2.22], $

[1.0, 1.0, 3.33], [1.0, 2.0, 1.11], [1.0, 2.0, 2.22], $
[1.0, 2.0, 3.33], [1.0, 3.0, 1.11], [1.0, 3.0, 2.22], $
[1.0, 3.0, 3.33], [2.0, 1.0, 1.11], [2.0, 1.0, 2.22], $
[2.0, 1.0, 3.33], [2.0, 2.0, 1.11], [2.0, 2.0, 2.22], $
[2.0, 2.0, 3.33], [2.0, 3.0, 1.11], [2.0, 3.0, 2.22], $
[2.0, 3.0, 3.33]])

Var_Effects = [1, 1, 2, 1, 2, 2, 3]
Indices_Effects = [0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2]
reg = IMSL_REGRESSORS(x, 2, 1, Dummy_Method = 1, $

Var_Effects = var_effects, Indices_Effects = indices_effects)
; Call IMSL_REGRESSORS.
PM, labels(0:5), reg(*, 0:5), FORMAT = '(6a9, /, 18(6f9.2, /))'
IDL Analyst Reference Guide IMSL_REGRESSORS

608 Chapter 14: Regression
; Output the results.
Alpha1 Beta1 Beta2 Gamma11 Gamma12 Delta
 1.0 1.0 0.0 1.0 0.0 1.1
 1.00 1.00 0.00 1.00 0.00 2.22
 1.00 1.00 0.00 1.00 0.00 3.33
 1.00 0.00 1.00 0.00 1.00 1.11
 1.00 0.00 1.00 0.00 1.00 2.22
 1.00 0.00 1.00 0.00 1.00 3.33
 1.00 0.00 0.00 0.00 0.00 1.11
 1.00 0.00 0.00 0.00 0.00 2.22
 1.00 0.00 0.00 0.00 0.00 3.33
 0.00 1.00 0.00 0.00 0.00 1.11
 0.00 1.00 0.00 0.00 0.00 2.22
 0.00 1.00 0.00 0.00 0.00 3.33
 0.00 0.00 1.00 0.00 0.00 1.11
 0.00 0.00 1.00 0.00 0.00 2.22
 0.00 0.00 1.00 0.00 0.00 3.33
 0.00 0.00 0.00 0.00 0.00 1.11
 0.00 0.00 0.00 0.00 0.00 2.22
 0.00 0.00 0.00 0.00 0.00 3.33

PM, labels(6:10), reg(*, 6:10), FORMAT = '(5a9, /, 18(5f9.2, /))'
Zeta1 Eta1 Eta2 Theta11 Theta12
 1.1 1.1 0.0 1.1 0.0
2.22 2.22 0.00 2.22 0.00
3.33 3.33 0.00 3.33 0.00
1.11 0.00 1.11 0.00 1.11
2.22 0.00 2.22 0.00 2.22
3.33 0.00 3.33 0.00 3.33
1.11 0.00 0.00 0.00 0.00
2.22 0.00 0.00 0.00 0.00
3.33 0.00 0.00 0.00 0.00
0.00 1.11 0.00 0.00 0.00
0.00 2.22 0.00 0.00 0.00
0.00 3.33 0.00 0.00 0.00
0.00 0.00 1.11 0.00 0.00
0.00 0.00 2.22 0.00 0.00
0.00 0.00 3.33 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

Version History

6.4 Introduced
IMSL_REGRESSORS IDL Analyst Reference Guide

Chapter 14: Regression 609
IMSL_MULTIREGRESS

The IMSL_MULTIREGRESS function fits a multiple linear regression model using
least squares and optionally compute summary statistics for the regression model.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_MULTIREGRESS(x, y [, ANOVA_TABLE=variable]
[, COEF_COVARIANCES=variable] [, COEF_VIF=variable] [, /DOUBLE]
[, FREQUENCIES=array] [, /NO_INTERCEPT] [, PREDICT_INFO=variable]
[, RANK=variable] [, RESIDUAL=variable] [, T_TESTS=variable]
[, TOLERANCE=value] [, WEIGHTS=array] [, XMEAN=variable])

Return Value

If keyword No_Intercept is not used, IMSL_MULTIREGRESS is an array of length
N_ELEMENTS (x(*, 0)) containing a least-squares solution for the regression
coefficients. The estimated intercept is the initial component of the array.

Arguments

x

Two-dimensional matrix containing the independent (explanatory) variables. The
data value for the i-th observation of the j-th independent (explanatory) variable
should be in element x(i, j).

y

Two-dimensional matrix containing of size N_ELEMENTS(x(*,0)) by n_dependent
containing the dependent (response) variable(s). The i-th column of y contains the i-
th dependent variable.
IDL Analyst Reference Guide IMSL_MULTIREGRESS

610 Chapter 14: Regression
Keywords

ANOVA_TABLE

Named variable into which the array containing the analysis of variance table is
stored. Each column of Anova_table corresponds to a dependent variable. The
analysis of variance statistics are shown in Table 14-5:

COEF_COVARIANCES

Named variable into which the m x m x n_dependent array containing estimated
variances and covariances of the estimated regression coefficients is stored. Here, m
is number of regression coefficients in the model. If No_Intercept is specified, m =
N_ELEMENTS(x(0, *)); otherwise, m = (N_ELEMENTS(x(0, *)) + 1).

Element Analysis of Variance Statistic

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

Table 14-5: Analysis of Variance Statistics
IMSL_MULTIREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 611
COEF_VIF

Named variable into which a one-dimensional array of length NPAR containing the
variance inflation factor, where NPAR is the number of parameters, is stored. The (i +
INTCEP)-th element corresponds to the i-th independent variable, where i = 0, 1, 2,
..., NPAR – 1, and INTCEP is equal to 1 if an intercept is in the model and 0
otherwise. The square of the multiple correlation coefficient for the i-th regressor
after all others is obtained from Coef_Vif by the following formula:

If there is no intercept or there is an intercept and i = 0, the multiple correlation
coefficient is not adjusted for the mean.

DOUBLE

If present and nonzero, double precision is used.

FREQUENCIES

One-dimensional array containing the frequency for each observation. Default:
Frequencies(*) = 1

NO_INTERCEPT

If present and nonzero, the intercept term:

is omitted from the model. By default, the fitted value for observation i is:

where k is the number of independent variables.

PREDICT_INFO

Named variable into which the one-dimensional byte array containing information
needed by IMSL_MULTIPREDICT is stored. The data contained in this array is in an
encrypted format and should not be altered before it is used in subsequent calls to
IMSL_MULTIPREDICT.

RANK

Named variable into which the rank of the fitted model is stored.

1.0 1.0
Coef_Vif i()
----------------------------–

β̂0

β̂0 β̂1x1 … β̂kxk+ + +
IDL Analyst Reference Guide IMSL_MULTIREGRESS

612 Chapter 14: Regression
RESIDUAL

Variable into which the array containing the residuals is stored.

T_TESTS

Named variable into which the NPAR (where NPAR is equal to the number of
parameters in the model) by 4 array containing statistics relating to the regression
coefficients is stored.

Each row corresponds to a coefficient in the model, where NPAR is the number of
parameters in the model. Row i + INTCEP corresponds to the i-th independent
variable, where INTCEP is equal to 1 if an intercept is in the model and 0 otherwise,
and i = 0, 1, 2, ..., NPAR – 1. The statistics in the columns are as follows:

• 0—coefficient estimate

• 1—estimated standard error of the coefficient estimate

• 2—t-statistic for the test that the coefficient is 0

• 3—p-value for the two-sided t test

TOLERANCE

Tolerance used in determining linear dependence. For MULTIGRESS, Tolerance =
100 x ε, where ε is machine precision (default).

WEIGHTS

One-dimensional array containing the weight for each observation. Default:
Weights(*) = 1

XMEAN

Named variable into which the array containing the estimated means of the
independent variables is stored.

Discussion

The IMSL_MULTIREGRESS function fits a multiple linear regression model with or
without an intercept.

By default, the multiple linear regression model is

yi = β0 + β1xi1 + β2xi2 + ... + βkxik + εi i = 0, 2, ..., n
IMSL_MULTIREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 613
where the observed values of the yi’s (input in y) are the responses or values of the
dependent variable; the xi1’s, xi2’s, ..., xik’s (input in x) are the settings of the k
independent variables; β0, β1, ..., βk are the regression coefficients whose estimated
values are to be output by IMSL_MULTIREGRESS; and the εi’s are independently
distributed normal errors, each with mean zero and variance σ2. Here, n =
(N_ELEMENTS(x(*, 0))). Note that by default, β0 is included in the model.

The IMSL_MULTIREGRESS function computes estimates of the regression
coefficients by minimizing the weighted sum of squares of the deviations of the
observed response yi from the fitted response:

for the n observations. This weighted minimum sum of squares (the error sum of
squares) is output as one of the analysis of variance statistics if Anova_Table is
specified and is computed as shown below:

Another analysis of variance statistics is the total sum of squares. By default, the
weighted total sum of squares is the weighted sum of squares of the deviations of yi
from its mean:

the so-called corrected total sum of squares. This statistic is computed as follows:

When No_Intercept is specified, the total weighted sum of squares is the sum of
squares of yi, the so called uncorrected total weighted sum of squares. This is
computed as follows:

See Draper and Smith (1981) for a good general treatment of the multiple linear
regression model, its analysis, and many examples.

In order to compute a least-squares solution, IMSL_MULTIREGRESS performs an
orthogonal reduction of the matrix of regressors to upper-triangular form. The
reduction is based on one pass through the rows of the augmented matrix (x, y) using
fast Givens transformations (Golub and Van Loan 1983, pp. 156–162; Gentleman

ŷi

SSE wi yi ŷi–()2

i 1=

n

∑=

y

SST wi yi y–()2

i 1=

n

∑=

SST wi yi
2

i 1=

n

∑=
IDL Analyst Reference Guide IMSL_MULTIREGRESS

614 Chapter 14: Regression
1974). This method has the advantage that it avoids the loss of accuracy that results
from forming the crossproduct matrix used in the normal equations.

By default, the current means of the dependent and independent variables are used to
internally center the data for improved accuracy. Let xj be a column vector containing
the j-th row of data for the independent variables. Let:

represent the mean vector for the independent variables given the data for rows 0, 1,
..., i. The current mean vector is defined to be:

where the wj’s and the fj’s are the weights and frequencies. The i-th row of data has:

subtracted from it and is multiplied by:

Although a crossproduct matrix is not computed, the validity of this centering
operation can be seen from the formula below for the sum-of-squares and
crossproducts matrix:

An orthogonal reduction on the centered matrix is computed. When the final
computations are performed, the intercept estimate and the first row and column of
the estimated covariance matrix of the estimated coefficients are updated (if
Coef_Covariances is specified) to reflect the statistics for the original (uncentered)
data. This means that the estimate of the intercept is for the uncentered data.

As part of the final computations, MULTIGRESS checks for linearly dependent
regressors. In particular, linear dependence of the regressors is declared if any of the
following three conditions is satisfied:

• A regressor equals zero.

• Two or more regressors are constant.

• The expression:

xi

xi

wj fjxj
j 1=

i

∑
wj fj

------------------------=

xi

wi fi

ai

ai 1–

wi f i xi xn–() xi xn–()T

i 1=

n

∑
ai

ai 1–
----------wi fi xi xi–() xi xi–()T

i 2=

n

∑=
IMSL_MULTIREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 615

is less than or equal to Tolerance. Here, Ri·1, 2, ..., i – 1 is the multiple correlation
coefficient of the i-th independent variable with the first i – 1 independent
variables. If no intercept is in the model, the “multiple correlation” coefficient
is computed without adjusting for the mean.

On completion of the final computations, if the i-th regressor is declared to be
linearly dependent upon the previous i – 1 regressors, then the i-th coefficient
estimate and all elements in the i-th row and i-th column of the estimated variance-
covariance matrix of the estimated coefficients (if Coef_Covariances is specified) are
set to zero. Finally, if a linear dependence is declared, an informational (error)
message, code STAT_RANK_DEFICIENT, is issued indicating the model is not full
rank.

The IMSL_MULTIREGRESS function also can be used to compute summary
statistics from a fitted general linear model. The model is y = Xβ + ε, where y is the
n x 1 vector of responses, X is the n x p matrix of regressors, β is the p x 1 vector of
regression coefficients, and ε is the n x 1vector of errors whose elements are each
independently distributed with mean zero and variance σ2. The
IMSL_MULTIREGRESS function uses the results of this fit to compute summary
statistics, including analysis of variance, sequential sum of squares, t tests, and an
estimated variance-covariance matrix of the estimated regression coefficients.

Some generalizations of the general linear model are allowed. If the i-th element of ε
has variance of:

and the weights wi are used in the fit of the model, IMSL_MULTIREGRESS
produces summary statistics from the weighted least-squares fit. More generally, if
the variance-covariance matrix of ε is σ2V, IMSL_MULTIREGRESS can be used to
produce summary statistics from the generalized least-squares fit. The
IMSL_MULTIREGRESS function can be used to perform a generalized least-
squares fit by regressing y*on X* where y* = (T –1)Ty, X* = (T –1)TX and T satisfies
TTT = V.

The sequential sum of squares for the i-th regression parameter is given by:

The regression sum of squares is given by the sum of the sequential sum of squares. If
an intercept is in the model, the regression sum of squares is adjusted for the mean,
i.e.:

1 Ri 1 2 … i 1–, , ,⋅
2

–

σ2

wi

Rβ̂()0
2

IDL Analyst Reference Guide IMSL_MULTIREGRESS

616 Chapter 14: Regression

is not included in the sum.

The estimate of σ2 is s2 (stored in Anova_Table(7) that is computed as
SSE/DFE.

If R is nonsingular, the estimated variance-covariance matrix of:

(stored in Coef_Covariances) is computed by s2R
–1(R –1)T.

If R is singular, corresponding to rank(X) < p, a generalized inverse is used. For a
matrix G to be a gi (i = 1, 2, 3, or 4) inverse of a matrix A, G must satisfy conditions j
(for j ≤ i) for the Moore-Penrose inverse but generally must fail conditions k (for k >
i). The four conditions for G to be a Moore-Penrose inverse of A are as follows:

1. AGA = A

2. GAG = G

3. AG is symmetric

4. GA is symmetric

In the case where R is singular, the method for obtaining Coef_Covariances follows
the discussion of Maindonald (1984, pp. 101–103). Let Z be the diagonal matrix with
diagonal elements defined by the following:

Let G be the solution to RG = Z obtained by setting the i-th ({i:rii = 0}) row of G to
zero. Keyword Coef_Covariances is set to s2GGT. (G is a g3 inverse of R, represented
by:

the result

is a symmetric g2 inverse of RTR = XTX. See Sallas and Lionti 1988.)

Note that keyword Coef_Covariances can be used only to get variances and
covariances of estimable functions of the regression coefficients, i.e., nonestimable
functions (linear combinations of the regression coefficients not in the space spanned
by the nonzero rows of R) must not be used. See, for example, Maindonald (1984, pp.
166–168) for a discussion of estimable functions.

Rβ̂()0
2

β̂

zii
1 if rii 0≠

0 ifrii 0=

=

R
g3

R
g3R

g3T
IMSL_MULTIREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 617
The estimated standard errors of the estimated regression coefficients (stored in
Column 1 of T_Tests) are computed as square roots of the corresponding diagonal
entries in Coef_Covariances.

For the case where an intercept is in the model, set:

equal to the matrix R with the first row and column deleted. Generally, the variance
inflation factor (VIF) for the i-th regression coefficient is computed as the product of
the i-th diagonal element of RTR and the i-th diagonal element of its computed
inverse. If an intercept is in the model, the VIF for those coefficients not
corresponding to the intercept uses the diagonal elements of:

(see Maindonald 1984, p. 40).

Remarks

When R is nonsingular and comes from an unrestricted regression fit,
Coef_Covariances is the estimated variance-covariance matrix of the estimated
regression coefficients and Coef_Covariances = (SSE/DFE) (RTR)–1.

Otherwise, variances and covariances of estimable functions of the regression
coefficients can be obtained using Coef_Covariances and Coef_Covariances = (SSE/
DFE) (GDGT). Here, D is the diagonal matrix with diagonal elements equal to zero if
the corresponding rows of R are restrictions and with diagonal elements equal to 1
otherwise. Also, G is a particular generalized inverse of R.

Examples

Example 1

A regression model:

yi = β 0 + β 1x i 1 + β 2x i 2 + β 3 x i 3 + ε i i = 1, 2, ..., 9

is fitted to data taken from Maindonald (1984, pp. 203–204).

RM, x, 9, 3
; Set up the data.
 row 0: 7 5 6
 row 1: 2 -1 6
 row 2: 7 3 5
 row 3: -3 1 4
 row 4: 2 -1 0
 row 5: 2 1 7

R

R
T

R

IDL Analyst Reference Guide IMSL_MULTIREGRESS

618 Chapter 14: Regression
 row 6: -3 -1 3
 row 7: 2 1 1
 row 8: 2 1 4
 y = [7, -5, 6, 5, 5, -2, 0, 8, 3]
; Call IMSL_MULTIREGRESS to compute the coefficients.
coefs = IMSL_MULTIREGRESS(x, y)
; Output the results.
PM, coefs, TITLE = 'Least-Squares Coefficients', $

FORMAT = '(f10.5)'

Least-Squares Coefficients
 7.73333
 -0.20000
 2.33333
 -1.66667

Example 2: Weighted Least-squares Fit

A weighted least-squares fit is computed using the model

yi = β0 + β1x i 1 + β2x i 2 + εi i = 1, 2, ..., 4

and weights 1/i2 discussed by Maindonald (1984, pp. 67–68).

In the example, Weights is specified. The minimum sum of squares for error in terms
of the original untransformed regressors and responses for this weighted regression
is:

where wi = 1/i2, represented in the C code as array w.

First, a procedure is defined to output the results, including the analysis of variance
statistics.

PRO print_results, Coefs, Anova_Table
coef_labels = ['intercept', 'linear', 'quadratic']
PM, coef_labels, coefs, TITLE = $

'Least-Squares Polynomial Coefficients',$
FORMAT = '(3a20, /,3f20.4, //)'

anova_labels = ['degrees of freedom for regression', $
'degrees of freedom for error', $
'total (corrected) degrees of freedom', $
'sum of squares for regression', $
'sum of squares for error', $
'total (corrected) sum of squares', $
'regression mean square', $
'error mean square', 'F-statistic', $

SSE wi yi ŷi–()2

i 1=

4

∑=
IMSL_MULTIREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 619
'p-value', 'R-squared (in percent)', $
'adjusted R-squared (in percent)', $
'est. standard deviation of model error', $
'overall mean of y', $
'coefficient of variation (in percent)']

PM, '* * * Analysis of Variance * * * ', FORMAT = '(a50, /)'
FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), FORMAT = '(a40, f20.2)'
END

RM, x, 4, 2
; Input the values for x.
row 0: -2 0
row 1: -1 2
row 2: 2 5
row 3: 7 3

y = [-3.0, 1.0, 2.0, 6.0]
; Define the dependent variables.
weights = FLTARR(4)
FOR i = 0, 3 DO weights(i) = 1/((i + 1.0)^2)
; Define the weights and print them.
PM, weights
1.00000
0.250000
0.111111
0.0625000
coefs = IMSL_MULTIREGRESS(x, y, WEIGHTS = weights, $

ANOVA_TABLE = anova_table)
print_results, coefs, anova_table
; Print results using the procedure defined above.

Least-Squares Polynomial Coefficients
 intercept linear quadratic
 -1.4307 0.6581 0.7485

 * * * Analysis of Variance * * *
 degrees of freedom for regression 2.00
 degrees of freedom for error 1.00
 total (corrected) degrees of freedom 3.00
 sum of squares for regression 7.68
 sum of squares for error 1.01
 total (corrected) sum of squares 8.69
 regression mean square 3.84
 error mean square 1.01
 F-statistic 3.79
 p-value 0.34
 R-squared (in percent) 88.34
 adjusted R-squared (in percent) 65.03
est. standard deviation of model error 1.01
 overall mean of y -1.51
IDL Analyst Reference Guide IMSL_MULTIREGRESS

620 Chapter 14: Regression
 coefficient of variation (in percent) -66.55

Example 3: Plotting Results

This example uses IMSL_MULTIREGRESS to fit data with both simple linear
regression and second order regression. The results, shown in Figure 14-1, are plotted
along with confidence bands and residual plots.

PRO IMSL_MULTIREGRESS_ex
!P.MULTI = [0, 2, 2]
x = [1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0, 5.0, 5.0]

y = [1.1, 0.1, -1.2, 0.3, 1.4, 2.6, 3.1, 4.2, 9.3, 9.6]
z = FINDGEN(120)/20
line = MAKE_ARRAY(120, VALUE = 0.0)
; Perform a simple linear regression.
Coefs = IMSL_MULTIREGRESS(x, y, PREDICT_INFO = predict_info)
y_hat = IMSL_MULTIPREDICT(predict_info, x, $

RESIDUAL = residual, Y = y)
y_hat = IMSL_MULTIPREDICT(predict_info, z, $

CI_PTW_NEW_SAMP = ci)
PLOT, x, y, Title = 'Simple linear regression', PSYM = 4, $

XRANGE = [0.0, 6.0]
; Plot the regression.
y2 = coefs(0) + coefs(1) * z
OPLOT, z, y2
OPLOT, z, ci(0, *), LINESTYLE = 1
OPLOT, z, ci(1, *), LINESTYLE = 1
PLOT, x, residual, PSYM = 4, TITLE = $

'Residual plot for simple linear regression', $
XRANGE = [0.0, 6.0], YRANGE = [-6, 6]

; Plot the residual.
OPLOT, z, line
x2 = [[x], [x * x]]
; Compute the second-order regression.
coefs = IMSL_MULTIREGRESS(x2, y, PREDICT_INFO = predict_info)
y_hat = IMSL_MULTIPREDICT(predict_info, x2, $

RESIDUAL = residual, Y = y)
y_hat = IMSL_MULTIPREDICT(predict_info, $

[[z], [z * z]], CI_PTW_NEW_SAMP = ci)
PLOT, x, y, Title = '2nd order regression',$

PSYM = 4, XRANGE = [0.0, 6.0]
; Plot the second-order regression and the residual.
y2 = coefs(0) + coefs(1) * z + coefs(2) * z * z
OPLOT, z, y2
OPLOT, z, ci(0, *), LINESTYLE = 1
OPLOT, z, ci(1, *), LINESTYLE = 1
PLOT, x2, residual, PSYM = 4, TITLE = $

'Residual plot for 2nd order regression', $
IMSL_MULTIREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 621
XRANGE = [0.0, 6.0], YRANGE = [-6, 6]
OPLOT, z, line

END

Example 4: Two-variable, Second-degree Fit

In this example, IMSL_MULTIREGRESS is used to compute a two variable second-
degree fit to data. The results are shown in Figure 14-2.

PRO IMSL_MULTIREGRESS_ex
; Define the data.
x1 = FLTARR(10, 5)
x1(*, 0) = [8.5, 8.9, 10.6, 10.2, 9.8, $

10.8, 11.6, 12.0, 12.5, 10.9]
x1(*, 1) = [2, 3, 3, 20, 22, 20, 31, 32, 31, 28]
x1(*, 2) = x1(*, 0) * x1(*, 1)
x1(*, 3) = x1(*, 0) * x1(*, 0)
x1(*, 4) = x1(*, 1) * x1(*, 1)
y = [30.9, 32.7, 36.7, 41.9, 40.9, 42.9, 46.3, 47.6, 47.2, 44.0]
nxgrid = 30
nygrid = 30

Figure 14-1: Plots of Fit
IDL Analyst Reference Guide IMSL_MULTIREGRESS

622 Chapter 14: Regression
; Setup vectors for surface plot. These will be (nxgrid x nygrid)
; elements each, evenly spaced over the range of the data
; in x1(*, 0) and x1(*, 1).
ax1 = min(x1(*, 0)) + (max(x1(*, 0)) - $

min(x1(*, 0))) * FINDGEN(nxgrid)/(nxgrid - 1)
ax2 = MIN(x1(*, 1)) + (MAX(x1(*, 1)) - $

MIN(x1(*, 1))) * FINDGEN(nxgrid)/(nxgrid - 1)
coefs = IMSL_MULTIREGRESS(x1, y, RESIDUAL = resid)
; Compute regression coefficients.
z = FLTARR(nxgrid, nygrid)
; Create two-dimensional array of evaluations of the regression
; model at points in grid established by ax1 and ax2.
FOR i = 0, nxgrid - 1 DO BEGIN

FOR j = 0, nygrid-1 DO BEGIN
z(i,j) = Coefs(0) $
+ Coefs(1) * ax1(i) + Coefs(2) * ax2(j) $
+ Coefs(3) * ax1(i) * ax2(j) $
+ Coefs(4) * ax1(i)^2 $
+ Coefs(5) * ax2(j)^2

ENDFOR
ENDFOR
!P.CHARSIZE = 2
SURFACE, z, ax1, ax2, /SAVE, XTITLE = 'X1', YTITLE = 'X2'
PLOTS, x1(*, 0), x1(*, 1), y, /T3D, PSYM = 4, SYMSIZE = 3
XYOUTS, .3, .9, /NORMAL, 'Two-Variable Second-Degree Fit'
; Plot the results.
END
IMSL_MULTIREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 623
Errors

Warning Errors

STAT_RANK_DEFICIENT—Model is not full rank. There is not a unique least-
squares solution.

Version History

Figure 14-2: Two-variable, Second Degree Fit

6.4 Introduced
IDL Analyst Reference Guide IMSL_MULTIREGRESS

624 Chapter 14: Regression
IMSL_MULTIPREDICT

The IMSL_MULTIPREDICT function computes predicted values, confidence
intervals, and diagnostics after fitting a regression model.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_MULTIPREDICT(predict_info, x [, CI_SCHEFFE=variable]
[, CI_PTW_POP_MEAN=variable] [, CI_PTW_NEW_SAMP=variable]
[, CONFIDENCE=value] [, COOKS_D=variable] [, DEL_RESIDUAL=variable]
[, DFFITS=variable] [, /DOUBLE] [, LEVERAGE=variable]
[, RESIDUAL=variable] [, STD_RESIDUAL=variable] [, WEIGHTS=array]
[, Y=array])

Return Value

One-dimensional array of length N_ELEMENTS (x(*, 0)) containing the predicted
values.

Arguments

predict_info

One-dimensional byte array containing information computed by
IMSL_MULTIREGRESS and returned through keyword predict_info. The data
contained in this array is in an encrypted format and should not be altered after it is
returned by IMSL_MULTIREGRESS.

x

Two-dimensional array containing the combinations of independent variables in each
row for which calculations are to be performed.
IMSL_MULTIPREDICT IDL Analyst Reference Guide

Chapter 14: Regression 625
Keywords

CI_SCHEFFE

Named variable into which the two-dimensional array of size 2 by N_ELEMENTS
(x(*, 0)) containing the Scheffé confidence intervals corresponding to the rows of x is
stored. Element Ci_Scheffe (0, i) contains the i-th lower confidence limit; Ci_Scheffe
(1, i) contains the i-th upper confidence limit.

CI_PTW_POP_MEAN

Named variable into which the two-dimensional array of size 2 by N_ELEMENTS
(x(*, 0)) containing the confidence intervals for two-sided interval estimates of the
means, corresponding to the rows of x, is stored. Element Ci_Ptw_Pop_Mean (0, i)
contains the i-th lower confidence limit; Ci_Ptw_Pop_Mean (1, i) contains the i-th
upper confidence limit.

CI_PTW_NEW_SAMP

Named variable into which the two-dimensional array of size 2 by N_ELEMENTS
(x(*, 0)) containing the confidence intervals for two-sided prediction intervals,
corresponding to the rows of x, is stored. Element Ci_Ptw_New_Samp (0, i) contains
the i-th lower confidence limit; Ci_Ptw_New_Samp (1, i) contains the i-th upper
confidence limit.

CONFIDENCE

Confidence level for both two-sided interval estimates on the mean and for two-sided
prediction intervals, in percent. Keyword Confidence must be in the range [0.0,
100.0). For one-sided intervals with confidence level, where 50.0 ≤ c < 100.0, set
Confidence = 100.0 – 2.0 * (100.0 – c). Default: Confidence = 95.0

COOKS_D

Named variable into which the one-dimensional array of length N_ELEMENTS (x(*,
0)) containing the Cook’s D statistics is stored.

Note
You must specify the Y keyword when using this keyword.
IDL Analyst Reference Guide IMSL_MULTIPREDICT

626 Chapter 14: Regression
DEL_RESIDUAL

Named variable into which the one-dimensional array of length N_ELEMENTS (x(*,
0)) containing the deleted residuals is stored.

Note
You must specify the Y keyword when using this keyword.

DFFITS

Named variable into which the one-dimensional array of length N_ELEMENTS (x(*,
0)) containing the DFFITS statistics is stored.

Note
You must specify the Y keyword when using this keyword.

DOUBLE

If present and nonzero, double precision is used.

LEVERAGE

Named variable into which the one-dimensional array of length N_ELEMENTS (x(*,
0)) containing the leverages is stored.

RESIDUAL

Named variable into which the one-dimensional array of length N_ELEMENTS (x(*,
0)) containing the residuals is stored.

Note
You must specify the Y keyword when using this keyword.

STD_RESIDUAL

Named variable into which the one-dimensional array of length N_ELEMENTS (x(*,
0)) containing the standardized residuals is stored.

Note
You must specify the Y keyword when using this keyword.
IMSL_MULTIPREDICT IDL Analyst Reference Guide

Chapter 14: Regression 627
WEIGHTS

One-dimensional array containing the weight for each row of x. The computed
prediction interval uses SSE/(DFE * Weights (1)) for the estimated variance of a
future response. Default: Weights (*) = 1

Y

Array of length N_ELEMENTS (x(*, 0)) containing observed responses.

Discussion

The general linear model used by IMSL_MULTIPREDICT is:

y = Xβ + ε

where y is the n x 1 vector of responses, X is the n x p matrix of regressors, β is the p
x 1 vector of regression coefficients, and ε is the n x 1 vector of errors whose
elements are independently normally distributed with mean zero and the following
variance:

 σ 2/wi

From a general linear model fit using the wi’s as the weights,
IMSL_MULTIPREDICT computes confidence intervals and statistics for the
individual cases that constitute the data set. Let xi be a column vector containing
elements of the i-th row of X. Let W = diag(w1, w2, ..., wn). The leverage is defined as
hi = (xT

i (X
TWX)–) xiwi. Put D = diag(d1, d2, ..., dp) with dj = 1 if the j-th diagonal

element of R is positive and zero otherwise. The leverage is computed as hi =
(aTDa)wi , where a is a solution to RTa = xi. The estimated variance of:

is given by the following:

his
2/wi, where s2 = SSE/DFE

The computation of the remainder of the case statistics follow easily from their
definitions. See the chapter introduction for definitions of the case diagnostics.

Informational errors can occur if the input matrix X is not consistent with the
information from the fit (contained in predict_info), or if excess rounding has
occurred. The warning error STAT_NONESTIMABLE arises when X contains a row not
in the space spanned by the rows of R. An examination of the model that was fitted
and the X for which diagnostics are to be computed is required in order to ensure that
only linear combinations of the regression coefficients that can be estimated from the

ŷ xi
T

B̂=
IDL Analyst Reference Guide IMSL_MULTIPREDICT

628 Chapter 14: Regression
fitted model are specified in x. For further details, see the discussion of estimable
functions given in Maindonald (1984, pp. 166–168) and Searle (1971, pp. 180–188).

Often predicted values and confidence intervals are desired for combinations of
settings of the independent variables not used in computing the regression fit. This
can be accomplished by defining a new data matrix. Since the information about the
model fit is input in predict_info, it is not necessary to send in the data set used for the
original calculation of the fit, i.e., only variable combinations for which predictions
are desired need be entered in x.

Examples

Example 1

This example calls IMSL_MULTIPREDICT to compute predicted values after
calling IMSL_MULTIREGRESS.

x = MAKE_ARRAY(13, 4)
; Define the data set.
x(0, *) = [7, 26, 6, 60]
x(1, *) = [1, 29, 15, 52]
x(2, *) = [11, 56, 8, 20]
x(3, *) = [11, 31, 8, 47]
x(4, *) = [7, 52, 6, 33]
x(5, *) = [11, 55, 9, 22]
x(6, *) = [3, 71, 17, 6]
x(7, *) = [1, 31, 22, 44]
x(8, *) = [2, 54, 18, 22]
x(9, *) = [21, 47, 4, 26]
x(10, *) = [1, 40, 23, 34]
x(11, *) = [11, 66, 9, 12]
x(12, *) = [10, 68, 8, 12]
y = [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, $

102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4]
coefs = IMSL_MULTIREGRESS(x, y, Predict_Info = predict_info)
; Call IMSL_MULTIREGRESS to compute the fit.
predicted = IMSL_MULTIPREDICT(predict_info, x)
; Call IMSL_MULTIPREDICT to compute predicted values.
PM, predicted, Title = 'Predicted values'
; Output the predicted values.
Predicted values

 78.4952
 72.7888
 105.971
 89.3271
 95.6492
 105.275
IMSL_MULTIPREDICT IDL Analyst Reference Guide

Chapter 14: Regression 629
 104.149
 75.6750
 91.7216
 115.618
 81.8090
 112.327
 111.694

Example 2

This example uses the same data set as the first example and also uses a number of
keywords to retrieve additional information from IMSL_MULTIPREDICT. First, a
procedure is defined to print the results.

PRO print_results, anova_table, t_tests, y, $
predicted, ci_scheffe, residual, dffits
labels = ['df for among groups ', $

'df for within groups ', $
'total (corrected) df ', $
'ss for among groups ', $
'ss for within groups ', $
'total (corrected) ss ', $
'mean square among groups ', $
'mean square within groups ', $
'F-statistic ', $
'P-value ', $
'R-squared (in percent) ', $
'adjusted R-squared (in percent)', $
'est. std of within group error ', $
'overall mean of y ', $
'coef. of variation (in percent) ']

PRINT, ' * * Analysis of Variance * *'
; Print the analysis of variance table.
PM, [[labels], [STRING(anova_table, FORMAT = '(f11.4)')]]
PRINT
PRINT, 'Coefficient s.e. t p-value'
PM, t_tests, FORMAT = '(f7.2, 4x, 3f7.2)'
PRINT
PRINT, ' observed predicted lower upper residual dffits'
PM, [[y], [predicted], [transpose(ci_scheffe)], $

[residual], [dffits]], FORMAT = '(6f10.2)'
END
x = MAKE_ARRAY(13, 4)
; Define the data set.
x(0, *) = [7, 26, 6, 60]
x(1, *) = [1, 29, 15, 52]
x(2, *) = [11, 56, 8, 20]
x(3, *) = [11, 31, 8, 47]
x(4, *) = [7, 52, 6, 33]
IDL Analyst Reference Guide IMSL_MULTIPREDICT

630 Chapter 14: Regression
x(5, *) = [11, 55, 9, 22]
x(6, *) = [3, 71, 17, 6]
x(7, *) = [1, 31, 22, 44]
x(8, *) = [2, 54, 18, 22]
x(9, *) = [21, 47, 4, 26]
x(10, *) = [1, 40, 23, 34]
x(11, *) = [11, 66, 9, 12]
x(12, *) = [10, 68, 8, 12]
y = [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, $

102.7, 72.5, 93.1, 115.9, 83.8,113.3, 109.4]
coefs = IMSL_MULTIREGRESS(x, y, $

Anova_Table = anova_table, $
T_Tests = t_tests, $
Predict_Info = predict_info, $
Residual = residual)
; Call IMSL_MULTIREGRESS to compute the fit.

predicted = IMSL_MULTIPREDICT(predict_info, x, $
Ci_scheffe = ci_scheffe, $
Y = y, $
Dffits = dffits)

print_results, anova_table, t_tests, y, $
predicted, ci_scheffe, residual, dffits

* * Analysis of Variance * *
 df for among groups 4.0000
 df for within groups 8.0000
 total (corrected) df 12.0000
 ss for among groups 2667.8997
 ss for within groups 47.8637
 total (corrected) ss 2715.7634
 mean square among groups 666.9749
 mean square within groups 5.9830
 F-statistic 111.4791
 P-value 0.0000
 R-squared (in percent) 98.2376
 adjusted R-squared (in percent) 97.3563
 est. std of within group error 2.4460
 overall mean of y 95.4231
 coef. of variation (in percent) 2.5633

 Coefficient s.e. t p-value
62.41 70.07 0.89 0.40
1.55 0.74 2.08 0.07
0.51 0.72 0.70 0.50
0.10 0.75 0.14 0.90
-0.14 0.71 -0.20 0.84

observed predicted lower upper residual dffits
78.50 78.50 70.70 86.29 0.00 0.00
74.30 72.79 66.73 78.85 1.51 0.52
104.30 105.97 97.99 113.95 -1.67 -1.24
87.60 89.33 83.62 95.03 -1.73 -0.53
IMSL_MULTIPREDICT IDL Analyst Reference Guide

Chapter 14: Regression 631
95.90 95.65 89.37 101.93 0.25 0.09
109.20 105.27 101.57 108.98 3.93 0.76
102.70 104.15 97.79 110.51 -1.45 -0.55
72.50 75.67 68.96 82.39 -3.17 -1.64
93.10 91.72 86.02 97.42 1.38 0.42
115.90 115.62 106.83 124.41 0.28 0.30
83.80 81.81 74.96 88.66 1.99 0.93
113.30 112.33 106.94 117.71 0.97 0.26
109.40 111.69 105.91 117.48 -2.29 -0.76

Errors

Warning Errors

STAT_NONESTIMABLE—Within the preset tolerance, the linear combination of
regression coefficients is nonestimable.

STAT_LEVERAGE_GT_1—Leverage (= #) much greater than 1.0 is computed. It is set
to 1.0.

STAT_DEL_MSE_LT_0—Deleted residual mean square (= #) much less than zero is
computed. It is set to zero.

Fatal Errors

STAT_NONNEG_WEIGHT_REQUEST_2—Weight for row # was #. Weights must be
nonnegative.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_MULTIPREDICT

632 Chapter 14: Regression
IMSL_ALLBEST

The IMSL_ALLBEST procedure selects the best multiple linear regression models.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_ALLBEST, x, y [, ADJ_R_SQUARED=value] [, COEFS=variable]
[, COV_INPUT=array] [, COV_NOBS=value] [, CRITERIONS=variable]
[, /DOUBLE] [, FREQUENCIES=array] [, IDX_COEFS=variable]
[, IDX_CRITERIONS=variable] [, IDX_VARS=variable]
[, INDEP_VARS=variable] [, WEIGHTS=array] [, MALLOWS_CP=value]
[, MAX_N_BEST=value] [, MAX_N_GOOD=value] [, MAX_SUBSET=value])

Arguments

x

Two-dimensional array containing the data for the candidate variables.

y

One-dimensional array of length N_ELEMENTS (x(*, 0)) containing the responses
for the dependent variable.

Keywords

ADJ_R_SQUARED

The adjusted R2 criterion is used, where subset sizes 1, 2, ..., N_ELEMENTS (x(*, 0))
are examined. Keywords Max_Subset, Adj_R_Squared, and Mallows_Cp cannot be
used together.

COEFS

Named variable into which the two-dimensional array of size (Idx_Coefs (NTBEST))
x 5 containing statistics relating to the regression coefficients of the best models is
stored. Each row corresponds to a coefficient for a particular regression. The
IMSL_ALLBEST IDL Analyst Reference Guide

Chapter 14: Regression 633
regressions are in order of increasing subset size. Within each subset size, the
regressions are ordered so that the better regressions appear first. The statistic in the
columns are as follows (inferences are conditional on the selected model):

• 0—variable number

• 1—coefficient estimate

• 2—estimated standard error of the estimate

• 3—t-statistic for the test that the coefficient is 0

• 4—p-value for the two-sided t test

Keywords Coefs and Idx_Coefs must be used together.

COV_INPUT

Two-dimensional square array of size (N_ELEMENTS (x(0, *)) + 1) by
(N_ELEMENTS (x(0, *)) + 1) containing a variance-covariance or sum-of-squares
and crossproducts matrix, in which the last column must correspond to the dependent
variable.

Array Cov_Input can be computed using IMSL_COVARIANCES. Parameters x and
y, and keywords Frequencies and Weights are not accessed when this option is
specified. Normally, IMSL_ALLBEST computes Cov_Input from the input data
matrices x and y. However, there may be cases when you will want to calculate the
covariance matrix and manipulate it before calling IMSL_ALLBEST. See the
Discussion section for a discussion of such cases.

Note
Keywords Cov_Input and Cov_Nobs must be used together.

COV_NOBS

Number of observations associated with array Cov_Input. Keywords Cov_Input and
Cov_Nobs must be used together.

Note
Keywords Cov_Input and Cov_Nobs must be used together.

CRITERIONS

Named variable into which the one-dimensional array of length max(Idx_Criterions
(NSIZE – 1), N_ELEMENTS (x(0, *)) containing in its first Idx_Criterions (NSIZE –
IDL Analyst Reference Guide IMSL_ALLBEST

634 Chapter 14: Regression
1) elements the criterion values for each subset considered, in increasing subset size
order, is stored. Keywords Criterions and Idx_Criterions must be used together.

DOUBLE

If present and nonzero, double precision is used.

FREQUENCIES

One-dimensional array of length N_ELEMENTS (x(*, 0)) containing the frequency
for each row of x. Default: Frequencies (*) = 1

IDX_COEFS

Named variable into which the one-dimensional array of length NBEST + 1
containing the locations of Coefficients the first row of each of the best regressions is
stored. Here, NTBEST is the total number of best regression found and is
Max_Subset * Max_N_Best if Max_Subset is specified, Max_N_Best if either
Mallows_Cp or Adj_R_Squared is specified, and Max_N_Best * (N_ELEMENTS
(x(0, *))) otherwise. For i = 0, 1, ..., NTBEST, rows Idx_Coefs (i), Idx_Coefs(i) + 1,
..., Idx_Coefs (i + 1) – 1 of Coefs correspond to the (i + 1)-st regression. Keywords
Coefs and Idx_Coefs must be used together.

IDX_CRITERIONS

Named variable into which the one-dimensional array of length NSIZE containing
the locations in Criterions of the first element for each subset size is stored. NSIZE is
calculated as follows: NSIZE = (Max_Subset + 1) if Max_Subset is set. NSIZE =
(N_ELEMENTS (x(0, *)) + 1) otherwise. For i = 0, 1, ..., NSIZE – 2, element
numbers Idx_Criterions(i), Idx_Criterions (i) + 1, ..., Idx_Criterions(i + 1) – 1 of
Criterions correspond to the (i + 1)-st subset size. Keywords Criterions and
Idx_Criterions must be used together.

IDX_VARS

Named variable into which the one-dimensional array of length NSIZE containing
the locations in Indep_Vars of the first element for each subset size. NSIZE is
calculated as follows: NSIZE = (Max_Subset + 1) if Max_Subset is set. NSIZE =
(N_ELEMENTS(x(0, *)) + 1) otherwise. For i = 0, 1, ..., NSIZE – 2, element
numbers Idx_Vars(i), Idx_Vars (i) + 1, ..., Idx_Vars (i + 1) – 1) of Indep_Vars
correspond to the (i + 1)-st subset size. Keywords Indep_Vars and Idx_Vars must be
used together.
IMSL_ALLBEST IDL Analyst Reference Guide

Chapter 14: Regression 635
INDEP_VARS

Named variable into which the one-dimensional array of length Idx_Vars (NSIZE –
1) containing the variable numbers for each subset considered and in the same order
as in Criterions is stored. Keywords Indep_Vars and Idx_Vars must be used together.

WEIGHTS

One-dimensional array of length N_ELEMENTS (x(*, 0)) containing the weight for
each row of x. Default: Weights(*) = 1

MALLOWS_CP

Mallows Cp criterion is used, where subset sizes 1, 2, ..., N_ELEMENTS (x(*, 0)) are
examined. Keywords Max_Subset, Adj_R_Squared, and Mallows_Cp cannot be used
together.

MAX_N_BEST

Number of best regressions to be found. If the R2 criterion is selected, the
Max_N_Best best regressions for each subset size examined are found. If the adjusted
R2 or Mallows Cp criterion is selected, the Max_N_Best overall regressions are found.
Default: Max_N_Best = 1

MAX_N_GOOD

Maximum number of good regressions of each subset size to be saved in finding the
best regressions. Keyword Max_N_Good must be greater than or equal to
Max_N_Best. Normally, Max_N_Good should be less than or equal to 10. It need not
ever be larger than the maximum number of subsets for any subset size. Computing
time required is inversely related to Max_N_Good. Default: Max_N_Good = 10

MAX_SUBSET

The R2 criterion is used, where subset sizes 1, 2, ..., Max_Subset are examined. This
option is the default with Max_Subset = N_ELEMENTS (x(0, *)). Keywords
Max_Subset, Adj_R_Squared, and Mallows_Cp cannot be used together.

Discussion

The IMSL_ALLBEST procedure finds the best subset regressions for a regression
problem with

n_candidate = (N_ELEMENTS (x (0, *)))
IDL Analyst Reference Guide IMSL_ALLBEST

636 Chapter 14: Regression
independent variables. Typically, the intercept is forced into all models and is not a
candidate variable. In this case, a sum-of-squares and crossproducts matrix for the
independent and dependent variables corrected for the mean is computed internally.
There may be cases when it is convenient for you to calculate the matrix; see the
description of the Cov_Input optional parameter.

“Best” is defined, on option, by one of the following three criteria:

• R2 (in percent):

• R2
a (adjusted R2 in percent):

Note that maximizing the criterion is equivalent to minimizing the residual
mean square:

• Mallows’ Cp statistic:

Here, n is equal to the sum of the frequencies (or N_ELEMENTS(x (*, 0)) if
Frequencies is not specified) and SST is the total sum of squares. SSEp is the error
sum of squares in a model containing p regression parameters including β0 (or p – 1
of the n_candidate candidate variables). Variable is the s2

n_candidate error mean
square from the model with all n_candidate variables in the model. Hocking (1972)
and Draper and Smith (1981, pp. 296–302) discuss these criteria.

The IMSL_ALLBEST procedure is based on the algorithm of Furnival and Wilson
(1974). This algorithm finds Max_N_Good candidate regressions for each possible
subset size. These regressions are used to identify a set of best regressions. In large
problems, many regressions are not computed. They may be rejected without
computation based on results for other subsets; this yields an efficient technique for
considering all possible regressions.

There are cases when you may wish to input the variance-covariance matrix rather
than allow the IMSL_ALLBEST procedure to calculate it. This can be accomplished

R2 100 1
SSEp

SST
------------–

 =

Ra
2 100 1

n 1–
n p–

 SSEp

SST
------------–=

SSEp

n p–()

Cp
SSEp

sn_candidate
2

------------------------ 2p n–+=
IMSL_ALLBEST IDL Analyst Reference Guide

Chapter 14: Regression 637
using keyword Cov_Input. Three situations in which you may want to do this are as
follows:

1. The intercept is not in the model. A raw (uncorrected) sum-of-squares and
crossproducts matrix for the independent and dependent variables is required.
Keyword Cov_Nobs must be set to 1 greater than the number of observations.
Form ATA, where A = [A, Y], to compute the raw sum-of-squares and
crossproducts matrix.

2. An intercept is to be a candidate variable. A raw (uncorrected) sum-of-squares
and crossproducts matrix for the constant regressor (= 1.0), independent
variables, and dependent variables is required for Cov_Input. In this case,
Cov_Input contains one additional row and column corresponding to the
constant regressor. This row/column contains the sum of squares and
crossproducts of the constant regressor with the independent and dependent
variables. The remaining elements in Cov_Input are the same as in the previous
case. Keyword Cov_Nobs must be set to 1 greater than the number of
observations.

3. There are m variables to be forced into the models. A sum-of-squares and
crossproducts matrix adjusted for the m variables is required (calculated by
regressing the candidate variables on the variables to be forced into the model).
Keyword Cov_Nobs must be set to m less than the number of observations.

Programming Notes

The IMSL_ALLBEST procedure saves considerable CPU time over explicitly
computing all possible regressions. However, the procedure has some limitations that
can cause unexpected results for users who are unaware of the limitations of the
software.

1. For n_candidate + 1 > –log2(ε), where ε is machine precision, some results
may be incorrect. This limitation arises because the possible models indicated
(the model numbers 1, 2, ..., 2n_candidate) are stored as floating-point values;
for sufficiently large n_candidate, the model numbers cannot be stored exactly.
On many computers, this means IMSL_ALLBEST (for n_candidate > 24;
single precision) and IMSL_ALLBEST (for n_candidate > 49; double
precision) can produce incorrect results.

2. The IMSL_ALLBEST procedure eliminates some subsets of candidate
variables by obtaining lower bounds on the error sum of squares from fitting
larger models. First, the full model containing all n_candidate is fit
sequentially using a forward stepwise procedure in which one variable enters
the model at a time, and criterion values and model numbers for all the
IDL Analyst Reference Guide IMSL_ALLBEST

638 Chapter 14: Regression
candidate variables that can enter at each step are stored. If linearly dependent
variables are removed from the full model, error STAT_VARIABLES_DELETED
is issued. If this error is issued, some submodels that contain variables
removed from the full model because of linear dependency can be overlooked
if they have not already been identified during the initial forward stepwise
procedure. If error STAT_VARIABLES_DELETED is issued and you want the
variables that were removed from the full model to be considered in smaller
models, rerun the program with a set of linearly independent variables.

Example

This example uses a data set from Draper and Smith (1981, pp. 629-630). The
IMSL_ALLBEST procedure is used to find the best regression for each subset size
using the Mallow’s Cp statistic as the criterion. Note that when Mallow’s Cp statistic
(or adjusted R2) is specified, the variable Max_N_Best indicates the total number of
“best” regressions (rather than indicating the number of best regressions per subset
size, as in the case of the R2 criterion). In this example, the three best regressions are
found to be (1, 2), (1, 2, 4), and (1, 2, 3).

PRO IMSL_ALLBEST_ex1
; Define the data set.
x = transpose([[7., 26., 6., 60.], [1., 29., 15., 52.], $

[11., 56., 8., 20.], [11., 31., 8., 47.], $
[7., 52., 6., 33.], [11., 55., 9., 22.], $
[3., 71., 17., 6.], [1., 31., 22., 44.], $
[2., 54., 18., 22.], [21., 47., 4., 26.], $
[1., 40., 23., 34.], [11., 66., 9., 12.], $
[10., 68., 8., 12.]])

y = [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, $
93.1, 115.9, 83.8, 113.3, 109.4]

Max_N_Best = 3
IMSL_ALLBEST, x, y, Max_N_Best = max_n_best, /Mallows_Cp, $

Idx_Coefs = idx_coefs, $
Coefs = coefs
PRINT, ' * * * Idx_Coefs and Coefs in raw form * * *'
; First, the two important matrices, Idx_Coefs and Coefs,
; are printed to display how they appear as output from
; IMSL_ALLBEST.
PRINT
PM, idx_coefs, Title = 'Idx_Coefs:'
PRINT
PM, Coefs, Title = 'Coefs'
PRINT
ntbest = max_n_best
; Next, describe how to break apart Coefs by regressions
; based on values of Idx_Coefs. Note: NTBEST is defined under
IMSL_ALLBEST IDL Analyst Reference Guide

Chapter 14: Regression 639
; description of keyword Idx_Coefs.
PRINT, ' * * * How Idx_Coefs describes Coefs * * *'
PRINT
FOR i = 0, ntbest - 1 DO $

PRINT, 'regression', i+1, 'begins at row', Idx_Coefs(i),$
' of Coefs.', FORMAT = '(a, i2, a, i2, a)'

PRINT
PRINT, '* * * Coefs separated by ', 'regressions * * *'
; Next, Coefs is broken apart by regressions, using Idx_Coefs.
; Note: The final element of Idx_Coefs is not a row number but
; instead is equal to the total number of rows in Coefs.
PRINT
FOR i = 0, ntbest - 1 DO begin

start = idx_coefs(i)
stop = idx_coefs(i + 1) - 1

FOR j = start, stop DO begin
PRINT, coefs(j, *), FORMAT = '(5f9.4)'

END
PRINT
END
PRINT, ' * * * Best Regressions* * *'
 ; Finally, regression labels, column labels, etc., are added.

PRINT
FOR i = 0, ntbest - 1 DO begin

start = idx_coefs(i)
stop = idx_coefs(i + 1) - 1
count = stop - start + 1
PRINT, 'Best Regression with', count, $

'variables(s) (Mallows CP)', FORMAT = '(a, i2, a)'
PRINT, 'variable coefficient std error t p-value'

FOR j = start, stop DO $
PRINT, coefs(j, *), FORMAT = '(i5, 2x, 4f11.4)'
PRINT

END
END
* * * Idx_Coefs and Coefs in raw form * * *
PM, Idx_Coefs

0
2
5
8

PM, Coefs
1.00000 1.46831 0.121301 12.1046 2.38419e-07
2.00000 0.662251 0.0458547 14.4424 0.00000
1.00000 1.45194 0.116998 12.4099 5.96046e-07
2.00000 0.416112 0.185611 2.24185 0.0516866
4.00000 -0.236538 0.173288 -1.36500 0.205401
1.00000 1.69589 0.204582 8.28953 1.66893e-05
2.00000 0.656915 0.0442343 14.8508 1.19209e-07
IDL Analyst Reference Guide IMSL_ALLBEST

640 Chapter 14: Regression
3.00000 0.250018 0.184711 1.35356 0.208889
* * * How Idx_Coefs describes Coefs * * *
regression 1 begins at row 0 of Coefs.
regression 2 begins at row 2 of Coefs.
regression 3 begins at row 5 of Coefs.
* * * Coefs separated by regressions * * *
1.0000 1.4683 0.1213 12.1046 0.0000
2.0000 0.6623 0.0459 14.4424 0.0000
1.0000 1.4519 0.1170 12.4099 0.0000
2.0000 0.4161 0.1856 2.2419 0.0517
4.0000 -0.2365 0.1733 -1.3650 0.2054
1.0000 1.6959 0.2046 8.2895 0.0000
2.0000 0.6569 0.0442 14.8508 0.0000
3.0000 0.2500 0.1847 1.3536 0.2089
* * * Best Regressions* * *
Best Regression with 2 variable(s) (Mallows CP)
variable coefficient std error t p-value

1 1.4683 0.1213 12.1046 0.0000
2 0.6623 0.0459 14.4424 0.0000

Best Regression with 3 variable(s) (Mallows CP)
variable coefficient std error t p-value

1 1.4519 0.1170 12.4099 0.0000
2 0.4161 0.1856 2.2419 0.0517
4 -0.2365 0.1733 -1.3650 0.2054

Best Regression with 3 variable(s) Mallows CP)
variable coefficient std error t p-value
1 1.6959 0.2046 8.2895 0.0000
2 0.6569 0.0442 14.8508 0.0000
3 0.2500 0.1847 1.3536 0.2089

Errors

Warning Errors

STAT_VARIABLES_DELETED—At least one variable is deleted from the full model
because the variance-covariance matrix Cov is singular.

Fatal Errors

STAT_NO_VARIABLES—No variables can enter any model.

Version History

6.4 Introduced
IMSL_ALLBEST IDL Analyst Reference Guide

Chapter 14: Regression 641
IMSL_STEPWISE

The IMSL_STEPWISE procedure builds multiple linear regression models using
forward, backward, or stepwise selection.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_STEPWISE, x, y [, /ALL_STEPS] [, ANOVA_TABLE=variable]
[, /BACKWARD] [, COV_NOBS=value] [, COV_INPUT=array]
[, COEF_T_TESTS=variable] [, COEF_VIF=variable]
[, COV_SWEPT=variable] [, /DOUBLE] [, /FIRST_STEP] [, FORCE=value]
[, /FORWARD] [, FREQUENCIES=array] [, HISTORY=variable]
[, /INTER_STEP] [, /LAST_STEP] [, IEND=variable] [, LEVEL=array]
[, N_STEPS=value] [, P_IN=value] [, P_OUT=value]
[, /STEPWISE] [, SWEPT=value] [, /TOLERANCE] [, WEIGHTS=array])

Arguments

x

Two-dimensional array containing the data for the candidate variables.

y

Array of length N_ELEMENTS(x(*, 0)) containing the responses for the dependent
variable.

Keywords

ALL_STEPS

This is the only invocation. Initialization, stepping, and wrap-up computations are
performed.
IDL Analyst Reference Guide IMSL_STEPWISE

642 Chapter 14: Regression
Note
One or none of these options — First_Step, Inter_Step, Last_Step, and All_Steps
— can be specified. If none of these is specified, the action defaults to All_Steps.

ANOVA_TABLE

Named variable into which the one-dimensional array containing the analysis of
variance table is stored. The analysis of variance statistics are as follows:

• 0—degrees of freedom for regression

• 1—degrees of freedom for error

• 2—total degrees of freedom

• 3—sum of squares for regression

• 4—sum of squares for error

• 5—total sum of squares

• 6—regression mean square

• 7—error mean square

• 8—F-statistic

• 9—p-value

• 10—R2 (in percent)

• 11—adjusted R2 (in percent)

• 12—estimate of the standard deviation

BACKWARD

An attempt is made to remove a variable from the model. A variable is removed if its
p-value exceeds P_Out. During initialization, all candidate independent variables
enter the model.

Note
One or none of these options — Forward, Backward, Stepwise — can be
specified. If none is specified, the action defaults to Backward.
IMSL_STEPWISE IDL Analyst Reference Guide

Chapter 14: Regression 643
COV_NOBS

The number of observations associated with array Cov_Input. Keywords Cov_Input
and Cov_Nobs must be used together.

Note
Keywords Cov_Input and Cov_Nobs must be used together.

COV_INPUT

Two-dimensional square array of size (N_ELEMENTS(x(0,*)) + 1) x
(N_ELEMENTS(x(0,*)) + 1) containing a variance-covariance or sum-of-squares
and crossproducts matrix, in which the last column must correspond to the dependent
variable.

Array Cov_Input can be computed using IMSL_COVARIANCES. Parameters x and
y, and keywords Frequencies and Weights are not accessed when this option is
specified. Normally, IMSL_ALLBEST computes Cov_Input from the input data
matrices x and y. However, there may be cases when you want to calculate the
covariance matrix and manipulate it before calling IMSL_ALLBEST. See the
Discussion section for a discussion of such cases.

Note
Keywords Cov_Input and Cov_Nobs must be used together.

COEF_T_TESTS

Named variable into which the two-dimensional array containing statistics relating to
the regression coefficient for the final model in this invocationing is stored. The rows
correspond to the N_ELEMENTS(x(0, *)) in dependent variables. The rows are in the
same order as the variables in x (or, if Cov_Input is specified, the rows are in the same
order as the variables in Cov_Input). Each row corresponding to a variable not in the
model contains statistics for a model which includes the variables of the final model
and the variable corresponding to the row in question.

• 0—coefficient estimate

• 1—estimated standard error of the coefficient estimate

• 2—t-statistic for the test that the coefficient is zero

• 3—p-value for the two-sided t test
IDL Analyst Reference Guide IMSL_STEPWISE

644 Chapter 14: Regression
COEF_VIF

Named variable into which the two-dimensional array containing variance inflation
factors for the final model in this invocation is stored. The elements correspond to the
N_ELEMENTS (x(0, *)) in dependent variables. The elements are in the same order
as the variables in x (or, if Cov_Input is specified, the elements are in the same order
as the variables in Cov_Input). Each element corresponding to a variable not in the
model contains statistics for a model which includes the variables of the final model
and the variables corresponding to the element in question.

The square of the multiple correlation coefficient for the i-th regressor after all others
have been obtained from VIF = Coef_Vif(i) by the following formula:

1.0 – (1.0/VIF)

COV_SWEPT

Named variable into which the two-dimensional array of size N_ELEMENTS (x(0,
*)) + 1) x (N_ELEMENTS (x(0, *)) + 1) that results after Cov_Swept has been swept
on the columns corresponding to the variables in the model. The estimated variance-
covariance matrix of the estimated regression coefficients in the final model can be
obtained by extracting the rows and columns of Cov_Swept corresponding to the
independent variables in the final model and multiplying the elements of this matrix
by Anova_Table(7).

DOUBLE

If present and nonzero, double precision is used.

FIRST_STEP

This is the first invocation; additional calls will be made. Initialization and stepping is
performed.

Note
One or none of these options — First_Step, Inter_Step, Last_Step, and All_Steps
— can be specified. If none of these is specified, the action defaults to All_Steps.

FORCE

Scalar integer specifying how variables are forced into the model as independent
variables. Variable with levels 1, 2, ..., Force are forced into the model as independent
variables. See Level.
IMSL_STEPWISE IDL Analyst Reference Guide

Chapter 14: Regression 645
FORWARD

An attempt is made to add a variable to the model. A variable is added if its p-value is
less than P_In. During initialization, only the forced variables enter the model.

Note
One or none of these options — Forward, Backward, Stepwise — can be
specified. If none is specified, the action defaults to Backward.

FREQUENCIES

One-dimensional array containing the frequency for each row of x. Default:
Frequencies (*) = 1

HISTORY

Named variable into which the one-dimensional array of length N_ELEMENTS (x(0,
*)) + 1 containing the recent history of the independent variables is stored.

Element History(N_ELEMENTS (x(0, *))) usually corresponds to the dependent
variable (see Level) as shown in Table 14-6.

INTER_STEP

This is an intermediate invocation. Stepping is performed.

Note
One or none of these options — First_Step, Inter_Step, Last_Step, and All_Steps
— can be specified. If none of these is specified, the action defaults to All_Steps.

History (i) Status of i-th Variable

0.0 Variable has never been added to model.

0.5 Variable was added into the model during initialization.

k > 0.0 Variable was added to the model during the k-th step.

k < 0.0 Variable was deleted from model during the k-th step.

Table 14-6: History Variable
IDL Analyst Reference Guide IMSL_STEPWISE

646 Chapter 14: Regression
LAST_STEP

This is the final invocation. Stepping and wrap-up computations are performed.

Note
One or none of these options — First_Step, Inter_Step, Last_Step, and All_Steps
— can be specified. If none of these is specified, the action defaults to All_Steps.

IEND

Named variable into which an integer which indicates whether additional steps are
possible is stored.

• 0—Additional steps may be possible.

• 1—No additional steps are possible.

LEVEL

Array of length N_ELEMENTS(x(0, *)) + 1 containing levels of priority for variables
entering and leaving the regression. Each variable is assigned a positive value that
indicates its level of entry into the model. A variable can enter the model only after all
variables with smaller nonzero levels of entry have entered. Similarly, a variable can
only leave the model after all variables with higher levels of entry have left. Variables
with the same level of entry compete for entry (deletion) at each step. Level(i) = 0
means the i-th variable is never to enter the model. Level(i) = –1 means the i-th
variable is the dependent variable. Level (N_ELEMENTS(x(0, *))) must correspond
to the dependent variable, except when Cov_Input is specified. Default: 1, 1, ..., 1, –1,
where –1 corresponds to Level (N_ELEMENTS(x(0, *)))

N_STEPS

For nonnegative N_Steps, N_Steps steps are taken. If N_Steps = –1, stepping
continues until completion. Default: N_Steps = 1

Note
Keyword N_Steps is not referenced if All_Steps is used.

P_IN

Largest p-value for variable entering the model. Variables with p-values less than
P_In may enter the model. Default: P_In = 0.05
IMSL_STEPWISE IDL Analyst Reference Guide

Chapter 14: Regression 647
P_OUT

Smallest p-value for removing variables with p-values greater than P_Out may leave
the model. Keyword P_Out must be greater than or equal to P_In. A common choice
for P_Out is 2*P_In. Default: P_Out = 0.10

STEPWISE

A backward step is attempted. If a variable is not removed, a forward step is
attempted. This is a stepwise step. Only the forced variables enter the model during
initialization.

Note
One or none of these options — Forward, Backward, Stepwise — can be
specified. If none is specified, the action defaults to Backward.

SWEPT

Named variable into which the one-dimensional array of length (N_ELEMENTS(x(0,
*)) + 1) with information to indicate the independent variables in the model is stored.
Keyword Swept (N_ELEMENTS (x(0, *))) usually corresponds to the dependent
variable (see Level).

• –1—Variable i is not in model.

• 1—Variable i is in model.

TOLERANCE

Tolerance used in determining linear dependence. Default: Tolerance = 100*ε, where
ε is machine precision.

WEIGHTS

One-dimensional array containing the weight for each row of x. Default: Weights (*)
= 1

Discussion

The IMSL_STEPWISE procedure builds a multiple linear regression model using
forward, backward, or forward stepwise (with a backward glance) selection. The
IMSL_STEPWISE procedure is designed so you can monitor, and perhaps change,
the variables added (deleted) to (from) the model after each step. In this case,
multiple calls to IMSL_STEPWISE (using keywords First_Step, Inter_Step, or
IDL Analyst Reference Guide IMSL_STEPWISE

648 Chapter 14: Regression
Last_Step) are made. Alternatively, IMSL_STEPWISE can be invoked once (default,
or specify keyword All_Steps) in order to perform the stepping until a final model is
selected.

Levels of priority can be assigned to the candidate independent variables (use
keyword Level). All variables with a priority level of 1 must enter the model before
variables with a priority level of 2. Similarly, variables with a level of 2 must enter
before variables with a level of 3, etc. Variables also can be forced into the model (see
keyword Force). Note that specifying keyword Force without also specifying
keyword Level results in all variables being forced into the model.

Typically, the intercept is forced into all models and is not a candidate variable. In
this case, a sum-of-squares and crossproducts matrix for the independent and
dependent variables corrected for the mean is used. Other possibilities are as follows:

• The intercept is not in the model. A raw (uncorrected) sum-of-squares and
crossproducts matrix for the independent and dependent variables is required
as input in Cov_Input. Keyword Cov_Nobs must be set to 1 greater than the
number of observations.

• An intercept is to be a candidate variable. A raw (uncorrected) sum-of-squares
and crossproducts matrix for the constant regressor (=1), independent and
dependent variables are required for Cov_Input. In this case, Cov_Input
contains one additional row and column corresponding to the constant
regressor. This row/column contains the sum-of-squares and crossproducts of
the constant regressor with the independent and dependent variables. The
remaining elements in Cov_Input are the same as in the previous case.
Keyword Cov_Nobs must be set to 1 greater than the number of observations.

The stepwise regression algorithm is due to Efroymson (1960). The
IMSL_STEPWISE procedure uses sweeps of the covariance matrix (input using
keyword Cov_Input, if specified, or generated internally by default) to move variables
in and out of the model (Hemmerle 1967, Chapter 3). The SWEEP operator discussed
in Goodnight (1979) is used. A description of the stepwise algorithm also is given by
Kennedy and Gentle (1980, pp. 335–340). The advantage of stepwise model building
over all possible regression (see “IMSL_ALLBEST” on page 632) is that it is less
demanding computationally when the number of candidate independent variables is
very large. However, there is no guarantee that the model selected will be the best
model (highest R2) for any subset size of independent variables.

Example

This example uses a data set from Draper and Smith (1981, pp. 629-630). Backwards
stepping is performed by default. First, a procedure to output the results is defined.
IMSL_STEPWISE IDL Analyst Reference Guide

Chapter 14: Regression 649
PRO print_results, anova_table, t, s
labels = ['df for regression ', $

'df for error ', $
'total df ', $
'ss for regression ', $
'ss for error ', $
'total ss ', $
'mean square for regression ', $
'mean square error ', $
'F-statistic ', $
'p-value ', $
'R-squared (in percent) ', $
'adjusted R-squared (in percent)']

PRINT
PRINT, ' * * Analysis of Variance * *'
; Print the table.
FOR i = 0, 11 DO PRINT, labels(i), $

anova_table(i), FORMAT = '(a32,f8.2)'
PRINT
PRINT, '* * Inference on Coefficients * *'
PRINT, ' Estimate s.e. t' + $

' prob>t swept'
PRINT,'$(a, 4f10.4)','variable 1',t(0,*),s(0)
PRINT,'$(a, 4f10.4)','variable 2',t(1,*),s(1)
PRINT,'$(a, 4f10.4)','variable 3',t(2,*),s(2)
PRINT,'$(a, 4f10.4)','variable 4',t(3,*),s(3)

END
x = MAKE_ARRAY(13, 4)
; Define the data.
x(0, *) = [7., 26., 6., 60.]
x(1, *) = [1., 29., 15., 52.]
x(2, *) = [11., 56., 8., 20.]
x(3, *) = [11., 31., 8., 47.]
x(4, *) = [7., 52., 6., 33.]
x(5, *) = [11., 55., 9., 22.]
x(6, *) = [3., 71., 17., 6.]
x(7, *) = [1., 31., 22., 44.]
x(8, *) = [2., 54., 18., 22.]
x(9, *) = [21., 47., 4., 26.]
x(10, *) = [1., 40., 23., 34.]
x(11, *) = [11., 66., 9., 12.]
x(12, *) = [10., 68., 8., 12.]
y = [78.5, 74.3, 104.3, 87.6, 95.9, $

109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4]
IMSL_STEPWISE, x, y, Anova_Table = anova_table, $

Coef_T_Tests = t, swept = s
; Backward stepwise regression.

print_results, anova_table, t, s
* * Analysis of Variance * *
IDL Analyst Reference Guide IMSL_STEPWISE

650 Chapter 14: Regression
 df for regression 2.00
df for error 10.00
total df 12.00
ss for regression 2657.86
ss for error 57.90
total ss 2715.76
mean square for regression 1328.93
mean square error 5.79
F-statistic 229.50
P-value 0.00
R-squared (in percent) 97.87
adjusted R-squared (in percent) 97.44
* * Inference on Coefficients * *

 Estimate s.e. t prob>t swept
variable 1 1.4683 0.1213 12.1046 0.0000 1.
variable 2 0.6623 0.0459 14.4423 0.0000 1.
variable 3 0.2500 0.1847 1.3536 0.2089 -1.
variable 4 -0.2365 0.1733 -1.3650 0.2054 -1.

Errors

Warning Errors

STAT_LINEAR_DEPENDENCE_1—Based on Tolerance = #, there are linear
dependencies among the variables to be forced.

Fatal Errors

STAT_NO_VARIABLES_ENTERED—No variables entered the model. All elements of
Anova_Table are set to NaN.

Version History

6.4 Introduced
IMSL_STEPWISE IDL Analyst Reference Guide

Chapter 14: Regression 651
IMSL_POLYREGRESS

The IMSL_POLYREGRESS function performs a polynomial least-squares
regression.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_POLYREGRESS(x, y, degree [, ANOVA_TABLE=variable]
[, DF_PURE_ERROR=variable] [, /DOUBLE] [, PREDICT_INFO=variable]
[, RESIDUAL=variable] [, SSQ_LOF=variable] [, SSQ_POLY=variable]
[, SSQ_PURE_ERROR=variable] [, WEIGHT=array] [, XMEAN=variable]
[, XVARIANCE=variable])

Return Value

An array of size degree + 1 containing the coefficients of the fitted polynomial.

Arguments

degree

Degree of the polynomial.

x

One-dimensional array containing the independent variable.

y

One-dimensional array containing the dependent variable.

Keywords

ANOVA_TABLE

Named variable into which the array containing the analysis of variance table is
stored. The analysis of variance statistics are given as follows:
IDL Analyst Reference Guide IMSL_POLYREGRESS

652 Chapter 14: Regression
• 0—degrees of freedom for the model

• 1—degrees of freedom for error

• 2—total (corrected) degrees of freedom

• 3—sum of squares for the model

• 4—sum of squares for error

• 5—total (corrected) sum of squares

• 6—model mean square

• 7—error mean square

• 8—overall F-statistic

• 9—p-value

• 10—R2 (in percent)

• 11—adjusted R2 (in percent)

• 12—estimate of the standard deviation

• 13—overall mean of y

• 14—coefficient of variation (in percent)

DF_PURE_ERROR

Named variable into which the degrees of freedom for pure error is stored.

DOUBLE

If present and nonzero, double precision is used.

PREDICT_INFO

Named variable into which the one-dimensional byte array containing information
needed by IMSL_POLYPREDICT is stored. The data contained in this array is in an
encrypted format and should not be altered before it is used in subsequent calls to
IMSL_POLYPREDICT.

RESIDUAL

Named variable into which the array containing the residuals is stored.
IMSL_POLYREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 653
SSQ_LOF

Named variable into which the array containing the lack-of-fit statistics is stored.

Elements (i, *) correspond to x i+1, i = 0, ..., (degree – 1), and the contents of the array
are described in Table 14-7.

SSQ_POLY

Named variable into which the array containing the sequential sum of squares and
other statistics are stored.

Elements (i, *) correspond to xi+1, i = 0, ..., (degree – 1), and the contents of the array
are described in Table 14-8.

SSQ_PURE_ERROR

Named variable into which the sum of squares for pure error is stored.

Element Description

 (i, 0) degrees of freedom

 (i, 1) lack-of-fit sum of squares

 (i, 2) F-statistic for testing lack-of-fit for a polynomial model of
degree i

 (i, 3) p-value for the test

Table 14-7: Ssq_Lof Array Elements

Element Description

 (i, 0) degrees of freedom

 (i, 1) sum of squares

 (i, 2) F-statistic

 (i, 3) p-value

Table 14-8: Ssq_Poly Array Elements
IDL Analyst Reference Guide IMSL_POLYREGRESS

654 Chapter 14: Regression
WEIGHT

Array containing the vector of weights for the observation. If this option is not
specified, all observations have equal weights of 1.

XMEAN

Named variable into which the mean of x is stored.

XVARIANCE

Named variable into which the variance of x is stored.

Discussion

The IMSL_POLYREGRESS function computes estimates of the regression
coefficients in a polynomial (curvilinear) regression model. In addition to the
computation of the fit, IMSL_POLYREGRESS computes some summary statistics.
Sequential sum of squares attributable to each power of the independent variable
(returned by using Ssq_Poly) are computed. These are useful in assessing the
importance of the higher order powers in the fit. Draper and Smith (1981, pp. 101–
102) and Neter and Wasserman (1974, pp. 278–287) discuss the interpretation of the
sequential sum of squares.

The statistic R2 is the percentage of the sum of squares of y about its mean explained
by the polynomial curve. Specifically:

where wi is the weight.

is the fitted y value at xi and

is the mean of y. This statistic is useful in assessing the overall fit of the curve to the
data. R2 must be between 0% and 100%, inclusive. R2 = 100% indicates a perfect fit
to the data.

Estimates of the regression coefficients in a polynomial model are computed using
orthogonal polynomials as the regressor variables. This reparameterization of the
polynomial model in terms of orthogonal polynomials has the advantage that the loss

R
2

wi ŷi y–()2
∑

wi yi y–()2
∑
----------------------------------100%=

ŷi

y

IMSL_POLYREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 655
of accuracy resulting from forming powers of the x-values is avoided. All results are
returned to you for the original model (power form).

The IMSL_POLYREGRESS function is based on the algorithm of Forsythe (1957).
A modification to Forsythe’s algorithm suggested by Shampine (1975) is used for
computing the polynomial coefficients. A discussion of Forsythe’s algorithm and
Shampine’s modification appears in Kennedy and Gentle (1980, pp. 342–347).

Examples

Example 1

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pp.
279–285). The data set contains the response variable y measuring coffee sales (in
hundred gallons) and the number of self-service coffee dispensers. Responses for
fourteen similar cafeterias are in the data set. The results are shown in Figure 14-3.

x = [0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7]
y = [508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3, 758.9, $

787.6, 792.1, 841.4, 831.8, 854.7, 871.4]
; Define the data vectors.

coefs = IMSL_POLYREGRESS(x, y, 2)
PM, Coefs, Title = 'Least-Squares Polynomial Coefficients'
Least-Squares Polynomial Coefficients

503.346
78.9413
-3.96949

x2 = 9 * FINDGEN(100)/99 - 1
PLOT, x2, coefs(0) + coefs(1) * x2 + coefs(2) * x2^2
OPLOT, x, y, Psym = 1
IDL Analyst Reference Guide IMSL_POLYREGRESS

656 Chapter 14: Regression
Example 2

This example is a continuation of the initial example. Here, a procedure is called and
defined to output the coefficients and analysis of variance table.

PRO print_results, coefs, anova_table
; The following procedure prints coefficients and the analysis of
; variance table.
coef_labels = ['intercept', 'linear', 'quadratic']
PM, coef_labels, coefs, Title = $

'Least-Squares Polynomial Coefficients',$
FORMAT = '(3a20, /,3f20.4, //)'

anova_labels = ['degrees of freedom for regression', $
'degrees of freedom for error', $
'total (corrected) degrees of freedom', $
'sum of squares for regression', $
'sum of squares for error', $
'total (corrected) sum of squares', $
'regression mean square', $
'error mean square', 'F-statistic', $
'p-value', 'R-squared (in percent)', $
'adjusted R-squared (in percent)', $
'est. standard deviation of model error', $

Figure 14-3: Least-Squares Regression Plot
IMSL_POLYREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 657
'overall mean of y', 'coefficient of variation (in percent)']
FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), FORMAT = '(a40, f20.2)'
END
x = [0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7]
y = [508.1, 498.4, 568.2, 577.3, 651.7, $

657.0, 755.3, 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4]
; Define the data vectors.
Coefs = IMSL_POLYREGRESS(x, y, 2, Anova_Table = anova_table)
; Call IMSL_POLYREGRESS with keyword Anova_Table.
print_results, coefs, anova_table
; Call the procedure defined above to output the results.
Least-Squares Polynomial Coefficients
intercept linear quadratic
503.3459 78.9413 -3.9695
* * * Analysis of Variance * * *

degrees of freedom for regression 2.00
degrees of freedom for error 11.00
total (corrected) degrees of freedom 13.00
sum of squares for regression 225031.94
sum of squares for error 710.55
total (corrected) sum of squares 225742.48
regression mean square 112515.97
error mean square 64.60
F-statistic 1741.86
p-value 0.00
R-squared (in percent) 99.69
adjusted R-squared (in percent) 99.63
est. standard deviation of model error 8.04
overall mean of y 710.99
coefficient of variation (in percent) 1.13

Errors

Warning Errors

STAT_CONSTANT_YVALUES—The y values are constant. A zero order polynomial is
fit. High order coefficients are set to zero.

STAT_FEW_DISTINCT_XVALUES—There are too few distinct x values to fit the
desired degree polynomial. High order coefficients are set to zero.

STAT_PERFECT_FIT—A perfect fit was obtained with a polynomial of degree less
than degree. High order coefficients are set to zero.

Fatal Errors

STAT_NONNEG_WEIGHT_REQUEST_2—All weights must be nonnegative.
IDL Analyst Reference Guide IMSL_POLYREGRESS

658 Chapter 14: Regression
STAT_ALL_OBSERVATIONS_MISSING—Each (x, y) point contains NaN. There are
no valid data.

STAT_CONSTANT_XVALUES—The x values are constant.

Version History

6.4 Introduced
IMSL_POLYREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 659
IMSL_POLYPREDICT

The IMSL_POLYPREDICT function computes predicted values, confidence
intervals, and diagnostics after fitting a polynomial regression model.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_POLYPREDICT(predict_info, x
[, CI_PTW_NEW_SAMP=variable] [, CI_PTW_POP_MEAN=variable]
[, CI_SCHEFFE=variable] [, CONFIDENCE=value] [, COOKS_D=variable]
[, DEL_RESIDUAL=variable] [, DFFITS=variable] [, /DOUBLE]
[, LEVERAGE=variable] [, RESIDUAL=variable]
[, STD_RESIDUAL=variable] [, WEIGHTS=array] [, Y=array])

Return Value

One-dimensional array containing the predicted values.

Arguments

predict_info

One-dimensional byte array containing information computed by
IMSL_POLYREGRESS and returned through keyword Predict_Info. The data
contained in this array is in an encrypted format and should not be altered after it is
returned by IMSL_POLYREGRESS.

x

One-dimensional array containing the values of the independent variable for which
calculations are to be performed.
IDL Analyst Reference Guide IMSL_POLYPREDICT

660 Chapter 14: Regression
Keywords

CI_PTW_NEW_SAMP

Named variable into which the two-dimensional array of size 2 by N_ELEMENTS(x)
containing the confidence intervals for two-sided prediction intervals, corresponding
to the elements of x, is stored. Element Ci_Ptw_New_Samp(0, i) contains the i-th
lower confidence limit, Ci_Ptw_New_Samp(1, i) contains the i-th upper confidence
limit.

CI_PTW_POP_MEAN

Named variable into which the two-dimensional array of size 2 by N_ELEMENTS(x)
containing the confidence intervals for two-sided interval estimates of the means,
corresponding to the elements of x, is stored. Element Ci_Ptw_Pop_Mean(0, i)
contains the i-th lower confidence limit, Ci_Ptw_Pop_Mean (1, i) contains the i-th
upper confidence limit.

CI_SCHEFFE

Named variable into which the two-dimensional array of size 2 by N_ELEMENTS(x)
containing the Scheffé confidence intervals, corresponding to the rows of x, is stored.
Element Ci_Scheffe (0, i) contains the i-th lower confidence limit; Ci_Scheffe(1, i)
contains the i-th upper confidence limit.

CONFIDENCE

Confidence level for both two-sided interval estimates on the mean and for two-sided
prediction intervals, in percent. Keyword Confidence must be in the range (0.0,
100.0). For one-sided intervals with confidence level, where 50.0 ≤ c < 100.0, set
Confidence = 100.0 – 2.0 * (100.0 – c). Default: Confidence = 95.0

COOKS_D

Named variable into which the one-dimensional array of length N_ELEMENTS(x)
containing the Cook’s D statistics is stored.

Note
You must specify Y when using this keyword
IMSL_POLYPREDICT IDL Analyst Reference Guide

Chapter 14: Regression 661
DEL_RESIDUAL

Named variable into which the one-dimensional array of length N_ELEMENTS(x)
containing the deleted residuals is stored.

Note
You must specify Y when using this keyword

DFFITS

Named variable into which the one-dimensional array of length N_ELEMENTS(x)
containing the DFFITS statistics is stored.

Note
You must specify Y when using this keyword

DOUBLE

If present and nonzero, double precision is used.

LEVERAGE

Named variable into which the one-dimensional array of length N_ELEMENTS(x)
containing the leverages is stored.

RESIDUAL

Named variable into which the one-dimensional array of length N_ELEMENTS(x)
containing the residuals is stored.

Note
You must specify Y when using this keyword

STD_RESIDUAL

Named variable into which the one-dimensional array of length N_ELEMENTS(x)
containing the standardized residuals is stored.

Note
You must specify Y when using this keyword
IDL Analyst Reference Guide IMSL_POLYPREDICT

662 Chapter 14: Regression
WEIGHTS

One-dimensional array containing the weight for each element of x. The computed
prediction interval uses SSE/(DFE * Weights (i)) for the estimated variance of a
future response. Default: Weights (*) = 1

Y

Array of length N_ELEMENTS (x) containing the observed responses.

Discussion

The IMSL_POLYPREDICT function assumes a polynomial model

yi = β 0 + β 1xi + ..., β kxk
i + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the response, the xi’s are the settings
of the independent variable, the βj’s are the regression coefficients, and the εi’s are the
errors that are independently distributed normal with mean zero and the following
variance:

σ 2/wi

Given the results of a polynomial regression, fitted using orthogonal polynomials and
weights wi, IMSL_POLYPREDICT produces predicted values, residuals, confidence
intervals, prediction intervals, and diagnostics for outliers and in influential cases.

Often, a predicted value and confidence interval are desired for a setting of the
independent variable not used in computing the regression fit. This is accomplished
by simply using a different x matrix than was used for the fit when calling
IMSL_POLYPREDICT (IMSL_POLYREGRESS, 651).

Results from IMSL_POLYREGRESS, which produces the fit using orthogonal
polynomials, are used for input by the array predict_info. The fitted model from
IMSL_POLYREGRESS is:

where the zi’s are settings of the independent variable x scaled to the interval [–2, 2]
and the pj (z)’s are the orthogonal polynomials. The XTX matrix for this model is a
diagonal matrix with elements dj. The case statistics are easily computed from this
model and are equal to those from the original polynomial model with βj’s as the
regression coefficients.

The leverage is computed as follows:

The estimated variance of:

ŷi α̂0 p0 zi() α̂1 p1 zi() ... α̂k pk zi()+ + +=
IMSL_POLYPREDICT IDL Analyst Reference Guide

Chapter 14: Regression 663

is given by the following:

The computation of the remainder of the case statistics follow easily from their
definitions. See the chapter introduction for the definition of the case diagnostics.

Often, predicted values and confidence intervals are desired for combinations of
settings of the independent variables not used in computing the regression fit. This
can be accomplished by defining a new data matrix. Since the information about the
model fit is input in predict_info, it is not necessary to send in the data set used for the
original calculation of the fit, i.e., only variable combinations for which predictions
are desired need be entered in x.

Examples

Example 1

A polynomial model is fit to data using the “IMSL_POLYREGRESS” on page 651),
then IMSL_POLYPREDICT is used to compute predicted values. The results are
shown in Figure 14-4.

x = [0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7]
y = [58, 48, 58, 57, 61, 67, 70, 74, 77, 72, 81, 85, 84, 81]
; Define the sample data set.
degree = 3
Coefs = IMSL_POLYREGRESS(x, y, degree, $

Predict_Info = predict_info)
x2 = 8 * FINDGEN((100)/99)
; Call IMSL_POLYREGRESS using keyword Predict_Info.
predicted = IMSL_POLYPREDICT(predict_info, x2)
; Call IMSL_POLYPREDICT with Predict_Info.
PLOT, x, y, Psym = 4
; Plot the results.
OPLOT, x2, predicted

hi wi dj
1– pj

2 zi()
j 0=

k

∑=

ŷi

his
2

wi

IDL Analyst Reference Guide IMSL_POLYPREDICT

664 Chapter 14: Regression
Example 2

A polynomial model is fit to the data discussed by Neter and Wasserman (1974, pp.
279-285). The data set contains the response variable y measuring coffee sales (in
hundreds of gallons) and the number of self-service dispensers. Responses for 14
similar cafeterias are in the data set. First, a procedure is defined to print the ANOVA
table. The results are shown in Figure 14-5.

.RUN
PRO print_results, anova_table
; Define some labels for the anova table.
labels = ['df for among groups ', $

'df for within groups ', $
'total (corrected) df ', $
'ss for among groups ', $
'ss for within groups ', $
'total (corrected) ss ', $
'mean square among groups ', $
'mean square within groups ', $
'F-statistic ', $
'P-value ', $

Figure 14-4: Original and Predicted Values Plot
IMSL_POLYPREDICT IDL Analyst Reference Guide

Chapter 14: Regression 665
'R-squared (in percent) ', $
'adjusted R-squared (in percent)', $
'est. std of within group error ', $
'overall mean of y ', $
'coef. of variation (in percent)']

PRINT, ' * * Analysis of Variance * *'
; Print the analysis of variance table.
FOR i = 0, 13 DO PRINT, labels(i), $

anova_table(i), FORMAT = '(a32,f10.2)'
END

x = [0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7]
y = [508.1, 498.4, 568.2, 577.3, 651.7, $

657.0, 755.3, 758.9, 787.6, 792.1, $
841.4, 831.8, 854.7, 871.4]

degree = 2
coefs = IMSL_POLYREGRESS(x, y, degree, $

Anova_Table = anova_table, predict_info = predict_info)
; Call IMSL_POLYREGRESS to compute the fit.
predicted = IMSL_POLYPREDICT(predict_info, x, $

Ci_Scheffe = ci_scheffe, Y = y, Dffits = dffits)
; Call IMSL_POLYPREDICT.
PLOT, x, ci_scheffe(1, *), Yrange = [450, 900], Linestyle = 2
; Plot the results; confidence bands are dashed lines.
OPLOT, x, ci_scheffe(0, *), Linestyle = 2
OPLOT, x, y, Psym = 4
x2 = 7 * FINDGEN(100)/99
OPLOT, x2, IMSL_POLYPREDICT(predict_info, x2)
print_results, anova_table

; Print the ANOVA table.
* * Analysis of Variance * *

df for among groups 2.00
df for within groups 11.00
total (corrected) df 13.00
ss for among groups 225031.94
ss for within groups 710.55
total (corrected) ss 225742.48
mean square among groups 112515.97
mean square within groups 64.60
F-statistic 1741.86
P-value 0.00
R-squared (in percent) 99.69
adjusted R-squared (in percent) 99.63
est. std of within group error 8.04
overall mean of y 710.99
coef. of variation (in percent) 1.13
IDL Analyst Reference Guide IMSL_POLYPREDICT

666 Chapter 14: Regression
Errors

Warning Errors

STAT_LEVERAGE_GT_1—Leverage (= #) much greater than 1 is computed. It is set
to 1.0.

STAT_DEL_MSE_LT_0—Deleted residual mean square (= #) much less than zero is
computed. It is set to zero.

Fatal Errors

STAT_NEG_WEIGHT—Keyword Weights(#) = #. Weights must be nonnegative.

Version History

Figure 14-5: Predicted Values with Confidence Bands Plot

6.4 Introduced
IMSL_POLYPREDICT IDL Analyst Reference Guide

Chapter 14: Regression 667
IMSL_NONLINREGRESS

The IMSL_NONLINREGRESS function fits a nonlinear regression model.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NONLINREGRESS(fcn, n_parameters, x, y
[, ABS_EPS_SSE=value] [, DF=variable] [, /DOUBLE] [, JACOBIAN=string]
[, GRAD_EPS=value] [, ITMAX=value] [, MAX_JAC_EVALS=value]
[, MAX_SSE_EVALS=value] [, MAX_STEP=value] [, N_DIGIT=value]
[, PREDICTED=variable] [, R_MATRIX=variable] [, R_RANK=variable]
[, RESIDUAL=variable] [, STEP_EPS=value] [, SSE=variable]
[, SSE_REL_EPS=value] [, THETA_GUESS=array] [, THETA_SCALE=array]
[, TOLERANCE=value] [, TRUST_REGION=value])

Return Value

One-dimensional array of length n_parameters containing solution:

for the nonlinear regression coefficients.

Arguments

fcn

Scalar string specifying the name of a user-supplied function to evaluate the function
that defines the nonlinear regression problem. Function fcn accepts the following
input parameters and returns a scalar float:

• x—One-dimensional array containing the point at which point the function is
evaluated.

• theta—One-dimensional array containing the current values of the regression
coefficients. Function fcn returns a predicted value at the point x. In the
following, f(xi; θ), or just fi, denotes the value of this function at the point xi,
for a given value of θ. (Both xi and θ are arrays.)

θ̂

IDL Analyst Reference Guide IMSL_NONLINREGRESS

668 Chapter 14: Regression
n_parameters

Number of parameters to be estimated.

x

Two-dimensional array containing the matrix of independent (explanatory) variables.

y

One-dimensional array of length N_ELEMENTS (x(*, 0)) containing the dependent
(response) variable.

Keywords

ABS_EPS_SSE

Absolute SSE function tolerance. Default: Abs_Eps_Sse = max(10 –20, ε2), max(10 –

40, ε2) in double, where ε is the machine precision

DF

Named variable into which the degrees of freedom is stored.

DOUBLE

If present and nonzero, double precision is used.

JACOBIAN

Scalar string specifying the name of a user-supplied function to compute the i-th row
of the Jacobian. This function accepts the following parameters:

• X—One-dimensional array of length N_ELEMENTS (x(0, *)) containing the
data values corresponding to the i-th row.

• Theta—One-dimensional array of length n_parameters containing the
regression coefficients for which the Jacobian is evaluated. The return value of
this function is an array of length n_parameters containing the computed
n_parameters row of the Jacobian for observation i at Theta. Note that each
derivative ∂f(xi)/¹∂θj should be returned in element
(j – 1) of the returned array for j = 1, 2, ..., n parameters.
IMSL_NONLINREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 669
GRAD_EPS

Scaled gradient tolerance. The j-th component of the scaled gradient at θ is calculated
as:

where , , and

The value F(θ) is the vector of the residuals at the point θ. Default:

 (in double),

where ε is the machine precision.

ITMAX

Maximum number of iterations. Default: Itmax = 100

MAX_JAC_EVALS

Maximum number of Jacobian evaluations. Default: Max Jac Evals = 400

MAX_SSE_EVALS

Maximum number of SSE function evaluations. Default: Max Sse Evals = 400

MAX_STEP

Maximum allowable step size. Default: Max_Step = 1000 max(ε1, ε2), where ε1 =
(tTθ0)1/2, ε2 = ||t||2 , t = Theta_Scale, and θ0 = Theta_Guess

N_DIGIT

Number of good digits in the function. Default: machine dependent

PREDICTED

Named variable into which the one-dimensional array, containing the predicted
values at the approximate solution, is stored.

gj *max θj 1 tj⁄,()
1
2
--- F θ()

2

2

g F θ()∇= t Theta_Scale=

F θ()
2

2
yi f xi θ;()–()2

i 1=

n

∑=

Grad_Eps ε= ε3
IDL Analyst Reference Guide IMSL_NONLINREGRESS

670 Chapter 14: Regression
R_MATRIX

Named variable into which the two-dimensional array of size n_parameters x
n_parameters, containing the R matrix from a QR decomposition of the Jacobian, is
stored.

R_RANK

Named variable into which the rank of the R matrix is stored. A rank of less than
n_parameters may indicate the model is overparameterized.

RESIDUAL

Named variable into which the one-dimensional array, containing the residuals at the
approximate solution, is stored.

STEP_EPS

Scaled step tolerance. The j-th component of the scaled step from points θ and θ′ is
computed as:

where t = Theta_Scale. Default: Step_Eps = ε2/ 3, where ε is machine precision

SSE

Named variable into which the residual sum of squares is stored.

SSE_REL_EPS

Relative SSE function tolerance. Default: Sse_Rel_Eps = max(10–10, ε2 / 3), max (10–

20, ε2 / 3) in double, where ε is the machine precision

THETA_GUESS

Array with n_parameters components containing an initial guess. Default:
Theta_Guess(*) = 0

THETA_SCALE

One-dimensional array of length n_parameters containing the scaling array for θ.
Keyword Theta_Scale is used mainly in scaling the gradient and the distance between

θj θj
′

–

max θj 1 tj⁄,()

IMSL_NONLINREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 671
two points. See keywords Grad_Eps and Step_Eps for more details. Default:
Theta_Scale(*) = 1

TOLERANCE

False convergence tolerance. Default: Tolerance = 100 * ε, where ε is machine
precision.

TRUST_REGION

Size of initial trust region radius. The default is based on the initial scaled Cauchy
step.

Discussion

The IMSL_NONLINREGRESS function fits a nonlinear regression model using
least squares. The nonlinear regression model is

yi = f(xi;θ) + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable, the known xi’s are the vectors of the values of the independent
(explanatory) variables, θ is the vector of p regression parameters, and the εi’s are
independently distributed normal errors with mean zero and variance σ2. For this
model, a least-squares estimate of θ is also a maximum likelihood estimate of θ.

The residuals for the model are as follows:

ei(θ) = yi – f(xi ; θ) i = 1, 2, ..., n

A value of θ that minimizes:

is a least-squares estimate of θ. IMSL_NONLINREGRESS is designed so that the
values of the function f(xi ; θ) are computed one at a time by a user-supplied function.

The IMSL_NONLINREGRESS function is based on MINPACK routines LMDIF
and LMDER by Moré et al. (1980) that use a modified Levenberg-Marquardt method
to generate a sequence of approximations to a minimum point. Let:

be the current estimate of θ. A new estimate is given by:

where sc is a solution to the following:

Σi 1=
n

ei θ()[]2

θ̂c

θ̂c sc+
IDL Analyst Reference Guide IMSL_NONLINREGRESS

672 Chapter 14: Regression

Here:

is the Jacobian evaluated at:

The algorithm uses a “trust region” approach with a step bound of δc. A solution is
first obtained for µc = 0. If:

this update is accepted; otherwise, µc is set to a positive value and another solution is
obtained. The method is discussed by Levenberg (1944), Marquardt (1963), and
Dennis and Schnabel (1983, pp. 129–147, 218–338).

If a user-supplied function is specified in Jacobian, the Jacobian is computed
analytically; otherwise, forward finite differences are used to estimate the Jacobian
numerically. In the latter case, especially if single precision is used, the estimate of
the Jacobian may be so poor that the algorithm terminates at a noncritical point. In
such instances, you should either supply a Jacobian function, use the Double
keyword, or do both.

Programming Notes

Nonlinear regression allows substantial flexibility over linear regression because you
can specify the functional form of the model. This added flexibility can cause
unexpected convergence problems for users who are unaware of the limitations of the
software. Also, in many cases, there are possible remedies that may not be
immediately obvious. The following is a list of possible convergence problems and
some remedies. There is no one-to-one correspondence between the problems and the
remedies. Remedies for some problems also may be relevant for other problems.

• A local minimum is found. Try a different starting value. Good starting values
often can be obtained by fitting simpler models. For example, for a nonlinear
function:

• good starting values can be obtained from the estimated linear regression
coefficients:

 and

• from a simple linear regression of ln y on x. The starting values for the
nonlinear regression in this case would be:

J θ̂c()
T

J θ̂c() µcI+()sc J θ̂c()
T

e θ̂c()=

J θ̂c()

θ̂c

sc 2 δc<

f x θ;() θ1eθ2x=

β̂0 β̂1
IMSL_NONLINREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 673
 and

• If an approximate linear model is not clear, then simplify the model by
reducing the number of nonlinear regression parameters. For example, some
nonlinear parameters for which good starting values are known could be set to
these values in order to simplify the model for computing starting values for
the remaining parameters.

• The estimate of θ is incorrectly returned as the same or very close to the initial
estimate. This occurs often because of poor scaling of the problem, which
might result in the residual sum of squares being either very large or very small
relative to the precision of the computer. The keywords allow control of the
scaling.

• The model is discontinuous as a function of θ. (The function f(x;θ) can be a
discontinuous function of x.)

• Overflow occurs during the computations. Make sure the supplied functions do
not overflow at some value of θ.

• The estimate of θ is going to infinity. A parameterization of the problem in
terms of reciprocals may help.

• Some components of θ are outside known bounds. This can sometimes be
handled by making a function that produces artificially large residuals outside
of the bounds (even though this introduces a discontinuity in the model
function).

Examples

Example 1

In this example (Draper and Smith 1981, p. 518), the following nonlinear model is fit:

.RUN
FUNCTION fcn, x, theta

RETURN, theta(0) + (0.49 - theta(0)) $
EXP(theta(1)(x(0) - 8))

END

x = [10, 20, 30, 40]
y = [0.48, 0.42, 0.40, 0.39]
n_parameters = 2
theta_hat = IMSL_NONLINREGRESS('fcn', n_parameters, x, y)
PRINT, 'Estimated Coefficients:', theta_hat

θ1 eβˆ 0= θ2 β̂1=

Y α 0.49 α–()e β X 8–()– ε++=
IDL Analyst Reference Guide IMSL_NONLINREGRESS

674 Chapter 14: Regression
Example 2

Consider the nonlinear regression model and data set discussed by Neter et al. (1983,
pp. 475–478):

There are two parameters and one independent variable. The data set considered
consists of 15 observations. The results are shown in Figure 14-6.

.RUN
FUNCTION fcn, x, theta

; Define function that defines nonlinear regression problem.
RETURN, theta(0) * EXP(x(0) * theta(1))

END

.RUN
FUNCTION jac, x, theta

; Define the Jacobian function.
fjac = theta
; The following assignment produces array of correct size to
; use as the return value of the Jacobian.
fjac(0) = -exp(theta(1) * x(0))
fjac(1) = -theta(0) * x(0) * EXP(theta(1) * x(0))
RETURN, fjac
; Compute the Jacobian.

END

.RUN
PRO nlnreg_ex

; Define x and y.
x = [2, 5, 7, 10, 14, 19, 26, 31, 34, 38, 45, 52, 53, 60, 65]
y = [54, 50, 45, 37, 35, 25, 20, 16, 18, 13, 8, 11, 8, 4, 6]
theta_hat = IMSL_NONLINREGRESS('fcn', 2, x, y, $

Theta_Guess = [60, -0.03], $
Grad_Eps = 0.001, Jacobian = 'jac')

PLOT, x, y, Psym = 4, Title = 'Nonlinear Regression'
; Plot original data.
xtmp = 80 * FINDGEN(200)/199
OPLOT, xtmp, theta_hat(0) * EXP(xtmp * theta_hat(1))
; Plot regression.

END

yi θ1eθ2xi εi+=
IMSL_NONLINREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 675
Errors

Informational Errors

STAT_STEP_TOLERANCE—Scaled step tolerance satisfied. The current point may be
an approximate local solution, but it is also possible that the algorithm is making very
slow progress and is not near a solution or that Step_Eps is too big.

Warning Errors

STAT_LITTLE_FCN_CHANGE—Both actual and predicted relative reductions in the
function are less than or equal to the relative function tolerance.

STAT_TOO_MANY_ITN—Maximum number of iterations exceeded.

STAT_TOO_MANY_FCN_EVAL—Maximum number of function evaluations exceeded.

STAT_TOO_MANY_JACOBIAN_EVAL—Maximum number of Jacobian evaluations
exceeded.

Figure 14-6: Original Data and Nonlinear Regression Fit Plot
IDL Analyst Reference Guide IMSL_NONLINREGRESS

676 Chapter 14: Regression
STAT_UNBOUNDED—Five consecutive steps have been taken with the maximum step
length.

STAT_FALSE_CONVERGENCE—Iterates appear to be converging to noncritical point.

Version History

6.4 Introduced
IMSL_NONLINREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 677
IMSL_HYPOTH_PARTIAL

The IMSL_HYPOTH_PARTIAL function constructs an equivalent completely
testable multivariate general linear hypothesis HβU = G from a partially testable
hypothesis HpβU = Gp.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_HYPOTH_PARTIAL(info_v, hp [, /DOUBLE]
[, G_MATRIX=variable] [, GP=array] [, H_MATRIX=variable]
[, RANK_HP=variable])

Return Value

Number of rows in the completely testable hypothesis, nh. This value is also the
degrees of freedom for the hypothesis. The value nh classifies the hypothesis HpβU =
Gp as nontestable (nh = 0), partially testable (0 < nh < Rank_Hp) or completely
testable (0 < nh = Rank_Hp), where Rank_Hp is the rank of Hp (see keyword
Rank_Hp).

Arguments

hp

The Hp array of size nhp by n_coefficients with each row corresponding to a row in
the hypothesis and containing the constants that specify a linear combination of the
regression coefficients. Here, n_coefficients is the number of coefficients in the fitted
regression model.

info_v

One-dimensional array of type BYTE containing information about the regression fit.
See IMSL_MULTIREGRESS.
IDL Analyst Reference Guide IMSL_HYPOTH_PARTIAL

678 Chapter 14: Regression
Keywords

DOUBLE

If present and nonzero, double precision is used.

G_MATRIX

Named variable into which a one-dimensional array of length nu containing the G
matrix is stored. The elements of G_Matrix contain the null hypothesis values for the
completely testable hypothesis.

GP

Two-dimensional array of size nhp by nu containing the Gp matrix, the null
hypothesis values. By default, each value of Gp is equal to 0.

H_MATRIX

Named variable into which a two-dimensional array of size nh by n_parameters
containing the H matrix is stored. Each row of H_Matrix corresponds to a row in the
completely testable hypothesis and contains the constants that specify an estimable
linear combination of the regression coefficients.

RANK_HP

Named variable into which the rank of Hp is stored.

Discussion

Once a general linear model y = Xβ + ε is fitted, particular hypothesis tests are
frequently of interest. If the matrix of regressors X is not full rank (as evidenced by
the fact that some diagonal elements of the R matrix output from the fit are equal to
zero), methods that use the results of the fitted model to compute the hypothesis sum
of squares (see “IMSL_HYPOTH_SCPH” on page 683) require specification in the
hypothesis of only linear combinations of the regression parameters that are
estimable. A linear combination of regression parameters cTβ is estimable if there
exists some vector a such that cT = aTX, i.e., cT is in the space spanned by the rows of
X. For a further discussion of estimable functions, see Maindonald (1984, pp.
1661168) and Searle (1971, pp. 1802188). The IMSL_HYPOTH_PARTIAL function
is only useful in the case of non-full rank regression models, i.e., when the problem of
estimability arises.
IMSL_HYPOTH_PARTIAL IDL Analyst Reference Guide

Chapter 14: Regression 679
Peixoto (1986) noted that the customary definition of testable hypothesis in the
context of a general linear hypothesis test Hβ = g is overly restrictive. He extended
the notion of a testable hypothesis (a hypothesis composed of estimable functions of
the regression parameters) to include partially testable and completely testable
hypothesis. A hypothesis Hβ = g is partially testable if the intersection of the row
space H (denoted by) and the row space of X () is not essentially
empty and is a proper subset of , i.e., . A
hypothesis Hβ = g is completely testable if .
Peixoto also demonstrated a method for converting a partially testable hypothesis to
one that is completely testable so that the usual method for obtaining sums of squares
for the hypothesis from the results of the fitted model can be used. The method
replaces Hp in the partially testable hypothesis Hpβ = gp by a matrix H whose rows
are a basis for the intersection of the row space of Hp and the row space of X. A
corresponding conversion of the null hypothesis values from gp to g is also made. A
sum of squares for the completely testable hypothesis can then be computed (see
IMSL_HYPOTH_SCPH). The sum of squares that is computed for the hypothesis Hβ
= g equals the difference in the error sums of squares from two fitted models—the
restricted model with the partially testable hypothesis Hpβ = gp and the unrestricted
model.

For the general case of the multivariate model Y = Xβ + ε with possible linear equality
restrictions on the regression parameters, IMSL_HYPOTH_PARTIAL converts the
partially testable hypothesis Hpβ = gp to a completely testable hypothesis HβU = G.
For the case of the linear model with linear equality restrictions, the definitions of the
estimable functions, nontestable hypothesis, partially testable hypothesis, and
completely testable hypothesis are similar to those previously given for the
unrestricted model with the exception that is replaced by where R is
the upper triangular matrix based on the linear equality restrictions. The nonzero
rows of R form a basis for the rowspace of the matrix (XT, AT)T. The rows of H form
an orthonormal basis for the intersection of two subspaces—the subspace spanned by
the rows of Hp and the subspace spanned by the rows of R. The algorithm used for
computing the intersection of these two subspaces is based on an algorithm for
computing angles between linear subspaces due to Björk and Golub (1973). (See also
Golub and Van Loan 1983, pp. 429430). The method is closely related to a canonical
correlation analysis discussed by Kennedy and Gentle (1980, pp. 561565). The
algorithm is as follows:

1. Compute a QR factorization of:

with column permutations so that

ℜ H() ℜ X()
ℜ H() 0{ } ℜ⊂ H() ℜ X() ℜ H()⊂∩

0{ } ℜ⊂ H() ℜ H() ℜ X()⊂∩

ℜ X() ℜ R()

HP
T

IDL Analyst Reference Guide IMSL_HYPOTH_PARTIAL

680 Chapter 14: Regression
Here, P1 is the associated permutation matrix that is also an orthogonal matrix.
Determine the rank of Hp as the number of nonzero diagonal elements of R1,
for example n1. Partition Q1 = (Q11, Q12) so that Q11 is the first n1 column of
Q1. Set Rank_Hp = n.

2. Compute a QR factorization of the transpose of the R matrix (input through
info_v) with column permutations so that:

Determine the rank of R from the number of nonzero diagonal elements of R,
for example n2. Partition Q2 = (Q21, Q22) so that Q21 is the first n2 columns of
Q2.

3. Form:

4. Compute the singular values of A:

and the left singular vectors W of the singular value decomposition of A so
that:

If σ1 < 1, then the dimension of the intersection of the two subspaces is
s = 0. Otherwise, assume the dimension of the intersection to be s if σs = 1 >
σs+1. Set nh = s.

5. Let W1 be the first s columns of W. Set H = (Q1W1)T.

6. Assume R11 to be a nhp by nhp matrix related to R1 as follows: If
nhp < n_parameters, R11 equals the first nhp rows of R1. Otherwise, R11
contains R1 in its first n_parameters rows and zeros in the remaining rows.
Compute a solution Z to the linear system:

If this linear system is declared inconsistent, an error message with error code
equal to 2 is issued.

7. Partition

so that Z1 is the first n1 rows of Z. Set:

H Q R PP
T T= 1 1 1

R Q R PT T= 2 2 2

A Q QT= 11 21

σ1 σ2 … σmin n1 n2,()≥ ≥ ≥

W
T

AV σ1 …σmin n1 n2,(),()=

R Z P GT T
p11 1=
IMSL_HYPOTH_PARTIAL IDL Analyst Reference Guide

Chapter 14: Regression 681
The degrees of freedom (nh) classify the hypothesis HpβU =Gp as nontestable
(nh = 0), partially testable (0 < nh < Rank_Hp), or completely testable (0 < nh
= Rank_Hp).

For further details concerning the algorithm, see Sallas and Lionti (1988).

Example

A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to data.
The model is:

yii = µ + αi + εii..(i, j) = (1, 1) (2, 1) (2, 2)

The model is fitted using the “IMSL_MULTIREGRESS” on page 609. The partially
testable hypothesis:

is converted to a completely testable hypothesis.

nrows = 3
n_indep = 1
n_dep = 1
n_param = 3
n_class = 1
n_cont = 0
nhp = 2
z = [1, 2, 2]
y = [17.3, 24.1, 26.3]
gp = [5, 3]
hp = TRANSPOSE([[0, 1, 0], [0, 0, 1]])
x = IMSL_REGRESSORS(z, n_class, n_cont)
size_x = SIZE(x)
nreg = size_x(2)
coefs = IMSL_MULTIREGRESS(x, y, Predict_Info = info_v)
% IMSL_MULTIREGRESS: Warning: STAT_RANK_DEFICIENT
The model is not full rank. There is not a unique least
squares solution. The rank of the matrix of regressors is 2.
nh = IMSL_HYPOTH_PARTIAL(info_v, hp, Gp = gp, $

G_Matrix = g_matrix, H_Matrix = h_matrix, Rank_Hp = rank_hp)
IF (nh EQ 0) THEN PRINT, 'Nontestable Hypothesis' $
 ELSE IF (nh LT rank_hp) THEN $

Z
T

Z
T

1
Z

T

2
,

 =

G W ZT= 1 1

H0 2 3
1 5: α

α
=
=

IDL Analyst Reference Guide IMSL_HYPOTH_PARTIAL

682 Chapter 14: Regression
PRINT, 'Partially Testable Hypothesis' $
 ELSE PRINT, 'Completely Testable Hypothesis'
Partially Testable Hypothesis
PM, h_matrix, title = 'H Matrix'
H Matrix
 0.00000 0.707107 -0.707107
PM, g_matrix, title = 'G'
G
 1.41421

Errors

Warning Errors

STAT_HYP_NOT_CONSISTENT—The hypothesis is inconsistent within the computed
tolerance.

Version History

6.4 Introduced
IMSL_HYPOTH_PARTIAL IDL Analyst Reference Guide

Chapter 14: Regression 683
IMSL_HYPOTH_SCPH

The IMSL_HYPOTH_SCPH function computes the matrix of sums of squares and
crossproducts for the multivariate general linear hypothesis HβU = G given the
regression fit.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_HYPOTH_SCPH(info_v, h [, DFH=variable] [, /DOUBLE]
[, G=array] [, U=array])

Return Value

Two-dimensional array, scph, containing the sums of squares and crossproducts
attributable to the hypothesis.

Arguments

info_v

One-dimensional array of type BYTE containing information about the regression fit.
See IMSL_MULTIREGRESS.

h

Two-dimensional array of size nh by n_coefficients with each row corresponding to a
row in the hypothesis and containing the constants that specify a linear combination
of the regression coefficients. Here, n_coefficients is the number of coefficients in the
fitted regression model.

Keywords

DFH

Named variable into which the degrees of freedom for the sums of squares and
crossproducts matrix is stored. This is equal to the rank of input matrix h.
IDL Analyst Reference Guide IMSL_HYPOTH_SCPH

684 Chapter 14: Regression
DOUBLE

If present and nonzero, double precision is used.

G

Two-dimensional array of size nh by nu containing the G matrix, the null hypothesis
values. By default, each value of G is equal to 0.

U

Two-dimensional array of size n_dependent by nu containing the U matrix for the
test HpβU = Gp where nu is the number of linear combinations of the dependent
variables to be considered. The value nu must be greater than 0 and less than or equal
to n_dependent. Default: nu = n_dependent and U is the identity matrix

Discussion

The IMSL_HYPOTH_SCPH function computes the matrix of sums of squares and
crossproducts for the general linear hypothesis HβU = G for the multivariate general
linear model Y = Xβ + ε.

The rows of H must be linear combinations of the rows of R, i.e., Hβ = G must be
completely testable. If the hypothesis is not completely testable, the
“IMSL_HYPOTH_PARTIAL” on page 677 can be used to construct an equivalent
completely testable hypothesis.

Computations are based on an algorithm discussed by Kennedy and Gentle (1980, p.
317) that is extended by Sallas and Lionti (1988) for multivariate non-full rank
models with possible linear equality restrictions. The algorithm is as follows:

1. Form

2. Find C as the solution of RTC = HT. If the equations are declared inconsistent
within a computed tolerance, a warning error message is issued that the
hypothesis is not completely testable.

3. For all rows of R corresponding to restrictions, i.e., containing negative
diagonal elements from a restricted least-squares fit, zero out the
corresponding rows of C, i.e., from DC.

W Hβ̂U G–=
IMSL_HYPOTH_SCPH IDL Analyst Reference Guide

Chapter 14: Regression 685
4. Decompose DC with Householder transformations and column pivoting for a
square, upper triangular matrix T with diagonal elements of nonincreasing
magnitude and permutation matrix P such that:

where Q is an orthogonal matrix.

5. Determine the rank of T, say r. If t11 = 0, then r = 0. Otherwise, the rank of T is
r if:

| trr | > | t11 | ε 1 | tr + 1, r + 1 |

where ε = 10.0 * (machine epsilon).

Then, zero out all rows of T below r. Set the degrees of freedom for the
hypothesis, Dfh, to r.

6. Find V as a solution to TTV = PTW. If the equations are inconsistent, a warning
error message is issued that the hypothesis is inconsistent within a computed
tolerance, i.e., the linear system:

Hβ U = G

Ab = Z

does not have a solution for β.

Form VTV, which is the required matrix of sum of squares and crossproducts, scph.

In general, the two warning errors described above are serious user errors that require
you to correct the hypothesis before any meaningful sums of squares from this
function can be computed. However, in some cases, You may know the hypothesis is
consistent and completely testable, but the checks in IMSL_HYPOTH_SCPH are too
tight. For this reason, IMSL_HYPOTH_SCPH continues with the calculations.

IMSL_HYPOTH_SCPH gives a matrix of sums of squares and crossproducts that
could also be obtained from separate fittings of the two models:

and:

DCP Q T

0
=

Y
≠

Xβ≠ ε≠
 (1)+=

Aβ≠
Z

≠
=

Hβ≠
G=

Y
≠

Xβ≠ ε≠
 (2)+=

Aβ Z
≠

=

IDL Analyst Reference Guide IMSL_HYPOTH_SCPH

686 Chapter 14: Regression
where , , , and . The error sum of squares and
crossproducts matrix for (1) minus that for (2) is the matrix sum of squares and
crossproducts output in scph. Note that this approach avoids the question of
testability.

Example

The data for this example are from Maindonald (1984, pp. 203204). A multivariate
regression model containing two dependent variables and three independent variables
is fit using IMSL_MULTIREGRESS and the results stored in the structure info_v.
The sum of squares and crossproducts matrix, scph, is then computed by calling
IMSL_HYPOTH_SCPH for the test that the third independent variable is in the
model (determined by the specification of h). The degrees of freedom for scph also is
computed.

x = TRANSPOSE([[7.0, 5.0, 6.0], [2.0, -1.0, 6.0], $
[7.0, 3.0, 5.0], [-3.0, 1.0, 4.0], [2.0, -1.0, 0.0], $
[2.0, 1.0, 7.0], [-3.0, -1.0, 3.0], [2.0, 1.0, 1.0], $
[2.0, 1.0, 4.0]])

y = TRANSPOSE([[7.0, 1.0], [-5.0, 4.0], [6.0, 10.0], $
[5.0, 5.0],[5.0, -2.0], [-2.0, 4.0], [0.0, -6.0], $
[8.0, 2.0], [3.0, 0.0]])

h = FLTARR(1, 4)
h(*) = 0
h(0, 3) = 1.0
coefs = IMSL_MULTIREGRESS(x, y, Predict_Info = p)
scph = IMSL_HYPOTH_SCPH(p, h, Dfh = dfh)
PRINT, 'Degrees of Freedom Hypothesis =', dfh
Degrees of Freedom Hypothesis = 1.00000
PM, scph, Title = 'Sum of Squares and Crossproducts'
Sum of Squares and Crossproducts

 100.000 -40.0000
 -40.0000 16.0000

Errors

Warning Errors

STAT_HYP_NOT_TESTABLE—The hypothesis is not completely testable within the
computed tolerance. Each row of “h” must be a linear combination of the rows of “r”.

STAT_HYP_NOT_CONSISTENT—The hypothesis is inconsistent within the computed
tolerance.

Y
≠

YU= β≠ βU= ε≠ εU= Z
≠

ZU=
IMSL_HYPOTH_SCPH IDL Analyst Reference Guide

Chapter 14: Regression 687
Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_HYPOTH_SCPH

688 Chapter 14: Regression
IMSL_HYPOTH_TEST

The IMSL_HYPOTH_TEST function performs tests for a multivariate general linear
hypothesis HβU = G given the hypothesis sums of squares and crossproducts matrix
SH.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_HYPOTH_TEST(info_v, dfh, scph [, /DOUBLE]
[, HOTELLING_TRACE=variable] [, PILLAI_TRACE=variable]
[, ROY_MAX_ROOT=variable] [, U=array] [, WILK_LAMBDA=variable])

Return Value

The p-value corresponding to Wilks’ lambda test.

Arguments

dfh

Degrees of freedom for the sums of squares and crossproducts matrix.

info_v

One-dimensional array of type BYTE containing information about the regression fit.
See IMSL_MULTIREGRESS.

scph

Two-dimensional array of size nu by nu containing SH, the sums of squares and
crossproducts attributable to the hypothesis.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IMSL_HYPOTH_TEST IDL Analyst Reference Guide

Chapter 14: Regression 689
HOTELLING_TRACE

Named variable into which the one-dimensional array containing the Hotelling’s
trace and p-value is stored.

PILLAI_TRACE

Named variable into which the one-dimensional array containing the Pillai’s trace
and p-value is stored.

ROY_MAX_ROOT

Named variable into which the one-dimensional array containing the Roy’s
maximum root criterion and p-value is stored.

U

Two-dimensional array of size n_dependent by nu containing the U matrix for the test
HpβU = Gp where nu is the number of linear combinations of the dependent variables
to be considered. The value nu must be greater than 0 and less than or equal to
n_dependent. Default: nu = n_dependent and U is the identity matrix

WILK_LAMBDA

Named variable into which the one-dimensional array containing the Wilk’s lamda
and p-value is stored.

Discussion

IMSL_HYPOTH_TEST computes test statistics and p-values for the general linear
hypothesis HβU = G for the multivariate general linear model.

The hypothesis sum of squares and crossproducts matrix input in scph is:

where C is a solution to RTC = H and where D is a diagonal matrix with diagonal
elements:

See the section Linear Dependence and the R Matrix.

Error sum of squares and crossproducts matrix for model Y = Xβ + ε is:

SH Hβ̂U G–()
T

C
T

DC()
-

Hβ̂U G–()=

dii

1 if rii 0>

0 otherwise

=

Y Xβ̂–()
T

Y Xβ̂–()
IDL Analyst Reference Guide IMSL_HYPOTH_TEST

690 Chapter 14: Regression
which is input in IMSL_MULTIREGRESS. The error sum of squares and
crossproducts matrix for the hypothesis HβU = G computed by
IMSL_HYPOTH_TEST is:

Let p equal the order of the matrices SE and SH, i.e.:

Let q (stored in dfh) be the degrees of freedom for the hypothesis. Let v (input in
info_v) be the degrees of freedom for error. The IMSL_HYPOTH_TEST function
computed three test statistics based on eigenvalues λi (i = 1, 2, ... p) of the generalized
eigenvalue problem SHx = λSEx. These test statistics are as follows:

Wilk’s lambda:

The associated p-value is based on an approximation discussed by Rao (1973, p.
556). The statistic:

has an approximate F distribution with pq and ms – pq/2 + 1 numerator and
denominator degrees of freedom, respectively, where:

and:

The F test is exact if min (p, q) ≤ 2 (Kshirsagar, 1972, Theorem 4, p. 2994300).

Roy’s maximum root:

c = max λ i over all i

SE U
T

Y Xβ̂–()
T

Y Xβ̂–()U=

p
NU if NU 0>
NDEP otherwise

=

Λ
det SE()

det SH SE+()
-------------------------------- 1

1 λ i+

i 1=

p

∏= =

F ms pq
pq

s

s= − + −/ /

/
2 1 1 1

1
Λ

Λ

s

1 if p = 1 or q = 1

p
2
q

2
4–

p
2

q
2

5–+
-------------------------- otherwise

=

m υ p q 1–+()
2

--------------------------–=
IMSL_HYPOTH_TEST IDL Analyst Reference Guide

Chapter 14: Regression 691
where c is output as value = Roy_Max_Root(0). The p-value is based on the
approximation:

where s = max (p, q) has an approximate F distribution with s and υ + q − s
numerator and denominator degrees of freedom, respectively. The F test is exact if s =
1; the p-value is also exact. In general, the value output in p_value =
Roy_Max_Root(1) is lower bound on the actual p-value.

Hotelling’s trace:

U is output as value = Hotelling_Trace(0). The p-value is based on the approximation
of McKeon (1974) that supersedes the approximation of Hughes and Saw (1972).
McKeon’s approximation is also discussed by Seber (1984, p. 39). For:

the p-value is based on the result that:

has an approximate F distribution with pq and b degrees of freedom. The test is exact
if min (p, q) = 1. For υ ≤ p + 1, the approximation is not valid, and p_value =
Hotelling_Trace(1) is set to NaN.

These three test statistics are valid when SE is positive definite. A necessary condition
for SE to be positive definite is υ ≥ p. If SE is not positive definite, a warning error
message is issued, and both value and p_value are set to NaN.

F q s
s

c= + −υ

U tr HE
1–() λ i

i 1=

p

∑= =

b 4 pq 2+
υ q p– 1–+() υ 1–()

υ p– 3–() υ p–()

---+=

F b υ p– 1–()
b 2–()pq

-----------------------------=
IDL Analyst Reference Guide IMSL_HYPOTH_TEST

692 Chapter 14: Regression
Because the requirement υ ≥ p can be a serious drawback, IMSL_HYPOTH_TEST
computes a fourth test statistic based on eigenvalues θi (i = 1, 2, ..., p) of the
generalized eigenvalue problem SHw = θ(SH + SE) w. This test statistic requires a less
restrictive assumption—SH + SE is positive definite. A necessary condition for SH +
SE to be positive definite is υ + q ≥ p. If SE is positive definite,
IMSL_HYPOTH_TEST avoids the computation of the generalized eigenvalue
problem from scratch. In this case, the eigenvalues θi are obtained from λi by:

The fourth test statistic is as follows:

Pillai’s trace:

V is output as value = Pillai_Trace(0). The p-value is based on an approximation
discussed by Pillai (1985). The statistic:

has an approximate F distribution with s(2m + s + 1) and s(2n + s + 1) numerator and
denominator degrees of freedom, respectively, where:

s = min (p, q)

m = 1/2(|p - q| – 1)

n = 1/2(υ - p – 1)

The F test is exact if min (p, q) = 1.

Examples

Example 1

The data for this example are from Maindonald (1984, p. 20310204). A multivariate
regression model containing two dependent variables and three independent variables
is fit using IMSL_MULTIREGRESS and the results stored in info_v. The sum of
squares and crossproducts matrix, scph, is then computed using HYPOYH_SCPH for
the test that the third independent variable is in the model (determined by
specification of h). Finally, IMSL_HYPOTH_TEST is used to compute the p-value
for the test statistic (Wilk’s lambda).

θ λ
λi
i

i
=

+1

V tr SH SH SE+() 1–[] θ i
i 1=

p

∑= =

F n s
m s

V
s V

= + +
+ + −

2 1
2 1
IMSL_HYPOTH_TEST IDL Analyst Reference Guide

Chapter 14: Regression 693
x = TRANSPOSE([[7.0, 5.0, 6.0], [2.0, -1.0, 6.0], $
[7.0, 3.0, 5.0], [-3.0, 1.0, 4.0], [2.0, -1.0, 0.0], $
[2.0, 1.0, 7.0], [-3.0, -1.0, 3.0], [2.0, 1.0, 1.0], $
[2.0, 1.0, 4.0]])

y = TRANSPOSE([[7.0, 1.0], [-5.0, 4.0], [6.0, 10.0], $
[5.0, 5.0], [5.0, -2.0], [-2.0, 4.0], [0.0, -6.0], $
[8.0, 2.0], [3.0, 0.0]])

h = FLTARR(1, 4)
h(*) = 0
h(0, 3) = 1.0
coefs = IMSL_MULTIREGRESS(x, y, Predict_Info = p)
scph = IMSL_HYPOTH_SCPH(p, h, Dfh = dfh)
pvalue = IMSL_HYPOTH_TEST(p, dfh, scph)
PM, pvalue, format = '(F10.6)', Title = 'P-value'
P-value

 0.000010

Example 2

This example is the same as the first example, but more statistics are computed. Also,
the U matrix, U, is explicitly specified as the identity matrix (which is the same
default configuration of U).

x = TRANSPOSE([[7.0, 5.0, 6.0], [2.0, -1.0, 6.0], $
[7.0, 3.0, 5.0], [-3.0, 1.0, 4.0], [2.0, -1.0, 0.0], $
[2.0, 1.0, 7.0], [-3.0, -1.0, 3.0], [2.0, 1.0, 1.0], $
[2.0, 1.0, 4.0]])

y = TRANSPOSE([[7.0, 1.0], [-5.0, 4.0], [6.0, 10.0], $
[5.0, 5.0], [5.0, -2.0], [-2.0, 4.0], [0.0, -6.0], $
[8.0, 2.0], [3.0, 0.0]])

h = FLTARR(1, 4)
h(*) = 0
h(0, 3) = 1.0
u = [[1, 0], [0, 1]]
coefs = IMSL_MULTIREGRESS(x, y, Predict_Info = p)
scph = IMSL_HYPOTH_SCPH(p, h, Dfh = dfh)
pvalue = IMSL_HYPOTH_TEST(p, dfh, scph, U = u, $

Wilk_Lambda = wilk_lambda, Roy_Max_Root = roy_max_root, $
Hotelling_Trace = hotelling_trace, $
Pillai_Trace = pillai_trace)

PRINT, 'Wilk value = ', wilk_lambda(0), ' p-value =', $
wilk_lambda(1)

Wilk value = 0.00314861 p-value = 9.89437e-06
PRINT, 'Roy value = ', roy_max_root(0), ' p-value =', $

roy_max_root(1)
Roy value = 316.601 p-value = 9.89437e-06
PRINT, 'Hotelling value = ', hotelling_trace(0), ' p-value =', $

hotelling_trace(1)
Hotelling value = 316.601 p-value = 9.89437e-06
IDL Analyst Reference Guide IMSL_HYPOTH_TEST

694 Chapter 14: Regression
PRINT, 'Pillai value = ', pillai_trace(0), ' p-value =', $
pillai_trace(1)

Pillai value = 0.996851 p-value = 9.89437e-06

Errors

Warning Errors

STAT_SINGULAR_1—“u”*“scpe”*“u” is singular. Only Pillai’s trace can be
computed. Other statistics are set to NaN.

Fatal Errors

STAT_NO_STAT_1—“scpe” + “scph” is singular. No tests can be computed.

STAT_NO_STAT_2—No statistics can be computed. Iterations for eigenvalues for
the generalized eigenvalue problem “scph”*x = (lambda)*(“scph”+“scpe”)*x failed to
converge.

STAT_NO_STAT_3—No statistics can be computed. Iterations for eigenvalues for
the generalized eigenvalue problem “scph”*x = (lambda)*(“scph”+“u”*“scpe”*“u”)*x
failed to converge.

STAT_SINGULAR_2—“u”*“scpe”*“u” + “scph” is singular. No tests can be
computed.

STAT_SINGULAR_TRI_MATRIX—The input triangular matrix is singular. The
index of the first zero diagonal element is equal to #.

Version History

6.4 Introduced
IMSL_HYPOTH_TEST IDL Analyst Reference Guide

Chapter 14: Regression 695
IMSL_NONLINOPT

The IMSL_NONLINOPT function fits data to a nonlinear model (possibly with
linear constraints) using the successive quadratic programming algorithm (applied to
the sum of squared errors, SSE = Σ(yi − f(xi; θ))2) and either a finite difference
gradient or a user-supplied gradient.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NONLINOPT(f, n_parameters, x, y [, A_MATRIX=array]
[, ACC=value] [, ACTIVE_CONST=variable] [, B=array] [, /DOUBLE]
[, FREQUENCIES=array] [, JACOBIAN=string]
[, LAGRANGE_MULT=variable] [, MAX_SSE_EVALS=value] [, MEQ=value]
[, NUM_ACTIVE=variable] [, PREDICTED=variable] [, RESIDUAL=variable]
[, SSE=variable] [, STOP_INFO=variable] [, THETA_GUESS=array]
[, WEIGHTS=array] [, XLB=array] [, XUB=array])

Return Value

One-dimensional array of length n_parameters containing solution:

for the nonlinear regression coefficients.

Arguments

f

Scalar string specifying a user-supplied function that defines the nonlinear regression
problem at a given point. Function f has the following parameters:

• xi—One-dimensional array of length n_independent at which point the
function is evaluated.

• theta—One-dimensional array of length n_parameters containing the current
values of the regression coefficients.

θ̂

IDL Analyst Reference Guide IMSL_NONLINOPT

696 Chapter 14: Regression
Function f returns a predicted value at the point xi. In the following,
f(xi; θ), or just fi, denotes the value of this function at the point xi, for a given
value of θ. (Both xi and θ are arrays.).

n_parameters

Number of parameters to be estimated.

x

Two-dimensional array of size n_observations by n_independent containing the
matrix of independent (explanatory) variables where n_observations is the number of
observations and n_independent is the number of independent variables.

y

One-dimensional array of length n_observations containing the dependent (response)
variable.

Keywords

A_MATRIX

Two-dimensional array of size n_constraints by n_parameters containing the equality
constraint gradients in the first Meq rows, followed by the inequality constraint
gradients. Here n_constraints is the total number of linear constraints (excluding
simple bounds). A_Matrix and B must be used together. Default: There are no default
linear constraints.

ACC

The nonnegative tolerance on the first order conditions at the calculated solution.

ACTIVE_CONST

Named variable into which a one-dimensional array of length Num_Active containing
the indices of the final active constraints is stored.

B

One-dimensional array of length n_constraints containing the right-hand sides of the
linear constraints. Keywords A_Matrix and B must be used together. Default: There
are no default linear constraints.

A_Matrix and B are the linear constraints, specifically, the constraints on θ are:
IMSL_NONLINOPT IDL Analyst Reference Guide

Chapter 14: Regression 697
ai1 θ 1 + ... + aij θj = bi

for i = 1, n_equality and j = 1, n_parameter, and:

ak1 θ 1 + ... + akj θj ≤ bk

for k = n_equality + 1, n_constraints and j = 1, n_parameter.

DOUBLE

If present and nonzero, double precision is used.

FREQUENCIES

One-dimensional array of length n_observations containing the frequency for each
observation. Default: Frequencies(*) = 1

JACOBIAN

Scalar string specifying a user-supplied function to compute the i-th row of the
Jacobian. The function specified by Jacobian has the following parameters:

• Xi—One-dimensional array containing the n_independent data values
corresponding to the i-th row. (Input)

• Theta—One-dimensional array of length n_parameters containing the
regression coefficients for which the Jacobian is evaluated. (Input)

The return value of this function is a one-dimensional array containing the
computed n_parameters row of the Jacobian for observation i at Theta. Note
that each derivative f(xi)/θ should be returned in element (j – 1) of the
returned array for j = 1, 2, ..., n_parameters. Further note that in order to
maintain consistency with the other nonlinear solver,
IMSL_NONLINREGRESS, the Jacobian values must be specified as the
negative of the calculated derivatives.

LAGRANGE_MULT

Named variable into which a one-dimensional array of length Num_Active containing
the Lagrange multiplier estimates of the final active constraints is stored.

MAX_SSE_EVALS

The maximum number of SSE evaluations allowed. Default: Max_Sse_Eval = 400
IDL Analyst Reference Guide IMSL_NONLINOPT

698 Chapter 14: Regression
MEQ

Number of the A_Matrix constraints which are equality constraints; the remaining
(n_constraints –Meq) constraints are inequality constraints. Default: Meq = 0.

NUM_ACTIVE

Named variable into which the final number of active constraints is stored.

PREDICTED

Named variable into which a one-dimensional array of length n_observations
containing the predicted values at the approximate solution is stored.

RESIDUAL

Named variable into which a one-dimensional array of length n_observations
containing the residuals at the approximate solution is stored.

SSE

Named variable into which the residual sum of squares is stored.

STOP_INFO

Named variable into which one of the following integer values to indicate the reason
for leaving the routine is stored:

Stop_info Reason for leaving routine

1 θ is feasible, and the condition that depends on Acc is satisfied.

2 θ is feasible, and rounding errors are preventing further progress.

3 θ is feasible, but sse fails to decrease although a decrease is
predicted by the current gradient vector.

4 The calculation cannot begin because A_Matrix contains fewer
than n_constraints constraints or because the lower bound on a
variable is greater than the upper bound.

Table 14-9: Stop_Info Integer Values
IMSL_NONLINOPT IDL Analyst Reference Guide

Chapter 14: Regression 699
THETA_GUESS

One-dimensional array with n_parameters components containing an initial guess.
Default: Theta_Guess(*) = 0

WEIGHTS

One-dimensional array of length n_observations containing the weight for each
observation. Default: Weights(*) = 1

XLB

One-dimensional array of length n_parameters containing the lower bounds on the
parameters; choose a very large negative value if a component should be unbounded
below or set Xlb(i) = Xub(i) to freeze the i-th variable. Default: All parameters are
bounded below by –106.

XUB

One-dimensional array of length n_parameters containing the upper bounds on the
parameters; choose a very large value if a component should be unbounded above or
set Xlb(i) = Xub(i) to freeze the i-th variable. Default: All parameters are bounded
above by 106.

5 The equality constraints are inconsistent. These constraints
include any components of

that are frozen by setting Xlb(i) equal to Xub(i).

6 The equality constraints and the bound on the variables are found
to be inconsistent.

7 There is no possible 1 that satisfies all of the constraints.

8 Maximum number of sse evaluations (Max_Sse_Eval) is
exceeded.

9 θ is determined by the equality constraints.

Stop_info Reason for leaving routine

Table 14-9: Stop_Info Integer Values

θ̂

IDL Analyst Reference Guide IMSL_NONLINOPT

700 Chapter 14: Regression
Discussion

The IMSL_NONLINOPT function is based on M.J.D. Powell’s TOLMIN, which
solves linearly constrained optimization problems, i.e., problems of the form min
f(q), , subject to:

A1θ = b1

A ≤ b2

θ I ≤ θ ≤ θu

given the vectors b1, b2, θI, and θu and the matrices A1 and A2.

The algorithm starts by checking the equality constraints for inconsistency and
redundancy. If the equality constraints are consistent, the method will revise θ0, the
initial guess you provided, to satisfy:

A1 θ = b1

Next, θ0 is adjusted to satisfy the simple bounds and inequality constraints. This is
done by solving a sequence of quadratic programming subproblems to minimize the
sum of the constraint or bound violations.

Now, for each iteration with a feasible θk, let Jk be the set of indices of inequality
constraints that have small residuals. Here, the simple bounds are treated as
inequality constraints. Let Ik be the set of indices of active constraints. The following
quadratic programming problem:

subject to:

is solved to get (dk, λk) where aj is a row vector representing either a constraint in A1
or A2 or a bound constraint on θ. In the latter case, the aj = ei for the bound constraint
θi ≤ (θu)i and aj = ei for the constraint θi ≤ (θl)i. Here, ei is a vector with a 1 as the i-
th component, and zeroes elsewhere. λk are the Lagrange multipliers, and Bk is a
positive definite approximation to the second derivative ∇ 2 f(θk).

After the search direction dk is obtained, a line search is performed to locate a better
point. The new point θk+1 = θk + αkdk has to satisfy the conditions:

f (θ k + α kdk) ≤ f (θ k) + 0.1α k (dk)T ∇ f (θ k)

and:

(dk)T∇ f (θ k + α kdk) ≥ 0.7 (dk)T∇ f (θ k)

θ ℜ∈

minf θk() d
T

f∇ θ k() 1
2
---d

Tβk
d+ +

ajd 0= j Ik∈

ajd 0≤ j Jk∈
IMSL_NONLINOPT IDL Analyst Reference Guide

Chapter 14: Regression 701
The main idea in forming the set Jk is that, if any of the inequality constraints restricts
the step-length αk, then its index is not in Jk. Therefore, small steps are likely to be
avoided.

Finally, the second derivative approximation, Bk, is updated by the BFGS formula, if
the condition:

(dk)T∇ f (θ k + α kdk) − ∇ f (θ k) > 0

holds. Let θk ← θk+1, and start another iteration.

The iteration repeats until the stopping criterion:

||∇ f (θ k) − Akλ k||2 ≤ τ

is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell (1988,
1989).

Since a finite-difference method is used to estimate the gradient, for some single
precision calculations. An inaccurate estimate of the gradient may cause the
algorithm to terminate at a noncritical point. In such cases, high precision arithmetic
is recommended. Also, whenever the exact gradient can be easily provided, the
gradient should be passed to IMSL_NONLINOPT using the optional keyword
Jacobian.

Examples

Example 1

In this example, a data set is fitted to the nonlinear model function:

.RUN
FUNCTION fcn, x, theta

res = SIN(theta(0)*x(0))
RETURN, res

END

x = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
y = [0.05, 0.21, 0.67, 0.72, 0.98, 0.94, 1.00, 0.73, 0.44, $

0.36, 0.02]
n_parameters = 1
theta_hat = IMSL_NONLINOPT('fcn', n_parameters, x, y)
% IMSL_NONLINOPT: Note: STAT_NOTE_3
 'theta' is feasible but the objective function fails to
decrease. Using double precision may help.
PRINT, 'Theta Hat = ', theta_hat
Theta Hat = 3.16143

yi θ0xi() εi+sin=
IDL Analyst Reference Guide IMSL_NONLINOPT

702 Chapter 14: Regression
Example 2

Draper and Smith (1981, p. 475) state a problem due to Smith and Dubey. [H. Smith
and S. D. Dubey (1964), “Some reliability problems in the chemical industry.”
Industrial Quality Control, 21 (2), 1964, pp. 641470] A certain product must have
50% available chlorine at the time of manufacture. When it reaches the customer 8
weeks later, the level of available chlorine has dropped to 49%. It was known that the
level should stabilize at about 30%. To predict how long the chemical would last at
the customer site, samples were analyzed at different times. It was postulated that the
following nonlinear model should fit the data:

Since the chlorine level will stabilize at about 30%, the initial guess for theta1 is 0.30.
Using the last data point (x = 42, y = 0.39) and θ0 = 0.30 and the above nonlinear
equation, an estimate for θ1 of 0.02 is obtained.

The constraints that θ0 ≥ 0 and θ1 ≥ 0 are also imposed. These are equivalent to
requiring that the level of available chlorine always be positive and never increase
with time.

The Jacobian of the nonlinear model equation is also used.

.RUN
FUNCTION fcn, x, theta

res = theta(0) + (0.49-theta(0))* exp(-theta(1)*(x(0) - 8.0))
RETURN, res

END

.RUN
FUNCTION jacobian, x, theta

fjac = theta
fjac(*) = 0
fjac(0) = -1.0 + exp(-theta(1)*(x(0) - 8.0));
fjac(1) = (0.49 - theta(0))*(x(0) - 8.0) * $

exp(-theta(1)*(x(0) - 8.0));
RETURN, fjac

END

x = [8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0, $
12.0, 14.0, 14.0, 14.0, 16.0, 16.0, 16.0, 18.0, 18.0, $
20.0, 20.0, 20.0, 22.0, 22.0, 22.0, 24.0, 24.0, 24.0, $
26.0, 26.0, 26.0, 28.0, 28.0, 30.0, 30.0, 30.0, 32.0, $
32.0, 34.0, 36.0, 36.0, 38.0, 38.0, 40.0, 42.0]

y = [0.49, 0.49, 0.48, 0.47, 0.48, 0.47, 0.46, 0.46, 0.45, $
0.43, 0.45, 0.43, 0.43, 0.44, 0.43, 0.43, 0.46, 0.45, $
0.42, 0.42, 0.43, 0.41, 0.41, 0.40, 0.42, 0.40, 0.40, $
0.41, 0.40, 0.41, 0.41, 0.40, 0.40, 0.40, 0.38, 0.41, $

yi θ0 0.49 θ–()e
θ– xj 8–()

εi++=
IMSL_NONLINOPT IDL Analyst Reference Guide

Chapter 14: Regression 703
0.40, 0.40, 0.41, 0.38, 0.40, 0.40, 0.39, 0.39]
theta_guess = [0.3, 0.02]
xlb = [0.0, 0.0]
n_parameters = 2
theta_hat = IMSL_NONLINOPT('fcn', n_parameters, x, y, $

Theta_Guess = theta_guess, Xlb = xlb, $
Jacobian = 'jacobian', Sse = sse)

PRINT, 'Theta Hat =', theta_hat

Theta Hat = 0.390143 0.101631

PRINT, 'Residual Sum of Squares =', sse

Residual Sum of Squares = 0.00500168

Errors

Fatal Errors

STAT_BAD_CONSTRAINTS_1—The equality constraints are inconsistent.

STAT_BAD_CONSTRAINTS_2—The equality constraints and the bounds on the
variables are found to be inconsistent.

STAT_BAD_CONSTRAINTS_3—No vector “theta” satisfies all of the constraints.
Specifically, the current active constraints prevent any change in “theta” that reduces
the sum of constraint violations.

STAT_BAD_CONSTRAINTS_4—The variables are determined by the equality
constraints.

STAT_TOO_MANY_ITERATIONS_1—Number of function evaluations exceeded
“maxfcn” = #.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_NONLINOPT

704 Chapter 14: Regression
IMSL_LNORMREGRESS

The IMSL_LNORMREGRESS function fits a multiple linear regression model using
criteria other than least squares. Namely, IMSL_LNORMREGRESS allows you to
choose Least Absolute Value (L1), Least Lp norm (Lp), or Least Maximum Value
(Minimax or Linfinity) method of multiple linear regression.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LNORMREGRESS(x, y [, DF=variable] [, /DOUBLE]
[, EPS=value] [, FREQUENCIES=array] [, ITERS=variable]
[, /LAV | /LLP | /LMV] [, NMISSING=variable] [, /NO_INTERCEPT]
[, P=value] [, RANK=variable] [, R_MATRIX=variable]
[, RESID_MAX=variable] [, RESID_NORM=variable]
[, RESIDUALS=variable] [, SCALE=variable] [, SEA=variable]
[, TOLERANCE=value] [, WEIGHTS=array])

Return Value

One-dimensional array of length n_independent + 1 containing a least absolute value
solution for the regression coefficients. The estimated intercept is the initial
component of the array, where the i-th component contains the regression coefficients
for the i-th dependent variable. If the keyword No_Intercept is used then the (i-1)-st
component contains the regression coefficients for the i-th dependent variable.
IMSL_LNORMREGRESS returns the Lp norm or least maximum value solution for
the regression coefficients when appropriately specified in the input keyword list.

Arguments

x

Two-dimensional array of size n_rows by n_independent containing the independent
(explanatory) variables(s) where n_rows = N_ELEMENTS(x(*,0)) and
n_independent is the number of independent (explanatory) variables. The i-th column
of x contains the i-th independent variable.
IMSL_LNORMREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 705
y

One-dimensional array of size n_rows containing the dependent (response) variable.

Keywords

DF

Named variable into which the sum of the frequencies minus Rank is stored. In least
squares fit (p=2) Df is called the degrees of freedom of error. Keyword Llp is required
when using keyword Df.

DOUBLE

If present and nonzero, double precision is used.

EPS

Convergence criterion. If the maximum relative difference in residuals from the k-th
to (k+1)-st iterations is less than Eps, convergence is declared. Keyword Llp is
required when using keyword Eps. Default: Eps = 100 * (machine epsilon).

FREQUENCIES

One-dimensional array of size n_rows containing the frequencies for the independent
(explanatory) variable. Keyword Llp is required when using keyword Frequencies.

ITERS

Named variable into which the number of iterations performed is stored.

LAV

By default (or if Lav is used) the function fits a multiple linear regression model using
the least absolute values criterion. Keywords Lav, Llp, and Lmv can not be used
together.

LLP

If present and nonzero, IMSL_LNORMREGRESS fits a multiple linear regression
model using the Lp norm criterion. Llp requires the keyword P, for P ≥ 1. Keywords
Lav, Llp, and Lmv can not be used together.
IDL Analyst Reference Guide IMSL_LNORMREGRESS

706 Chapter 14: Regression
LMV

If present and nonzero, IMSL_LNORMREGRESS fits a multiple linear regression
model using the minimax criterion. Keywords Lav, Llp, and Lmv can not be used
together.

NMISSING

Named variable into which the number of rows of data containing NaN (not a
number) for the dependent or independent variables is stored. If a row of data
contains NaN for any of these variables, that row is excluded from the computations.

NO_INTERCEPT

If present and nonzero, the intercept term:

is omitted from the model and the return value from regression is a one-dimensional
array of length n_independent. By default the fitted value for observation i is:

where k = n_independent.

P

The p in the Lp norm criterion (see the Discussion section for details). P must be
greater than or equal to one. P and Llp must be used together.

RANK

Named variable into which the rank of the fitted model is stored.

R_MATRIX

Named variable into which the two-dimensional array containing the upper triangular
matrix of dimension (number of coefficients by number of coefficients) containing
the R matrix from a QR decomposition of the matrix of regressors is stored. Keyword
Llp is required when using keyword R_Matrix.

RESID_MAX

Named variable into which the magnitude of the largest residual is stored. Keyword
Lmv is required when using keyword Resid_Max.

β̂0

β̂0 β̂1x1 ... β̂kxk+ + +
IMSL_LNORMREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 707
RESID_NORM

Named variable into which the Lp norm of the residuals is stored. Keyword Llp is
required when using keyword Resid_Norm.

RESIDUALS

Named variable into which the one-dimensional array (of length equal to the number
of observations) containing the residuals is stored. Keyword Llp is required when
using keyword Residuals.

SCALE

Named variable into which the square of the scale constant used in an Lp analysis is
stored. An estimated asymptotic variance-covariance matrix of the regression
coefficients is Scale * (RTR)-1. Keyword Llp is required when using keyword Scale.

SEA

Named variable into which the sum of the absolute value of the errors is stored.
Keyword Lav is required when using keyword Sea.

TOLERANCE

Tolerance used in determining linear dependence. Keyword Llp is required when
using keyword Tolerance. Default: Tolerance = 100 * (machine epsilon).

WEIGHTS

One-dimensional array of size n_rows containing the weights for the independent
(explanatory) variable. Keyword Llp is required when using keyword Weights.

Discussion

Least Absolute Value Criterion

The IMSL_LNORMREGRESS function computes estimates of the regression
coefficients in a multiple linear regression model. For keyword Lav (default), the
criterion satisfied is the minimization of the sum of the absolute values of the
deviations of the observed response yi from the fitted response:

for a set on n observations. Under this criterion, known as the L1 or LAV (least
absolute value) criterion, the regression coefficient estimates minimize:

ŷi
IDL Analyst Reference Guide IMSL_LNORMREGRESS

708 Chapter 14: Regression
The estimation problem can be posed as a linear programming problem. The special
nature of the problem, however, allows for considerable gains in efficiency by the
modification of the usual simplex algorithm for linear programming. These
modifications are described in detail by Barrodale and Roberts (1973, 1974).

In many cases, the algorithm can be made faster by computing a least-squares
solution prior to the use of keyword Lav. This is particularly useful when a least-
squares solution has already been computed. The procedure is as follows:

1. Fit the model using least squares and compute the residuals from this fit.

2. Fit the residuals from Step 1 on the regressor variables in the model using
keyword Lav.

3. Add the two estimated regression coefficient vectors from Steps 1 and 2. The
result is an L1 solution.

When multiple solutions exist for a given problem, option Lav may yield different
estimates of the regression coefficients on different computers, however, the sum of
the absolute values of the residuals should be the same (within rounding differences).
The informational error indicating nonunique solutions may result from rounding
accumulation. Conversely, because of rounding the error may fail to result even when
the problem does have multiple solutions.

Lp Norm Criterion

Keyword Llp computes estimates of the regression coefficients in a multiple linear
regression model y = Xβ + ε under the criterion of minimizing the Lp norm of the
deviations for i = 0, ... , n - 1 of the observed response yi from the fitted response:

for a set on n observations and for p ≥ 1. For the case when keywords Weights and
Frequencies are not supplied, the estimated regression coefficient vector:

(output in Result) minimizes the Lp norm:

yi ŷi–
i 0=

n 1–

∑

ŷi

β̂

yi ŷi–
p

i 0=

n 1–

∑

 1p⁄
IMSL_LNORMREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 709
The choice p = 1 yields the maximum likelihood estimate for β when the errors have
a Laplace distribution. The choice p = 2 is best for errors that are normally
distributed. Sposito (1989, pages 36−40) discusses other reasonable alternatives for p
based on the sample kurtosis of the errors.

Weights are useful if errors in the model have known unequal variances:

In this case, the weights should be taken as:

Frequencies are useful if there are repetitions of some observations in the data set. If a
single row of data corresponds to ni observations, set the frequency fi = ni. In general,
keyword Llp minimizes the Lp norm:

The asymptotic variance-covariance matrix of the estimated regression coefficients is
given by:

where R is from the QR decomposition of the matrix of regressors (output in keyword
R_Matrix) and where an estimate of λ2 is output in keyword Scale.

In the discussion that follows, we will first present the algorithm with frequencies and
weights all taken to be one. Later, we will present the modifications to handle
frequencies and weights different from one.

Keyword Llp uses Newton’s method with a line search for p > 1.25 and, for
p ≤ 1.25, uses a modification due to Ekblom (1973, 1987) in which a series of
perturbed problems are solved in order to guarantee convergence and increase the
convergence rate. The cutoff value of 1.25 as well as some of the other
implementation details given in the remaining discussion were investigated by Sallas
(1990) for their effect on CPU times.

For the first iteration in each case, a least-squares solution for regression coefficients
is computed with IMSL_MULTIREGRESS. If p = 2, the computations are finished.
Otherwise, the residuals from the k-th iteration:

σ i
2

wi 1 σ i
2⁄=

fi wi yi ŷi–()
p

i 0=

n 1–

∑

 1p⁄

asy.var β̂() λ2
R

T
R()

1–
=

ei
k()

yi ŷi
k()

–=
IDL Analyst Reference Guide IMSL_LNORMREGRESS

710 Chapter 14: Regression
are used to compute the gradient and Hessian for the Newton step for the
(k + 1)-st iteration for minimizing the p-th power of the Lp norm. (The exponent 1/p
in the Lp norm can be omitted during the iterations.)

For subsequent iterations, we first discuss the p > 1.25 case. For p > 1.25, the gradient
and Hessian at the (k + 1)-st iteration depend upon:

and:

In the case 1.25 < p < 2 and:

and the Hessian are undefined; and we follow the recommendation of Merle and
Spath (1974). Specifically, we modify the definition of:

to the following:

where τ equals 100 * machine epsilon times the square root of the residual mean
square from the least-squares fit.

Let V(k+1) be a diagonal matrix with diagonal entries:

and let z(k+1) be a vector with elements:

In order to compute the step on the (k + 1)-st iteration, the R from the QR
decomposition of:

[V(k+1)]1/2X

 is computed using fast Givens transformations. Let:

R(k+1)

zi
k 1+()

ei
k() p 1–

sign ei
k()()=

vi
k 1+()

ei
k() p 2–

=

ei
k()

0 vi
k 1+()

,=

vi
k 1+()

vi
k 1+() τp 2–

 if p < 2 and ei
k() τ<

ei
k() p 2–

otherwise

=

vi
k 1+()

zi
k 1+()
IMSL_LNORMREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 711
denote the upper triangular matrix from the QR decomposition. The linear system:

 [R(k+1)]TR(k+1)d(k+1) = XT z(k+1)

is solved for:

d(k+1)

where R(k+1) is from the QR decomposition of [V(k+1)]1/2X. The step taken on the (k +
1)-st iteration is:

The first attempted step on the (k + 1)-st iteration is with α(k+1) = 1. If all of the:

are nonzero, this is exactly the Newton step. See Kennedy and Gentle (1980, pages
528−529) for further discussion.

If the first attempted step does not lead to a decrease of at least one-tenth of the
predicted decrease in the p-th power of the Lp norm of the residuals, a backtracking
linesearch procedure is used. The backtracking procedure uses a one-dimensional
quadratic model to estimate the backtrack constant p. The value of p is constrained to
be no less that 0.1. An approximate upper bound for p is 0.5. If after 10 successive
backtrack attempts, α(k) = p1p2... p10 does not produce a step with a sufficient
decrease, then IMSL_LNORMREGRESS issues a message with error code 5. For
further details on the backtrack line-search procedure, see Dennis and Schnabel
(1983, pages 126−127).

Convergence is declared when the maximum relative change in the residuals from
one iteration to the next is less than or equal to Eps. The relative change:

in the i-th residual from iteration k to iteration k + 1 is computed as follows:

where s is the square root of the residual mean square from the least-squares fit on the
first iteration.

For the case 1 ≤ p ≤ 1.25, we describe the modifications to the previous procedure
that incorporate Ekblom’s (1973) results. A sequence of perturbed problems are
solved with a successively smaller perturbation constant c. On the first iteration, the

β̂
k 1+()

β̂
k()

α k 1+() 1
p 1–
------------d

k 1+()
+=

ei
k()

σi
k 1+()

δi
k 1+() 0 if ei

k 1+()
ei

k()
0= =

ei
k 1+

ei
k

– max ei
k()

ei
k 1+()

s,(,)⁄ otherwise

=

IDL Analyst Reference Guide IMSL_LNORMREGRESS

712 Chapter 14: Regression
least-squares problem is solved. This corresponds to an infinite c. For the second
problem, c is taken equal to s, the square root of the residual mean square from the
least-squares fit. Then, for the (j + 1)-st problem, the value of c is computed from the
previous value of c according to:

Each problem is stated as:

For each problem, the gradient and Hessian on the (k + 1)-st iteration depend upon:

and:

where:

The linear system [R(k+1)]TR(k+1)d(k+1) = XTz(k+1) is solved for d(k+1) where R(k+1) is
from the QR decomposition of [V(k+1)]1/2X. The step taken on the (k + 1)-st iteration
is:

where the first attempted step is with α(k+1) = 1. If necessary, the backtracking line-
search procedure discussed earlier is used.

Convergence for each problem is relaxed somewhat by using a convergence epsilon
equal to max(Eps, 10–j) where j = 1, 2, 3, ... indexes the problems (j = 0 corresponds
to the least-squares problem).

After the convergence of a problem for a particular c, Ekblom’s (1987) extrapolation
technique is used to compute the initial estimate of β for the new problem. Let R(k):

and c be from the last iteration of the last problem. Let:

cj 1+ cj 10
5p 4–⁄=

Minimize ei
2

c
2

+()
p 2⁄

i 0=

n 1–

∑

zi
k 1+()

ei
k()

ri
k()

=

vi
k 1+()

1
p 2–() ei

k()()
2

ei
k()()

2
c

2
+

----------------------------------+ ri
k()

=

ri
k()

ei
k()()

2
c

2
+[]

p 2–() 2⁄
=

β̂
k 1+()

β̂
k()

α k 1+()
d

k 1+()
+=

vi
k()

ei
k()

,

IMSL_LNORMREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 713
and let t be the vector with elements ti. The initial estimate of β for the new problem
with perturbation constant 0.01c is:

where ∆c = (0.01c - c) = -0.99c, and where d is the solution of the linear system
[R(k)]TR(k)d = XTt.

Convergence of the sequence of problems is declared when the maximum relative
difference in residuals from the solution of successive problems is less than Eps.

The preceding discussion was limited to the case for which Weights(*) = 1 and
Frequencies(*) = 1, i.e., the weights and frequencies are all taken equal to one. The
necessary modifications to the preceding algorithm to handle weights and frequencies
not all equal to one are as follows:

1. Replace:

in the definitions of:

and ti.

2. Replace:

These replacements have the same effect as multiplying the i-th row of X and y by:

and repeating the row fi times except for the fact that the residuals returned by
IMSL_LNORMREGRESS are in terms of the original y and X.

ti
p 2–()vi

k()

ei
k()()

2
c

2
+

-----------------------------=

β̂
0()

β̂
k()

cd∆+=

ei
k()

 by wiei
k()

zi
k 1+()

vi
k 1+()

, δi
k 1+()

,

zi
k 1+()

 by fi wizi
k 1+()

vi
k 1+()

 by fiwivi
k 1+()

, and , ti
k 1+()

 by fi witi
k 1+()

wi
IDL Analyst Reference Guide IMSL_LNORMREGRESS

714 Chapter 14: Regression
Finally, R and an estimate of λ2 are computed. Actually, R is recomputed because on
output it corresponds to the R from the initial QR decomposition for least squares.
The formula for the estimate of λ2 depends on p.

For p = 1, the estimator for λ2 is given by (McKean and Schrader 1987):

with:

where z0.975 is the 97.5 percentile of standard normal distribution, and:

are ordered residuals where Rank zero residuals are excluded. Note that:

For p = 2, the estimator of λ2 is the customary least-squares estimator given by:

For 1 < p < 2 and for p > 2, the estimator for λ2 is given by (Gonin and Money 1989):

with:

λ̂
2 DFE ẽ DFE k– 1+() ẽ k()–()

2z0.975

2

=

k DFE k+
2

--------------------- z0.975
DFE

4
------------–=

ε̃ m() m 1 2, ..., DFE,=()

DFE fi irank–
i 0=

n 1–

∑=

s
2 SSE

DFE

fiwi yi ŷi–()2

i 0=

n 1–

∑

fi irank–
i 0=

n 1–

∑

---= =

ω̂p
2 m2p 2–

p 1–()mp 2–[] 2
--------------------------------------=
IMSL_LNORMREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 715
Least Minimum Value Criterion (minimax)

Keyword Lmv computes estimates of the regression coefficients in a multiple linear
regression model. The criterion satisfied is the minimization of the maximum
deviation of the observed response yi from the fitted response:

for a set on n observations. Under this criterion, known as the minimax or LMV (least
maximum value) criterion, the regression coefficient estimates minimize:

The estimation problem can be posed as a linear programming problem. A dual
simplex algorithm is appropriate, however, the special nature of the problem allows
for considerable gains in efficiency by modification of the dual simplex iterations so
as to move more rapidly toward the optimal solution. The modifications are described
in detail by Barrodale and Phillips (1975).

When multiple solutions exist for a given problem, Lmv may yield different estimates
of the regression coefficients on different computers, however, the largest residual in
absolute value should have the same absolute value (within rounding differences).
The informational error indicating nonunique solutions may result from rounding
accumulation. Conversely, because of rounding, the error may fail to result even
when the problem does have multiple solutions.

Examples

Example 1

A straight line fit to a data set is computed under the LAV criterion.

PRO print_results, coefs, rank, sea, iters, nmissing
PRINT, 'B = ', coefs(0), coefs(1), $

FORMAT = '(A6, F5.2, 5X, F5.2)'
PRINT
PRINT, 'Rank of Regressors Matrix = ', rank, $

mr

fi
i 0=

n 1–

∑ wi yi ŷi–()
r

fi
i 0=

n 1–

∑
--=

ŷi

max
0 i n 1–≤ ≤

yi ŷi–
IDL Analyst Reference Guide IMSL_LNORMREGRESS

716 Chapter 14: Regression
FORMAT = '(A32, I3)'
PRINT, 'Sum Absolute Value of Error = ', sea, $

FORMAT = '(A32, F7.4)'
PRINT, 'Number of Iterations = ', iters, $

FORMAT = '(A32, I3)'
PRINT, 'Number of Rows Missing = ', nmissing, $

FORMAT = '(A32, I3)'
END

x = [1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0]
y = [1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0]
coefs = IMSL_LNORMREGRESS(x, y, Nmissing = nmissing, $

Rank = rank, Iters = iters, Sea = sea)
print_results, coefs, rank, sea, iters, nmissing
B = 0.50 0.50
Rank of Regressors Matrix = 2
Sum Absolute Value of Error = 6.0000
Number of Iterations = 2
Number of Rows Missing = 0

Example 2

Different straight line fits to a data set are computed under the criterion of minimizing
the Lp norm by using p equal to 1, 1.5, 2.0 and 2.5.

.RUN
PRO print_results, coefs, residuals, p, resid_norm, rank, df, $

iters, nmissing, scale, rm
PRINT, 'Coefficients ', coefs, FORMAT = '(A13, 2F7.2)'
PRINT, 'Residuals ', residuals, FORMAT = '(A10, 8F6.2)'
PRINT
PRINT, 'p ', p, $

FORMAT = '(A33, F6.3)'
PRINT, 'Lp norm of the residuals ', resid_norm, $

FORMAT = '(A33, F6.3)'
PRINT, 'Rank of the matrix of regressors ', rank, $

FORMAT = '(A33, I6)'
PRINT, 'Degrees of freedom error ', df, $

FORMAT = '(A33, F6.3)'
PRINT, 'Number of iterations ', iters, $

FORMAT = '(A33, I6)'
PRINT, 'Number of missing values ', nmissing, $

FORMAT = '(A33, I6)'
PRINT, 'Square of the scale constant ', scale, $

FORMAT = '(A33, F6.3)'
PRINT
PM, rm, FORMAT = '(2F8.3)', Title = ' R matrix'
PRINT
PRINT, '--'
IMSL_LNORMREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 717
PRINT
END

.RUN
x = [1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0]
y = [1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0]
eps = 0.001
FOR i = 0, 3 DO BEGIN

p = 1.0 + i*0.5
coefs = IMSL_LNORMREGRESS(x, y, /Llp, P = p, Eps = eps, $

Nmissing = nmissing, Rank = rank, $
Iters = iters, Scale = scale, $
Df = df, R_Matrix = rm, Residuals = residuals, $
Resid_Norm = resid_norm)

print_results, coefs, residuals, p, resid_norm, rank, df, $
iters, nmissing, scale, rm

ENDFOR
END

Coefficients 0.50 0.50
Residuals -0.00 2.50 -1.50 0.50 -0.50 0.50 -0.50 0.00
p 1.000
Lp norm of the residuals 6.002
Rank of the matrix of regressors 2
Degrees of freedom error 6.000
Number of iterations 8
Number of missing values 0
Square of the scale constant 6.248
R matrix
 2.828 8.485
 0.000 3.464
--
Coefficients 0.39 0.56
Residuals 0.06 2.39 -1.50 0.50 -0.55 0.45 -0.61 -0.16

p 1.500
Lp norm of the residuals 3.712
Rank of the matrix of regressors 2
Degrees of freedom error 6.000
Number of iterations 6
Number of missing values 0
Square of the scale constant 1.059

 R matrix
 2.828 8.485
 0.000 3.464

--
Coefficients -0.12 0.75
Residuals 0.38 2.12 -1.38 0.62 -0.62 0.38 -0.88 -0.62
p 2.000
IDL Analyst Reference Guide IMSL_LNORMREGRESS

718 Chapter 14: Regression
Lp norm of the residuals 2.937
Rank of the matrix of regressors 2
Degrees of freedom error 6.000
Number of iterations 1
Number of missing values 0
Square of the scale constant 1.438
R matrix
 2.828 8.485
 0.000 3.464

--
Coefficients -0.44 0.87
Residuals 0.57 1.96 -1.30 0.70 -0.67 0.33 -1.04 -0.91
p 2.500
Lp norm of the residuals 2.540
Rank of the matrix of regressors 2
Degrees of freedom error 6.000
Number of iterations 4
Number of missing values 0
Square of the scale constant 0.789

R matrix
 2.828 8.485
 0.000 3.464

Example 3

A straight line fit to a data set is computed under the LMV criterion.

.RUN
PRO print_results, coefs, rank, rm, iters, nmissing

PRINT, 'B = ', coefs(0), coefs(1), $
FORMAT = '(A6, F5.2, 5X, F5.2)'

PRINT
PRINT, 'Rank of Regressors Matrix = ', rank, $

FORMAT = '(A34, I3)'
PRINT, 'Magnitude of Largest Residual = ', rm, $

FORMAT = '(A34, F7.4)'
PRINT, 'Number of Iterations = ', iters, $

FORMAT = '(A34, I3)'
PRINT, 'Number of Rows Missing = ', nmissing, $

FORMAT = '(A34, I3)'
END
x = [0.0, 1.0, 2.0, 3.0, 4.0, 4.0, 5.0]
y = [0.0, 2.5, 2.5, 4.5, 4.5, 6.0, 5.0]
coefs = IMSL_LNORMREGRESS(x, y, /Lmv, Nmissing = nmissing, $

Rank = rank, Iters = iters, Resid_Max = rm)
print_results, coefs, rank, rm, iters, nmissing

B = 1.00 1.00
IMSL_LNORMREGRESS IDL Analyst Reference Guide

Chapter 14: Regression 719
Rank of Regressors Matrix = 2
Magnitude of Largest Residual = 1.0000
Number of Iterations = 3
Number of Rows Missing = 0

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_LNORMREGRESS

720 Chapter 14: Regression
IMSL_LNORMREGRESS IDL Analyst Reference Guide

Chapter 15

Correlation and
Covariance
This section contains the following topics:
Overview: Correlation and Covariance . . . 722 Correlation and Covariance Routines 723
IDL Analyst Reference Guide 721

722 Chapter 15: Correlation and Covariance
Overview: Correlation and Covariance

This chapter discusses measures of correlation for bivariate data. Topics covered
include:

• The usual multivariate measures of correlation and covariance for continuous
random variables (produced by IMSL_COVARIANCES).

• Data grouped by some auxiliary variable (IMSL_POOLED_COV can be used
to compute the pooled covariance matrix along with the means for each
group).

• Partial correlations or covariances computed using IMSL_PARTIAL_COV.

• Use of the IMSL_ROBUST_COV function to compute robust M-estimates of
the mean and covariance matrix from a matrix of observations.
Overview: Correlation and Covariance IDL Analyst Reference Guide

Chapter 15: Correlation and Covariance 723
Correlation and Covariance Routines

IMSL_COVARIANCES—Variance-covariance or correlation matrix.

IMSL_PARTIAL_COV—Partial correlations and covariances.

IMSL_POOLED_COV—Pooled covariance matrix.

IMSL_ROBUST_COV—Robust estimate of covariance matrix.
IDL Analyst Reference Guide Correlation and Covariance Routines

724 Chapter 15: Correlation and Covariance
IMSL_COVARIANCES

The IMSL_COVARIANCES function computes the sample variance-covariance or
correlation matrix.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_COVARIANCES(x [, /DOUBLE] [, VAR_COVAR=value]
[, CORRECTED_SSCP=value] [, CORRELATION=value]
[, STDEV_CORRELATION=value] [, FREQUENCIES=array]
[, INCIDENCE_MAT=variable] [, MISSING_VAL=value] [, MEANS=variable]
[, NMISSING=variable] [, NOBS=variable] [, SUM_WEIGHTS=variable]
[, WEIGHT=array])

Return Value

If no keywords are used, IMSL_COVARIANCES returns a two-dimensional matrix
containing the sample variance-covariance matrix of the observations in which value
in element (i, j) corresponds to the sample covariance between the i-th and j-th
variable.

Arguments

x

Two-dimensional matrix containing the data. The data value for the i-th observation
of the j-th variable should be in x(i,j).

Keywords

DOUBLE

If present and nonzero, double precision is used.

VAR_COVAR

Variance-covariance matrix (default).
IMSL_COVARIANCES IDL Analyst Reference Guide

Chapter 15: Correlation and Covariance 725
Note
Exactly one of these keywords — VAR_COVAR, CORRECTED_SSCP,
CORRELATION, STDEV_CORRELATION — is used to specify the type of
matrix to be computed.

CORRECTED_SSCP

Corrected sum-of-squares and crossproducts matrix.

Note
Exactly one of these keywords — VAR_COVAR, CORRECTED_SSCP,
CORRELATION, STDEV_CORRELATION — is used to specify the type of
matrix to be computed.

CORRELATION

Correlation matrix.

Note
Exactly one of these keywords — VAR_COVAR, CORRECTED_SSCP,
CORRELATION, STDEV_CORRELATION — is used to specify the type of
matrix to be computed.

STDEV_CORRELATION

Correlation matrix, except for diagonal elements which are standard deviations.

Note
Exactly one of these keywords — VAR_COVAR, CORRECTED_SSCP,
CORRELATION, STDEV_CORRELATION — is used to specify the type of
matrix to be computed.

FREQUENCIES

Array containing the vector of frequencies for the observation. Default: all
observations have a frequency of 1.

INCIDENCE_MAT

Named variable into which the incidence matrix is stored. If Missing_Val is 0, the
number of valid observations is returned through this keyword; otherwise, the nvar x
IDL Analyst Reference Guide IMSL_COVARIANCES

726 Chapter 15: Correlation and Covariance
nvar matrix, where nvar is the number of variables in x, contains the number of pairs
of valid observations used in calculating the crossproducts for covariance.

MISSING_VAL

Scalar integer which defines the method used to exclude missing values in x from the
computations, where NaN is interpreted as the missing value code. The methods are
as follows:

• 0—The exclusion is listwise. (The entire row of x is excluded if any of the
values of the row is equal to the missing value code.)

• 1—Raw crossproducts are computed from all valid pairs and means, and
variances are computed from all valid data on the individual variables.
Corrected crossproducts, covariances, and correlations are computed using
these quantities.

• 2—Raw crossproducts, means, and variances are computed as in the case of
Missing_Val = 1. However, corrected crossproducts and covariances are
computed only from the valid pairs of data. Correlations are computed using
these covariances and the variances from all valid data.

• 3—Raw crossproducts, means, variances, and covariances are computed as in
the case of Missing_Val = 2. Correlations are computed using these
covariances, but the variances used are computed from the valid pairs of data.

MEANS

Named variable into which array containing the means of variables in x is stored. The
i-th components of the array correspond to x(*, i).

NMISSING

Specifies a variable into which the total number of observations that contain any
missing values (NaN) is stored.

NOBS

Named variable into which the sum of the frequencies is stored. If Missing_Val is 0,
observations with missing values are not included in Nobs; otherwise, all
observations are included except for observations with missing values for the weight
or the frequency.
IMSL_COVARIANCES IDL Analyst Reference Guide

Chapter 15: Correlation and Covariance 727
SUM_WEIGHTS

Specifies a variable into which the sum of the weights of all observations is stored. If
keyword Missing_val is equal to 0, observations with missing values are not included
in Sum_weights. Otherwise, all observations are included except for observations
with missing values for the weight or the frequency.

WEIGHT

Array containing the vector of weights for the observation. Default: all observations
have equal weights of 1.

Discussion

The IMSL_COVARIANCES function computes estimates of correlations,
covariances, or sum of squares and crossproducts for a data matrix x. The means,
(corrected) sum of squares, and (corrected) sums of crossproducts are computed
using the method of provisional means.

Let:

denote the mean based on i observations for the k-th variable, fi and wi denote the
frequency and weight of the i-th observation, respectively, and let cjki denote the sum
of crossproducts (or sum of squares if j = k) based on i observations. Then, the
method of provisional means finds new means and sums of crossproducts shown in
the example below.

The means and crossproducts are initialized as:

where p denotes the number of variables. Letting xk, i + 1 denote the k-th variable on
observation i + 1, each new observation leads to the following updates for:

and cjki using update constant r i + 1:

xki

xk0 0.0= k 0 … p 1–, ,=

cjk0 0.0= j k, 0 … p 1–, ,=

xki
IDL Analyst Reference Guide IMSL_COVARIANCES

728 Chapter 15: Correlation and Covariance
Syntax Notes

The IMSL_COVARIANCES function uses the following definition of a sample
mean:

where nr is the number of cases. The formula below defines the sample covariance,
sjk, between variables j and k.

The sample correlation between variables j and k, rjk, is defined below:

Example

This example illustrates the use of IMSL_COVARIANCES for the first 50
observations in the Fisher iris data (Fisher 1936). Note that the first variable is
constant over the first 50 observations.

x = IMSL_STATDATA(3)
x = x(0:49, *)
cov = IMSL_COVARIANCES(x)
; Call IMSL_COVARIANCES.
PM, cov
; Output the results.

ri 1+
fi 1+ wi 1+

fiwi
j 0=

i 1+

∑
-----------------------=

xk i 1+, xki xk i 1+, xki–()ri 1++=

cjk i 1+, cjki fi 1+ wi 1+ xj i 1+, xji–() xk i 1+, xki–() 1 ri 1+–()+=

xk

fiwixki
i 1=

nr

∑

fiwi
i 1=

nr

∑
---------------------------------=

sjk

fiwi xji xj–() xki xk–()
i 1=

n

∑
fi

i 1=

n

∑() 1–
---=

rjk
sjk

sjjskk

-----------------=
IMSL_COVARIANCES IDL Analyst Reference Guide

Chapter 15: Correlation and Covariance 729
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.124249 0.0992163 0.0163551 0.0103306
0.00000 0.0992163 0.143690 0.0116980 0.00929796
0.00000 0.0163551 0.0116980 0.0301592 0.00606939
0.00000 0.0103306 0.00929796 0.00606939 0.0111061

Errors

Warning Errors

STAT_CONSTANT_VARIABLE—Correlations are requested, but the observations on
one or more variables are constant. The corresponding correlations are set to NaN.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_COVARIANCES

730 Chapter 15: Correlation and Covariance
IMSL_PARTIAL_COV

The IMSL_PARTIAL_COV function computes partial covariances or partial
correlations from the covariance or correlation matrix.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_PARTIAL_COV(n_independent, n_dependent, x [, /DOUBLE]
[, /CORR] [, /COV] [, DF=integer] [, INDICES=array] [, /PVALS=variable])

Return Value

Array of size n_dependent by n_dependent containing the partial covariances (the
default) or partial correlations (set keyword Corr).

Arguments

n_dependent

Number of variables for which partial covariances/correlations are desired (the
number of “dependent” variables).

n_independent

Number of “independent” variables to be used in the partial covariances/correlations.
The partial covariances/correlations are the covariances/correlations between the
dependent variables after removing the linear effect of the independent variables.

x

The n by n covariance or correlation matrix, where n = n_independent +
n_dependent. The rows/columns must be ordered such that the first n_independent
rows/columns contain the independent variables, and the last n_dependent rows/
columns contain the dependent variables. Array x must always be square symmetric.
IMSL_PARTIAL_COV IDL Analyst Reference Guide

Chapter 15: Correlation and Covariance 731
Keywords

DOUBLE

If present and nonzero, double precision is used.

CORR

If present and nonzero, then partial correlations are calculated. Keywords Cov and
Corr can not be used together.

COV

If present and nonzero, then partial covariances are calculated. (Default) Keywords
Cov and Corr can not be used together.

DF

On input, an integer indicating the number of degrees of freedom associated with
input array x. If the number of degrees of freedom in x varies from element to
element, then a conservative choice for Df is the minimum degrees of freedom for all
elements in x.

Upon output, named variable into which the number of degrees of freedom in the test
that the partial covariances/correlations are zero is stored. This value will usually be
Df − n_independent, but will be greater than this value if the independent variables
are computationally linearly related. Keywords Df and Pvals must be used together.

INDICES

An array containing values indicating the status of the variable as in Figure 15-1:

Default: The first n_independent elements of Indices are equal to 1, and the
last n_dependent elements are equal to 0.

Indices(i) Variable is...

−1 not used in analysis

 0 dependent variable

1 independent variable

Table 15-1: Indices
IDL Analyst Reference Guide IMSL_PARTIAL_COV

732 Chapter 15: Correlation and Covariance
PVALS

Named variable into which an array of size n_dependent by n_dependent containing
the p-values for testing the null hypothesis that the associated partial covariance/
correlation is zero is stored. It is assumed that the observations from which x was
computed flows a multivariate normal distribution and that each element in x has Df
degrees of freedom. Keywords Df and Pvals must be used together.

Discussion

The IMSL_PARTIAL_COV function computed partial covariances or partial
correlations from an input covariance or correlation matrix. If the “independent”
variables (the linear “effect” of the independent variables is removed in computing
the partial covariances/correlations) are linearly related to one another,
IMSL_PARTIAL_COV detects the linearity and eliminates one or more of the
independent variables from the list of independent variables. The number of variables
eliminated, if any, can be determined from keyword Df.

Given a covariance or correlation matrix Σ partitioned as:

IMSL_PARTIAL_COV computed the partial covariances (of the standardized
variables if Σ is a correlation matrix) as:

If partial correlations are desired, these are computed as:

where diag denotes the matrix containing the diagonal of its argument along its
diagonal with zeros off the diagonal. If Σ11 is singular, then as many variables as
required are deleted from Σ11 (and Σ12) in order to eliminate the linear dependencies.
The computations then proceed as above.

The p-value for a partial covariance tests the null hypothesis H0: σij|1 = 0, where σij|1
is the (i, j) element in matrix Σ22|1. The p-value for a partial correlation tests the null
hypothesis H0: ρij|1 = 0, where ρij|1 is the (i, j) element in matrix P22|1. The p-values
are returned in Pvals. If the degrees of freedom for x, Df, is not known, the resulting
p-values may be useful for comparison, but they should not be used as an
approximation to the actual probabilities.

Σ11 Σ12

Σ21 Σ22

Σ22 1 Σ22 Σ21Σ11
1– Σ12–=

P22 1 diag Σ22 1()[] 1 2⁄– Σ22 1 diag Σ22 1()[] 1 2⁄–
=

IMSL_PARTIAL_COV IDL Analyst Reference Guide

Chapter 15: Correlation and Covariance 733
Examples

Example 1

The following example computes partial covariances, scaled from a nine-variable
correlation matrix originally given by Emmett (1949). The first three rows and
columns contain the independent variables and the final six rows and columns contain
the dependent variables.

x = TRANSPOSE([$
[6.300, 3.050, 1.933, 3.365, 1.317, 2.293, 2.586, 1.242, $
4.363], [3.050, 5.400, 2.170, 3.346, 1.473, 2.303, 2.274, $
0.750, 4.077], [1.933, 2.170, 3.800, 1.970, 0.798, 1.062, $
1.576, 0.487, 2.673], [3.365, 3.346, 1.970, 8.100, 2.983, $
4.828, 2.255, 0.925, 3.910], [1.317, 1.473, 0.798, 2.983, $
2.300, 2.209, 1.039, 0.258, 1.687], [2.293, 2.303, 1.062, $
4.828, 2.209, 4.600, 1.427, 0.768, 2.754], [2.586, 2.274, $
1.576, 2.255, 1.039, 1.427, 3.200, 0.785, 3.309], [1.242, $
0.750, 0.487, 0.925, 0.258, 0.768, 0.785, 1.300, 1.458], $
[4.363, 4.077, 2.673, 3.910, 1.687, 2.754, 3.309, 1.458, $
7.400]])

pcov = IMSL_PARTIAL_COV(3, 6, x)
PM, pcov, FORMAT = '(6F10.3)', Title = 'Partial Covariances'

Partial Covariances
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 5.495 1.895 3.084
0.000 0.000 0.000 1.895 1.841 1.476
0.000 0.000 0.000 3.084 1.476 3.403

Example 2

The following example computes partial correlations from a 9 variable correlation
matrix originally given by Emmett (1949). The partial correlations between the
remaining variables, after adjusting for variables 1, 3 and 9, are computed.

x = TRANSPOSE([$
[1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, $
0.639], [0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, $
0.283, 0.645], [0.395, 0.479, 1.0, 0.355, 0.27, 0.254, $
0.452, 0.219, 0.504], [0.471, 0.506, 0.355, 1.0, 0.691, $
0.791, 0.443, 0.285, 0.505], [0.346, 0.418, 0.27, 0.691, $
1.0, 0.679, 0.383, 0.149, 0.409], [0.426, 0.462, 0.254, $
0.791, 0.679, 1.0, 0.372, 0.314, 0.472], [0.576, 0.547, $
0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68], [0.434, $
0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47], $
IDL Analyst Reference Guide IMSL_PARTIAL_COV

734 Chapter 15: Correlation and Covariance
[0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0]])
df = 30
indices = [1, 0, 1, 0, 0, 0, 0, 0, 1]
pcov = IMSL_PARTIAL_COV(3, 6, x, Indices = indices, Df = df, $

Pvals = pvals, /Corr)
PRINT, 'Degrees Of Freedom: ', df
PM, pcov, FORMAT = '(6F10.3)', Title = 'Partial Correlations'
PM, pvals, FORMAT = '(6F10.4)', Title = 'P values'

IDL Prints:

Degrees Of Freedom: 27
Partial Correlations

1.000 0.224 0.194 0.211 0.125 -0.061
0.224 1.000 0.605 0.720 0.092 0.025
0.194 0.605 1.000 0.598 0.123 -0.077
0.211 0.720 0.598 1.000 0.035 0.086
0.125 0.092 0.123 0.035 1.000 0.062
-0.061 0.025 -0.077 0.086 0.062 1.000

P values
0.0000 0.2525 0.3232 0.2801 0.5249 0.7576
0.2525 0.0000 0.0006 0.0000 0.6417 0.9000
0.3232 0.0006 0.0000 0.0007 0.5328 0.6982
0.2801 0.0000 0.0007 0.0000 0.8602 0.6650
0.5249 0.6417 0.5328 0.8602 0.0000 0.7532
0.7576 0.9000 0.6982 0.6650 0.7532 0.0000

Errors

Warning Errors

STAT_NO_HYP_TESTS—The input matrix “x” has # degrees of freedom, and the
rank of the dependent variables is #. There are not enough degrees of freedom for
hypothesis testing. The elements of “Pvals” are set to NaN (not a number).

Fatal Errors

STAT_INVALID_MATRIX_1—The input matrix “x” is incorrectly specified. A
computed correlation is greater than 1 for variables # and #.

STAT_INVALID_PARTIAL—A computed partial correlation for variables
and # is greater than 1. The input matrix “x” is not positive semi-definite.
IMSL_PARTIAL_COV IDL Analyst Reference Guide

Chapter 15: Correlation and Covariance 735
Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_PARTIAL_COV

736 Chapter 15: Correlation and Covariance
IMSL_POOLED_COV

The IMSL_POOLED_COV function computes a pooled variance-covariance from
the observations.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_POOLED_COV(x, ngroups [, /DOUBLE] [, GCOUNTS=variable]
[, IDX_COLS=array] [, IDX_VARS=array] [, MEANS=variable]
[, NMISSING=variable] [, SUM_WEIGHTS=variable] [, U=variable])

Return Value

Two-dimensional array containing the matrix of covariances.

Arguments

ngroups

Number of groups in the data.

x

Two-dimensional array containing the data. The first n_variables =
(N_ELEMENTS(x(0,*)) – 1) columns correspond to the variables, and the last
column must contain the group numbers.

Keywords

DOUBLE

If present and nonzero, double precision is used.

GCOUNTS

Named variable into which the array of length n_groups containing the number of
observations in each group is stored.
IMSL_POOLED_COV IDL Analyst Reference Guide

Chapter 15: Correlation and Covariance 737
IDX_COLS

One-dimensional array containing the indices of the variables to be used in the
analysis.

IDX_VARS

Three element array indicating the column numbers of x in which particular types of
data are stored. Columns are numbered 0 ... N_ELEMENTS(Idx_Cols) − 1.

• Idx_Vars(0) contains the index for the column of x in which the group numbers
are stored.

• Idx_Vars(1) and Idx_Vars(2) contain column numbers of x in which the
frequencies and weights, respectively, are stored. Set Idx_Vars(1) = –1 if there
will be no column for frequencies. Set Idx_Vars(2) = –1 if there will be no
column for weights. Weights are rounded to the nearest integer. Negative
weights are not allowed.

• Defaults: Idx_Cols = 0, 1, ..., n_variables – 1,

Idx_Vars(0) = n_variables,

Idx_Vars(1) = −1, and

Idx_Vars(2) = −1

MEANS

Named variable into which the array of size n_groups by n_variables in which the i-
th row of Means contains the group i variable means is stored.

NMISSING

Named variable into which the number of rows of data containing missing values
(NaN) for any of the variables used is stored.

SUM_WEIGHTS

Named variable into which the array of length n_groups containing the sum of the
weights times the frequencies in the groups is stored.

U

Named variable into which the array of size n_variables by n_variables containing
the lower matrix U, the lower triangular for the pooled sample cross-products matrix
IDL Analyst Reference Guide IMSL_POOLED_COV

738 Chapter 15: Correlation and Covariance
is stored. U is computed from the pooled sample covariance matrix, S (See the
Discussion section), as S = UTU.

Discussion

The IMSL_POOLED_COV function computes the pooled variance-covariance
matrix from a matrix of observations. The within-groups means are also computed.
Listwise deletion of missing values is assumed so that all observations used are
complete; in any row of x, if any element of the observation is missing, the row is not
used. The IMSL_POOLED_COV function should be used whenever you suspect the
data has been sampled from populations with different means but identical variance-
covariance matrices. If these assumptions cannot be made, a different variance-
covariance matrix should be estimated within each group.

If N_ELEMENTS(x(*,0)) (0, the group observation totals, Ti, for i = 1, ..., g, where g
is the number of groups, are updated for the N_ELEMENTS(x(*,0)) observations in
x. The group totals are computed as:

where wij is the observation weight, xij is the j-th observation in the i-th group, and fij
is the observation frequency.

Modified Givens rotations are used in computed the Cholesky decomposition of the
pooled sums of squares and crossproducts matrix. (Golub and Van Loan 1983).

The group means and the pooled sample covariance matrix S are computed from the
intermediate results. These quantities are defined by:

Example

The following example computes a pooled variance-covariance matrix. The last
column of the data set is the group indicator.

ngroups = 2

T w f xi ij
j

ij ij= ∑

x T
w fi

i

i i
j

• =
∑

S
1

fij g–
ij
∑
--------------------- wijfij

i j,
∑ xij xi•–() xij xii•–()T

=

IMSL_POOLED_COV IDL Analyst Reference Guide

Chapter 15: Correlation and Covariance 739
x = TRANSPOSE([[2.2, 5.6, 1], [3.4, 2.3, 1], [1.2, 7.8, 1], $
[3.2, 2.1, 2], [4.1, 1.6, 2], [3.7, 2.2, 2]])
cov = IMSL_POOLED_COV(x, ngroups)

PM, cov, FORMAT = '(2F10.3)', Title = 'Pooled Covariance Matrix'

Pooled Covariance Matrix
0.708 -1.575
-1.575 3.883

Errors

Warning Errors

STAT_OBSERVATION_IGNORED—In call #, row # of the matrix “x” has group
number = #. The group number must be between 1 and #, the number of groups. This
observation will be ignored.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_POOLED_COV

740 Chapter 15: Correlation and Covariance
IMSL_ROBUST_COV

The IMSL_ROBUST_COV function computes a robust estimate of a covariance
matrix and mean vector.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ROBUST_COV(x, n_groups [, BETA=variable]
[, COV_EST=array] [, /DOUBLE] [, GROUP_COUNTS=variable] [, /HUBER]
[, IDX_COLS=array] [, IDX_VARS=array] [, /INIT_EST_MEAN]
[, /INIT_EST_MEDIAN] [, ITMAX=value] [, MEAN_EST=array]
[, MEANS=variable] [, MINIMAX_WEIGHTS=variable]
[, NMISSING=variable] [, PERCENTAGE=value] [, /STAHEL]
[, SUM_WEIGHTS=variable] [, TOLERANCE=value] [, U=variable])

Return Value

Two-dimensional array containing the matrix of covariances.

Arguments

n_groups

Number of groups in the data.

x

Two-dimensional array of size nrows by (n_variables + 1) containing the data where
nrows = N_ELEMENTS(x(*,0)) and n_variables = (N_ELEMENTS(x(0,*)) – 1).
The first n_variables columns correspond to the variables, and the last column must
contain the group numbers.
IMSL_ROBUST_COV IDL Analyst Reference Guide

Chapter 15: Correlation and Covariance 741
Keywords

BETA

Named variable into which the constant used to ensure that the estimated covariance
matrix has unbiased expectation (for a given mean vector) for a multivariate normal
density is stored.

COV_EST

Two-dimensional array of size n_variables by n_variables containing the estimate of
the covariance matrix. Keywords Mean_Est and Cov_Est must be used together.

DOUBLE

If present and nonzero, double precision is used.

GROUP_COUNTS

Named variable into which the one-dimensional array of length n_groups containing
the number of observations in each group is stored.

HUBER

If present and nonzero, Huber’s conjugate-gradient algorithm is used. Keywords
Stahel and Huber can not be used together.

IDX_COLS

One-dimensional array containing the indices of the variables to be used in the
analysis.

IDX_VARS

Three element array indicating the column numbers of x in which particular types of
data are stored. Columns are numbered 0 ... N_ELEMENTS(Idx_Cols) – 1.

• Idx_Vars(0) contains the index for the column of x in which the group numbers
are stored.

• Idx_Vars(1) and Idx_Vars(2) contain column numbers of x in which the
frequencies and weights, respectively, are stored. Set Idx_Vars(1) = –1 if there
will be no column for frequencies. Set Idx_Vars(2) = –1 if there will be no
column for weights. Weights are rounded to the nearest integer. Negative
weights are not allowed.
IDL Analyst Reference Guide IMSL_ROBUST_COV

742 Chapter 15: Correlation and Covariance
• Defaults: Idx_Cols = 0, 1, ..., n_variables – 1,

Idx_Vars(0) = n_variables,

Idx_Vars(1) = −1, and

Idx_Vars(2) = −1

INIT_EST_MEAN

If present and nonzero, initial estimates are obtained as the usual estimate of a mean
vector and of a covariance matrix. Keywords Init_Est_Mean, Init_Est_Median, and
Mean_Est can not be used together.

INIT_EST_MEDIAN

If present and nonzero, initial estimates based upon the median and interquartile
range must be used. Keywords Init_Est_Mean, Init_Est_Median, and Mean_Est can
not be used together.

ITMAX

Maximum number of iterations. Default: Itmax = 30

MEAN_EST

Two-dimensional array of size n_groups by n_variables containing initial estimates
for the mean. Keywords Mean_Est and Cov_Est must be used together. Keywords
Init_Est_Mean, Init_Est_Median, and Mean_Est can not be used together.

MEANS

Named variable into which the array of size n_groups by n_variables is stored. The i-
th row of Means contains the group i variable means.

MINIMAX_WEIGHTS

Named variable into which the one-dimensional array containing the values for the
parameters of the weighting function is stored. See the Discussion section for details.

NMISSING

Named variable into which the number of rows of data containing missing values
(NaN) for any of the variables used is stored.
IMSL_ROBUST_COV IDL Analyst Reference Guide

Chapter 15: Correlation and Covariance 743
PERCENTAGE

Percentage of gross errors expected in the data. Keyword Percentage must be in the
range 0.0 to 100.0 and contains the percentage of outliers expected in the data. If the
percentage of gross errors expected in the data is not known, a reasonable strategy is
to choose a value of Percentage that is such that larger values do not result in
significant changes in the estimates. Default: Percentage = 5.0

STAHEL

If present and nonzero, the Stahel’s algorithm is used. Keywords Stahel and Huber
cannot be used together.

SUM_WEIGHTS

Named variable into which the one-dimensional array of length n_groups containing
the sum of the weights times the frequencies in the groups is stored.

TOLERANCE

Convergence criterion. When the maximum absolute change in a location or
covariance estimate is less than Tolerance, convergence is assumed. Default:
Tolerance = 10−4

U

Named variable into which an array of size n_variables by n_variables containing the
lower matrix U, the lower triangular for the robust sample cross-products matrix is
stored. U is computed from the robust sample covariance matrix, S (See the
Discussion section), as S = UTU.

Discussion

The IMSL_ROBUST_COV function computes robust M-estimates of the mean and
covariance matrix from a matrix of observations. A pooled estimate of the covariance
matrix is computed when multiple groups are present in the input data. M-estimate
weights are obtained using the “minimax” weights of Huber (1981, pp. 231-235),
with Percentage expected gross errors. Huber’s (1981) weighting equations are given
by:

User specified observation weights and frequencies may be given for each row in x.
Listwise deletion of missing values is assumed so that all observations used are
“complete”.
IDL Analyst Reference Guide IMSL_ROBUST_COV

744 Chapter 15: Correlation and Covariance
Let f (x;µi, Σ) denote the density of an observation p-vector x in population (group) i
with mean vector µi, for i = 1, ..., τ. Let the covariance matrix Σ be such that Σ = RTR.
If:

y = R-T (x - µi)

then:

It is assumed that g(y) is a spherically symmetric density in p-dimensions.

In IMSL_ROBUST_COV, Σ and µi are estimated as the solutions:

of the estimation equations:

and:

where i indexes the τ groups, ni, is the number of observations in group i, fij is the
frequency for the j-th observation in group i, wij is the observation weight specified in
column Idx_Vars(2) of x, Ip is a p by p identity matrix,

u r()

a
2

r
2

----- r a<

1 a r b≤ ≤

b
2

r
2

----- r b>

=

w r() min 1
c
r
--,

 =

g y() Σ 1 2⁄
f R

T
y ui+ ui; Σ(,)=

Σ̂ ûi(,)

1
n
--- fig

j 1=

ni

∑ wijw rij()yij 0=

1
n
--- fij

j 1=

ni

∑ wij
i 1=

τ

∑ u rij()yijy
T
ij βIp–[] 0=

rij y
T
ij yij=
IMSL_ROBUST_COV IDL Analyst Reference Guide

Chapter 15: Correlation and Covariance 745
w(r) and u(r) are the weighting functions, and where β is a constant computed by the
program to make the expected weighted Mahalanobis distance (yTy) equal the
expected Mahalanobis distance from a multivariate normal distribution (see Marazzi
1985). The constant β is described more fully below.

The IMSL_ROBUST_COV function uses one of two algorithms for solving the
estimation equations. The first algorithm is discussed in detail in Huber (1981) and is
a variant of the conjugate gradient method. The second algorithm is due to Stahel
(1981) and is discussed in detail by Marazzi (1985). In both algorithms, correction
vectors Tki for the group i means and correction matrix Wk = Ip + Uk for the
Cholesky factorization of S are found such that the updated mean vectors are given
by:

and the updated matrix R is given as:

where k is the iteration number and:

When all elements of Uk and Tki are less than ε = Tolerance, convergence is assumed.

Three methods for obtaining estimates are allowed. In the first method, the sample
weighted estimate of Σ is computed. In the second method, estimates based upon the
median and the interquartile range are used. Finally, in the last method, you input
initial estimates.

The IMSL_ROBUST_COV function computes estimates based on the “minimax”
weights discussed above. The constant β is chosen such that E (u(r)r2) = ρβ where the
expectation is with respect to a standard p-variate multivariate normal distribution.
This yields estimates with the correct expectation for the multivariate normal
distribution (for given mean vector). The expectation is computed via integration of
estimated spline function. 200 knots are used on an equally spaced grid from 0.0 to
the 99.999 percentile of:

distribution. An error estimate is computed based upon 100 of these knots. If the
estimated relative error is greater than 0.0001, a warning message is issued. If β is not
computed accurately (i.e., if warning message is issued), the computed estimates are
still optimal, but the scale of the estimated covariance matrix may need to be
multiplied by a constant in order for:

ûi k 1+, ûik, Tki+=

R̂ k 1+ WkR̂k=

Σ
ˆ

k Rk
T

Rk=

χp
2

IDL Analyst Reference Guide IMSL_ROBUST_COV

746 Chapter 15: Correlation and Covariance

to have the correct multivariate normal covariance expectation.

Examples

Example 1

The following example computes a robust variance-covariance matrix. The last
column of the data set is the group indicator.

n_groups = 2
x = TRANSPOSE([[2.2, 5.6, 1.0], [3.4, 2.3, 1.0], $

[1.2, 7.8, 1.0], [3.2, 2.1, 2.0], [4.1, 1.6, 2.0], $
[3.7, 2.2, 2.0]])

cov = IMSL_ROBUST_COV(x, n_groups)
PM, cov, Title ='Robust Covariance Matrix'

Robust Covariance Matrix
0.522022 -1.16027
-1.16027 2.86203

Example 2

The following example computes estimates of the pooled covariance matrix for the
Fisher’s iris data. For comparison, the estimates are first computed via
IMSL_POOLED_COV. The IMSL_ROBUST_COV function with Percentage = 2.0
is then used to compute the robust estimates. As can be seen from the output, the
resulting estimates are quite similar.

Next, three observations are made into outliers, and again, estimates are computed
using functions IMSL_POOLED_COV and IMSL_ROBUST_COV. When outliers
are present, the estimates of IMSL_POOLED_COV are adversely affected, while the
estimates produced by IMSL_ROBUST_COV are close to the estimates produced
when no outliers are present.

n_groups = 3
idxv = [1, 2, 3, 4]
idxc = [0, -1, -1]
percentage = 2.0
x = IMSL_STATDATA(3)
p_cov = IMSL_POOLED_COV(x, n_groups, Idx_Vars = idxv, $

Idx_Cols = idxc)
PM, p_cov, Title = 'Pooled Cavariance with No Outliners'
r_cov = IMSL_ROBUST_COV(x, n_groups, Idx_Vars = idxv, $

Idx_Cols = idxc, Percentage = percentage)
PM, r_cov, Title = 'Robust Covariance with No Outliners'

Σ̂

IMSL_ROBUST_COV IDL Analyst Reference Guide

Chapter 15: Correlation and Covariance 747
IDL Prints:

Pooled Cavariance with No Outliners
0.265008 0.0927211 0.167514 0.0384014
0.0927211 0.115388 0.0552436 0.0327102
0.167514 0.0552436 0.185188 0.0426653
0.0384014 0.0327102 0.0426653 0.0418816

Robust Covariance with No Outliners
0.247410 0.0872090 0.153530 0.0359695
0.0872090 0.107336 0.0538220 0.0321557
0.153530 0.0538220 0.170550 0.0411720
0.0359695 0.0321557 0.0411720 0.0401394

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_ROBUST_COV

748 Chapter 15: Correlation and Covariance
IMSL_ROBUST_COV IDL Analyst Reference Guide

Chapter 16

Analysis of Variance
This section describes functions for analysis of variance models and for multiple comparison
methods for means.
Overview: Analysis of Variance 750 Analysis of Variance Routines 751
IDL Analyst Reference Guide 749

750 Chapter 16: Analysis of Variance
Overview: Analysis of Variance

The functions described in this chapter are for commonly-used experimental designs.
Typically, responses are stored in the input vector y in a pattern that takes advantage
of the balanced design structure. Consequently, the full set of model subscripts is not
needed to identify each response. The functions assume the usual pattern, which
requires that the last model subscript change most rapidly, followed by the model
subscript next in line, and so forth, with the first subscript changing at the slowest
rate. This pattern is referred to as lexicographical ordering.

The IMSL_ANOVA1 function allows missing responses if confidence interval
information is not requested. NaN (Not a Number) is the missing value code used by
these functions. Use IMSL_MACHINE to retrieve NaN. Any element of y that is
missing must be set to NaN. Other functions described in this chapter do not allow
missing responses because the functions generally deal with balanced designs.

As a diagnostic tool for determination of the validity of a model, functions in this
chapter typically perform a test for lack of fit when n (n > 1) responses are available
in each cell of the experimental design. Functions in Chapter 14, “Regression” are
used for analysis of generalizations of the models treated in this chapter. In particular,
Chapter 2: Regression, also provides functions for the general linear model.
Overview: Analysis of Variance IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 751
Analysis of Variance Routines

IMSL_ANOVA1—Analyzes a one-way classification model.

IMSL_ANOVAFACT—Analyzes a balanced factorial design with fixed effects.

IMSL_MULTICOMP—Performs Student-Newman-Keuls multiple comparisons test.

IMSL_ANOVANESTED—Nested random model.

IMSL_ANOVABALANCED—Balanced fixed, random, or mixed model.
IDL Analyst Reference Guide Analysis of Variance Routines

752 Chapter 16: Analysis of Variance
IMSL_ANOVA1

The IMSL_ANOVA1 function analyzes a one-way classification model.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ANOVA1(n, y [, ANOVA_TABLE=variable]
[, BONFERRONI=variable] [, CONFIDENCE=value] [, /DOUBLE]
[, DUNN_SIDAK=variable] [, GROUP_COUNTS=variable]
[, GROUP_MEANS=variable] [, GROUP_STD_DEV=variable]
[, ONE_AT_A_TIME=variable] [, SCHEFFE=variable] [, TUKEY=variable])

Return Value

The p-value for the F-statistic.

Arguments

n

One-dimensional array containing the number of responses for each group.

y

One-dimensional array of length:

 n(0) + n(1) + ...+ n(N_ELEMENTS(n) – 1)

containing the responses for each group.

Keywords

ANOVA_TABLE

Named variable into which the analysis of variance table is stored. The analysis of
variance statistics are as follows:

• 0—degrees of freedom for the model
IMSL_ANOVA1 IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 753
• 1—degrees of freedom for error

• 2—total (corrected) degrees of freedom

• 3—sum of squares for the model

• 4—sum of squares for error

• 5—total (corrected) sum of squares

• 6—model mean square

• 7—error mean square

• 8—overall F-statistic

• 9—p-value

• 10—R2 (in percent)

• 11—Adjusted R2 (in percent)

• 12—estimate of the standard deviation

• 13—overall mean of y

• 14—coefficient of variation (in percent)

BONFERRONI

Named variable into which the array containing the statistics relating to the difference
of means is stored. On return, the named variable contains an array of size:

where ngroups = N_ELEMENTS(n).

• 0—group number for the i-th mean

• 1—group number for the j-th mean

• 2—difference of means (i-th mean) − (j-th mean)

• 3—lower confidence limit for the difference

• 4—upper confidence limit for the difference

The IMSL_ANOVA1 function computes confidence intervals on all pairwise
differences of means using one of six methods: Tukey, Tukey-Kramer, Dunn-Sidák,
Bonferroni, Scheffé, or Fisher’s LSD (One-at-a-Time). If Tukey is specified, Tukey
confidence intervals are calculated if the group sizes are equal; otherwise, the Tukey-
Kramer confidence intervals are calculated.

ngroups
2

 5×
IDL Analyst Reference Guide IMSL_ANOVA1

754 Chapter 16: Analysis of Variance
CONFIDENCE

Confidence level for the simultaneous interval estimation. If Tukey is specified,
Confidence must be in the range [90.0, 99.0); otherwise, Confidence is in the range
[0.0, 100.0). Default: Confidence = 95.0

DOUBLE

If present and nonzero, then double precision is used.

DUNN_SIDAK

Named variable into which the array containing the statistics relating to the difference
of means is stored. On return, the named variable contains an array of size:

where ngroups = N_ELEMENTS(n).

• 0—group number for the i-th mean

• 1—group number for the j-th mean

• 2—difference of means (i-th mean) − (j-th mean)

• 3—lower confidence limit for the difference

• 4—upper confidence limit for the difference

The IMSL_ANOVA1 function computes confidence intervals on all pairwise
differences of means using one of six methods: Tukey, Tukey-Kramer, Dunn-Sidák,
Bonferroni, Scheffé, or Fisher’s LSD (One-at-a-Time). If Tukey is specified, Tukey
confidence intervals are calculated if the group sizes are equal; otherwise, the Tukey-
Kramer confidence intervals are calculated.

GROUP_COUNTS

Named variable into which the array containing the number of nonmissing
observations for the groups is stored.

GROUP_MEANS

Named variable into which the array containing the group means is stored.

GROUP_STD_DEV

Named variable into which the array containing the group standard deviations is
stored.

ngroups
2

 5×
IMSL_ANOVA1 IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 755
ONE_AT_A_TIME

Named variable into which the array containing the statistics relating to the difference
of means is stored. On return, the named variable contains an array of size:

where ngroups = N_ELEMENTS(n).

• 0—group number for the i-th mean

• 1—group number for the j-th mean

• 2—difference of means (i-th mean) − (j-th mean)

• 3—lower confidence limit for the difference

• 4—upper confidence limit for the difference

The IMSL_ANOVA1 function computes confidence intervals on all pairwise
differences of means using one of six methods: Tukey, Tukey-Kramer, Dunn-Sidák,
Bonferroni, Scheffé, or Fisher’s LSD (One-at-a-Time). If Tukey is specified, Tukey
confidence intervals are calculated if the group sizes are equal; otherwise, the Tukey-
Kramer confidence intervals are calculated.

SCHEFFE

Named variable into which the array containing the statistics relating to the difference
of means is stored. On return, the named variable contains an array of size:

where ngroups = N_ELEMENTS(n).

• 0—group number for the i-th mean

• 1—group number for the j-th mean

• 2—difference of means (i-th mean) − (j-th mean)

• 3—lower confidence limit for the difference

• 4—upper confidence limit for the difference

The IMSL_ANOVA1 function computes confidence intervals on all pairwise
differences of means using one of six methods: Tukey, Tukey-Kramer, Dunn-Sidák,
Bonferroni, Scheffé, or Fisher’s LSD (One-at-a-Time). If Tukey is specified, Tukey
confidence intervals are calculated if the group sizes are equal; otherwise, the Tukey-
Kramer confidence intervals are calculated.

ngroups
2

 5×

ngroups
2

 5×
IDL Analyst Reference Guide IMSL_ANOVA1

756 Chapter 16: Analysis of Variance
TUKEY

Named variable into which the array containing the statistics relating to the difference
of means is stored. On return, the named variable contains an array of size:

where ngroups = N_ELEMENTS(n).

• 0—group number for the i-th mean

• 1—group number for the j-th mean

• 2—difference of means (i-th mean) − (j-th mean)

• 3—lower confidence limit for the difference

• 4—upper confidence limit for the difference

The IMSL_ANOVA1 function computes confidence intervals on all pairwise
differences of means using one of six methods: Tukey, Tukey-Kramer, Dunn-Sidák,
Bonferroni, Scheffé, or Fisher’s LSD (One-at-a-Time). If Tukey is specified, Tukey
confidence intervals are calculated if the group sizes are equal; otherwise, the Tukey-
Kramer confidence intervals are calculated.

Discussion

The IMSL_ANOVA1 function performs an analysis of variance of responses from a
one-way classification design. The model is:

yij = µi + εij i = 1, 2, ..., k; j = 1, 2, ..., ni

where the observed value yij constitutes the j-th response in the i-th group, µi denotes
the population mean for the i-th group, and the εij arguments are errors that are
identically and independently distributed normal with mean 0 and variance σ2. The
IMSL_ANOVA1 function requires the yij observed responses as input into a single
vector y with responses in each group occupying contiguous locations. The analysis
of variance table is computed along with the group sample means and standard
deviations. A discussion of formulas and interpretations for the one-way analysis of
variance problem appears in most statistics texts, e.g., Snedecor and Cochran (1967,
Chapter 10).

The IMSL_ANOVA1 function computes simultaneous confidence intervals on all:

pairwise comparisons of k means µ1, µ2, ..., µk in the one-way analysis of variance
model. Any of several methods can be chosen. A good review of these methods is

ngroups
2

 5×

k ′
k k 1–()

2
--------------------=
IMSL_ANOVA1 IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 757
given by Stoline (1981). The methods also are discussed in many statistics texts, e.g.,
Kirk (1982, pp. 114–127).

Let s2 be the estimated variance of a single observation. Let ν be the degrees of
freedom associated with s2. Let:

The methods are summarized as follows:

Tukey method: The Tukey method gives the narrowest simultaneous confidence
intervals for all pairwise differences of means µi – µj in balanced
(n1 = n2 = ... nk = n) one-way designs. The method is exact and uses the Studentized
range distribution. The formula for the difference µi – µj is given by the following:

where is the (1 – α) 100 percentage point of the Studentized range
distribution with parameters k and ν.

Tukey-Kramer method: The Tukey-Kramer method is an approximate extension of
the Tukey method for the unbalanced case. (The method simplifies to the Tukey
method for the balanced case.) The method always produces confidence intervals
narrower than the Dunn-Sidak and Bonferroni methods. Hayter (1984) proved that
the method is conservative, i.e., the method guarantees a confidence coverage of at
least (1 – α) 100. Hayter’s proof gave further support to earlier recommendations for
its use (Stoline 1981). (Methods that are currently better are restricted to special cases
and only offer improvement in severely unbalanced cases; see, for example, Spurrier
and Isham 1985.) The formula for the difference µi – µj is given by the following:

Dunn-Sidák method: The Dunn-Sidak method is a conservative method. The method
gives wider intervals than the Tukey-Kramer method. (For large ν and small α and k,
the difference is only slight.) The method is slightly better than the Bonferroni
method and is based on an improved Bonferroni (multiplicative) inequality (Miller
1980, pp. 101, 254–255). The method uses the t distribution (see IMSL_TCDF. The
formula for the difference µi – µj is given by the following:

α 1 Confidence
100.0

---------------------------–=

yi yj– q1 α k ν,;–
s2

n
----±

q1 α k ν,;–

yi yj– q1 α k ν,;–
s2

2ni
------- s2

2nj
-------+±
IDL Analyst Reference Guide IMSL_ANOVA1

758 Chapter 16: Analysis of Variance
where tf;v is the 100f percentage point of the t distribution with ν degrees of freedom.

Bonferroni method: The Bonferroni method is a conservative method based on the
Bonferroni (additive) inequality (Miller, p. 8). The method uses the t distribution. The
formula for the difference µi – µj is given by the following:

Scheffé method: The Scheffé method is an overly conservative method for
simultaneous confidence intervals on pairwise difference of means. The method is
applicable for simultaneous confidence intervals on all contrasts, i.e., all linear
combinations:

where the following is true:

This method can be recommended here only if a large number of confidence intervals
on contrasts, in addition to the pairwise differences of means, are to be constructed.
The method uses the F distribution (see IMSL_FCDF. The formula for the difference
µi – µj is given by the following:

where:

is the (1 – α) 100 percentage point of the F distribution with k – 1 and ν degrees of
freedom.

yi yj– t1
2

1
2
--- 1 α–()1 k′⁄ ν;+

s2

ni
---- s2

nj
----+±

yi yj– t
1

α
2k′
------- ν;–

s2

ni
---- s2

nj
----+±

ci
i 1=

k

∑ µi

ci
i 1=

k

∑ 0=

yi yj– k 1–()F1 α k 1– ν,;–
s2

ni
---- s2

nj
----+

 ±

F1 α k 1– ν,;–
IMSL_ANOVA1 IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 759
One-at-a-Time t method (Fisher’s LSD): The One-at-a-Time t method is appropriate
for constructing a single confidence interval. The confidence percentage input is
appropriate for one interval at a time. The method has been used widely in
conjunction with the overall test of the null hypothesis µ1 = µ2 = ... = µk by the use of
the F statistic. Fisher’s LSD (least significant difference) test is a two-stage test that
proceeds to make pairwise comparisons of means only if the overall F test is
significant. Milliken and Johnson (1984, p. 31) recommend LSD comparisons after a
significant F only if the number of comparisons is small and the comparisons were
planned prior to the analysis. If many unplanned comparisons are made, they
recommend Scheffé’s method. If the F test is insignificant, a few planned
comparisons for differences in means can still be performed by using either Tukey,
Tukey-Kramer, Dunn-Sidak or Bonferroni methods. Because the F test is
insignificant, Scheffé’s method does not yield any significant differences. The
formula for the difference µi – µj is given by the following:

Examples

Example 1

This example computes a one-way analysis of variance for data discussed by Searle
(1971, Table 5.1, pp. 165–179). The responses are plant weights for six plants of
three different types shown in Table 16-1—three normal, two off-types, and one
aberrant.

n = [3,2,1]
y = [101.0, 105.0, 94.0, 84.0, 88.0, 32.0]
PRINT,'p-value = ', IMSL_ANOVA1(n, y)

p-value = 0.00276887

Normal Off-Type Aberrant

101 84 32

105 88

94

Table 16-1: Plant Types

yi yj– t
1

α
2
--- ν;–

s2

ni
---- s2

nj
----+±
IDL Analyst Reference Guide IMSL_ANOVA1

760 Chapter 16: Analysis of Variance
Example 2: Multiple Comparisons

Simultaneous confidence intervals are generated for the measurements of cold-
cranking power for five models of automobile batteries shown in Table 16-2. Nelson
(1989, pp. 232–241) provided the data and approach.

The Tukey method is chosen for the analysis of pairwise comparisons, with a
confidence level of 99 percent. The means and their confidence limits are output.
First, a procedure to print out the results is defined.

.RUN
PRO print_results, anova_table, diff_means

anova_labels = ['df for among groups', $
'df for within groups', 'total (corrected) df', $
'ss for among groups', 'ss for within groups', $
'total (corrected) ss', 'mean square among groups', $
'mean square within groups', 'F-statistic', $
'P-value', 'R-squared (in percent)', $
'adjusted R-squared (in percent)', $
'est. std of within group error', 'overall mean of y', $
'coef. of variation (in percent)']

PRINT, ' * *Analysis of Variance * *'
FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), FORMAT = '(a40,f20.2)'
PRINT
; Print the analysis of variance table.
PRINT, ' * *Differences of Means * *'
PRINT, 'groups', 'difference', 'lower limit', 'upper limit'
PM, diff_means, FORMAT = '(2i3, x, f9.2, 4x, f9.2, 5x, f9.2)'
; Print the differences of means.

END

n = [4, 4, 4, 4, 4]
y = [41, 43, 42, 46, 42, 43, 46, 38, 27, 26, 28, 27, $

48, 45, 51, 46, 28, 32, 37, 25]
p_value = IMSL_ANOVA1(n, y, Confidence = 99.0, $

Model 1 Model 2 Model 3 Model 4 Model 5

41 42 27 48 28

43 43 26 45 32

42 46 28 51 37

46 38 27 46 25

Table 16-2: Cold-Cranking Power for Batteries
IMSL_ANOVA1 IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 761
Anova_Table = anova_table, Tukey = diff_means)
; Call IMSL_ANOVA1.
print_results, anova_table, diff_means

; Output the results.

* *Analysis of Variance * *
df for among groups 4.00
df for within groups 15.00
total (corrected) df 19.00
ss for among groups 1242.20
ss for within groups 150.75
total (corrected) ss 1392.95
mean square among groups 310.55
mean square within groups 10.05
F-statistic 30.90
P-value 0.00
R-squared (in percent) 89.18
adjusted R-squared (in percent) 86.29
est. std of within group error 3.17
overall mean of y 38.05
coef. of variation (in percent) 8.33

* *Differences of Means * *
groups difference lower limit upper limit
 1 2 0.75 -8.05 9.55
 1 3 16.00 7.20 24.80
 1 4 -4.50 -13.30 4.30
 1 5 12.50 3.70 21.30
 2 3 15.25 6.45 24.05
 2 4 -5.25 -14.05 3.55
 2 5 11.75 2.95 20.55
 3 4 -20.50 -29.30 -11.70
 3 5 -3.50 -12.30 5.30
 4 5 17.00 8.20 25.80

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_ANOVA1

762 Chapter 16: Analysis of Variance
IMSL_ANOVAFACT

The IMSL_ANOVAFACT function analyzes a balanced factorial design with fixed
effects.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ANOVAFACT(n_levels, y [, ANOVA_TABLE=variable]
[, /DOUBLE] [, MEANS=variable] [, ORDER=value] [, /PURE_ERROR]
[, /POOL_INTER] [, TEST_EFFECTS=variable])

Return Value

The p-value for the overall F-test.

Arguments

n_levels

One-dimensional array containing the number of levels for each of the factors and the
number of replicates for each effect.

y

One-dimensional array of length:

n_levels (0) * n_levels (1) * ... * ((N_ELEMENTS (n_levels) – 1))

containing the responses. Parameter y must not contain NaN for any of its elements,
i.e., missing values are not allowed.

Keywords

ANOVA_TABLE

Named variable into which an array of size 15 containing the analysis of variance
table is stored. The analysis of variance statistics are given as follows:
IMSL_ANOVAFACT IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 763
• 0—degrees of freedom for the model

• 1—degrees of freedom for error

• 2—total (corrected) degrees of freedom

• 3—sum of squares for the model

• 4—sum of squares for error

• 5—total (corrected) sum of squares

• 6—model mean square

• 7—error mean square

• 8—overall F-statistic

• 9—p-value

• 10—R2 (in percent)

• 11—adjusted R2 (in percent)

• 12—estimate of the standard deviation

• 13—overall mean of y

• 14—coefficient of variation (in percent)

DOUBLE

If present and nonzero, then double precision is used.

MEANS

Named variable into which an array of length (n_levels(0) + 1) x (n_levels(1) + 1) x
... ... x (n_levels(n–1) + 1) containing the subgroup means is stored.

See keyword Test_Effects for a definition of n. If the factors are A, B, C, and
replicates, the ordering of the means is grand mean, A means, B means, C means, AB
means, AC means, BC means, and ABC means.

ORDER

Number of factors included in the highest-way interaction in the model. Order must
be in the interval [1, N_ELEMENTS (n_levels) – 1]. For example, an Order of 1
indicates that a main-effect model is analyzed, and an Order of 2 indicates that two-
way interactions are included in the model. Default: Order =
N_ELEMENTS(n_levels) – 1)
IDL Analyst Reference Guide IMSL_ANOVAFACT

764 Chapter 16: Analysis of Variance
PURE_ERROR

If present and nonzero, Pure_Error (the default option) indicates all the main effect
and the interaction effects involving the replicates, the last element in n_levels, are
pooled together to create the error term. The Pool_Inter option indicates (Order + 1)-
way and higher-way interactions are pooled together to create the error. Keywords
Pure_Error and Pool_Inter cannot be used together.

POOL_INTER

If present and nonzero, Pure_Error (the default option) indicates all the main effect
and the interaction effects involving the replicates, the last element in n_levels, are
pooled together to create the error term. The Pool_Inter option indicates (Order + 1)-
way and higher-way interactions are pooled together to create the error. Keywords
Pure_Error and Pool_Inter cannot be used together.

TEST_EFFECTS

Named variable into which an array of size nef x 4 containing statistics relating to the
sums of squares for the effects in the model is stored. Here:

where n is given by N_ELEMENTS(n_levels) if Pool_Inter is specified; otherwise,
N_ELEMENTS(n_levels) – 1.

Suppose the factors are A, B, C, and error. With Order = 3, rows 0 through nef – 1
correspond to A, B, C, AB, AC, BC, and ABC. The columns of Test_Effects are as
follows:

• 0—degrees of freedom

• 1—sum of squares

• 2—F-statistic

• 3—p-value

Discussion

The IMSL_ANOVAFACT function performs an analysis for an n-way classification
design with balanced data. For balanced data, there must be an equal number of
responses in each cell of the n-way layout. The effects are assumed to be fixed
effects. The model is an extension of the two-way model to include n factors. The
interactions (two-way, three-way, up to n-way) can be included in the model, or some

nef
n
1
 n

2
 ...

n

min(n, Order)
 + + +=
IMSL_ANOVAFACT IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 765
of the higher-way interactions can be pooled into error. The keyword Order specifies
the number of factors to be included in the highest-way interaction. For example, if
three-way and higher-way interactions are to be pooled into error, set Order = 2.

By default, Order = N_ELEMENTS (n_levels) – 1 with the last subscript being the
replicates subscript. Keyword Pure_Error indicates there are repeated responses
within the n-way cell; Pool_Inter indicates otherwise.

The IMSL_ANOVAFACT function requires the responses as input into a single
vector y in lexicographical order, so that the response subscript associated with the
first factor varies least rapidly, followed by the subscript associated with the second
factor, and so forth. Hemmerle (1967, Chapter 5) discusses the computational
method.

Examples

Example 1

A two-way analysis of variance is performed with balanced data discussed by
Snedecor and Cochran (1967, Table 12.5.1, p. 347). The responses are the weight
gains (in grams) of rats that were fed diets varying in the source (A) and level (B) of
protein.

The model is:

for ; ;

where

for

yijk µ α i βj γij εijk+ + + +=

i 0 1,= j 0 1 2, ,= k 0 1 … 9, , ,=

α i
i 0=

1

∑ 0 βj
j 0=

2

∑; 0 γij
i 0=

1

∑; 0= = =

j 0 1 2 and, ,=

γij
j 0=

2

∑ 0=
IDL Analyst Reference Guide IMSL_ANOVAFACT

766 Chapter 16: Analysis of Variance
for i = 0, 1. The first responses in each cell in the two-way layout are given in Table
16-3:

n = [3, 2, 10]
y = [73.0, 102.0, 118.0, 104.0, 81.0, $

107.0, 100.0, 87.0, 117.0, 111.0, $
90.0, 76.0, 90.0, 64.0, 86.0, $
51.0, 72.0, 90.0, 95.0, 78.0, $
98.0, 74.0, 56.0, 111.0, 95.0, $
88.0, 82.0, 77.0, 86.0, 92.0, $
107.0, 95.0, 97.0, 80.0, 98.0, $
74.0, 74.0, 67.0, 89.0, 58.0, $
94.0, 79.0, 96.0, 98.0, 102.0, $
102.0, 108.0, 91.0, 120.0, 105.0, $
49.0, 82.0, 73.0, 86.0, 81.0, $
97.0, 106.0, 70.0, 61.0, 82.0]

p_value = IMSL_ANOVAFACT(n, y, Anova_Table = anova_table)
PRINT, 'p-value = ', p_value

p-value = 0.00229943

Example 2: Two-way ANOVA

In this example, the same model and data are fit as in the initial example, but
keywords are used for a more complete analysis. First, a procedure to output the
results is defined.

.RUN
PRO print_results, anova_table, test_effects, means

anova_labels = ['df for among groups', $
'df for within groups', 'total (corrected) df', $
'ss for among groups', 'ss for within groups', $
'total (corrected) ss', 'mean square among groups', $

Protein
Level

(B)

Protein Source (A)

Beef Cereal Pork

High 73, 102, 118, 104, 81,
107, 100, 87, 117,
111

98, 74, 56, 111,
95, 88, 82, 77, 86,
92

94, 79, 96, 98, 102,
102, 108, 91, 120,
105

Low 90, 76, 90, 64, 86, 51,
72, 90, 95, 78

107, 95, 97, 80,
98, 74, 74, 67, 89,
58

49, 82, 73, 86, 81, 97,
106, 70, 61, 82

Table 16-3: Cell First Responses
IMSL_ANOVAFACT IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 767
'mean square within groups', 'F-statistic', $
'P-value', 'R-squared (in percent)', $
'adjusted R-squared (in percent)', $
'est. std of within group error', 'overall mean of y', $
'coef. of variation (in percent)']

effects_labels = ['A ', 'B ', 'A*B']
means_labels = ['grand', 'A1', 'A2', $

'A3', 'B1', 'B2', 'A1*B1', 'A1*B2', $
'A2*B1', 'A2*B2', 'A3*B1', 'A3*B2']

PRINT, ' * *Analysis of Variance * *'
FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), FORMAT = '(a40,f15.2)'
PRINT
; Print the analysis of variance table.
PRINT, ' * * Variation Due to the Model * *'
PRINT, 'Source DF SS MS P-value'
FOR i = 0, 2 DO PM, effects_labels(i), test_effects(i, *)
PRINT
PRINT, ' * * Subgroup Means * *'
FOR i = 0, 11 DO PM, means_labels(i), $

means(i), FORMAT = '(a5,f15.2)'
END

n = [3, 2, 10]
y = [73.0, 102.0, 118.0, 104.0, 81.0, $

107.0, 100.0, 87.0, 117.0, 111.0, $
90.0, 76.0, 90.0, 64.0, 86.0, $
51.0, 72.0, 90.0, 95.0, 78.0, $
98.0, 74.0, 56.0, 111.0, 95.0, $
88.0, 82.0, 77.0, 86.0, 92.0, $
107.0, 95.0, 97.0, 80.0, 98.0, $
74.0, 74.0, 67.0, 89.0, 58.0, $
94.0, 79.0, 96.0, 98.0, 102.0, $
102.0, 108.0, 91.0, 120.0, 105.0, $
49.0, 82.0, 73.0, 86.0, 81.0, $
97.0, 106.0, 70.0, 61.0, 82.0]

p_value = IMSL_ANOVAFACT(n, y, Anova_Table = anova_table, $
Test_Effects = test_effects, Means = means)

print_results, anova_table, test_effects, means

 * *Analysis of Variance * *
df for among groups 5.00
df for within groups 54.00
total (corrected) df 59.00
ss for among groups 4612.93
ss for within groups 11586.00
total (corrected) ss 16198.93
mean square among groups 922.59
mean square within groups 214.56
IDL Analyst Reference Guide IMSL_ANOVAFACT

768 Chapter 16: Analysis of Variance
F-statistic 4.30
P-value 0.00
R-squared (in percent) 28.48
adjusted R-squared (in percent) 21.85
est. std of within group error 14.65
overall mean of y 87.87
coef. of variation (in percent) 16.67

 * * Variation Due to the Model * *
Source DF SS MS P-value
A 2.00000 266.533 0.621128 0.541132
B 1.00000 3168.27 14.7667 0.000322342
A*B 2.00000 1178.13 2.74552 0.0731880

 * * Subgroup Means * *
grand 87.87
 A1 89.60
 A2 84.90
 A3 89.10
 B1 95.13
 B2 80.60
A1*B1 100.00
A1*B2 79.20
A2*B1 85.90
A2*B2 83.90
A3*B1 99.50
A3*B2 78.70

Example 3: Three-way ANOVA

This example performs a three-way analysis of variance using data discussed by John
(1971, pp. 91–92). The responses are weights (in grams) of roots of carrots grown
with varying amounts of applied nitrogen (A), potassium (B), and phosphorus (C).
Each cell of the three-way layout has one response. Note that the ABC interactions
sum of squares (186) is given incorrectly by John (1971, Table 5.2.)

The three-way layout is given in Table 16-4:

A0 A1 A2

B0 B1 B2 B0 B1 B2 B0 B1 B2

C0 88.76 91.41 97.8
5

94.83 100.4
9

99.75 99.90 100.2
3

104.5
1

Table 16-4: Three-way Layout
IMSL_ANOVAFACT IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 769
.RUN
PRO print_results, anova_table, test_effects, means

anova_labels = ['df for among groups', $
'df for within groups', 'total (corrected) df', $
'ss for among groups', 'ss for within groups', $
'total (corrected) ss', 'mean square among groups', $
'mean square within groups', 'F-statistic', $
'P-value', 'R-squared (in percent)', $
'adjusted R-squared (in percent)', $
'est. std of within group error', $
'overall mean of y', 'coef. of variation (in percent)']

effects_labels = ['A ', 'B ', 'C ', 'A*B', 'A*B', 'A*C']
PRINT, ' * *Analysis of Variance * *'
FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), FORMAT = '(a40,f15.2)'
PRINT
PRINT, ' * * Variation Due to the Model * *'
PRINT, 'Source DF SS MS P-value'
FOR i = 0,5 DO PM, effects_labels(i), test_effects(i, *)

END

n = [3, 3, 3]
y = [88.76, 87.45, 86.01, 91.41, 98.27, 104.20, 97.85, $

95.85, 90.09, 94.83, 84.57, 81.06, 100.49, 97.20, $
120.80, 99.75, 112.30, 108.77, 99.90, 92.98, 94.72, $
100.23, 107.77, 118.39, 104.51, 110.94, 102.87]

p_value = IMSL_ANOVAFACT(n, y, Anova_Table = anova_table, $
Test_Effects = test_effects, /Pool_Inter)

print_results, anova_table, test_effects

 * *Analysis of Variance * *
df for among groups 18.00
df for within groups 8.00
total (corrected) df 26.00
ss for among groups 2395.73
ss for within groups 185.78
total (corrected) ss 2581.51
mean square among groups 133.10

C1 87.45 98.27 95.8
5

84.57 97.20 112.30 92.98 107.7
7

110.9
4

C2 86.01 104.2
0

90.0
9

81.06 120.8
0

108.77 94.72 118.3
9

102.8
7

A0 A1 A2

Table 16-4: Three-way Layout
IDL Analyst Reference Guide IMSL_ANOVAFACT

770 Chapter 16: Analysis of Variance
mean square within groups 23.22
F-statistic 5.73
p-value 0.01
R-squared (in percent) 92.80
adjusted R-squared (in percent) 76.61
est. std of within group error 4.82
overall mean of y 98.96
coef. of variation (in percent) 4.87

 * * Variation Due to the Model * *
Source DF SS MS p-value
A 2.00000 488.368 10.5152 0.00576699
B 2.00000 1090.66 23.4832 0.000448704
C 2.00000 49.1484 1.05823 0.391063
A*B 4.00000 142.586 1.53502 0.280423
A*B 4.00000 32.3474 0.348241 0.838336
A*C 4.00000 592.624 6.37997 0.0131252

Version History

6.4 Introduced
IMSL_ANOVAFACT IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 771
IMSL_MULTICOMP

The IMSL_MULTICOMP function performs Student-Newman-Keuls multiple-
comparisons test.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_MULTICOMP(means, df, std_error [, ALPHA=value]
[, /DOUBLE])

Return Value

A one-dimensional array of length N_ELEMENTS(means) indicating the size of the
groups of means declared to be equal. If the i-th element of the returned array is equal
to j, then the i-th smallest mean and the next j – 1 larger means are declared equal. If
the i-th element of the returned array is equal to 0, then no group of means starts with
the i-th smallest mean.

Arguments

df

Degrees of freedom associated with std_error.

means

One-dimensional array containing the means.

std_error

Effective estimated standard error of a mean. In fixed effects models, std_error equals
the estimated standard error of a mean.

For example, in a one-way model:
IDL Analyst Reference Guide IMSL_MULTICOMP

772 Chapter 16: Analysis of Variance
where s2 is the estimate of σ2 and n is the number of responses in a sample mean. In
models with random components, use:

where sedif is the estimated standard error of the difference of two means.

Keywords

ALPHA

Significance level of test. Must be in the interval [0.01, 0.10]. Default: Alpha = 0.01

DOUBLE

If present and nonzero, then double precision is used.

Discussion

The IMSL_MULTICOMP function performs a multiple-comparison analysis of
means using the Student-Newman-Keuls method. The null hypothesis is equality of
all possible ordered subsets of a set of means. This null hypothesis is tested using the
Studentized range of each of the corresponding subsets of sample means. The method
is discussed in many elementary statistics texts, e.g., Kirk (1982, pp. 123–125).

Example

A multiple-comparisons analysis is performed using data discussed by Kirk. The
results show that there are three groups of means with three separate sets of values:
(36.7, 40.3, 43.4), (40.3, 43.4, 47.2), and (43.4, 47.2, 48.7).

df = 45
std_error = 1.6970563
means = [36.7, 48.7, 43.4, 47.2, 40.3]
equal_means = IMSL_MULTICOMP(means, df, std_error)

std_error s2

n
----=

std_error sedif

2
----------=
IMSL_MULTICOMP IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 773
PM, equal_means, Title = 'Size of groups of means:'

Size of groups of means:
 3
 3
 3
 0

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_MULTICOMP

774 Chapter 16: Analysis of Variance
IMSL_ANOVANESTED

The IMSL_ANOVANESTED function analyzes a completely nested random model
with possibly unequal numbers in the subgroups.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ANOVANESTED(n_factors, eq_option, n_levels, y
[, ANOVA_TABLE=variable] [, CONFIDENCE=value] [, /DOUBLE]
[, EMS=array] [, VAR_COMP=variable] [, Y_MEANS=array])

Return Value

The p-value for the F-statistic.

Arguments

eq_option

Equal numbers option.

• 0—Unequal numbers in the subgroups

• 1—Equal numbers in the subgroups

n_factors

Number of factors (number of subscripts) in the model, including error.

n_levels

One-dimensional array with the number of levels.
IMSL_ANOVANESTED IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 775
If eq_option = 1, n_levels is of length n_factors and contains the number of levels for
each of the factors. In this case, the additional variables listed in Table 16-5 are
referred to in the description of IMSL_ANOVANESTED:

If eq_option = 0, n_levels contains the number of levels of each factor at each level of
the factor in which it is nested. In this case, the following additional variables are
referred to in the description of IMSL_ANOVANESTED:

• LNL—Length of n_levels.

• LNLNF—Length of the subvector of n_levels for the last factor.

• NOBS—Number of observations. NOBS equals the sum of the last LNLNF
elements of n_levels. n_levels(n_factors-1).

For example, a random one-way model with two groups, five responses in the first
group and ten in the second group, would have LNL = 3, LNLNF = 2, NOBS = 15,
n_levels(0) = 2, n_levels(1) = 5, and n_levels(2) = 10.

y

One-dimensional array of length NOBS containing the responses.

Variable Description

LNL n_levels(1) +

 ... + n_levels(0) * n_levels(1) *

 ... * n_levels(n_factors – 2)

LNLNF n_levels(0) * n_levels(1) * ...*

n_levels(n_factors – 2)

NOBS The number of observations. NOBS equals

n_levels(0) * n_levels(1) * ... *

n_levels(n_factors-1)

Table 16-5: Additional Variables
IDL Analyst Reference Guide IMSL_ANOVANESTED

776 Chapter 16: Analysis of Variance
Keywords

ANOVA_TABLE

Named variable which stores the size 15 array containing the analysis of variance
table. Analysis of variance statistics are as follows:

• 0—Degrees of freedom for the model

• 1—Degrees of freedom for error

• 2—Total (corrected) degrees of freedom

• 3—Sum of squares for the model

• 4—Sum of squares for error

• 5—Total (corrected) sum of squares

• 6—Model mean square

• 7—Error mean square

• 8—Overall F-statistic

• 9—p-value

• 10—R2 (in percent)

• 11—Adjusted R2 (in percent)

• 12—Estimate of the standard deviation

• 13—Overall mean of y

• 14—Coefficient of variation (in percent)

CONFIDENCE

Confidence level for two-sided interval estimates on the variance components, in
percent. Confidence percent confidence intervals are computed, hence, Confidence
must be in the interval [0.0, 100.0). Confidence often will be 90.0, 95.0, or 99.0. For
one-sided intervals with confidence level ONECL, ONECL in the interval [50.0,
100.0), set Confidence = 100.0 – 2.0 * (100.0 - ONECL). Default: Confidence = 95.0

DOUBLE

If present and nonzero, then double precision is used.
IMSL_ANOVANESTED IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 777
EMS

One-dimensional array of length n_factors * ((n_factors + 1)/2) with expected mean
square coefficients.

VAR_COMP

Named variable into which an array of size n_factors by 9 containing statistics
relating to the particular variance components in the model is stored. Rows of
Var_Comp correspond to the n_factors factors. Columns of Var_Comp are as
follows:

• 1—Degrees of freedom

• 2—Sum of squares

• 3—Mean squares

• 4—F -statistic

• 5—p-value for F test

• 6—Variance component estimate

• 7—Percent of variance explained by variance component

• 8—Lower endpoint for confidence interval on the variance component

• 9—Upper endpoint for confidence interval on the variance component

If a test for error variance equal to zero cannot be performed, Var_Comp(n_factors, 4)
and Var_Comp(n_factors, 5) are set to NaN.

Y_MEANS

One-dimensional array containing the subgroup means.

eq_option Length of y means

0 1 + n_levels(0) + n_levels(1) + ... n_levels((LNL - LNLNF)-1)

(See description of argument n_levels for definitions of LNL and
LNLNF.)

1 1 + n_levels(0) + n_levels(0) * n_levels(1) + ... + n_levels(0)*
n_levels(1) * ... * n_levels (n_factors – 2)

Table 16-6: eq_option for Y_Means
IDL Analyst Reference Guide IMSL_ANOVANESTED

778 Chapter 16: Analysis of Variance
If the factors are labeled A, B, C, and error, the ordering of the means is grand mean,
A means, AB means, and then ABC means.

Discussion

The IMSL_ANOVANESTED function analyzes a nested random model with equal or
unequal numbers in the subgroups. The analysis includes an analysis of variance
table and computation of subgroup means and variance component estimates.
Anderson and Bancroft (1952, pages 325−330) discuss the methodology. The
analysis of variance method is used for estimating the variance components. This
method solves a linear system in which the mean squares are set to the expected mean
squares. A problem that Hocking (1985, pages 324−330) discusses is that this method
can yield negative variance component estimates. Hocking suggests a diagnostic
procedure for locating the cause of a negative estimate. It may be necessary to
reexamine the assumptions of the model.

Example

An analysis of a three-factor nested random model with equal numbers in the
subgroups is performed using data discussed by Snedecor and Cochran (1967, Table
10.16.1, pages 285−288). The responses are calcium concentrations (in percent, dry
basis) as measured in the leaves of turnip greens. Four plants are taken at random,
then three leaves are randomly selected from each plant. Finally, from each selected
leaf two samples are taken to determine calcium concentration. The model is:

yijk = µ + αi + βij + eijk i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2

where yijk is the calcium concentration for the k-th sample of the j-th leaf of the i-th
plant, the αi’s are the plant effects and are taken to be independently distributed:

the βij’s are leaf effects each independently distributed:

N (,)0 2σ

N (,)0 2σβ
IMSL_ANOVANESTED IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 779
and the εijk’s are errors each independently distributed N(0, σ2). The effects are all
assumed to be independently distributed. The data is given in Table 16-7:

.RUN
PRO print_results, p, at, ems, y_means, var_comp

anova_labels = ['degrees of freedom for model', $
'degrees of freedom for error', $
'total (corrected) degrees of freedom', $
'sum of squares for model', 'sum of squares for error', $
'total (corrected) sum of squares', 'model mean square', $
'error mean square', 'F-statistic', 'p-value', $
'R-squared (in percent)', $
'adjusted R-squared (in percent)', $
'est. standard deviation of within error', $
'overall mean of y', $
'coefficient of variation (in percent)']

ems_labels = ['Effect A and Error', 'Effect A and Effect B', $
'Effect A and Effect A', 'Effect B and Error', $
'Effect B and Effect B', 'Error and Error']

components_labels = ['degrees of freedom for A', $
'sum of squares for A', 'mean square of A', $
'F-statistic for A', 'p-value for A', $
'Estimate of A', 'Percent Variation Explained by A', $
'95% Confidence Interval Lower Limit for A', $

Plant Leaf Samples

1 1

2

3

3.28

3.52

2.88

3.09

3.48

2.80

2 1

2

3

2.46

1.87

2.19

2.44

1.92

2.19

3 1

2

3

2.77

3.74

2.55

2.66

3.44

2.55

4 1

2

3

3.78

4.07

3.31

3.87

4.12

3.31

Table 16-7: Calcium Concentrations
IDL Analyst Reference Guide IMSL_ANOVANESTED

780 Chapter 16: Analysis of Variance
'95% Confidence Interval Upper Limit for A', $
'degrees of freedom for B', 'sum of squares for B', $
'mean square of B', 'F-statistic for B', 'p-value for B', $
'Estimate of B', 'Percent Variation Explained by B', $
'95% Confidence Interval Lower Limit for B', $
'95% Confidence Interval Upper Limit for B', $
'degrees of freedom for Error', $
'sum of squares for Error', 'mean square of Error', $
'F-statistic for Error', 'p-value for Error', $
'Estimate of Error', 'Percent Explained by Error', $
'95% Confidence Interval Lower Limit for Error', $
'95% Confidence Interval Upper Limit for Error']

means_labels = ['Grand mean', $
' A means 1', $
' A means 2', $
' A means 3', $
' A means 4', $
'AB means 1 1', $
'AB means 1 2', $
'AB means 1 3', $
'AB means 2 1', $
'AB means 2 2', $
'AB means 2 3', $
'AB means 3 1', $
'AB means 3 2', $
'AB means 3 3', $
'AB means 4 1', $
'AB means 4 2', $
'AB means 4 3']

PRINT, 'p value of F statistic =', p
PRINT
PRINT, ' * * * Analysis of Variance * * *'
FOR i = 0, 14 DO $

PM, anova_labels(i), at(i), FORMAT = '(A40, F20.5)'
PRINT
PRINT, ' * * * Expected Mean Square Coefficients * * *'
FOR i = 0, 5 DO $

PM, ems_labels(i), ems(i), FORMAT = '(A40, F20.2)'
PRINT
PRINT, ' * * Analysis of Variance / Variance Components *

*'
k = 0
FOR i = 0, 2 DO BEGIN

FOR j = 0, 8 DO BEGIN
PM, components_labels(k), var_comp(i, j), $
FORMAT = '(A45, F20.5)'
k = k + 1

ENDFOR
ENDFOR
IMSL_ANOVANESTED IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 781
PRINT
PRINT, 'means', FORMAT = '(A20)'
FOR i = 0, 16 DO $

PM, means_labels(i), y_means(i), FORMAT ='(A20, F20.2)'
END

y = [3.28, 3.09, 3.52, 3.48, 2.88, 2.80, 2.46, 2.44, 1.87, $
1.92, 2.19, 2.19, 2.77, 2.66, 3.74, 3.44, 2.55, 2.55, $
3.78, 3.87, 4.07, 4.12, 3.31, 3.31]

n_levels = [4, 3, 2]
p = IMSL_ANOVANESTED(3, 1, n_levels, y, Anova_Table = at, $

Ems=ems, Y_Means = y_means, Var_Comp = var_comp)
print_results, p, at, ems, y_means, var_comp

p value of F statistic = 0.00000
 * * * Analysis of Variance * * *
 degrees of freedom for model 11.00000
 degrees of freedom for error 12.00000
 total (corrected) degrees of freedom 23.00000
 sum of squares for model 10.19054
 sum of squares for error 0.07985
 total (corrected) sum of squares 10.27040
 model mean square 0.92641
 error mean square 0.00665
 F-statistic 139.21599
 p-value 0.00000
 R-squared (in percent) 99.22248
 adjusted R-squared (in percent) 98.50976
 est. standard deviation of within error 0.08158
 overall mean of y 3.01208
 coefficient of variation (in percent) 2.70826
 * * * Expected Mean Square Coefficients * * *
 Effect A and Error 1.00
 Effect A and Effect B 2.00
 Effect A and Effect A 6.00
 Effect B and Error 1.00
 Effect B and Effect B 2.00
 Error and Error 1.00
 * * Analysis of Variance / Variance Components * *
 degrees of freedom for A 3.00000
 sum of squares for A 7.56034
 mean square of A 2.52011
 F-statistic for A 7.66516
 p-value for A 0.00973
 Estimate of A 0.36522
 Percent Variation Explained by A 68.53015
 95% Confidence Interval Lower Limit for A 0.03955
 95% Confidence Interval Upper Limit for A 5.78674
 degrees of freedom for B 8.00000
IDL Analyst Reference Guide IMSL_ANOVANESTED

782 Chapter 16: Analysis of Variance
 sum of squares for B 2.63020
 mean square of B 0.32878
 F-statistic for B 49.40642
 p-value for B 0.00000
 Estimate of B 0.16106
Percent Variation Explained by B 30.22121
95% Confidence Interval Lower Limit for B 0.06967
95% Confidence Interval Upper Limit for B 0.60042
degrees of freedom for Error 12.00000
sum of squares for Error 0.07985
mean square of Error 0.00665

F-statistic for Error NaN
p-value for Error NaN
Estimate of Error 0.00665

Percent Explained by Error 1.24864
95% Confidence Interval Lower Limit for Error 0.00342
95% Confidence Interval Upper Limit for Error 0.01813
 means
 Grand mean 3.01
 A means 1 3.17
 A means 2 2.18
 A means 3 2.95
 A means 4 3.74
 AB means 1 1 3.18
 AB means 1 2 3.50
 AB means 1 3 2.84
 AB means 2 1 2.45
 AB means 2 2 1.89
 AB means 2 3 2.19
 AB means 3 1 2.72
 AB means 3 2 3.59
 AB means 3 3 2.55
 AB means 4 1 3.82
 AB means 4 2 4.10
 AB means 4 3 3.31

Version History

6.4 Introduced
IMSL_ANOVANESTED IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 783
IMSL_ANOVABALANCED

The IMSL_ANOVABALANCED function analyzes a balanced complete
experimental design for a fixed, random, or mixed model.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ANOVABALANCED(n_levels, y, n_random, idx_rand_fct,
n_fct_per_eff, idx_fct_per_eff [, ANOVA_TABLE=variable]
[, CONFIDENCE=value] [, /DOUBLE] [, MODEL=value]
[, VAR_COMP=variable] [, Y_MEANS=variable])

Return Value

The p-value for the F-statistic.

Arguments

idx_fct_per_eff

One-dimensional index array of length N_ELEMENTS(n_fct_per_effect). The first
n_fct_per_eff(0) elements give the factor numbers in the first effect. The next
n_fct_per_eff(1) elements give the factor numbers in the second effect. The last
n_fct_per_eff(N_ELEMENTS(n_fct_per_eff)) elements give the factor numbers in
the last effect. Main effects must appear before their interactions. In general, an effect
E cannot appear after an effect F if all of the indices for E appear also in F.

idx_rand_fct

One-dimensional index array of length |n_random| containing either the factor
numbers to be considered random (for n_random positive) or containing the effect
numbers to be considered random (for n_random negative).

n_fct_per_eff

One-dimensional array containing the number of factors associated with each effect
in the model.
IDL Analyst Reference Guide IMSL_ANOVABALANCED

784 Chapter 16: Analysis of Variance
n_levels

One-dimensional array containing the number of levels for each of the factors.

n_random

For positive n_random, |n_random| is the number of random factors. For negative
n_random, |n_random| is the number of random effects (sources of variation).

y

One-dimensional array containing the responses. y must not contain NaN (not a
number) for any of its elements, i.e., missing values are not allowed.

Keywords

ANOVA_TABLE

Named variable into which an array of size 15 containing the analysis of variance
table is stored. The analysis of variance statistics are as follows:

• 0—Degrees of freedom for the model

• 1—Degrees of freedom for error

• 2—Total (corrected) degrees of freedom

• 3—Sum of squares for the model

• 4—Sum of squares for error

• 5—Total (corrected) sum of squares

• 6—Model mean square

• 7—Error mean square

• 8—Overall F-statistic

• 9—p-value

• 10—R2 (in percent)

• 11—adjusted R2 (in percent)

• 12—estimate of the standard deviation

• 13—overall mean of y

• 14—coefficient of variation (in percent)
IMSL_ANOVABALANCED IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 785
CONFIDENCE

Confidence level for two-sided interval estimates on variance components, in percent.
Confidence percent confidence intervals are computed, hence, Confidence must be in
the interval [0.0, 100.0]. Confidence is often 90.0, 95.0, or 99.0. For one-sided
intervals with confidence level α, α in the interval [50.0, 100.0], set Confidence =
100.0 – 2.0 * (100.0 – α). Default: Confidence = 95.0

DOUBLE

If present and nonzero, then double precision is used.

MODEL

Model Option

• 0—Searle model (Default)

• 1—Scheffe model

For Scheffe model, effects corresponding to interactions of fixed and random factors
have their sum over the subscripts corresponding to fixed factors equal to zero. Also,
the variance of a random interaction effect involving some fixed factors has a
multiplier for the associated variance component that involves the number of levels in
the fixed factors. The Searle model has no summation restrictions on the random
interaction effects and has a multiplier of one for each variance component.

VAR_COMP

Named variable into which an array of length N_ELEMENTS(n_fct_per_eff) + 1, by
9 array containing statistics relating to the particular variance components or effects
in the model and the error is stored. Rows of Var_Comp correspond to the rows of
N_ELEMENTS(n_fct_per_eff) effects plus error.

• 1—Degrees of freedom

• 2—Sum of squares

• 3—Mean squares

• 4—F -statistic

• 5—p-value for F test

• 6—Variance component estimate

• 7—Percent of variance of y explained by random effect

• 8—Lower endpoint for confidence interval on the variance component
IDL Analyst Reference Guide IMSL_ANOVABALANCED

786 Chapter 16: Analysis of Variance
• 9—Upper endpoint for confidence interval on the variance component

Columns 6 through 9 contain NaN (not a number) if the effect is fixed, i.e., if there is
no variance component to be estimated. If the variance component estimate is
negative, columns 8 and 9 contain NaN.

Ems—Named variable into which a one-dimensional array of length
((N_ELEMENTS(n_fct_per_eff) + 1)*(N_ELEMENTS(n_fct_per_eff) + 2))/2
containing expected mean square coefficients is stored. Suppose the effects are A, B,
and AB. The ordering of the coefficients in Ems is as follows:

Y_MEANS

Named variable into which a one-dimensional array of length (n_levels(0) + 1) *
(n_levels (1) + 1) * ... * (n_levels (n-1) + 1) containing the subgroup means is stored.
Suppose the factors are A, B, and C. The ordering of the means is grand mean, A
means, B means, C means, AB means, AC means, BC means, and ABC means.

Discussion

The IMSL_ANOVABALANCED function analyzes a balanced complete
experimental design for a fixed, random, or mixed model. The analysis includes an
analysis of variance table, and computation of subgroup means and variance
component estimates. A choice of two parameterizations of the variance components
for the model can be made.

Scheffé (1959, pages 274−289) discusses the parameterization for Model = 1. For
example, consider the following model equation with fixed factor A and random
factor B:

yijk = µ + αi + bj + cij + eijk i = 1, 2, ... , a; j = 1, 2, ... , b; k = 1, 2, ... , n

Error AB B A

A Ems(0) Ems(1) Ems(2) Ems(3)

B Ems(4) Ems(5) Ems(6)

AB Ems(7) Ems(8)

Error Ems(9)
IMSL_ANOVABALANCED IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 787
The fixed effects αi’s are subject to the restriction:

the bj’s are random effects identically and independently distributed:

cij are interaction effects each distributed:

and are subject to the restrictions:

and the eijk’s are errors identically and independently distributed N(0, σ2). In general,
interactions of fixed and random factors have sums over subscripts corresponding to
fixed factors equal to zero. Also in general, the variance of a random interaction
effect is the associated variance component times a product of ratios for each fixed
factor in the random interaction term. Each ratio depends on the number of levels in
the fixed factor. In the earlier example, the random interaction AB has the ratio (a –
1)/a as a multiplier of:

and:

In a three-way crossed classification model, an ABC interaction effect with A fixed, B
random, and C fixed would have variance:

Searle (1971, pages 400−401) discusses the parameterization for Model = 0. This
parameterization does not have the summation restrictions on the effects
corresponding to interactions of fixed and random factors. Also, the variance of each
random interaction term is the associated variance component, i.e., without the
multiplier. This parameterization is also used with unbalanced data, which is one
reason for its popularity with balanced data also. In the earlier example:

α ij
i 1=

a

∑ 0=

N B(,)0 2σ

N a
a AB(,)0 1 2− σ

cij
i 1=

a

∑ 0 for j 1 2, ..., b,= =

σ AB
2

var(y a
aijk B AB) = + − +σ σ σ2 2 21

()()a c
ac ABC

− −1 1 2σ

var yijk() σ̃B
2 σ̃AB

2 σ2
+ +=
IDL Analyst Reference Guide IMSL_ANOVABALANCED

788 Chapter 16: Analysis of Variance
Searle (1971, pages 400−404) compares these two parameterizations. Hocking
(1973) considers these different parameterizations and concludes they are equivalent
because they yield the same variance-covariance structure for the responses.
Differences in covariances for individual terms, differences in expected mean square
coefficients and differences in F tests are just a consequence of the definition of the
individual terms in the model and are not caused by any fundamental differences in
the models. For the earlier two-way model, Hocking states that the relations between
the two parameterizations of the variance components are:

where:

are the variance components in the parameterization with Model = 0.

Computations for degrees of freedom and sums of squares are the same regardless of
the Model option. IMSL_ANOVABALANCED first computes degrees of freedom
and sum of squares for a full factorial design. Degrees of freedom for effects in the
factorial design that are missing from the specified model are pooled into the model
effect containing the fewest subscripts but still containing the factorial effect. If no
such model effect exists, the factorial effect is pooled into error. If more than one such
effect exists, a terminal error message is issued indicating a misspecified model.

The analysis of variance method is used for estimating the variance components. This
method solves a linear system in which the mean squares are set to the expected mean
squares. A problem that Hocking (1985, pages 324−330) discusses is that this method
can yield a negative variance component estimate. Hocking suggests a diagnostic
procedure for locating the cause of the negative estimate. It may be necessary to re-
examine the assumptions of the model.

The percentage of variation explained by each random effect is computed (output in
Var_Comp element 7) as variance of the associated random effect divided by variance
of y. The two parameterizations can lead to different values because of the different
definitions of the individual terms in the model. For example, the percentage

σ σ σ

σ σ

B B AB

AB AB

a
2 2 2

2 2

1= +

=

~ ~

~

σ σ σ

σ σ

B B AB

AB AB

a
2 2 2

2 2

1= +

=

~ ~

~

~ ~σ σB AB
2 2 and
IMSL_ANOVABALANCED IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 789
associated with the AB interaction term in the earlier two-way mixed model is
computed for Model = 1 using:

while for the parameterization Model = 0, the percentage is computed using the
formula:

In each case, the variance components are replaced by their estimates (stored in
Var_Comp element 6).

Confidence intervals on the variance components are computed using the method
discussed by Graybill (1976, Theorem 15.3.5, page 624, and Note 4, page 620).

Example

An analysis of a generalized randomized block design is performed using data
discussed by Kirk (1982, Table 6.10-1, pages 293−297). The model is:

yijk = µ + αi + bj + cij + eijk i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2

where yijk is the response for k-th experimental unit in block j with treatment i; the
αi’s are the treatment effects and are subject to the restriction:

the bj’s are block effects identically and independently distributed:

cij are interaction effects each distributed:

and are subject to the restrictions:

% variation(AB|Model = 1) =

−

+ − +

a
a

a
a

AB

B AB

1

1

2

2 2 2

σ

σ σ σ

% variation(AB|Model = 0) =
+ +

~
~ ~

σ
σ σ σ

AB

B AB

2

2 2 2

∑ ==i i1
2 0α

N B(,)0 2σ

N AB(,)0 3
4

2σ

∑ = ==i ijc j1
4 0 1 2 3 4for , , ,
IDL Analyst Reference Guide IMSL_ANOVABALANCED

790 Chapter 16: Analysis of Variance
and the eijk’s are errors, identically and independently distributed N(0, σ2). The
interaction effects are assumed to be distributed independently of the errors. The data
is given in Table 16-8.

.RUN
PRO print_results, p, at, ems, y_means, var_comp

anova_labels = ['degrees of freedom for model', $
'degrees of freedom for error', $
'total (corrected) degrees of freedom', $
'sum of squares for model', 'sum of squares for error', $
'total (corrected) sum of squares', 'model mean square', $
'error mean square', 'F-statistic', 'p-value',$
'R-squared (in percent)', $
'adjusted R-squared (in percent)', $
'est. standard deviation of within error', $
'overall mean of y', $
'coefficient of variation (in percent)']

ems_labels = ['Effect A and Error', $
'Effect A and Effect AB', 'Effect A and Effect B', $
'Effect A and Effect A', 'Effect B and Error', $
'Effect B and Effect AB', 'Effect B and Effect B', $
'Effect AB and Error', 'Effect AB and Effect AB', $
'Error and Error']

components_labels = ['degrees of freedom for A', $
'sum of squares for A', 'mean square of A', $
'F-statistic for A', 'p-value for A', $
'Estimate of A', 'Percent Variation Explained by A', $
'95% Confidence Interval Lower Limit for A', $
'95% Confidence Interval Upper Limit for A', $
'degrees of freedom for B', 'sum of squares for B', $
'mean square of B', 'F-statistic for B', 'p-value for B', $
'Estimate of B', 'Percent Variation Explained by B', $
'95% Confidence Interval Lower Limit for B', $
'95% Confidence Interval Upper Limit for B', $

Treatment
Block

1 2 3 4

1 3, 6 3, 1 2, 2 3, 2

2 4, 5 4, 2 3, 4 3, 3

3 7, 8 7, 5 6, 5 6, 6

4 7, 8 9, 10 10, 9 8, 11

Table 16-8: Randomized Block Design
IMSL_ANOVABALANCED IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 791
'degrees of freedom for AB', 'sum of squares for AB', $
'mean square of AB', 'F-statistic for AB', $
'p-value for AB', 'Estimate of AB', $
'Percent Variation Explained by AB', $
'95% Confidence Interval Lower Limit for AB', $
'95% Confidence Interval Upper Limit for AB', $
'degrees of freedom for Error', $
'sum of squares for Error', 'mean square of Error', $
'F-statistic for Error', 'p-value for Error', $
'Estimate of Error', 'Percent Explained by Error', $
'95% Confidence Interval Lower Limit for Error', $
'95% Confidence Interval Upper Limit for Error']

means_labels = ['Grand mean', ' A means 1', ' A means 2', $
' A means 3', ' A means 4', ' B means 1', ' B means 2', $
' B means 3', ' B means 4', 'AB means 1 1', $
'AB means 1 2', 'AB means 1 3', 'AB means 1 4', $
'AB means 2 1', 'AB means 2 2', 'AB means 2 3', $
'AB means 2 4', 'AB means 3 1', 'AB means 3 2', $
'AB means 3 3', 'AB means 3 4', 'AB means 4 1', $
'AB means 4 2', 'AB means 4 3', 'AB means 4 4']

PRINT, 'p value of F statistic =', p
PRINT
PRINT, ' * * * Analysis of Variance * * *'
FOR i = 0, 14 DO $

PM, anova_labels(i), at(i), FORMAT = '(A40, F20.5)'
PRINT
PRINT, ' * * * Expected Mean Square Coefficients * * *'
FOR i = 0, 9 DO $

PM, ems_labels(i), ems(i), FORMAT = '(A40, F20.2)'
PRINT
PRINT, ' * * Analysis of Variance / Variance Components *

*'
k = 0
FOR i = 0, 3 DO BEGIN

FOR j = 0, 8 DO BEGIN
PM, components_labels(k), var_comp(i, j), $
FORMAT = '(A45, F20.5)'
k = k + 1

 ENDFOR
ENDFOR
PRINT
PRINT, 'means', FORMAT = '(A20)'
FOR i = 0, 24 DO $
 PM, means_labels(i), y_means(i), FORMAT ='(A20, F20.2)'

END

y = [3.0, 6.0, 3.0, 1.0, 2.0, 2.0, 3.0, 2.0, 4.0, 5.0, 4.0, $
2.0, 3.0, 4.0, 3.0, 3.0, 7.0, 8.0, 7.0, 5.0, 6.0, 5.0, $
6.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0, 11.0]
IDL Analyst Reference Guide IMSL_ANOVABALANCED

792 Chapter 16: Analysis of Variance
n_levels = [4, 4, 2]
indrf = [2, 3]
nfef = [1, 1, 2]
indef = [1, 2, 1, 2]
p = IMSL_ANOVABALANCED(n_levels, y, 2, indrf, nfef, indef, $

Anova_Table = at, Ems = ems, Y_Means = y_means, $
Var_Comp = var_comp)

print_results, p, at, ems, y_means, var_comp

p value of F statistic = 4.94719e-06

 * * * Analysis of Variance * * *
 degrees of freedom for model 15.00000
 degrees of freedom for error 16.00000
 total (corrected) degrees of freedom 31.00000
 sum of squares for model 216.50000
 sum of squares for error 19.00000
 total (corrected) sum of squares 235.50000
 model mean square 14.43333
 error mean square 1.18750
 F-statistic 12.15439
 p-value 0.00000
 R-squared (in percent) 91.93206
 adjusted R-squared (in percent) 84.36836
 est. standard deviation of within error 1.08972
 overall mean of y 5.37500
 coefficient of variation (in percent) 20.27395

 * * * Expected Mean Square Coefficients * * *
 Effect A and Error 1.00
 Effect A and Effect AB 2.00
 Effect A and Effect B 0.00
 Effect A and Effect A 8.00
 Effect B and Error 1.00
 Effect B and Effect AB 2.00
 Effect B and Effect B 8.00
 Effect AB and Error 1.00
 Effect AB and Effect AB 2.00
 Error and Error 1.00

 * * Analysis of Variance / Variance Components * *
 degrees of freedom for A 3.00000
 sum of squares for A 194.50000
 mean square of A 64.83334
 F-statistic for A 32.87324
 p-value for A 0.00004
 Estimate of A NaN
 Percent Variation Explained by A NaN
 95% Confidence Interval Lower Limit for A NaN
IMSL_ANOVABALANCED IDL Analyst Reference Guide

Chapter 16: Analysis of Variance 793
 95% Confidence Interval Upper Limit for A NaN
 degrees of freedom for B 3.00000
 sum of squares for B 4.25000
 mean square of B 1.41667
 F-statistic for B 0.71831
 p-value for B 0.56566
 Estimate of B -0.06944
 Percent Variation Explained by B 0.00000
 95% Confidence Interval Lower Limit for B NaN
 95% Confidence Interval Upper Limit for B NaN
 degrees of freedom for AB 9.00000
 sum of squares for AB 17.75000
 mean square of AB 1.97222
 F-statistic for AB 1.66082
 p-value for AB 0.18016
 Estimate of AB 0.39236
 Percent Variation Explained by AB 24.83516
 95% Confidence Interval Lower Limit for AB 0.00000
 95% Confidence Interval Upper Limit for AB 2.75803
 degrees of freedom for Error 16.00000
 sum of squares for Error 19.00000
 mean square of Error 1.18750
 F-statistic for Error NaN
 p-value for Error NaN
 Estimate of Error 1.18750
 Percent Explained by Error 75.16483
95% Confidence Interval Lower Limit for Error 0.65868
95% Confidence Interval Upper Limit for Error

42.75057
 means
 Grand mean 5.38
 A means 1 2.75
 A means 2 3.50
 A means 3 6.25
 A means 4 9.00
 B means 1 6.00
 B means 2 5.12
 B means 3 5.12
 B means 4 5.25
 AB means 1 1 4.50
 AB means 1 2 2.00
 AB means 1 3 2.00
 AB means 1 4 2.50
 AB means 2 1 4.50
 AB means 2 2 3.00
 AB means 2 3 3.50
 AB means 2 4 3.00
 AB means 3 1 7.50
 AB means 3 2 6.00
IDL Analyst Reference Guide IMSL_ANOVABALANCED

794 Chapter 16: Analysis of Variance
 AB means 3 3 5.50
 AB means 3 4 6.00
 AB means 4 1 7.50
 AB means 4 2 9.50
 AB means 4 3 9.50
 AB means 4 4 9.50

; Add Outliners
x(0, 1) = 100.0
x(3, 4) = 100.0
x(99, 2) = -100.0
p_cov = IMSL_POOLED_COV(x, n_groups, Idx_Vars = idxv, $

Idx_Cols = idxc)
PM, p_cov, Title = 'Pooled Cavariance with Outliners'
r_cov = IMSL_ROBUST_COV(x, n_groups, Idx_Vars = idxv, $

Idx_Cols = idxc, Percentage = percentage)
PM, r_cov, Title = 'Robust Covariance with Outliners'

Pooled Cavariance with Outliners
60.4264 0.304244 0.127488 -1.55551
0.304244 70.5257 0.167135 -0.171791
0.127488 0.167135 0.185188 0.0684639
-1.55551 -0.171791 0.0684639 66.3798

Robust Covariance with Outliners
0.255521 0.0876029 0.155279 0.0359198
0.0876029 0.112674 0.0545391 0.0322426
0.155279 0.0545391 0.172263 0.0412149
0.0359198 0.0322426 0.0412149 0.0424182

Version History

6.4 Introduced
IMSL_ANOVABALANCED IDL Analyst Reference Guide

Chapter 17

Categorical and
Discrete Data Analysis
This section contains the following topics:
Overview: Categorical and Discrete Data
Analysis . 796

Categorical and Discrete Data Analysis
Routines . 797
IDL Analyst Reference Guide 795

796 Chapter 17: Categorical and Discrete Data Analysis
Overview: Categorical and Discrete Data
Analysis

Routine IMSL_CONTINGENCY computes many statistics of interest in a two-way
table. Statistics computed by this routine includes the usual chi-squared statistics,
measures of association, Kappa, and many others. Exact probabilities for two-way
tables can be computed by IMSL_EXACT_ENUM , but this routine uses the total
enumeration algorithm and, thus, often uses orders of magnitude more computer time
than IMSL_EXACT_NETWORK which computes the same probabilities by use of
the network algorithm (but can still be quite expensive).

The routine IMSL_CAT_GLM in the second section is concerned with generalized
linear models (see McCullagh and Nelder 1983) in discrete data. This routine can be
used to compute estimates and associated statistics in probit, logistic, minimum
extreme value, Poisson, negative binomial (with known number of successes), and
logarithmic models. Classification variables as well as weights, frequencies and
additive constants may be used so that general linear models can be fit. Residuals, a
measure of influence, the coefficient estimates, and other statistics are returned for
each model fit. When infinite parameter estimates are required, extended maximum
likelihood estimation may be used. Log-linear models can be fit in IMSL_CAT_GLM
through the use of Poisson regression models. Results from Poisson regression
models involving structural and sampling zeros will be identical to the results
obtained from the log-linear model routines but will be fit by a quasi-Newton
algorithm rather than through iterative proportional fitting.
Overview: Categorical and Discrete Data Analysis IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 797
Categorical and Discrete Data Analysis
Routines

Statistics in the Two-Way Contingency Table

IMSL_CONTINGENCY—Two-way contingency table analysis.

IMSL_EXACT_ENUM—Exact probabilities in a table; total enumeration.

IMSL_EXACT_NETWORK—Exact probabilities in a table.

Generalized Categorical Models

IMSL_CAT_GLM—Generalized linear models.
IDL Analyst Reference Guide Categorical and Discrete Data Analysis Routines

798 Chapter 17: Categorical and Discrete Data Analysis
IMSL_CONTINGENCY

The IMSL_CONTINGENCY function performs a chi-squared analysis of a two-way
contingency table.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CONTINGENCY(table [, CHI_SQ_CONTRIB=variable]
[, CHI_SQ_STATS=variable] [, CHI_SQ_TEST=variable] [, /DOUBLE]
[, EXPECTED=variable] [, LRT=variable] [, TABLE_STATS=variable])

Return Value

Pearson chi-squared p-value for independence of rows and columns.

Arguments

table

Two-dimensional array containing the observed counts in the contingency table.

Keywords

CHI_SQ_CONTRIB

Named variable into which a two-dimensional array of size (n_rows+1) by
(n_columns+1) containing the contributions for each cell in the table is stored. The
contributions to chi-squared for each cell in the table is in the first n_rows rows and
n_columns columns. The last row and column contain the total contribution to chi-
squared for that row or column.

CHI_SQ_STATS

Named variable into which an array of length 5 containing chi-squared statistics
associated with this contingency table is stored. The last three elements are based on
Pearson’s chi-squared statistic (see Chi_Sq_Test). The chi-squared statistics are given
as follows:
IMSL_CONTINGENCY IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 799
• 0—exact mean

• 1—exact standard deviation

• 2—phi

• 3—contingency coefficient

• 4—Cramer’s V

CHI_SQ_TEST

Named variable into which the three-element array containing statistics associated
with the chi-squared tests is stored. The first element contains the degrees of freedom
for the chi-squared tests associated with the table, the second element contains the
Pearson chi-squared test statistic, and the third element contains the probability of a
larger Pearson chi-squared, p-value.

DOUBLE

If present and nonzero, double precision is used.

EXPECTED

Named variable into which the two-dimensional array of size (n_rows+1) by
(n_columns+1) containing the expected values of each cell in the table is stored,
where n_rows=(N_ELEMENTS(table(*,0)) and
n_columns=(N_ELEMENTS(table(0,*)). The expected values are computed under
the null hypothesis and stored in the first n_rows rows and n_columns columns. The
marginal totals are in the last row and column.

LRT

Named variable into which the three-element array containing statistics associated
with the likelihood ratio G-squared tests is stored. The first element contains the
degrees of freedom for the chi-squared tests associated with the table, the second
element contains the likelihood ratio G2 (chi-squared), and the third element contains
the probability of a larger G2.

TABLE_STATS

Named variable into which a two-dimensional array of size 23 x 5 containing
statistics associated with this table is stored. Each row corresponds to a statistic, as
shown in Table 17-1.
IDL Analyst Reference Guide IMSL_CONTINGENCY

800 Chapter 17: Categorical and Discrete Data Analysis
Row Statistic

0 Gamma

1 Kendall’s τb

2 Stuart’s τc

3 Somers’ D for rows (given columns)

4 Somers’ D for columns (given rows)

5 product moment correlation

6 Spearman rank correlation

7 Goodman and Kruskal τ for rows (given columns)

8 Goodman and Kruskal τ for columns (given rows)

9 uncertainty coefficient U (symmetric)

10 uncertainty Ur | c (rows)

11 uncertainty U c | r (columns)

12 optimal prediction λ (symmetric)

13 optimal prediction λ r | c (rows)

14 optimal prediction λ c | r (columns)

15 optimal prediction λ r | c (rows)

16 optimal prediction λ c | r (columns)

17 test for linear trend in row probabilities if n_rows = 2. If n_rows is
not 2, a test for linear trend in column probabilities if n_columns = 2.

18 Kruskal-Wallis test for no-row effect

19 Kruskal-Wallis test for no-column effect

20 kappa (square tables only)

Table 17-1: Row Statistics
IMSL_CONTINGENCY IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 801
If a statistic cannot be computed or if some value is not relevant for the computed
statistic, the entry is NaN (Not a Number). The columns are as follows:

• 0—estimated statistic

• 1—standard error for any parameter value

• 2—standard error under the null hypothesis

• 3—t value for testing the null hypothesis

• 4—p-value of the test in column 3

In the McNemar tests, Column 0 contains the statistic, Column 1 contains the chi-
squared degrees of freedom, Column 3 contains the exact p-value (1 degree of
freedom only), and Column 4 contains the chi-squared asymptotic p-value. The
Kruskal-Wallis test is the same except no exact
p-value is computed.

Discussion

The IMSL_CONTINGENCY function computes statistics associated with an r x c
contingency table. The function computes the chi-squared test of independence,
expected values, contributions to chi-squared, row and column marginal totals, some
measures of association, correlation, prediction, uncertainty, the McNemar test for
symmetry, a test for linear trend, the odds and the log odds ratio, and the kappa
statistic (if the appropriate keywords are selected).

Notation

Let xij denote the observed cell frequency in the ij cell of the table and n denote the
total count in the table. Let pij = pi·p·j denote the predicted cell probabilities under the
null hypothesis of independence, where pi· and p·j are the row and column marginal
relative frequencies. Next, compute the expected cell counts as eij = npij.

Also required in the following are auv and buv for u, where ν = 1, ..., n. Let (rs, cs)
denote the row and column response of observation s. Then, auv = 1, 0, or –1,

21 McNemar test of symmetry (square tables only)

22 McNemar one degree of freedom test of symmetry (square tables
only)

Row Statistic

Table 17-1: Row Statistics (Continued)
IDL Analyst Reference Guide IMSL_CONTINGENCY

802 Chapter 17: Categorical and Discrete Data Analysis
depending on whether ru < rv , ru = rv , or ru > rv. The buv similarly defined in terms of
the cs variables.

Chi-squared Statistic

For each cell in the table, the contribution to χ2 is given as (xij – eij)
2/eij. The Pearson

chi-squared statistic (denoted χ2) is computed as the sum of the cell contributions to
chi-squared. It has (r – 1) (c – 1) degrees of freedom and tests the null hypothesis of
independence, i.e., H0:pij = pi·p·j. The null hypothesis is rejected if the computed
value of χ2 is too large.

The maximum likelihood equivalent of χ2, G2 is computed as follows:

G2 is asymptotically equivalent to χ2 and tests the same hypothesis with the same
degrees of freedom.

Measures Related to Chi-squared (Phi, Contingency
Coefficient, and Cramer’s V)

There are three measures related to chi-squared that do not depend on sample size:

• phi,

• contingency coefficient,

• Cramer’s V,

Since these statistics do not depend on sample size and are large when the hypothesis
of independence is rejected, they can be thought of as measures of association and
can be compared across tables with different sized samples. While both P and V have
a range between 0.0 and 1.0, the upper bound of P is actually somewhat less than 1.0
for any given table (see Kendall and Stuart 1979, p. 587). The significance of all three
statistics is the same as that of the χ2 statistic, Chi_Sq_Test.

The distribution of the χ2 statistic in finite samples approximates a chi-squared
distribution. To compute the exact mean and standard deviation of the χ2 statistic,

G
2

2 xij ln xij npij⁄()
i j,
∑–=

φ χ2
n⁄=

P χ2
n χ2

+()⁄=

V χ2
n min r c,()()⁄=
IMSL_CONTINGENCY IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 803
Haldane (1939) uses the multinomial distribution with fixed-table marginals. The
exact mean and standard deviation generally differ little from the mean and standard
deviation of the associated chi-squared distribution.

Standard Errors and p-values for Some Measures
of Association

In Columns 1 through 4 of statistics, estimated standard errors and asymptotic p-
values are reported. Estimates of the standard errors are computed in two ways. The
first estimate, in Column 1 of the array table_stats, is asymptotically valid for any
value of the statistic. The second estimate, in Column 2 of the array, is only correct
under the null hypothesis of no association. The z-scores in Column 3 of statistics are
computed using this second estimate of the standard errors. The p-values in column 4
are computed from this z-score. See Brown and Benedetti (1977) for a discussion and
formulas for the standard errors in Column 2.

Measures of Association for Ranked Rows and Columns

The measures of association, φ, P, and V, do not require any ordering of the row and
column categories. The IMSL_CONTINGENCY function also computes several
measures of association for tables in which the row and column categories
correspond to ranked observations. Two of these tests, the product moment
correlation and the Spearman correlation, are correlation coefficients computed using
assigned scores for the row and column categories. The cell indices are used for the
product-moment correlation, while the average of the tied ranks of the row and
column marginals is used for the Spearman rank correlation. Other scores are
possible.

Gamma, Kendall’s τb, Stuart’s τc, and Somers’ D are measures of association that are
computed like a correlation coefficient in the numerator. In all these measures, the
numerator is computed as the “covariance” between the auv variables and buv
variables defined above, i.e., as follows:

Recall that auv and buv can take values –1, 0, or 1. Since the product auvbuv = 1 only if
auv and buv are both 1 or both –1, it is easy to show that this “covariance” is twice the
total number of agreements minus the number of disagreements, where a
disagreement occurs when auvbuv = –1.

Kendall’s τb is computed as the correlation between auv and buv variables (see
Kendall and Stuart 1979, p. 593). In a rectangular table (r ≠ c), Kendall’s τb cannot be
1.0 (if all marginal totals are positive). For this reason, Stuart suggested a

auvbuv
v
∑

u
∑

IDL Analyst Reference Guide IMSL_CONTINGENCY

804 Chapter 17: Categorical and Discrete Data Analysis
modification to the denominator of τ in which the denominator becomes the largest
possible value of the “covariance.” This maximizing value is approximately n2m / (m
– 1), where m = min(r, c). Stuart’s τc uses this approximate value in its denominator.
For large n:

Gamma can be motivated in a slightly different manner. Because the “covariance” of
the auv variables and the buv variables can be thought of as twice the number of
agreements minus the disagreements, 2(A – D), where A is the number of agreements
and D is the number of disagreements, Gamma is motivated as the probability of
agreement minus the probability of disagreement, given that either agreement or
disagreement occurred. This is shown as γ = (A – D)/(A + D).

Two definitions of Somers’ D are possible, one for rows and a second for columns.
Somers’ D for rows can be thought of as the regression coefficient for predicting auv
from buv. Moreover, Somer’s D for rows is the probability of agreement minus the
probability of disagreement, given that the column variable, buv, is not 0. Somers’ D
for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found in
Kendall and Stuart (1979, p. 592).

Measures of Prediction and Uncertainty

Optimal Prediction Coefficients: The measures in this section do not require any
ordering of the row or column variables. They are based entirely upon probabilities.
Most are discussed in Bishop et al. (1975, p. 385).

Consider predicting (or classifying) the column for a given row in the table. Under
the null hypothesis of independence, choose the column with the highest column
marginal probability for all rows. In this case, the probability of misclassification for
any row is 1 minus this marginal probability. If independence is not assumed, then
within each row, choose the column with the highest row-conditional probability. The
probability of misclassification for the row becomes 1 minus this conditional
probability.

Define the optimal prediction coefficient λc | r for predicting columns from rows as
the proportion of the probability of misclassification that is eliminated because the
random variables are not independent. It is estimated by:

τc mτb m 1–()⁄≈

λc r

1 p•m–() 1 pim
i
∑–

–

1 p•m–
--=
IMSL_CONTINGENCY IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 805
where m is the index of the maximum estimated probability in the row (pim) or row
margin (p·m). A similar coefficient is defined for predicting the rows from the
columns. The symmetric version of the optimal prediction λ is obtained by summing
the numerators and denominators of λr|c and λc|r, then dividing. Standard errors for
these coefficients are given in Bishop et al. (1975, p. 388).

A problem with the optimal prediction coefficients λ is that they vary with the
marginal probabilities. One way to correct this is to use row-conditional probabilities.
The optimal prediction λ* coefficients are defined as the corresponding λ coefficients
in which first the row (or column) marginals are adjusted to the same number of
observations. This yields:

where i indexes the rows, j indexes the columns, and p j|i is the (estimated) probability
of column j given row i. λ*

r|c is similarly defined.

Goodman and Kruskal τ: A second kind of prediction measure attempts to explain
the proportion of the explained variation of the row (column) measure given the
column (row) measure. Define the total variation in the rows as follows:

Note that this is 1 / (2n) times the sums of squares of the auv variables.

With this definition of variation, the Goodman and Kruskal τ coefficient for rows is
computed as the reduction of the total variation for rows accounted for by the
columns, divided by the total variation for the rows. To compute the reduction in the
total variation of the rows accounted for by the columns, note that the total variation
for the rows within column j is defined as follows:

The total variation for rows within columns is the sum of the qj variables. Consistent
with the usual methods in the analysis of variance, the reduction in the total variation
is given as the difference between the total variation for rows and the total variation
for rows within the columns.

Goodman and Kruskal’s τ for columns is similarly defined. See Bishop et al. (1975,
p. 391) for the standard errors.

λc r
*

maxj pj i maxj pj i
i
∑

–
i
∑

R maxj pj i
i
∑

–

--=

n 2⁄ xi•
2

i
∑

2(n)⁄–

qj x•j 2⁄ xij
2

i
∑

2(xi•)⁄–=
IDL Analyst Reference Guide IMSL_CONTINGENCY

806 Chapter 17: Categorical and Discrete Data Analysis
Uncertainty Coefficients: The uncertainty coefficient for rows is the increase in the
log-likelihood that is achieved by the most general model over the independence
model, divided by the marginal log-likelihood for the rows. This is given by the
following equation:

The uncertainty coefficient for columns is similarly defined. The symmetric
uncertainty coefficient contains the same numerator as Ur | c and Uc | r but averages
the denominators of these two statistics. Standard errors for U are given in Brown
(1983).

Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-
variance-type test that assumes the column variable is monotonically ordered. It tests
the null hypothesis that no row populations are identical, using average ranks for the
column variable. The Kruskal-Wallis statistic for columns is similarly defined.
Conover (1980) discusses the Kruskal-Wallis test.

Test for Linear Trend: When there are two rows, it is possible to test for a linear
trend in the row probabilities if it is assumed that the column variable is
monotonically ordered. In this test, the probabilities for row 1 are predicted by the
column index using weighted simple linear regression. This slope is given by:

where:

is the average column index. An asymptotic test that the slope is zero may then be
obtained (in large samples) as the usual regression test of zero slope.

In two-column data, a similar test for a linear trend in the column probabilities is
computed. This test assumes that the rows are monotonically ordered.

Kappa: Kappa is a measure of agreement computed on square tables only. In the
kappa statistic, the rows and columns correspond to the responses of two judges. The
judges agree along the diagonal and disagree off the diagonal. Let:

U r c

xijlog xi•x•j nxij⁄()
i j,
∑

xi•log xi• n⁄()
i
∑

---=

βˆ
x•j x1j x•j x1•– n⁄⁄() j j–()

j
∑

x•j j j–()
2

j
∑

---=

j x•j jn
j
∑=

p0 xii n⁄
i
∑=
IMSL_CONTINGENCY IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 807
denote the probability that the two judges agree, and let

denote the expected probability of agreement under the independence model. Kappa
is then given by (p0 – pc)/(1 – pc).

McNemar Tests: The McNemar test is a test of symmetry in a square contingency
table. In other words, it is a test of the null hypothesis H0:θij = θji . The multiple
degrees-of-freedom version of the McNemar test with r(r – 1)/2 degrees of freedom
is computed as follows:

The single degree-of-freedom test assumes that the differences, xij – xji , are all in one
direction. The single degree-of-freedom test is more powerful than the multiple
degrees-of-freedom test when this is the case. The test statistic is given as follows:

The exact probability can be computed by the binomial distribution.

Examples

Example 1

The following example, taken from Kendall and Stuart (1979), involves the distance
vision in the right and left eyes. Output contains only the p-value.

table = [[821,116,72,43], [112,494,151,34], $
[85,145,583,106], [35,27,87,331]]

print, 'P-Value ', IMSL_CONTINGENCY(table)

Example 2

The following example, which illustrates the use of Kappa and McNemar tests, uses
the same distance vision data as the previous example. The available statistics are
obtained using keywords. First, a procedure is defined to output the results.

pc eiin⁄
i
∑=

xij xji–()2

xij xji+()

i j<
∑

xij xji–()
i j<
∑

 2

xij xji+()
i j<
∑

--
IDL Analyst Reference Guide IMSL_CONTINGENCY

808 Chapter 17: Categorical and Discrete Data Analysis
.RUN
PRO print_results, chi_sq_test, lrt, expected, chi_sq_contrib, $

chi_sq_stats, table_stats
PRINT, 'Pearson Chi_Squared Statistics:'
PM, chi_sq_test(0), Title = 'Degrees of Freedom'
PM, chi_sq_test(1), Title = 'Chi-Squared'
PM, chi_sq_test(2), Title = 'P-Value'
PRINT
PRINT, 'Likelihood Ratio G-Squared ' + 'Statistics:'
PM, lrt(0), Title = 'Degrees of Freedom'
PM, lrt(1), Title = 'G-Squared'
PM, lrt(2), Title = 'P-Value'
PRINT
PM, expected, Title = 'Expected Values:'
PRINT
PM, chi_sq_contrib, Title = 'Contributions to Chi-squared:'
PRINT
PM, chi_sq_stats, Title = 'Chi-square Statistics:'
PRINT
PM, table_stats, Title = 'Table Statistics:'
END

table = [[821,116,72,43], [112,494,151,34], [85,145,583,106], $
[35,27,87,331]]

p_value = IMSL_CONTINGENCY(table, $
Chi_Sq_Test = chi_sq_test, $
Lrt = lrt, $
Expected = expected, $
Chi_Sq_Contrib = chi_sq_contrib, $
Chi_Sq_Stats = chi_sq_stats, $
Table_Stats = table_stats)

print_results, chi_sq_test, lrt, expected, chi_sq_contrib, $
chi_sq_stats, table_stats

Pearson Chi_Squared Statistics:
Degrees of Freedom

 9.00000
Chi-Squared

 3304.37
P-Value

 0.00000
Likelihood Ratio G-Squared Statistics:
Degrees of Freedom

 9.00000
G-Squared

 2781.02
P-Value

 0.00000
Expected Values:
IMSL_CONTINGENCY IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 809
 341.689 256.916 298.491 155.904 1053.00
 253.752 190.796 221.671 115.780 782.000
 289.771 217.879 253.136 132.215 893.000
 166.788 125.408 145.702 76.1012 514.000
 1052.00 791.000 919.000 480.000 3242.00

Contributions to Chi-squared:
 672.363 81.7416 152.696 93.7612 1000.56
 74.7802 481.835 26.5189 68.0768 651.211
 163.661 20.5287 429.849 15.4625 629.501
 91.8743 66.6263 10.8183 853.777 1023.10
 1002.68 650.732 619.882 1031.08 3304.37

Chi-square Statistics:
 9.00278
 4.24016
 1.00957
 0.710467
 0.582877

Table Statistics:
0.775704 0.0122983 0.0148632 52.1897 0.00000
0.642887 0.0122028 0.0123183 52.1897 0.00000
0.629265 0.0120573 NaN 52.1897 0.00000
0.641831 0.0122390 0.0122980 52.1897 0.00000
0.643945 0.0122152 0.0123385 52.1897 0.00000
0.692588 0.0127669 0.0172000 40.2669 0.00000
0.693882 0.0126566 0.0126942 54.6614 0.00000
0.341952 0.0122570 NaN NaN NaN
0.342993 0.0122165 NaN NaN NaN
0.317123 0.0110281 NaN NaN NaN
0.317811 0.0110453 NaN NaN NaN
0.316437 0.0110294 NaN NaN NaN
0.537337 0.0123718 NaN NaN NaN
0.537443 0.0125727 NaN NaN NaN
0.537232 0.0125851 NaN NaN NaN
0.550648 0.0135695 NaN NaN NaN
0.563587 0.0126838 NaN NaN NaN
 NaN NaN NaN NaN NaN
 1561.49 3.00000 NaN NaN 0.00000
 1563.03 3.00000 NaN NaN 0.00000
0.574419 0.0110873 0.0105673 54.3583 0.00000
 4.76249 6.00000 NaN NaN 0.574617
0.948667 1.00000 NaN 0.345904 0.330059

Errors

Warning Errors

STAT_DF_GT_30—The degrees of freedom for Chi_Sq_Test are greater than 30. The
exact mean, standard deviation, and the normal distribution function should be used.
IDL Analyst Reference Guide IMSL_CONTINGENCY

810 Chapter 17: Categorical and Discrete Data Analysis
STAT_EXP_VALUES_TOO_SMALL—Some expected values are less than #. Some
asymptotic p-values may not be good.

STAT_PERCENT_EXP_VALUES_LT_5—Twenty percent of the expected values are
calculated less than 5.

Version History

6.4 Introduced
IMSL_CONTINGENCY IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 811
IMSL_EXACT_ENUM

The IMSL_EXACT_ENUM function computes exact probabilities in a two-way
contingency table using the total enumeration method.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_EXACT_ENUM(table [, /DOUBLE] [, ERROR_CHK=variable]
[, P_VALUE=variable] [, PROB_TABLE=variable])

Return Value

The p-value for independence of rows and columns. The p-value represents the
probability of a more extreme table where “extreme” is taken in the Neyman-Pearson
sense. The p-value is “two-sided”.

Arguments

table

Two-dimensional array containing the observed counts in the contingency table.

Keywords

DOUBLE

If present and nonzero, double precision is used.

ERROR_CHK

Named variable into which the sum of the probabilities of all tables with the same
marginal totals is stored. Keyword Error_Chk should have a value of 1.0. Deviation
from 1.0 indicates numerical error.
IDL Analyst Reference Guide IMSL_EXACT_ENUM

812 Chapter 17: Categorical and Discrete Data Analysis
P_VALUE

Named variable into which the p-value for independence of rows and columns is
stored. The p-value represents the probability of a more extreme table where
“extreme” is taken in the Neyman-Pearson sense. The p-value is “two-sided”.

The p-value is also returned in functional form (see Returned Value).

A table is more extreme if its probability (for fixed marginals) is less than or equal to
Prob_Table.

PROB_TABLE

Named variable into which the probability of the observed table occurring, given that
the null hypothesis of independent rows and columns is true, is stored.

Discussion

The IMSL_EXACT_ENUM function computes exact probabilities for an r by c
contingency table for fixed row and column marginals (a marginal is the number of
counts in a row or column), where r = N_ELEMENTS(table(*,0)) and c =
N_ELEMENTS(table(0,*)). Let fij denote the count in row i and column j of a table,
and let fi• and f•j denote the row and column marginals. Under the hypothesis of
independence, the (conditional) probability of the fixed marginals of the observed
table is given by:

where f•• is the total number of counts in the table. Pf corresponds to output keyword
Prob_Table.

A more extreme table X is defined in the probablistic sense as more extreme than the
observed table if the conditional probability computed for table X (for the same
marginal sums) is less than the conditional probability computed for the observed
table. Note that this definition can be considered “two-sided” in the cell counts.

Because IMSL_EXACT_ENUM uses total enumeration in computing the probability
of a more extreme table, the amount of computer time required increases very rapidly
with the size of the table. Tables with a large total count f•• or a large value of r by c
should not be analyzed using IMSL_EXACT_ENUM. In such cases, try using
IMSL_EXACT_NETWORK.

P
f f

f f
f

i
i

r
j

j

c

ij
j

c

i

r=
•

=
•

=

••
==

∏ ∏

∏∏

! !

! !

1 1

11
IMSL_EXACT_ENUM IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 813
Example

In this example, the exact conditional probability for the 2 by 2 contingency table is
computed as follows:

table = [[8, 8], [12, 2]]
p = IMSL_EXACT_ENUM(table, P_Value=pv, Prob_Table=pt,
Error_Chk=ec)
PRINT, 'p-value =', p
p-value = 0.0576712

Version History

6.4 Introduced

8 12

8 2
IDL Analyst Reference Guide IMSL_EXACT_ENUM

814 Chapter 17: Categorical and Discrete Data Analysis
IMSL_EXACT_NETWORK

The IMSL_EXACT_NETWORK function computes Fisher exact probabilities and a
hybrid approximation of the Fisher exact method for a two-way contingency table
using the network algorithm.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_EXACT_NETWORK(table [, APPROX_PARAMS=array]
[, /DOUBLE] [, /NO_APPROX] [, P_VALUE=variable]
[, PROB_TABLE=variable] [, WK_PARAMS=array])

Return Value

The p-value for independence of rows and columns. The p-value represents the
probability of a more extreme table where “extreme” is taken in the Neyman-Pearson
sense. The p-value is “two-sided”.

Arguments

table

Two-dimensional array containing the observed counts in the contingency table.

Keywords

APPROX_PARAMS

One-dimensional array of size 3. Approx_Params(0) is the expected value used in the
hybrid approximation to Fisher’s exact test algorithm for deciding when to use
asymptotic probabilities when computing path lengths. Approx_Params(1) is the
percentage of remaining cells that must have estimated expected values greater than
Approx_Params(0) before asymptotic probabilities can be used in computing path
lengths. Approx_Params(2) is the minimum cell estimated value allowed for
asymptotic chi-squared probabilities to be used.
IMSL_EXACT_NETWORK IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 815
Asymptotic probabilities are used in computing path lengths whenever
Approx_Params(1) or more of the cells in the table have estimated expected values of
Approx_Params(0) or more, with no cell having expected value less than
Approx_Params(2). See the Discussion section for details.

Defaults: Approx_Params(0) = 5.0

 Approx_Params(1) = 80.0

 Approx_Params(2) = 1.0

Note
These defaults correspond to the “Cochran” condition.

DOUBLE

If present and nonzero, double precision is used.

NO_APPROX

If present and nonzero, the Fisher exact test is used and Approx_Param is ignored.

P_VALUE

Named variable into which the p-value for independence of rows and columns is
stored. The p-value represents the probability of a more extreme table where
“extreme” is in the Neyman-Pearson sense. The P_Value is “two-sided”. The p-value
is also returned in functional form (see Returned Value).

A table is more extreme if its probability (for fixed marginals) is less than or equal to
Prob_Table.

PROB_TABLE

Named variable into which the probability of the observed table occurring given that
the null hypothesis of independent rows and columns is true is stored.

WK_PARAMS

One-dimensional array of size 3. The network algorithm requires a large amount of
workspace. Some of the workspace requirements are well-defined, while most of the
workspace requirements can only be estimated. The estimate is based primarily on
table size.

The IMSL_EXACT_ENUM function allocates a default amount of workspace
suitable for small problems. If the algorithm determines that this initial allocation of
IDL Analyst Reference Guide IMSL_EXACT_NETWORK

816 Chapter 17: Categorical and Discrete Data Analysis
workspace is inadequate, the memory is freed, a larger amount of memory allocated
(twice as much as the previous allocation), and the network algorithm is re-started.
The algorithm allows for up to Wk_Params(2) attempts to complete the algorithm.

Because each attempt requires computer time, it is suggested that Wk_Params(0) and
Wk_Params(1) be set to some large numbers (like 1,000 and 30,000) if the problem to
be solved is large. It is suggested that Wk_Params(1) be 30 times larger than
Wk_Params(0). Although IMSL_EXACT_ENUM will eventually work its way up to
a large enough memory allocation, it is quicker to allocate enough memory initially.

The known (well-defined) workspace requirements are as follows: Define f•• = ΣΣfij
equal to the sum of all cell frequencies in the observed table, nt = f•• + 1, mx = max
(n_rows, n_columns), mn = min (n_rows, n_columns), t1 = max (800 + 7mx, (5 +
2mx) (n_rows + n_columns + 1)), and t2 = max(400 + mx, + 1, n_rows + n_columns
+ 1) where n_rows = N_ELEMENTS(table(*,0)) and n_columns =
N_ELEMENTS(table(0,*)).

The following amount of integer workspace is allocated: 3mx + 2mn + t1.

The following amount of real workspace is allocated: nt + t2.

The remainder of workspace that is required must be estimated and allocated based
on Wk_Params(0) and Wk_Params(1). The amount of integer workspace allocated is
6n (Wk_Params(0) + Wk_Params(1)). The amount of real workspace allocated is n
(6*Wk_Params(0) + 2* Wk_Params(1)). Variable n is the index for the attempt, 1 < n
≤ Wk_Params(2).

Defaults: Wk_Params(0) = 100

 Wk_Params(1) = 3000

 Wk_Params(2) = 10

Discussion

The IMSL_EXACT_NETWORK function computes Fisher exact probabilities or a
hybrid algorithm approximation to Fisher exact probabilities for an r by c
contingency table with fixed row and column marginals (a marginal is the number of
counts in a row or column), where r = n_rows and c = n_columns. Let fij denote the
count in row i and column j of a table, and let fi and f•j denote the row and column
IMSL_EXACT_NETWORK IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 817
marginals. Under the hypothesis of independence, the (conditional) probability of the
fixed marginals of the observed table is given by:

where f•• is the total number of counts in the table. Pf corresponds to output keyword
Prob_Table.

A “more extreme” table X is defined in the probablistic sense as more extreme than
the observed table if the conditional probability computed for table X (for the same
marginal sums) is less than the conditional probability computed for the observed
table. Note that this definition can be considered “two-sided” in the cell counts.

Example

This example demonstrates various methods of computing chi-squared p-value with
respect to accuracy. As seen in the output of this example, the Fisher exact probability
and the usual asymptotic chi-squared probability (generated using
IMSL_CONTINGENCY) can be different.

.RUN
PRO print_results, p, p2, p3, p4

PRINT, 'Asymptotic Chi-Squared p-value'
PRINT, 'p-value =', p
PRINT, 'Network Algorithm with Approximation'
PRINT, 'p-value =', p2
PRINT, 'Network Algorithm without Approximation'
PRINT, 'p-value =', p3
PRINT, 'Total Enumeration Method'
PRINT, 'p-value =', p4

END

table = TRANSPOSE([[20, 20, 0, 0, 0], [10, 10, 2, 2, 1], $
[20, 20, 0, 0, 0]])

p = IMSL_CONTINGENCY(table)
p2 = IMSL_EXACT_NETWORK(table)
p3 = IMSL_EXACT_NETWORK(table, /NO_APPROX)
p4 = IMSL_EXACT_ENUM(table)
print_results, p, p2, p3, p4

Asymptotic Chi-Squared p-value
p-value = 0.0322604
Network Algorithm with Approximation

P
f f

f f
f

i
i

r
j

j

c

ij
j

c

i

r=
•

=
•

=

••
==

∏ ∏

∏∏

! !

! !

1 1

11
IDL Analyst Reference Guide IMSL_EXACT_NETWORK

818 Chapter 17: Categorical and Discrete Data Analysis
p-value = 0.0601165
Network Algorithm without Approximation
p-value = 0.0598085
Total Enumeration Method
p-value = 0.0597294

Errors

Warning Errors

STAT_HASH_TABLE_ERROR_2—The value “ldkey” = # is too small. “ldkey” is
calculated as Wk_Params(0)*pow(10, N_Attempts−1) ending this execution attempt.

STAT_HASH_TABLE_ERROR_3—The value “ldstp” = # is too small. “ldstp” is
calculated as Wk_Params(1)*pow(10, N_Attempts−1) ending this execution attempt.

Fatal Errors

STAT_HASH_TABLE_ERROR_1—The hash table key cannot be computed because
the largest key is larger than the largest representable integer. The algorithm cannot
proceed.

Version History

6.4 Introduced
IMSL_EXACT_NETWORK IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 819
IMSL_CAT_GLM

The IMSL_CAT_GLM function analyzes categorical data using logistic, Probit,
Poisson, and other generalized linear models.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CAT_GLM(n_class, n_continuous, model, x
[, CASE_ANALYSIS=variable] [, CLASS_VALS=variable]
[, COVARIANCES=variable] [, COEF_STAT=variable]
[, CRITERION=variable] [, /DOUBLE] [, EPS=value] [, IFIX=value]
[, IFREQ=value] [, INDICIES_EFFECTS=array] [, INIT_EST=array]
[, IPAR=value] [, ITMAX=value] [, LAST_STEP=variable]
[, MAX_CLASS=value] [, MEANS=variable] [, N_CLASS_VALS=variable]
[, /NO_INTERCEPT] [, OBS_STATUS=variable] [, VAR_EFFECTS=array])

Return Value

An integer value indicating the number of estimated coefficients in the model.

Arguments

model

Model used to analyze the data. The six models are listed in Table 17-2.

model Relationship* PDF of Response Variable

0 Exponential Poisson

1 Logistic Negative Binomial

2 Logistic Logarithmic

3 Logistic Binomial

Table 17-2: Six Models
IDL Analyst Reference Guide IMSL_CAT_GLM

820 Chapter 17: Categorical and Discrete Data Analysis
Note
The lower bound of the response variable is 1 for model = 3 and is 0 for all other
models. See the Discussion section for more information about these models.

n_class

Number of classification variables.

n_continuous

Number of continuous variables.

x

Two-dimensional array of size n_observations by (n_class + n_continuous) + m
containing data for the independent variables, dependent variable, and optional
parameters, where n_observations is the number of observations.

The columns must be ordered such that the first n_class columns contain data for the
class variables, the next n_continuous columns contain data for the continuous
variables, and the next column contains the response variable. The final (and
optional) m – 1 columns contain optional parameters, see keywords Ifreq, Ifix, and
Ipar.

Keywords

CASE_ANALYSIS

Named variable into which a two-dimensional array of size n_observations by 5
containing the case analysis is stored.

• 0—Predicted mean for the observation if model = 0. Otherwise, contains the
probability of success on a single trial.

4 Probit Binomial

5 Log-log Binomial

* Relationship between the parameter, θ or λ, and a linear model of
the explanatory variables, X β.

model Relationship* PDF of Response Variable

Table 17-2: Six Models
IMSL_CAT_GLM IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 821
• 1—The residual.

• 2—The estimated standard error of the residual.

• 3—The estimated influence of the observation.

• 4—The standardized residual.

Case statistics are computed for all observations except where missing values prevent
their computation.

CLASS_VALS

Named variable into which a one-dimensional array of length:

containing the distinct values of the classification variables in ascending order is
stored. The first N_Class_Vals(0) elements of Class_Vals contain the values for the
first classification variables, the next N_Class_Vals(1) elements contain the values for
the second classification variable, etc.

COVARIANCES

Named variable into which a two-dimensional array of size n_coefficients by
n_coefficients containing the estimated asymptotic covariance matrix of the
coefficients is stored. For Itmax = 0, this is the Hessian computed at the initial
parameter estimates.

COEF_STAT

Named variable into which a two-dimensional array of size n_coefficients by 4
containing the parameter estimates and associated statistics is stored.

• 0—Coefficient Estimate.

• 1—Estimated standard deviation of the estimated coefficient.

• 2—Asymptotic normal score for testing that the coefficient is zero.

• 3—The p-value associated with the normal score in column 2.

CRITERION

Named variable into which the optimized criterion is stored. The criterion to be
maximized is a constant plus the log-likelihood.

N_Class_Vals i()
i 0=

n_class 1–

∑

IDL Analyst Reference Guide IMSL_CAT_GLM

822 Chapter 17: Categorical and Discrete Data Analysis
DOUBLE

If present and nonzero, double precision is used.

EPS

Convergence criterion. Convergence is assumed when maximum relative change in
any coefficient estimate is less than Eps from one iteration to the next or when the
relative change in the log-likelihood, criterion, from one iteration to the next is less
than Eps/100.0. Default: Eps = 0.001

IFIX

Column number Ifix in x containing a fixed parameter for each observation that is
added to the linear response prior to computing the model parameter. The ‘fixed’
parameter allows one to test hypothesis about the parameters via the log-likelihoods.

IFREQ

Column number Ifreq in x containing the frequency of response for each observation.

INDICIES_EFFECTS

One-dimensional index array of length Var_Effects(0) + Var_Effects(1) + ... +
Var_Effects(n_effects - 1). The first Var_Effects(0) elements give the column numbers
of x for each variable in the first effect. The next Var_Effects(1) elements give the
column numbers for each variable in the second effect. The last Var_Effects(n_effects
- 1) elements give the column numbers for each variable in the last effect. Keywords
Indicies_Effects and Var_Effects must be used together.

INIT_EST

One-dimensional array of length n_coef_input containing initial estimates of
parameters (n_coef_input can be completed by IMSL_REGRESSORS). By default,
unweighted linear regression is used to obtain initial estimates.

IPAR

Column number Ipar in x containing the value of the known distribution parameter
for each observation, where x(i, Ipar) is the known distribution parameter associated
IMSL_CAT_GLM IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 823
with the i-th observation. The meaning of the distributional parameter depends upon
model as shown in Table 17-3:

Default: When model ≠ 2, each observation is assumed to have a parameter
value of 1. When model = 2, this parameter is not referenced.

ITMAX

Maximum number of iterations. Use Itmax = 0 to compute Hessian, stored in
Covariances, and the Newton step, stored in Last_Step, at the initial estimates (The
initial estimates must be input. Use keyword Init_Est). Default: Itmax = 30

LAST_STEP

Named variable into which an one-dimensional array of length n_coefficients
containing the last parameter updates (excluding step halvings) is stored. For Itmax =
0, Last_Step contains the inverse of the Hessian times the gradient vector, all
computed at the initial parameter estimates.

MAX_CLASS

An upper bound on the sum of the number of distinct values taken on by each
classification variable. Default: Max_Class = n_observations by n_class

MEANS

Named variable into which an one-dimensional array containing the means of the
design variables is stored. The array is of length n_coefficients if keyword
No_Intercept is used, and n_coefficients − 1 otherwise.

model Parameter Meaning of parameter (i)(Ipar)

0 E ln (E) is a fixed intercept to be included in the linear
predictor (i.e., the offset).

1 S Number of successes required for the negative
binomial distribution.

2 – Not used for this model.

3-5 N Number of trials required for the binomial
distribution.

Table 17-3: Distributional Parameters
IDL Analyst Reference Guide IMSL_CAT_GLM

824 Chapter 17: Categorical and Discrete Data Analysis
N_CLASS_VALS

Named variable into which an one-dimensional array of length n_class containing the
number of values taken by each classification variable is stored; the i-th classification
variable has N_Class_Vals(i) distinct values.

NO_INTERCEPT

If present and nonzero, there is no intercept in the model. By default, the intercept is
automatically included in the model.

OBS_STATUS

Named variable into which an one-dimensional array of length n_observations
indicating which observations are included in the extended likelihood is stored.

• 0—Observation i is in the likelihood

• 1—Observation i cannot be in the likelihood because it contains at least one
missing value in x.

• 2—Observation i is not in the likelihood. Its estimated parameter is infinite.

Remarks

1. Dummy variables are generated for the classification variables as follows: An
ascending list of all distinct values of each classification variable is obtained
and stored in Class_Vals. Dummy variables are then generated for each but the
last of these distinct values. Each dummy variable is zero unless the
classification variable equals the list value corresponding to the dummy
variable, in which case the dummy variable is one. See input keyword
Dummy_Method = 1 in routine IMSL_REGRESSORS (Chapter 2,
Regression).

2. The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

3. The “product” of two classification variables yields dummy variables in the
usual manner. Each dummy variable associated with the first classification
variable multiplies each dummy variable associated with the second
classification variable. The resulting dummy variables are such that the index
of the second classification variable varies fastest.
IMSL_CAT_GLM IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 825
VAR_EFFECTS

One-dimensional array of length n_effects containing the number of variables
associated with each effect in the model, where n_effects is the number of effects
(source of variation) in the model. Keywords Var_Effects and Indicies_Effects must
be used together.

Discussion

The IMSL_CAT_GLM function uses iteratively re-weighted least squares to compute
(extended) maximum likelihood estimates in some generalized linear models
involving categorized data. One of several models, including the probit, logistic,
Poisson, logarithmic, and negative binomial models, may be fit.

Note that each row vector in the data matrix can represent a single observation; or,
through the use of keyword Ifreq, each row can represent several observations. Also
note that classification variables and their products are easily incorporated into the
models via the usual regression-type specifications. The models available in
IMSL_CAT_GLM are listed in Table 17-4.

Model PDF of the Response
Variable

Parameterization

0 f (y) = (λy exp (−λ)) / y! λ = N x exp (ω + η)

1

2

3

Table 17-4: IMSL_CAT_GLM Models

f y()
S y 1–+

y 1–
 θS

1 θ–()y
= θ ω η+()exp

1 ω η+()exp+
--------------------------------------=

f y() 1 θ–()γ
y θln()⁄=

θ ω η+()exp
1 ω η+()exp+
--------------------------------------=

f y()
N

y
 θy

1 θ–()N y–
= θ ω η+()exp

1 ω η+()exp+
--------------------------------------=
IDL Analyst Reference Guide IMSL_CAT_GLM

826 Chapter 17: Categorical and Discrete Data Analysis
Here, Φ denotes the cumulative normal distribution, N and S are known distribution
parameters specified for each observation via the keyword Ipar, and ω is an optional
fixed parameter of the linear response, γi, specified for each observation. (If keyword
Ifix is not used, then ω is taken to be 0.) Since the log-log model (model = 5)
probabilities are not symmetric with respect to 0.5, quantitatively, as well as
qualitatively, different models result when the definitions of “success” and “failure”
are interchanged in this distribution. In this model and all other models involving θ, θ
is taken to be the probability of a “success”.

Computational Details

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

2. Estimates of the means of the “independent” or design variables are computed.
The frequency or the observation in all but binomial distribution models is
taken from vector frequencies. In binomial distribution models, the frequency
is taken as the product of n = parameter (i) and frequencies (i). Means are
computed as:

4

θ = Φ (ω + η)

5

θ = 1 − exp (−exp (ω + η))

Model PDF of the Response
Variable Parameterization

Table 17-4: IMSL_CAT_GLM Models (Continued)

f y()
N

y
 θy

1 θ–()N y–
=

f y()
N

y
 θy

1 θ–()N y–
=

x f x
f
i i

i
= ∑

∑

IMSL_CAT_GLM IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 827
3. By default, unless keyword Init_Est is used, initial estimates of the coefficients
are obtained (based upon the observation intervals) as multiple regression
estimates relating transformed observation probabilities to the observation
design vector. For example, in the binomial distribution models, θ may be
estimated as:

and, when model = 3, the linear relationship is given by:

while if model = 4, Φ−1 (θ) = Xβ. When computing initial estimates, standard
modifications are made to prevent illegal operations such as division by zero.
Regression estimates are obtained at this point, as well as later, by use of
IMSL_MULTIREGRESS (Chapter 2, Regression).

4. Newton-Raphson iteration for the maximum likelihood estimates is
implemented via iteratively re-weighted least squares. Let:

denote the log of the probability of the i-th observation for coefficients β. In the
least-squares model, the weight of the i-th observation is taken as the absolute
value of the second derivative of:

with respect to:

(times the frequency of the observation), and the dependent variable is taken as
the first derivative Ψ with respect to γi, divided by the square root of the weight
times the frequency. The Newton step is given by:

where all derivatives are evaluated at the current estimate of γ and
βn+1 = β – ∆β. This step is computed as the estimated regression coefficients in
the least-squares model. Step halving is used when necessary to ensure a
decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any coefficient
update from one iteration to the next is less than Eps or when the relative
change in the log-likelihood from one iteration to the next is less than Eps/100.

θ̂ y i() parameter i()⁄=

θ̂ 1 θ̂–()⁄()ln Xβ≈

Ψ x
T
i

β()

Ψ x
T
i

β()

γ βi i
Tx=

β∆ Σ Ψ'' γi() xix
T
i

()
1–
ΣΨ' γi()xi=
IDL Analyst Reference Guide IMSL_CAT_GLM

828 Chapter 17: Categorical and Discrete Data Analysis
Convergence is also assumed after Itmax iterations or when step halving leads
to a step size of less than 0.0001 with no increase in the log-likelihood.

6. Residuals are computed according to methods discussed by Pregibon (1981).
Let li (γi) denote the log-likelihood of the i-th observation evaluated at γi. Then,
the standardized residual is computed as:

where:

is the value of γi when evaluated at the optimal:

The denominator of this expression is used as the “standard error of the
residual” while the numerator is “raw” residual. Following Cook and Weisberg
(1982), the influence of the i-th observation is assumed to be:

This is a one-step approximation to the change in estimates when the i-th
observation is deleted. Here, the partial derivatives are with respect to β.

Programming Notes

1. Indicator (dummy) variables are created for the classification variables using
IMSL_REGRESSORS (Chapter 2, Regression) using keyword
Dummy_Method = 1.

2. To enhance precision, “centering” of covariates is performed if the model has
an intercept and n_observations − Nmissing > 1. In doing so, the sample means
of the design variables are subracted from each observation prior to its
inclusion in the model. On convergence, the intercept, its variance, and its
covariance with the remaining estimates are transformed to the uncentered
estimate values.

3. Two methods for specifying a binomial distribution model are possible. In the
first method, Ifreq contains the frequency of the observation while x(i, irt-1) is
0 or 1 depending upon whether the observation is a success or failure. In this
case, x(i, n_class + n_ continuous) is always 1. The model is treated as
repeated Bernoulli trials, and interval observations are not possible. A second

ri

l'i γ̂i()

l''i γ̂i()
------------------=

γ̂i

β̂

l'i γ̂i()T
l''i γ̂i() 1–

l'i γ̂i()
IMSL_CAT_GLM IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 829
method for specifying binomial models is to use to represent the number of
successes in parameter (i) trials. In this case, frequencies will usually be 1.

Example

This example is from Prentice (1976) and involves mortality of beetles after five
hours exposure to eight different concentrations of carbon disulphide. The table
below lists the number of beetles exposed (N) to each concentration level of carbon
disulphide (x, given as log dosage) and the number of deaths which result (y). The
data is shown in Table 17-5:

The number of deaths at each concentration level are fitted as a binomial response
using logit (model = 3), probit (model = 4), and log-log (model = 5) models. Note that
the log-log model yields a smaller absolute log likelihood (14.81) than the logit
model (18.78) or the probit model (18.23). This is to be expected since the response
curve of the log-log model has an asymmetric appearance, but both the logit and
probit models are symmetric about θ = 0.5.

.RUN
PRO print_results, cs, means, ca, crit, ls, cov

PRINT, ' Coefficient Satistics'
PRINT, ' Standard Asymptotic ', $

'Asymptotic'
PRINT, ' Coefficient Error Z-statistic ', $

'P-value'
PM, cs, FORMAT = '(4F13.2)'

Log Dosage Number of Beetles
Exposed Number of Deaths

1.690 59 6

1.724 60 13

1.755 62 18

1.784 56 28

1.811 63 52

1.836 59 53

1.861 62 61

1.883 60 60

Table 17-5: Beetle Mortality
IDL Analyst Reference Guide IMSL_CAT_GLM

830 Chapter 17: Categorical and Discrete Data Analysis
PRINT
PRINT, 'Covariate Means = ', means, FORMAT = '(A18, F6.3)'
PRINT
PRINT, ' Case Analysis'
PRINT, ' Residual ', $

'Standardized'
PRINT, ' Predicted Residual Std. Error Leverage', $

' Residual'
PM, ca, FORMAT = '(5F12.3)'
PRINT
PRINT, 'Log-Likelihood = ', crit, FORMAT = '(A18, F9.5)'
PRINT
PRINT, ' Last Step'
PRINT, ls
PRINT
PRINT, 'Asymptotic Coefficient Covariance'
PM, cov, FORMAT = '(2F12.4)'

END

model = 3
nobs = 8
x = ([[1.690, 1.724, 1.755, 1.784, 1.811, 1.836, 1.861, 1.883],$

[6, 13, 18, 28, 52, 53, 61, 60], $
[59, 60, 62, 56, 63, 59, 62, 60]])

ncoef = IMSL_CAT_GLM(0, 1, model, x, Ipar = 2, Eps = 1.0e-3, $
Coef_Stat = cs, Covariances = cov, $
Criterion = crit, Means = means, $
Case_Analysis = ca, Last_Step = ls, Obs_Status = os)

print_results, cs, means, ca, crit, ls, cov

 Coefficient Satistics
 Standard Asymptotic Asymptotic
 Coefficient Error Z-statistic P-value
 -60.76 5.21 -11.66 0.00
 34.30 2.92 11.76 0.00

Covariate Means = 1.793

 Case Analysis
 Residual Standardized
 Predicted Residual Std. Error Leverage Residual
 0.058 2.593 1.792 0.267 1.448
 0.164 3.139 2.871 0.347 1.093
 0.363 -4.498 3.786 0.311 -1.188
 0.606 -5.952 3.656 0.232 -1.628
 0.795 1.890 3.202 0.269 0.590
 0.902 -0.195 2.288 0.238 -0.085
 0.956 1.743 1.619 0.198 1.077
IMSL_CAT_GLM IDL Analyst Reference Guide

Chapter 17: Categorical and Discrete Data Analysis 831
 0.979 1.278 1.119 0.138 1.143

 Log-Likelihood = -18.77818

 Last Step
 -3.67824e-08 1.04413e-05

Asymptotic Coefficient Covariance
 27.1368 -15.1243
 -15.1243 8.5052

Errors

Warning Errors

STAT_TOO_MANY_HALVINGS—Too many step halvings. Convergence is assumed.

STAT_TOO_MANY_ITERATIONS—Too many iterations. Convergence is assumed.

Fatal Errors

STAT_TOO_FEW_COEF—Init_Est is used and “n_coef_input” = #. The model
specified requires # coefficients.

STAT_MAX_CLASS_TOO_SMALL—The number of distinct values of the classification
variables exceeds “Max_Class” = #.

STAT_INVALID_DATA_8—“N_Class_Values(#)” = #. The number of distinct values
for each classification variable must be greater than one.

STAT_NMAX_EXCEEDED—The number of observations to be deleted has exceeded
“lp_max” = #. Rerun with a different model or increase the workspace.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_CAT_GLM

832 Chapter 17: Categorical and Discrete Data Analysis
IMSL_CAT_GLM IDL Analyst Reference Guide

Chapter 18

Nonparametric
Statistics
This section contains the following topics:
Overview . 834 Nonparametric Statistics Routines 835
IDL Analyst Reference Guide 833

834 Chapter 18: Nonparametric Statistics
Overview

This chapter contains nonparametric statistics routines. Much about nonparametric
statistics is also included in other chapters. Topics that can be found in other chapters
are:

• Nonparametric measures of location and scale (Chapter 13, “Basic Statistics”)

• Nonparametric measures in a contingency table (Chapter 17, “Categorical and
Discrete Data Analysis”)

• Measures of correlation in a contingency table (Chapter 15, “Correlation and
Covariance”)

• Tests of goodness of fit and randomness (Chapter 19, “Goodness of Fit”)

Missing Values

Most routines in this chapter automatically handle missing values (NaN — not a
number).

Tied Observations

Many of the routines described in this chapter contain a keyword FUZZ in the input.
Observations that are within FUZZ of each other in absolute value are said to be tied.
Moreover, in some routines, an observation within FUZZ of some value is said to be
equal to that value. In the “IMSL_WILCOXON” on page 839, for example, such
observations are eliminated from the analysis. If FUZZ = 0.0, observations must be
identically equal before they are considered to be tied. Other positive values of FUZZ
allow for numerical imprecision or roundoff error.
Overview IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 835
Nonparametric Statistics Routines

One Sample Tests—Nonparametric Statistics

IMSL_SIGNTEST—Sign test.

IMSL_WILCOXON—Wilcoxon rank sum test.

IMSL_NCTRENDS—Noehter’s test for cyclical trend.

IMSL_CSTRENDS—Cox and Stuarts’ sign test for trends in location and dispersion.

IMSL_TIE_STATS—Tie statistics.

Two or More Samples Tests—Nonparametric
Statistics

IMSL_KW_TEST—Kruskal-Wallis test.

IMSL_FRIEDMANS_TEST—Friedman’s test.

IMSL_COCHRANQ—Cochran's Q test.

IMSL_KTRENDS—K-sample trends test.
IDL Analyst Reference Guide Nonparametric Statistics Routines

836 Chapter 18: Nonparametric Statistics
IMSL_SIGNTEST

The IMSL_SIGNTEST function performs a sign test.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SIGNTEST(x [, /DOUBLE] [, N_POS_DEV=value]
[, N_ZERO_DEV=value] [, PERCENTAGE=value] [, PERCENTILE=value])

Return Value

Binomial probability of N_Pos_Dev or more positive differences in
N_ELEMENTS(x) – N_Zero_Dev trials. Call this value probability. If no option is
chosen, the null hypothesis is that the median equals 0.0.

Arguments

x

One-dimensional array containing the input data.

Keywords

DOUBLE

If present and nonzero, double precision is used.

N_POS_DEV

Number of positive differences x(j – 1) – Percentile, for
j = 1, 2, ..., N_ELEMENTS(x).

N_ZERO_DEV

Number of zero differences (ties) x(j – 1) – Percentile, for
j = 1, 2, ..., N_ELEMENTS(x).
IMSL_SIGNTEST IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 837
PERCENTAGE

Scalar value in the range (0,1). Keyword Percentage is the 100 x Percentage
percentile of the population. Default: Percentage = 0.5

PERCENTILE

Hypothesized percentile of the population from which x was drawn. Default:
Percentile = 0.0

Discussion

The IMSL_SIGNTEST function tests hypotheses about the proportion p of a
population that lies below a value q, where p corresponds to keyword Percentage and
q corresponds to keyword Percentile. In continuous distributions, this can be a test
that q is the 100 p-th percentile of the population from which x was obtained. To carry
out testing, IMSL_SIGNTEST tallies the number of values above q in N_Pos_Dev.
The binomial probability of N_Pos_Dev or more values above q is then computed
using the proportion p and the sample size N_ELEMENTS (x) (adjusted for the
missing observations and ties).

Hypothesis testing is performed as follows for the usual null and alternative
hypotheses:

• H0: Pr(X ≤ q) ≥ p (the p-th quantile is at least q)
H1: Pr(X < q) < p
Reject H0 if probability is less than or equal to the significance level.

• H0: Pr(X ≤ q) ≤ p (the p-th quantile is at least q)
H1: Pr(X < q) > p
Reject H0 if probability is greater than or equal to 1 minus the significance
level.

• H0: Pr(X = q) = p (the p-th quantile is q)
H1: Pr((X < q) < p or Pr((X < q) > p
Reject H0 if probability is less than or equal to half the significance level or
greater than or equal to 1 minus half the significance level.

The assumptions are as follows:

1. The Xi’s form a random sample; i.e., they are independent and identically
distributed.

2. Measurement scale is at least ordinal; i.e., an ordering less than, greater than,
and equal to exists in the observations.
IDL Analyst Reference Guide IMSL_SIGNTEST

838 Chapter 18: Nonparametric Statistics
Many uses for the sign test are possible with various values of p and q. For example,
to perform a matched sample test that the difference of the medians of Y and Z is 0.0,
let p = 0.5, q = 0.0, and Xi = Yi – Zi in matched observations Y and Z. To test that the
median difference is c, let q = c.

Examples

Example 1

This example tests the hypothesis that at least 50 percent of a population is negative.
Because 0.18 < 0.95, the null hypothesis at the 5-percent level of significance is not
rejected.

x =[92, 139, -6, 10, 81, -11, 45, -25, -4, $
22, 2, 41, 13, 8, 33, 45, -33, -45, -12]

PRINT, 'Probability = ', IMSL_SIGNTEST(x)

Probability = 0.179642

Example 2

This example tests the null hypothesis that at least 75 percent of a population is
negative. Because 0.923 < 0.95, the null hypothesis at the 5-percent level of
significance is rejected.

x =[92, 139, -6, 10, 81, -11, 45, -25, -4, $
22, 2, 41, 13, 8, 33, 45, -33, -45, -12]

probability = IMSL_SIGNTEST(x, Percentage = 0.75, $
Percentile = 0, N_Pos_Dev = np, N_Zero_Dev = nz)

PM, probability, Title = 'Probability'
PM, np, Title = 'Number of Positive Deviations'
PM, nz, Title = 'Number of Ties'

Probability
 0.922543

Number of Positive Deviations
 12

Number of Ties
 0

Version History

6.4 Introduced
IMSL_SIGNTEST IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 839
IMSL_WILCOXON

The IMSL_WILCOXON function performs a Wilcoxon rank sum test or a Wilcoxon
signed rank test.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_WILCOXON(x1 [, x2] [, /DOUBLE] [, FUZZ=value]
[, STATS=variable])

Return Value

If a Wilcoxon rank sum test is performed, returns the two-sided
p-value for the Wilcoxon rank sum statistic that is computed with average ranks used
in the case of ties.

If a Wilcoxon signed rank test is performed, returns an array of length two containing
the following values:

• The asymptotic probability of not exceeding the standardized (to an asymptotic
variance of 1.0) minimum of (W+, W–) using method 1 under the null
hypothesis that the distribution is symmetric about 0.0.

• And, the asymptotic probability of not exceeding the standardized (to an
asymptotic variance of 1.0) minimum of (W+, W–) using method 2 under the
null hypothesis that the distribution is symmetric about 0.0.

Arguments

x1

One-dimensional array containing the first sample.

x2

(Optional) One-dimensional array containing the second sample.
IDL Analyst Reference Guide IMSL_WILCOXON

840 Chapter 18: Nonparametric Statistics
Keywords

DOUBLE

If present and nonzero, double precision is used.

FUZZ

Nonnegative constant used to determine ties in computing ranks in the combined
samples. A tie is declared when two observations in the combined sample are within
Fuzz of each other. Default: Fuzz = 100 x ε x max { |xi 1|, |xj 2|}, where ε is machine
precision for a Wilcoxon rank sum test, and Fuzz = 0.0 for a Wilcoxon signed rank
test.

STATS

Named variable into which one-dimensional array of length 10 containing the
statistics shown in Table 18-1 and Table 18-2 is stored. If a Wilcoxon rank sum test is
performed:

Row Statistics

0 Wilcoxon W statistic (the sum of the ranks of the x observations)
adjusted for ties in such a manner that W is as small as possible

1 2 x E (W) – W, where E (W)is the expected value of W

2 probability of obtaining a statistic less than or equal to
min {W, 2 x E (W) – W}

3 W statistic adjusted for ties in such a manner that W is as large as
possible

4 2 x E (W) – W, where E (W) is the expected value of W, adjusted
for ties in such a manner that W is as large as possible

5 probability of obtaining a statistic less than or equal to
min {W, 2 x E (W) – W}, adjusted for ties in such a manner that
W is as large as possible

6 W statistic with average ranks used in case of ties

7 estimated standard error of Stats (6) under the null hypothesis of
no difference

Table 18-1: Stats Values for Wilcoxon Rank Sum Test
IMSL_WILCOXON IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 841
If a Wilcoxon signed rank test is performed:

8 standard normal score associated with Stats (6)

9 two-sided p-value associated with Stats (6)

Row Statistics

0 The positive rank sum, W+, using method 1.

1 The absolute value of the negative rank sum, W–, using method
1.

2 The standardized (to anasymptotic variance of 1.0) minimum of
(W+, W–) using method 1.

3 The asymptotic probability of not exceeding stats(2) under the
null hypothesis that the distribution is symmetric about 0.0.

4 The positive rank sum, W+, using method 2.

5 The absolute value of the negative rank sum, W–, using method
2.

6 The standardized (to an asymptotic variance of 1.0) minimum of
(W+, W–) using method 2.

7 The asymptotic probability of not exceeding stats(6) under the
null hypothesis that the distribution is symmetric about 0.0.

8 The number of zero observations.

9 The total number of observations that are tied, and that are not
within fuzz of zero.

Table 18-2: Stats Values for Wilcoxon Signed Rank Test

Row Statistics

Table 18-1: Stats Values for Wilcoxon Rank Sum Test (Continued)
IDL Analyst Reference Guide IMSL_WILCOXON

842 Chapter 18: Nonparametric Statistics
Discussion

If Two Positional Arguments Are Supplied

The IMSL_WILCOXON function performs the Wilcoxon rank sum test for identical
population distribution functions. The Wilcoxon test is a linear transformation of the
Mann-Whitney U test. If the difference between the two populations can be attributed
solely to a difference in location, then the Wilcoxon test becomes a test of equality of
the population means (or medians) and is the nonparametric equivalent of the two-
sample t-test. The IMSL_WILCOXON function obtains ranks in the combined
sample after first eliminating missing values from the data. The rank sum statistic is
then computed as the sum of the ranks in the x1 sample.

Three methods for handling ties are used. (A tie is counted when two observations are
within Fuzz of each other.) Method 1 uses the largest possible rank for tied
observations in the smallest sample, while Method 2 uses the smallest possible rank
for these observations. Thus, the range of possible rank sums is obtained. Method 3
for handling tied observations between samples uses the average rank of the tied
observations. Asymptotic standard normal scores are computed for the W score
(based on a variance that has been adjusted for ties) when average ranks are used (see
Conover 1980, p. 217). The probability associated with the two-sided alternative is
then computed.

Hypothesis Tests

In each of the tests listed in Table 18-3, the first line gives the hypothesis (and its
alternative) under the assumptions 1 to 3 below, while the second line gives the
hypothesis when assumption 4 is also true. The rejection region is the same for both
hypotheses and is given in terms of Method 3 for handling ties. Another output
statistic should be used, (Stats(0) or Stats (3)), if another method for handling ties is
desired.

Test Null Hypothesis Alternative
Hypothesis

Action

1 H0 : Pr(x1 < x2) =
0.5

H1 : Pr(x1 < x2) ≠
0.5

Reject if Stats (9) is less
than the significance level
of the test. Alternatively,
reject the null hypothesis if
Stats (6) is too large or too
small.

H0 : E(x1) = E(x2) (H1 : E(x1) ≠ E(x2))

Table 18-3: Hypothesis Tests
IMSL_WILCOXON IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 843
Assumptions

1. x1 and x2 contain random samples from their respective populations.

2. All observations are mutually independent.

3. The measurement scale is at least ordinal (i.e., an ordering less than, greater
than, or equal to exists among the observations).

4. If f(x) and g(y) are the distribution functions of x and y, then g(y) = f(x + c) for
some constant c (i.e., the distribution of y is, at worst, a translation of the
distribution of x).

Tables of critical values of the W statistic are given in the references for small
samples.

If One Positional Argument is Supplied

The IMSL_WILCOXON function performs a Wilcoxon signed rank test of symmetry
about zero. In one sample, this test can be viewed as a test that the population median
is zero. In matched samples, a test that the medians of the two populations are equal
can be computed by first computing difference scores. These difference scores would
then be used as input to IMSL_WILCOXON. A general reference for the methods
used is Conover (1980).

Routine IMSL_WILCOXON computes statistics for two methods for handling zero
and tied observations. In the first method, observations within Fuzz of zero are not
counted, and the average rank of tied observations is used. (Observations within Fuzz
of each other are said to be tied.) In the second method, observations within Fuzz of

2 H0 : Pr(x1 < x2) ≤
0.5

H1 : Pr(x1 < x2) >
0.5

Reject if Stats (6) is too
small.

H0 : E(x1) ≥ E(x2) H1 : E(x1) < E(x2)

3
H0 : Pr(x1 < x2) ≥
0.5

H0 : E(x1) ≤ E(x2)

H1 : Pr(x1 < x2) <
0.5

H1 : E(x1) > E(x2)

Reject if Stats (6) is too
large.

Test Null Hypothesis Alternative
Hypothesis Action

Table 18-3: Hypothesis Tests (Continued)
IDL Analyst Reference Guide IMSL_WILCOXON

844 Chapter 18: Nonparametric Statistics
zero are randomly assigned a positive or negative sign, and the ranks of tied
observations are randomly permuted.

The W+ and W– statistics are computed as the sums of the ranks of the positive
observations and the sum of the ranks of the negative observations, respectively.
Asymptotic probabilities are computed using standard methods (see, e.g., Conover
1980, page 282).

Hypothesis Tests

The W+ and W– statistics may be used to test the following hypotheses about the
median, M. In deciding whether to reject the null hypothesis, use the bracketed
statistic if method 2 for handling ties is preferred. Possible null hypotheses and
alternatives are given as follows:

• H0 : M ≤ 0
H1 : M > 0

• Reject if stats(0) [or stats(4)] is too large.

• H0 : M ≥ 0
H1 : M < 0

• Reject if stats(1) [or stats(5)] is too large.

• H0 : M = 0
H1 : M ≠ 0

• Reject if stats(2) [or stats(6)] is too small. Alternatively, if an asymptotic test is
desired, reject if 2*stats(3) [or 2*stats(7)] is less than the significance level.

Tabled values of the test statistic can be found in the references. If possible, tabled
values should be used. If the number of nonzero observations is too large, then the
asymptotic probabilities computed by IMSL_WILCOXON can be used.

Assumptions

The assumptions required for the hypothesis tests are as follows:

1. The distribution of each Xi is symmetric.

2. The Xi are mutually independent.

3. All Xi’s have the same median.

4. An ordering of the observations exists (i.e., X1 > X2 and X2 > X3 implies that
X1 > X3).

If other assumptions are made, related hypotheses that are more (or less) restrictive
can be tested.
IMSL_WILCOXON IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 845
Examples

Example 1

The following example is taken from Conover (1980, p. 224). It involves the mixing
time of two mixing machines using a total of 10 batches of a certain kind of batter,
five batches for each machine. The null hypothesis is not rejected at the 5-percent
level of significance. The warning error is always printed when one or more ties are
detected.

x1 = [7.3, 6.9, 7.2, 7.8, 7.2]
x2 = [7.4, 6.8, 6.9, 6.7, 7.1]
p = IMSL_WILCOXON(x1, x2, Stats = stats)
PRINT, 'p-Value = ', p

p-Value = 0.141238

Example 2

The following example uses the same data as the previous example. Now, all the
statistics are output in the array Stats. First, a procedure is defined to output the
results.

.RUN
PRO print_results, stats

PRINT, 'Wilcoxon W Statistic', stats(0)
PRINT, '2*E(W) - W', stats(1)
PRINT, 'P-Value', stats(2)
PRINT, 'Adjusted Wilcoxon Statistic..', stats(3)

PRINT, 'Adjusted 2*E(W) - W', stats(4)
PRINT, 'Adjusted P-Value', stats(5)
PRINT, 'W Statistics for Averaged Ranks ..', stats(6)
PRINT, 'Std Error of W (Averaged Ranks) ..', stats(7)
PRINT, 'Std Normal Score of W (Averaged Ranks)..', stats(8)
PRINT, 'Two-Sided P-Value of W (Averaged Ranks) ..', stats(9)

END

x1 = [7.3, 6.9, 7.2, 7.8, 7.2]
x2 = [7.4, 6.8, 6.9, 6.7, 7.1]
p = IMSL_WILCOXON(x1, x2, Stats = stats)
print_results, stats

Wilcoxon W Statistic 34.0000
2*E(W) - W 21.0000
P-Value 0.110072
Adjusted Wilcoxon Statistic 35.0000
Adjusted 2*E(W) - W 20.0000
IDL Analyst Reference Guide IMSL_WILCOXON

846 Chapter 18: Nonparametric Statistics
Adjusted P-Value 0.0745036
W Statistics for Averaged Ranks 34.5000
Std Error of W (Averaged Ranks) 4.75803
Std Normal Score of W (Averaged Ranks)... 1.47120
Two-Sided P-Value of W (Averaged Ranks). 0.141238

Example 3

This example illustrates the application of the Wilcoxon signed rank test to a test on a
difference of two matched samples (matched pairs) {X1 = 223, 216, 211, 212, 209,
205, 201; and X2 = 208, 205, 202, 207, 206, 204, 203}. A test that the median
difference is 10.0 (rather than 0.0) is performed by subtracting 10.0 from each of the
differences prior to calling IMSL_WILCOXON. As can be seen from the output, the
null hypothesis is rejected. The warning error will always be printed when the
number of observations is 50 or less unless printing is turned off for warning errors.

.RUN
PRO output_results, stats

PRINT, 'Statistic Method 1 Method2'
PRINT, 'W+', stats(0), stats(4)
PRINT, 'W-', stats(1), stats(5)
PRINT, 'Standardized Minimum...', stats(2), stats(6)
PRINT, 'p-value', stats(3), stats(7)
PRINT
PRINT, 'Number of zeros', stats(8)
PRINT, 'Number of ties', stats(9)

END

x = [-25.0, -21.0, -19.0, -15.0, -13.0, -11.0, -8.0]
p = IMSL_WILCOXON(x, Fuzz = 0.0001, Stats = stats)
OUTPUT_RESULTS, stats

Statistic Method 1 Method 2
W+0.00000 0.00000
W-28.0000 28.0000
Standardized Minimum ... -2.36643 -2.36643
p-value 0.00898023 0.00898024

Number of zeros0.00000
Number of ties0.00000

Errors

Warning Errors

STAT_AT_LEAST_ONE_TIE—At least one tie is detected between the samples.
IMSL_WILCOXON IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 847
Fatal Errors

STAT_ALL_X_Y_MISSING—Each element of x1 and/or x2 is a missing NaN (Not a
Number) value.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_WILCOXON

848 Chapter 18: Nonparametric Statistics
IMSL_NCTRENDS

The IMSL_NCTRENDS function performs the Noether test for cyclical trend.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

result = IMSL_NCTRENDS(x [, /DOUBLE] [, FUZZ=value]
[, NMISSING=variable] [, NSTAT=variable])

Return Value

One-dimensional array of length 3 containing the probabilities of Nstat(1) or more,
Nstat(2) or more, or Nstat(3) or more monotonic sequences. If Nstat(0) is less than 1,
Result(0) is set to NaN (not a number).

Arguments

x

One-dimensional array containing the data in chronological order.

Keywords

DOUBLE

If present and nonzero, double precision is used.

FUZZ

Nonnegative constant used to determine ties in computing ranks in the combined
samples. A tie is declared when two observations in the combined sample are within
Fuzz of each other. Default: Fuzz = 0.0.

NMISSING

Named variable into which the number of missing values in x is stored.
IMSL_NCTRENDS IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 849
NSTAT

Named variable into which the one-dimensional array of length 6 containing the
statistics below is stored:

• Nstat (0)—The number of consecutive sequences of length three used to detect
cyclical trend when tying middle elements are eliminated from the sequence,
and the next consecutive observation is used.

• Nstat (1)—The number of monotonic sequences of length three in the set
defined by Nstat(0).

• Nstat (2)—The number of nonmonotonic sequences where tied threesomes are
counted as nonmonotonic.

• Nstat (3)—he number of monotonic sequences where tied threesomes are
counted as monotonic.

• Nstat (4)—The number of middle observations eliminated because they were
tied in forming the Nstat(0) sequences.

• Nstat (5)—The number of tied sequences found in forming the Nstat(2) and
Nstat(3) sequences. A sequence is called a tied sequence if the middle element
is tied with either of the two other elements.

Discussion

Routine IMSL_NCTRENDS performs the Noether test for cyclical trend (Noether
1956) for a sequence of measurements. In this test, the observations are first divided
into sets of three consecutive observations. Each set is then inspected, and if the set is
monotonically increasing or decreasing, the count variable is made incremental.

The count variables, Nstat(1), Nstat(2), and Nstat(3), differ in the manner in which
ties are handled. A tie can occur in a set (of size three) only if the middle element is
tied with either of the two ending elements. Tied ending elements are not considered.
In Nstat(1), tied middle observations are eliminated, and a new set of size 3 is
obtained by using the next observation in the sample. In Nstat(2), the original set of
size three is used, and tied middle observations are counted as nonmonotonic. In
Nstat(3), tied middle observations are counted as monotonic.

The probabilities of occurrence of the counts are obtained from the binomial
distribution with p = 1/3, where p is the probability that a random sample of size three
from a continuous distribution is monotonic. The binomial sample size is, of course,
the number of sequences of size three found (adjusted for ties).

Hypothesis test:
IDL Analyst Reference Guide IMSL_NCTRENDS

850 Chapter 18: Nonparametric Statistics
H0 : q = Pr(Xi > Xi - 1 > Xi - 2) + Pr(Xi < Xi - 1 < Xi - 2) ≤ 1/3 H1: q > 1/3

Reject if Result(0) (or Result(1) or Result(2) depending on the method used for
handling ties) is less than the significance level of the test.

Assumption: The observations are independent and are from a continuous
distribution.

Example

A test for cyclical trend in a sequence of 1000 randomly generated observations is
performed. Because of the sample used, there are no ties and all three test statistics
yield the same result.

IMSL_RANDOMOPT, set = 123457
x = IMSL_RANDOM(1000, /Uniform)
pval = IMSL_NCTRENDS(x, Nstat = nstat)
PM, pval
PM, nstat

0.697881
0.697881
0.697881

333
107
107
107
0
0

Version History

6.4 Introduced
IMSL_NCTRENDS IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 851
IMSL_CSTRENDS

The IMSL_CSTRENDS function performs the Cox and Stuart sign test for trends in
location and dispersion.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CSTRENDS(x [, /DOUBLE] [, DISPERSION=array]
[, FUZZ=value] [, NMISSING=variable] [, NSTAT=variable])

Return Value

One-dimensional array of length 8 containing the probabilities.

The first four elements of Result are computed from two groups of observations.

• 0—Probability of Nstat(0) + Nstat(2) or more negative signs (ties are
considered negative).

• 1—Probability of obtaining Nstat(1) or more positive signs (ties are
considered negative).

• 2—Probability of Nstat(0) + Nstat(2) or more negative signs (ties are
considered positive).

• 3 —Probability of obtaining Nstat(1) or more positive signs (ties are
considered positive).

The last four elements of Result are computed from three groups of observations.

• 4—Probability of Nstat(0) + Nstat(2) or more negative signs (ties are
considered negative).

• 5—Probability of obtaining Nstat(1) or more positive signs (ties are
considered negative).

• 6—Probability of Nstat(0) + Nstat(2) or more negative signs (ties are
considered positive).

• 7—Probability of obtaining Nstat(1) or more positive signs (ties are
considered positive).
IDL Analyst Reference Guide IMSL_CSTRENDS

852 Chapter 18: Nonparametric Statistics
Arguments

x

One-dimensional array containing the data in chronological order.

Keywords

DOUBLE

If present and nonzero, double precision is used.

DISPERSION

A one-dimensional array of length 2. If Dispersion is set, the Cox and Stuart tests for
trends in dispersion are computed. Otherwise, as default, the Cox and Stuart tests for
trends in location are computed.
k = Dispersion(0) is the number of consecutive x elements to be used to measure
dispersion. If ids = Dispersion(1) is zero, the range is used as a measure of dispersion.
Otherwise, the centered sum of squares is used.

FUZZ

A nonnegative constant used to determine when elements in x are tied. If |x(i) – x(j)| is
less than or equal to Fuzz, x(i) and x(j) are said to be tied. Fuzz must be nonnegative.
Default: Fuzz = 0.0.

NMISSING

Named variable into which the number of missing values in x is stored.

NSTAT

Named variable into which the one-dimensional array of length 8 containing the
statistics below is stored:

• 0—Number of negative differences (two groups)

• 1—Number of positive differences (two groups)

• 2—Number of zero differences (two groups)

• 3—Number of differences used to calculate Result(0) through Result(3)
(two groups).

• 4—Number of negative differences (three groups)
IMSL_CSTRENDS IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 853
• 5—Number of positive differences (three groups)

• 6—Number of zero differences (three groups)

• 7—Number of differences used to calculate Result(4) through Result(7) (three
groups).

Discussion

The IMSL_CSTRENDS function tests for trends in dispersion or location in a
sequence of random variables depending upon the usage of Dispersion. A derivative
of the sign test is used (see Cox and Stuart 1955).

Location Test

For the location test (Default) with two groups, the observations are first divided into
two groups with the middle observation thrown out if there are an odd number of
observations. Each observation in group one is then compared with the observation in
group two that has the same lexicographical order. A count is made of the number of
times a group-one observation is less than (Nstat(0)), greater than (Nstat(1)), or equal
to (Nstat(2)), its counterpart in group two. Two observations are counted as equal if
they are within Fuzz of one another.

In the three-group test, the observations are divided into three groups, with the center
group losing observations if the division is not exact. The first and third groups are
then compared as in the two-group case, and the counts are stored in Nstat(4) through
Nstat(6).

Probabilities in Result are computed using the binomial distribution with sample size
equal to the number of observations in the first group (Nstat(3) or Nstat(7)), and
binomial probability p = 0.5.

Dispersion Test

The dispersion tests (when keyword Dispersion is set) proceed exactly as with the
tests for location, but using one of two derived dispersion measures. The input value k
= Dispersion(0) is used to define N_ELEMENTS(x)/k groups of consecutive
observations starting with observation 1. The first k observations define the first
group, the next k observations define the second group, etc., with the last observations
omitted if N_ELEMENTS(x) is not evenly divisible by k. A dispersion score is then
computed for each group as either the range (ids = 0), or a multiple of the variance
(ids ≠ 0) of the observations in the group. The dispersion scores form a derived
sample. The tests proceed on the derived sample as above.
IDL Analyst Reference Guide IMSL_CSTRENDS

854 Chapter 18: Nonparametric Statistics
Ties

Ties are defined as occurring when a group one observation is within Fuzz of its last
group counterpart. Ties imply that the probability distribution of x is not strictly
continuous, which means that Pr(x1 > x2) ≠ 0.5 under the null hypothesis of no trend
(and the assumption of independent identically distributed observations). When ties
are present, the computed binomial probabilities are not exact, and the hypothesis
tests will be conservative.

Hypothesis tests

In the following, i indexes an observation from group 1, while j indexes the
corresponding observation in group 2 (two groups) or group 3 (three groups).

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5
H1 : Pr(Xi > Xj) < Pr(Xi < Xj)
Hypothesis of upward trend. Reject if Result(2) (or Result(6))is less than the
significance level.

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5
H1 : Pr(Xi > Xj) > Pr(Xi < Xj)
Hypothesis of downward trend. Reject if Result(1) (or Result(5)) is less than
the significance level.

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5
H1 : Pr(Xi > Xj) ≠ Pr(Xi < Xj)
Two tailed test. Reject if 2 max(Result(1), Result(2)) (or 2 max(Result(5),
Result(6)) is less than the significance level.

Assumptions

1. The observations are a random sample; i.e., the observations are independently
and identically distributed.

2. The distribution is continuous.

Example

This example illustrates both the location and dispersion tests. The data, which are
taken from Bradley (1968), page 176, give the closing price of AT&T on the New
York stock exchange for 36 days in 1965. Tests for trends in location (Default), and
for trends in dispersion (Dispersion) are performed. Trends in location are found.

x = [9.5, 9.875, 9.25, 9.5, 9.375, 9.0, 8.75, 8.625, 8.0, $
8.25, 8.25, 8.375, 8.125, 7.875, 7.5, 7.875, 7.875, $
7.75,7.75, 7.75, 8.0, 7.5,7.5, 7.125, 7.25, 7.25, 7.125, $
IMSL_CSTRENDS IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 855
6.75,6.5, 7.0, 7.0, 6.75, 6.625, 6.625,7.125, 7.75]
k = 2
ids = 0
pstat = IMSL_CSTRENDS(x, Nstat = nstat)
PM, nstat, Title = ' NSTAT'
PM, pstat, Title = ' PSTAT'
pstat = IMSL_CSTRENDS(x, Nstat = nstat, Dispersion = [k, ids])
PM, nstat, Title = ' NSTAT'
PM, pstat, Title = ' PSTAT'

 NSTAT
 0
 17
 1
 18
 0
 12
 0
 12

 PSTAT
 0.999996
 7.24792e-05
 1.00000
 3.81470e-06
 1.00000
 0.000244141
 1.00000
 0.000244141

 NSTAT
 4
 3
 2
 9
 4
 2
 0
 6

 PSTAT
 0.253906
 0.910156
 0.746094
 0.500000
 0.343750
 0.890625
 0.343750
 0.890625
IDL Analyst Reference Guide IMSL_CSTRENDS

856 Chapter 18: Nonparametric Statistics
Version History

6.4 Introduced
IMSL_CSTRENDS IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 857
IMSL_TIE_STATS

The IMSL_TIE_STATS function computes tie statistics for a sample of observations.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_TIE_STATS(x [, /DOUBLE] [, FUZZ=value])

Return Value

One-dimensional array of length 4 containing the tie statistics.

where tj is the number of ties in the j-th group (rank) of ties, and τ is the number of tie
groups in the sample.

Arguments

x

One-dimensional array containing the observations. x must be ordered monotonically
increasing with all missing values removed.

result 0() tj tj 1–()[] 2⁄
j 1=

τ

∑=

result 1() tj tj 1–()[] tj 1+()()12⁄
j 1=

τ
∑=

result 2() tj tj 1–() 2tj 5+()
j 1=

τ
∑=

result 3() tj tj 1–() tj 2–()
j 1=

τ

∑=
IDL Analyst Reference Guide IMSL_TIE_STATS

858 Chapter 18: Nonparametric Statistics
Keywords

DOUBLE

If present and nonzero, double precision is used.

FUZZ

Nonnegative constant used to determine ties. Observations i and j are tied if the
successive differences x(k + 1) – x(k) between observations i and j, inclusive, are all
less than Fuzz. Default: Fuzz = 0.0

Discussion

The IMSL_TIE_STATS function computes tie statistics for a monotonically
increasing sample of observations. “Tie statistics” are statistics that may be used to
correct a continuous distribution theory nonparametric test for tied observations in
the data. Observations i and j are tied if the successive differences x(k + 1) – x(k),
inclusive, are all less than Fuzz. Note that if each of the monotonically increasing
observations is equal to its predecessor plus a constant, if that constant is less than
Fuzz, then all observations are contained in one tie group. For example, if Fuzz =
0.11, then the following observations are all in one tie group.

0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00

Example

We want to compute tie statistics for a sample of length 7.

fuzz = 0.001
x = [1.0, 1.0001, 1.0002, 2.0, 3.0, 3.0, 4.0]
tstat = IMSL_TIE_STATS(x, FUZZ = fuzz)
PRINT, tstat

4.00000 2.50000 84.0000 6.00000

Version History

6.4 Introduced
IMSL_TIE_STATS IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 859
IMSL_KW_TEST

The IMSL_KW_TEST function performs a Kruskal-Wallis test1 for identical
population medians.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_KW_TEST(n, y [, /DOUBLE] [, FUZZ=value])

Return Value

One-dimensional array of length 4 containing the Kruskal-Wallis statistics.

• 0—Kruskal-Wallis H statistic.

• 1—Asymptotic probability of a larger H under the null hypothesis of identical
population medians.

• 2—H corrected for ties.

• 3—Asymptotic probability of a larger H (corrected for ties) under the null
hypothesis of identical populations

Arguments

n

One-dimensional array containing the number of responses for each of the groups.

y

One-dimensional array of length N_ELEMENTS(n) that contains the responses for
each of the groups. y must be sorted by group, with the n(0) observations in group 1
coming first, the n(1) observations in group two coming second, and so on.
IDL Analyst Reference Guide IMSL_KW_TEST

860 Chapter 18: Nonparametric Statistics
Keywords

DOUBLE

If present and nonzero, double precision is used.

FUZZ

Nonnegative constant used to determine ties in y. If (after sorting)

|y(i) – y(i + 1)| is less than or equal to Fuzz, then a tie is counted. Default: Fuzz = 0.0

Discussion

The IMSL_KW_TEST function generalizes the Wilcoxon two-sample test computed
by “IMSL_WILCOXON” on page 839 to more than two populations. It computes a
test statistic for testing that the population distribution functions in each of K
populations are identical. Under appropriate assumptions, this is a nonparametric
analogue of the one-way analysis of variance. Since more than two samples are
involved, the alternative is taken as the analogue of the usual analysis of variance
alternative, namely that the populations are not identical.

The calculations proceed as follows: All observations are ranked regardless of the
population to which they belong. Average ranks are used for tied observations
(observations within Fuzz of each other). Missing observations (observations equal to
NaN, not a number) are not included in the ranking. Let Ri denote the sum of the
ranks in the i-th population. The test statistic H is defined as:

where N is the total of the sample sizes, ni is the number of observations in the i-th
sample, and S2 is computed as the (bias corrected) sample variance of the Ri.

The null hypothesis is rejected when Result(3) (or Result(1)) is less than the
significance level of the test. If the null hypothesis is rejected, then the procedures
given in Conover (1980, page 231) may be used for multiple comparisons. The
IMSL_KW_TEST function computes asymptotic probabilities using the chi-squared
distribution when the number of groups is 6 or greater, and a Beta approximation (see
Wallace 1959) when the number of groups is 5 or less. Tables yielding exact
probabilities in small samples may be obtained from Owen (1962).

H
1

S
2

----- R
2
i

ni
------- N N 1+()2

4
-------------------------–

i 1=

K

∑=
IMSL_KW_TEST IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 861
Example

The following example is taken from Conover (1980, page 231). The data represents
the yields per acre of four different methods for raising corn. Since H = 25.5, the four
methods are clearly different. The warning error is always printed when the Beta
approximation is used, unless printing for warning errors is turned off.

y = [83.0, 91.0, 94.0, 89.0, 89.0, 96.0, 91.0, 92.0, 90.0, $
91.0, 90.0, 81.0, 83.0, 84.0, 83.0, 88.0, 91.0, 89.0, $
84.0, 101.0, 100.0, 91.0, 93.0, 96.0, 95.0, 94.0, 78.0, $
82.0, 81.0, 77.0, 79.0, 81.0, 80.0, 81.0]

n = [9, 10, 7, 8]
fuzz = 0.001
rlabel = ['H (no ties) =', $

'Prob (no ties) =', $
'H (ties) =', $
'Prob (ties) =']

s = IMSL_KW_TEST(n, y, Fuzz = fuzz)
FOR i = 0, 3 DO PM, rlabel(i), s(i), FORMAT = '(A18, F6.2)'

H (no ties) = 25.46
Prob (no ties) = 0.00
H (ties) = 25.63
Prob (ties) = 0.00

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_KW_TEST

862 Chapter 18: Nonparametric Statistics
IMSL_FRIEDMANS_TEST

The IMSL_FRIEDMANS_TEST function performs Friedman’s test for a randomized
complete block design.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FRIEDMANS_TEST(y [, ALPHA=value] [, DIFF=variable]
[, /DOUBLE] [, FUZZ=value] [, STATS=variable] [, SUM_RANK=variable])

Return Value

The Chi-squared approximation of the asymptotic p-value for Friedman’s two-sided
test statistic.

Arguments

y

Two-dimensional array containing the observations. The first row of y contain the
observations on treatments 1, 2, ..., N_ELEMENTS(y(0, *)) in the first block. The
second row of y contain the observations in the second block, etc., and so on.

Keywords

ALPHA

Critical level for multiple comparisons. Alpha should be between 0 and 1 exclusive.
Default: Alpha = 0.05.

DIFF

Named variable into which the minimum absolute difference in two elements of
Sum_Rank to infer at the Alpha level of significance that the medians of the
corresponding treatments are different is stored.
IMSL_FRIEDMANS_TEST IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 863
DOUBLE

If present and nonzero, double precision is used.

FUZZ

Nonnegative constant used to determine ties. In the ordered observations, if |y(i) –y(i
+ 1)| is less than or equal to Fuzz, then y(i) and y(i + 1) are said to be tied. Default:
Fuzz = 0.0.

STATS

Named variable into which the one-dimensional array of length 6 containing the
Friedman statistics below is stored. Probabilities reported are computed under the
appropriate null hypothesis.

• 0—Friedman two-sided test statistic.

• 1—Approximate F value for Stats(0).

• 2—Page test statistic for testing the ordered alternative that the median of
treatment i is less than or equal to the median of treatment i + 1, with strict
inequality holding for some i.

• 3—Asymptotic p-value for Stats(0). Chi-squared approximation.

• 4—Asymptotic p-value for Stats(1). F approximation.

• 5—Asymptotic p-value for Stats(2). Normal approximation.

SUM_RANK

Named variable into which a one-dimensional array of length N_ELEMENTS(x(0,
*)) containing the sum of the ranks of each treatment is stored.

Discussion

The IMSL_FRIEDMANS_TEST function may be used to test the hypothesis of
equality of treatment effects within each block in a randomized block design. No
missing values are allowed. Ties are handled by using the average ranks. The test
statistic is the nonparametric analogue of an analysis of variance F test statistic.
IDL Analyst Reference Guide IMSL_FRIEDMANS_TEST

864 Chapter 18: Nonparametric Statistics
The test proceeds by first ranking the observations within each block. Let A denote
the sum of the squared ranks, i.e., let:

where Rank(Yij) is the rank of the i-th observation within the j-th block, b is the
number of blocks, and k is the number of treatments. Let:

where:

The Friedman test statistic (Stats(0)) is given by:

that, under the null hypothesis, has an approximate chi-squared distribution with k – 1
degrees of freedom. The asymptotic probability of obtaining a larger chi-squared
random variable is returned in Stats(3).

If the F distribution is used in place of the chi-squared distribution, then the usual one
way analysis of variance F-statistic computed on the ranks is used. This statistic,
reported in Stats(1), is given by:

and asymptotically follows an F distribution with (k – 1) and (b –1)(k – 1) degrees of
freedom under the null hypothesis. Stats(4) is the asymptotic probability of obtaining
a larger F random variable. (If A = B, Stats(0) and Stats(1) are set to machine infinity,
and the significance levels are reported as k!/(k!)b, unless this computation would
cause underflow, in which case the significance levels are reported as zero.) Iman and
Davenport (1980) discuss the relative advantages of the chi-squared and F
approximations. In general, the F approximation is considered best.

The Friedman T statistic is related both to the Kendall coefficient of concordance and
to the Spearman rank correlation coefficient. See Conover (1980) for a discussion of
the relationships.

A Rank Yij()2

j 1=

b

∑
i 1=

k

∑=

B
b

Ri
i

k
=

=
∑

1 2

1

Ri Rank Yij()
j 1=

b

∑=

T k 1–() bB b
2
k k 1+()2

– 4⁄()
A bk k 1+()2

– 4⁄
---=

F b 1–()T
b k 1–() T–
-----------------------------=
IMSL_FRIEDMANS_TEST IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 865
If, at the α = Alpha level of significance, the Friedman test results in rejection of the
null hypothesis, then an asymptotic test that treatments i and j are different is given
by: reject H0 if |Ri − Rj| > D, where:

where t has (b – 1)(k – 1) degrees of freedom. Page’s statistic (Stats(2)) is used to test
the same null hypothesis as the Friedman test but is sensitive to a monotonic
increasing alternative. The Page test statistic is given by

It is largest (and thus most likely to reject) when the Ri are monotonically increasing.

Assumptions

The assumptions in the Friedman test are as follows:

1. The k-vectors of responses within each of the b blocks are mutually
independent (i.e., the results within one block have no effect on the results
within another block).

2. Within each block, the observations may be ranked.

The hypothesis tested is that each ranking of random variables within each block is
equally likely. The alternative is that at least one treatment tends to have larger values
than one or more of the other treatments. The Friedman test is a test for the equality
of treatment means or medians.

Example

The following example is taken from Bradley (1968), page 127, and tests the
hypothesis that 4 drugs have the same effects upon a person’s visual acuity. Five
subjects were used.

y = TRANSPOSE([[0.39, 0.55, 0.33, 0.41], $
[0.21, 0.28, 0.19, 0.16], [0.73, 0.69, 0.64, 0.62], $
[0.41, 0.57, 0.28, 0.35], [0.65, 0.57, 0.53, 0.60]])

fuzz = 0.001
p = IMSL_FRIEDMANS_TEST(y, Fuzz = fuzz, Diff = diff, $

Sum_Rank = sr, Stats = stat)
PM, stat, Title = 'STATS'
PM, diff, Title = 'DIFF'
PM, sr, Title = 'Sum_Rank'

STATS

D t1 α 2⁄– 2b A B–() b 1–()k 1–()⁄=

Q jRi
i

k
=

=
∑

1

IDL Analyst Reference Guide IMSL_FRIEDMANS_TEST

866 Chapter 18: Nonparametric Statistics
 8.28000
 4.92857
 111.000
 0.0405658
 0.0185906
 0.984954

DIFF
 6.65638

Sum_Rank
 16.0000
 17.0000
 7.00000
 10.0000

The Friedman null hypothesis is rejected at the α = 0.05 while the Page null
hypothesis is not. (A Page test with a monotonic decreasing alternative would be
rejected, however.) Using Sum_Rank and Diff, one can conclude that treatment 3 is
different from treatments 1 and 2, and that treatment 4 is different from treatment 2,
all at the α= 0.05 level of significance.

Version History

6.4 Introduced
IMSL_FRIEDMANS_TEST IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 867
IMSL_COCHRANQ

The IMSL_COCHRANQ function performs a Cochran Q test for related
observations.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_COCHRANQ(x [, /DOUBLE] [, Q=variable])

Return Value

The p-value for the Cochran Q statistic.

Arguments

X

Two-dimensional array containing the matrix of dichotomized data.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Q

Named variable into which the Cochran’s Q statistic is stored.

Discussion

The IMSL_COCHRANQ function computes the Cochran Q test statistic that may be
used to determine whether or not M matched sets of responses differ significantly
among themselves. The data may be thought of as arising out of a randomized block
design in which the outcome variable must be success or failure, coded as 1.0 and 0.0,
respectively. Within each block, a multivariate vector of 1’s of 0’s is observed. The
IDL Analyst Reference Guide IMSL_COCHRANQ

868 Chapter 18: Nonparametric Statistics
hypothesis is that the probability of success within a block does not depend upon the
treatment.

Assumptions

1. The blocks are a random sample from the population of all possible blocks.

2. The outcome of each treatment is dichotomous.

Hypothesis

The hypothesis being tested may be stated in at least two ways.

1. H0 : All treatments have the same effect.
H1 : The treatments do not all have the same effect.

2. Let pij denote the probability of outcome 1.0 in block i, treatment j.
H0:pi1 = pi2 = ... = pic for each i.
H1:pij ≠ pik for some i, and some j ≠ k.
where c (equal to N_ELEMENTS(x(0, *))) is the number of treatments.

The null hypothesis is rejected if Cochrans’s Q statistic is too large.

Remarks

1. The input data must consist of zeros and ones only. For example, let
n_variables = N_ELEMENTS(x(0, *)) and n_observations =
N_ELEMENTS(x(*, 0)), then the data may be pass-fail information on
n_variables questions asked of n_observations people or the test responses of
n_observations individuals to n_variables different conditions.

2. The resulting statistic is distributed approximately as chi-squared with
n_variables − 1 degrees of freedom if n_observations is not too small.
n_observations greater than or equal to 5 x n_variables is a conservative
recommendation.

Example

The following example is taken from Siegal (1956, p. 164). It measures the responses
of 18 women to 3 types of interviews.

x = TRANSPOSE([[0.0, 0.0, 0.0], [1.0, 1.0, 0.0], $
[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], $
[1.0, 0.0, 0.0], [1.0, 1.0, 0.0], $
[1.0, 1.0, 0.0], [0.0, 1.0, 0.0], $
[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], $
[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], $
IMSL_COCHRANQ IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 869
[1.0, 1.0, 0.0], [1.0, 1.0, 0.0], $
[1.0, 1.0, 0.0], [1.0, 1.0, 1.0], $
[1.0, 1.0, 0.0], [1.0, 1.0, 0.0]])

pq = IMSL_COCHRANQ(x)
PRINT, 'pq =', pq

pq = 0.000240266

Errors

Warning Errors

STAT_ALL_0_OR_1—“x” consists of either all ones or all zeros. “q” is set to NaN
(not a number). “Result” is set to 1.0.

Fatal Errors

STAT_INVALID_X_VALUES—“x(#, #)” = #. “x” must consist of zeros and ones
only.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_COCHRANQ

870 Chapter 18: Nonparametric Statistics
IMSL_KTRENDS

The IMSL_KTRENDS function performs a k-sample trends test against ordered
alternatives.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_KTRENDS(n, y [, /DOUBLE])

Return Value

One-dimensional array of length 17 containing the test results.

• 0—Test statistic (ties are randomized).

• 1—Conservative test statistic with ties counted in favor of the null hypothesis.

• 2—p-value associated with Result(0).

• 3—p-value associated with Result(1).

• 4—Continuity corrected Result(2).

• 5—Continuity corrected Result(3).

• 6—Expected mean of the statistic.

• 7—Expected kurtosis of the statistic. (The expected skewness is zero.)

• 8—Total sample size.

• 9—Coefficient of rank correlation based upon Result(0).

• 10—Coefficient of rank correlation based upon Result(1).

• 11—Total number of ties between samples.

• 12—The t-statistic associated with Result(2).

• 13—The t-statistic associated with Result(3).

• 14—The t-statistic associated with Result(4).

• 15—The t-statistic associated with Result(5).
IMSL_KTRENDS IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 871
• 16—Degrees of freedom for each t-statistic.

Arguments

n

One-dimensional array containing the number of responses for each of the groups.

y

One-dimensional array that contains the responses for each of the groups. y must be
sorted by group, with the n(0) observations in group 1 coming first, the n(1)
observations in group two coming second, and so on.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The IMSL_KTRENDS function performs a k-sample trends test against ordered
alternatives. The alternative to the null hypothesis of equality is that F1(X) < F2(X) <
... Fk(X), where F1, F2, etc., are cumulative distribution functions, and the operator <
implies that the less than relationship holds for all values of x. While the trends test
used in IMSL_KTRENDS requires that the background populations be continuous,
ties occurring within a sample have no effect on the test statistic or associated
probabilities. Ties between samples are important, however. Two methods for
handling ties between samples are used. These are:

1. Ties are randomly split (Result(0)).

2. Ties are counted in a manner that is unfavorable to the alternative hypothesis
(Result(1)).

Computational Procedure

Consider the matrices:

M
km

m
km

ij
()

2 if Xki Xmj<

0 otherwise
 = =
IDL Analyst Reference Guide IMSL_KTRENDS

872 Chapter 18: Nonparametric Statistics
where Xki is the i-th observation in the k-th population, Xmj is the j-th observation in
the m-th population, and each matrix Mkm is nk by nm where ni = n(i). Let Skm denote
the sum of all elements in Mkm. Then, Result(1) is computed as the sum over all
elements in Skm, minus the expected value of this sum (computed as:

when there are no ties and the distributions in all populations are equal). In Result(0),
ties are broken randomly, and the element in the summation is taken as 2.0 or 0.0
depending upon the result of breaking the tie.

Result(2) and Result(3) are computed using the t distribution. The probabilities
reported are asymptotic approximations based upon the t statistics in Result(12) and
Result(13), which are computed as in Jonckheere (1954, page 141).

Similarly, Result(4) and Result(5) give the probabilities for Result(14) and Result(15),
the continuity corrected versions of Result(2) and Result(3). The degrees of freedom
for each t statistic (Result(16)) are computed so as to make the t distribution selected
as close as possible to the actual distribution of the statistic (see Jonckheere 1954,
page 141).

Result(6), the variance of the test statistic Result(0), and Result(7), the kurtosis of the
test statistic, are computed as in Jonckheere (1954, page 138). The coefficients of
rank correlation in Result(8) and Result(9) reduce to the Kendall τ statistic when there
are just two groups.

Exact probabilities in small samples can be obtained from tables in Jonckheere
(1954). Note, however, that the t approximation appears to be a good one.

Assumptions

1. The Xmi for each sample are independently and identically distributed
according to a single continuous distribution.

2. The samples are independent.

Hypothesis tests

H0 : F1(X) ≥ F2(X) ≥ ... ≥ Fk(X)
H1 : F1(X) < F2(X) < ... < Fk(X)
Reject if Result(2) (or Result(3), or Result(4) or Result(5), depending upon the
method used) is too large.

n nk mk m<∑
IMSL_KTRENDS IDL Analyst Reference Guide

Chapter 18: Nonparametric Statistics 873
Example

The following example is taken from Jonckheere (1954, page 135). It involves four
observations in four independent samples.

y = [19.0, 20.0, 60.0, 130.0, 21.0, 61.0, 80.0, 129.0, $
40.0, 99.0, 100.0, 149.0, 49.0, 110.0, 151.0, 160.0]

n = [4, 4, 4, 4]
rlabel = ['stat(0) - Test Statistic (random)', $

'stat(1) - Test Statistic (null hypothesis)', $
'stat(2) - p-value for stat(0)', $
'stat(3) - p-value for stat(1)', $
'stat(4) - Continuity corrected for stat(2)', $
'stat(5) - Continuity corrected for stat(3)', $
'stat(6) - Expected mean', $
'stat(7) - Expected kurtosis', $
'stat(8) - Total sample size', $
'stat(9) - Rank corr. coef. based on stat(0) ...', $
'stat(10)- Rank corr. coef. based on stat(1) ...', $
'stat(11)- Total number of ties', $
'stat(12)- t-statistic associated w/stat(2)', $
'stat(13)- t-statistic associated w/stat(3)', $
'stat(14)- t-statistic associated w/stat(4)', $
'stat(15)- t-statistic associated w/stat(5)', $
'stat(16)- Degrees of freedom']

s = IMSL_KTRENDS(n, y)
FOR i = 0, 16 DO PM, rlabel(i), s(i), FORMAT = '(A45, F10.5)'

stat(0) - Test Statistic (random) 46.00000
stat(1) - Test Statistic (null hypothesis) .. 46.00000
stat(2) - p-value for stat(0) 0.01483
stat(3) - p-value for stat(1) 0.01483
stat(4) - Continuity corrected for stat(2) .. 0.01683
stat(5) - Continuity corrected for stat(3) .. 0.01683
stat(6) - Expected mean 458.66666
stat(7) - Expected kurtosis -0.15365
stat(8) - Total sample size 16.00000
stat(9) - Rank corr. coef. based on stat(0) . 0.47917
stat(10)- Rank corr. coef. based on stat(1) . 0.47917
stat(11)- Total number of ties 0.00000
stat(12)- t-statistic associated w/stat(2) .. 2.26435
stat(13)- t-statistic associated w/stat(3) .. 2.26435
stat(14)- t-statistic associated w/stat(4) .. 2.20838
stat(15)- t-statistic associated w/stat(5) .. 2.20838
stat(16)- Degrees of freedom 36.04963
IDL Analyst Reference Guide IMSL_KTRENDS

874 Chapter 18: Nonparametric Statistics
Version History

6.4 Introduced
IMSL_KTRENDS IDL Analyst Reference Guide

Chapter 19

Goodness of Fit
This section contains the following topics:
Overview: Goodness of Fit 876 Goodness of Fit Routines 877
IDL Analyst Reference Guide 875

876 Chapter 19: Goodness of Fit
Overview: Goodness of Fit

The routines in this chapter are used to test for goodness of fit and randomness. The
goodness-of-fit tests are described in Conover (1980). There are two goodness-of-fit
tests for general distributions, a Kolmogorov-Smirnov test and a chi-squared test. You
will supply the hypothesized cumulative distribution function for these two tests.
There are three routines that can be used to test specifically for the normal or
exponential distributions.

The tests for randomness are often used to evaluate the adequacy of pseudorandom
number generators. These tests are discussed in Knuth (1981).

The Kolmogorov-Smirnov routines in this chapter compute exact probabilities in
small to moderate sample sizes. The chi-squared goodness-of-fit test may be used
with discrete as well as continuous distributions.

The Kolmogorov-Smirnov and chi-squared goodness-of-fit test routines allow for
missing values (NaN, not a number) in the input data. The routines that test for
randomness do not allow for missing values.
Overview: Goodness of Fit IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 877
Goodness of Fit Routines

General Goodness of Fit Tests

IMSL_CHISQTEST—Chi-squared goodness of fit test.

IMSL_NORMALITY—Shapiro-Wilk W test for normality.

IMSL_KOLMOGOROV1—One-sample continuos data Kolmogorov-Smirnov.

IMSL_KOLMOGOROV2—Two-sample continuos data Kolmogorov-Smirnov.

IMSL_MVAR_NORMALITY—Mardia’s test for multivariate normality.

Tests for Randomness

IMSL_RANDOMNESS_TEST—Runs test, Paris-serial test, d2 test or triplets tests.
IDL Analyst Reference Guide Goodness of Fit Routines

878 Chapter 19: Goodness of Fit
IMSL_CHISQTEST

The IMSL_CHISQTEST function performs a chi-squared goodness-of-fit test.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CHISQTEST(f, n_categories, x [, CELL_COUNTS=variable]
[, CELL_EXPECTED=variable] [, CELL_CHISQ=variable]
[, CHI_SQUARED=variable] [, CUTPOINTS=variable] [, DF=variable]
[, /DOUBLE] [, /EQUAL_CUTPOINTS] [, FREQUENCIES=variable]
[, LOWER_BOUND=value] [, N_PARAMS_ESTIMATED=value]
[, UPPER_BOUND=value] [, USED_CUTPOINTS=variable])

Return Value

The p-value for the goodness-of-fit chi-squared statistic.

Arguments

f

Scalar string specifying a user-supplied function. Function f accepts one scalar
parameter and returns the hypothesized, cumulative distribution function at that point.

n_categories

Number of cells into which the observations are to be tallied.

x

One-dimensional array containing the vector of data elements for this test.
IMSL_CHISQTEST IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 879
Keywords

CELL_COUNTS

Named variable into which the cell counts are stored. The cell counts are the observed
frequencies in each of the n_categories cells.

CELL_EXPECTED

Named variable into which the cell expected values are stored. The expected value of
a cell is the expected count in the cell given that the hypothesized distribution is
correct.

CELL_CHISQ

Named variable into which an array of length n_categories containing the cell
contributions to chi-squared are stored.

CHI_SQUARED

Named variable into which the chi-squared test statistic is stored.

CUTPOINTS

Specifies the named variable containing user-defined cutpoints to be used by
IMSL_CHISQTEST. Keywords Cutpoints and Equal_Cutpoints cannot be used
together.

DF

Named variable into which the degrees of freedom for the chi-squared goodness-of-
fit test are stored.

DOUBLE

If present and nonzero, double precision is used.

EQUAL_CUTPOINTS

If present and nonzero, equal probability cutpoints are used. Keywords
Equal_Cutpoints and Cutpoints cannot be used together.
IDL Analyst Reference Guide IMSL_CHISQTEST

880 Chapter 19: Goodness of Fit
FREQUENCIES

Named variable into which the array containing the vector frequencies for the
observations stored in x is stored.

LOWER_BOUND

Lower bound of the range of the distribution. If Lower Bound = Upper Bound, a
range on the whole real line is used (the default). If the lower and upper endpoints are
different, points outside of the range of these bounds are ignored. Distributions
conditional on a range can be specified when Lower_Bound and Upper_Bound are
used. If Lower_Bound is specified, then Upper_Bound also must be specified. By
convention, Lower_Bound is excluded from the first interval, but Upper_Bound is
included in the last interval.

N_PARAMS_ESTIMATED

Number of parameters estimated in computing the cumulative distribution function.

UPPER_BOUND

Upper bound of the range of the distribution. If Lower Bound = Upper Bound, a
range on the whole real line is used (the default). If the lower and upper endpoints are
different, points outside of the range of these bounds are ignored. Distributions
conditional on a range can be specified when Lower_Bound and Upper_Bound are
used. If Upper_Bound is specified, then Lower_Bound also must be specified. By
convention, Lower_Bound is excluded from the first interval, but Upper_Bound is
included in the last interval.

USED_CUTPOINTS

Specifies the named variable into which the cutpoints to be used by
IMSL_CHISQTEST are stored.

Discussion

The IMSL_CHISQTEST function performs a chi-squared goodness-of-fit test that a
random sample of observations is distributed according to a specified theoretical
cumulative distribution. The theoretical distribution, which may be continuous,
discrete, or a mixture of discrete and continuous distributions, is specified by defined
function f. Because you are allowed to give a range for the observations, a test that is
conditional upon the specified range is performed.
IMSL_CHISQTEST IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 881
Parameter n_categories gives the number of intervals into which the observations are
to be divided. By default, equi-probable intervals are computed by
IMSL_CHISQTEST, but intervals that are not equi-probable can be specified
(through the use of keyword Cutpoints).

Regardless of the method used to obtain the cutpoints, the intervals are such that the
lower endpoint is not included in the interval, while the upper endpoint is always
included. If the cumulative distribution function has discrete elements, then user-
provided cutpoints should always be used since IMSL_CHISQTEST cannot
determine the discrete elements in discrete distributions.

By default, the lower and upper endpoints of the first and last intervals are –infinity
and +infinity. The endpoints can be specified by using the keywords Lower_Bound
and Upper_Bound.

A tally of counts is maintained for the observations in x as follows:

• If the cutpoints are specified, the tally is made in the interval to which xi
belongs using the endpoints specified.

• If the cutpoints are determined by IMSL_CHISQTEST, then the cumulative
probability at xi, F(xi), is computed by the function f.

The tally for xi is made in interval number:

where m = n categories and:

is the function that takes the greatest integer that is no larger than the parameter of the
function. Thus, if the computer time required to calculate the cumulative distribution
function is large, user-specified cutpoints may be preferred in order to reduce the total
computing time.

If the expected count in any cell is less than 1, then a rule of thumb is that the chi-
squared approximation may be suspect. A warning message to this effect is issued in
this case, as well as when an expected value is less than 5.

Programming Notes

You must supply a function f with calling sequence F(y) that returns the value of the
cumulative distribution function at any point y in the (optionally) specified range.

Many of the cumulative distribution functions in this reference manual can be used
for f. It is, however, necessary to write a user-defined IDL Analyst function that calls
the CDF, and then pass the name of this user-defined function for f.

mF xi() 1+

⋅

IDL Analyst Reference Guide IMSL_CHISQTEST

882 Chapter 19: Goodness of Fit
Example

This example illustrates the use of IMSL_CHISQTEST on a randomly generated
sample from the normal distribution. One-thousand randomly generated observations
are tallied into 10 equi-probable intervals. In this example, the null hypothesis is not
rejected.

.RUN
; Define the hypothesized, cumulative distribution function.
FUNCTION user_cdf, k

RETURN, IMSL_NORMALCDF(k)
END

IMSL_RANDOMOPT, Set = 123457
x = IMSL_RANDOM(1000, /Normal)
; Generate normal deviates.
p_value = IMSL_CHISQTEST('user_cdf', 10, x)
; Perform chi-squared test.
PM, p_value

; Output the results.
0.154603

Errors

Warning Errors

STAT_EXPECTED_VAL_LESS_THAN_1—An expected value is less than 1.

STAT_EXPECTED_VAL_LESS_THAN_5—An expected value is less than 5.

Fatal Errors

STAT_ALL_OBSERVATIONS_MISSING—All observations contain missing values.

STAT_INCORRECT_CDF_1—Function f is not a cumulative distribution function. The
value at the lower bound must be nonnegative, and the value at the upper bound must
not be greater than 1.

STAT_INCORRECT_CDF_2—Function f is not a cumulative distribution function. The
probability of the range of the distribution is not positive.

STAT_INCORRECT_CDF_3—Function f is not a cumulative distribution function. Its
evaluation at an element in x is inconsistent with either the evaluation at the lower or
upper bound.
IMSL_CHISQTEST IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 883
STAT_INCORRECT_CDF_4—Function f is not a cumulative distribution function. Its
evaluation at a cutpoint is inconsistent with either the evaluation at the lower or upper
bound.

STAT_INCORRECT_CDF_5—An error has occurred when inverting the cumulative
distribution function. This function must be continuous and defined over the whole
real line.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_CHISQTEST

884 Chapter 19: Goodness of Fit
IMSL_NORMALITY

The IMSL_NORMALITY function performs a test for normality.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NORMALITY(x [, CHISQ=variable] [, DF=variable] [, /DOUBLE]
[, LILLIEFORS=variable] [, NCAT=value] [, SHAPIRO_WILK=variable])

Return Value

The p-value for the Shapiro-Wilk W test or the Lilliefors test for normality. The
Shapiro-Wilk test is the default. If the Lilliefors test is used, probabilities less than
0.01 are reported as 0.01, and probabilities greater than 0.10 for the normal
distribution are reported as 0.5; otherwise, an approximate probability is computed.

Arguments

x

One-dimensional array containing the observations.

Keywords

CHISQ

Specifies a variable into which the chi-square statistic is stored. Keywords Ncat, Df,
and Chisq must be used together and indicate that the chi-squared goodness-of-fit test
is to be performed.

DF

Specifies a variable into which the degrees of freedom for the test are
stored.Keywords Ncat, Df and Chisq must be used together and indicate that the chi-
squared goodness-of-fit test is to be performed.
IMSL_NORMALITY IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 885
DOUBLE

If present and nonzero, double precision is used.

LILLIEFORS

Named variable into which the maximum absolute difference between the empirical
and the theoretical distributions is stored. If Lilliefors is present, then Lilliefors test is
performed.

NCAT

An integer specifying number of cells into which the observations are to be tallied.
Keywords Ncat, Df, and Chisq must be used together and indicate that the chi-
squared goodness-of-fit test is to be performed.

SHAPIRO_WILK

Named variable into which the Shapiro-Wilk W statistic is stored. If Shapiro_Wilk is
present, then the Shapiro-Wilk W test is performed. Default: Shapiro-Wilk W test is
performed

Discussion

Three methods are provided for testing normality: the Chi-Squared test, the Shapiro-
Wilk W test, and the Lilliefors test.

Chi-Squared Test

This function computes the chi-squared statistic, its p-value, and the degrees of
freedom of the test. Keyword Ncat finds the number of intervals into which the
observations are to be divided. The intervals are equi-probable except for the first and
last interval which are infinite in length. If more flexibility is desired for the
specification of intervals, the same test can be performed with a call to
IMSL_CHISQTEST using the optional arguments described for that function.

Shapiro-Wilk W Test

D’Agostino and Stevens (1986, p. 406) refer to the Shapiro-Wilk W test as the best
omnibus tests of normality. The function is based on the approximations and code
IDL Analyst Reference Guide IMSL_NORMALITY

886 Chapter 19: Goodness of Fit
given by Royston (1982a, b, c). It can be used in samples as large as 2,000 or as small
as 3. In the Shapiro and Wilk test, W is given by:

where x(i) is the i-th smallest order statistic and:

is the sample mean. Royston (1982) gives approximations and tabled values that can
be used to compute the coefficients ai, i = 1, ..., n, and obtains the significance level
of the W statistic.

Lilliefors Test

This function computes Lilliefors test and its p-values for a normal distribution in
which both the mean and variance are estimated. The one-sample, two-sided
Kolmogorov-Smirnov statistic D is first computed. The p-values are then computed
using an analytic approximation given by Dallal and Wilkinson (1986). Because
Dallal and Wilkinson give approximations in the range (0.01, 0.10) if the computed
probability of a greater D is less than 0.01, a note is issued and the p-value is set to
0.50. Note that because parameters are estimated, p-values in Lilliefors test are not
the same as in the Kolmogorov-Smirnov Test.

Observations should not be tied. If tied observations are found, an informational
message is printed. A general reference for the Lilliefors test is Conover (1980). The
original reference for the test for normality is Lilliefors (1967).

Examples

Example 1

The following example is taken from Conover (1980, pp. 195, 364). The data consists
of 50 two-digit numbers taken from a telephone book. The W test fails to reject the
null hypothesis of normality at the .05 level of significance.

x = [23, 36, 54, 61, 73, 23, 37, 54, 61, 73, $
24, 40, 56, 62, 74, 27, 42, 57, 63, 75, $
29, 43, 57, 64, 77, 31, 43, 58, 65, 81, $
32, 44, 58, 66, 87, 33, 45, 58, 68, 89, $
33, 48, 58, 68, 93, 35, 48, 59, 70, 97]

p = IMSL_NORMALITY(x)
PRINT, 'P-Value = ', p

P-Value = 0.230858

W aix i()∑

 2

xi x–()2
∑

⁄=

x

IMSL_NORMALITY IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 887
Example 2

The following example uses the same data as the previous example. Here, the
Shapiro-Wilk W statistic is output.

p = IMSL_NORMALITY(x, SHAPIRO_WILK = sw)
PRINT, 'p-Value = ', p
PRINT, 'Shapiro Wilk W Statistic = ', sw

p-Value = 0.230858
Shapiro Wilk W Statistic = 0.964217

Errors

Warning Errors

STAT_ALL_OBS_TIED—All observations in x are tied.

Fatal Errors

STAT_NEED_AT_LEAST_5—All but # elements of x are missing. At least five
nonmissing observations are necessary to continue.

STAT_NEG_IN_EXPONENTIAL—In testing the exponential distribution, an invalid
element in x is found (x[] = #). Negative values are not possible in exponential
distributions.

STAT_NO_VARIATION_INPUT—There is no variation in the input data. All
nonmissing observations are tied.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_NORMALITY

888 Chapter 19: Goodness of Fit
IMSL_KOLMOGOROV1

The IMSL_KOLMOGOROV1 function performs a Kolmogorov-Smirnov one-
sample test for continuous distributions.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_KOLMOGOROV1(f, x [, DIFFERENCES=variable] [, /DOUBLE]
[, NMISSING=variable])

Return Value

One-dimensional array of length 3 containing Z, p1, and p2 .

Arguments

f

Scalar string specifying a user-supplied function to compute the cumulative
distribution function (CDF) at a given value. Parameter f accepts the following
parameter and returns the computed function value at this point:

• y—Point at which the function is to be evaluated.

• x—One-dimensional array containing the observations.

Keywords

DIFFERENCES

Named variable into which an array containing Dn , Dn
+, Dn

- is stored.

DOUBLE

If present and nonzero, double precision is used.
IMSL_KOLMOGOROV1 IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 889
NMISSING

Named variable into which the number of missing values is stored.

Discussion

The IMSL_KOLMOGOROV1 function performs a Kolmogorov-Smirnov goodness-
of-fit test in one sample. The hypotheses tested follow:

where F is the cumulative distribution function (CDF) of the random variable, and the
theoretical CDF, F* , is specified via the supplied function f. Let n =
N_ELEMENTS(x) − Nmissing. The test statistics for both one-sided alternatives:

and:

and the two-sided (Dn = Differences(0)) alternative are computed as well as an
asymptotic z-score (Result(0)) and p-values associated with the one-sided (Result(1))
and two-sided (Result(2)) hypotheses. For n > 80, asymptotic p-values are used (see
Gibbons 1971). For n ≤ 80, exact one-sided p-values are computed according to a
method given by Conover (1980, page 350). An approximate two-sided test p-value is
obtained as twice the one-sided p-value. The approximation is very close for one-
sided p-values less than 0.10 and becomes very bad as the one-sided p-values get
larger.

Programming Notes

1. The theoretical CDF is assumed to be continuous. If the CDF is not
continuous, the statistics:

will not be computed correctly.

2. Estimation of parameters in the theoretical CDF from the sample data will tend
to make the p-values associated with the test statistics too liberal. The
empirical CDF will tend to be closer to the theoretical CDF than it should be.

• = ≠
• ≥ <
• ≤ >

∗ ∗

∗ ∗

∗ ∗

H F x F x H F x F x
H F x F x H F x F x
H F x F x H F x F x

0 1

0 1

0 1

: () () : () ()
: () () : () ()
: () () : () ()

D Differencn es+ = ()1

D Differencesn
− = ()2

Dn
∗

IDL Analyst Reference Guide IMSL_KOLMOGOROV1

890 Chapter 19: Goodness of Fit
3. No attempt is made to check that all points in the sample are in the support of
the theoretical CDF. If all sample points are not in the support of the CDF, the
null hypothesis must be rejected.

Example

In this example, a random sample of size 100 is generated via routine
IMSL_RANDOM for the uniform (0, 1) distribution. We want to test the null
hypothesis that the CDF is the standard normal distribution with a mean of 0.5 and a
variance equal to the uniform (0, 1) variance (1/12).

.RUN
FUNCTION l_Cdf, x

mean = 0.5
std = 0.2886751
z = (x - mean)/std
val = IMSL_NORMALCDF(z)
RETURN, val

END

IMSL_RANDOMOPT, set = 123457
x = IMSL_RANDOM(100, /UNIFORM)
stats = IMSL_KOLMOGOROV1('l_cdf', x, DIFFERENCES = d, $

NMISSING = nm)
PRINT, 'D =', d(0)
PRINT, 'D+ =', d(1)
PRINT, 'D- =', d(2)
PRINT, 'Z =', stats(0)
PRINT, 'Prob greater D one sided =', stats(1)

D = 0.147083
D+ = 0.0809559
D- = 0.147083
Z = 1.47083
Prob greater D one sided = 0.0132111

Version History

6.4 Introduced
IMSL_KOLMOGOROV1 IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 891
IMSL_KOLMOGOROV2

The IMSL_KOLMOGOROV2 function performs a Kolmogorov-Smirnov two-
sample test.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = KOLMORGOROV2(x, y [, DIFFERENCES=variable] [, /DOUBLE]
[, NMISSINGX=variable] [, NMISSINGY=variable])

Return Value

One-dimensional array of length 3 containing Z, p1, and p2 .

Arguments

x

One-dimensional array containing the observations from sample one.

y

One-dimensional array containing the observations from sample two.

Keywords

DIFFERENCES

Named variable into which a one-dimensional array containing Dn , Dn
+, Dn

- is
stored.

DOUBLE

If present and nonzero, double precision is used.

NMISSINGX

Named variable into which the number of missing values in the x sample is stored.
IDL Analyst Reference Guide IMSL_KOLMOGOROV2

892 Chapter 19: Goodness of Fit
NMISSINGY

Named variable into which the number of missing values in the y sample is stored.

Discussion

The IMSL_KOLMOGOROV2 function computes Kolmogorov-Smirnov two-sample
test statistics for testing that two continuous cumulative distribution functions
(CDF’s) are identical based upon two random samples. One- or two-sided alternatives
are allowed. If n_observations_x = N_ELEMENTS(x) and n_observations_y =
N_ELEMENTS(y), then the exact p-values are computed for the two-sided test when
n_observations_x * n_observations_y is less than 104.

Let Fn(x) denote the empirical CDF in the X sample, let Gm(y) denote the empirical
CDF in the Y sample, where n = n_observations_x − Nmissingx and m =
n_observations_y − Nmissingy, and let the corresponding population distribution
functions be denoted by F(x) and G(y), respectively. Then, the hypotheses tested by
IMSL_KOLMOGOROV2 are as follows:

The test statistics are given as follows:

Asymptotically, the distribution of the statistic

(returned in Result (0)) converges to a distribution given by Smirnov (1939).

Exact probabilities for the two-sided test are computed when m * n is less than or
equal to 104, according to an algorithm given by Kim and Jennrich (1973;). When m
* n is greater than 104, the very good approximations given by Kim and Jennrich are
used to obtain the two-sided p-values. The one-sided probability is taken as one half
the two-sided probability. This is a very good approximation when the p-value is
small (say, less than 0.10) and not very good for large p-values.

• = ≠
• ≤ >
• ≥ <

H F x G x H F x G x
H F x G x H F x G x
H F x G x H F x G x

0 1

0 1

0 1

: () () : () ()
: () () : () ()
: () () : () ()

Dmn max D
+
mn D

–
mn(,)= Differences 0()()

D
+
mn maxx Fn x() Gm x()–()= Differences 1()()

D
–
mn maxx Gm x() Fn x()–()= Differences 2()()

Z D m n m nmn= + ∗() / ()
IMSL_KOLMOGOROV2 IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 893
Example

The following example illustrates the IMSL_KOLMOGOROV2 routine with two
randomly generated samples from a uniform(0,1) distribution. Since the two
theoretical distributions are identical, we would not expect to reject the null
hypothesis.

IMSL_RANDOMOPT, set = 123457
x = IMSL_RANDOM(100, /Uniform)
y = IMSL_RANDOM(60, /Uniform)
stats = IMSL_KOLMOGOROV2(x, y, DIFFERENCES = d, $

NMISSINGX = nmx, NMISSINGY = nmy)
PRINT, 'D =', d(0)
PRINT, 'D+ =', d(1)
PRINT, 'D- =', d(2)
PRINT, 'Z =', stats(0)
PRINT, 'Prob greater D one sided =', stats(1)
PRINT, 'Prob greater D two sided =', stats(2)
PRINT, 'Missing X =', nmx
PRINT, 'Missing Y =', nmy

D = 0.180000
D+ = 0.180000
D- = 0.0100001
Z = 1.10227
Prob greater D one sided = 0.0720105
Prob greater D two sided = 0.144021
Missing X = 0
Missing Y = 0

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_KOLMOGOROV2

894 Chapter 19: Goodness of Fit
IMSL_MVAR_NORMALITY

The IMSL_MVAR_NORMALITY function computes Mardia’s multivariate
measures of skewness and kurtosis and tests for multivariate normality.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_MVAR_NORMALITY(x [, /DOUBLE] [, FREQUENCIES=array]
[, MEANS=variable] [, NMISSING=variable] [, R_MATRIX=variable]
[, SUM_FREQS=variable] [, SUM_WEIGHTS=variable] [, WEIGHTS=array])

Return Value

One-dimensional array of size 13 containing output statistics as shown in Table 19-1.

I result (I)

0 estimated skewness

1 expected skewness assuming a multivariate normal distribution

2 asymptotic chi-squared statistic assuming a multivariate normal
distribution

3 probability of a greater chi-squared

4 Mardia and Foster's standard normal score for skewness

5 estimated kurtosis

6 expected kurtosis assuming a multivariate normal distribution

7 asymptotic standard error of the estimated kurtosis

8 standard normal score obtained from Result(5) through Result(7)

9 p-value corresponding to Result(8)

10 Mardia and Foster's standard normal score for kurtosis

Table 19-1: Output Statistics
IMSL_MVAR_NORMALITY IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 895
Arguments

x

2D array containing data in which N_ELEMENTS(x(*,0)) is the number of
observations (numbers of rows of data) in x and N_ELEMENTS(x(0,*)) is the
dimensionality of the multivariate space for which the skewness and kurtosis are to be
computed (number of variables in x).

Keywords

DOUBLE

If present and nonzero, double precision is used.

FREQUENCIES

One-dimensional array containing the frequencies. Frequencies must be an integer
value. Default assumes all Frequencies equal one.

MEANS

Named variable into which a one-dimensional array of length N_ELEMENTS(x(0,*))
containing the sample means is stored.

NMISSING

Named variable into which the number of rows of data in x containing any missing
values (NaN) is stored.

R_MATRIX

Named variable into which an upper triangular array containing the Cholesky RTR
factorization of the covariance matrix is stored.

11 Mardia's SW statistic based upon Result(4) and Result(10)

12 p-value for Result(11)

I result (I)

Table 19-1: Output Statistics (Continued)
IDL Analyst Reference Guide IMSL_MVAR_NORMALITY

896 Chapter 19: Goodness of Fit
SUM_FREQS

Named variable into which the sum of the frequencies of all observations used in the
computations is stored.

SUM_WEIGHTS

Named variable into which the sum of the weights times the frequencies for all
observations used in the computations is stored.

WEIGHTS

One-dimensional array containing the weights. Weights must be non-negative.
Default assumes all Weights equal one.

Discussion

The IMSL_MVAR_NORMALITY function computes Mardia’s (1970) measures b1,p
and b2,p of multivariate skewness and kurtosis, respectfully, for
p = N_ELEMENTS(x(0,*)). These measures are then used in computing tests for
multivariate normality. Three test statistics, one based upon b1,p alone, one based
upon b2,p alone, and an omnibus test statistic formed by combining normal scores
obtained from b1,p and b2,p are computed. On the order of np3, operations are
required in computing b1,p when the method of Isogai (1983) is used, where n =
N_ELEMENTS(x(*,0)). On the order of np2, operations are required in computing
b2,p.

Let:

where:

fi is the frequency of the i-th observation, and wi is the weight for this observation.
(Weights wi are defined such that xi is distributed according to a multivariate normal,

d w w x x S x xij i j i
T

j= − −−() ()1

S
w f x x x x

f

x
w f

w f x

i
n

i i i i
T

i
n

i

i
n

i i
i i i

i

n

=
∑ − −

∑

=
∑

∑

=

=

= =

1

1

1 1

1

()()
IMSL_MVAR_NORMALITY IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 897
N(µ, Σ/wi) distribution, where Σ is the covariance matrix.) Mardia’s multivariate
skewness statistic is defined as:

while Mardia’s kurtosis is given as:

Both measures are invariant under the affine (matrix) transformation AX + D, and
reduce to univariate measures when p = N_ELEMENTS(x(0,*)) = 1. Using formulas
given in Mardia and Foster (1983), the approximate expected value, asymptotic
standard error, and asymptotic p-value for b2,p, and the approximate expected value,
an asymptotic chi-squared statistic, and p-value for the b1,p statistic are computed.
These statistics are all computed under the null hypothesis of a multivariate normal
distribution. In addition, standard normal scores W1(b1,p) and W2(b2,p) (different from
but similar to the asymptotic normal and chi-squared statistics above) are computed.
These scores are combined into an asymptotic chi-squared statistic with two degrees
of freedom:

This chi-squared statistic may be used to test for multivariate normality. A
p-value for the chi-squared statistic is also computed.

Example

In the following example, 150 observations from a 5 dimensional standard normal
distribution are generated via routine IMSL_RANDOM (Chapter 12, Random
Number Generation). The skewness and kurtosis statistics are then computed for
these observations.

m = 150
n = 5
IMSL_RANDOMOPT, set = 123457
x = FLTARR(n, m)
x(*) = IMSL_RANDOM(m*n, /Normal)
x = TRANSPOSE(x)
stats = IMSL_MVAR_NORMALITY(x, Sum_Weights = sw, Sum_Freq = sf, $

Means = means, R_Matrix = r_mat)
PRINT, 'Sum of Frequencies =', sf, FORMAT = '(A25, I4)'
PRINT, 'Sum of the weights =', sw, FORMAT = '(A25, F8.3)'
FOR i = 0, 12 DO PM, i, stats(i), FORMAT = '(I5, F10.2)'

b
n

f f dp i j ij
j

n

i

n

1 2
3

11

1
, =

==
∑∑

b
n

f dp i ii
i

n
2

2

1

1
, = ∑

=

SW W1
2

b1 p,() W2
2

b2 p,()+=
IDL Analyst Reference Guide IMSL_MVAR_NORMALITY

898 Chapter 19: Goodness of Fit
Sum of Frequencies = 150
Sum of the weights = 150.000
0 0.73
 1 1.36
 2 18.62
 3 0.99
 4 -2.37
 5 32.67
 6 34.54
 7 1.27
 8 -1.48
 9 0.14
 10 1.62
 11 8.24
 12 0.02

Version History

6.4 Introduced
IMSL_MVAR_NORMALITY IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 899
IMSL_RANDOMNESS_TEST

The IMSL_RANDOMNESS_TEST function performs a test for randomness.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RANDOMNESS_TEST(x, n_run [, COVARIANCES=variable]
[, DCUBE_COUNTS=variable] [, /DOUBLE]
[, DSQUARE_COUNTS=variable] [, EXPECT=variable]
[, PAIRS_COUNTS=variable] [, PAIRS_LAG=value]
[, RUNS_COUNTS=variable] [, RUNS_EXPECT=variable])

Return Value

The probability of a larger chi-squared statistic for testing the null hypothesis of a
uniform distribution.

Arguments

n_run

Length of longest run for which tabulation is desired. For keywords Pairs_Counts,
Dsquare_Counts, and Dcube_Counts, n_run stands for the number of equiprobable
cells into which the statistics are to be tabulated.

x

One-dimensional array containing the data.

Keywords

COVARIANCES

Named variable into which an array of size N_ELEMENTS(x) by N_ELEMENTS(x)
containing the variances and covariances of the counts is stored. Keywords
Runs_Counts and Covariances must be used together.
IDL Analyst Reference Guide IMSL_RANDOMNESS_TEST

900 Chapter 19: Goodness of Fit
Exactly one of the options listed in Table 19-2 is used to specify which test is to be
performed.

DCUBE_COUNTS

Named variable into which an array of length n_run by n_run by n_run containing
the tabulations for the triplets test is stored. Keywords Runs_Counts, Pairs_Counts,
Dsquare_Counts, and Dcube_Counts can not be used together.

Chisq—Named variable into which the Chi-squared statistic for testing the null
hypothesis of a uniform distribution is stored.

Df—Named variable into which the degrees of freedom for chi-squared is stored.

Exactly one of the options listed in Table 19-3 is used to specify which test is to be
performed.

DOUBLE

If present and nonzero, double precision is used.

Keyword Test to be Performed

Runs_Counts with Covariances Runs Test

Pairs_Counts with Pairs_Lag Pairs Test

Dsquare_Counts d2 Test

Dcube_Counts Triplets Test

Table 19-2: Output Keywords

Keyword Test to be Performed

Runs_Counts with Covariances Runs Test

Pairs_Counts with Pairs_Lag Pairs Test

Dsquare_Counts d2 Test

Dcube_Counts Triplets Test

Table 19-3: Output Keywords
IMSL_RANDOMNESS_TEST IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 901
DSQUARE_COUNTS

Named variable into which an array of length n_run containing the tabulations for the
d2 test is stored. Keywords Dsquare_Counts, Runs_Counts, Pairs_Counts, and
Dcube_Counts can not be used together

Exactly one of the options listed in Table 19-4 is used to specify which test is to be
performed.

EXPECT

Named variable into which the expected number of counts for each cell is stored.

Note
This keyword is optional only if one of the keywords Pairs_Counts,
Dsquare_Counts, or Dcube_Count is used. Keywords Runs_Counts and Expect can
not be used together.

PAIRS_COUNTS

Named variable into which an array of size n_run by n_run containing the count of
the number of pairs in each cell is stored. The lag to be used in computing the pairs
statistic is stored in Pairs_Lag. Pairs (X(i), X(i + Pairs_Lag)) for i = 0, ..., N –
Pairs_Lag – 1 are tabulated, where N is the total sample size. Keywords
Pairs_Counts and Pairs_Lag must be used together. Keywords Pairs_Counts,
Runs_Counts, Dsquare_Counts, and Dcube_Counts can not be used together.

Keyword Test to be Performed

Runs_Counts with Covariances Runs Test

Pairs_Counts with Pairs_Lag Pairs Test

Dsquare_Counts d2 Test

Dcube_Counts Triplets Test

Table 19-4: Output Keywords
IDL Analyst Reference Guide IMSL_RANDOMNESS_TEST

902 Chapter 19: Goodness of Fit
Exactly one of the options listed in Table 19-5 is used to specify which test is to be
performed.

PAIRS_LAG

The lag to be used in computing the pairs statistic. Keywords Pairs_Lag and
Pairs_Counts must be used together.

RUNS_COUNTS

Named variable into which an array of size N_ELEMENTS(x) containing the counts
of the number of runs up each length is stored. The Runs Test is the default test,
however, to return the counts and covariances, the Runs_Counts keyword must be
used. Keywords Runs_Counts and Covariances must be used together. Keywords
Runs_Counts, Pairs_Counts, Dsquare_Counts, and Dcube_Counts can not be used
together.

Exactly one of the options listed in Table 19-6 is used to specify which test is to be
performed.

Keyword Test to be Performed

Runs_Counts with Covariances Runs Test

Pairs_Counts with Pairs_Lag Pairs Test

Dsquare_Counts d2 Test

Dcube_Counts Triplets Test

Table 19-5: Output Keywords

Keyword Test to be Performed

Runs_Counts with Covariances Runs Test

Pairs_Counts with Pairs_Lag Pairs Test

Dsquare_Counts d2 Test

Dcube_Counts Triplets Test

Table 19-6: Output Keywords
IMSL_RANDOMNESS_TEST IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 903
RUNS_EXPECT

Named variable into which an array of length n_run containing the expected number
of runs of each length is expected is stored.

Note
This keyword is optional if Runs_Counts is used.

Discussion

Runs Up Test

The IMSL_RANDOMNESS_TEST function performs one of four different tests for
randomness. Input keyword Runs_Counts computes statistics for the runs up test.
Runs tests are used to test for cyclical trend in sequences of random numbers. If the
runs down test is desired, each observation should first be multiplied by –1 to change
its sign, and Runs_Counts used with the modified vector of observations.

Runs_Counts first tallies the number of runs up (increasing sequences) of each
desired length. For i = 1, ..., r – 1, where r = n_run, Runs_Counts(i) contains the
number of runs of length i. Runs_Counts(n_run) contains the number of runs of
length n_run or greater. As an example of how runs are counted, the sequence (1, 2,
3, 1) contains 1 run up of length 3, and one run up of length 1.

After tallying the number of runs up of each length, Runs_Counts computes the
expected values and the covariances of the counts according to methods given by
Knuth (1981, pages 65(67). Let R denote a vector of length n_run containing the
number of runs of each length so that the i-th element of R, ri, contains the count of
the runs of length i. Let ΣR denote the covariance matrix of R under the null
hypothesis of randomness, and let µR denote the vector of expected values for R
under this null hypothesis, then an approximate chi-squared statistic with n_run
degrees of freedom is given as:

In general, the larger the value of each element of µR, the better the chi-squared
approximation.

Pairs Test

Pairs_Counts computes the pairs test (or the Good’s serial test) on a hypothesized
sequence of uniform (0,1) pseudorandom numbers. The test proceeds as follows.

χ µ µ2 1= − ∑ −−() ()R RR
T

R R
IDL Analyst Reference Guide IMSL_RANDOMNESS_TEST

904 Chapter 19: Goodness of Fit
Subsequent pairs (X(i), X(i + Pairs_Lag)) are tallied into a k x k matrix, where k =
n_run. In this tally, element (j, m) of the matrix is incremented, where:

where l = Pairs_Lag, and the notation represents the greatest integer function,
 is the greatest integer less than or equal to Y, where Y is a real number. If l = 1,

then i = 1, 3, 5, ..., n – 1. If l > 1, then i = 1, 2, 3, ..., n – l, where n is the total number
of pseudorandom numbers input on the current usage of Pairs_Counts (i.e., n =
N_ELEMENTS(x)).

Given the tally matrix in Pairs_Counts, chi-squared is computed as:

where e = Σoij/k
2, and oij is the observed count in cell (i, j) (oij = Pairs_Counts (i, j)).

Because pair statistics for the trailing observations are not tallied on any call, You
should use Pairs_Counts with N_ELEMENTS(x) as large as possible. For Pairs_Lag
< 20 and N_ELEMENTS(x) = 2000, little power is lost.

d2 Test

Dsquare_Counts computes the d2 test for succeeding quadruples of hypothesized
pseudorandom uniform (0, 1) deviates. The d2 test is performed as follows. Let X1,
X2, X3, and X4 denote four pseudorandom uniform deviates, and consider:

D2 = (X3 – X1)2 + (X4 – X2)2

The probability distribution of D2 is given as:

when D2 ≤1, where π denotes the value of pi. If D2 > 1, this probability is given as:

See Gruenberger and Mark (1951) for a derivation of this distribution.

j kX i

m kX i l

= +

= + +

()

()

1

1

Y

χ2
2

0

1
=

−
∑
=

− ()

,

o e
e

ij

i j

k

Pr(D d d d d2 2 2
3 48

3 2
≤ = − +) π

Pr D
2

d
2≤() 1

3
--- π 2–()d

2
4 d

2
1– 8

d
2

1–()

3
2

3
---------------------- d

4

2
----- 4d

2
1 1

d
2

-----–

1
d

atan––+ + +=
IMSL_RANDOMNESS_TEST IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 905
For each succeeding set of 4 pseudorandom uniform numbers input in x, d2 and the
cumulative probability of d2 (Pr(D2 ≤ d2)) are computed. The resulting probability is
tallied into one of k = n_run equally spaced intervals.

Let n denote the number of sets of four random numbers input (n = the total number
of observations/4). Then, under the null hypothesis that the numbers input are random
uniform (0, 1) numbers, the expected value for each element in Dsquare_Counts is e
= n/k. An approximate chi-squared statistic is computed as:

where oi = Dsquare_Counts(i) is the observed count. Thus, χ2 has k – 1 degrees of
freedom, and the null hypothesis of pseudorandom uniform (0, 1) deviates is rejected
if χ2 is too large. As n increases, the chi-squared approximation becomes better. A
useful generalization is that e > 5 yields a good chi-squared approximation.

Triplets Test

Dcube_Counts computes the triplets test on a sequence of hypothesized
pseudorandom uniform(0, 1) deviates. The triplets test is computed as follows: Each
set of three successive deviates, X1, X2, and X3, is tallied into one of m3 equal sized
cubes, where m = n_run. Let i = [mX1] + 1, j = [mX2] + 1, and k = [mX3] + 1. For the
triplet (X1, X2, X3), Dcube_Counts(i, j, k) is incremented.

Under the null hypothesis of pseudorandom uniform(0, 1) deviates, the m3 cells are
equally probable and each has expected value e = n/m3, where n is the number of
triplets tallied. An approximate chi-squared statistic is computed as:

where oijk = Dcube_Counts(i, j, k).

The computed chi-squared has m3– 1 degrees of freedom, and the null hypothesis of
pseudorandom uniform (0, 1) deviates is rejected if χ2 is too large.

Examples

Example 1

The following example illustrates the use of the runs test on 104 pseudo-random
uniform deviates. In the example, 2000 deviates are generated for each use of

χ2
2

0

1
=

−
∑
=

− ()o e
e

i

i

k

χ2
2

0

1
=

−
∑

=

− ()

, ,

o e
e

ijk

i j k

k

IDL Analyst Reference Guide IMSL_RANDOMNESS_TEST

906 Chapter 19: Goodness of Fit
Runs_Counts. Since the probability of a larger chi-squared statistic is 0.1872, there is
no strong evidence to support rejection of this null hypothesis of randomness.

.RUN
PRO print_results, n_run, num, rc, re, cov, chisq, df, p

PRINT, ' runs_count'
PRINT, num + 1, FORMAT = '(6I5)'
PRINT, rc, FORMAT = '(6I5)'
PRINT
PRINT, ' runs_expect'
PRINT, num + 1, FORMAT = '(6I7)'
PRINT, re, FORMAT = '(6F7.1)'
PRINT
PRINT, ' covariances'
PRINT, num + 1, FORMAT = '(7X, 6I8)'
FOR i = 0, n_run - 1 DO $

PRINT, num(i) + 1, cov(i, *), FORMAT = '(I8, 6F8.1)'
PRINT
PRINT, 'chisq =', chisq
PRINT, 'df =', df
PRINT, 'pvalue =', p

END

nran = 10000
n_run = 6
num = INDGEN(n_run)
IMSL_RANDOMOPT, set = 123457
x = IMSL_RANDOM(nran, /Uniform)
p = IMSL_RANDOMNESS_TEST(x, n_run, Runs_Counts = rc, $

Covariances = cov, Chisq = chisq, Df = df, Runs_Expect = re)
print_results, n_run, num, rc,re,cov,chisq, df, p

 runs_count
 1 2 3 4 5 6
 1709 2046 953 260 55 4

 runs_expect
 1 2 3 4 5 6
 1667.3 2083.4 916.5 263.8 57.5 11.9

 covariances
 1 2 3 4 5 6
 1 1278.2 -194.6 -148.9 -71.6 -22.9 -6.7
 2 -194.6 1410.1 -490.6 -197.2 -55.2 -14.4
 3 -148.9 -490.6 601.4 -117.4 -31.2 -7.8
 4 -71.6 -197.2 -117.4 222.1 -10.8 -2.6
 5 -22.9 -55.2 -31.2 -10.8 54.8 -0.6
 6 -6.7 -14.4 -7.8 -2.6 -0.6 11.7
IMSL_RANDOMNESS_TEST IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 907
chisq = 8.76515
df = 6.00000
pvalue = 0.187223

Example 2

The following example illustrates the calculations of the Pairs_Counts statistics when
a random sample of size 104 is used and the Pairs_Lag is 1. The results are not
significant.

.RUN
PRO print_results, n_run, num, pc, expect, chisq, df, p

PRINT, ' pairs_count'
PRINT, num + 1, FORMAT = '(5X, 10I5)'
FOR i = 0, n_run - 1 DO $

PRINT, num(i) + 1, pc(i, *), FORMAT = '(I5, 10I5)'
PRINT
PRINT, 'expect =', expect
PRINT, 'chisq =', chisq
PRINT, 'df =', df
PRINT, 'pvalue =', p

END

nran = 10000
n_run = 10
num = INDGEN(n_run)
lag = 5
IMSL_RANDOMOPT, set = 123467
x = IMSL_RANDOM(nran, /Uniform)
p = IMSL_RANDOMNESS_TEST(x, n_run, Pairs_Counts = pc, $

Pairs_Lag = lag, Chisq = chisq, $
Df = df, Expect = expect)

print_results, n_run, num, pc, expect, chisq, df, p

 pairs_count
 1 2 3 4 5 6 7 8 9 10
 1 112 82 95 118 103 103 113 84 90 74
 2 104 106 109 108 101 98 102 92 109 88
 3 88 111 86 106 112 79 103 105 106 101
 4 91 110 108 92 88 108 113 93 105 114
 5 104 105 103 104 101 94 96 87 93 104
 6 98 104 103 104 79 89 92 104 92 100
 7 103 91 97 101 116 83 118 118 106 99
 8 105 105 111 91 93 82 100 104 110 89
 9 92 102 82 101 94 128 102 110 125 98
 10 79 99 103 98 104 101 93 93 98 105

expect = 99.9500
IDL Analyst Reference Guide IMSL_RANDOMNESS_TEST

908 Chapter 19: Goodness of Fit
chisq = 104.860
df = 99.0000
pvalue = 0.324242

Example 3

In the following example, 2000 observations generated using the routine
IMSL_RANDOM are input to Dsquare_Counts in one call. In the example, the null
hypothesis of a uniform distribution is not rejected.

.RUN
PRO print_results, n_run, num, dc, expect, chisq, df, p

PRINT, ' dsquare_counts'
PRINT, num + 1, FORMAT = '(6I5)'
PRINT, dc, FORMAT = '(6I5)'
PRINT
PRINT, 'expect =', expect
PRINT, 'chisq =', chisq
PRINT, 'df =', df
PRINT, 'pvalue =', p

END

nran = 2000
n_run = 6
num = INDGEN(n_run)
IMSL_RANDOMOPT, set = 123457
x = IMSL_RANDOM(nran, /Uniform)
p = IMSL_RANDOMNESS_TEST(x, n_run, Chisq = chisq, Df = df, $

Expect = expect, Dsquare_Counts = dc)
print_results, n_run, num, dc, expect, chisq, df, p

 dsquare_counts
 1 2 3 4 5 6
 87 84 78 76 92 83

expect = 83.3333
chisq = 2.05600
df = 5.00000
pvalue = 0.841343

Example 4

In the following example, 2001 deviates generated by the routine IMSL_RANDOM
are input to Dcube_Counts, and tabulated in 27 equally sized cubes. In the example,
the null hypothesis is not rejected.

.RUN
PRO print_results, n_run, num, dc, expect, chisq, df, p

FOR j = 0, n_run - 1 DO BEGIN
IMSL_RANDOMNESS_TEST IDL Analyst Reference Guide

Chapter 19: Goodness of Fit 909
PRINT, ' dcube_counts'
PRINT, num + 1, FORMAT = '(5X, 3I5)'

FOR i = 0, n_run - 1 DO $
PRINT, num(i) + 1, dc(j, i, *), FORMAT = '(I5, 3I5)'

 PRINT
ENDFOR
PRINT, 'expect =', expect
PRINT, 'chisq =', chisq
PRINT, 'df =', df
PRINT, 'pvalue =', p

END

nran = 2001
n_run = 3
num = INDGEN(n_run)
IMSL_RANDOMOPT, set = 123457
x = IMSL_RANDOM(nran, /Uniform)
p = IMSL_RANDOMNESS_TEST(x, n_run, Chisq = chisq, Df = df, $

Expect = expect, Dcube_Counts = dc)
print_results, n_run, num, dc, expect, chisq, df, p

 dcube_counts
 1 2 3
 1 26 27 24
 2 20 17 32
 3 30 18 21

 dcube_counts
 1 2 3
 1 20 16 26
 2 22 22 27
 3 30 24 26

 dcube_counts
 1 2 3
 1 28 30 22
 2 23 24 22
 3 33 30 27

expect = 24.7037
chisq = 21.7631
df = 26.0000
pvalue = 0.701585
IDL Analyst Reference Guide IMSL_RANDOMNESS_TEST

910 Chapter 19: Goodness of Fit
Version History

6.4 Introduced
IMSL_RANDOMNESS_TEST IDL Analyst Reference Guide

Chapter 20

Time Series and
Forecasting
This section contains the following topics:
Overview: Time Series and Forecasting . . 912 Time Series and Forecasting Routines . . . 914
IDL Analyst Reference Guide 911

912 Chapter 20: Time Series and Forecasting
Overview: Time Series and Forecasting

The routines in this chapter assume the time series does not contain any missing
observations. If missing values are present, they should be set to the special floating-
point value Not a Number (NaN), and the routine will return an appropriate error
message. To enable fitting of the model, the missing values must be replaced by
appropriate estimates.

General Methodology

A major component of the model identification step concerns determining if a given
time series is stationary. The sample correlation functions computed by routines
“IMSL_AUTOCORRELATION” on page 942, and “IMSL_PARTIAL_AC” on
page 947 may be used to diagnose the presence of non-stationarity in the data, as well
as to indicate the type of transformation1 require to induce stationarity. The family of
power transformations provided by routine “IMSL_BOXCOXTRANS” on page 937
coupled with the ability to difference the transformed data using routine
“IMSL_DIFFERENCE” on page 931 affords a convenient method of transforming a
wide class of nonstationary time series to stationarity.

The “raw” data, transformed data, and sample correlation functions also provide
insight into the nature of the underlying model. Typically, this information is
displayed in graphical form via time series plots, plots of the lagged data, and various
correlation function plots.

The observed time series may also be compared with time series generated from
various theoretical models to help identify possible candidates for model fitting. The
routine IMSL_RANDOM_ARMA may be used to generate a time series according to
a specified autoregressive moving average model.

Time Domain Methodology

Once the data are transformed to stationarity, a tentative model in the time domain is
often proposed and parameter estimation1, diagnostic checking and forecasting are
performed.

ARIMA Model (Autoregressive Integrated Moving
Average)

A small, yet comprehensive, class of stationary time-series models consists of the
nonseasonal IMSL_ARMA processes defined by:
Overview: Time Series and Forecasting IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 913

where Z = {..., −2, −1, 0, 1, 2, ...} denotes the set of integers, B is the backward shift
operator defined by BkWt = Wt−k, µ is the mean of Wt, and the following equations
are true:

φ(B) = 1 − φ1B − φ2B2 − ... − φpBp, p ≥ 0

θ(B) = 1 − θ1B − θ2B2 − ... − θqBq, q ≥ 0

The model is of order (p, q) and is referred to as an IMSL_ARMA (p, q) model.

An equivalent version of the IMSL_ARMA (p, q) model is given by:

where θ0 is an overall constant defined by the following:

See Box and Jenkins (1976, pp. 92−93) for a discussion of the meaning and
usefulness of the overall constant.

If the “raw” data, {Zt}, are homogeneous and nonstationary, then differencing using
the “IMSL_DIFFERENCE” on page 931 induces stationarity, and the model is called
ARIMA (AutoRegressive Integrated Moving Average). Parameter estimation is
performed on the stationary time series Wt, = ∇ dZt , where ∇ d = (1 − B)d is the
backward difference operator with period 1 and order d, d > 0.

Typically, the method of moments includes keyword Moments in a call to the
“IMSL_ARMA” on page 915 for preliminary parameter estimates. These estimates
can be used as initial values into the least-squares procedure by including keyword
Lsq in a call to function ARMA. Other initial estimates provided can be used. The
least-squares procedure can be used to compute conditional or unconditional least-
squares estimates of the parameters, depending on the choice of the backcasting
length.

φ B() Wt µ–() θ B()At,= t Z∈

φ B()Wt θ0 θ+ B()At,= t Z∈

θ0 µ 1 φi
i 1=

p

∑–

=

IDL Analyst Reference Guide Overview: Time Series and Forecasting

914 Chapter 20: Time Series and Forecasting
Time Series and Forecasting Routines

IMSL_ARMA Models

IMSL_ARMA—Computes least-squares or method-of-moments estimates of
parameters and optionally computes forecasts and their associated probability limits.

IMSL_DIFFERENCE—Performs differencing on a time series.

IMSL_BOXCOXTRANS—Perform a Box-Cox transformation.

IMSL_AUTOCORRELATION—Sample autocorrelation function.

IMSL_PARTIAL_AC—Sample partial autocorrelation function.

IMSL_LACK_OF_FIT—Lack-of-fit test based on the corrleation function.

IMSL_GARCH—Compute estimates of the parameters of a GARCH(p,q) model.

IMSL_KALMAN—Performs Kalman filtering and evaluates the likelihood function
for the statespace model.
Time Series and Forecasting Routines IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 915
IMSL_ARMA

The IMSL_ARMA function computes method-of-moments or least-squares estimates
of parameters for a nonseasonal IMSL_ARMA model.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ARMA(z, p, q [, AR_LAGS=array] [, AUTOCOV=variable]
[, BACKWARD_ORIGIN=value] [, CONFIDENCE=value] [, CONSTANT]
[, /DOUBLE] [, ERR_REL=value] [, FORECAST=variable]
[, INIT_EST_AR=array] [, INIT_EST_MA=array] [, ITMAX=value] [, /LSQ]
[, LGTH_BACKCAST=value] [, MA_LAGS=array] [, MEAN_EST=value]
[, /MOMENTS] [, N_PREDICT=value] [, /NO_CONSTANT]
[, PARAM_EST_COV=variable] [, RESIDUAL=variable]
[, SS_RESIDUAL=variable] [, TOL_BACKCAST=value]
[, TOL_CONVERGENCE=value])

Return Value

An array of length 1 + p + q with the estimated constant, AR, and MA parameters. If
No_Constant is specified, the 0-th element of this array is 0.0.

Arguments

p

Number of autoregressive parameters.

q

Number of moving average parameters.

z

One-dimensional array containing the observations.
IDL Analyst Reference Guide IMSL_ARMA

916 Chapter 20: Time Series and Forecasting
Keywords

AR_LAGS

One-dimensional array of length p containing the order of the nonzero autoregressive
parameters. The elements of Ar_Lags must be greater than or equal to 1. Default:
Ar_Lags = [1, 2, ..., p]

AUTOCOV

Named variable into which an array of length p + q + 2 containing the variance and
autocovariances of the time series z is stored. Keyword Autocov(0) contains the
variance of the series z. Keyword Autocov(k) contains the autocovariance of lag k,
where k = 1, ..., p + q + 1.

BACKWARD_ORIGIN

Maximum backward origin. Keyword Backward_Origin must be greater than or
equal to zero and less than or equal to N_ELEMENTS(z) – (max(maxar, maxma)),
where maxar = max(Ar_Lags) and maxma = max(Ma_Lags).

Forecasts at origins N_ELEMENTS(z) – Backward_Origin through
N_ELEMENTS(z) are generated. Default: Backward_Origin = 0

CONFIDENCE

Value in the exclusive interval (0, 100) used to specify the confidence level of the
forecasts. Typical choices for Confidence are 90.0, 95.0, and 99.0. Default:
Confidence = 95.0

CONSTANT

If present and nonzero, the time series is centered about its mean. Keywords
No_Constant and Constant cannot be used together.

DOUBLE

If present and nonzero, double precision is used.

ERR_REL

Stopping criterion for use in the nonlinear equation solver used in both the method-
of-moments and least-squares algorithms. Default: Err_Rel = 100 x ε, where ε is
machine precision
IMSL_ARMA IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 917
FORECAST

Named variable into which an array of length N_Predict x (Backward_Origin + 3)
containing the forecasts up to N_Predict steps ahead and the information necessary to
obtain confidence intervals is stored. Keywords Forecast and N_Predict must be used
together.

INIT_EST_AR

Array of length p containing preliminary estimates of the autoregressive parameters,
internally. Keywords Init_Est_Ar and Init_Est_Ma must be used together and are
only applicable if Lsq is also present and nonzero.

INIT_EST_MA

Array of length q containing preliminary estimates of the moving average parameters.
Keywords Init_Est_Ar and Init_Est_Ma must be used together and are only
applicable if Lsq is also present and nonzero.

The following keywords are used to forecast up to N_Predict steps ahead and the
information necessary to obtain confidence intervals:

ITMAX

Maximum number of iterations allowed in the nonlinear equation solver used in both
the method-of-moments and least-squares algorithms. Default: Itmax = 200

LSQ

If present and nonzero, the autoregressive and moving average parameters are
estimated by a least-squares procedure. Keywords Moments and Lsq cannot be used
together.

LGTH_BACKCAST

Specifies the maximum length of backcasting. Must be greater than or equal to zero.
Keywords Lgth_Backcast and Tol_Backcast must be used together. Default:
Lgth_Backcast = 10

MA_LAGS

One-dimensional array of length q containing the order of the nonzero moving
average parameters. The elements of Ma_Lags must be greater than or equal to 1.
Default: Ma_Lags = [1, 2, ..., q]
IDL Analyst Reference Guide IMSL_ARMA

918 Chapter 20: Time Series and Forecasting
MEAN_EST

Initial estimate of the mean of the time series z.

Default:

MOMENTS

If present and nonzero, the autoregressive and moving average parameters are
estimated by a method-of-moments procedure. Keywords Moments and Lsq cannot
be used together. (Default)

N_PREDICT

Maximum lead time for forecasts. Keyword N_Predict must be greater than zero.
Keywords Forecast and N_Predict must be used together.

NO_CONSTANT

If present and nonzero, the time series is not centered about its mean. Keywords
No_Constant and Constant cannot be used together.

PARAM_EST_COV

Named variable into which an array, containing the covariance matrix of the final
parameter estimates, is stored. The array is of size np x np, where np = p + q + 1 if z
is centered about its mean and np = p + q if z is not centered. The ordering of
variables in Param_Est_Cov is Mean_Est, Ar_lags, and Ma_lags.

RESIDUAL

Named variable into which an array of length N_ELEMENTS(z) – (max(Ar_Lags)) +
Lgth_Backcast containing the residuals (including backcasts) at the final parameter
estimate point in the first N_ELEMENTS(z) – (max(Ar_Lags)) + nb, where nb is the
number of values backcast is stored.

SS_RESIDUAL

Named variable into which the sum of squares of the random error is stored.

Mean_Est zt /n
t 1=

n

∑=
IMSL_ARMA IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 919
TOL_BACKCAST

Specifies the tolerance level used to determine convergence of the backcast
algorithm. Typically, Tol_Backcast is set to a fraction of an estimate of the standard
deviation of the time series. Keywords Lgth_Backcast and Tol_Backcast must be used
together. Default: Tol_Backcast = 0.01 x standard deviation of l

TOL_CONVERGENCE

Tolerance level used to determine convergence of the nonlinear least-squares
algorithm. Keyword Tol_Convergence represents the minimum relative decrease in
sum of squares between two iterations required to determine convergence. Hence,
Tol_Convergence must be greater than or equal to zero. Default: max {10–10, ε2 / 3}
for single precision,
max {10–20, ε2 / 3} for double precision, where ε is machine precision.

Discussion

The IMSL_ARMA function computes estimates of parameters for a nonseasonal
IMSL_ARMA model given a sample of observations, {Zt}, for t = 1, 2, ..., n, where
n = N_ELEMENTS(z). You may choose either method of moments or least squares.
The default is method of moments.

Choose the method-of-moments algorithm with the keyword Moments. The least-
squares algorithm is used if Lsq is specified. If you wish to use the least-squares
algorithm, the preliminary estimates are the method-of-moments estimates by
default; otherwise, you can input initial estimates by specifying keywords
Init_Est_Ar and Init_Est_Ma. Table 20-1 lists the appropriate keywords for both the
method-of-moments and least-squares algorithm:

Method of
Moments

only
Least Squares only

Both Method of
Moments and
Least Squares

Moments Lsq Err_Rel

Constant (or No_Constant) Itmax

Ar_Lags Mean_Estimate

Ma_Lags Autocov

Table 20-1: Method-of-Moments and Least-Squares Keywords
IDL Analyst Reference Guide IMSL_ARMA

920 Chapter 20: Time Series and Forecasting
Method-of-moments Estimation

Suppose the time series {Zt } is generated by an IMSL_ARMA(p, q) model of the
form:

for

Let

be the estimate of the mean µ of the time series {Zt}, where:

equals the following:

Lgth_Backcast Forecast

Tol_Backcast N_Predict

Tol_Convergence Confidence

Init_Est_Ar Backward_Origin

Init_Est_Ma

Residual

Param_Est_Cov

Ss_Residual

Method of
Moments

only
Least Squares only

Both Method of
Moments and
Least Squares

Table 20-1: Method-of-Moments and Least-Squares Keywords (Continued)

φ B()Zt θ0 θ B()At+=

t 0 1 2 ...,±,±,{ }∈

µ̂ Mean_Est=

µ̂

µ̂

µ for µ known

Zt
t 1=

n

∑
n

--------------- for µ unknown

=

IMSL_ARMA IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 921
The autocovariance function is estimated by:

for k = 0, 1, ..., K, where K = p + q + 1. Note that:

is an estimate of the sample variance.

Given the sample autocovariances, the function computes the method-of-moments
estimates of the autoregressive parameters using the extended Yule-Walker equations
as follows:

where:

The overall constant θ0 is estimated by the following:

The moving average parameters are estimated based on a system of nonlinear
equations given K = p + q + 1 autocovariances, σ(k) for k = 1, ..., K, and p
autoregressive parameters φi for i = 1, ..., p.

Let Z't = φ(B)Zt. The autocovariances of the derived moving average process Z't =
θ(B)At are estimated by the following relation:

σ̂ k() 1
n
--- Zt µ̂–() Zt k+ µ̂–()

t 1=

n k–

∑=

σ̂ 0()

Σ̂φ̂ σ̂=

φ̂ φ̂1 … φ̂p, ,()
T

=

Σ ij σ̂ q i j–+() i j, , 1 … p, ,= =

σ̂i σ̂ q i+(),= i j, 1 … p, ,=

θ̂0

µ̂ for p = 0

µ̂ 1 φ
ˆ

i

i 1=

p

∑–

for p 0>

=

σ̂′ k()

σ̂ k() for p = 0

φ
ˆ

iφ
ˆ

j σ̂ k i j–+()()

j 0=

p

∑
i 0=

p

∑ for p 1,φ
ˆ

0 1–≡≥

=

IDL Analyst Reference Guide IMSL_ARMA

922 Chapter 20: Time Series and Forecasting
The iterative procedure for determining the moving average parameters is based on
the relation:

where σ(k) denotes the autocovariance function of the original Zt process.

Let τ = (τ0, τ1, ..., τq)T, f = (f0, f1, ..., fq)T, and T be a (q + 1) x (q + 1) matrix, where τj
, fj , and T are as follows:

and:

Then, the value of τ at the (i + 1)-th iteration is determined by:

τ i + 1 = τ i – (T i)–1 f i

The estimation procedure begins with the initial value:

and terminates at iteration i when either |f i| is less than Err_Rel or i equals Itmax. The
moving average parameter estimates are obtained from the final estimate of τ by
setting:

for j = 1, ..., q. The random error variance is estimated by the following:

See Box and Jenkins (1976, pp. 498–500) for a description of a function that
performs similar computations.

σ k()
1 θ1

2
... θq

2
+ + +()σA

2
for k = 0

θk– θ1θk 1+ ... θq k– θq+ + +()σA
2

for k 1≥

=

τ j

σA for j = 0

θj τ0⁄– for j = 1, ..., q

=

fj τ iτ i j+ σ̂′ j()–
i 0=

q j–

∑= for j 0 1 ... q, , ,=

T

τ0 τ1 … … τq

τ1 τ2 … τq 0

… … … 0 0

… … … … …
τq 0 0 0 0

τ0 … … τq

0 τ0 … τq 1–

0 0 … …
… … … …
0 0 0 τ0

+=

τ0 σ̂′ 0(), 0 … 0, ,()
T

=

θ̂j τ j τ0⁄–=
IMSL_ARMA IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 923
Least-squares Estimation

Suppose the time series {Zt } is generated by a nonseasonal IMSL_ARMA model of
the form:

where B is the backward-shift operator, µ is the mean of Zt , and:

with p autoregressive and q moving average parameters. Without loss of generality,
the following is assumed:

so that the nonseasonal IMSL_ARMA model is of order (p', q'), where:

 and

Note that the usual hierarchial model assumes the following:

Consider the sum-of-squares function:

where:

σ̂A
2

σ̂ 0() φ̂iσ̂ i()
i 1=

p

∑– for q = 0

τ0
2

for q 0>

=

φ B() Zt µ–() θ B()At, for= t 0 1± 2± …, , ,{ }∈

φ B() 1 φ1B
lφ 1()

– φ2B
lφ 2()

– ...– φpB
lφ p()

–= for p 0≥

θ B() 1 θ1B
lθ 1()

– θ2B
lθ 2()

– ...– θqB
lθ q()

–= for q 0≥

1 lφ 1() lφ 2() ... lφ p()≤ ≤≤≤

1 lθ 1() lθ 2() ... lθ q()≤ ≤≤≤

p ′ lφ p()= q ′ lθ q()=

lφ i)(i= , 1 i p≤ ≤
lθ j() j= , 1 j q≤ ≤

ST µ φ θ, ,() At[] 2

T– 1+

n

∑=

At[] E At µ φ θ Z, , ,()[]=
IDL Analyst Reference Guide IMSL_ARMA

924 Chapter 20: Time Series and Forecasting
and T = Lgth_Backcast is the length of backcasting from the beginning of the series.
The random errors {At } are assumed to be independent and identical distributed N(0,
σA

2) random variables. Hence, the log-likelihood function is given by:

where f (µ, φ, θ) is a function of µ, φ, and θ.

For T = 0, the log-likelihood function is conditional on the past values of both Zt and
At required to initialize the model. The method of selecting these initial values usually
introduces transient bias into the model (Box and Jenkins 1976, pp. 210–211). For T
= infinity, this dependency vanishes, and the estimation problem concerns
maximization of the unconditional log-likelihood function. Box and Jenkins (1976, p.
213) argue that:

 dominates

The parameter estimates that minimize the sum-of-squares function are called least-
squares estimates. For large n, the unconditional least-squares estimates are
approximately equal to the maximum likelihood-estimates.

In practice, a finite value of T enables sufficient approximation of the unconditional
sum-of-squares function. The values of [At] needed to compute the unconditional
sum of squares are computed iteratively with initial values of Zt obtained by
backcasting. The residuals (including backcasts), estimate of random error variance,
and covariance matrix of the final parameter estimates also are computed. ARIMA
parameters can be computed using the “IMSL_DIFFERENCE” on page 931, together
with IMSL_ARMA.

Forecasting Option

The Box-Jenkins forecasts and their associated confidence intervals for a nonseasonal
IMSL_ARMA model are computed given a sample of n = N_ELEMENTS(z) {Zt} for
t = 1, 2, ..., n.

Suppose the time series {Zt} is generated by a nonseasonal IMSL_ARMA model of
the form:

φ (B) Zt = θ0 + θ (B) At

for

where B is the backward-shift operator, θ0 is the constant, and:

l µ φ θ σA, , ,() f µ φ θ, ,() n ln σA()–
ST µ φ θ, ,()

2σA
2

--------------------------–=

S∞ µ φ θ, ,() 2σA
2()⁄ l µ φ θ σA

2, , ,()

t 0 1± 2± … , , ,{ }∈

φ B() 1 φ1B
lφ 1()

– φ2Blφ 2()– ...– φpBlφ p()–=
IMSL_ARMA IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 925
with p autoregressive and q moving average parameters. Without loss of generality,
the following is assumed:

so that the nonseasonal IMSL_ARMA model is of order (p', q'), where:

 and

Note that the usual hierarchal model assumes the following:

The Box-Jenkins forecast at origin t for lead time l of Zt + l is defined in terms of the
difference equation:

where the following is true:

The 100(1 – α)-percent confidence interval for Zt + l is given by:

θ B() 1 θ1B
lθ 1()

– θ2Blθ 2()– ...– θqBlθ q()–=

1 lφ 1() lφ 2() ... lφ p()≤ ≤≤≤

1 lθ 1() lθ 2() ... lθ q()≤ ≤≤≤

p ′ lθ p()= q ′ lθ q()=

lφ i)(i= , 1 i p≤ ≤

lθ j() j= , 1 j q≤ ≤

Z
ˆ

t l() θ0 φ1 Zt l lφ 1()–+[] ... φp Zt l lφ p()–+[] At l+[] ...–+ + + +=

θ1 At l lθ 1()–+[] At l+[]– θ1 At l lθ 1()–+[]– ...– θq At l lθ q()–+[]–

Zt k+[] Zt k+ for k = 0 1 2 ...,–,–,

Z
ˆ

t k() for k = 1, 2, ...

=

At k+[] Zt k+ Z
ˆ

t k 1–+ 1() for – k = 0 1 2 ...,–,–,

0 for k = 1, 2, ...

=

Ẑt l() z 1 α 2⁄–()
ψj

2

j 0=

l 1–

∑

 1 2⁄

σA±
IDL Analyst Reference Guide IMSL_ARMA

926 Chapter 20: Time Series and Forecasting
where

is the 100 (1 – α / 2)-percentile of the standard normal distribution, σA is the standard
deviation of the random error, and ψj is defined as follows:

In this equation, φi = 0 for i > p and θj = 0 for j > q. Note that the forecasts are
computed for lead times l = 1, 2, ..., L at origins t = (n – b), (n – b + 1), ..., n, where L
= N_Predict and b = Backward_Origin.

The Box-Jenkins forecasts minimize the mean-square error:

Also, the forecasts are easily updated according to the following equation:

This approach and others are discussed in Chapter 5 of Box and Jenkins (1976).

Examples

Example 1

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number
of sunspots observed each year from 1749 through 1924. The data set for this
example consists of the number of sunspots observed from 1770 through 1869 and is
shown in Figure 20-1. The method-of-moments estimates:

, and

for the IMSL_ARMA(2,1) model are:

where Zt is “raw” data and the errors At are independently and identical normally
distributed with mean zero and variance σ2

A.

temp = IMSL_STATDATA(2)
; Get the Wolfer Sunspot Data.
z = TEMP(21:120, 1)
; Use only 100 observations, 1770-1869.
years = FINDGEN(100) + 1770
PLOT, years, z, XStyle = 1, Psym = -6, $

Title = 'Wolfer Sunspot Data', XTitle = 'Year', $

z 1 α 2⁄–()

ψj

1 for j 0=

φiψj i–
θj–

i 1=

j

∑ for j 0>

=

E Zt l+ Ẑt l()–[]2

Ẑt 1+ l() Ẑt l 1+() ψlAt 1++=

θ̂0 φ̂1 φ̂2, θ̂1

Zt θ0 φ1Zt 1– φ2Zt 2– θ1At 1– At+–+ +=
IMSL_ARMA IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 927
YTitle = 'Number of Sunspots'
; Plot the data.
p = 2
q = 1
parameters = IMSL_ARMA(z, p, q)
; Perform time-series analysis.
PRINT, 'AR estimates:', parameters(1), parameters(2)
PRINT, 'MA estimate :', parameters(3)

AR estimates: 1.24426 -0.575149
MA estimate : -0.124094

Example 2

The data for this example are the same as that for the initial example. Preliminary
method-of-moments estimates are computed by default, and the method of least
squares is used to find the final estimates.

temp = IMSL_STATDATA(2)
; Get the Wolfer Sunspot Data.

Figure 20-1: Wolfer Sunspot Data Plot
IDL Analyst Reference Guide IMSL_ARMA

928 Chapter 20: Time Series and Forecasting
z = TEMP(21:120, 1)
; Use only 100 observations, 1770-1869.
parameters = IMSL_ARMA(z, 2, 1, /Lsq, Tol_Convergence = .125)
; Perform time-series analysis using method of moments. The
; warning error can be ignored in this case.
PRINT, 'AR estimates:', parameters(1), parameters(2)
PRINT, 'MA estimate :', parameters(3)

AR estimates: 1.39257 -0.732948
MA estimate : -0.137512

Example 3

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number
of sunspots observed each year from 1749 through 1924. The data set for this
example consists of the number of sunspots observed from 1770 through 1869.
IMSL_ARMA computes forecasts and 95-percent confidence limits for the forecasts
for an IMSL_ARMA(2, 1) model fit using IMSL_ARMA with the
method-of-moments option. With Backward_Origin = 3, columns zero through three
of Forecast provide forecasts given the data through 1866, 1867, 1868, and 1869.
Column five gives the deviations from the forecast for computing confidence limits,
and column six gives the psi weights, which can be used to update forecasts when
more data is available. For example, the forecast for the 102-nd observation (year
1871) given the data through the 100-th observation (year 1869) is 77.21; 95-percent
confidence limits are given by:

After observation 101 (Z101 for year 1870) is available, the forecast can be updated by
using:

with the psi weight (ψ1 = 1.37) and the one-step-ahead forecast error for observation
101 (Z101 – 83.72) to give the following:

77.21 + 1.37 x (Z101 – 83.72)

Since this updated forecast is one step ahead, the 95-percent confidence limits are
now given by the forecast:

First, define a procedure to output the results:

.RUN
PRO print_results, parameters, forecast

PRINT, 'Method-of-moments initial estimates:'
PRINT, 'AR estimates:', parameters(1), parameters(2)

77.21 56.30+−

Ẑt 1+ l() Ẑt l+1() ψl Zt 1+ Ẑt 1()–[]+=

33.22+−
IMSL_ARMA IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 929
PRINT, 'MA estimate :', parameters(3)
PRINT
lead_time = INDGEN(12) + 1
forecast = [[lead_time], [forecast]]
PRINT, 'Forecasts from ...'
PRINT, 'lead time', ' 1866', ' 1867', $

' 1868', ' 1869', ' Deviat.', ' Psi'
PM, forecast, FORMAT = '(i6, 3x, 6f9.4)'

END

temp = IMSL_STATDATA(2)
; Get the Wolfer Sunspot Data.
z = TEMP(21:120, 1)
; Use only 100 observations, 1770-1869.
parameters = IMSL_ARMA(z, 2, 1, Itmax = 0, Err_Rel = 0.0, $

Forecast = forecast, N_Predict = 12, Backward_Origin = 3)
; Perform time-series analysis using method-of-moments.
print_results, parameters, forecast
years = INDGEN(100) + 1770
PLOT, years, z, $

Psym = -6, Symsize = .5, XStyle = 1, XRange = [1770, 1885], $
YRange = [-50, 175], Title = 'Wolfer Sunspot Data', $
XTitle = 'Year', YTitle = 'Number of Sunspots'

; Plot the data along with the forecasted values with confidence
; intervals.
OPLOT, INDGEN(10) + 1870, forecast(*, 3), Psym = 4, Symsize = .5
ERRPLOT, indgen(10) + 1870, forecast(*, 3) - forecast(*, 4), $

forecast(*, 3) + forecast(*, 4), Width = .005

Method-of-moments initial estimates:
AR estimates: 1.24426 -0.575149
MA estimate : -0.124094

Forecasts from ...
lead time 1866 1867 1868 1869 Deviat. Psi
 1 18.2833 16.6151 55.1893 83.7196 33.2179 1.3684
 2 28.9182 32.0189 62.7606 77.2092 56.2980 1.1274
 3 41.0101 45.8275 61.8922 63.4608 67.6168 0.6158
 4 49.9387 54.1496 56.4571 50.0987 70.6432 0.1178
 5 54.0937 56.5623 50.1939 41.3803 70.7515 -0.2076
 6 54.1282 54.7780 45.5268 38.2174 71.0869 -0.3261
 7 51.7815 51.1701 43.3221 39.2965 71.9074 -0.2863
 8 48.8417 47.7072 43.2631 42.4582 72.5337 -0.1687
 9 46.5335 45.4736 44.4577 45.7715 72.7498 -0.0452
 10 45.3524 44.6861 45.9781 48.0758 72.7653 0.0407
 11 45.2103 44.9909 47.1827 49.0371 72.7779 0.0767
 12 45.7128 45.8230 47.8072 48.9080 72.8225 0.0720

The plot of the forecasts and the confidence limits from year 1869 are shown in
Figure 20-2.
IDL Analyst Reference Guide IMSL_ARMA

930 Chapter 20: Time Series and Forecasting
Version History

Figure 20-2: Sunspot Data with Predicted Values and Confidence Bands

6.4 Introduced
IMSL_ARMA IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 931
IMSL_DIFFERENCE

The IMSL_DIFFERENCE function differences a seasonal or nonseasonal time
series.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_DIFFERENCE(z, periods [, /DOUBLE] [, /EXCLUDE_FIRST]
[, /FIRST_TO_NAN] [, NUM_LOST=variable] [, ORDERS=array])

Return Value

One-dimensional array of length N_ELEMENTS (z) containing the differenced
series.

Arguments

z

One-dimensional array containing the time series.

periods

One-dimensional array containing the periods at which z is to be differenced.

Keywords

DOUBLE

If present and nonzero, double precision is used.

EXCLUDE_FIRST

If Exclude_First is present and nonzero, the first Num_Lost observations are excluded
from the solution due to differencing. The differenced series is of length
N_ELEMENTS(periods) – Num_Lost. If First_To_Nan is specified, the first
IDL Analyst Reference Guide IMSL_DIFFERENCE

932 Chapter 20: Time Series and Forecasting
Num_Lost observations are set to NaN (Not a Number). This is the default if neither
Exclude_First nor First_To_Nan is specified. Default: First_To_Nan

FIRST_TO_NAN

If Exclude_First is present and nonzero, the first Num_Lost observations are excluded
from the solution due to differencing. The differenced series is of length
N_ELEMENTS(periods) – Num_Lost. If First_To_Nan is specified, the first
Num_Lost observations are set to NaN (Not a Number). This is the default if neither
Exclude_First nor First_To_Nan is specified. Default: First_To_Nan

NUM_LOST

Named variable into which the number of observations “lost” because of differencing
the time series z is stored.

ORDERS

One-dimensional array of length N_ELEMENTS(periods) containing the order of
each difference given in periods. The elements of Orders must be greater than or
equal to 0. Default: all the elements equal 1

Discussion

The IMSL_DIFFERENCE function performs m = N_ELEMENTS(periods)
successive backward differences of period si = periods(i – 1) and di = Orders(i – 1)
for i = 1, ..., m on the n = N_ELEMENTS(x) observations {Zt} for t = 1, 2, ..., n.
Consider the backward shift operator B given by:

BkZt = Zt – k

for all k. Then, the backward difference operator with period s is defined by the
following:

Note that BsZt and ∆sZt are defined only for t = (s + 1), ..., n. Repeated differencing
with period s is simply:

where d ≥ 0 is the order of differencing. Note that ∆d
s Zt is defined only for

t = (sd + 1), ..., n.

∆sZt 1 B
s

–()Zt Zt Zt s––= = for s 0≥

∆
s

d
Zt 1 B

s
–()

d
Zt

d!
j! d j–()!
---------------------- 1–()j

B
sj

Zt
j 0=

d

∑= =
IMSL_DIFFERENCE IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 933
The general difference formula used in IMSL_DIFFERENCE is given by:

where nL represents the number of observations “lost” because of differencing and
NaN represents the missing value code. See IMSL_MACHINE to retrieve missing
values. Note that:

A homogeneous, stationary time series can be arrived at by appropriately differencing
a homogeneous, nonstationary time series (Box and Jenkins 1976, p. 85). Preliminary
application of an appropriate transformation followed by differencing of a series
enables model identification and parameter estimation in the class of homogeneous
stationary IMSL_ARMA.

Examples

Example 1

Consider the Airline Data (Box and Jenkins 1976, p. 531) consisting of the monthly
total number of international airline passengers from January 1949 through
December 1960. The entire data, after taking a natural logarithm, are shown in Figure
20-3. The plot shows a linear trend and a seasonal pattern with a period of 12 months.
This suggests that the data needs a nonseasonal difference operator, ∆1, and a
seasonal difference operator, ∆12, to make the series stationary. The
IMSL_DIFFERENCE function is used to compute:

Wt = ∆1∆12Zt = (Zt – Zt – 12) – (Zt – 1 – Zt – 13)

for t = 14, 15, ..., 24.

ztemp = ALOG(IMSL_STATDATA(4))
; Get the data set.
PLOT, INDGEN(144), ztemp, Psym = -6, Symsize = .5, $

YStyle = 1, Title = 'Complete Airline Data', $
XTitle = 'Month (beginning 1949)', $
YTitle = '!8ln!3(thousands of Passengers)'

; Plot the complete data set.
z = ztemp(0:23)
periods = [1, 12]
difference = IMSL_DIFFERENCE(z, periods)

Wt

NaN for t = 1, ...,nL

∆ s1

d1∆s2

d2 ... ∆sm

dmZt for t = nL 1, ..., n+

=

nL sj dj
j
∑=
IDL Analyst Reference Guide IMSL_DIFFERENCE

934 Chapter 20: Time Series and Forecasting
; Call IMSL_DIFFERENCE.
matrix = [[INDGEN(24)], [z], [difference]]
; Create a matrix of the data to make the output easier.
PM, matrix, FORMAT = '(i4, x, 2f7.1)', $

Title = ' I z(i) difference(i)'

; Output the results.
I z(i) difference(i)

 0 4.7 NaN
 1 4.8 NaN
 2 4.9 NaN
 3 4.9 NaN
 4 4.8 NaN
 5 4.9 NaN
 6 5.0 NaN
 7 5.0 NaN
 8 4.9 NaN
 9 4.8 NaN
 10 4.6 NaN
 11 4.8 NaN
 12 4.7 NaN
 13 4.8 0.0
 14 4.9 0.0
 15 4.9 -0.0
 16 4.8 -0.0
 17 5.0 0.1
 18 5.1 0.0
 19 5.1 0.0
 20 5.1 0.0
 21 4.9 -0.0
 22 4.7 -0.0
 23 4.9 0.1
IMSL_DIFFERENCE IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 935
Example 2

The data for this example is the same as that for the initial example. The first
Num_Lost observations are excluded from W due to differencing, and Num_Lost also
is output.

ztemp = ALOG(IMSL_STATDATA(4))
z = ztemp(0:23)
periods = [1, 12]
diff = IMSL_DIFFERENCE(z, periods, $

/EXCLUDE_FIRST, NUM_LOST = num_lost)
num_valid = N_ELEMENTS(z) - num_lost
; Use Num_Lost to compute the number of rows in the result
; that have valid values.
matrix = [[INDGEN(num_valid)], [z(0:num_valid-1)], $

[DIFF(0:num_valid-1)]]
; Put the data in one matrix to make printing easier.
PM, matrix, FORMAT = '(i4, x, 2f7.1)', $

TITLE = ' i z(i) IMSL_DIFFERENCE(i)'

Figure 20-3: Complete Airline Data Plot
IDL Analyst Reference Guide IMSL_DIFFERENCE

936 Chapter 20: Time Series and Forecasting
i z(i) IMSL_DIFFERENCE(i)
 0 4.7 0.0
 1 4.8 0.0
 2 4.9 -0.0
 3 4.9 -0.0
 4 4.8 0.1
 5 4.9 0.0
 6 5.0 0.0
 7 5.0 0.0
 8 4.9 -0.0
 9 4.8 -0.0
 10 4.6 0.1

Errors

Fatal Errors

STAT_PERIODS_LT_ZERO—Parameter periods (#) = #. All elements of Periods
must be greater than zero.

STAT_ORDER_NEGATIVE—Parameter order (#) = #. All elements of order must be
nonnegative.

STAT_Z_CONTAINS_NAN—Parameter z (#) = NaN; z cannot contain missing values.
Other elements of z may be equal to NaN.

Version History

6.4 Introduced
IMSL_DIFFERENCE IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 937
IMSL_BOXCOXTRANS

The IMSL_BOXCOXTRANS function performs a forward or an inverse Box-Cox
(power) transformation.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

 Result = IMSL_BOXCOXTRANS(z, power [, /DOUBLE] [, /INVERSE]
[, S=parameter])

Return Value

One-dimensional array containing the transformed data.

Arguments

power

Exponent parameter in the Box-Cox (power) transformation.

z

One-dimensional array containing the observations.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

If present and nonzero, the inverse transform is performed.

S

Shift parameter in the Box-Cox (power) transformation. Parameter shift must satisfy
the relation min (z(i)) + S > 0. Default: S = 0.0.
IDL Analyst Reference Guide IMSL_BOXCOXTRANS

938 Chapter 20: Time Series and Forecasting
Discussion

The IMSL_BOXCOXTRANS function performs a forward or an inverse Box-Cox
(power) transformation of n = N_ELEMENTS(z) observations {Zt} for t = 0, 1, ..., n–
1.

The forward transformation is useful in the analysis of linear models or models with
non-normal errors or non-constant variance (Draper and Smith 1981, p. 222). In the
time series setting, application of the appropriate transformation and subsequent
differencing of a series can enable model identification and parameter estimation in
the class of homogeneous stationary autoregressive-moving average models. The
inverse transformation can later be applied to certain results of the analysis, such as
forecasts and prediction limits of forecasts, in order to express the results in the scale
of the original data. A brief note concerning the choice of transformations in the time
series models is given in Box and Jenkins (1976, p. 328).

The class of power transformations discussed by Box and Cox (1964) is defined by:

where Zt + ξ > 0 for all t. Since:

the family of power transformations is continuous.

Let λ = power and ξ = S; then, the computational formula used by
IMSL_BOXCOXTRANS is given by:

where Zt + ξ > 0 for all t. The computational and Box-Cox formulas differ only in the
scale and origin of the transformed data. Consequently, the general analysis of the
data is unaffected (Draper and Smith 1981, p. 225).

Xt

Zt ξ+()λ
1–

λ
------------------------------- λ 0≠

Zt ξ+()ln λ 0=

=

Zt ξ+()λ
1–

λ

λ 0→
lim Zt ξ+()ln=

Xt

Zt ξ+()λ λ 0≠

Zt ξ+()ln λ 0=

=

IMSL_BOXCOXTRANS IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 939
The inverse transformation is computed by:

where {Zt} now represents the result computed by IMSL_BOXCOXTRANS for a
forward transformation of the original data using parameters λ and ξ.

Examples

Example 1

The following example performs a Box-Cox transformation with power = 2.0 on 10
data points.

power = 2.0
z = [1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0]
; Transform Data using Box Cox Transform
x = IMSL_BOXCOXTRANS(z, power)
PM, x, Title = 'Transformed Data'

Transformed Data
1.00000
4.00000
9.00000
16.0000
25.0000
30.2500
42.2500
56.2500
64.0000
100.000

Example 2

This example extends the first example—an inverse transformation is applied to the
transformed data to return to the original data values.

power = 2.0
z = [1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0]
x = IMSL_BOXCOXTRANS(z, power)
PM, x, Title = 'Transformed Data'

Transformed Data
1.00000
4.00000
9.00000

Xt

Zt
1 λ⁄ ξ– λ 0≠

Zt()exp ξ– λ 0=

=

IDL Analyst Reference Guide IMSL_BOXCOXTRANS

940 Chapter 20: Time Series and Forecasting
16.0000
25.0000
30.2500
42.2500
56.2500
64.0000
100.000

; Perform an Inverse Transform on the Transformed Data
y = IMSL_BOXCOXTRANS(x, power, /inverse)
PM, y, Title = 'Inverse Transformed Data'

Inverse Transformed Data
1.00000
2.00000
3.00000
4.00000
5.00000
5.50000
6.50000
7.50000
8.00000
10.0000

Errors

Fatal Errors

STAT_ILLEGAL_SHIFT—S = # and the smallest element of z is z(#) = #. S plus
z(#) = #. S + z(I) must be greater than 0 for i = 1, ..., N_ELEMENTS(z).
N_ELEMENTS(z) = #.

STAT_BCTR_CONTAINS_NAN—One or more elements of z is equal to NaN (Not a
number). No missing values are allowed. The smallest index of an element of z that is
equal to NaN is #.

STAT_BCTR_F_UNDERFLOW—Forward transform. power = #. S = #. The
minimum element of z is z(#) = #. (z(#)+ S) ^ power will underflow.

STAT_BCTR_F_OVERFLOW—Forward transformation. power = #. S = #. The
maximum element of z is z(#) = #. (z(#) + S) ^ power will overflow.

STAT_BCTR_I_UNDERFLOW—Inverse transformation. power = #. The minimum
element of z is z(#) = #. exp(z(#)) will underflow.

STAT_BCTR_I_OVERFLOW—Inverse transformation. power = #. The maximum
element of z(#) = #. exp(z(#)) will overflow.
IMSL_BOXCOXTRANS IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 941
STAT_BCTR_I_ABS_UNDERFLOW—Inverse transformation. power = #. The
element of z with the smallest absolute value is z(#) = #. z(#) ^ (1/power) will
underflow.

STAT_BCTR_I_ABS_OVERFLOW—Inverse transformation. power = #. The
element of z with the largest absolute value is z(#) = #. z(#) ^ (1/ power) will
overflow.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_BOXCOXTRANS

942 Chapter 20: Time Series and Forecasting
IMSL_AUTOCORRELATION

The IMSL_AUTOCORRELATION function computes the sample autocorrelation
function of a stationary time series.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_AUTOCORRELATION(x, lagmax [, ACV=variable] [/DOUBLE]
[, SE_OPTION=value] [, SEAC=variable] [, XMEAN_IN=value]
[, XMEAN_OUT=variable])

Return Value

One-dimensional array of length lagmax + 1 containing the auto-correlations of the
time series x. The 0-th element of this array is 1. The k-th element of this array
contains the autocorrelation of lag k where k = 1, ..., lagmax.

Arguments

lagmax

Scalar integer containing the maximum lag of autocovariance, auto-correlations, and
standard errors of auto-correlations to be computed. lagmax must be greater than or
equal to 1 and less than N_ELEMENTS(x).

x

One-dimensional array containing the time series. N_ELEMENTS(x) must be greater
than or equal to 2.

Keywords

ACV

Named variable into which an array of length lagmax + 1 containing the variance and
auto-covariances of the time series x is stored. The 0-th element of this array is the
IMSL_AUTOCORRELATION IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 943
variance of the time series x. The k-th element contains the autocovariance of lag k
where k = 1, ..., lagmax.

DOUBLE

If present and nonzero, double precision is used.

SE_OPTION

Method of computation for standard errors of the auto-correlations. Keywords
Se_Option and Seac must be used together.

• 1—Compute the standard errors of autocorrelation using Barlett’s formula.

• 2—Compute the standard errors of autocorrelation using Moran’s formula.

SEAC

Named variable into which an array of length lagmax containing the standard errors
of the auto-correlations of the time series x is stored. Keywords Seac and Se_Option
must be used together.

XMEAN_IN

The estimate of the mean of the time series x.

XMEAN_OUT

Named variable into which the estimate of the mean of the time series x is stored.

Discussion

The IMSL_AUTOCORRELATION function estimates the autocorrelation function
of a stationary time series given a sample of n = N_ELEMENTS(x) observations
{Xt} for t = 1, 2, ..., n.

Let:

be the estimate of the mean µ of the time series {Xt} where:

µ x_mean=

µ̂
µ, µ known

1
n
--- Xt

t 1=

n

∑ µ unknown

=

IDL Analyst Reference Guide IMSL_AUTOCORRELATION

944 Chapter 20: Time Series and Forecasting
The autocovariance function σ(k) is estimated by:

where K = lagmax. Note that:

is an estimate of the sample variance. The autocorrelation function ρ(k) is estimated
by:

Note that:

by definition.

The standard errors of the sample auto-correlations may be optionally computed
according to the keyword Se_Option for the output keyword Seac. One method
(Bartlett 1946) is based on a general asymptotic expression for the variance of the
sample autocorrelation coefficient of a stationary time series with independent,
identically distributed normal errors. The theoretical formula is:

where:

assumes µ is unknown. For computational purposes, the auto-correlations ρ(k) are
replaced by their estimates:

for |k| ≤ K, and the limits of summation are bounded because of the assumption that
ρ(k) = 0 for all k such that |k| > K.

A second method (Moran 1947) utilizes an exact formula for the variance of the
sample autocorrelation coefficient of a random process with independent, identically
distributed normal errors. The theoretical formula is:

σ̂ k() 1
n
--- Xt µ̂–()

t 1=

n k–

∑ Xt k+ µ̂–() k = 0, 1, ..., K,=

σ̂ 0()

ρ̂ k() σ̂ k()
σ̂ 0()
----------- k = 0, 1, ..., K,=

ρ̂ 0() 1≡

var ρ̂ k(){ } 1
n
--- ρ2

i() ρ+ i k–()ρ i k+() 4ρ i()ρ k()ρ i k–() 2ρ2
i()ρ2

k()+–[]
i ∞–=

∞

∑=

ρ̂ k()

ρ̂ k()

var ρ̂ k(){ } n k–
n n 2+()
--------------------=
IMSL_AUTOCORRELATION IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 945
where µ is assumed to be equal to zero. Note that this formula does not depend on the
autocorrelation function.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for this
example consists of the number of sunspots observed from 1770 through 1869. The
IMSL_AUTOCORRELATION function computes the estimated auto-covariances,
estimated auto-correlations, and estimated standard errors of the auto-correlations.

.RUN
PRO print_results, xm, acv, result, seac

PRINT, 'Mean =', xm
PRINT, 'Variance =', acv(0)
PRINT, ' Lag ACV AC SEAC'
PRINT, ' 0', acv(0), result(0)
FOR j = 1, 20 DO $

PRINT, j, acv(j), result(j), seac(j - 1)
END

lagmax = 20
data = IMSL_STATDATA(2)
x = data(21:120,1)
result = IMSL_AUTOCORRELATION(x, lagmax, ACV = acv, $

SE_OPTION = 1, SEAC = seac, XMEAN_OUT = xm)
print_results, xm, acv, result, seac

Mean = 46.9760
Variance = 1382.91

Lag ACV AC SEAC
0 1382.91 1.00000
1 1115.03 0.806293 0.0347834
2 592.004 0.428087 0.0962420
3 95.2974 0.0689109 0.156783
4 -235.952 -0.170620 0.205767
5 -370.011 -0.267560 0.230956
6 -294.255 -0.212780 0.228995
7 -60.4423 -0.0437067 0.208622
8 227.633 0.164604 0.178476
9 458.381 0.331462 0.145727
10 567.841 0.410613 0.134406
11 546.122 0.394908 0.150676
12 398.937 0.288477 0.174348
13 197.757 0.143001 0.190619
14 26.8911 0.0194453 0.195490
15 -77.2807 -0.0558828 0.195893
IDL Analyst Reference Guide IMSL_AUTOCORRELATION

946 Chapter 20: Time Series and Forecasting
16 -143.733 -0.103935 0.196285
17 -202.048 -0.146104 0.196021
18 -245.372 -0.177432 0.198716
19 -230.816 -0.166906 0.205359
20 -142.879 -0.103318 0.209387

Version History

6.4 Introduced
IMSL_AUTOCORRELATION IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 947
IMSL_PARTIAL_AC

The IMSL_PARTIAL_AC function computes the sample partial autocorrelation
function of a stationary time series.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_PARTIAL_AC(cf [, /DOUBLE])

Return Value

One-dimensional array containing the partial auto-correlations of the time series x.

Arguments

cf

One-dimensional array containing the auto-correlations of the time series x.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

IMSL_PARTIAL_AC estimates the partial auto-correlations of a stationary time
series given the K = (N_ELEMENTS(cf) – 1) sample auto-correlations:

for k = 0, 1, ..., K. Consider the AR(k) process defined by:

where φkj denotes the j-th coefficient in the process. The set of estimates:

ρ̂ k()

Xt φk1Xt 1– φk2Xt 2– ... φkkXt k– At+ + + +=

φ̂kk{ }
IDL Analyst Reference Guide IMSL_PARTIAL_AC

948 Chapter 20: Time Series and Forecasting
for k = 1, ..., K is the sample partial autocorrelation function. The autoregressive
parameters:

for j = 1, ..., k are approximated by Yule-Walker estimates for successive AR(k)
models where k = 1, ..., K. Based on the sample Yule-Walker equations:

a recursive relationship for k = 1, ..., K was developed by Durbin (1960). The
equations are given by:

and:

This procedure is sensitive to rounding error and should not be used if the parameters
are near the non-stationary boundary. A possible alternative would be to estimate
{φkk} for successive AR(k) models using least or maximum likelihood. Based on the
hypothesis that the true process is AR(p), Box and Jenkins (1976, page 65) note:

See Box and Jenkins (1976, pages 82–84) for more information concerning the
partial autocorrelation function.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for this
example consists of the number of sunspots observed from 1770 through 1869.

φ̂kj{ }

ρ̂ j() φ̂k1ρ̂ j 1–() φ̂k2ρ̂ j 2–() ... φ̂kkρ̂ j k–()+ + += j 1 2 ..., , ,= k

φ̂kk

ρ̂ 1() k 1=

ρ̂ k() φ̂k 1 j,– ρ̂ k j–()
j 1=

k 1–

∑–

1 φ̂k 1 j,– ρ̂ j()
j 1=

k 1–

∑–

--- k 2 ..., K,=

=

φ̂kj

φ̂k 1 j,– φ̂kkφ̂k 1 k j–,–– j 1 2 ..., , ,= k 1=

φ̂kk j k=

=

var φ̂kk{ } 1
n
---= k p 1+≥
IMSL_PARTIAL_AC IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 949
Routine IMSL_PARTIAL_AC is used to compute the estimated partial auto-
correlations.

data = IMSL_STATDATA(2)
x = data(21:120,1)
result = IMSL_AUTOCORRELATION(x, 20)
partial = IMSL_PARTIAL_AC(result)
PRINT, 'LAG PACF'
FOR i = 0, 19 DO PM, i + 1, partial(i), FORMAT = '(I2, F11.3)'

LAG PACF
 1 0.806
 2 -0.635
 3 0.078
 4 -0.059
 5 -0.001
 6 0.172
 7 0.109
 8 0.110
 9 0.079
10 0.079
11 0.069
12 -0.038
13 0.081
14 0.033
15 -0.035
16 -0.131
17 -0.155
18 -0.119
19 -0.016
20 -0.004

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_PARTIAL_AC

950 Chapter 20: Time Series and Forecasting
IMSL_LACK_OF_FIT

The IMSL_LACK_OF_FIT function performs lack-of-fit test for a univariate time
series or transfer function given the appropriate correlation function.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LACK_OF_FIT(nobs, cf, npfree [, /DOUBLE] [, LAGMIN=value])

Return Value

One-dimensional array of length 2 with the test statistic, Q, and its
p-value, p. Under the null hypothesis, Q has an approximate chi-squared distribution
with lagmax - Lagmin + 1 – npfree degrees of freedom.

Arguments

cf

One-dimensional array containing the correlation function.

nobs

Number of observations of the stationary time series.

npfree

Number of free parameters in the formulation of the time series model. npfree must
be greater than or equal to zero and less than lagmax where lagmax =
(N_ELEMENTS(cf) – 1). Woodfield (1990) recommends npfree = p + q.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IMSL_LACK_OF_FIT IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 951
LAGMIN

Minimum lag of the correlation function. Lagmin corresponds to the lower bound of
summation in the lack of fit test statistic. Default: Lagmin = 1.

Discussion

Routine IMSL_LACK_OF_FIT may be used to diagnose lack of fit in both
IMSL_ARMA and transfer function models. Table 20-2 shows typical arguments for
these situations:

The IMSL_LACK_OF_FIT function performs a portmanteau lack of fit test for a
time series or transfer function containing n observations given the appropriate
sample correlation function:

for k = L, L + 1, …, K where L = Lagmin and K = lagmax.

The basic form of the test statistic Q is:

with L = 1 if:

is an autocorrelation function. Given that the model is adequate, Q has a chi-squared
distribution with K − L + 1 – m degrees of freedom where m = npfree is the number of
parameters estimated in the model. If the mean of the time series is estimated,
Woodfield (1990) recommends not including this in the count of the parameters
estimated in the model. Thus, for an IMSL_ARMA(p, q) model set npfree = p + q

Model LAGMIN LAGMAX NPFREE

IMSL_ARMA
(p, q)

1

p + q

Transfer
function

0

r + s

Table 20-2: Max, Min, and Free Arguments

NOBS

NOBS

ρ̂ k()

Q n n 2+() n k–() 1– ρ̂ k()
k L=

K

∑=

ρ̂ k()
IDL Analyst Reference Guide IMSL_LACK_OF_FIT

952 Chapter 20: Time Series and Forecasting
regardless of whether the mean is estimated or not. The original derivation for time
series models is due to Box and Pierce (1970) with the above modified version
discussed by Ljung and Box (1978). The extension of the test to transfer function
models is discussed by Box and Jenkins (1976, pages 394–395).

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for this
example consists of the number of sunspots observed from 1770 through 1869. An
IMSL_ARMA(2,1) with nonzero mean is fitted using the “IMSL_ARMA” on
page 915. The auto-correlations of the residuals are estimated using the
“IMSL_AUTOCORRELATION” on page 942. A portmanteau lack of fit test is
computed using 10 lags with IMSL_LACK_OF_FIT.

The warning message from IMSL_ARMA in the output can be ignored. (See the
example for routine IMSL_ARMA for a full explanation of the warning message.)

p = 2
q = 1
tc = 0.125
lagmax = 10
npfree = 4
; Get sunspot data for 1770 through 1869, store it in x()
data = IMSL_STATDATA(2)
x = data(21:120,1)
; Get residuals for IMSL_ARMA(2, 1) for autocorrelation/lack
; of fit
params = IMSL_ARMA(x, p, q, /Lsq, TOL_CONVERGENCE = tc, $

RESIDUAL = r)

; Get autocorrelations from residuals for lack of fit test
; NOTE: number of observations is equal to number of residuals
corrs = IMSL_AUTOCORRELATION(r, lagmax)
; Get lack of fit test statistic and p-value
; NOTE: number of observations is equal to original number of data
result = IMSL_LACK_OF_FIT(N_ELEMENTS(x), corrs, npfree)
; Print parameter estimates, test statistic, and p_value
; NOTE: Test Statistic Q follows a Chi-squated dist.
PRINT, 'Lack of Fit Statistic (Q) =', result(0), $

FORMAT = '(A28, F8.3)'
PRINT, 'P-value (PVALUE) =', result(1), FORMAT = '(A28, F8.4)'

Lack of Fit Statistic (Q) = 14.572
P-value (PVALUE) = 0.9761
IMSL_LACK_OF_FIT IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 953
Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_LACK_OF_FIT

954 Chapter 20: Time Series and Forecasting
IMSL_GARCH

The IMSL_GARCH function computes estimates of the parameters of a
IMSL_GARCH(p,q) model.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_GARCH(p, q, y, xguess [, AIC=variable] [, /DOUBLE]
[, LOG_LIKELIHOOD=variable] [, MAX_SIGMA=value] [, VAR=variable])

Return Value

One-dimensional array of length p + q + 1 containing the estimated values of sigma
squared, the AR parameters, and the MA parameters.

Arguments

p

Number of autoregressive (AR) parameters.

q

Number of moving average (MA) parameters.

xguess

One-dimensional array of length p + q + 1 containing the initial values for the
parameter array x.

y

One-dimensional array containing the observed time series data.
IMSL_GARCH IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 955
Keywords

AIC

Named variable into which the value of Akaike Information Criterion evaluated at the
estimated parameter array x is stored.

DOUBLE

If present and nonzero, double precision is used.

LOG_LIKELIHOOD

Named variable into which the value of Log-likelihood function evaluated at the
estimated parameter array x is stored.

MAX_SIGMA

Value of the upperbound on the first element (sigma) of the array of returned
estimated coefficients. Default: Max_Sigma = 10.

VAR

Named variable into which an array of size (p + q + 1) by (p + q + 1) containing the
variance-covariance matrix is stored.

Discussion

The Generalized Autoregressive Conditional Heteroskedastic (IMSL_GARCH)
model is defined as:

where zt’s are independent and identically distributed standard normal random
variables:

The above model is denoted as IMSL_GARCH(p,q). The p is the autoregressive lag
and the q is the moving average lag. When βi = 0, i = 1,2,…,p, the above model

y z

y

t t t

t i t i
i

p
i t i

i

q

=

= + +∑ ∑−
=

−
=

σ

σ σ β σ α2 2 2

1 1
,

σ β α

β α

> ≥ ≥

∑ + ∑ <
= =

0 0 0

1
1 1

, ,

.

i i

i

p
i

i

q

 and

i

IDL Analyst Reference Guide IMSL_GARCH

956 Chapter 20: Time Series and Forecasting
reduces to ARCH(q) which was proposed by Engle (1982). The non-negativity
conditions on the parameters implied a nonnegative variance and the condition on the
sum of the βi’s and α i’s is required for wide sense stationarity.

In the empirical analysis of observed data, IMSL_GARCH(1,1) or
IMSL_GARCH(1,2) models have often found to appropriately account for
conditional heteroskedasticity (Palm 1996). This finding is similar to linear time
series analysis based on IMSL_ARMA models.

It is important to notice that for the above models positive and negative past values
have a symmetric impact on the conditional variance. In practice, many series may
have strong asymmetric influence on the conditional variance. To take into account
this phenomena, Nelson (1991) put forward Exponential IMSL_GARCH
(EGARCH). Lai (1998) proposed and studied some properties of a general class of
models that extended linear relationship of the conditional variance in ARCH and
IMSL_GARCH into nonlinear fashion.

The maximal likelihood method is used in estimating the parameters in
IMSL_GARCH(p,q). The log-likelihood of the model for the observed series {Yt}
with length m is:

In the model, if q = 0, the model IMSL_GARCH is singular such that the estimated
Hessian matrix H is singular.

The initial values of the parameter array x entered in array xguess must satisfy certain
constraints. The first element of xguess refers to sigma and must be greater than zero
and less than Max_Sigma. The remaining p + q initial values must each be greater
than or equal to zero but less than one.

To guarantee stationarity in model fitting:

is checked internally. The initial values should be selected from the values between
zero and one. The Aic is computed by:

 2 * log (L) + 2 * (p+q+1)

where log(L) is the value of the log-likelihood function at the estimated parameters.

log L m log y

 y

t t t
t

m

t

m

t i t i
i

p
t i

i

q

() () / log ,

.

= − − ∑∑

= + ∑ + ∑

==

−
=

−
=

2
2 1

2
1
2

2 2 2

11

2 2 2

1

2

1

π σ σ

σ σ β σ αwhere i

x i
p q

() ,
i=

+
∑ <

1
1

IMSL_GARCH IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 957
In fitting the optimal model, the subroutine IMSL_MINCONGEN as well as its
associated subroutines are modified to find the maximal likelihood estimates of the
parameters in the model. Statistical inferences can be performed outside the routine
IMSL_GARCH based on the output of the log-likelihood function (Log_Liklihood),
the Akaike Information Criterion (Aic), and the variance-covariance matrix (Var).

Example

The data for this example are generated to follow a IMSL_GARCH(p,q) process by
using a random number generation function SGARCH. The data set is analyzed and
estimates of sigma, the AR parameters, and the MA parameters are returned. The
values of the Log-likelihood function and the Akaike Information Criterion are
returned from the output keywords Log_Likelihood and Aic respectively.

.RUN
FUNCTION SGARCH, p, q, m, x

z = FLTARR(m + 1000)
y0 = FLTARR(m + 1000)
sigma = FLTARR(m + 1000)
z = IMSL_RANDOM(m + 1000, /Normal)
l = ((p > q) > 1)
y0(0:l - 1) = z(0:l - 1)*x(0)
; Compute the Initial Value Of Sigma
s3 = 0.0
IF ((p > q) GE 1) THEN s3 = TOTAL(x(1:p + q))
 sigma(0:l - 1) = x(0)/(1.0 - s3)
FOR i = l, (m + 1000 - 1) DO BEGIN

s1 = 0.0
s2 = 0.0

IF (q GE 1) THEN BEGIN
FOR j = 0, q - 1 DO s1 = s1 + x(j + 1) * $

(y0(i - j - 1)^2)
END
IF (p GE 1) THEN BEGIN

FOR j = 0, p - 1 DO s2 = s2 + x(q + 1 + j) $
* sigma(i - j - 1)

END
sigma(i) = x(0) + s1 + s2
y0(i) = z(i)*SQRT(sigma(i))

END
; Discard the first 1000 Simulated Observations
RETURN, y0(1000:*)
; End of function

END

IMSL_RANDOMOPT, Set = 182198625
p = 2
IDL Analyst Reference Guide IMSL_GARCH

958 Chapter 20: Time Series and Forecasting
q = 1
m = 1000
x = [1.3, 0.2, 0.3, 0.4]
xguess = [1.0, 0.1, 0.2, 0.3]
y = SGARCH(p, q, m, x)
result = IMSL_GARCH(p, q, y, xguess, LOG_LIKELIHOOD = a, $

AIC = aic)
PRINT, 'Sigma estimate is', result(0)
PRINT, 'AR(1) estimate is', result(1)
PRINT, 'AR(2) estimate is', result(2)
PRINT, 'MA(1) estimate is', result(3)
PRINT, 'Log-likelihood function value is', a
PRINT, 'Akaike Information Criterion value is', aic

Sigma estimate is 1.27742
AR(1) estimate is 0.230132
AR(2) estimate is 0.375924
MA(1) estimate is 0.312843
Log-likelihood function value is -2707.53
Akaike Information Criterion value is 5423.06

Version History

6.4 Introduced
IMSL_GARCH IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 959
IMSL_KALMAN

The IMSL_KALMAN procedure performs Kalman filtering and evaluates the
likelihood function for the state-space model.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_KALMAN, b, covb, n, ss, alndet [, COVV=array] [, Q_MATRIX=array]
[, R=array] [, T_MATRIX=array] [, TOLERANCE=value] [, V=array]
[, Y=array]

Arguments

alndet

Named variable containing the natural log of the product of the nonzero eigenvalues
of P where P * σ2 is the variance-covariance matrix of the observations. Although
alndet is computed, IMSL_KALMAN avoids the explicit computation of P. alndet
must be initialized to zero before the first call to IMSL_KALMAN. In the usual case
when P is non-singular, alndet is the natural log of the determinant of P.

b

One dimensional array of containing the estimated state vector. The input is the
estimated state vector at time k given the observations through time k – 1. The output
is the estimated state vector at time k + 1 given the observations through time k. On
the first call to IMSL_KALMAN, the input b must be the prior mean of the state
vector at time.

covb

Two dimensional array of size N_ELEMENTS(b) by N_ELEMENTS(b) such that
covb* σ2 is the mean squared error matrix for b. Before the first call to
IMSL_KALMAN, covb* σ2 must equal the variance-covariance matrix of the state
vector.
IDL Analyst Reference Guide IMSL_KALMAN

960 Chapter 20: Time Series and Forecasting
n

Named variable containing the rank of the variance-covariance matrix for all the
observations. n must be initialized to zero before the first call to
IMSL_KALMAN. In the usual case when the variance-covariance matrix is non-
singular, n equals the sum of the N_ELEMENTS(Y) from the invocations to
IMSL_KALMAN. See the keyword section below for the definition of Y.

ss

Named variable containing the generalized sum of squares. ss must be initialized to
zero before the first call to IMSL_KALMAN. The estimate of σ2 is given by:

Keywords

COVV

Two dimensional array if size N_ELEMENTS(Y) by N_ELEMENTS(Y) containing a
matrix such that Covv * σ2 is the variance-covariance matrix of v.

Q_MATRIX

Two dimensional array if size N_ELEMENTS(b) by N_ELEMENTS(b) matrix such
that Q_matrix * σ2 is the variance-covariance matrix of the error vector in the state
equation. Default: There is no error term in the state equation

R

Two dimensional array if size N_ELEMENTS(Y) by N_ELEMENTS(Y) containing
the matrix such that R * σ2 is the variance-covariance matrix of errors in the
observation equation. Keywords Y, Z and R indicate an update step and must be used
together.

T_MATRIX

Two dimensional array if size N_ELEMENTS(b) by N_ELEMENTS(b) containing
the transition matrix in the state equation. Default: T_matrix = identity matrix

TOLERANCE

Tolerance used in determining linear dependence. Default: Tolerance = 100*eps
where eps is machine precision.

ss
n

IMSL_KALMAN IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 961
V

One dimensional array of length N_ELEMENTS(Y) containing the one-step-ahead
prediction error.

Y

One dimensional array containing the observations. Keywords Y, Z and R indicate an
update step and must be used together

Discussion

Routine IMSL_KALMAN is based on a recursive algorithm given by Kalman (1960),
which has come to be known as the Kalman filter. The underlying model is known as
the state-space model. The model is specified stage by stage where the stages
generally correspond to time points at which the observations become available. The
routine IMSL_KALMAN avoids many of the computations and storage requirements
that would be necessary if one were to process all the data at the end of each stage in
order to estimate the state vector. This is accomplished by using previous
computations and retaining in storage only those items essential for processing of
future observations.

The notation used here follows that of Sallas and Harville (1981). Let yk (input in
keyword Y) be the nk × 1 vector of observations that become available at time k. The
subscript k is used here rather than t, which is more customary in time series, to
emphasize that the model is expressed in stages k = 1, 2, ... and that these stages need
not correspond to equally spaced time points. In fact, they need not correspond to
time points of any kind. The observation equation for the state-space model is:

yk = Zkbk + ek k = 1, 2, ...

Here, Zk is an nk × q known matrix and bk is the q × 1 state vector. The state vector bk
is allowed to change with time in accordance with the state equation:

bk+1 = Tk+1 bk + wk+1 k = 1, 2, ...

starting with b1 = µ1 + w1.

The change in the state vector from time k to k + 1 is explained in part by the
transition matrix Tk+1 (the identity matrix by default, or optionally input using
keyword T_matrix), which is assumed known. It is assumed that the q-dimensional
wks (k = 1, 2, ... K) are independently distributed multivariate normal with mean
vector 0 and variance-covariance matrix σ2Qk, that the nk-dimensional eks (k = 1, 2,
... K) are independently distributed multivariate normal with mean vector 0 and
variance-covariance matrix σ2Rk, and that the wks and eks are independent of each
IDL Analyst Reference Guide IMSL_KALMAN

962 Chapter 20: Time Series and Forecasting
other. Here, µ1 is the mean of b1 and is assumed known, σ2 is an unknown positive
scalar. Qk+1 (input in Q) and Rk (input in keyword R) are assumed known.

Denote the estimator of the realization of the state vector bk given the observations y1,
y2, …, yj by:

By definition, the mean squared error matrix for:

is:

At the time of the k-th invocation, we have:

and:

which were computed from the (k-1)-st invocation, input in b and covb, respectively.
During the k-th invocation, routine IMSL_KALMAN computes the filtered estimate:

along with Ck|k. These quantities are given by the update equations:

where:

and where:

Here, vk (stored in v) is the one-step-ahead prediction error, and σ2Hk is the variance-
covariance matrix for vk. Hk is stored in covv. The “start-up values” needed on the
first invocation of IMSL_KALMAN are:

and C1|0 = Q1 input via b and covb, respectively. Computations for the k-th invocation
are completed by IMSL_KALMAN computing the one-step-ahead estimate:

β̂k j

β̂k j

σ̂
2
Ck j E β̂k j bk–() β̂k j bk–()

T
=

β̂k k 1–

Ck k 1–

β̂k k

β̂k k β̂k k 1– Ck k 1– Zk
T

Hk
1–
vk+=

Ck k Ck k 1– Ck k 1– Zk
T

Hk
1–
ZkCk k 1––=

vk yk Zkβ̂k k 1––=

Hk Rk ZkCk k 1– Zk
T

+=

β̂1 0 µ1=
IMSL_KALMAN IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 963

along with Ck+1|k given by the prediction equations:

If both the filtered estimates and one-step-ahead estimates are needed at each time
point, IMSL_KALMAN can be invoked twice for each time point—first without
T_matrix and Q_matrix to produce:

and Ck|k, and second without keywords Y, Z, and R to produce:

and Ck+1|k (Without T_matrix and Q_matrix, prediction equations are skipped.
Without keywords Y, Z, and R, update equations are skipped.).

Often, one desires the estimate of the state vector more than one-step-ahead, i.e., an
estimate of:

is needed where k > j + 1. At time j, IMSL_KALMAN is invoked with keywords Y, Z,
and R to compute:

Subsequent invocations of IMSL_KALMAN without Y, Z, and R can compute:

Computations for:

and Ck|j assume the variance-covariance matrices of the errors in the observation
equation and state equation are known up to an unknown positive scalar multiplier,
σ2. The maximum likelihood estimate of σ2 based on the observations y1, y2, …, ym,
is given by:

where:

β̂k 1+ k

β̂k 1+ k Tk 1+ β̂k k=

Ck 1+ k Tk 1+ Ck kTk 1+
T

Qk 1++=

β̂k k

β̂k 1+ k

β̂k j

β̂j 1+ j

β̂j 2+ j β̂j 3+ j, ..., β̂k j,

β̂k j

σ̂
2

SS() N⁄=

1

1 1

m m
T

k k k k
k k

N n and SS v H v−

= =

= =∑ ∑
IDL Analyst Reference Guide IMSL_KALMAN

964 Chapter 20: Time Series and Forecasting
N and SS are the input/output arguments n and ss.

If σ2 is known, the Rks and Qks can be input as the variance-covariance matrices
exactly. The earlier discussion is then simplified by letting σ2 = 1.

In practice, the matrices Tk, Qk, and Rk are generally not completely known. They
may be known functions of an unknown parameter vector θ. In this case,
IMSL_KALMAN can be used in conjunction with an optimization program (see
IMSL_FMINV) to obtain a maximum likelihood estimate of θ. The natural logarithm
of the likelihood function for y1, y2, ..., ym differs by no more than an additive
constant from:

(Harvey 1981, page 14, equation 2.21).

Here:

(stored in alndet) is the natural logarithm of the determinant of V where σ2V is the
variance-covariance matrix of the observations.

Minimization of -2L(θ, σ2; y1, y2, ..., ym) over all θ and σ2 produces maximum
likelihood estimates. Equivalently, minimization of -2Lc(θ; y1, y2, ..., ym) where:

produces maximum likelihood estimates:

The minimization of -2Lc(θ; y1, y2, ..., ym) instead of -2L(θ, σ2; y1, y2, ..., ym), reduces
the dimension of the minimization problem by one. The two optimization problems
are equivalent since:

minimizes -2L(θ, σ2; y1, y2, ..., ym) for all θ, consequently:

Lc θ σ2
, y1; y2, ..., ym,() 1

2
---– N σ2

ln
1
2
--- det Hk()[]ln

k 1=

m

∑
1
2
---σ2

vk
T

Hk
1–
vk

k 1=

m

∑––=

det Hk()[]ln
k 1=

m

∑

Lc θ y1 y2 ..., ym,,;() 1
2
---– N

SS
N

 ln

1
2
--- det Hk()[]ln

k 1=

m

∑–=

θ̂ and σ̂
2

SS N⁄=

σ̂
2

θ() SS θ() N⁄=

σ̂
2

θ()
IMSL_KALMAN IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 965
can be substituted for σ2 in L(θ, σ2; y1, y2, …, ym) to give a function that differs by no
more than an additive constant from Lc(θ; y1, y2, ..., ym).

The earlier discussion assumed Hk to be non-singular. If Hk is singular, a modification
for singular distributions described by Rao (1973, pages 527–528) is used. The
changes in the preceding discussion are as follows:

1. Replace

by a generalized inverse.

2. Replace det(Hk) by the product of the nonzero eigenvalues of Hk.

3. Replace N by:

Maximum likelihood estimation of parameters in the Kalman filter is discussed by
Sallas and Harville (1988) and Harvey (1981, pages 111–113).

Example

Routine IMSL_KALMAN is used to compute the filtered estimates and one-step-
ahead estimates for a scalar problem discussed by Harvey (1981, pages 116–117).
The observation equation and state equation are given by:

where the eks are identically and independently distributed normal with mean 0 and
variance σ2, the wks are identically and independently distributed normal with mean 0
and variance 4σ2, and b1 is distributed normal with mean 4 and variance 16σ2. Two
invocations of IMSL_KALMAN are needed for each time point in order to compute
the filtered estimate and the one-step-ahead estimate. The first invocation does not
use the keywords T_matrix and Q_matrix so that the prediction equations are skipped
in the computations. The update equations are skipped in the computations in the
second invocation.

This example also computes the one-step-ahead prediction errors. Harvey (1981,
page 117) contains a misprint for the value v4 that he gives as 1.197. The correct
value of v4 = 1.003 is computed by IMSL_KALMAN.

Note that this example is in the form of an IDL Analyst procedure, with the output
following the procedure.

Hk
1–

rank Hk()
k 1=

m

∑

y be
b bw k
k k k

k k k

=+
=+ =+ +1 1 1234,,,
IDL Analyst Reference Guide IMSL_KALMAN

966 Chapter 20: Time Series and Forecasting
.RUN
PRO EX_KALMAN

z = 1
r = 1
q = 4
t = 1

b = 4
covb = 16

ydata = [4.4, 4, 3.5, 4.6]

n = 0
ss = 0
alndet = 0
FORMAT = '(2I4, 2F8.3, I4, 4F8.3)'
PRINT, ' k j b covb n ss alndet v

covv'
FOR i = 0, 3 DO BEGIN

y = ydata(i)
; Update
IMSL_KALMAN, b, covb, n, ss, alndet, Y = y, Z = Z, R = r, $

v = v, covv = covv
PRINT, i, i, b, covb, n, ss, alndet, v, covv, $

FORMAT = format

; Predict
IMSL_KALMAN, b, covb, n, ss, alndet, t_matrix = t, q = q
PRINT, i+1, i, b, covb, n, ss, alndet, v, covv, $

FORMAT = format
END

END

Output
k j b covb n ss alndet v covv
0 0 4.376 0.941 1 0.009 2.833 0.400 17.000
1 0 4.376 4.941 1 0.009 2.833 0.400 17.000
1 1 4.063 0.832 2 0.033 4.615 -0.376 5.941
2 1 4.063 4.832 2 0.033 4.615 -0.376 5.941
2 2 3.597 0.829 3 0.088 6.378 -0.563 5.832
3 2 3.597 4.829 3 0.088 6.378 -0.563 5.832
3 3 4.428 0.828 4 0.260 8.141 1.003 5.829
4 3 4.428 4.828 4 0.260 8.141 1.003 5.829
IMSL_KALMAN IDL Analyst Reference Guide

Chapter 20: Time Series and Forecasting 967
Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_KALMAN

968 Chapter 20: Time Series and Forecasting
IMSL_KALMAN IDL Analyst Reference Guide

Chapter 21

Multivariate Analysis
This section contains the following topics:
Overview: Multivariate Analysis 970 Multivariate Analysis Routines 972
IDL Analyst Reference Guide 969

970 Chapter 21: Multivariate Analysis
Overview: Multivariate Analysis

This section describes cluster analysis, principal components, and factor analysis.

Cluster Analysis

The IMSL_K_MEANS function performs a K-means cluster analysis. Basic K-means
clustering attempts to find a clustering that minimizes the within-cluster sums-of-
squares. In this method of clustering the data, matrix X is grouped so that each
observation (row in X) is assigned to one of a fixed number, K, of clusters. The sum of
the squared difference of each observation about its assigned cluster’s mean is used as
the criterion for assignment. In the basic algorithm, observations are transferred from
one cluster or another when doing so decreases the within-cluster sums-of-squared
differences. When no transfer occurs in a pass through the entire data set, the
algorithm stops. The IMSL_K_MEANS function is one implementation of the basic
algorithm.

The usual course of events in K-means cluster analysis is to use IMSL_K_MEANS to
obtain the optimal clustering. The clustering is then evaluated by functions described
in Chapter 13, “Basic Statistics”, and other chapters in this manual. Often, K-means
clustering with more than one value of K is performed, and the value of K that best
fits the data is used.

Clustering can be performed either on observations or variables. The discussion of
IMSL_K_MEANS assumes the clustering is to be performed on the observations,
which correspond to the rows of the input data matrix. If variables, rather than
observations, are to be clustered, the data matrix should first be transposed. In the
documentation for IMSL_K_MEANS, the words “observation” and “variable” can be
interchanged.

Principal Components

The idea in principal components is to find a small number of linear combinations of
the original variables that maximize the variance accounted for in the original data.
This amounts to an eigensystem analysis of the covariance (or correlation) matrix. In
addition to the eigensystem analysis, IMSL_PRINC_COMP computes standard
errors for the eigenvalues. Correlations of the original variables with the principal
component scores also are computed.
Overview: Multivariate Analysis IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 971
Factor Analysis

Factor analysis and principal component analysis, while different in assumptions,
often serve the same purpose. Unlike principal components in which linear
combinations yielding the highest possible variances are obtained, factor analysis
generally obtains linear combinations of the observed variables according to a model
relating the observed variable to hypothesized underlying factors, plus a random error
term called the unique error or uniqueness. In factor analysis, the unique errors
associated with each variable are usually assumed to be independent of the factors.
Additionally, in the common factor model, the unique errors are assumed to be
mutually independent. The factor analysis model is expressed in the following
equation:

x – µ = Λf + e

where x is the p vector of observed values, µ is the p vector of variable means, Λ is
the p x k matrix of factor loadings, f is the k vector of hypothesized underlying
random factors, e is the p vector of hypothesized unique random errors, p is the
number of variables in the observed variables, and k is the number of factors.

Because much of the computation in factor analysis was originally done by hand or
was expensive on early computers, quick (but “dirty”) algorithms that made the
calculations possible were developed. One result is the many factor extraction
methods available today. Generally speaking, in the exploratory or model-building
phase of a factor analysis, a method of factor extraction that is not computationally
intensive (such as principal components, principal factor, or image analysis) is used.
If desired, a computationally intensive method is then used to obtain the final factors.
IDL Analyst Reference Guide Overview: Multivariate Analysis

972 Chapter 21: Multivariate Analysis
Multivariate Analysis Routines

• IMSL_K_MEANS—Performs a K-means (centroid) cluster analysis.

• IMSL_PRINC_COMP—Computes principal components.

• IMSL_FACTOR_ANALYSIS—Extracts factor-loading estimates.

• IMSL_DISCR_ANALYSIS—Perform discriminant function analysis.
Multivariate Analysis Routines IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 973
IMSL_K_MEANS

The IMSL_K_MEANS function performs a K-means (centroid) cluster analysis.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_K_MEANS(x, seeds [, COUNTS_CLUSTER=variable]
[, /DOUBLE] [, FREQUENCIES=array] [, ITMAX=value]
[, MEANS_CLUSTER=variable] [, SSQ_CLUSTER=variable]
[, VAR_COLUMNS=array] [, WEIGHTS=array])

Return Value

The cluster membership for each observation is returned.

Arguments

seeds

Two-dimensional array containing the cluster seeds, i.e., estimates for the cluster
centers. The seed value for the j-th variable of the i-th seed should be in seeds (i, j).

x

Two-dimensional array containing observations to be clustered. The data value for the
i-th observation of the j-th variable should be in x(i, j) .

Keywords

COUNTS_CLUSTER

Named variable into which an array containing the number of observations in each
cluster is stored.

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_K_MEANS

974 Chapter 21: Multivariate Analysis
FREQUENCIES

One-dimensional array containing the frequency of each observation of matrix x.
Default: Frequencies(*) = 1

ITMAX

Maximum number of iterations. Default: Itmax = 30

MEANS_CLUSTER

Named variable into which a two-dimensional array containing the cluster means is
stored.

SSQ_CLUSTER

Named variable into which a one-dimensional array containing the within sum-of-
squares for each cluster is stored.

VAR_COLUMNS

One-dimensional array containing the columns of x to be used in computing the
metric. Columns are numbered 0, 1, 2, ..., N_ELEMENTS(x(0, *)). Default:
Vars_Columns(*) = 0, 1, 2, ..., N_ELEMENTS(x(0, *)) – 1

WEIGHTS

One-dimensional array containing the weight of each observation of matrix x.
Default: Weights(*) = 1

Discussion

The IMSL_K_MEANS function is an implementation of Algorithm AS 136 by
Hartigan and Wong (1979). This function computes K-means (centroid) Euclidean
metric clusters for an input matrix starting with initial estimates of the K-cluster
means. The IMSL_K_MEANS function allows for missing values coded as NaN
(Not a Number) and for weights and frequencies.

Let p = N_ELEMENTS(x (0, *)) be the number of variables to be used in computing
the Euclidean distance between observations. The idea in K-means cluster analysis is
to find a clustering (or grouping) of the observations so as to minimize the total
within-cluster sums-of-squares. In this case, the total sums-of-squares within each
IMSL_K_MEANS IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 975
cluster is computed as the sum of the centered sum-of-squares over all non-missing
values of each variable. That is:

where νim denotes the row index of the m-th observation in the i-th cluster in the
matrix X; ni is the number of rows of X assigned to group i; f denotes the frequency of
the observation; w denotes its weight; δ is 0 if the j-th variable on observation νim is
missing, otherwise δ is 1; and:

is the average of the non-missing observations for variable j in group i. This method
sequentially processes each observation and reassigns it to another cluster if doing so
results in a decrease of the total within-cluster sums-of-squares. See
Hartigan and Wong (1979) or Hartigan (1975) for details.

Example

This example performs K-means cluster analysis on Fisher’s iris data, which is
obtained by IMSL_STATDATA. The initial cluster seed for each iris type is an
observation known to be in the iris type.

seeds = MAKE_ARRAY(3,4)
x = IMSL_STATDATA(3)
seeds(0, *) = x(0, 1:4)
seeds(1, *) = x(50, 1:4)
seeds(2, *) = x(100, 1:4)
; Use Columns 1, 2, 3, and 4 of data matrix x, only.
cluster_group = IMSL_K_MEANS(x(*, 1:4), seeds, $

Means_Cluster = means_cluster, Ssq_Cluster= ssq_cluster, $
Counts_Cluster = counts_cluster)

FORMAT = '(a, 10i4)'
FOR i = 0, 140, 10 DO BEGIN &$

PRINT, 'observation: ',i + INDGEN(10)+1, $
FORMAT = format &$
PRINT, 'cluster: ', cluster_group(i:i+9), $
FORMAT = format &$
PRINT &$

END
; Print cluster membership in groups of 10.

observation: 1 2 3 4 5 6 7 8 9 10
cluster : 1 1 1 1 1 1 1 1 1 1

observation: 11 12 13 14 15 16 17 18 19 20

φ fν im
wνim

δνim j, xν im j, xij–()2

m 1=

ni

∑
j 1=

p

∑
i 1=

K

∑=

xij
IDL Analyst Reference Guide IMSL_K_MEANS

976 Chapter 21: Multivariate Analysis
cluster : 1 1 1 1 1 1 1 1 1 1
observation: 21 22 23 24 25 26 27 28 29 30

cluster : 1 1 1 1 1 1 1 1 1 1
observation: 31 32 33 34 35 36 37 38 39 40

cluster : 1 1 1 1 1 1 1 1 1 1
observation: 41 42 43 44 45 46 47 48 49 50

cluster : 1 1 1 1 1 1 1 1 1 1
observation: 51 52 53 54 55 56 57 58 59 60

cluster : 2 2 3 2 2 2 2 2 2 2
observation: 61 62 63 64 65 66 67 68 69 70

cluster : 2 2 2 2 2 2 2 2 2 2
observation: 71 72 73 74 75 76 77 78 79 80

cluster : 2 2 2 2 2 2 2 3 2 2
observation: 81 82 83 84 85 86 87 88 89 90

cluster : 2 2 2 2 2 2 2 2 2 2
observation: 91 92 93 94 95 96 97 98 99 100

cluster : 2 2 2 2 2 2 2 2 2 2
observation: 101 102 103 104 105 106 107 108 109 110

cluster : 3 2 3 3 3 3 2 3 3 3
observation: 111 112 113 114 115 116 117 118 119 120

cluster : 3 3 3 2 2 3 3 3 3 2
observation: 121 122 123 124 125 126 127 128 129 130

cluster : 3 2 3 2 3 3 2 2 3 3
observation: 131 132 133 134 135 136 137 138 139 140

cluster : 3 3 3 2 3 3 3 3 2 3
observation: 141 142 143 144 145 146 147 148 149 150

cluster : 3 3 2 3 3 3 2 3 3 2

PM, [[INDGEN(3) + 1],[means_cluster]], Title = 'Cluster Means:',$
FORMAT = '(i3, 5x, 4f8.4)'

Cluster Means:
1 5.0060 3.4280 1.4620 0.2460
2 5.9016 2.7484 4.3935 1.4339
3 6.8500 3.0737 5.7421 2.0711

PM, [[INDGEN(3) + 1],[ssq_cluster]], $
Title = 'Cluster Sums of Squares:', FORMAT = '(i3, 5x, f8.4)'

Cluster Sums of Squares:
1 15.1510
2 39.8210
3 23.8795

PM, [[INDGEN(3) + 1],[counts_cluster]], Title = $
'Number of Observations per Cluster:'

Number of Observations per Cluster:
1 50
IMSL_K_MEANS IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 977
2 62
3 38

Errors

Warning Errors

STAT_NO_CONVERGENCE—Convergence did not occur.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_K_MEANS

978 Chapter 21: Multivariate Analysis
IMSL_PRINC_COMP

The IMSL_PRINC_COMP function computes principal components.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_PRINC_COMP(covariances [, /COV_MATRIX]
[, /CORR_MATRIX] [, CORRELATIONS=variable]
[, CUM_PERCENT=variable] [, DF=variable] [, /DOUBLE]
[, EIGENVECTORS=variable] [, STDEV=variable])

Return Value

One-dimensional array containing the eigenvalues of covariances ordered from
largest to smallest.

Arguments

covariances

Two-dimensional square matrix containing the covariance or correlation matrix.

Keywords

COV_MATRIX

If present and nonzero, treats the input matrix covariances as a covariance matrix.
Keywords Cov_Matrix and Corr_Matrix cannot be used together. Default:
Cov_Matrix = 1

CORR_MATRIX

If present and nonzero, treats the input matrix covariances as a correlation matrix.
IMSL_PRINC_COMP IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 979
CORRELATIONS

Named variable into which the one-dimensional array of length containing the
correlations of the principal components (the columns) with the observed/
standardized variables (the rows) is stored. If Cov_Matrix is present and nonzero, the
correlations are with the observed variables; otherwise, the correlations are with the
standardized variables (to a variance of 1.0). In the principal component model for
factor analysis, matrix Correlations is the matrix of unrotated factor loadings.

CUM_PERCENT

Named variable into which the one-dimensional array containing the cumulative
percent of the total variances explained by each principal component is stored.

DF

Named variable into which the number of degrees of freedom in covariances is
stored. Keywords Df and Stdev must be used together.

DOUBLE

If present and nonzero, double precision is used.

EIGENVECTORS

Named variable into which the two-dimensional array containing the eigenvectors of
covariances, stored columnwise, is stored. Each vector is normalized to have
Euclidean length equal to the value 1. Also, the sign of each vector is set so that the
largest component in magnitude (the first of the largest if ties exist) is made positive.

STDEV

Named variable into which the one-dimensional array containing the estimated
asymptotic standard errors of the eigenvalues is stored. Keywords Df and Stdev must
be used together.

Discussion

The IMSL_PRINC_COMP function finds the principal components of a set of
variables from a sample covariance or correlation matrix. The characteristic roots,
characteristic vectors, standard errors for the characteristic roots, and the correlations
of the principal component scores with the original variables are computed. Principal
components obtained from correlation matrices are the same as principal components
obtained from standardized variables (to unit variance).
IDL Analyst Reference Guide IMSL_PRINC_COMP

980 Chapter 21: Multivariate Analysis
The principal component scores are the elements of the vector y = ΓTx, where Γ is the
matrix whose columns are the characteristic vectors (eigenvectors) of the sample
covariance (or correlation) matrix and x is the vector of observed (or standardized)
random variables. The variances of the principal component scores are the
characteristic roots (eigenvalues) of the covariance (correlation) matrix.

Asymptotic variances for the characteristic roots were first obtained by Girschick
(1939) and are given more recently by Kendall et al. (1983, p. 331). These variances
are computed either for covariance matrices or for correlation matrices.

The correlations of the principal components with the observed (or standardized)
variables are given in the matrix correlations. When the principal components are
obtained from a correlation matrix, Correlations is the same as the matrix of
unrotated factor loadings obtained for the principal components model for factor
analysis.

Examples

Example 1

In this example, principal components are computed for a nine-variable covariance
matrix.

covariances = $
[[1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639], $
[0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645], $
[0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504], $
[0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505], $
[0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409], $
[0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472], $
[0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68], $
[0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47], $
[0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0]]
values = IMSL_PRINC_COMP(covariances)
PM, values, Title = 'Eigenvalues:'

Eigenvalues:
4.67692
1.26397
0.844450
0.555027
0.447076
0.429125
0.310241
0.277006
0.196197
IMSL_PRINC_COMP IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 981
Example 2

In this example, principal components are computed for a nine-variable correlation
matrix. This example uses the same data as the first example.

values = IMSL_PRINC_COMP(covariances, /CORR_MATRIX, $
EIGENVECTORS = ev, $
STDEV = stdev, $
DF = 100, $
CUM_PERCENT = cp, $
CORRELATIONS = a)

PM, [[values],[ev]], TITLE = 'Eigenvalue Eigenvector:', $
FORMAT = '(f7.2, 2x, 9f7.2)'

Eigenvalue Eigenvector:
4.68 0.35 -0.24 0.14 -0.33 -0.11 0.80 0.17 -0.12 -0.05
1.26 0.35 -0.11 -0.28 -0.22 0.77 -0.20 0.14 -0.30 -0.01
0.84 0.28 -0.27 -0.56 0.69 -0.15 0.15 0.01 -0.04 -0.10
0.56 0.37 0.40 0.04 0.12 0.00 0.12 -0.40 -0.12 0.71
0.45 0.31 0.50 -0.07 -0.02 -0.28 -0.18 0.73 0.01 0.00
0.43 0.35 0.46 0.18 0.11 0.12 0.07 -0.37 0.09 -0.68
0.31 0.35 -0.27 -0.07 -0.35 -0.52 -0.44 -0.29 -0.34 -0.11
0.28 0.24 -0.32 0.74 0.43 0.09 -0.20 0.19 -0.16 0.05
0.20 0.38 -0.25 -0.01 -0.15 0.05 -0.15 -0.03 0.85 0.12

PM, a, Title = 'Matrix A:', FORMAT = '(9f7.2)'

Matrix A:
0.75 -0.26 0.13 -0.25 -0.07 0.52 0.10 -0.07 -0.02
0.76 -0.12 -0.26 -0.16 0.51 -0.13 0.08 -0.16 -0.00
0.60 -0.30 -0.51 0.52 -0.10 0.10 0.01 -0.02 -0.04
0.79 0.45 0.04 0.09 0.00 0.08 -0.22 -0.06 0.31
0.68 0.56 -0.07 -0.02 -0.19 -0.12 0.41 0.00 0.00
0.75 0.51 0.17 0.08 0.08 0.05 -0.21 0.05 -0.30
0.75 -0.31 -0.07 -0.26 -0.35 -0.29 -0.16 -0.18 -0.05
0.52 -0.36 0.68 0.32 0.06 -0.13 0.10 -0.09 0.02
0.83 -0.28 -0.01 -0.11 0.03 -0.10 -0.01 0.45 0.05

PM, [[values], [stdev], [cp]], Title = 'Eigenvalue STD PCT', $
FORMAT = '(3(3x,F5.2))'

Eigenvalue STD PCT
4.68 0.65 0.52
1.26 0.18 0.66
0.84 0.10 0.75
0.56 0.09 0.82
0.45 0.09 0.87
0.43 0.09 0.91
0.31 0.09 0.95
IDL Analyst Reference Guide IMSL_PRINC_COMP

982 Chapter 21: Multivariate Analysis
0.28 0.10 0.98
0.20 0.11 1.00

Errors

Warning Errors

STAT_100_DF—Because the number of degrees of freedom in Covariances and Df is
less than or equal to zero, 100 degrees of freedom will be used.

STAT_COV_NOT_NONNEG_DEF—Keyword Eigenvectors(#) = #. One or more
eigenvalues much less than zero are computed. The matrix Covariances is not
nonnegative definite. In order to continue computations of Eigenvectors and
Correlations, these eigenvalues are treated as zero.

STAT_FAILED_TO_CONVERGE—Iteration for the eigenvalue failed to converge in
100 iterations before deflating.

Version History

6.4 Introduced
IMSL_PRINC_COMP IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 983
IMSL_FACTOR_ANALYSIS

The IMSL_FACTOR_ANALYSIS function extracts initial factor-loading estimates in
factor analysis.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FACTOR_ANALYSIS(covariances, n_factors [, ALPHA=value]
[, CHI_SQ_TEST=variable] [, /DOUBLE] [, EIGENVALUES=variable]
[, EPS=value] [, F_MIN=variable] [, /GEN_LSQ] [, /IMAGE]
[, ITERS=variable] [, ITMAX=value] [, LAST_STEP=variable]
[, MAX_LIKELIHOOD=value] [, MAX_STEPS=value]
[, /PRINC_COMP] [, /PRINC_FACTOR] [, SWITCH_EPS=value]
[, TUCKER_COEF=variable] [, UNIQUE_VAR_IN=array]
[, UNIQUE_VAR_OUT=array] [, /UNWGT_LSQ])

Return Value

A two-dimensional array containing the matrix of factor loadings.

Arguments

covariances

Two-dimensional array containing the variance-covariance or correlation matrix.

n_factors

Number of factors in the model.

Keywords

ALPHA

The number of degrees of freedom in covariances. Using Alpha forces the alpha-
factor analysis (common factor model) method to be used to obtain the estimates.
IDL Analyst Reference Guide IMSL_FACTOR_ANALYSIS

984 Chapter 21: Multivariate Analysis
Note
Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, Gen_Lsq,
Image, and Alpha cannot be used together.

CHI_SQ_TEST

Named variable into which a one-dimensional array of length 3, containing the chi-
squared test statistics, is stored. The contents of the array are, in order, the number of
degrees of freedom in chi-squared, the chi-squared test statistic for testing that
n_factors common factors are adequate for the data, and the probability of a greater
chi-squared statistic.

DOUBLE

If present and nonzero, double precision is used.

EIGENVALUES

Named variable into which a one-dimensional array of length
N_ELEMENTS(covariances(0, *)) containing the eigenvalues of the matrix from
which the factors were extracted is stored.

EPS

Convergence criterion used to terminate the iterations. For the unweighted least
squares, generalized least squares, or maximum likelihood methods, convergence is
assumed when the relative change in the criterion is less than Eps. For alpha-factor
analysis, convergence is assumed when the maximum change (relative to the
variance) of a uniqueness is less than Eps. Default: Eps = 0.0001

F_MIN

Named variable into which the value of the function minimum is stored.

GEN_LSQ

If present and nonzero, the generalized least-squares (common factor model) method
is used to obtain the estimates.

Note
Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, Gen_Lsq,
Image, and Alpha cannot be used together.
IMSL_FACTOR_ANALYSIS IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 985
IMAGE

If present and nonzero, the image-factor analysis (common factor model) method is
used to obtain the estimates.

Note
Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, Gen_Lsq,
Image, and Alpha cannot be used together.

ITERS

Named variable into which the number of iterations is stored.

ITMAX

Maximum number of iterations in the iterative procedure. Default: Itmax = 60

LAST_STEP

Named variable into which an array of length N_ELEMENTS(covariances(0, *))
containing the updates of the unique variance estimates when convergence was
reached (or the iterations terminated) is stored.

MAX_LIKELIHOOD

The number of degrees of freedom in covariances. Using Max_Likelihood forces the
maximum likelihood (common factor) model to be used to obtain the estimates.

Note
Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, Gen_Lsq,
Image, and Alpha cannot be used together.

MAX_STEPS

Maximum number of step halvings allowed during any one iteration. Default:
Max_Steps = 10

PRINC_COMP

If present and nonzero, the principal component (principal component model) is used
to obtain the estimates.
IDL Analyst Reference Guide IMSL_FACTOR_ANALYSIS

986 Chapter 21: Multivariate Analysis
Note
Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, Gen_Lsq,
Image, and Alpha cannot be used together.

PRINC_FACTOR

If present and nonzero, the principal factor (common factor model) is used to obtain
the estimates.

Note
Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, Gen_Lsq,
Image, and Alpha cannot be used together.

SWITCH_EPS

Convergence criterion used to switch to exact second derivatives. When the largest
relative change in the unique standard deviation vector is less than Switch_Eps, exact
second derivative vectors are used. The value of Switch_Eps is not used with the
principal component, principal factor, image-factor analysis, or alpha-factor analysis
methods. Default: Switch_Eps = 0.1

TUCKER_COEF

Named variable into which the Tucker reliability coefficient is stored.

UNIQUE_VAR_IN

One-dimensional array of length N_ELEMENTS(covariances(0, *)) containing the
initial estimates of the unique variances. Default: initial estimates are taken as the
constant 1 – n_factors/2 * N_ELEMENTS(covariances(0, *)) divided by the
diagonal elements of the inverse of covariances

UNIQUE_VAR_OUT

One-dimensional array of length N_ELEMENTS(covariances(0, *)) containing the
estimated unique variances.

UNWGT_LSQ

If present and nonzero, the unweighted least-squares (common factor model) method
is used to obtain the estimates. This option is the default.
IMSL_FACTOR_ANALYSIS IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 987
Note
Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, Gen_Lsq,
Image, and Alpha cannot be used together.

Discussion

Function S computes unrotated factor loadings in exploratory factor-analysis models.
Models available in IMSL_FACTOR_ANALYSIS are the principal component
model for factor analysis and the common factor model with additions to the common
factor model in alpha-factor analysis and image analysis. Methods of estimation
include principal components, principal factor, image analysis, unweighted least
squares, generalized least squares, and maximum likelihood.

In the factor-analysis model used for factor extraction, the basic model is given as Σ =
ΛΛT + Ψ, where Σ is the p x p population covariance matrix, Λ is the p x k matrix of
factor loadings relating the factors f to the observed variables x, and Ψ is the p x p
matrix of covariances of the unique errors e. Here, p =
N_ELEMENTS(covariances(0, *)) and k = n_factors. The relationship between the
factors, the unique errors, and the observed variables is given as x = Λf + e, where in
addition, the expected values of e, f, and x are assumed to be zero. (The sample means
can be subtracted from x if the expected value of x is not zero.) It also is assumed that
each factor has unit variance, that the factors are independent of each other, and that
the factors and the unique errors are mutually independent. In the common factor
model, the elements of unique errors e also are assumed to be independent of one
another so that the matrix Ψ is diagonal. This is not the case in the principal
component model in which the errors may be correlated.

Further differences between the various methods concern the criterion that is
optimized and the amount of computer effort required to obtain estimates. Generally
speaking, the least-squares and maximum likelihood methods, which use iterative
algorithms, require the most computer time with the principal factor, principal
component and the image methods requiring much less time since the algorithms in
these methods are not iterative. The algorithm in alpha-factor analysis is also
iterative, but the estimates in this method generally require somewhat less computer
effort than the least squares and maximum likelihood estimates. In all methods, one
eigensystem analysis is required on each iteration.

Principal Component and Principal Factor Methods

Both the principal component and principal factor methods compute the factor-
loading estimates as:
IDL Analyst Reference Guide IMSL_FACTOR_ANALYSIS

988 Chapter 21: Multivariate Analysis
where Γ and the diagonal matrix ∆ are the eigenvectors and eigenvalues of a matrix.
In the principal component model, the eigensystem analysis is performed on the
sample covariance (correlation) matrix S, while in the principal factor model, the
matrix (S + Ψ) is used. If the unique error variances Ψ are not known in the principal
factor mode, then IMSL_FACTOR_ANALYSIS obtains estimates for them.

The basic idea in the principal component method is to find factors that maximize the
variance in the original data that is explained by the factors. Because this method
allows the unique errors to be correlated, some factor analysts insist that the principal
component method is not a factor analytic method. Usually, however, the estimates
obtained by the principal component model and factor analysis model are quite
similar.

It should be noted that both the principal component and principal factor methods
give different results when the correlation matrix is used in place of the covariance
matrix. In fact, any rescaling of the sample covariance matrix can lead to different
estimates with either of these methods. A further difficulty with the principal factor
method is the problem of estimating the unique error variances. Theoretically, these
variances must be known in advance and must be passed to
IMSL_FACTOR_ANALYSIS using the keyword Unique_Var_In. In practice, the
estimates of these parameters are produced by IMSL_FACTOR_ANALYSIS when
Unique_Var_In is not specified. In either case, the resulting adjusted covariance
(correlation) matrix:

may not yield the n_factors positive eigenvalues required for n_factors factors to be
obtained. If this occurs, you must either lower the number of factors to be estimated
or give new unique error variance values.

Least-squares and Maximum Likelihood Methods

Unlike the previous two methods, the algorithm used to compute estimates in this
section is iterative (see Jöreskog 1977). As with the principal factor model, you can
either initialize the unique error variances or allow IMSL_FACTOR_ANALYSIS to
compute initial estimates. Unlike the principal factor method,
IMSL_FACTOR_ANALYSIS optimizes the criterion function with respect to both Ψ
and Γ. (In the principal factor method, Ψ is assumed to be known. Given Ψ, estimates
for Λ may be obtained.)

The major difference between the methods discussed in this section is in the criterion
function that is optimized. Let S denote the sample covariance (correlation) matrix,

Γ
ˆ
∆
ˆ 1 2⁄–

S Ψ̂–
IMSL_FACTOR_ANALYSIS IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 989
and let Σ denote the covariance matrix that is to be estimated by the factor model. In
the unweighted least-squares method, also called the iterated principal factor method
or the minres method (see Harman 1976, p. 177), the function minimized is the sum-
of-squared differences between S and Σ. This is written as:

Φul = 0.5 (trace(S – Σ)2)

Generalized least-squares and maximum-likelihood estimates are asymptotically
equivalent methods. Maximum-likelihood estimates maximize the (normal theory)
likelihood:

{φml = trace(Σ –1S) – log(| Σ –1S |)}

while generalized least squares optimizes the function:

Φgs = trace(Σ S –1 – I)2

In all three methods, a two-stage optimization procedure is used. This proceeds by
first solving the likelihood equations for Λ in terms of Ψ and substituting the solution
into the likelihood. This gives a criterion φ(Ψ, Λ(Ψ)), which is optimized with
respect to Ψ. In the second stage, the estimates:

are obtained from the estimates for Ψ.

The generalized least-squares and maximum-likelihood methods allow for the
computation of a statistic (Chi_Sq_Test) for testing that n_factors common factors are
adequate to fit the model. This is a chi-squared test that all remaining parameters
associated with additional factors are zero. If the probability of a larger chi-squared is
so small that the null hypothesis is rejected, then additional factors are needed
(although these factors may not be of any practical importance). Failure to reject does
not legitimize the model. The statistic Chi_Sq_Test is a likelihood ratio statistic in
maximum likelihood estimation. As such, it asymptotically follows a chi-squared
distribution with degrees of freedom given by Df.

The Tucker and Lewis reliability coefficient, ρ, is returned by Tucker_Coef when the
maximum likelihood or generalized least-squares methods are used. This coefficient
is an estimate of the ratio of explained variation to the total variation in the data. It is
computed as follows:

Λ̂

ρ
mMo mMk–

mMo 1–
-------------------------------=

M0
ln S()–

p p 1–() 2⁄
---------------------------=
IDL Analyst Reference Guide IMSL_FACTOR_ANALYSIS

990 Chapter 21: Multivariate Analysis
where:

• | S | is the determinant of covariances

• p = N_ELEMENTS(covariances(0, *))

• k = N_ELEMENTS(covariances(0, *))

• φ is the optimized criterion; and d = Df

Image Analysis

The term image analysis is used here to denote the noniterative image method of
Kaiser (1963), rather than the image analysis discussed by Harman (1976, p. 226).
The image method (as well as the alpha-factor analysis method) begins with the
notion that only a finite number from an infinite number of possible variables have
been measured. The image-factor pattern is calculated under the assumption that the
ratio of the number of factors to the number of observed variables is near zero, so that
a very good estimate for the unique error variances (for standardized variables) is
given as 1 minus the squared multiple correlation of the variable under consideration
with all variables in the covariance matrix.

First, the matrix D2 = (diag(S–1))–1 is computed, where the operator “diag” results in
a matrix consisting of the diagonal elements of its argument and S is the sample
covariance (correlation) matrix. Then, the eigenvalues Λ and eigenvectors Γ of the
matrix D –1SD–1 are computed. Finally, the unrotated image-factor pattern is
computed as DΓ [(Λ – I)2 Λ–1]1/2.

Alpha-factor Analysis

The alpha-factor analysis method of Kaiser and Caffrey (1965) finds factor-loading
estimates to maximize the correlation between the factors and the complete universe
of variables of interest. The basic idea in this method is that only a finite number of
variables out of a much larger set of possible variables is observed. The population

m d 2p 5+
6

---------------– 2k
6

------–=

Mk
φ

p k–()2
p– k–() 2⁄

---=
IMSL_FACTOR_ANALYSIS IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 991
factors are linearly related to this larger set, while the observed factors are linearly
related to the observed variables. Let f denote the factors obtainable from a finite set
of observed random variables, and let ξ denote the factors obtainable from the
universe of observable variables. Then, the alpha method attempts to find factor-
loading estimates so as to maximize the correlation between f and ξ. In order to
obtain these estimates, the iterative algorithm of Kaiser and Caffrey (1965) is used.

Comments

1. IMSL_FACTOR_ANALYSIS makes no attempt to solve for n_factors. In
general, if n_factors is not known in advance, several different values of
n_factors should be used and the most reasonable value kept in the final
solution.

2. Iterative methods are generally thought to be superior from a theoretical point
of view, but in practice, often lead to solutions that differ little from the
noniterative methods. For this reason, it is usually suggested that a noniterative
method be used in the initial stages of the factor analysis and that the iterative
methods be used when issues such as the number of factors have been
resolved.

3. Initial estimates for the unique variances can be input. If the iterative methods
fail for these values, new initial estimates should be tried. These can be
obtained by use of another factoring method. (Use the final estimates from the
new method as the initial estimates in the old method.)

Examples

Example 1

In this example, factor analysis is performed for a nine-variable matrix using the
default method of unweighted least squares.

covariances = $
[[1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639], $
[0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645], $
[0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504], $
[0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505], $
[0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409], $
[0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472], $
[0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68], $
[0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47], $
[0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0]]
n_factors = 3
a = IMSL_FACTOR_ANALYSIS(covariances, n_factors)
PM, a, Title = 'Unrotated Loadings:'
IDL Analyst Reference Guide IMSL_FACTOR_ANALYSIS

992 Chapter 21: Multivariate Analysis
Unrotated Loadings:
0.701801 -0.231594 0.0795559
0.719964 -0.137227 -0.208225
0.535122 -0.214389 -0.22709
0.790669 0.405017 0.00704257
0.653203 0.422066 -0.104563
0.753915 0.484247 0.160720
0.712674 -0.281911 -0.0700779
0.483540 -0.262720 0.461992
0.819210 -0.313728 -0.0198735

Example 2

The following data were originally analyzed by Emmett (1949). There are 211
observations on nine variables. Following Lawley and Maxwell (1971), three factors
are obtained by the method of maximum likelihood. This example uses the same data
as the first example.

n_factors = 3
a = IMSL_FACTOR_ANALYSIS(covariances, n_factors, $
Max_Likelihood=210, Switch_Eps=0.01, $
Eps=0.000001, Itmax=30, Max_Steps=10)
PM, a, Title = 'Unrotated Loadings:'

Unrotated Loadings:
0.664210 -0.320874 0.0735207
0.688833 -0.247138 -0.193280
0.492616 -0.302161 -0.222433
0.837198 0.292427 -0.0353954
0.705002 0.314794 -0.152784
0.818701 0.376672 0.104524
0.661494 -0.396031 -0.0777453
0.457925 -0.295526 0.491347
0.765668 -0.427427 -0.0116992

Errors

Warning Errors

STAT_VARIANCES_INPUT_IGNORED—When using the keyword Princ_Comp, the
unique variances are assumed to be zero. Input for Unique_Var_In is ignored.

STAT_TOO_MANY_ITERATIONS—Too many iterations. Convergence is assumed.

STAT_NO_DEG_FREEDOM—No degrees of freedom for the significance testing.

STAT_TOO_MANY_HALVINGS—Too many step halvings. Convergence is assumed.
IMSL_FACTOR_ANALYSIS IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 993
Fatal Errors

STAT_HESSIAN_NOT_POS_DEF—Approximate Hessian is not semidefinite on
iteration #. The computations cannot proceed. Try using different initial estimates.

STAT_FACTOR_EVAL_NOT_POS—Variable Eigenvalues(#) = #. An eigenvalue
corresponding to a factor is negative or zero. Either use different initial estimates for
Unique_Var_In or reduce the number of factors.

STAT_COV_NOT_POS_DEF—Parameter covariances is not positive semidefinite. The
computations cannot proceed.

STAT_COV_IS_SINGULAR—Matrix covariances is singular. The computations
cannot continue because variable # is linearly related to the remaining variables.

STAT_COV_EVAL_ERROR—An error occurred in calculating the eigenvalues of the
adjusted (inverse) covariance matrix. Check covariances.

STAT_ALPHA_FACTOR_EVAL_NEG—In alpha-factor analysis on iteration #,
eigenvalue # is #. As all eigenvalues corresponding to the factors must be positive,
either the number of factors must be reduced or new initial estimates for
Unique_Var_In must be given.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_FACTOR_ANALYSIS

994 Chapter 21: Multivariate Analysis
IMSL_DISCR_ANALYSIS

The IMSL_DISCR_ANALYSIS procedure performs a linear or a quadratic
discriminant function analysis among several known groups.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_DISCR_ANALYSIS, x, n_groups [, CLASS_MEMBER=variable]
[, CLASS_TABLE=variable] [, COEFFICIENTS=variable]
[, COVARIANCES=variable] [, /DOUBLE] [, GROUP_COUNTS=variable]
[, IDX_COLS=array] [, IDX_VARS=array] [, METHOD=value] [, /
PRIOR_EQUAL] [, PRIOR_INPUT=array] [, PRIOR_OUTPUT=variable] [, /
PRIOR_PROP] [, MAHALANOBIS=variable] [, MEANS=variable]
[, NMISSING=variable] [, PROB=variable] [, STATS=variable]

Arguments

n_groups

Number of groups in the data.

x

Two-dimensional array of size n_rows by n_variables + 1 containing the data where
n_rows = N_ELEMENTS(x(*,0)), the number of rows to be processed and
n_variables = number of variables to be used in the discrimination. The first
n_variables columns correspond to the variables, and the last column contains the
group numbers. The groups must be numbered 1, 2, ..., n_groups.

Keywords

CLASS_MEMBER

Named variable into which an one-dimensional integer array of length n_rows
containing the group to which the observation was classified is stored.
IMSL_DISCR_ANALYSIS IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 995
If an observation has an invalid group number, frequency, or weight when the
leaving-out-one method has been specified, then the observation is not classified and
the corresponding elements of Class_Member (and Prob, see Prob below) are set to
zero.

CLASS_TABLE

Named variable into which a two-dimensional array of size n_groups by n_groups
containing the classification table is stored. Each observation that is classified and has
a group number 1.0, 2.0, ..., n_groups is entered into the table. The rows of the table
correspond to the known group membership. The columns refer to the group to which
the observation was classified.

COEFFICIENTS

Named variable into which a two-dimensional array of size n_groups by (n_variables
+ 1) containing the linear discriminant coefficients is stored. The first column of
Coefficients contains the constant term, and the remaining columns contain the
variable coefficients. Row i – 1 of Coefficients corresponds to group i, for i = 1, 2, ...,
n_variables + 1. Array Coefficients are always computed as the linear discriminant
function coefficients even when quadratic discrimination is specified.

COVARIANCES

Named variable into which a three-dimensional array of size g by n_variables by
n_variables containing covariance results is stored. The within-group covariance
matrices (Method 1, 2, 4, and 5 only) is the first g-1 matrices, and the pooled
covariance matrix is the g-th matrix.

DOUBLE

If present and nonzero, double precision is used.

GROUP_COUNTS

Named variable into which an one-dimensional integer array of length n_groups
containing the number of observations in each group is stored.

IDX_COLS

One-dimensional array containing the indices of the variables to be used in the
analysis.
IDL Analyst Reference Guide IMSL_DISCR_ANALYSIS

996 Chapter 21: Multivariate Analysis
IDX_VARS

Three element array indicating the column numbers of x in which particular types of
data are stored. Columns are numbered 0 ... N_ELEMENTS(Idx_Cols) − 1.

Idx_Vars(0) contains the index for the column of x in which the group numbers are
stored.

Idx_Vars(1) and Idx_Vars(2) contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set Idx_Vars(1) = −1 if there will be
no column for frequencies. Set Idx_Vars(2) = −1 if there will be no column for
weights. Weights are rounded to the nearest integer. Negative weights are not
allowed.

Defaults: Idx_Cols = 0, 1, ..., n_variables – 1,

 Idx_Vars(0) = n_variables,

 Idx_Vars(1) = −1, and

 Idx_Vars(2) = −1

METHOD

Method of discrimination. The method chosen determines whether linear or quadratic
discrimination is used, whether the group covariance matrices are computed (the
pooled covariance matrix is always computed), and whether the leaving-out-one or
the reclassification method is used to classify each observation. The Method values
are shown in Table 21-1.

Method discrimination
method

covariances
computed

classification
method

1 linear pooled, group reclassification

2 quadratic pooled, group reclassification

3 linear pooled reclassification

4 linear pooled, group leaving-out-one

5 quadratic pooled, group leaving-out-one

6 linear pooled leaving-out-one

Table 21-1: Method Values
IMSL_DISCR_ANALYSIS IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 997
In the leaving-out-one method of classification, the posterior probabilities are
adjusted so as to eliminate the effect of the observation from the sample statistics
prior to its classification. In the classification method, the effect of the observation is
not eliminated from the classification function. Default: Method = 1

PRIOR_EQUAL

By default, (or if Prior_Equal is used), equal prior probabilities are calculated as 1.0/
n_groups. Keywords Prior_Equal, Prior_Prop, and Prior_Input must not be used
together.

PRIOR_INPUT

If present, an array of length n_groups containing the prior probabilities for each
group, such that the sum of all prior probabilities is equal to 1.0. Keywords
Prior_Input, Prior_Equal, and Prior_Prop must not be used together.

PRIOR_OUTPUT

Named variable into which an one-dimensional array of length n_groups containing
the most recently calculated or input prior probabilities is stored.

PRIOR_PROP

If present, prior probabilities are calculated to be proportional to the sample size in
each group. Keywords Prior_Prop, Prior_Equal, and Prior_Input must not be used
together.

MAHALANOBIS

Named variable into which a two-dimensional array of size n_groups by n_groups
containing the Mahalanobis distances:

between the group means is stored.

For linear discrimination, the Mahalanobis distance is computed using the pooled
covariance matrix. Otherwise, the Mahalanobis distance:

between group means i and j is computed using the within covariance matrix for
group i in place of the pooled covariance matrix.

Dij
2

Dij
2

IDL Analyst Reference Guide IMSL_DISCR_ANALYSIS

998 Chapter 21: Multivariate Analysis
MEANS

Named variable into which a two-dimensional array of size
n_groups by n_variables containing the variable means is stored. The i-th row of
means contains the group i variable means.

NMISSING

Named variable into which the number of rows of data encountered containing
missing values (NaN) for the classification, group, weight, and/or frequency variables
is stored. If a row of data contains a missing value (NaN) for any of these variables,
that row is excluded from the computations.

PROB

Named variable into which a two-dimensional array of size n_rows by n_groups
containing the posterior probabilities for each observation is stored.

STATS

Named variable into which an one-dimensional array of length 4 + 2 * (n_groups + 1)
containing various statistics of interest is stored. The first element of Stats is the sum
of the degrees of freedom for the within-covariance matrices. The second, third, and
fourth elements of Stats correspond to the chi-squared statistic, its degrees of
freedom, and the probability of a greater chi-squared, respectively, of a test of the
homogeneity of the within-covariance matrices (not computed if Method is equal to 3
or 6). The fifth through 5 + n_groups elements of Stats contain the log of the
determinants of each group’s covariance matrix (not computed if Method is equal to 3
or 6) and of the pooled covariance matrix (element 4 + n_groups). Finally, the last
n_groups + 1 elements of Stats contain the sum of the weights within each group, and
in the last position, the sum of the weights in all groups.

Comments

1. Common choices for the Bayesian prior probabilities are given by:
Prior_Input(i) = 1.0/n_groups (equal priors)
Prior_Input(i) = Group_Count/n_rows (proportional priors)
Prior_Input(i) = Past history or subjective judgment.
In all cases, the priors should sum to 1.0.

Discussion

IMSL_DISCR_ANALYSIS performs discriminant function analysis using either
linear or quadratic discrimination. The output includes a measure of distance between
IMSL_DISCR_ANALYSIS IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 999
the groups, a table summarizing the classification results, a matrix containing the
posterior probabilities of group membership for each observation, and the within-
sample means and covariance matrices. Linear discriminant function coefficients are
also computed.

Covariance matrices are defined as follows: Let Ni denote the sum of frequencies of
observations in group i and Mi denote the number of observations in group i. Then, if
Si denotes the within-group i covariance matrix:

Where wj is the weight of the j-th observation in group i, fj is the frequency, xj is the j-
th observation column vector (in group i), and:

denotes the mean vector of the observations in group i. The mean vectors are
computed as:

Given the means and the covariance matrices, the linear discriminant function for
group i is computed as:

where ln (pi) is the natural log of the prior probability for the i-th group, x is the
observation to be classified, and Sp denoted the pooled covariance matrix.

Let S denote either the pooled covariance matrix of one of the within-group
covariance matrices Si. (S will be the pooled covariance matrix in linear
discrimination, and Si otherwise.) The Mahalanobis distance between group i and
group j is computed as:

Finally, the asymptotic chi-squared test for the equality of covariance matrices is
computed as follows (Morrison 1976, p. 252):

Si
1

Ni 1–
-------------- wjfj xj x–() xj x–()T

j 1=

Mi

∑=

x

x
W

w f x W w fj
j

Mi
j j i j j

j

Mi
= ∑ = ∑

= =
()1

1 1i
where

zi pi()ln 0.5xi
T

Sp
1–
xi x

T
Sp

1–
xi+–=

Dij
2

xi xj–()T
S

1–
xi xj–()=

γ C
1–

ni Sp()ln Si()ln–{ }
i 1=

k

∑=
IDL Analyst Reference Guide IMSL_DISCR_ANALYSIS

1000 Chapter 21: Multivariate Analysis
where ni is the number of degrees of freedom in the i-th sample covariance matrix, k
is the number of groups, and:

where p is the number of variables.

The estimated posterior probability of each observation x belonging to group is
computed using the prior probabilities and the sample mean vectors and estimated
covariance matrices under a multivariate normal assumption. Under quadratic
discrimination, the within-group covariance matrices are used to compute the
estimated posterior probabilities. The estimated posterior probability of an
observation x belonging to group i is:

where:

For the leaving-out-one method of classification (Method equal to 4, 5 or 6), the
sample mean vector and sample covariance matrices in the formula for:

are adjusted so as to remove the observation x from their computation. For linear
discrimination (Method equal to 1, 2, 4, or 6), the linear discriminant function
coefficients are actually used to compute the same posterior probabilities.

Using the posterior probabilities, each observation in x is classified into a group; the
result is tabulated in the array Class_Table and saved in the array Class_Member.
Array Class_Table is not altered at this stage if x(i)(Idx_Vars(0)) contains a group
number that is out of range. If the reclassification method is specified, then all
observations with no missing values in the n_variables classification variables are
classified. When the leaving-out-one method is used, observations with invalid group

C
1– 1 2p

2
3p 1–+–

6 p 1+() k 1–()

1
ni

i 1=

k

∑ 1
nj

j
∑
-----------–

=

q̂i x()
0.5Di

2
x()–()exp

0.5Dj
2

x()–()exp
j 1=

k

∑
--=

Di
2

x()
x xi–()T

Si
1–

x xi–() Si()ln 2 pi()ln–+ Method = 1 or 2

x xi–()T
Sp

1–
x xi–() 2 pi()ln– Method = 3

=

Di
2

IMSL_DISCR_ANALYSIS IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 1001
numbers, weights, frequencies, or classification variables are not classified.
Regardless of the frequency, a 1 is added (or subtracted) from Class_Table for each
row of x that is classified and contains a valid group number.

When Method > 3, adjustment is made to the posterior probabilities to remove the
effect of the observation in the classification rule. In this adjustment, each
observation is presumed to have a weight of x(i)(Idx_Vars(2)) if Idx_Vars(2) > −1
(and a weight of 1.0 if Idx_Vars(2) = −1), and a frequency of 1.0. See Lachenbruch
(1975, p. 36) for the required adjustment.

The covariance matrices are computed from their LU factorizations.

Example

The following example uses liner discrimination with equal prior probabilities on
Fisher’s (1936) iris data.

.RUN
PRO print_results, counts, table, d2, prior_out, coef, means, $

cov, stats, nrmiss
num = INDGEN(3)
PRINT, ' Counts'
PRINT, num + 1, FORMAT = '(3I5)'
PRINT, counts, FORMAT = '(3I5)'
PRINT
PRINT, ' Table'
PRINT, num + 1, FORMAT = '(2X, 3I5)'
FOR i = 0, 2 DO $

PRINT, num(i) + 1, table(i, *), FORMAT = '(I2, 3I5)'
PRINT
PRINT, ' D2'
PRINT, num + 1, FORMAT = '(3I7)'
FOR i = 0, 2 DO $

PRINT, num(i) + 1, d2(i, *), FORMAT = '(I2, 3F7.1)'
PRINT
PRINT, ' Prior OUT'
PRINT, num + 1, FORMAT = '(3I10)'
PRINT, prior_out, FORMAT = '(3F10.4)'
PRINT
num = INDGEN(5)
PRINT, ' Coef'
PRINT, num + 1, FORMAT = '(1X, 5I10)
FOR i = 0, 2 DO $

PRINT, num(i) + 1, coef(i, *), FORMAT = '(I2, 5F10.1)'
PRINT
num = INDGEN(4)
PRINT, ' Means'
PRINT, num + 1, FORMAT = '(4I10)'
IDL Analyst Reference Guide IMSL_DISCR_ANALYSIS

1002 Chapter 21: Multivariate Analysis
FOR i = 0, 2 DO $
PRINT, num(i) + 1, means(i, *), FORMAT = '(I2, 4F10.3)'

PRINT
PRINT, ' Covariance'
PRINT, num + 1, FORMAT = '(4I10)'
FOR i = 0, 3 DO $

PRINT, num(i) + 1, cov(0, *, i), FORMAT = '(I2, 4F10.4)'
PRINT
num = INDGEN(12)
PRINT, ' Stats'
FOR i = 0, 11 DO $

PRINT, num(i) + 1, stats(i)
PRINT
PRINT, 'nrmiss = ', nrmiss

END

idxv = [1, 2, 3, 4]
idxc = [0, -1, -1]
n_groups = 3
method = 3
; Retrieve the Fisher Iris Data Set
x = IMSL_STATDATA(3)
IMSL_DISCR_ANALYSIS, x, n_groups, Idx_Vars = idxv, $

Idx_cols = idxc, Method = method, /Prior_Equal, $
Prior_Output = prior_out, Group_Counts = counts, $
Means = means, Covariances = cov, $
Coefficients = coef, Class_Member = cm, $
Class_Table = table, Prob = prob, $
Mahalanobis = d2, Stats = stats, Nmissing = nrmiss

print_results, counts, table, d2, prior_out, coef, means, $
cov, stats, nrmiss

Counts
1 2 3
50 50 50

Table
1 2 3

1 50 0 0
2 0 48 2
3 0 1 49

D2
1 2 3

1 0.0 89.9 179.4
2 89.9 0.0 17.2
3 179.4 17.2 0.0
IMSL_DISCR_ANALYSIS IDL Analyst Reference Guide

Chapter 21: Multivariate Analysis 1003
Prior OUT
1 2 3

0.3333 0.3333 0.3333
Coef

1 2 3 4 5
1 -86.3 23.5 23.6 -16.4 -17.4
2 -72.9 15.7 7.1 5.2 6.4
3 -104.4 12.4 3.7 12.8 21.1

Means
1 2 3 4

1 5.006 3.428 1.462 0.246
2 5.936 2.770 4.260 1.326
3 6.588 2.974 5.552 2.026

Covariance
1 2 3 4

1 0.2650 0.0927 0.1675 0.0384
2 0.0927 0.1154 0.0552 0.0327
3 0.1675 0.0552 0.1852 0.0427
4 0.0384 0.0327 0.0427 0.0419

Stats
1 147.000
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 -9.95854
9 50.0000
10 50.0000
11 50.0000
12 150.000

nrmiss = 0

Errors

Warning Errors

STAT_BAD_OBS_1—In call #, row # of the data matrix, “x”, has group number = #.
The group number must be an integer between 1.0 and “n_groups” = #, inclusively.
This observation will be ignored.

STAT_BAD_OBS_2—The leaving-out-one method is specified but this observation
does not have a valid group number (Its group number is #.). This observation (row #)
is ignored.
IDL Analyst Reference Guide IMSL_DISCR_ANALYSIS

1004 Chapter 21: Multivariate Analysis
STAT_BAD_OBS_3—The leaving-out-one method is specified but this observation
does not have a valid weight or it does not have a valid frequency. This observation
(row #) is ignored.

STAT_COV_SINGULAR_3—The group # covariance matrix is singular. “Stats(1)”
cannot be computed. “Stats(1)” and “Stats(3)” are set to the missing value code
(NaN).

Fatal Errors

STAT_COV_SINGULAR_1—The variance-covariance matrix for population
number # is singular. The computations cannot continue.

STAT_COV_SINGULAR_2—The pooled variance-covariance matrix is singular.
The computations cannot continue.

STAT_COV_SINGULAR_4—A variance-covariance matrix is singular. The index of
the first zero element is equal to #.

Version History

6.4 Introduced
IMSL_DISCR_ANALYSIS IDL Analyst Reference Guide

Chapter 22

Survival Analysis
This section contains the following topics:
Overview: Survival Analysis 1006 Survival Analysis Routines 1007
IDL Analyst Reference Guide 1005

1006 Chapter 22: Survival Analysis
Overview: Survival Analysis

The routine described in this chapter has primary application in the areas of reliability
and life testing, but they may find application in any situation in which time is a
variable of interest. Kalbfleisch and Prentice (1980), Elandt-Johnson and Johnson
(1980), Lee (1980), Gross and Clark (1975), Lawless (1982), and Chiang (1968) are
references for discussing the models and methods used here.
IMSL_SURVIVAL_GLM fits any of several generalized linear models, and
computes estimates of survival probabilities based on the same models.
Overview: Survival Analysis IDL Analyst Reference Guide

Chapter 22: Survival Analysis 1007
Survival Analysis Routines

• IMSL_SURVIVAL_GLM—Analyzes survival data using a generalized linear
model and estimates using various parametric modes.
IDL Analyst Reference Guide Survival Analysis Routines

1008 Chapter 22: Survival Analysis
IMSL_SURVIVAL_GLM

The IMSL_SURVIVAL_GLM function analyzes censored survival data using a
generalized linear model and estimates survival probabilities and hazard rates for the
various parametric models.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SURVIVAL_GLM(n_class, n_continuous, model, x
[, /CASE_ANALYSIS=variable] [, CLASS_VALS=variable]
[, COEF_STAT=variable] [, COVARIANCES=variable]
[, CRITERION=variable] [, /DOUBLE] [, EPS=value] [, EST_DELTA=value]
[, EST_NOBS=value] [, EST_NPT=value] [, EST_PROB=variable]
[, EST_TIME=value] [, EST_XBETA=variable] [, ICEN=value] [, IFIX=value]
[, IFREQ=value] [, ILT=value] [, INDICIES_EFFECTS=array]
[, INIT_EST=array] [, IRT=value] [, ITERATIONS=variable] [, ITMAX=value]
[, LAST_STEP=variable] [, LP_MAX=value] [, MAX_CLASS=value]
[, MEANS=variable] [, N_CLASS_VALS=variable] [, NMISSING=variable]
[, /NO_INTERCEPT] [, OBS_STATUS=variable] [, VAR_EFFECTS=array])

Return Value

An integer value indicating n_coefficients, where n_coefficients is the number of
estimated coefficients in the model.

Arguments

model

Specifies the model used to analyze the data.

• 0—Exponential

• 1—Linear hazard

• 2—Log-normal

• 3—Normal
IMSL_SURVIVAL_GLM IDL Analyst Reference Guide

Chapter 22: Survival Analysis 1009
• 4—Log-logistic

• 5—Logistic

• 6—Log least extreme value

• 7—Least extreme value

• 8—Log extreme value

• 9—Extreme value

• 10—Weibull

See the Discussion section for more information about these models.

n_class

Number of classification variables.

n_continuous

Number of continuous variables.

x

Two-dimensional array of size n_observations by ((n_class + n_continuous) + m)
containing data for the independent variables, dependent variable, and optional
parameters where n_observations is the number of observations and the optional
parameters correspond to keywords Icen, Ilt, Irt, Ifreq, and Ifix.

The columns must be ordered such that the first n_class columns contain data for the
class variables, the next n_continuous columns contain data for the continuous
variables, and the next column contains the response variable. The final (and
optional) m − 1 columns contain optional parameters.

Keywords

CASE_ANALYSIS

Named variable into which a two-dimensional array of size n_observations by 5
containing the case analysis below is stored:

• 0—Estimated predicted value.

• 1—Estimated influence or leverage.

• 2—Estimated residual.
IDL Analyst Reference Guide IMSL_SURVIVAL_GLM

1010 Chapter 22: Survival Analysis
• 3—Estimated cumulative hazard.

• 4—Non-censored observation: Estimated density at the observation failure
time and covariate values. Censored observations: The corresponding
estimated probability.

CLASS_VALS

Named variable into which one-dimensional array of length:

containing the distinct values of the classification variables in ascending order is
stored. The first N_Class_Vals(0) elements of Class_Vals contain the values for the
first classification variables, the next N_Class_Vals(1) elements contain the values for
the second classification variable, etc.

COEF_STAT

Named variable into which a two-dimensional array of size n_coefficients by 4
containing the parameter estimates and associated statistics is stored:

• 0—Coefficient estimate.

• 1—Estimated standard deviation of the estimated coefficient.

• 2—Asymptotic normal score for testing that the coefficient is zero.

• 3—The p-value associated with the normal score in Column 2.

When present in the model, the first coefficient in Coef_Stat is the estimate of the
“nuisance” parameter, and the remaining coefficients are estimates of the parameters
associated with the “linear” model, beginning with the intercept, if present. Nuisance
parameters are as follows:

• 0—No nuisance parameter

• 1—Coefficient of the quadratic term, term in time, θ

• 2–9—Scale parameter, σ

• 10—Scale parameter, θ

COVARIANCES

Named variable into which a two-dimensional array of size n_coefficients by
n_coefficients containing the estimated asymptotic covariance matrix of the

i 0=

n_class 1–

∑ N_Class_Vals i()
IMSL_SURVIVAL_GLM IDL Analyst Reference Guide

Chapter 22: Survival Analysis 1011
coefficients is stored. For Itmax = 0, this is the Hessian computed at the initial
parameter estimates.

CRITERION

Named variable into which the optimized criterion is stored. The criterion to be
maximized is a constant plus the log-likelihood.

DOUBLE

If present and nonzero, double precision is used.

EPS

Convergence criterion. Convergence is assumed when maximum relative change in
any coefficient estimate is less than Eps from one iteration to the next or when the
relative change in the log-likelihood, criterion, from one iteration to the next is less
than Eps/100.0. Default: Eps = 0.001

EST_DELTA

Increment between time points on the time grid. Keywords Est_Delta, Est_Nobs,
Est_Time, Est_Npt, and Est_Prob must be used together.

EST_NOBS

Number of observations for which estimates are to be calculated. Est_Nobs must be
positive. Keywords Est_Nobs, Est_Time, Est_Npt, Est_Delta, and Est_Prob must be
used together.

EST_NPT

Number of points on the time grid for which survival probabilities are desired.
Est_Npt must be positive. Keywords Est_Npt, Est_Nobs, Est_Time, Est_Delta, and
Est_Prob must be used together.

EST_PROB

Named variable into which a two-dimensional array of size Est_Npt by
(2*n_observations + 1) containing the estimated survival probabilities for the
covariate groups specified in x is stored. Column 0 contains the survival time.
Columns 1 and 2 contain the estimated survival probabilities and hazard rates,
respectively, for the covariates in the first row of x. In general, the survival and hazard
row i of x is contained in columns 2i – 1 and 2i, respectively, for i = 1, 2, ..., Est_Npt.
IDL Analyst Reference Guide IMSL_SURVIVAL_GLM

1012 Chapter 22: Survival Analysis
Keywords Est_Prob, Est_Nobs, Est_Time, Est_Npt, and Est_Delta must be used
together.

EST_TIME

Beginning of the time grid for which estimates are desired. Survival probabilities and
hazard rates are computed for each covariate vector over the grid of time points
Est_Time + i*Est_Delta for i = 0, 1, ..., Est_Npt −1. Keywords Est_Time, Est_Nobs,
Est_Npt, Est_Delta, and Est_Prob must be used together.

EST_XBETA

Named variable into which an one-dimensional array of length n_observations
containing the estimated linear response:

for each row of x is stored. To use keyword Est_Xbeta, you must also use keywords
Est_Nobs, Est_Time, Est_Npt, Est_Delta, and Est_Prob.

ICEN

The column in x containing the censoring code for each observation. Possible values
are shown in Table 22-1.

IFIX

Column number in x containing a fixed parameter for each observation that is added
to the linear response prior to computing the model parameter. The “fixed” parameter
allows one to test hypothesis about the parameters via the log-likelihoods.

x (I, Icen) Censoring type

0 Exact failure at x (i, Irt)

1 Right Censored. The response is greater than x (i, Irt)

2 Left Censored. The response is less than or equal to x (i, Irt)

3 Interval Censored. The response is greater than x (i, Irt), but less
than or equal to x (i, Irt).

Table 22-1: Icen Values

w xβ̂+
IMSL_SURVIVAL_GLM IDL Analyst Reference Guide

Chapter 22: Survival Analysis 1013
IFREQ

The column number of x containing the frequency of response for each observation.

ILT

The column number of x containing the upper endpoint of the failure interval for
interval- and left-censored observations.

INDICIES_EFFECTS

One-dimensional index array of length Var_Effects(0) + Var_Effects(1) + ... +
Var_Effects(n_effects − 1). The first Var_Effects(0) elements give the column
numbers of x for each variable in the first effect. The next Var_Effects(1) elements
give the column numbers for each variable in the second effect. The last
Var_Effects(n_effects − 1) elements give the column numbers for each variable in the
last effect. Keywords Indicies_Effects and Var_Effects must be used together.

INIT_EST

One-dimensional array containing the initial estimates of the parameters (which
requires that you know the number of coefficients in the model prior to the use of
IMSL_SURVIVAL_GLM). See output keyword Coef_Stat for a description of the
“nuisance” parameter, which is the first element of array Init_Est. By default, un-
weighted linear regression is used to obtain initial estimates.

IRT

The column number of x containing the lower endpoint of the failure interval for
interval- and right-censored observations.
IDL Analyst Reference Guide IMSL_SURVIVAL_GLM

1014 Chapter 22: Survival Analysis
ITERATIONS

Named variable into which a two-dimensional array of size, n by 5 containing
information about each iteration of the analysis is stored, where n is equal to the
number of iterations. This is shown in Table 22-2.

ITMAX

Maximum number of iterations. Use Itmax = 0 to compute the Hessian, stored in
Covariances, and the Newton step, stored in Last_Step, at the initial estimates (The
initial estimates must be input. Use keyword Init_Est). See Example 3. Default: Itmax
= 30

LAST_STEP

Named variable into which an one-dimensional array of length n_coefficients
containing the last parameter updates (excluding step halvings) is stored. Keyword
Last_Step is computed as the inverse of the matrix of second partial derivatives times
the vector of first partial derivatives of the log-likelihood. When Itmax = 0, the
derivatives are computed at the initial estimates.

LP_MAX

Remove a right- or left-censored observation from the log-likelihood whenever the
probability of the observation exceeds 0.995. At convergence, use linear
programming to check that all removed observations actually have infinite linear
response:

Column Statistic

0 Method of iteration
Q-N Step = 0
N-R Step = 1

1 Iteration number

2 Step size

3 Maximum scaled coefficient update

4 Log-likelihood

Table 22-2: Column Information

ziβ̂
IMSL_SURVIVAL_GLM IDL Analyst Reference Guide

Chapter 22: Survival Analysis 1015
Obs_Status(i) is set to 2 if the linear response is infinite (See keyword Obs_Status). If
not all removed observations have infinite linear response, recompute the estimates
based upon the observations with finite:

Keyword Lp_Max is the maximum number of observations that can be handled in the
linear programming. Setting Lp_Max = n_observations is always sufficient. By
default, the function iterates without checking for infinite estimates. Default: No
infinity checking; Lp_Max = 0

MAX_CLASS

An upper bound on the sum of the number of distinct values taken on by each
classification variable. Internal workspace usage can be significantly reduced with an
appropriate choice of Max_Class. Default: Max_Class = n_observations * n_class

MEANS

Named variable into which an one-dimensional array containing the means of the
design variables is stored. The array is of length n_coefficients – k if keyword
No_Intercept is used, and of length n_coefficients – k – 1 otherwise. Here, k is equal
to 0 if model = 0, and equal to 1 otherwise.

N_CLASS_VALS

Named variable into which an one-dimensional array of length n_class containing the
number of values taken by each classification variable is stored; the i-th classification
variable has N_Class_Vals(i).

NMISSING

Named variable into which the number of rows of data that contain missing values in
one or more of the following vectors or columns of x is stored: Icen, Ilt, Irt, Ifreq, Ifix,
or Indicies_Effects.

NO_INTERCEPT

If present and nonzero, there is no intercept in the model. By default, the intercept is
automatically included in the model.

OBS_STATUS

Named variable into which an one-dimensional array of length n_observations
indicating which observations are included in the extended likelihood is stored.

ziβ̂
IDL Analyst Reference Guide IMSL_SURVIVAL_GLM

1016 Chapter 22: Survival Analysis
• 0—Observation i is in the likelihood

• 1—Observation i cannot be in the likelihood because it contains at least one
missing value in x.

• 2—Observation i is not in the likelihood. Its estimated parameter is infinite.

VAR_EFFECTS

One-dimensional array of length n_effects containing the number of variables
associated with each effect in the model, where n_effects is the number of effects
(sources of variation) in the model. Keywords Var_Effects and Indicies_Effects must
be used together.

Comments

1. Dummy variables are generated for the classification variables as follows: An
ascending list of all distinct values of each classification variable is obtained
and stored in Class_Vals. Dummy variables are then generated for each but the
last of these distinct values. Each dummy variable is zero unless the
classification variable equals the list value corresponding to the dummy
variable, in which case the dummy variable is one. See keyword
Dummy_Method in the “IMSL_REGRESSORS” on page 602.

2. The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

3. The “product” of two classification variables yields dummy variables in the
usual manner. Each dummy variable associated with the first classification
variable multiplies each dummy variable associated with the second
classification variable. The resulting dummy variables are such that the index
of the second classification variable varies fastest.

Discussion

The IMSL_SURVIVAL_GLM function computes the maximum likelihood estimates
of parameters and associated statistics in generalized linear models commonly found
in survival (reliability) analysis. Although the terminology used will be from the
survival area, the methods discussed have applications in many areas of data analysis,
including reliability analysis and event history analysis. These methods can be used
anywhere a random variable from one of the discussed distributions is parameterized
via one of the models available in IMSL_SURVIVAL_GLM. Thus, while it is not
advisable to do so, standard multiple linear regression can be performed by routine
IMSL_SURVIVAL_GLM. Estimates for any of 10 standard models can be computed.
IMSL_SURVIVAL_GLM IDL Analyst Reference Guide

Chapter 22: Survival Analysis 1017
Exact, left-censored, right-censored, or interval-censored observations are allowed
(note that left censoring is the same as interval censoring with the left endpoint equal
to the left endpoint of the support of the distribution).

Let η = xTβ be the linear parameterization, where x is a design vector obtained by
IMSL_SURVIVAL_GLM via IMSL_REGRESSORS from a row of x, and β is a
vector of parameters associated with the linear model. Let T denote the random
response variable and S(t) denote the probability that T > t. All models considered
also allow a fixed parameter wi for observation i (input in column Ifix of x). Use of
this parameter is discussed below. There also may be nuisance parameters θ > 0, or σ
> 0 to be estimated (along with β) in the various models. Let Φ denote the cumulative
normal distribution. The survival models available in IMSL_SURVIVAL_GLM are
listed in Table 22-3.

model Name S(t)

0 Exponential exp [− t exp (w i + η)]

1 Linear hazard

2 Log-normal

3 Normal

4 Log-logistic

Table 22-3: Available Survival Models

t θt
2

2
-------+

 – wi η+()expexp

1 Φ
t()ln η– wi–

σ

 –

1 Φ
t η– wi–

σ

 –

1
t()ln η– wi–

σ

 exp+

1–
IDL Analyst Reference Guide IMSL_SURVIVAL_GLM

1018 Chapter 22: Survival Analysis
Note that the log-least-extreme-value model is a re-parameterization of the Weibull
model. Moreover, models 0, 1, 2, 4, 6, 8, and 10 require that T > 0, while all of the
remaining models allow any value for T, –∞ < T < ∞.

Each row vector in the data matrix can represent a single observation; or, through the
use of vector frequencies, each row can represent several observations. Also note that

5 Logistic

6 Log least extreme value

7 Least extreme value

8 Log extreme value

9 Extreme value

10 Weibull

model Name S(t)

Table 22-3: Available Survival Models (Continued)

1
t η– wi–

σ

 exp+

1–

t()ln η– wi–

σ

 exp–

exp

t η– wi–

σ

 exp–

exp

1
t()ln η– wi–

σ

 exp–

exp–

1
t η– wi–

σ

 exp–

exp–

t
wi η+()exp

θ

–

exp
IMSL_SURVIVAL_GLM IDL Analyst Reference Guide

Chapter 22: Survival Analysis 1019
classification variables and their products are easily incorporated into the models via
the usual regression-type specifications.

The constant parameter Wi is input in x and may be used for a number of purposes.
For example, if the parameter in an exponential model is known to depend upon the
size of the area tested, volume of a radioactive mass, or population density, and so on,
then a multiplicative factor of the exponential parameter λ= exp (xβ) may be known
beforehand. This factor can be input in Wi (Wi is the log of the factor).

An alternate use of Wi is as follows: It may be that λ = exp (x1β1 + x2β2), where β2 is
known. Letting Wi = x2β2, estimates for β1 can be obtained via
IMSL_SURVIVAL_GLM with the known fixed values for β2. Standard methods can
then be used to test hypothesis about β1 via computed log-likelihoods.

Computational Details

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

• Estimates of the means of the “independent” or design variables are
computed. Means are computed as:

2. If initial estimates are not provided (see keyword Init_Est), they are calculated
as follows:

Models 2-10:

A. Kaplan-Meier estimates of the survival probability:

at the upper limit of each failure interval are obtained. (Because upper
limits are used, interval- and left-censored data are assumed to be exact
failures at the upper endpoint of the failure interval.) The Kaplan-Meier
estimate is computed under the assumption that all failure distributions are
identical (i.e., all β’s but the intercept, if present, are assumed to be zero).

B. If there is an intercept in the model, a simple linear regression is perform
predicting:

x
f x
f
i i

i
= ∑

∑

Ŝ t()

S
1–

Ŝ t()() wi– α φ t'+=
IDL Analyst Reference Guide IMSL_SURVIVAL_GLM

1020 Chapter 22: Survival Analysis
where t' is computed at the upper endpoint of each failure interval, t' = t in
models 3, 5, 7, and 9, and t' = ln (t) in models 2, 4, 6, 8, and 10, and wi is
the fixed constant, if present.

If there is no intercept in the model, then α is fixed at zero, and the model:

is fit instead. In this model, the coefficients β are used in place of the
location estimate α above. Here:

is estimated from the simple linear regression with α = 0.

C. If the intercept is in the model, then in log-location-scale models (models
1-8):

and the initial estimate of the intercept is assumed to be:

In the Weibull model:

and the intercept is assumed to be:

Initial estimates of all parameters β, other than the intercept, are assumed
to be zero.

If there is no intercept in the model, the scale parameter is estimated as
above, and the estimates:

from Step 2 are used as initial estimates for the β’s.

Models 0 and 1:

For the exponential models (model = 0 or 1), the “average total time on”
test statistic is used to obtain an estimate for the intercept. Specifically, let
Tt denote the total number of failures divided by the total time on test. The
initial estimates for the intercept is then ln(Tt). Initial estimates for the
remaining parameters β are assumed to be zero, and if model = 1, the

S
1–

Ŝ t()() φ ˆ t'– wi– x
Tβ=

φ̂

σ̂ φ̂=

α̂

θ̂ 1 φ̂⁄=

α̂

β̂

IMSL_SURVIVAL_GLM IDL Analyst Reference Guide

Chapter 22: Survival Analysis 1021
initial estimate for the linear hazard parameter θ is assumed to be a small
positive number. When the intercept is not in the model, the initial estimate
for the parameter θ is assumed to be a small positive number, and initial
estimates of the parameters β are computed via multiple linear regression
as in Part A.

3. A quasi-Newton algorithm is used in the initial iterations based on a Hessian
estimate:

where l'iα j is the partial derivative of the i-th term in the log-likelihood with
respect to the parameter αj, and aj denotes one of the parameters to be
estimated.

When the relative change in the log-likelihood from one iteration to the next is
0.1 or less, exact second partial derivatives are used for the Hessian so the
Newton-Rapheson iteration is used.

If the initial step size results in an increase in the log-likelihood, the full step is
used. If the log-likelihood decreases for the initial step size, the step size is
halved, and a check for an increase in the log-likelihood performed. Step-
halving is performed (as a simple line search) until an increase in the log-
likelihood is detected, or until the step size becomes very small (the initial step
size is 1.0).

4. Convergence is assumed when the maximum relative change in any coefficient
update from one iteration to the next is less than Eps or when the relative
change in the log-likelihood from one iteration to the next is less than Eps/100.
Convergence is also assumed after Itmax iterations or when step halving leads
to a very small step size with no increase in the log-likelihood.

5. If requested (see keyword Lp_Max), the methods of Clarkson and Jennrich
(1988) are used to check for the existence of infinite estimates in:

As an example of a situation in which infinite estimates can occur, suppose that
observation j is right-censored with tj > 15 in a normal distribution model in
which the mean is:

Ĥκ jκ l l'iα jiα l
i
∑=

η i xi
Tβ=

µj xj
Tβ η j= =
IDL Analyst Reference Guide IMSL_SURVIVAL_GLM

1022 Chapter 22: Survival Analysis
where xj is the observation design vector. If the design vector xj for parameter
βm is such that xjm = 1 and xim = 0 for all i ≠ j, then the optimal estimate of βm
occurs at:

leading to an infinite estimate of both βm and ηj. In IMSL_SURVIVAL_GLM,
such estimates can be “computed.”

In all models fit by IMSL_SURVIVAL_GLM, infinite estimates can only
occur when the optimal estimated probability associated with the left- or right-
censored observation is 1. If infinity checking is on, left- or right-censored
observations that have estimated probability greater than 0.995 at some point
during the iterations are excluded from the log-likelihood, and the iterations
proceed with a log-likelihood based on the remaining observations. This
allows convergence of the algorithm when the maximum relative change in the
estimated coefficients is small and also allows for a more precise determination
of observations with infinite:

At convergence, linear programming is used to ensure that the eliminated
observations have infinite ηi. If some (or all) of the removed observations
should not have been removed (because their estimated ηi’s must be finite),
then the iterations are restarted with a log-likelihood based upon the finite ηi
observations. See Clarkson and Jennrich (1988) for more details.

By default, or when not using keyword Lp_Max (see keyword Lp_Max), no
observations are eliminated during the iterations. In this case, the infinite
estimates occur, some (or all) of the coefficient estimates:

will become large, and it is likely that the Hessian will become (numerically)
singular prior to convergence.

6. The case statistics are computed as follows: Let Ii (θi) denote the log-
likelihood of the i-th observation evaluated at θi, let I'i denote the vector of
derivatives of Ii with respect to all parameters, denote the derivative of Ii
with respect to η = xTβ, H denote the Hessian, and E denote expectation. Then
the columns of Case_Analysis are:

A. Predicted values are computed as E (T/x) according to standard formulas.
If model is 4 or 8, and if s ≥ 1, then the expected values cannot be
computed because they are infinite.

β̂m ∞=

η i xi
Tβ=

β̂

I'η i,
IMSL_SURVIVAL_GLM IDL Analyst Reference Guide

Chapter 22: Survival Analysis 1023
B. Following Cook and Weisberg (1982), the influence (or leverage) of the i-
th observation is assumed to be:

This quantity is a one-step approximation of the change in the estimates
when the i-th observation is deleted (ignoring the nuisance parameters).

C. The “residual” is computed as .

D. The cumulative hazard is computed at the observation covariate values
and, for interval observations, the upper endpoint of the failure interval.
The cumulative hazard also can be used as a “residual” estimate. If the
model is correct, the cumulative hazards should follow a standard
exponential distribution. See Cox and Oakes (1984).

The IMSL_SURVIVAL_GLM function computes estimates of survival probabilities
and hazard rates for the parametric survival/reliability models when using the Est_*
keywords.

Let η = xTβ be the linear parameterization, where x is the design vector
corresponding to a row of x (IMSL_SURVIVAL_GLM generates the design vector
using IMSL_REGRESSORS), and β is a vector of parameters associated with the
linear model. Let T denote the random response variable and S(t) denote the
probability that T > t. All models considered also allow a fixed parameter w (input in
column Ifix of x). Use of the keyword is discussed in above. There also may be
nuisance parameters θ > 0 or σ > 0. Let λ(t) denote the hazard rate at time t. Then λ(t)
and S(t) are related at:

Models 0, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case assume λ(s) = 0 for s
< 0), while the remaining models allow arbitrary values for T, −∞ < T < ∞. The
computations proceed in IMSL_SURVIVAL_GLM when using the keywords Est_*
as follows:

1. The input arguments are checked for consistency and validity.

2. For each row of x, the explanatory variables are generated from the
classification and variables and the covariates using IMSL_REGRESSORS
with keyword Dummy_Method.

3. For each point requested in the time grid, the survival probabilities and hazard
rates are computed.

I'i()T
H

1–
I'i

I'η i,

S t() λ s() sd
∞–

t

∫
 exp=
IDL Analyst Reference Guide IMSL_SURVIVAL_GLM

1024 Chapter 22: Survival Analysis
Programming Notes

Indicator (dummy) variables are created for the classification variables using
IMSL_REGRESSORS (Chapter 3, Regression) using keyword Dummy_Method.

Examples

The following four examples all use the array x, defined as follows:

x1 = [[1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0] , $
[1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0] , $
[1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0] , $
[1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0] , $
[1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0] , $
[1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0] , $
[1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0] , $
[2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0] , $
[2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0] , $
[2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0]] ; , $

x2 = [[2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0] , $
[2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0] , $
[2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0] , $
[2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0] , $
[3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0] , $
[3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0] , $
[4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0] , $
[4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0] , $
[4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0] , $
[4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0]] ;, $

x3 = [[4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0] , $
[1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0] , $
[1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0] , $
[1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0] , $
[1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0] , $
[1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0] , $
[1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0] , $
[1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0] , $
[2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0] , $
[2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0]]; , $

x4 = [[2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0] , $
[2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0] , $
[3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0] , $
[3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0] , $
[3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0] , $
[4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0] , $
[4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0] , $
[4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0] , $
[4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0] , $
IMSL_SURVIVAL_GLM IDL Analyst Reference Guide

Chapter 22: Survival Analysis 1025
[4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0]]
x = [[x1], [x2], [x3], [x4]]
x = TRANSPOSE(x)

Example 1

This example is taken from Lawless (1982, p. 287) and involves the mortality of
patients suffering from lung cancer. An exponential distribution is fit for the model:

η = µ + α i + γ k + β 6 x3 + β 7x4 + β 8x5

where αi is associated with a classification variable with four levels, and γk is
associated with a classification variable with two levels. Note that because the
computations are performed in single precision, there will be some small variation in
the estimated coefficients across different machine environments.

.RUN
PRO print_results, cs

PRINT, ' Coefficient Satistics'
PRINT, ' Coefficient s.e z p'
PM, cs, FORMAT = '(4F14.4)'

END

n_class = 2
n_continuous = 3
model = 0
icen = 6
irt = 5
lp_max = 40
n_coef = IMSL_SURVIVAL_GLM(n_class, n_continuous, model, x, $

ICEN = icen, IRT = irt, LP_MAX = lp_max, COEF_STAT = cs)
print_results, cs

Coefficient Satistics
Coefficient s.e z p

-1.1027 1.3091 -0.8423 0.3998
-0.3626 0.4446 -0.8156 0.4149
0.1271 0.4863 0.2613 0.7939
0.8690 0.5861 1.4825 0.1385
0.2697 0.3882 0.6948 0.4873
-0.5400 0.1081 -4.9946 0.0000
-0.0090 0.0197 -0.4594 0.6460
-0.0034 0.0117 -0.2912 0.7710

Example 2

This example uses the same array x defined in Example 1, but more optional
arguments are demonstrated.
IDL Analyst Reference Guide IMSL_SURVIVAL_GLM

1026 Chapter 22: Survival Analysis
.RUN
PRO print_results, cs, iter, crit, nmiss

PRINT, ' Coefficient Satistics'
PRINT, ' Coefficient s.e z p'
PM, cs, FORMAT = '(4F14.4)'
PRINT
PRINT, ' Iteration Information'
PRINT, 'Method Iteration Step Size Coef Update ', $

'Log-Likelihood'
PM, iter, FORMAT = '(I3, I10, 2F14.4, F14.1)'
PRINT
PRINT, 'Log-Likelihood =', crit
PRINT
PRINT, 'Number of Missing Value = ', nmiss, $

FORMAT = '(A26, I3)'
END

n_class = 2
n_continuous = 3
model = 0
icen = 6
irt = 5
lp_max = 40
n_coef = IMSL_SURVIVAL_GLM(n_class, n_continuous, model, x, $

ICEN = icen, IRT = irt, LP_MAX = lp_max, $
N_CLASS_VALS = ncv, CLASS_VALS = cv, $
COEF_STAT = cs, CRITERION = crit, $
MEANS = means, CASE_ANALYSIS = ca, $
ITERATIONS = iter, OBS_STATUS = os, NMISSING = nmiss)

print_results, cs, iter, crit, nmiss

Coefficient Satistics
Coefficient s.e z p
-1.1027 1.3091 -0.8423 0.3998
-0.3626 0.4446 -0.8156 0.4149
0.1271 0.4863 0.2613 0.7939
0.8690 0.5861 1.4825 0.1385
0.2697 0.3882 0.6948 0.4873
-0.5400 0.1081 -4.9946 0.0000
-0.0090 0.0197 -0.4594 0.6460
-0.0034 0.0117 -0.2912 0.7710
Iteration Information

Method Iteration Step Size Coef Update Log-Likelihood
0 0 NaN NaN -224.0
0 1 1.0000 0.9839 -213.4
1 2 1.0000 3.6034 -207.3
1 3 1.0000 10.1238 -204.3
1 4 1.0000 0.1430 -204.1
1 5 1.0000 0.0117 -204.1
IMSL_SURVIVAL_GLM IDL Analyst Reference Guide

Chapter 22: Survival Analysis 1027
Log-Likelihood = -204.139
Number of Missing Value = 0

Example 3

In this example, the same data and model as example 1 are used, but Itmax is set to
zero iterations with model coefficients restricted such that µ = −1.25, β6 = −0.6,
and the remaining six coefficients are equal to zero. A chi-squared statistic, with 8
degrees of freedom for testing the coefficients is specified as above (versus the
alternative that it is not as specified), can be computed, based on the output, as:

where:

is output in Covariances. The resulting test statistic, χ2 = 6.107, based upon no
iterations is comparable to likelihood ratio test that can be computed from the log-
likelihood output in this example (−206.683) and the log-likelihood output in
Example 2 (-204.139).

.RUN
PRO print_results, cs, means, cov, crit, ls

PRINT, ' Coefficient Satistics'
PRINT, ' Coefficient s.e z p'
PM, cs, FORMAT = '(4F14.4)'
PRINT
PRINT, ' Covariate Means'
PRINT, means, FORMAT = '(7F8.2)'
PRINT
PRINT, ' Hessian'
PM, cov, FORMAT = '(8F8.4)'
PRINT
PRINT, 'Log-Likelihood =', crit
PRINT
PRINT, ' Newton_Raphson Step'
PRINT, ls, FORMAT = '(8F8.4)'

END

n_class = 2
n_continuous = 3
model = 0
icen = 6
irt = 5
lp_max = 40
itmax = 0
init_est = [-1.25, 0.0, 0.0, 0.0, 0.0, -0.6, 0.0, 0.0]
n_coef = IMSL_SURVIVAL_GLM(n_class, n_continuous, model, x, $

χ2
g

TΣ̂ 1–
g=

Σ̂

IDL Analyst Reference Guide IMSL_SURVIVAL_GLM

1028 Chapter 22: Survival Analysis
ICEN = icen, IRT = irt, ITMAX = itmax, $
LP_MAX = lp_max, INIT_EST = init_est, $
COEF_STAT = cs, CRITERION = crit, $
COVARIANCES = cov, MEANS = means, LAST_STEP = ls)

print_results, cs, means, cov, crit, ls

 Coefficient Satistics
Coefficient s.e z p
-1.2500 1.3773 -0.9076 0.3643
0.0000 0.4288 0.0000 1.0000
0.0000 0.5299 0.0000 1.0000
0.0000 0.7748 0.0000 1.0000
0.0000 0.4051 0.0000 1.0000
-0.6000 0.1118 -5.3652 0.0000
0.0000 0.0215 0.0000 1.0000
0.0000 0.0109 0.0000 1.0000

 Covariate Means
 0.35 0.28 0.12 0.53 5.65 56.58 15.65

 Hessian
 1.8969 -0.0906 -0.1641 -0.1681 0.0778 -0.0818 -0.0235 -0.0012
 -0.0906 0.1839 0.0996 0.1191 0.0358 -0.0005 -0.0008 0.0006
 -0.1641 0.0996 0.2808 0.1264 -0.0226 0.0104 0.0005 -0.0021
 -0.1681 0.1191 0.1264 0.6003 0.0460 0.0193 -0.0016 0.0007
 0.0778 0.0358 -0.0226 0.0460 0.1641 0.0060 -0.0040 0.0017
 -0.0818 -0.0005 0.0104 0.0193 0.0060 0.0125 0.0000 0.0003
 -0.0235 -0.0008 0.0005 -0.0016 -0.0040 0.0000 0.0005 -0.0001
 -0.0012 0.0006 -0.0021 0.0007 0.0017 0.0003 -0.0001 0.0001

Log-Likelihood = -206.683

 Newton_Raphson Step
 0.1706 -0.3365 0.1333 1.2967 0.2985 0.0625 -0.0112 -0.0026

Example 4

This example is a continuation of the first example above. Keywords Est_* are used
in IMSL_SURVIVAL_GLM to compute the parameter estimates. The example is
taken from Lawless (1982, p. 287) and involves the mortality of patients suffering
from lung cancer.

.RUN
PRO print_results, ep

PRINT, ' Survival and Hazard Estimates'
PRINT, ' Time S1 H1 S2 H2'
PM, ep, FORMAT = '(F7.2, F10.4, F13.6, F10.4, F13.6)'

END
IMSL_SURVIVAL_GLM IDL Analyst Reference Guide

Chapter 22: Survival Analysis 1029
n_class = 2
n_continuous = 3
model = 0
icen = 6
irt = 5
lp_max = 40
time = 10.0
npt = 10
delta = 20.0
n_coef = IMSL_SURVIVAL_GLM(n_class, n_continuous, model, x, $

ICEN=icen, IRT=irt, LP_MAX=lp_max, N_CLASS_VALS=nvc, $
CLASS_VALS=cv, COEF_STAT=cs, CRITERION=crit, MEANS=means, $
CASE_ANALYSIS=ca, OBS_STATUS=os, ITERATIONS=iter, $
EST_NOBS=2, EST_TIME=time, EST_NPT=npt, $
EST_DELTA=delta, EST_PROB=ep, EST_XBETA=xb)

print_results, ep

 Survival and Hazard Estimates
 Time S1 H1 S2 H2
 10.00 0.9626 0.003807 0.9370 0.006503
 30.00 0.8921 0.003807 0.8228 0.006503
 50.00 0.8267 0.003807 0.7224 0.006503
 70.00 0.7661 0.003807 0.6343 0.006503
 90.00 0.7099 0.003807 0.5570 0.006503
 110.00 0.6579 0.003807 0.4890 0.006503
 130.00 0.6096 0.003807 0.4294 0.006503
 150.00 0.5649 0.003807 0.3770 0.006503
 170.00 0.5235 0.003807 0.3310 0.006503
 190.00 0.4852 0.003807 0.2907 0.006503

Errors

Warning Errors

STAT_CONVERGENCE_ASSUMED_1—Too many step halvings. Convergence is
assumed.

STAT_CONVERGENCE_ASSUMED_2—Too many step iterations. Convergence is
assumed.

STAT_NO_PREDICTED_1—“estimates(0)” > 1.0. The expected value for the log
logistic distribution (“model” = 4) does not exist. Predicted values will not be
calculated.

STAT_NO_PREDICTED_2—“estimates(0)” > 1.0. The expected value for the log
extreme value distribution(“model” = 8) does not exist. Predicted values will not be
calculated.
IDL Analyst Reference Guide IMSL_SURVIVAL_GLM

1030 Chapter 22: Survival Analysis
STAT_NEG_EIGENVALUE—The Hessian has at least one negative eigenvalue. An
upper bound on the absolute value of the minimum eigenvalue is # corresponding to
variable index #.

STAT_INVALID_FAILURE_TIME_4—“x(#)(“Ilt”= #)” = # and “x(#)
(“Irt”= #)” = #. The censoring interval has length 0.0. The censoring code for this
observation is being set to 0.0.

Fatal Error

STAT_MAX_CLASS_TOO_SMALL—The number of distinct values of the
classification variables exceeds “Max_Class” = #.

STAT_TOO_FEW_COEF—Init_Est is specified, and “Init_Est” = #. The model
specified requires # coefficients.

STAT_TOO_FEW_VALID_OBS—“n_observations” = # and “Nmissing” = #.
“n_observations”(”Nmissing” must be greater than or equal to 2 in order to estimate
the coefficients.

STAT_SVGLM_1—For the exponential model (“model” = 0) with “n_effects” = #
and no intercept, “n_coef” has been determined to equal 0. With no coefficients in the
model, processing cannot continue.

STAT_INCREASE_LP_MAX—Too many observations are to be deleted from the
model. Either use a different model or increase the workspace.

STAT_INVALID_DATA_8—“Class_Vals(#)” = #. The number of distinct values for
each classification variable must be greater than one.

Version History

6.4 Introduced
IMSL_SURVIVAL_GLM IDL Analyst Reference Guide

Chapter 23

Probability Distribution
Functions and Inverses
This section contains the following topics:
Overview: Probability Distribution Functions
and Inverses . 1032

Probability Distribution Functions and Inverses
Routines . 1033
IDL Analyst Reference Guide 1031

1032 Chapter 23: Probability Distribution Functions and Inverses
Overview: Probability Distribution Functions
and Inverses

This chapter describes probability distribution functions and inverses included in IDL
Analyst. See “Probability Distribution Functions and Inverses Routines” on
page 1033 for a list of the included routines.
Overview: Probability Distribution Functions and Inverses IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1033
Probability Distribution Functions and
Inverses Routines

IMSL_NORMALCDF—Normal (Gaussian) distribution function.

IMSL_BINORMALCDF—Bivariate normal distribution.

IMSL_CHISQCDF—Chi-squared distribution function.

IMSL_FCDF—F distribution function.

IMSL_TCDF—Student’s t distribution function.

IMSL_GAMMACDF—Gamma distribution function.

IMSL_BETACDF—Beta distribution function.

IMSL_BINOMIALCDF—Binomial distribution function.

IMSL_BINOMIALPDF—Binomial probability function.

IMSL_HYPERGEOCDF—Hypergeometric distribution function.

IMSL_POISSONCDF—Poisson distribution function.
IDL Analyst Reference Guide Probability Distribution Functions and Inverses Routines

1034 Chapter 23: Probability Distribution Functions and Inverses
IMSL_NORMALCDF

The IMSL_NORMALCDF function evaluates the standard normal (Gaussian)
distribution function. Using a keyword, the inverse of the standard normal (Gaussian)
distribution can be evaluated.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NORMALCDF(x [, /DOUBLE] [, /INVERSE])

Return Value

The probability that a normal random variable takes a value less than or equal to x.

Arguments

x

Expression for which the normal distribution function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

If present and nonzero, evaluates the inverse of the standard normal (Gaussian)
distribution function. If Inverse is specified, then argument x represents the
probability for which the inverse of the normal distribution function is to be
evaluated. In this case, x must be in the open interval (0.0, 1.0).
IMSL_NORMALCDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1035
Discussion

The IMSL_NORMALCDF function evaluates the distribution function, Φ, of a
standard normal (Gaussian) random variable; that is:

The value of the distribution function at the point x is the probability that the random
variable takes a value less than or equal to x.

The standard normal distribution (for which IMSL_NORMALCDF is the distribution
function) has mean of zero and variance of 1. The probability that a normal random
variable with mean µ and variance σ2 is less than y is given by IMSL_NORMALCDF
evaluated at (y – µ)/σ.

The function Φ(x) is evaluated by use of the complementary error function,
IMSL_ERFC. The relationship follows below:

If the keyword Inverse is specified, the IMSL_NORMALCDF function evaluates the
inverse of the distribution function, Φ, of a standard normal (Gaussian) random
variable; that is:

IMSL_NORMALCDF (x, /Inverse) = Φ–1 (x)

where:

The value of the distribution function at the point x is the probability that the random
variable takes a value less than or equal to x. The standard normal distribution has a
mean of zero and a variance of 1.

The IMSL_NORMALCDF function is evaluated by use of minimax rational-function
approximations for the inverse of the error function. General descriptions of these
approximations are given in Hart et al. (1968) and Strecok (1968). The rational
functions used in IMSL_NORMALCDF are described by Kinnucan and Kuki (1968).

Φ x()
1

2π
---------- e

t2 2⁄–
td

∞–

x

∫=

Φ x() ERFC x 2.0⁄–() 2⁄()=

Φ x()
1

2π
---------- e

t– 2 2⁄
td

∞–

x

∫=
IDL Analyst Reference Guide IMSL_NORMALCDF

1036 Chapter 23: Probability Distribution Functions and Inverses
Example

Suppose X is a normal random variable with mean 100 and variance 225. This
example finds the probability that X is less than 90 and the probability that X is
between 105 and 110.

x1 = (90-100)/15.
p = IMSL_NORMALCDF(x1)
PM, p, Title = 'The probability that X is less than 90 is:'
The probability that X is less than 90 is: 0.252493
x1 = (105 - 100)/15.
x2 = (110 - 100)/15.
p = IMSL_NORMALCDF(x2) - IMSL_NORMALCDF(x1)
PM, p, Title = 'The probability that X is between 105 and ', $

'110 is:'

The probability that X is between 105 and 110 is: 0.116949

Version History

6.4 Introduced
IMSL_NORMALCDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1037
IMSL_BINORMALCDF

The IMSL_BINORMALCDF function evaluates the bivariate normal distribution
function.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BINORMALCDF(x, y, rho [, /DOUBLE])

Return Value

The probability that a bivariate normal random variable with correlation rho takes a
value less than or equal to x and less than or equal to y.

Arguments

rho

Correlation coefficient.

x

The x-coordinate of the point for which the bivariate normal distribution function is to
be evaluated.

y

The y-coordinate of the point for which the bivariate normal distribution function is to
be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_BINORMALCDF

1038 Chapter 23: Probability Distribution Functions and Inverses
Discussion

The IMSL_BINORMALCDF function evaluates the distribution function F of a
bivariate normal distribution with means of zero, variances of 1, and correlation of
rho; that is, ρ = rho and |ρ| < 1.

To determine the probability that U ≤ u0 and V ≤ v0, where (U, V) is a bivariate
normal random variable with mean µ = (µU, µV) and the following variance-
covariance matrix:

transform (U, V)T to a vector with zero means and unit variances. The input to
IMSL_BINORMALCDF would be as follows:, ,

and

The IMSL_BINORMALCDF function uses the method of Owen (1962, 1965). For
|ρ| = 1, the distribution function is computed based on the univariate statistic
Z = min(x, y) and on the normal distribution IMSL_NORMALCDF.

F x y,() 1

2π 1 ρ2–
-------------------------- exp u2 2ρuv– v2+

2 1 ρ2–()
------------------------------------–

 u vdd
∞–

y

∫
∞–

x

∫=

∑
σU

2 σUV

σUV σV
2

=

X
u0 µU–()

σU
-----------------------=

Y
v0 µV–()

σV
-----------------------=

ρ
σUV

σUσV()
-------------------=
IMSL_BINORMALCDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1039
Example

Suppose (x, y) is a bivariate normal random variable with mean (0, 0) and the
following variance-covariance matrix:

This example finds the probability that x is less than –2.0 and y is less than 0.0.

x = -2
y = 0
rho = .9
; Define x, y, and rho.
p = IMSL_BINORMALCDF(x, y, rho)
; Call IMSL_BINORMALCDF and output the results.
PM, 'P((x < -2.0) and (y < 0.0)) = ', p, FORMAT = '(a29, f8.4)'

P((x < -2.0) and (y < 0.0)) = 0.0228

Version History

6.4 Introduced

1.0 0.9

0.9 1.0
IDL Analyst Reference Guide IMSL_BINORMALCDF

1040 Chapter 23: Probability Distribution Functions and Inverses
IMSL_CHISQCDF

The IMSL_CHISQCDF function evaluates the chi-squared distribution or non-central
chi-squared distribution. Using a keyword the inverse of these distributions can be
computed.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CHISQCDF(chisq, df [, delta] [, /DOUBLE] [, /INVERSE])

Return Value

The probability that a chi-squared random variable takes a value less than or equal to
chisq.

Arguments

chisq

Expression for which the chi-squared distribution function is to be evaluated. If the
keyword INVERSE is specified, the probability for which the inverse of the non-
central, chi-squared distribution function is to be evaluated, the parameter chisq must
be in the open interval (0.0, 1.0).

delta

(Optional) The non-centrality parameter. delta must be nonnegative, and delta + df
must be less than or equal to 200,000.

df

Number of degrees of freedom of the chi-squared distribution. Argument df must be
greater than or equal to 0.5.
IMSL_CHISQCDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1041
Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

If present and nonzero, evaluates the inverse of the chi-squared distribution function.
If inverse is specified, then argument chisq represents the probability for which the
inverse of the chi-squared distribution function is to be evaluated. Parameter chisq
must be in the open interval (0.0, 1.0).

Discussion

If Two Input Arguments Are Used

The IMSL_CHISQCDF function evaluates the distribution function, F, of a chi-
squared random variable with ν = df. Then:

where Γ(·) is the gamma function. The value of the distribution function at the point x
is the probability that the random variable takes a value less than or equal to x.

For ν > 65, IMSL_CHISQCDF uses the Wilson-Hilferty approximation (Abramowitz
and Stegun 1964, Equation 26.4.17) to the normal distribution, and
IMSL_NORMALCDF function is used to evaluate the normal distribution function.

For ν ≤ 65, IMSL_CHISQCDF uses series expansions to evaluate the distribution
function. If x < max(ν / 2, 26), IMSL_CHISQCDF uses the series 6.5.29 in
Abramowitz and Stegun (1964); otherwise, it uses the asymptotic expansion 6.5.32 in
Abramowitz and Stegun.

If Inverse is specified, the IMSL_CHISQCDF function evaluates the inverse
distribution function of a chi-squared random variable with ν = df and with
probability p. That is, it determines x, such that:

where Γ(·) is the gamma function. The probability that the random variable takes a
value less than or equal to x is p.

F x() 1

2
ν 2⁄ Γ ν 2⁄()

---------------------------- e
t 2⁄–

t
ν 2⁄ 1–

dt
0

x

∫=

p
1

2
ν 2⁄ Γ ν 2⁄()

---------------------------- e
t 2⁄–

t
ν 2⁄ 1–

dt
0

x

∫=
IDL Analyst Reference Guide IMSL_CHISQCDF

1042 Chapter 23: Probability Distribution Functions and Inverses
For ν < 40, IMSL_CHISQCDF uses bisection (if ν ≤ 2 or p > 0.98) or regula falsi to
find the expression for which the chi-squared distribution function is equal to p.

For 40 ≤ ν < 100, a modified Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, Equation 26.4.18) to the normal distribution is used. The
IMSL_NORMALCDF function is used to evaluate the inverse of the normal
distribution function. For ν ≥ 100, the ordinary Wilson-Hilferty approximation
(Abramowitz and Stegun 1964, Equation 26.4.17) is used.

If Three Input Arguments Are Used

The IMSL_CHISQCDF function evaluates the distribution function of a non-central
chi-squared random variable with df degrees of freedom and non-centrality parameter
delta, that is, with v = df, λ = delta, and x = chisq:

where Γ(·) is the gamma function. This is a series of central chi-squared distribution
functions with Poisson weights. The value of the distribution function at the point x is
the probability that the random variable takes a value less than or equal to x.

The non-central chi-squared random variable can be defined by the distribution
function above, or alternatively and equivalently, as the sum of squares of
independent normal random variables. If Yi have independent normal distributions
with means µi and variances equal to one and:

then X has a non-central chi-squared distribution with n degrees of freedom and non-
centrality parameter equal to:

non_central_chi_sq(x) e
λ– 2⁄ λ 2⁄()i

i!

i 0=

∞

∑ t
v 2i+() 2 1–⁄

e
t 2⁄–

2
v 2i+() 2⁄ Γ v 2i+

2

0

x

∫ dt=

X Y
2

i
i 1=

n

∑=

µ
2

ii 1=

n

∑

IMSL_CHISQCDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1043
With a non-centrality parameter of zero, the non-central chi-squared distribution is
the same as the chi-squared distribution.

The IMSL_CHISQCDF function determines the point at which the Poisson weight is
greatest, and then sums forward and backward from that point, terminating when the
additional terms are sufficiently small or when a maximum of 1000 terms have been
accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun (1964) is
used to speed the evaluation of the central chi-squared distribution functions.

If Inverse is specified, IMSL_CHISQCDF evaluates the inverse distribution function
of a non-central chi-squared random variable with df degrees of freedom and non-
centrality parameter delta; that is, with P = chisq, v = df, and λ = delta, it
determines c0 (= IMSL_CHISQCDF(chisq, df, delta)), such that:

where Γ(·) is the gamma function. The probability that the random variable takes a
value less than or equal to c0 is P.

Example

Suppose X is a chi-squared random variable with two degrees of freedom. This
example finds the probability that X is less than 0.15 and the probability that X is
greater than 3.0.

df = 2
chisq = .15
p = IMSL_CHISQCDF(chisq, df)
PM, p, Title = 'The probability that chi-squared with 2 df ' + $

'is less than .15 is:'

The probability that chi-squared with 2 df is less than .15 is:
0.0722565

df = 2
chisq = 3
p = 1 - IMSL_CHISQCDF(chisq, df)
PM, p, Title = 'The probability that chi-squared ' + $

'with 2 df is greater than 3 is:'

The probability that chi-squared with 2 df is greater than 3 is:
0.223130

P e
λ– 2⁄ λ 2⁄()i

i!

i 0=

∞

∑ x
v 2i+() 2 1–⁄

e
x 2⁄–

2
v 2i+() 2⁄ Γ v 2i+

2

0

c0

∫ dx=
IDL Analyst Reference Guide IMSL_CHISQCDF

1044 Chapter 23: Probability Distribution Functions and Inverses
Errors

Informational Errors

STAT_ARG_LESS_THAN_ZERO—Input parameter, chisq, is less than zero.

STAT_UNABLE_TO_BRACKET_VALUE—Bounds that enclose p could not be found.
An approximation for IMSL_CHISQCDF is returned.

STAT_CHI_2_INV_CDF_CONVERGENCE—Value of the inverse chi-squared could not
be found within a specified number of iterations. An approximation for
IMSL_CHISQCDF is returned.

Alert Errors

STAT_NORMAL_UNDERFLOW—Using the normal distribution for large degrees of
freedom, underflow would have occurred.

Version History

6.4 Introduced
IMSL_CHISQCDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1045
IMSL_FCDF

The IMSL_FCDF function evaluates the F distribution function. Using a keyword,
the inverse of the F distribution function can be evaluated.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FCDF(f, dfnum, dfden [, /DOUBLE] [, /INVERSE])

Return Value

The probability that an F random variable takes a value less than or equal to the input
point f.

Arguments

dfden

Denominator degrees of freedom. Parameter dfden must be positive.

dfnum

Numerator degrees of freedom. Parameter dfnum must be positive.

f

Expression for which the F distribution function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

If present and nonzero, evaluates the inverse of the F distribution function. If inverse
is specified, argument f represents the probability for which the inverse of the F
IDL Analyst Reference Guide IMSL_FCDF

1046 Chapter 23: Probability Distribution Functions and Inverses
distribution function is to be evaluated. In this case, f must be in the open interval
(0.0, 1.0).

Discussion

The IMSL_FCDF function evaluates the distribution function of a Snedecor’s F
random variable with dfnum and dfden. The function is evaluated by making a
transformation to a beta random variable and then evaluating the incomplete beta
function. If X is an F variate with ν1 and ν2 degrees of freedom and Y = (ν1X)/(ν2 +
ν1X), then Y is a beta variate with parameters p = ν1/2 and q = ν2/2. The IMSL_FCDF
function also uses a relationship between F random variables that is expressed as
follows: FF(f, ν1, ν2) = 1 – FF(1/f, ν2, ν1), where FF is the distribution function for an
F random variable.

If Inverse is specified, the IMSL_FCDF function evaluates the inverse distribution
function of a Snedecor’s F random variable with ν1 = dfnum numerator degrees of
freedom and ν2 = dfden denominator degrees of freedom. The function is evaluated
by making a transformation to a beta random variable and then evaluating the inverse
of an incomplete beta function.

Example

This example finds the probability that an F random variable with one numerator and
one denominator degree of freedom is greater than 648.

f = 648
p = 1 - IMSL_FCDF(f, 1, 1)
PM, p, Title = 'The probability that an F(1,1) ' + $

'variate is greater than 648 is:'

The probability that an F(1,1) variate is greater than 648 is:
0.0249959

Errors

Fatal Errors

STAT_F_INVERSE_OVERFLOW— IMSL_FCDF is set to machine infinity since
overflow would occur upon modifying the inverse value for the F distribution with
the result obtained from the inverse beta distribution.
IMSL_FCDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1047
Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_FCDF

1048 Chapter 23: Probability Distribution Functions and Inverses
IMSL_TCDF

The IMSL_TCDF function evaluates the Student’s t distribution or non-central
Student’s t distribution. Using a keyword the inverse of these distributions can be
computed.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_TCDF(chisq, df[, delta] [, /DOUBLE] [, /INVERSE])

Return Value

The probability that a Student’s t random variable takes a value less than or equal to
the input t.

Arguments

delta

(Optional) The non-centrality parameter.

df

Degrees of freedom. Argument df must be greater than or equal to 1.0.

t

Argument for which the Student’s t distribution function is to be evaluated. If Inverse
is specified, argument t represents the probability for which the inverse of the
Student’s t distribution function is to be evaluated. In this case, t must be in the open
interval (0.0, 1.0).

Keywords

DOUBLE

If present and nonzero, double precision is used.
IMSL_TCDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1049
INVERSE

If present and nonzero, evaluates the inverse of the Student’s t distribution function. If
Inverse is specified, argument t represents the probability for which the inverse of the
Student’s t distribution function is to be evaluated. In this case, t must be in the open
interval (0.0, 1.0).

Discussion

If Two Input Arguments Are Used

The IMSL_TCDF function evaluates the distribution function of a Student’s t random
variable with ν = df degrees of freedom. If t2 ≥ ν, the relationship of a t to an F
random variable (and subsequently, to a beta random variable) is exploited, and
percentage points from a beta distribution are used. Otherwise, the method described
by Hill (1970) is used. If ν is not an integer or if ν is greater than 19, a Cornish-Fisher
expansion is used to evaluate the distribution function. If ν is less than 20 and |t| is
less than 2.0, a trigonometric series (see Abramowitz and Stegun 1964, Equations
26.7.3 and 26.7.4, with some rearrangement) is used. For the remaining cases, a
series given by Hill (1970) that converges well for large values of t is used.

If keyword Inverse is specified, the IMSL_TCDF function evaluates the inverse
distribution function of a Student’s t random variable with ν = df degrees of freedom.
If ν equals 1 or 2, the inverse can be obtained in closed form. If ν is between 1 and 2,
the relationship of a t to a beta random variable is exploited, and the inverse of the
beta distribution is used to evaluate the inverse. Otherwise, the algorithm of Hill
(1970) is used. For small values of ν greater than 2, Hill’s algorithm inverts an
integrated expansion in 1 / (1 + t2 / ν) of the t density. For larger values, an asymptotic
inverse Cornish-Fisher type expansion about normal deviates is used.

If Three Input Arguments Are Used

The IMSL_TCDF function evaluates the distribution function F of a non-central t
random variable with df degrees of freedom and non-centrality parameter delta; that
is, with v = df, δ = delta , and t0 = t:

where Γ(·) is the gamma function. The value of the distribution function at the point
t0 is the probability that the random variable takes a value less than or equal to t0.

F t0()
v

v 2⁄
e

δ2 2⁄–()

πΓ v 2⁄() v x
2

+()
v 1+() 2⁄

∞–

t0

∫ Γ v i 1+ +() 2⁄()
i 0=

∞
∑

δi

i!

 2x

2

v x
2

+

 i 2⁄

dx=
IDL Analyst Reference Guide IMSL_TCDF

1050 Chapter 23: Probability Distribution Functions and Inverses
The non-central t random variable can be defined by the distribution function above,
or alternatively and equivalently, as the ratio of a normal random variable and an
independent chi-squared random variable. If w has a normal distribution with mean δ
and variance equal to one, u has an independent chi-squared distribution with v
degrees of freedom, and:

then x has a non-central t distribution with degrees of freedom and non-centrality
parameter δ.

The distribution function of the non-central t can also be expressed as a double
integral involving a normal density function (see, for example, Owen 1962, page
108). The function TNDF uses the method of Owen (1962, 1965), which uses
repeated integration by parts on that alternate expression for the distribution function.

If Inverse is specified IMSL_TCDF evaluates the inverse distribution function of a
non-central t random variable with df degrees of freedom and non-centrality
parameter delta; that is, with P = t, v = df, and δ = delta, it determines t0 (=
IMSL_TCDF(t, df, delta)), such that:

where Γ(·) is the gamma function. The probability that the random variable takes a
value less than or equal to t0 is P.

Example

This example finds the probability that a t random variable with six degrees of
freedom is greater in absolute value than 2.447. Argument t is symmetric about zero.

p = 2 * IMSL_TCDF(-2.447, 6)
PM, 'Pr(|t(6)| > 2.447) = ', p, FORMAT = '(a21, f7.4)'

Pr(|t(6)| > 2.447) = 0.0500

Errors

Informational Errors

STAT_OVERFLOW— IMSL_TCDF is set to machine infinity since overflow would
occur upon modifying the inverse value for the F distribution with the result obtained
from the inverse beta distribution.

x w u v⁄()⁄=

P v
v 2⁄

e
δ2 2⁄–

πΓ v 2⁄() v x
2

+()
v 1+() 2⁄

∞–

t0

∫ Γ v i 1+ +() 2⁄()
i 0=

∞

∑
δi

i!

 2x

2

v x
2

+

 i 2⁄

dx=
IMSL_TCDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1051
Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_TCDF

1052 Chapter 23: Probability Distribution Functions and Inverses
IMSL_GAMMACDF

The IMSL_GAMMACDF function evaluates the gamma distribution function.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_GAMMACDF(x, a [, /DOUBLE])

Return Value

The probability that a gamma random variable takes a value less than or equal to x.

Arguments

a

Shape parameter of the gamma distribution. This parameter must be positive.

x

Argument for which the gamma distribution function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The IMSL_GAMMACDF function evaluates the distribution function, F, of a gamma
random variable with shape parameter a; that is:

F x()
1

Γ a()
---------- e

t–
t
a 1–

td
0

x
∫=
IMSL_GAMMACDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1053
where Γ(·) is the gamma function. (The gamma function is the integral from 0 to
infinity of the same integrand as above.) The value of the distribution function at the
point x is the probability that the random variable takes a value less than or equal to x.

The gamma distribution is often defined as a two-parameter distribution with a scale
parameter b (which must be positive) or even as a three-parameter distribution in
which the third parameter c is a location parameter. In the most general case, the
probability density function over (c, infinity) is as follows:

If T is such a random variable with parameters a, b, and c, the probability that T ≤ t0
can be obtained from IMSL_GAMMACDF by setting x = (t0 – c) / b.

If x is less than a or if x is less than or equal to 1.0, IMSL_GAMMACDF uses a series
expansion; otherwise, a continued fraction expansion is used. (See Abramowitz and
Stegun, 1964.)

Example

Let X be a gamma random variable with a shape parameter of 4. (In this case, it has an
Erlang distribution, since the shape parameter is an integer.) This example finds the
probability that X is less than 0.5 and the probability that X is between 0.5 and 1.0.

a = 4
x = .5
p = IMSL_GAMMACDF(x, a)
PM, p, Title = 'The probability that X is less ' + $

'than .5 is:'

The probability that X is less than .5 is: 0.00175162

x = 1
p = IMSL_GAMMACDF(x, a) - p
PM, p, Title = 'The probability that X is between .5 and 1 is:'

The probability that X is between .5 and 1 is: 0.0172365

Errors

Informational Errors

STAT_LESS_THAN_ZERO—Input argument, x, is less than zero.

f t()
1

b
aΓ a()

---------------e
t c–() b⁄–

x c–()a 1–
=

IDL Analyst Reference Guide IMSL_GAMMACDF

1054 Chapter 23: Probability Distribution Functions and Inverses
Fatal Errors

STAT_X_AND_A_TOO_LARGE—Function overflows because x and a are too large.

Version History

6.4 Introduced
IMSL_GAMMACDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1055
IMSL_BETACDF

The IMSL_BETACDF function evaluates the beta probability distribution function.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BETACDF(x, pin, qin [, /DOUBLE] [, /INVERSE])

Return Value

The probability that a beta random variable takes on a value less than or equal to x.

Arguments

pin

First beta distribution parameter. Parameter pin must be positive.

qin

Second beta distribution parameter. Parameter qin must be positive.

x

Argument for which the beta probability distribution function is to be evaluated. If
Inverse is specified, argument x represents the probability for which the inverse of the
Beta distribution function is to be evaluated. In this case, x must be in the open
interval (0.0, 1.0).

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_BETACDF

1056 Chapter 23: Probability Distribution Functions and Inverses
INVERSE

If present and nonzero, evaluates the inverse of the Beta distribution function. If
Inverse is specified, argument x represents the probability for which the inverse of the
Beta distribution function is to be evaluated. In this case, x must be in the open
interval (0.0, 1.0).

Discussion

The IMSL_BETACDF function evaluates the distribution function of a beta random
variable with parameters pin and qin. This function is sometimes called the
incomplete beta ratio and is denoted by Ix(p, q), where p = pin and q = qin. It is given
by:

where Γ(·) is the gamma function. The value of the distribution function by Ix(p, q) is
the probability that the random variable takes a value less than or equal to x.

The integral in the expression above is called the incomplete beta function and is
denoted by βx(p, q). The constant in the expression is the reciprocal of the beta
function (the incomplete function evaluated at 1) and is denoted by βx(p, q).

If the keyword Inverse is specified, the IMSL_BETACDF function evaluates the
inverse distribution function of a beta random variable with parameters pin and qin.
With P = x, p = pin and q = qin, it returns x such that:

where Γ(·) is the gamma function. The probability that the random variable takes a
value less than or equal to x is P.

The BETCDF function uses the method of Bosten and Battiste (1974).

Example

Suppose X is a beta random variable with parameters 12 and 12 (X has a symmetric
distribution). This example finds the probability that X is less than 0.6 and the
probability that X is between 0.5 and 0.6. (Since X is a symmetric beta random
variable, the probability that it is less than 0.5 is 0.5.)

p = IMSL_BETACDF(.6, 12, 12)
; Call IMSL_BETACDF to compute first probability and output
results.

Ix p q,() Γ p)Γ q)((
Γ p q)+(

------------------------- t
0

x
∫

p 1–
1 t)–(q 1–

dt=

P
Γ p)Γ q)((
Γ p q)+(

------------------------- t
0

x
∫

p 1–
1 t)–(q 1–

dt=
IMSL_BETACDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1057
PM, p, Title = 'The probability that X is less than ' + $
'0.6 is:', FORMAT= '(f8.4)'

The probability that X is less than 0.6 is: 0.8364

p = p - IMSL_BETACDF(.5, 12, 12)
; Call IMSL_BETACDF and use the previously computed
; probability to determine the next probability.
PM, p, FORMAT = '(f8.4)', title = 'The probability that X ' + $

'is between 0.5 and 0.6 is:'

The probability that X is between 0.5 and 0.6 is: 0.3364

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_BETACDF

1058 Chapter 23: Probability Distribution Functions and Inverses
IMSL_BINOMIALCDF

The IMSL_BINOMIALCDF function evaluates the binomial distribution function.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BINOMIALCDF(k, n, p [, /DOUBLE])

Return Value

The probability that k or fewer successes occur in n independent Bernoulli trials, each
of which has a probability p of success.

Arguments

k

Argument for which the binomial distribution function is to be evaluated.

n

Number of Bernoulli trials.

p

Probability of success on each trial.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The IMSL_BINOMIALCDF function evaluates the distribution function of a
binomial random variable with parameters n and p by summing probabilities of the
IMSL_BINOMIALCDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1059
random variable taking on the specific values in its range. These probabilities are
computed by the following recursive relationship:

To avoid the possibility of underflow, the probabilities are computed forward from 0
if k is not greater than n times p; otherwise, they are computed backward from n. The
smallest positive machine number, ε, is used as the starting value for summing the
probabilities, which are rescaled by (1 – p)nε if forward computation is performed
and by pnε if backward computation is done.

For the special case of p = 0, IMSL_BINOMIALCDF is set to 1; for the case p = 1,
IMSL_BINOMIALCDF is set to 1 if k = n and is set to zero otherwise.

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. This example finds
the probability that X is less than or equal to 3.

p = IMSL_BINOMIALCDF(3, 5, .95)
PM, 'Pr(x < 3) = ', p, FORMAT = '(a12, f7.4)'

Pr(x < 3) = 0.0226

Errors

Informational Errors

STAT_LESS_THAN_ZERO—Input parameter, k, is less than zero.

STAT_GREATER_THAN_N—Input parameter, k, is greater than the number of
Bernoulli trials, n.

Version History

6.4 Introduced

Pr X j=() n 1 j–+()p
j 1 p–()

----------------------------Pr X j 1–=()=
IDL Analyst Reference Guide IMSL_BINOMIALCDF

1060 Chapter 23: Probability Distribution Functions and Inverses
IMSL_BINOMIALPDF

The IMSL_BINOMIALPDF function evaluates the binomial probability function.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BINOMIALPDF (k, n, p)

Return Value

The probability that a binomial random variable takes a value equal to k.

Arguments

k

Argument for which the binomial probability function is to be evaluated.

n

Number of Bernoulli trials.

p

Probability of success on each trial.

Discussion

The IMSL_BINOMIALPDFfunction evaluates the probability that a binomial
random variable with parameters n and p takes on the value k. It does this by
computing probabilities of the random variable taking on the values in its range less
than (or the values greater than) k. These probabilities are computed by the recursive
relationship:

Pr X j=() n 1 j–+()
j 1 p–()

------------------------Pr X j 1–=()=
IMSL_BINOMIALPDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1061
To avoid the possibility of underflow, the probabilities are computed forward from 0,
if k is not greater than n times p, and are computed backward from n, otherwise. The
smallest positive machine number, ε, is used as the starting value for computing the
probabilities, which are rescaled by (1 - p)nε if forward computation is performed and
by pnε if backward computation is done.

For the special case of p = 0, IMSL_BINOMIALPDF returns 0 if k is greater than 0
and to 1 otherwise; and for the case p = 1, IMSL_BINOMIALPDF returns 0 if k is
less than n and to 1 otherwise.

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, we
find the probability that X is equal to 3.

PRINT, IMSL_BINOMIALPDF(3, 5, .95)
0.0214344

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_BINOMIALPDF

1062 Chapter 23: Probability Distribution Functions and Inverses
IMSL_HYPERGEOCDF

The IMSL_HYPERGEOCDF function evaluates the hypergeometric distribution
function.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_HYPERGEOCDF(k, n, m, l [, /DOUBLE])

Return Value

The probability that k or fewer defectives occur in a sample of size n drawn from a lot
of size l that contains m defectives.

Arguments

k

Parameter for which the hypergeometric distribution function is to be evaluated.

l

Lot size. Parameter l must be greater than or equal to n and m.

m

Number of defectives in the lot.

n

Sample size. Argument n must be greater than or equal to k.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IMSL_HYPERGEOCDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1063
Discussion

The IMSL_HYPERGEOCDF function evaluates the distribution function of a
hypergeometric random variable with parameters n, l, and m. The hypergeometric
random variable X can be thought of as the number of items of a given type in a
random sample of size n that is drawn without replacement from a population of size
l containing m items of this type.

The probability function is:

where i = max(0, n – l + m).

If k is greater than or equal to i and less than or equal to min(n, m),
IMSL_BINOMIALCDF sums the terms in this expression for j going from i up to k;
otherwise, 0 or 1 is returned, as appropriate. To avoid rounding in the accumulation,
IMSL_BINOMIALCDF performs the summation differently, depending on whether
or not k is greater than the mode of the distribution, which is the greatest integer in (m
+ 1) (n + 1)/(l + 2).

Example

Suppose X is a hypergeometric random variable with n = 100, l = 1000, and
m = 70. In this example, the distribution function is evaluated at 7.

p = IMSL_HYPERGEOCDF(7, 100, 70, 1000)
PM, 'Pr(x <= 7) = ', p, FORMAT = '(a13,f7.4)'

Pr(x <= 7) = 0.5995

Errors

Informational Errors

STAT_LESS_THAN_ZERO—Input parameter, k, is less than zero.

STAT_K_GREATER_THAN_N—Input parameter, k, is greater than the sample size.

Fatal Errors

STAT_LOT_SIZE_TOO_SMALL—Lot size must be greater than or equal to n and m.

Pr x j=()

m
j

 l m–
n j–

l
n

----------------------------= for j i i 1 … min n m,(), ,+,=
IDL Analyst Reference Guide IMSL_HYPERGEOCDF

1064 Chapter 23: Probability Distribution Functions and Inverses
Version History

6.4 Introduced
IMSL_HYPERGEOCDF IDL Analyst Reference Guide

Chapter 23: Probability Distribution Functions and Inverses 1065
IMSL_POISSONCDF

The IMSL_POISSONCDF function evaluates the Poisson distribution function.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_POISSONCDF(k, theta [, /DOUBLE])

Return Value

The probability that a Poisson random variable takes a value less than or equal to k.

Arguments

k

Parameter for which the Poisson distribution function is to be evaluated.

theta

Mean of the Poisson distribution. Parameter theta must be positive.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The IMSL_POISSONCDF function evaluates the distribution function of a Poisson
random variable with parameter theta. The mean of the Poisson random variable,
theta, must be positive.

The probability function (with θ = theta) is as follows:

 f x() e
θ– θx() x!⁄= for x 0 1 2 …, , ,=
IDL Analyst Reference Guide IMSL_POISSONCDF

1066 Chapter 23: Probability Distribution Functions and Inverses
The individual terms are calculated from the tails of the distribution to the mode of
the distribution and summed. The IMSL_POISSONCDF function uses the recursive
relationship:

,

with .

Example

Suppose X is a Poisson random variable with θ = 10. This example evaluates the
probability that X ≤ 7.

p = IMSL_POISSONCDF(7, 10)
PM, 'Pr(x <= 7) = ', p, FORMAT = '(a13,f7.4)'

Pr(x <= 7) = 0.2202

Errors

Informational Errors

STAT_LESS_THAN_ZERO— Input parameter, k, is less than zero.

Version History

6.4 Introduced

f x 1+() f x() θ x 1+()⁄()= for x 0 1 2 … k 1–, , , ,=

f 0() e
θ–

=

IMSL_POISSONCDF IDL Analyst Reference Guide

Chapter 24

Random Number
Generation
This section contains the following topics:
Overview: Random Number Generation . 1068 Random Number Generation Routines . 1071
IDL Analyst Reference Guide 1067

1068 Chapter 24: Random Number Generation
Overview: Random Number Generation

This chapter describes random number generation functions used for applications in
Monte Carlo or simulation studies. Before using random number generators, the
generator must be initialized by selecting a seed or starting value. You can do this by
using IMSL_RANDOMOPT. If you do not select a seed, one is generated using the
system clock. A seed needs to be selected only once in a program, unless two or more
separate streams of random numbers are maintained. Utility functions in this chapter
can be used to select the form of the basic generator to restart simulations and to
maintain separate simulation streams.

In the following sections, the terms random numbers, random deviates, deviates, and
variates are used interchangeably. The phrase pseudorandom is sometimes used to
emphasize that the numbers generated are really not random since they result from a
deterministic process. The usefulness of pseudorandom numbers is derived from the
similarity, in a statistical sense, of samples of the pseudorandom numbers to samples
of observations from the specified distributions. In short, while the pseudorandom
numbers are deterministic and repeatable, they simulate the realizations of
independent and identically distributed random variables.

Basic Uniform Generator

The default action of the IMSL_RANDOM function is the generation of uniform
(0,1) numbers. This function is portable in that, given the same seed, it produces the
same sequence in all computer/compiler environments.

The random number generators in this chapter use either a multiplicative congruential
method or a generalized feedback shift register (GFSR) method. The selection of the
type of generator is made by calling the “IMSL_RANDOMOPT” on page 1073. If no
selection is made explicitly, a multiplicative generator (with multiplier 16807) is
used. Whatever distribution is being simulated, uniform (0, 1) numbers are first
generated and then transformed if necessary. These routines are portable in the sense
that, given the same seed and for a given type of generator, they produce the same
sequence in all computer/compiler environments. There are many other issues that
must be considered in developing programs for the methods described below (see
Gentle 1981 and 1990).

Multiplicative Congruential Generators

The form of the multiplicative congruential generators is:

xi ≡ cxi-1mod (231 - 1)
Overview: Random Number Generation IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1069
Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive root
modulo 231 - 1 (which is a prime), then the generator will have a maximal period of
231 - 2. There are several other considerations, however. See Knuth (1981) for a good
general discussion. The possible values for c in the generators are 16807, 397204094,
and 950706376. The selection is made by IMSL_RANDOMOPT. The choice of
16807 will result in the fastest execution time, but other evidence suggests that the
performance of 950706376 is best among these three choices (Fishman and Moore
1982). If no selection is made explicitly, the functions use the multiplier 16807,
which has been in use for some time (Lewis et al. 1969).

Shuffled Generators

You also can select a shuffled version of these generators using
IMSL_RANDOMOPT. The shuffled generators use a scheme due to Learmonth and
Lewis (1973). In this scheme, a table is filled with the first 128 uniform (0,1) numbers
resulting from the simple multiplicative congruential generator. Then, for each xi
from the simple generator, the low-order bits of xi are used to select a random integer,
j, from 1 to 128. The j-th entry in the table is then delivered as the random number;
and xi, after being scaled into the unit interval, is inserted into the j-th position in the
table. This scheme is similar to that of Bays and Durham (1976), and their analysis is
applicable to this scheme as well.

Generalized Feedback Shift Register Generator

The GFSR generator uses the recursion Xt = Xt-1563 ⊕ Xt-96. This generator, which is
different from earlier GFSR generators, was proposed by Fushimi (1990), who
discusses the theory behind the generator and reports on several empirical tests of it.
Background discussions on this type of generator can be found in Kennedy and
Gentle (1980), pages 150-162.

Setting Seed

The seed of the generator can be set and retrieved using IMSL_RANDOMOPT. Prior
to invoking any generator in this section, you can call IMSL_RANDOMOPT to
initialize the seed, which is an integer variable with a value between 1 and
2147483647. If it is not initialized by IMSL_RANDOMOPT, a random seed is
obtained from the system clock. Once it is initialized, the seed need not be set again.

If you want to restart a simulation, IMSL_RANDOMOPT can be used to obtain the
final seed value of one run to be used as the starting value in a subsequent run. Also,
if two simultaneous random number streams are desired in one run,
IDL Analyst Reference Guide Overview: Random Number Generation

1070 Chapter 24: Random Number Generation
IMSL_RANDOMOPT can be used before and after the invocations of the generators
in each stream.

If a shuffled generator or the GFSR generator is used, in addition to resetting the
seed, you must also reset some values in a table. For the shuffled generators, this is
done using the routine IMSL_RANDOM_TABLE. The tables for the shuffled
generators are separate for single and double precision; so, if precisions are mixed in
a program, it is necessary to manage each precision separately for the shuffled
generators.

Distributions Other than Uniform

The nonuniform generators use a variety of transformation procedures. All of the
transformations used are exact (mathematically). The most straightforward
transformation is the inverse CDF technique, but it is often less efficient than others
involving acceptance/rejection and mixtures. See Kennedy and Gentle (1980) for
discussion of these and other techniques.

Many of the nonuniform generators in this chapter use different algorithms
depending on the values of the parameters of the distributions. This is particularly
true of the generators for discrete distributions. Schmeiser (1983) gives an overview
of techniques for generating deviates from discrete distributions.

Although, as noted above, the uniform generators yield the same sequences on
different computers, because of rounding, the nonuniform generators that use
acceptance/rejection may occasionally produce different sequences on different
computer/compiler environments.

Although the generators for nonuniform distributions use fast algorithms, if a very
large number of deviates from a fixed distribution are to be generated, it might be
worthwhile to consider a table sampling method, as implemented in the routines
IMSL_RAND_GEN_CONT and IMSL_RAND_GEN_DISCR.

Additional Notes on Syntax

The generators for continuous distributions are available in both single and double
precision versions. This is merely for your convenience; the double precision
versions should not be considered more “accurate,” except possibly for the
multivariate distributions.
Overview: Random Number Generation IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1071
Random Number Generation Routines

Random Numbers

IMSL_RANDOMOPT—Retrieves uniform (0, 1) multiplicative, congruential
pseudorandom-number generator.

IMSL_RANDOM_TABLE—Sets or retrieves the current table used in either the
shuffled or GFSR random number generator.

IMSL_RANDOM—Generates pseudorandom numbers.

IMSL_RANDOM_NPP—Generates pseudorandom numbers from a nonhomo-
geneous Poisson proces.

IMSL_RANDOM_ORDER—Generates pseudorandom order statistics from a
uniform (0, 1) distribution, or optionally from a standard normal distribution.

IMSL_RAND_TABLE_2WAY—Generates a pseudorandom two-way table.

IMSL_RAND_ORTH_MAT—Generates a pseudorandom orthogonal matrix or a
correlation matrix.

IMSL_RANDOM_SAMPLE—Generates a simple pseudorandom sample from a
finite population.

IMSL_RAND_FROM_DATA—Generates pseudorandom numbers from a
multivariate distribution determined from a given sample.

IMSL_CONT_TABLE—Sets up table to generate pseudorandom numbers from a
general continuous distribution.

IMSL_RAND_GEN_CONT—Generates pseudorandom numbers from a general
continuous distribution.

IMSL_DISCR_TABLE—Sets up table to generate pseudorandom numbers from a
general discrete distribution.

IMSL_RAND_GEN_DISCR—Generates pseudorandom numbers from a general
discrete distribution using an alias method or optionally a table lookup method.

Stochastic Processes

IMSL_RANDOM_ARMA—Generate pseudorandom IMSL_ARMA process
numbers.
IDL Analyst Reference Guide Random Number Generation Routines

1072 Chapter 24: Random Number Generation
Low-discrepancy Sequences

IMSL_FAURE_INIT—Initializes the structure used for computing a shuffled Faure
sequence.

IMSL_FAURE_NEXT_PT—Generates a shuffled Faure sequence.
Random Number Generation Routines IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1073
IMSL_RANDOMOPT

The IMSL_RANDOMOPT procedure uses keywords to set or retrieve the random
number seed or to select the form of the IMSL random number generator.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_RANDOMOPT ([, CURRENT_OPTION=variable] [, GEN_OPTION=value]
[, GET=variable] [, SET=value] [, SUBSTREAM_SEED=value])

Arguments

The IMSL_RANDOMOPT procedure does not have any positional Input Parameters.
Keywords are required for specific actions to be taken.

Keywords

CURRENT_OPTION

Named variable into which the value of the current random-number generator option
is stored.

GEN_OPTION

Indicator of the generator. The random-number generator is a multiplicative,
congruential generator with modulus 231 – 1. Keyword Gen_Option is used to choose
the multiplier and to determine whether or not shuffling is done.

• 1—multiplier 16807 used (default)

• 2—multiplier 16807 used with shuffling

• 3—multiplier 397204094 used

• 4—multiplier 397204094 used with shuffling

• 5—multiplier 950706376 used

• 6—multiplier 950706376 used with shuffling
IDL Analyst Reference Guide IMSL_RANDOMOPT

1074 Chapter 24: Random Number Generation
• 7—GFSR, with the recursion Xt = Xt-1563 ⊕ Xt-96 is used

GET

Named variable into which the value of the current random-number seed is stored.

SET

Seed of the random-number generator. The seed must be in the range
(0, 2147483646). If the seed is zero, a value is computed using the system clock;
hence, the results of programs using the IDL Analyst random-number generators are
different at various times.

SUBSTREAM_SEED

If present and nonzero, then a seed for the congruential generators that do not do
shuffling that will generate random numbers beginning 100,000 numbers farther
along will be returned in keyword Get. If keyword Substream_seed is set, then
keyword Get is required.

Discussion

The IMSL_RANDOMOPT procedure is designed to allow a user to set certain key
elements of the random-number generator functions.

The uniform pseudorandom-number generators use a multiplicative congruential
method, or a generalized feedback shift register. The choice of generator is
determined by keyword Gen_Option. The chapter introduction and the description of
IMSL_RANDOM may provide some guidance in the choice of the form of the
generator. If no selection is made explicitly, the generators use the multiplier 16807
without shuffling. This form of the generator has been in use for some time
(Lewis et al. 1969).

Keyword Set is used to initialize the seed used in the IDL Analyst random-number
generators. See the chapter introduction for details of the various generator options.
The seed can be reinitialized to a clock-dependent value by calling
IMSL_RANDOMOPT with Set set to zero.

A common use of keyword Set is in conjunction with the keyword Get to restart a
simulation. Keyword Get retrieves the current value of the “seed” used in the random-
number generators.

If keyword Substream_seed is set, IMSL_RANDOMOP determines another seed,
such that if one of the IMSL multiplicative congruential generators, using no
shuffling, went through 100,000 generations starting with Substream_seed, the next
IMSL_RANDOMOPT IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1075
number in that sequence would be the first number in the sequence that begins with
the returned seed.

Note that Substream_seed works only when a multiplicative congruential generator
without shuffling is used. This means that either the routine IMSL_RANDOMOPT
has not been called at all or that it has been last called with Gen_Option having a
value of 1, 3, or 5.

For many IMSL generators for nonuniform distributions that do not use the inverse
CDF method, the distance between sequences generated starting with
Substream_seed and starting with returned seed may be less than 100,000. This is
because nonuniform generators that use other techniques may require more than one
uniform deviate for each output deviate.

The reason that one may want two seeds that generate sequences a known distance
apart is for blocking Monte Carlo experiments or for running parallel streams.

Examples

Example 1

This example illustrates the statements required to restart a simulation using the
keywords Get and Set. The example shows that restarting the sequence of random
numbers at the value of the last seed generated is the same as generating the random
numbers all at once.

seed = 123457
nrandom = 5
IMSL_RANDOMOPT, Set = seed
; Set the seed using the keyword Set.
r1 = IMSL_RANDOM(nrandom)
PM, r1, Title = 'First Group of Random Numbers'

First Group of Random Numbers
0.966220
0.260711
0.766262
0.569337
0.844829

IMSL_RANDOMOPT, Get = seed
; Get the current value of the seed using the keyword Get.
IMSL_RANDOMOPT, Set = seed
; Set the seed.
r2 = IMSL_RANDOM(nrandom)
PM, r2, Title = 'Second Group of Random Numbers'
IDL Analyst Reference Guide IMSL_RANDOMOPT

1076 Chapter 24: Random Number Generation
Second Group of Random Numbers
0.0442665
0.987184
0.601350
0.896375
0.380854

IMSL_RANDOMOPT, Set = 123457
; Reset the seed to the original seed.
r3 = IMSL_RANDOM(2 * nrandom)
PM, r3, Title = 'Both Groups of Random Numbers'

Both Groups of Random Numbers
 0.966220
 0.260711
 0.766262
 0.569337
 0.844829
 0.0442665
 0.987184
 0.601350
 0.896375
 0.380854

Example 2

In this example, IMSL_RANDOMOPT is used to determine seeds for 4 separate
streams, each 200,000 numbers apart, for a multiplicative congruential generator
without shuffling. (Since IMSL_RANDOMOPT is not invoked to select a generator,
the multiplier is 16807.) Since the streams are 200,000 numbers apart, each seed
requires two invocations of IMSL_RANDOMOPT with keyword Substream_seed.
All of the streams are non-overlapping, since the period of the underlying generator is
2,147,483,646.

IMSL_RANDOMOPT, GEN_OPTION = 1
is1 = 123457;
IMSL_RANDOMOPT, GET = itmp, SUBSTREAM_SEED = is1
IMSL_RANDOMOPT, GET = is2, SUBSTREAM_SEED = itmp
IMSL_RANDOMOPT, GET = itmp, SUBSTREAM_SEED = is2
IMSL_RANDOMOPT, GET = is3, SUBSTREAM_SEED = itmp
IMSL_RANDOMOPT, GET = itmp, SUBSTREAM_SEED = is3
IMSL_RANDOMOPT, GET = is4, SUBSTREAM_SEED = itmp
PRINT, is1, is2, is3, is4

123457 2016130173 85016329 979156171
IMSL_RANDOMOPT IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1077
Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_RANDOMOPT

1078 Chapter 24: Random Number Generation
IMSL_RANDOM_TABLE

The IMSL_RANDOM_TABLE procedure sets or retrieves the current table used in
either the shuffled or GFSR random number generator.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_RANDOM_TABLE, table [, /DOUBLE] [, /GET | /SET] [, /GFSR]

Arguments

table

One dimensional array used in the generators. For the shuffled generators table is
length 128. For the GFSR generator table is length 1565. The argument table is input
if the keyword Set is used, and output if the keyword Get is used.

Keywords

DOUBLE

If present and nonzero, double precision is used. This keyword is active only when
the shuffled table is being set or retrieved.

GET

If present and nonzero, then the specified table is being retieved.

GFSR

If present and nonzero, then the specified GFSR table is being set or retrieved.

SET

If present and nonzero, then the specified table is being set.
IMSL_RANDOM_TABLE IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1079
Discussion

The values in table are initialized by the IMSL random number generators. The
values are all positive except if you wish to reinitialize the array, in which case the
first element of the array is input as a nonpositive value. (Usually, one should avoid
reinitializing these arrays, but it might be necessary sometimes in restarting a
simulation.) If the first element of table is set to a nonpositive value on the call to
IMSL_RANDOM_TABLE with the keyword Set, on the next invocation of a routine
to generate random numbers, the appropriate table will be reinitialized.

For more details on the shuffled and GFSR generators see the “Overview: Random
Number Generation” on page 1068.

Example

In this example, three separate simulation streams are used, each with a different
form of the generator. Each stream is stopped and restarted. (Although this example is
obviously an artificial one, there may be reasons for maintaining separate streams and
stopping and restarting them because of the nature of the usage of the random
numbers coming from the separate streams.)

nr = 5
iseed1 = 123457
iseed2 = 123457
iseed7 = 123457

; Begin first stream, iopt = 1 (by default)
IMSL_RANDOMOPT, Set = iseed1
r = IMSL_RANDOM(nr)
IMSL_RANDOMOPT, Get = iseed1
PM, r, TITLE = 'First stream output'

First stream output
0.966220
0.260711
0.766262
0.569337
0.844829

PRINT, 'output seed ', iseed1

output seed 1814256879

; Begin second stream, iopt = 2
IMSL_RANDOMOPT, gen_opt = 2
IMSL_RANDOMOPT, Set = iseed2
IDL Analyst Reference Guide IMSL_RANDOM_TABLE

1080 Chapter 24: Random Number Generation
r = IMSL_RANDOM(nr)
IMSL_RANDOMOPT, Get = iseed2
IMSL_RANDOM_TABLE, table, /Get
PM, r, TITLE = 'Second stream output'

Second stream output
0.709518
0.186145
0.479442
0.603839
0.379015

PRINT, 'output seed ', iseed2

output seed 1965912801

; Begin third stream, iopt = 7
IMSL_RANDOMOPT, gen_opt = 7
IMSL_RANDOMOPT, Set = iseed7
r = IMSL_RANDOM(nr)
IMSL_RANDOMOPT, Get = iseed7
IMSL_RANDOM_TABLE, itable, /Get, /GFSR
PM, r, TITLE = 'Third stream output'

Third stream output
0.391352
0.0262676
0.762180
0.0280987
0.899731

PRINT, 'output seed ', iseed7

output seed 1932158269

; Reinitialize seed and resume first stream
IMSL_RANDOMOPT, gen_opt = 1
IMSL_RANDOMOPT, Set = iseed1
r = IMSL_RANDOM(nr)
IMSL_RANDOMOPT, Get = iseed1
PM, r, TITLE = 'First stream output'

First stream output
0.0442665
0.987184
0.601350
0.896375
0.380854
IMSL_RANDOM_TABLE IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1081
PRINT, 'output seed ', iseed1

output seed 817878095

; Reinitialize seed & table for shuffling & resume second stream
IMSL_RANDOMOPT, gen_opt = 2
IMSL_RANDOMOPT, Set = iseed2
IMSL_RANDOM_TABLE, table, /Set
r = IMSL_RANDOM(nr)
IMSL_RANDOMOPT, Get = iseed2
PM, r, TITLE = 'Second stream output'

Second stream output
0.255690
0.478770
0.225802
0.345467
0.581051

PRINT, 'output seed ', iseed2

output seed 2108806573

; Reinitialize seed and table for GFSR and resume third stream.
IMSL_RANDOMOPT, GEN_OPT = 7
IMSL_RANDOMOPT, SET = iseed7
IMSL_RANDOM_TABLE, itable, /SET, /GFSR
r = IMSL_RANDOM(nr)
IMSL_RANDOMOPT, GET = iseed7
PM, r, TITLE = 'Third stream output'

Third stream output
0.751854
0.508370
0.906986
0.0910035
0.691663

PRINT, 'output seed ', iseed7

output seed 1485334679

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_RANDOM_TABLE

1082 Chapter 24: Random Number Generation
IMSL_RANDOM

The IMSL_RANDOM function generates pseudorandom numbers. The default
distribution is a uniform (0, 1) distribution, but many different distributions can be
specified through the use of keywords.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RANDOM(n [, /BETA] [, /BINOMIAL] [, /CAUCHY]
[, COVARIANCES=value] [, /CHI_SQUARED] [, /DISCRETE_UNIF]
[, /DOUBLE] [, /EXPONENTIAL] [, /GAMMA] [, /GEOMETRIC]
[, /HYPERGEOMETRIC] [, /LOGARITHMIC] [, /LOGNORMAL]
[, /MIX_EXPONENTIAL] [, /MULTINOMIAL] [, /MVAR_NORMAL]
[, /NEG_BINOMIAL] [, /NORMAL] [, PARAMETERS=value]
[, /PERMUTATION] [, /POISSON] [, PROBABILITIES=array]
[, /SAMPLE_INDICES] [, /SPHERE] [, /STABLE] [, /STUDENT_T]
[, /TRIANGULAR] [, /UNIFORM] [, /VON_MISES] [, /WEIBULL])

Generally, it is best to first identify the desired distribution from the “Discussion”
section, then refer to the “Input Keywords” section for specific usage instructions.

Return Value

A one-dimensional array of length n containing the random numbers. If one of the
keywords Sphere, Multinomial, or Mvar_Normal are used, then a two-dimensional
array is returned.

Arguments

n

Number of random numbers to generate.
IMSL_RANDOM IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1083
Keywords

BETA

If present and nonzero, the random numbers are generated from a beta distribution.
Requires the Parameters keyword to specify the parameters (p, q) for the distribution.
The parameters p and q must be positive.

BINOMIAL

If present and nonzero, random numbers are generated from a binomial distribution.
Requires Parameters keyword to specify the parameters (p, n) for the distribution.
The parameter n is the number of Bernoulli trials, and it must be greater than zero.
The parameter p represents the probability of success on each trial, and it must be
between 0.0 and 1.0.

CAUCHY

If present and nonzero, the random numbers are generated from a Cauchy
distribution.

COVARIANCES

Two-dimensional, square matrix containing the variance-covariance matrix. The two-
dimensional array returned by IMSL_RANDOM is of the following size:

n by N_ELEMENTS(Covariances(*, 0))

Keywords Mvar_Normal and Covariances must be specified to return numbers from
a multivariate normal distribution.

CHI_SQUARED

If present and nonzero, the random numbers are generated from a chi-squared
distribution. Requires the Parameters keyword to specify the parameter Df for the
distribution. The parameter Df is the number of degrees of freedom for the
distribution, and it must be positive.

DISCRETE_UNIF

If present and nonzero, the random numbers are generated from a discrete uniform
distribution. Requires the Parameters keyword to specify the parameter k for the
distribution. This generates integers in the range from 1 to k (inclusive) with equal
probability. The parameter k must be positive.
IDL Analyst Reference Guide IMSL_RANDOM

1084 Chapter 24: Random Number Generation
DOUBLE

If present and nonzero, double precision is used.

EXPONENTIAL

If present and nonzero, the random numbers are generated from a standard
exponential distribution.

GAMMA

If present and nonzero, the random numbers are generated from a standard Gamma
distribution. Requires the Parameters keyword to specify the parameter a for the
distribution. The parameter a is the shape parameter of the distribution, and it must be
positive n.

GEOMETRIC

If present and nonzero, the random numbers are generated from a geometric
distribution. Requires the Parameters keyword to specify the parameter P for the
distribution. The parameter P must be positive and less than 1.0.

HYPERGEOMETRIC

If present and nonzero, the random numbers are generated from a hypergeometric
distribution. Requires the Parameters keyword to specify the parameters (M, N, L) for
the distribution. The parameter N represents the number of items in the sample, M is
the number of special items in the population, and L is the total number of items in
the population. The parameters N and M must be greater than zero, and L must be
greater than both N and M.

LOGARITHMIC

If present and nonzero, the random numbers are generated from a logarithmic
distribution. Requires the Parameters keyword to specify the parameter a for the
distribution. The parameter a must be greater than zero.

LOGNORMAL

If present and nonzero, the random numbers are generated from a lognormal
distribution. Requires the Parameters keyword to specify the parameters (µ, σ) for
the distribution. The parameter µ is the mean of the distribution, while σ represents
the standard deviation.
IMSL_RANDOM IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1085
MIX_EXPONENTIAL

If present and nonzero, the random numbers are generated from a mixture of two
exponential distributions. Requires the Parameters keyword to specify the parameters
(θ1, θ2, p) for the distribution. The parameters θ1 and θ2 are the means for the two
distributions; both must be positive, and θ1 must be greater than θ2. The parameter p
is the relative probability of the θ1 distribution, and it must be non-negative and less
than or equal to θ1/(θ1 – θ2).

NEG_BINOMIAL

If present and nonzero, the random numbers are generated from a negative binomial
distribution. Requires the Parameters keyword to specify the parameters (r, p) for the
distribution. The parameter r must be greater than zero. If r is an integer, the
generated deviates can be thought of as the number of failures in a sequence of
Bernoulli trials before r successes occur. The parameter p is the probability of success
on each trial. It must be greater than the machine epsilon, and less than 1.0.

MULTINOMIAL

If present and nonzero, the random numbers are generated from a multinomial
distribution. Requires the Parameters keyword to specify the parameter (ntrials) for
the distribution, and the keyword Probabilities to specify the array containing the
probabilities of the possible outcomes. The value if ntrials is the multinomial
parameter indicating the number of independent trials.

MVAR_NORMAL

If present and nonzero, the random numbers are generated from a multivariate normal
distribution. Keywords Mvar_Normal and Covariances must be specified to return
numbers from a multivariate normal distribution.

NORMAL

If present and nonzero, the random numbers are generated from a standard normal
distribution using an inverse CDF method.

PARAMETERS

Specifies parameters for the distribution used by IMSL_RANDOM to generate
numbers. Some distributions require this keyword to execute successfully. The type
and range of these parameters depends upon which distribution is specified. See the
keyword for the desired distribution or the Discussion section for more details.
IDL Analyst Reference Guide IMSL_RANDOM

1086 Chapter 24: Random Number Generation
Note
The keywords A, Pin, Qin, and Theta are still supported, but are now deprecated.
Please use the Parameters keyword instead.

PERMUTATION

If present and nonzero, then generate a pseudorandom permutation.

POISSON

If present and nonzero, the random numbers are generated from a Poisson
distribution. Requires the Parameters keyword to specify the parameter θ for the
distribution. The parameter θ represents the mean of the distribution, and it must be
positive.

PROBABILITIES

Specifies the array containing the probabilities of the possible outcomes. The
elements of P must be positive and must sum to 1.0.

Keywords Multinomial and Probabilities must be specified to return numbers from a
Multinomial distribution.

SAMPLE_INDICES

If present and nonzero, generate a simple pseudorandom sample of indices. Requires
the Parameters keyword to specify the parameter npop, the number of items in the
population.

SPHERE

If present and nonzero, the random numbers are generated on a unit circle or K-
dimensional sphere. Requires the Parameters keyword to specify the parameter k, the
dimension of the circle (k = 2) or of the sphere.

STABLE

If present and nonzero, the random numbers are generated from a stable distribution.
Requires the Parameters keyword to specify the parameters A and bprime for the
stable distribution. A is the characteristic exponent of the stable distribution. A must
be positive and less than or equal to 2. bprime is related to the usual skewness
parameter b of the stable distribution.
IMSL_RANDOM IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1087
STUDENT_T

If present and nonzero, the random numbers are generated from a Student’s t
distribution. Requires the Parameters keyword to specify the parameter Df for the
distribution. The Df parameter is the number of degrees of freedom for the
distribution, and it must be positive.

TRIANGULAR

If present and nonzero, the random numbers are generated from a triangular
distribution.

UNIFORM

If present and nonzero, the random numbers are generated from a uniform (0, 1)
distribution. The default action of this returns random numbers from a uniform (0, 1)
distribution.

VON_MISES

If present and nonzero, the random numbers are generated from a von Mises
distribution. Requires the Parameters keyword to specify the parameter c for the
function. The parameter c must be greater than one-half the machine epsilon.

WEIBULL

If present and nonzero, the random numbers are generated from a Weibull
distribution. Requires the Parameters keyword to specify the parameters (a, b) for the
distribution. The parameter a is the shape parameter, and it is required. The parameter
b is the scale parameter, and is optional (Default: b = 1.0).

Discussion

The IMSL_RANDOM function is designed to return random numbers from any of a
number of different distributions. The determination of which distribution to generate
the random numbers from is based on the presence of a keyword or groups of
keywords. If IMSL_RANDOM is called without any keywords, then random
numbers from a uniform (0, 1) distribution are returned.

Uniform (0,1) Distribution

The default action of IMSL_RANDOM generates pseudorandom numbers from a
uniform (0, 1) distribution using a multiplicative, congruential method. The form of
the generator follows:
IDL Analyst Reference Guide IMSL_RANDOM

1088 Chapter 24: Random Number Generation
xi ≡ cxi - 1mod (231 – 1)

Each xi is then scaled into the unit interval (0, 1). The possible values for c in the
generators are 16807, 397204094, and 950706376. The selection is made by using
the IMSL_RANDOMOPT procedure with the Gen_Option keyword. The choice of
16807 results in the fastest execution time. If no selection is made explicitly, the
functions use the multiplier 16807. See the “IMSL_RANDOMOPT” on page 1073
for further discussion of generator options.

The IMSL_RANDOMOPT procedure called with the Set keyword is used to
initialize the seed of the random-number generator.

You can select a shuffled version of these generators. In this scheme, a table is filled
with the first 128 uniform (0, 1) numbers resulting from the simple multiplicative
congruential generator. Then, for each xi from the simple generator, the low-order bits
of xi are used to select a random integer, j, from 1 to 128. The j-th entry in the table is
then delivered as the random number, and xi, after being scaled into the unit interval,
is inserted into the j-th position in the table.

The values returned are positive and less than 1.0. Some values returned may be
smaller than the smallest relative spacing; however, it may be the case that some
value, for example r(i), is such that 1.0 – r(i) = 1.0.

Deviates from the distribution with uniform density over the interval (a, b) can be
obtained by scaling the output. See “Example 3: Beta Distribution” on page 1099 for
more details.

Normal Distribution

Calling IMSL_RANDOM with keyword Normal generates pseudorandom numbers
from a standard normal (Gaussian) distribution using an inverse CDF technique. In
this method, a uniform (0,1) random deviate is generated. Then, the inverse of the
normal distribution function is evaluated at that point using the
IMSL_NORMALCDF function with keyword Inverse.

If the Parameters keyword is specified in addition to Normal, IMSL_RANDOM
generates pseudorandom numbers using an acceptance/rejection technique due to
Kinderman and Ramage (1976). In this method, the normal density is represented as
a mixture of densities over which a variety of acceptance/rejection methods due to
Marsaglia (1964), Marsaglia and Bray (1964), and Marsaglia et al. (1964) are
applied. This method is faster than the inverse CDF technique.

Deviates from the normal distribution with mean specific mean and standard
deviation can be obtained by scaling the output from IMSL_RANDOM. See
“Example 3: Beta Distribution” on page 1099 for more details.
IMSL_RANDOM IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1089
Exponential Distribution

Calling IMSL_RANDOM with keyword Exponential generates pseudorandom
numbers from a standard exponential distribution. The probability density function is
f(x) = e–x, for x > 0. The IMSL_RANDOM function uses an antithetic inverse CDF
technique. In other words, a uniform random deviate U is generated, and the inverse
of the exponential cumulative distribution function is evaluated at 1.0 – U to yield the
exponential deviate.

Poisson Distribution

Calling IMSL_RANDOM with keywords Poisson and Parameters = θ generates
pseudorandom numbers from a Poisson distribution with positive mean θ. The
probability function follows:

, for

If θ is less than 15, IMSL_RANDOM uses an inverse CDF method; otherwise, the
PTPE method of Schmeiser and Kachitvichyanukul (1981) is used. (See also
Schmeiser 1983.) The PTPE method uses a composition of four regions, a triangle, a
parallelogram, and two negative exponentials. In each region except the triangle,
acceptance/rejection is used. The execution time of the method is essentially
insensitive to the mean of the Poisson.

Gamma Distribution

Calling IMSL_RANDOM with keywords Gamma and Parameters = a generates
pseudorandom numbers from a Gamma distribution with shape parameter a and unit
scale parameter. The probability density function follows:

Various computational algorithms are used depending on the value of the shape
parameter a. For the special case of a = 0.5, squared and halved normal deviates are
used; for the special case of a = 1.0, exponential deviates are generated. Otherwise, if
a is less than 1.0, an acceptance-rejection method due to Ahrens, described in Ahrens
and Dieter (1974), is used. If a is greater than 1.0, a 10-region rejection procedure
developed by Schmeiser and Lal (1980) is used.

The Erlang distribution is a standard Gamma distribution with the shape parameter
having a value equal to a positive integer; hence, IMSL_RANDOM generates
pseudorandom deviates from an Erlang distribution with no modifications required.

f x() e
θ– θx() x!⁄= x 0 1 2 …, , ,=

f x()
1

Γ a()
----------x

a 1–
e

x–
= for x 0≥
IDL Analyst Reference Guide IMSL_RANDOM

1090 Chapter 24: Random Number Generation
Beta Distribution

Calling IMSL_RANDOM with keywords Beta, and Parameters=[p,q] generates
pseudorandom numbers from a beta distribution. With p and q both positive, the
probability density function is:

where Γ(·) is the Gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases of p
= 1 or q = 1, in which the inverse CDF method is used, all the methods use
acceptance/rejection. If p and q are both less than 1, the method of Jöhnk (1964) is
used. If either p or q is less than 1 and the other is greater than 1, the method of
Atkinson (1979) is used. If both p and q are greater than 1, algorithm BB of Cheng
(1978), which requires very little setup time, is used if x is less than 4, and algorithm
B4PE of Schmeiser and Babu (1980) is used if x is 4 or greater. Note that for p and q
both greater than 1, calling IMSL_RANDOM to generate random numbers from a
beta distribution a loop getting less than four variates on each call yields the same set
of deviates as executing one call and getting all deviates at once.

The values returned are less than 1.0 and greater than ε, where ε is the smallest
positive number such that 1.0 – ε is less than 1.0.

Multivariate Normal Distribution

Calling IMSL_RANDOM with keywords Mvar_Normal and Covariances generates
pseudorandom numbers from a multivariate normal distribution with mean vector
consisting of all zeros and variance-covariance matrix defined using keyword
Covariances. First, the Cholesky factor of the variance-covariance matrix is
computed. Then, independent random normal deviates with mean zero and variance 1
are generated, and the matrix containing these deviates is postmultiplied by the
Cholesky factor. Because the Cholesky factorization is performed in each invocation,
it is best to generate as many random vectors as needed at once.

Deviates from a multivariate normal distribution with means other than zero can be
generated by using IMSL_RANDOM with keywords Mvar_Normal and
Covariances, then adding the vectors of means to each row of the result.

Binomial Distribution

Calling IMSL_RANDOM with keywords Binomial, Parameters= [p, n] generates
pseudorandom numbers from a binomial distribution with parameters n and p.
Parameters n and p must be positive, and p must less than 1. The probability function
(where n = Binom_n and p = Binom_p) is:

f x()
Γ p q+()
Γ p()Γ q()
---------------------x

p 1–
1 x–()q 1–

=

IMSL_RANDOM IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1091

for x = 0, 1, 2, ..., n.

The algorithm used depends on the values of n and p. If n * p < 10 or p is less than
machine epsilon, the inverse CDF technique is used; otherwise, the BTPE algorithm
of Kachitvichyanukul and Schmeiser (see Kachitvichyanukul 1982) is used. This is
an acceptance /rejection method using a composition of four regions. (TPE=Triangle,
Parallelogram, Exponential, left and right.)

Cauchy Distribution

Calling IMSL_RANDOM with the keyword Cauchy generates pseudorandom
numbers from a Cauchy distribution. The probability density function is:

where T is the median and T − S is the first quartile. This function first generates
standard Cauchy random numbers (T = 0 and S = 1) using the technique described
below, and then scales the values using T and S.

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform (0, 1)
deviate, u, as tan [π (u − 0.5)]. Rather than evaluating a tangent directly, however,
IMSL_RANDOM generates two uniform (−1, 1) deviates, x1 and x2. These values
can be thought of as sine and cosine values. If:

is less than or equal to 1, then x1/x2 is delivered as the unscaled Cauchy deviate;
otherwise, x1 and x2 are rejected and two new uniform (−1, 1) deviates are generated.
This method is also equivalent to taking the ration of two independent normal
deviates.

Chi-squared Distribution

Calling IMSL_RANDOM with keywords Chi_squared and Parameters=Df generates
pseudorandom numbers from a chi-squared distribution with Df degrees of freedom.
If Df is an even integer less than 17, the chi-squared deviate r is generated as:

where n = Df /2 and the ui are independent random deviates from a uniform (0, 1)
distribution. If Df is an odd integer less than 17, the chi-squared deviate is generated

f x() n
s
 p

x
1 p–()n x–

=

f x() S

π S
2

x T–()2
+[]

--=

x
2

1
x

2

2
+

r 2 ui
i 1=

n

∏

ln–=
IDL Analyst Reference Guide IMSL_RANDOM

1092 Chapter 24: Random Number Generation
in the same way, except the square of a normal deviate is added to the expression
above. If Df is greater than 16 or is not an integer, and if it is not too large to cause
overflow in the gamma random number generator, the chi-squared deviate is
generated as a special case of a gamma deviate.

Mixed Exponential Distribution

Calling IMSL_RANDOM with keywords Mix_Exponential, and Parameters =
[θ1, θ2] generates pseudorandom numbers from a mixture of two exponential
distributions. The probability density function is:

for x > 0.

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parameter p is
interpretable as a probability; and IMSL_RANDOM with probability p generates an
exponential deviate with mean θ1, and with probability 1 – p generates an exponential
with mean θ2. When p is greater than 1, but less than θ1/(θ1 – θ2), then either an
exponential deviate with mean θ1 or the sum of two exponentials with means θ1 and
θ2 is generated. The probabilities are q = p – (p – 1) (θ1/θ2) and 1 – q, respectively,
for the single exponential and the sum of the two exponentials.

Geometric Distribution

Calling IMSL_RANDOM with keywords Geometric and Parameters = P generates
pseudorandom numbers from a geometric distribution. The parameter P is the
probability of getting a success on any trial. A geometric deviate can be interpreted as
the number of trials until the first success (including the trial in which the first
success is obtained). The probability function is:

f(x) = P(1 − P)x–1

for x = 1, 2, ... and 0 < P < 1.

The geometric distribution as defined above has mean 1/P.

The i-th geometric deviate is generated as the smallest integer not less than (log (Ui))/
(log (1 – P)), where the Ui are independent uniform(0, 1) random numbers (see Knuth
1981).

The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 – P)/P. Such
deviates can be obtained by subtracting 1 from each element of the returned vector of
random deviates.

f x() p
θ1
-----e

x θ1⁄– 1 p–
θ2

------------e
x θ2⁄–

+=
IMSL_RANDOM IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1093
Hypergeometric Distribution

Calling IMSL_RANDOM with keywords Hypergeometric, and Parameter=[M, N,
L,] generates pseudorandom numbers from a hypergeometric distribution with
parameters N, M, and L. The hypergeometric random variable X can be thought of as
the number of items of a given type in a random sample of size N that is drawn
without replacement from a population of size L containing M items of this type. The
probability function is:

for x = max (0, N − L + M), 1, 2, ..., min (N, M)

If the hypergeometric probability function with parameters N, M, and L evaluated at
N − L + M (or at 0 if this is negative) is greater than the machine, and less than 1.0
minus the machine epsilon, then IMSL_RANDOM uses the inverse CDF technique.
The routine recursively computes the hypergeometric probabilities, starting at x =
max (0, N − L + M) and using the ratio:

(see Fishman 1978, p. 475).

If the hypergeometric probability function is too small or too close to 1.0, then
IMSL_RANDOM generates integer deviates uniformly in the interval [1, L − i] for i
= 0, 1, ..., and at the i-th step, if the generated deviate is less than or equal to the
number of special items remaining in the lot, the occurrence of one special item is
tallied and the number of remaining special items is decreased by one. This process
continues until the sample size of the number of special items in the lot is reached,
whichever comes first. This method can be much slower than the inverse CDF
technique. The timing depends on N. If N is more than half of L (which in practical
examples is rarely the case), You may wish to modify the problem, replacing N by L −
N, and to consider the generated deviates to be the number of special items not
included in the sample.

Logarithmic Distribution

Calling IMSL_RANDOM with keywords Logarithmic and Parameter=a generates
pseudorandom numbers from a logarithmic distribution. The probability function is:

f x()
M
x

 L M–
N x–

L
N

-------------------------------=

f X = x + 1()
f X = x()

f x() a
x

x 1 a–()ln
-------------------------=
IDL Analyst Reference Guide IMSL_RANDOM

1094 Chapter 24: Random Number Generation
for x = 1, 2, 3, ..., and 0 < a < 1

The methods used are described by Kemp (1981) and depend on the value of a. If a is
less than 0.95, Kemp’s algorithm LS, which is a “chop-down” variant of an inverse
CDF technique, is used. Otherwise, Kemp’s algorithm LK, which gives special
treatment to the highly probable values of 1 and 2 is used.

Lognormal Distribution

Calling IMSL_RANDOM with keywords Lognormal, and Parameter = [µ, σ]
generates pseudorandom numbers from a lognormal distribution. The scale parameter
σ in the underlying normal distribution must be positive. The method is to generate
normal deviates with mean µ and standard deviation Σ and then to exponentiate the
normal deviates.

The probability density function for the lognormal distribution is:

for x > 0. The mean and variance of the lognormal distribution are exp (µ + σ2/2) and
exp (2µ + 2σ2) − exp (2µ + σ2), respectively.

Negative Binomial

Calling IMSL_RANDOM with keywords Neg_binomial and Parameters=[r, p]
generates pseudorandom numbers from a negative binomial distribution. The
parameters r and p must be positive and p must be less than 1. The probability
function is:

for x = 0, 1, 2, ...

If r is an integer, the distribution is often called the Pascal distribution and can be
thought of as modeling the length of a sequence of Bernoulli trials until r successes
are obtained, where p is the probability of getting a success on any trial. In this form,
the random variable takes values r, r + 1, r + 2, ... and can be obtained from the
negative binomial random variable defined above by adding r to the negative
binomial variable defined by adding r to the negative binomial variable. This latter

f x() 1

σx 2π
------------------exp 1

2σ2
---------– x µ–ln()2

=

f x() r x 1–+
x

 1 p–()r
p

x
=

IMSL_RANDOM IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1095
form is also equivalent to the sum of r geometric random variables defined as taking
values 1, 2, 3, ...

If rp/(1 – p) is less than 100 and (1 – p)r is greater than the machine epsilon,
IMSL_RANDOM uses the inverse CDF technique; otherwise, for each negative
binomial deviate, IMSL_RANDOM generates a gamma (r, p/(1 – p)) deviate Y and
then generates a Poisson deviate with parameter Y.

Discrete Uniform Distribution

Calling IMSL_RANDOM with keywords Discrete_unif and Parameters = k
generates pseudorandom numbers from a uniform discrete distribution over the
integers 1, 2, ..., k. A random integer is generated by multiplying k by a uniform (0, 1)
random number, adding 1.0, and truncating the result to an integer. This, of course, is
equivalent to sampling with replacement from a finite population of size k.

Student’s t Distribution

Calling IMSL_RANDOM with keywords Students_t and Parameters=Df generates
pseudorandom numbers from a Student’s t distribution with Df degrees of freedom,
using a method suggested by Kinderman et al. (1977). The method (“TMX” in the
reference) involves a representation of the t density as the sum of a triangular density
over (−2, 2) and the difference of this and the t density. The mixing probabilities
depend on the degrees of freedom of the t distribution. If the triangular density is
chosen, the variate is generated as the sum of two uniforms; otherwise, an
acceptance/rejection method is used to generate the difference density.

Triangular Distribution

Calling IMSL_RANDOM with the keyword Triangular generates pseudorandom
numbers from a triangular distribution over the unit interval. The probability density
function is f (x) = 4x, for 0 ≤ x ≤ 0.5, and f (x) = 4 (1 – x), for 0.5 < x ≤ 1. An inverse
CDF technique is used.

von Mises Distribution

Calling IMSL_RANDOM with keywords Von_mises and Parameters = c generates
pseudorandom numbers from a von Mises distribution where c must be positive. The
probability density function is:

for −π < x < π, where I0 (c) is the modified Bessel function of the first kind of order 0.
The probability density is equal to 0 outside the interval (−π, π).

f x() 1
2πI0 c()
-------------------exp c x()cos[]=
IDL Analyst Reference Guide IMSL_RANDOM

1096 Chapter 24: Random Number Generation
The algorithm is an acceptance/rejection method using a wrapped Cauchy
distribution as the majorizing distribution. It is due to Nest and Fisher (1979).

Weibull Distribution

Calling IMSL_RANDOM with keywords Weibull and Parameters=[a,b] generates
pseudorandom numbers from a Weibull distribution with shape parameter a and scale
parameter b. The probability density function is:

for x3 0, a > 0, and b > 0. The value of b is optional; if it is not specified, it is set to
1.0.

The IMSL_RANDOM function uses an antithetic inverse CDF technique to generate
a Weibull variate; that is, a uniform random deviate U is generated and the inverse of
the Weibull cumulative distribution function is evaluated at 1.0 − U to yield the
Weibull deviate.

Note that the Rayleigh distribution with probability density function:

for x ≥ 0 is the same as a Weibull distribution with shape parameter a equal to 2 and
scale parameter b equal to:

Stable Distribution

Calling IMSL_RANDOM with keywords Stable and Parameters = [α, β'] generates
pseudorandom numbers from a stable distribution with parameters α ' and β'. α is the
usual characteristic exponent parameter α, and β' is related to the usual skewness
parameter β of the stable distribution. With restrictions 0 < α ≤ 2 and –1 ≤ β ≤ 1, the
characteristic function of the distribution is:

ϕ(t) = exp[-|t|a exp(-π iβ (1 - |1 - α|)sign(t)/2)] for α ≠ 1

and

ϕ(t) = exp[-|t|(1 + 2iβ ln|t|)sign(t)/π)] for α = 1

When β = 0, the distribution is symmetric. In this case, if α = 2, the distribution is
normal with mean 0 and variance 2; and if α = 1, the distribution is Cauchy.

The parameterization using β' and the algorithm used here are due to Chambers,
Mallows, and Stuck (1976). The relationship between β' and the standard β is:

f x() abx
a 1–

exp bx
a

–()=

r x() 1

α2
------xe

x2 2α2()⁄()–
=

2α
IMSL_RANDOM IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1097
β' = -tan(π (1 - α)/2) tan(-π β (1 - |1 - α|)/2) for α ≠ 1

and:

β' = β for α = 1

The algorithm involves formation of the ratio of a uniform and an exponential
random variate.

Multinomial Distribution

Calling IMSL_RANDOM with keywords Multinomial, Probabilites, and
Parameters = ntrials generates pseudorandom numbers from a K-variate multinomial
distribution with parameters n and p. k=N_ELEMENTS(Probabilities) and ntrials
must be positive. Each element of Probabilites must be positive and the elements
must sum to 1. The probability function (with n = n, k = k, and pi = Probabilities(i))
is:

for xi ≥ 0 and:

The deviate in each row of r is produced by generation of the binomial deviate x0
with parameters n and pi and then by successive generations of the conditional
binomial deviates xj given x0, x1, ..., xj-2 with parameters n - x0 - x1 - ... - xj-2 and pj /(1
- p0 - p1 - ... - pj-2).

Random Points on a K-dimensional Sphere

Calling IMSL_RANDOM with the keywords Sphere and Parameters = k generates
pseudorandom coordinates of points that lie on a unit circle or a unit sphere in K-
dimensional space. For points on a circle (k = 2), pairs of uniform (–1, 1) points are
generated and accepted only if they fall within the unit circle (the sum of their squares
is less than 1), in which case they are scaled so as to lie on the circle.

For spheres in three or four dimensions, the algorithms of Marsaglia (1972) are used.
For three dimensions, two independent uniform (–1, 1) deviates U1 and U2 are
generated and accepted only if the sum of their squares S1 is less than 1. Then, the
coordinates:

are formed. For four dimensions, U1, U2, and S1 are produced as described above.
Similarly, U3, U4, and S2 are formed. The coordinates are then:

f x1 x2 ... xk,,,() n!
x1! x2! ... xk!,,,
----------------------------------p1

x1 p2
x2 ... pk

xk,,,=

x ni
i

k

=

−

∑ =
0

1

Z1 2U1 1 S1– , Z2 2U2 1 S1– , and Z3 1 2S1–= = =
IDL Analyst Reference Guide IMSL_RANDOM

1098 Chapter 24: Random Number Generation

and:

For spheres in higher dimensions, K independent normal deviates are generated and
scaled so as to lie on the unit sphere in the manner suggested by Muller (1959).

Random Permutation

Calling IMSL_RANDOM with the keyword Permutation generates a pseudorandom
permutation of the integers from 1 to n. It begins by filling a vector of length n with
the consecutive integers 1 to n. Then, with M initially equal to n, a random index J
between 1 and M (inclusive) is generated. The element of the vector with the index M
and the element with index J swap places in the vector. M is then decremented by 1
and the process repeated until M = 1.

Sample Indices

Calling IMSL_RANDOM with the keywords Sample_indices and Parameters = npop
generates the indices of a pseudorandom sample,without replacement, of size n
numbers from a population of size npop. If n is greater than npop/2, the integers from
1 to npop are selected sequentially with a probability conditional on the number
selected and the number remaining to be considered. If, when the i-th population
index is considered, j items have been included in the sample, then the index i is
included with probability (n - j)/(npop + 1 - i).

If n is not greater than npop/2, a O(n) algorithm due to Ahrens and Dieter (1985) is
used. Of the methods discussed by Ahrens and Dieter, the one called SG* is used. It
involves a preliminary selection of q indices using a geometric distribution for the
distances between each index and the next one. If the preliminary sample size q is
less than n, a new preliminary sample is chosen, and this is continued until a
preliminary sample greater in size than n is chosen. This preliminary sample is then
thinned using the same kind of sampling as described above for the case in which the
sample size is greater than half of the population size. This routine does not store the
preliminary sample indices, but rather restores the state of the generator used in
selecting the sample initially, and then passes through once again, making the final
selection as the preliminary sample indices are being generated.

Z1 U1 Z2, U2 Z3, U3 1 S1–() S2⁄= = =

Z4 U4 1 S1–() S2⁄=
IMSL_RANDOM IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1099
Examples

Example 1

In this example, IMSL_RANDOM is used to generate five pseudorandom, uniform
numbers. Since RANDOMOPT is not called, the generator used is a simple
multiplicative congruential one with a multiplier of 16807.

IMSL_RANDOMOPT, Set = 123457
; Set the random seed.
r = IMSL_RANDOM(5)
; Call IMSL_RANDOM to compute the random numbers.
PM, r

The results are something like:

0.966220
0.260711
0.766262
0.569337
0.844829

Example 2: Poisson Distribution

In this example, random numbers from a Poisson distribution are computed.

IMSL_RANDOMOPT, Set = 123457
r = IMSL_RANDOM(5, /POISSON, PARAMETERS = 0.5)
; Call IMSL_RANDOM with keywords Poisson and Parameters.
PM, r

Example 3: Beta Distribution

In this example, random numbers are computed from a Beta distribution.

IMSL_RANDOMOPT, set = 123457
r = IMSL_RANDOM(5, /Beta, Parameter = [3,2])
; Call IMSL_RANDOM with keywords Beta, Pin, and Qin.
PM, r

Example 4: Scaling the Results of IMSL_RANDOM

This example computes deviates with uniform density over the interval (10, 20) and
deviates from the normal distribution with a mean of 10 and a standard deviation of 2.

IMSL_RANDOMOPT, Set = 123457
; Set the random number seed.
a = 10
; Define the lowerbound.
b = 20
IDL Analyst Reference Guide IMSL_RANDOM

1100 Chapter 24: Random Number Generation
; Define the upperbound.
r = a + (b - a) * IMSL_RANDOM(5)
; Call IMSL_RANDOM to compute the deviates on (0,1) and scale the
; results to (a,b).
PM, r

The results are something like:

19.6622
12.6071
17.6626
15.6934
18.4483

; Define a standard deviation.
stdev = 2
; Define a mean.
mean = 10
; Call IMSL_RANDOM to compute the deviates normal deviates
; and scale the results using the specified mean and standard
; deviation.
r = IMSL_RANDOM(6, /Normal) * stdev + mean
PM, r

The results are something like:

6.59363
14.4635
10.5137
12.5223
9.39352
5.71021

Example 5: Multivariate Normal Distribution

In this example, IMSL_RANDOM generates five pseudorandom normal vectors of
length 2 with variance covariance matrix equal to the following:

IMSL_RANDOMOPT, SET = 123457
; Set the random number seed.
cov = [[.5,.375],[.375, .5]]
; Define the covariance matrix.
PM, IMSL_RANDOM(5, /MVAR_NORMAL, COVARIANCES = cov)

The results are something like:

0.500 0.375
0.375 0.500
IMSL_RANDOM IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1101
1.45068 1.24634
0.765975 -0.0429410
0.0583781 -0.669214
0.903489 0.462826
-0.866886 -0.933426

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_RANDOM

1102 Chapter 24: Random Number Generation
IMSL_RANDOM_NPP

The IMSL_RANDOM_NPP function generates pseudorandom numbers from a
nonhomogeneous Poisson process.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

result = IMSL_RANDOM_NPP(tbegin, tend, ftheta, theta_min, theta_max, neub
[, /DOUBLE])

Return Value

A one dimensional array containing the times to events. If the length of the result is
less that neub, the time tend is reached before neub events are realized

Arguments

neub

Upper bound on the number of events to be generated. In order to be reasonably sure
that the full process through time tend is generated, calculate neub as neub = X + 10.0
* SQRT(X), where X = theta_max * (tend - tbegin).

ftheta

Scalar string specifying a user-supplied function to provide the value of the rate of the
process as a function of time. This function accepts one argument and must be
defined over the interval from tbegin to tend and must be nonnegative in that interval.

tbegin

Lower endpoint of the time interval of the process. tbegin must be nonnegative.
Usually, tbegin = 0.

tend

Upper endpoint of the time interval of the process. tend must be greater than tbegin.
IMSL_RANDOM_NPP IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1103
theta_max

Maximum value of the rate function ftheta in the interval (tbegin, tend). If the actual
maximum is unknown, set theta_max to a known upper bound of the maximum. The
efficiency of IMSL_RANDOM_NPP is less the greater theta_max exceeds the true
maximum.

theta_min

Minimum value of the rate function ftheta() in the interval (tbegin, tend). If the actual
minimum is unknown, set theta_min = 0.0.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

Routine IMSL_RANDOM_NPP simulates a one-dimensional nonhomogeneous
Poisson process with rate function theta in a fixed interval (tend - tbegin).

Let λ(t) be the rate function and t0 = tbegin and t1 = tend. Routine
IMSL_RANDOM_NPP uses a method of thinning a nonhomogeneous Poisson
process {N*(t), t ≥ t0} with rate function λ*(t) ≥ λ(t) in (t0, t1), where the number of
events, N*, in the interval (t0, t1) has a Poisson distribution with parameter:

The function:

is called the integrated rate function.In IMSL_RANDOM_NPP, λ*(t) is taken to be a
constant λ*(= theta_max) so that at time ti, the time of the next event ti + 1 is obtained
by generating and cumulating exponential random numbers:

with parameter λ*, until for the first time:

()1

0
0

t

t
t dtµ = λ∫

Λ t() λ t() td
0

t'

∫=

E1 i,
*

E2 i,
*

, ...,

uj i, ti E1 i,
*

... Ej i,
*

+ + +() λ*⁄≤
IDL Analyst Reference Guide IMSL_RANDOM_NPP

1104 Chapter 24: Random Number Generation
where the uj,i are independent uniform random numbers between 0 and 1. This
process is continued until the specified number of events, neub, is realized or until the
time, tend, is exceeded. This method is due to Lewis and Shedler (1979), who also
review other methods. The most straightforward (and most efficient) method is by
inverting the integrated rate function, but often this is not possible.

If theta_max is actually greater than the maximum of λ(t) in (t0, t1), the routine will
work, but less efficiently. Also, if λ(t) varies greatly within the interval, the efficiency
is reduced. In that case, it may be desirable to divide the time interval into
subintervals within which the rate function is less variable. This is possible because
the process is without memory.

If no time horizon arises naturally, tend must be set large enough to allow for the
required number of events to be realized. Care must be taken, however, that ftheta is
defined over the entire interval.

After simulating a given number of events, the next event can be generated by setting
tbegin to the time of the last event (the sum of the elements in the result) and calling
IMSL_RANDOM_NPP again. Cox and Lewis (1966) discuss modeling applications
of nonhomogeneous Poisson processes.

Example

In this example, IMSL_RANDOM_NPP is used to generate the first five events in the
time 0 to 20 (if that many events are realized) in a nonhomogeneous process with rate
function:

λ (t) = 0.6342 e0.001427t

for 0 < t ≤ 20.

Since this is a monotonically increasing function of t, the minimum is at t = 0 and is
0.6342, and the maximum is at t = 20 and is 0.6342 e0.02854 = 0.652561.

.RUN
FUNCTION ftheta_npp, t
RETURN, .6342*exp(.001427*t)

END

randomopt, set=123457
neub = 5
tmax = .652561
tmin = .6342
tbegin=0
tend=20
r = IMSL_RANDOM_NPP(tbegin, tend, 'ftheta_npp', tmin, tmax, neub)
PM, r
IMSL_RANDOM_NPP IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1105
0.0526598
0.407979
0.258399
0.0197666
0.167641

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_RANDOM_NPP

1106 Chapter 24: Random Number Generation
IMSL_RANDOM_ORDER

The IMSL_RANDOM_ORDER function generates pseudorandom order statistics
from a uniform (0, 1) distribution, or optionally from a standard normal distribution.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

result = IMSL_RANDOM_ORDER(ifirst, ilast, n [, /DOUBLE] [, /NORMAL]
[, /UNIFORM])

Return Value

An array of length ilast + 1 - ifirst containing the random order statistics in ascending
order.

The first element is the ifirst order statistic in a random sample of size n from the
uniform (0, 1) distribution.

Arguments

ifirst

First order statistic to generate.

ilast

Last order statistic to generate. ilast must be greater than or equal to ifirst. The full set
of order statistics from ifirst to ilast is generated. If only one order statistic is desired,
set ilast = ifirst.

n

Size of the sample from which the order statistics arise.
IMSL_RANDOM_ORDER IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1107
Keywords

DOUBLE

If present and nonzero, double precision is used.

NORMAL

If present and nonzero, generate pseudorandom order statistics from a standard
normal distribution.

UNIFORM

If present and nonzero, generate pseudorandom order statistics from a uniform (0, 1)
distribution. (Default)

Discussion

Routine IMSL_RANDOM_ORDER generates the ifirst through the ilast order
statistics from a pseudorandom sample of size n from a uniform (0, 1) distribution.
Depending on the values of ifirst and ilast, different methods of generation are used
to achieve greater efficiency. If ifirst = 1 and ilast = n, that is, if the full set of order
statistics are desired, the spacings between successive order statistics are generated as
ratios of exponential variates. If the full set is not desired, a beta variate is generated
for one of the order statistics, and the others are generated as extreme order statistics
from conditional uniform distributions. Extreme order statistics from a uniform
distribution can be obtained by raising a uniform deviate to an appropriate power.

Each call to IMSL_RANDOM_ORDER yields an independent event. This means, for
example, that if on one call the fourth order statistic is requested and on a second call
the third order statistic is requested, the “fourth” may be smaller than the “third”. If
both the third and fourth order statistics from a given sample are desired, they should
be obtained from a single call to IMSL_RANDOM_ORDER (by specifying ifirst less
than or equal to 3 and ilast greater than or equal to 4).

If the keyword Normal is present and nonzero, then IMSL_RANDOM_ORDER
generates the ifirst through the ilast order statistics from a pseudorandom sample of
size n, from a normal (0, 1) distribution

Example

In this example, IMSL_RANDOM_ORDER is used to generate the fifteenth through
the nineteenth order statistics from a sample of size twenty.
IDL Analyst Reference Guide IMSL_RANDOM_ORDER

1108 Chapter 24: Random Number Generation
r = IMSL_RANDOM_ORDER(15, 19, 20)
pm, r

Version History

6.4 Introduced
IMSL_RANDOM_ORDER IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1109
IMSL_RAND_TABLE_2WAY

The IMSL_RAND_TABLE_2WAY function generates a pseudorandom two-way
table.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

result = IMSL_RAND_TABLE_2WAY (row_totals, col_totals)

Return Value

A N_ELEMENTS(row_totals) by N_ELEMENTS(col_totals) random matrix with
the given row and column totals.

Arguments

col_totals

One dimensional array containing the column totals. (Input) The elements of
row_totals and col_totals must be nonnegative and must sum to the same quantity.

row_totals

One dimensional array containing the row totals.

Discussion

Routine IMSL_RAND_TABLE_2WAY generates pseudorandom entries for a two-
way contingency table with fixed row and column totals. The method depends on the
size of the table and the total number of entries in the table. If the total number of
entries is less than twice the product of the number of rows and columns, the method
described by Boyette (1979) and by Agresti, Wackerly, and Boyette (1979) is used. In
this method, a work vector is filled with row indices so that the number of times each
index appears equals the given row total. This vector is then randomly permuted and
used to increment the entries in each row so that the given row total is attained.
IDL Analyst Reference Guide IMSL_RAND_TABLE_2WAY

1110 Chapter 24: Random Number Generation
For tables with larger numbers of entries, the method of Patefield (1981) is used. This
method can be considerably faster in these cases. The method depends on the
conditional probability distribution of individual elements, given the entries in the
previous rows. The probabilities for the individual elements are computed starting
from their conditional means.

Example

In this example, IMSL_RAND_TABLE_2WAY is used to generate a two by three
table with row totals 3 and 5, and column totals 2, 4, and 2.

r = IMSL_RAND_TABLE_2WAY([3, 5], [2, 4, 2])
PM, r

2 1 0
0 3 2

Version History

6.4 Introduced
IMSL_RAND_TABLE_2WAY IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1111
IMSL_RAND_ORTH_MAT

The IMSL_RAND_ORTH_MAT function generates a pseudorandom orthogonal
matrix or a correlation matrix.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RAND_ORTH_MAT(n [, A_MATRIX=array] [, /DOUBLE]
[, EIGENVALUES=array])

Return Value

A two-dimensional array containing the n by n random correlation matrix.

Arguments

n

The order of the matrix to be generated.

Keywords

A_MATRIX

Two-dimensional array containing n by n random orthogonal matrix. A random
correlation matrix is generated using orthogonal matrix input in A_Matrix.
Eigenvalues must also be supplied if A_Matrix is used.

DOUBLE

If present and nonzero, double precision is used.

EIGENVALUES

One-dimensional array of length n containing the eigenvalues of the correlation
matrix to be generated. The elements of Eigenvalues must be positive, they must sum
to n, and they cannot all be equal.
IDL Analyst Reference Guide IMSL_RAND_ORTH_MAT

1112 Chapter 24: Random Number Generation
Discussion

IMSL_RAND_ORTH_MAT generates a pseudorandom orthogonal matrix from the
invariant Haar measure. For each column, a random vector from a uniform
distribution on a hypersphere is selected and then is projected onto the orthogonal
complement of the columns already formed. The method is described by Heiberger
(1978). (See also Tanner and Thisted 1982.)

If Eigenvalues is used, a correlation matrix is formed by applying a sequence of
planar rotations to matrix ATDA, where D = diag(Eigenvalues(0), ..., Eigenvalues(n-
1)), so as to yield ones along the diagonal. The planar rotations are applied in such an
order that in the two by two matrix that determines the rotation, one diagonal element
is less than 1.0 and one is greater than 1.0. This method is discussed by Bendel and
Mickey (1978) and by Lin and Bendel (1985).

The distribution of the correlation matrices produced by this method is not known.
See Bendel and Mickey (1978) and Johnson and Welch (1980).

For larger matrices, rounding can become severe; and the double precision results
may differ significantly from single precision results.

Example

In this example, IMSL_RAND_ORTH_MAT is used to generate a 4 by 4
pseudorandom correlation matrix with eigenvalues in the ratio 1:2:3:4.

IMSL_RANDOMOPT, set = 123457
a = IMSL_RAND_ORTH_MAT(4)
ev = .4d0*[1.0d0, 2.0d0, 3.0d0, 4.0d0]
cor = IMSL_RAND_ORTH_MAT(4, EIGENVALUES = ev, A_MATRIX= a)
PM, cor

1.00000 -0.235786 -0.325795 -0.110139
-0.235786 1.00000 0.190564 -0.0172391
-0.325795 0.190564 1.00000 -0.435339
-0.110139 -0.0172391 -0.435339 1.00000

Version History

6.4 Introduced
IMSL_RAND_ORTH_MAT IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1113
IMSL_RANDOM_SAMPLE

The IMSL_RANDOM_SAMPLE function generates a simple pseudorandom sample
from a finite population.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RANDOM_SAMPLE(nsamp, population [, /ADDITIONAL_CALL]
[, /DOUBLE] [, /FIRST_CALL] [, INDEX=array] [, NPOP=value]
[, SAMPLE=array])

Return Value

nsamp by nvar array containing the sample, where nvar is the number of columns in
the argument population.

Arguments

nsamp

The sample size desired.

population

A one or two dimensional array containing the population to be sampled. If either of
the keywords First_Call or Additional_Call are specified, then population contains a
different part of the population on each invocation, otherwise population contains the
entire population.

Keywords

ADDITIONAL_CALL

If present and nonzero, then this is an additional invocation of
IMSL_RANDOM_SAMPLE, and updating for the subpopulation in population is
performed. Keywords Index, Npop, and Sample are required if Additional_Call is set.
It is not necessary to know the number of items in the population in advance. Npop is
IDL Analyst Reference Guide IMSL_RANDOM_SAMPLE

1114 Chapter 24: Random Number Generation
used to cumulate the population size and should not be changed between calls to
IMSL_RANDOM_SAMPLE. See Example 2.

DOUBLE

If present and nonzero, double precision is used.

FIRST_CALL

If present and nonzero, then this is the first invocation with this data; additional calls
to IMSL_RANDOM_SAMPLE may be made to add to the population. Additional
calls should be made using the keyword Additional_Call. Keywords Index and Npop
are required if First_Call is set. See Example 2.

INDEX

A one-dimensional array of length nsamp containing the indices of the sample in the
population. Output if keyword First_Call is used. Input/Output if keyword
Additional_Call is used.

NPOP

The number of items in the population. Output if keyword First_Call is used. Input/
Output if keyword Additional_Call is used.

SAMPLE

An array of size nsamp by nvar containing the sample. Initially, the result of calling
IMSL_RANDOM_SAMPLE with keyword First_Call is used for Sample.

Discussion

Routine IMSL_RANDOM_SAMPLE generates a pseudorandom sample from a
given population, without replacement, using an algorithm due to McLeod and
Bellhouse (1983).

The first nsamp items in the population are included in the sample. Then, for each
successive item from the population, a random item in the sample is replaced by that
item from the population with probability equal to the sample size divided by the
number of population items that have been encountered at that time.
IMSL_RANDOM_SAMPLE IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1115
Examples

Example 1

In this example, IMSL_RANDOM_SAMPLE is used to generate a sample of size 5
from a population stored in the matrix population.

IMSL_RANDOMOPT, Set = 123457
pop = IMSL_STATDATA(2)
samp = IMSL_RANDOM_SAMPLE(5, pop)
PM, samp

1764.00 36.4000
1828.00 62.5000
1923.00 5.80000
1773.00 34.8000
1769.00 106.100

Example 2

Routine IMSL_RANDOM_SAMPLE is now used to generate a sample of size 5
from the same population as in the example above except the data are input to
IMSL_RANDOM_SAMPLE one observation at a time. This is the way
IMSL_RANDOM_SAMPLE may be used to sample from a file on disk or tape.
Notice that the number of records need not be known in advance.

IMSL_RANDOMOPT, SET = 123457
pop = IMSL_STATDATA(2)
samp = IMSL_RANDOM_SAMPLE(5, pop(0, *), /FIRST_CALL, INDEX = ii, $

NPOP=np)
FOR i=1,175 DO samp = IMSL_RANDOM_SAMPLE(5, pop(i, *), $

/ADDITIONAL_CALL, INDEX = ii, NPOP = np, SAMPLE = samp)
PM, samp

1764.00 36.4000
1828.00 62.5000
1923.00 5.80000
1773.00 34.8000
1769.00 106.100

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_RANDOM_SAMPLE

1116 Chapter 24: Random Number Generation
IMSL_RAND_FROM_DATA

The IMSL_RAND_FROM_DATA function generates pseudorandom numbers from a
multivariate distribution determined from a given sample.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RAND_FROM_DATA(n_random, x, nn [, /DOUBLE])

Return Value

n x ndim matrix containing the random multivariate vectors in its rows.

Arguments

n_random

Number of random multivariate vectors to generate.

nn

Number of nearest neighbors of the randomly selected point in x that are used to form
the output point in the result.

x

Two dimensional array of size nsamp by ndim containing the given sample.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IMSL_RAND_FROM_DATA IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1117
Discussion

Given a sample of size nsamp of observations of a k-variate random variable,
IMSL_RAND_FROM_DATA generates a pseudorandom sample with approximately
the same moments as the given sample. The sample obtained is the same as if
sampling from a Gaussian kernel estimate of the sample density. (See Thompson
1989.) Routine IMSL_RAND_FROM_DATA uses methods described by Taylor and
Thompson (1986).

Assume that the (vector-valued) observations xi are in the rows of x. An observation,
xj, is chosen randomly; its nearest m (= nn) neighbors:

are determined; and the mean:

of those nearest neighbors is calculated. Next, a random sample u1, u2, ..., um is
generated from a uniform distribution with lower bound:

and upper bound:

The random variate delivered is:

The process is then repeated until n such simulated variates are generated and stored
in the rows of the result.

Example

In this example, IMSL_RAND_FROM_DATA is used to generate 5 pseudorandom
vectors of length 4 using the initial and final systolic pressure and the initial and final
diastolic pressure from Data Set A in Afifi and Azen (1979) as the fixed sample from
the population to be modeled. (Values of these four variables are in the seventh, tenth,
twenty-first, and twenty-fourth columns of data set number nine in routine
IMSL_STATDATA, see Chapter 25, “Math and Statistics Utilities” of this manual).

xj1
xj2
, ..., xjm

,

 x j

1
m
---- 3 m 1–()

m
2

---------------------–

1
m
---- 3 m 1–()

m
2

---------------------+

ul xjl xj–() xj+
l 1=

m

∑

IDL Analyst Reference Guide IMSL_RAND_FROM_DATA

1118 Chapter 24: Random Number Generation
IMSL_RANDOMOPT, Set = 123457
r = IMSL_STATDATA(9)
x = FLTARR(113, 4)
x(*, 0) = r(*,6)
x(*, 1) = r(*,9)
x(*, 2) = r(*,20)
x(*, 3) = r(*,23)
r = IMSL_RAND_FROM_DATA(5, x, 5)
PM, r

162.767 90.5057 153.717 104.877
153.353 78.3180 176.664 85.2155
93.6958 48.1675 153.549 71.3688
101.751 54.1855 113.121 56.2916
91.7403 58.7684 48.4368 28.0994

Version History

6.4 Introduced
IMSL_RAND_FROM_DATA IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1119
IMSL_CONT_TABLE

The IMSL_CONT_TABLE procedure sets up table to generate pseudorandom
numbers from a general continuous distribution.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_CONT_TABLE, (f, iopt, ndata, table [, /DOUBLE])

Arguments

f

A scalar string specifying a user-supplied function to compute the cumulative
distribution function. The argument to the function is the point at which the
distribution function is to be evaluated.

iopt

Indicator of the extent to which table is initialized prior to calling
IMSL_CONT_TABLE.

• 0—IMSL_CONT_TABLE fills the last four columns of table. Input the points
at which the CDF is to be evaluated in the first column of table. These must be
in ascending order.

• 1—IMSL_CONT_TABLE fills the last three columns of table. The supplied
function f is not used and may be a dummy function; instead, the cumulative
distribution function is specified in the first two columns of table. The
abscissas (in the first column) must be in ascending order and the function
must be strictly monotonically increasing.

ndata

Number of points at which the CDF is evaluated for interpolation. ndata must be
greater than or equal to 4.
IDL Analyst Reference Guide IMSL_CONT_TABLE

1120 Chapter 24: Random Number Generation
table

ndata by 5 table to be used for interpolation of the cumulative distribution function.
The first column of table contains abscissas of the cumulative distribution function in
ascending order, the second column contains the values of the CDF (which must be
strictly increasing), and the remaining columns contain values used in interpolation.
The first row of table corresponds to the left limit of the support of the distribution
and the last row corresponds to the right limit of the support; that is, table (0, 1) = 0.0
and table(ndata – 1, 1) = 1.0.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

IMSL_CONT_TABLE sets up a table that “IMSL_RAND_GEN_CONT” on
page 1121 can use to generate pseudorandom deviates from a continuous distribution.
The distribution is specified by its cumulative distribution function, which can be
supplied either in tabular form in table or by a function f. See the documentation for
the routine RAND_GEN_CONT for a description of the method.

Example

For an example of using IMSL_CONT_TABLE see the example for
IMSL_RAND_GEN_CONT.

Version History

6.4 Introduced
IMSL_CONT_TABLE IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1121
IMSL_RAND_GEN_CONT

The IMSL_RAND_GEN_CONT function generates pseudorandom numbers from a
general continuous distribution.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RAND_GEN_CONT(n, table [, /DOUBLE])

Return Value

An array of length n containing the random deviates.

Arguments

n

Number of random numbers to generate.

table

A two-dimensional array setup using IMSL_CONT_TABLE to be used for
interpolation of the cumulative distribution function. The first column of table
contains abscissas of the cumulative distribution function in ascending order, the
second column contains the values of the CDF (which must be strictly increasing
beginning with 0.0 and ending at 1.0) and the remaining columns contain values used
in interpolation.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_RAND_GEN_CONT

1122 Chapter 24: Random Number Generation
Discussion

Routine IMSL_RAND_GEN_CONT generates pseudorandom numbers from a
continuous distribution using the inverse CDF technique, by interpolation of points of
the distribution function given in table, which is set up by “IMSL_CONT_TABLE”
on page 1119. A strictly monotone increasing distribution function is assumed. The
interpolation is by an algorithm attributable to Akima (1970), using piecewise cubics.
The use of this technique for generation of random numbers is due to Guerra, Tapia,
and Thompson (1976), who give a description of the algorithm and accuracy
comparisons between this method and linear interpolation. The relative errors using
the Akima interpolation are generally considered very good.

Example

In this example, IMSL_RAND_GEN_CONT is used to set up a table for generation
of beta pseudorandom deviates. The CDF for this distribution is computed by the
routine IMSL_BETACDF. The table contains 100 points at which the CDF is
evaluated and that are used for interpolation. Notice that two warnings are issued
during the computations for this example.

.RUN
FUNCTION cdf, x

return, IMSL_BETACDF(x, 3., 2.)
END

iopt = 0
ndata = 100;
table = FLTARR(100, 5)
x = 0.0;
table(*,0) = FINDGEN(100)/100.
IMSL_CONT_TABLE, 'cdf', iopt, ndata, table
IMSL_RANDOMOPT, Set = 123457

r = IMSL_RAND_GEN_CONT(5, table)
PM, r

0.92079391
0.46412855
0.76678398
0.65357975
0.81706959
IMSL_RAND_GEN_CONT IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1123
Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_RAND_GEN_CONT

1124 Chapter 24: Random Number Generation
IMSL_DISCR_TABLE

The IMSL_DISCR_TABLE function sets up table to generate pseudorandom
numbers from a general discrete distribution.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_DISCR_TABLE(prf, del, nndx, imin, nmass [, CUM_PROBS=array]
[, /DOUBLE])

Return Value

Array, cumpr, of length nmass + nndx containing in the first nmass positions, the
cumulative probabilities and in some of the remaining positions, indexes to speed
access to the probabilities.

Arguments

del

Maximum absolute error allowed in computing the cumulative probability.
Probabilities smaller than del are ignored; hence, del should be a small positive
number. If del is too small, however, cumpr (nmass – 1) must be exactly 1.0 since that
value is compared to 1.0 – del.

imin

Scalar containing the smallest value the random deviate can assume. By default, prf is
evaluated at imin. If this value is less than del, imin is incremented by 1 and again prf
is evaluated at imin. This process is continued until prf(imin) ≥ del. imin is output as
this value and result(0) is output as prf(imin).

nmass

Scalar containing the number of mass points in the distribution. Input, if keyword
Cum_probs is used; otherwise, output. By default, nmass is the smallest integer such
that prf(imin + nmass – 1) > 1.0 – del. nmass does include the points iminin + j for
IMSL_DISCR_TABLE IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1125
which prf(iminin + j) < del, for j = 0, 1, ..., iminout – iminin, where iminin denotes the
input value of imin and iminout denotes its output value.

nndx

The number of elements of cumpr available to be used as indexes. nndx must be
greater than or equal to 1. In general, the larger nndx is, to within sixty or seventy
percent of nmass, the more efficient the generation of random numbers using
IMSL_RAND_GEN_DISCR will be.

prf

A scalar string specifying a user-supplied function to compute the probability
associated with each mass point of the distribution The argument to the function is
the point at which the probability function is to be evaluated. The argument to the
function can range from imin to the value at which the cumulative probability is
greater than or equal to 1.0 - del.

Keywords

CUM_PROBS

One dimensional array of length nmass containing the cumulative probabilities to be
used in computing the index portion of the result. If the keyword Cum_Probs is used,
prf is not used and may be a dummy function.

DOUBLE

If present and nonzero, double precision is used.

Discussion

IMSL_DISCR_TABLE sets up a table that “IMSL_RAND_GEN_CONT” on
page 1121 uses to generate pseudorandom deviates from a discrete distribution. The
distribution can be specified either by its probability function prf or by a vector of
values of the cumulative probability function. Note that prf is not the cumulative
probability distribution function. If the cumulative probabilities are already available
in Cum_Probs, the only reason to call IMSL_DISCR_TABLE is to form an index
vector in the upper portion of the result so as to speed up the generation of random
deviates by the routine RAND_GEN_CONT.
IDL Analyst Reference Guide IMSL_DISCR_TABLE

1126 Chapter 24: Random Number Generation
Examples

Example 1

In this example, IMSL_DISCR_TABLE is used to set up a table to generate
pseudorandom variates from the discrete distribution:

Pr(X = 1) = 0.05

Pr(X = 2) = 0.45

Pr(X = 3) = 0.31

Pr(X = 4) = 0.04

Pr(X = 5) = 0.15

In this example, we input the cumulative probabilities directly using keyword
Cum_Probs and request 3 indexes to be computed (nndx = 4). Since the number of
mass points is so small, the indexes would not have much effect on the speed of the
generation of the random variates.

.RUN
FUNCTION prf, x

RETURN, 0
END

cum_probs = [.05, .5, .81, .85, 1]
cumpr = IMSL_DISCR_TABLE('PRF', 0.00001, 4, 1, 5, $

CUM_PROBS = cum_probs)
PM, cumpr

0.0500000
0.500000
0.810000
0.850000
1.00000
3.00000
1.00000
2.00000
5.00000

Example 2

IMSL_DISCR_TABLE is sets up a table to generate binomial variates with
parameters 20 and 0.5. IMSL_BINOMIALPDF is used to compute the probabilities.

.RUN
FUNCTION prf, ix
IMSL_DISCR_TABLE IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1127
RETURN, IMSL_BINOMIALPDF(ix, 20, 0.5)
END

cumpr = IMSL_DISCR_TABLE('PRF', 0.00001, 12, 0, 21)
PM, cumpr

1.90735e-05
0.000200272
0.00128746
0.00590802
0.0206938
0.0576583
0.131587
0.251722
0.411901
0.588099
0.748278
0.868413
0.942342
0.979306
0.994092
0.998713
0.999800
0.999981
1.00000
11.0000
1.00000
7.00000
8.00000
9.00000
9.00000
10.0000
11.0000
11.0000
12.0000
13.0000
19.0000

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_DISCR_TABLE

1128 Chapter 24: Random Number Generation
IMSL_RAND_GEN_DISCR

The IMSL_RAND_GEN_DISCR function generates pseudorandom numbers from a
general discrete distribution using an alias method or optionally a table lookup
method.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RAND_GEN_DISCR(n, imin, nmass, probs [, /DOUBLE]
[, /TABLE])

Return Value

Integer array of length n containing the random discrete deviates.

Arguments

imin

Smallest value the random deviate can assume. This is the value corresponding to the
probability in probs(0).

nmass

Number of mass points in the discrete distribution.

n

Number of random numbers to generate.

probs

Array of length nmass containing probabilities associated with the individual mass
points. The elements of probs must be nonnegative and must sum to 1.0.

If the keyword Table is used, then probs is a vector of length at least nmass + 1
containing in the first nmass positions the cumulative probabilities and, possibly,
indexes to speed access to the probabilities. “IMSL_DISCR_TABLE” on page 1124
IMSL_RAND_GEN_DISCR IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1129
can be used to initialize probs properly. If no elements of probs are used as indexes,
probs (nmass) is 0.0 on input. The value in probs(0) is the probability of imin. The
value in probs (nmass – 1) must be exactly 1.0 (since this is the CDF at the upper
range of the distribution.)

Keywords

DOUBLE

If present and nonzero, double precision is used.

TABLE

If present and nonzero, generate pseudorandom numbers from a general discrete
distribution using a table lookup method. If this keyword is used, then probs is a
vector of length at least nmass + 1 containing in the first nmass positions the
cumulative probabilities and, possibly, indexes to speed access to the probabilities.
“IMSL_DISCR_TABLE” on page 1124 can be used to initialize probs properly.

Discussion

IMSL_RAND_GEN_DISCR generates pseudorandom numbers from a discrete
distribution with probability function given in the vector probs; that is:

Pr(X = i) = pj

for i = imin, imin + 1, ..., imin + nm – 1

where:

j = i – imin + 1, pj = probs(j), imin = imin, and nm = nmass

The algorithm is the alias method, due to Walker (1974), with modifications
suggested by Kronmal and Peterson (1979).

If the keyword Table is used, IMSL_RAND_GEN_DISCR generates pseudorandom
deviates from a discrete distribution, using the table probs, which contains the
cumulative probabilities of the distribution and, possibly, indexes to speed the search
of the table. “IMSL_DISCR_TABLE” on page 1124 can be used to set up the table
probs. IMSL_RAND_GEN_DISCR uses the inverse CDF method to generate the
variates.
IDL Analyst Reference Guide IMSL_RAND_GEN_DISCR

1130 Chapter 24: Random Number Generation
Examples

Example 1

In this example, IMSL_RAND_GEN_DISCR is used to generate five pseudorandom
variates from the discrete distribution:

Pr(X = 1) = 0.05

Pr(X = 2) = 0.45

Pr(X = 3) = 0.31

Pr(X = 4) = 0.04

Pr(X = 5) = 0.15

probs = [0.05, 0.45, 0.31, 0.04, 0.15]
n = 5
imin = 1
nmass = 5
IMSL_RANDOMOPT, Set_seed = 123457
r = IMSL_RAND_GEN_DISCR(n, imin, nmass, probs)
PM, r

3
2
2
3
5

Example 2

In this example, the “IMSL_DISCR_TABLE” on page 1124 is used to set up a table
and then IMSL_RAND_GEN_DISCR is used to generate five pseudorandom variates
from the binomial distribution with parameters 20 and 0.5.

.RUN
FUNCTION prf, ix

RETURN, IMSL_BINOMIALPDF(ix, 20, .5)
END

imin = 0
nmass = 21
IMSL_RANDOMOPT, Set_seed = 123457
cumpr = IMSL_DISCR_TABLE('prf', 0.00001, 12, imin, nmass)
r = IMSL_RAND_GEN_DISCR(n, imin, nmass, cumpr, /TABLE)
PM, r
IMSL_RAND_GEN_DISCR IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1131
14
9
12
10
12

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_RAND_GEN_DISCR

1132 Chapter 24: Random Number Generation
IMSL_RANDOM_ARMA

The IMSL_RANDOM_ARMA function generates a time series from a specific
IMSL_ARMA model.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RANDOM_ARMA(n, nparams [, /ACCEPT_REJECT]
[, AR_LAGS=array] [, CONST=value] [, /DOUBLE] [, INPUT_NOISE=array]
[, MA_LAGS=array] [, OUTPUT_NOISE=variable] [, /VAR_NOISE]
[, W_INIT=array])

Result = IMSL_RANDOM_ARMA(n, nparams, ar [, /ACCEPT_REJECT]
[, AR_LAGS=array] [, CONST=value] [, /DOUBLE] [, INPUT_NOISE=array]
[, MA_LAGS=array] [, OUTPUT_NOISE=variable] [, /VAR_NOISE]
[, W_INIT=array])

Result = IMSL_RANDOM_ARMA(n, nparams, ma [, /ACCEPT_REJECT]
[, AR_LAGS=array] [, CONST=value] [, /DOUBLE] [, INPUT_NOISE=array]
[, MA_LAGS=array] [, OUTPUT_NOISE=variable] [, /VAR_NOISE]
[, W_INIT=array])

Result = IMSL_RANDOM_ARMA(n, nparams, ar, ma [, /ACCEPT_REJECT]
[, AR_LAGS=array] [, CONST=value] [, /DOUBLE] [, INPUT_NOISE=array]
[, MA_LAGS=array] [, OUTPUT_NOISE=variable] [, /VAR_NOISE]
[, W_INIT=array])

Return Value

One-dimensional array of length n containing the generated time series.

Arguments

n

Number of observations to be generated. Parameter n must be greater than or equal to
one.
IMSL_RANDOM_ARMA IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1133
nparams

One-dimensional array containing the parameters p and q consecutively. nparams(0)
= p, where p is the number of autoregressive parameters. Parameter p must be greater
than or equal to zero. nparams(1) = q, where q is the number of moving average
parameters. Parameter q must be greater than or equal to zero.

ar

One-dimensional array of length p containing the autoregressive parameters.

ma

One-dimensional array of length q containing the moving average parameters.

Keywords

ACCEPT_REJECT

If present and nonzero, the random noises will be generated from a normal
distribution using an acceptance/rejection method. If keyword Accept_Reject is not
used, the random noises will be generated using an inverse normal CDF method. This
argument will be ignored if keyword Input_Noise is used.

AR_LAGS

One-dimensional array of length p containing the order of the nonzero autoregressive
parameters. Default: Ar_Lags = [1, 2, ..., p]

CONST

Overall constant. See the Discussion section. Default: Const = 0

DOUBLE

If present and nonzero, double precision is used.

INPUT_NOISE

One-dimensional array of length n + max (Ar_Lags(i)) containing the random noises.
Keywords Input_Noise and Var_Noise can not be used together. Keywords
Input_Noise and Output_Noise cannot be used together.
IDL Analyst Reference Guide IMSL_RANDOM_ARMA

1134 Chapter 24: Random Number Generation
MA_LAGS

One-dimensional array of length q containing the order of the nonzero moving
average parameters. Default: Ma_Lags = [1, 2, ..., q]

OUTPUT_NOISE

Named variable into which a one-dimensional array of length n + max (Ma_Lags(i))
containing the random noises is stored.

VAR_NOISE

If present (and Input_Noise is not used), noise at is generated from a normal
distribution with mean 0 and variance Var_Noise. Var_Noise and Input_Noise cannot
be used together. Default: Var_Noise = 1.0

W_INIT

One-dimensional array of length max (Ar_Lags(i)) containing the initial values of the
time series. Default: W_Init(*) = Const/(1 – ar(0) – ar(1) – ... – ar(p − 1))

Discussion

The IMSL_RANDOM_ARMA function simulates an IMSL_ARMA(p, q) process,
{Wt}, for t = 1, 2, ..., n. The model is:

Let µ be the mean of the time series {Wt}. The overall constant θ0 (Const) is:

Time series whose innovations have a nonnormal distribution may be simulated by
providing the appropriate innovations in Input_Noise and start values in W_Init.

The time series is generated according to the following model:

φ θ θ() ()B W B A t Zt t= + ∈0

φ B() 1 φ1B– φ2B
2

– …– φpB
p

–=

θ B() 1 θ1B– θ2B
2

– …– θqB
q

–=

θ0

µ p 0=

µ 1 φi
i 1=

p

∑–

p 0>

=

IMSL_RANDOM_ARMA IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1135
X(i) = Const + ar(0) * X(i – Ar_Lags(0)) + ... + ar(p – 1) * X(i – Ar_Lags(p –
1)) +

A(I) – ma(0) * A(i – Ma_Lags(0)) – ... – ma(q – 1) * A(i – Ma_Lags(q – 1))

where the constant is related to the mean of the series:

as follows:

and where:

X(t) = W(t),t = 0, 1, ..., n − 1

and:

W(t) = W_Init(t + p),t = –p, –p + 1, ..., −2,−1

and A is either Input_Noise (if Input_Noise is used) or Output_Noise (otherwise).

Examples

Example 1

In this example, IMSL_RANDOM_ARMA is used to generate a time series of length
five, using an IMSL_ARMA model with three autoregressive parameters and two
moving average parameters. The start values are 0.1000, 0.0500, and 0.0375.

IMSL_RANDOMOPT, SET = 123457
n = 5
nparams = [3, 2]
ar = [0.5, 0.25, 0.125]
ma = [-0.5, -0.25]
r = IMSL_RANDOM_ARMA(n, nparams, ar, ma)
PM, r, FORMAT = '(5F10.3)',$

TITLE = ' IMSL_ARMA random deviates'

 IMSL_ARMA random deviates
0.637 0.317 -0.366 -2.122 -1.407

Example 2

In this example, a time series of length 5 is generated using an IMSL_ARMA model
with 4 autoregressive parameters and 2 moving average parameters. The start values
are 0.1, 0.05 and 0.0375.

IMSL_RANDOMOPT, SET = 123457

W

Const W 1 ar 0()– … – ar q 1–()–()+()⋅=
IDL Analyst Reference Guide IMSL_RANDOM_ARMA

1136 Chapter 24: Random Number Generation
n = 5
nparams = [3, 2]
ar = [0.5, 0.25, 0.125]
ma = [-0.5, -0.25]
wi = [0.1, 0.05, 0.0375]
theta0 = 1
avar = 0.1
r = IMSL_RANDOM_ARMA(n, nparams, ar, ma, /ACCEPT_REJECT, $

W_INIT = wi, CONST = theta0, VAR_NOISE = avar)
PM, r, FORMAT = '(5F10.3)', $

TITLE = ' IMSL_ARMA random deviates:'

 IMSL_ARMA random deviates:
1.467 1.788 2.459 3.330 3.941

Errors

Warning Errors

STAT_RNARM_NEG_VAR—VAR(a) = “Var_Noise” = #, VAR(a) must be greater
than 0. The absolute value of # is used for VAR(a).

Version History

6.4 Introduced
IMSL_RANDOM_ARMA IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1137
IMSL_FAURE_INIT

The IMSL_FAURE_INIT function initializes the structure used for computing a
shuffled Faure sequence.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FAURE_INIT(ndim [, BASE=value] [, SKIP=value])

Return Value

A structure that contains information about the sequence.

Arguments

ndim

The dimension of the hyper-rectangle.

Keywords

BASE

The base of the Faure sequence. Default: The smallest prime greater than or equal to
ndim.

SKIP

The number of points to be skipped at the beginning of the Faure sequence. Default:

where:

and B is the largest representable integer.

base
m 2 1–()⁄

m Blog baselog⁄=
IDL Analyst Reference Guide IMSL_FAURE_INIT

1138 Chapter 24: Random Number Generation
Discussion

Discrepancy measures the deviation from uniformity of a point set. The discrepancy
of the point set:

is:

where the supremum is over all subsets of [0, 1]d of the form:

λ is the Lebesque measure, and:

is the number of the xj contained in E.

The sequence x1, x2, …, of points [0,1]d is a low-discrepancy sequence if there exists
a constant c(d), depending only on d, such that:

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The lowest
bound for the discrepancy is obtained for the smallest prime b≥d, so the keyword
Base defaults to the smallest prime greater than or equal to the dimension. The
generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion:

where ai (n) are integers:

The j-th coordinate of xn is:

The generator matrix for the series:

x1 … xn, 0 1,[] d
d 1,≥,∈,

Dn
d()

sup
E

A E n;()
n

------------------ λE–=

E 0 t1) … 0 td) 0 tj 1 1 j d,≤ ≤,≤ ≤, ,[××,[=

();A En

Dn
d()

c d() nlog()d

n
------------------≤

n ai n()b
i

i 0=

∞
∑=

0 ai n() b<≤
IMSL_FAURE_INIT IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1139

is defined to be:

and:

is an element of the Pascal matrix:

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence
itself. It can be shown that this shuffling preserves the low-discrepancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized Faure
sequence.

Example

In this example, five points in the Faure sequence are computed. The points are in the
three-dimensional unit cube.

Note that IMSL_FAURE_INIT is used to create a structure that holds the state of the
sequence. Each call to IMSL_FAURE_NEXT_PT returns the next point in the
sequence and updates the state structure.

state = IMSL_FAURE_INIT(3)
p = IMSL_FAURE_NEXT_PT(5, state)
PM, p

0.333689 0.492659 0.0640654
0.667022 0.825992 0.397399
0.778133 0.270436 0.175177
0.111467 0.603770 0.508510
0.444800 0.937103 0.841843

xn
j()

ckd
j()

ad n()b
k– 1–

1 j d≤ ≤,
d 0=

∞

∑
k 0=

∞

∑=

ckd
j()

ckd
j()

j
d k–

ckd=

ckd

ckd

d!
c! d c–()!
----------------------- k d≤

0 k d>

=

IDL Analyst Reference Guide IMSL_FAURE_INIT

1140 Chapter 24: Random Number Generation
Version History

6.4 Introduced
IMSL_FAURE_INIT IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1141
IMSL_FAURE_NEXT_PT

The IMSL_FAURE_NEXT_PT function computes a shuffled Faure sequence.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FAURE_NEXT_PT(npts, state [, /DOUBLE] [, SKIP=value])

Return Value

An array of size npts by state.dim containing the npts next points in the shuffled
Faure sequence.

Arguments

npts

The number of points to generate in the hyper-rectangle.

state

State structure created by a call to IMSL_FAURE_INIT.

Keywords

DOUBLE

If present and nonzero, double precision is used.

SKIP

The current point in the sequence. The sequence can be restarted by initializing a new
sequence using this value for Skip, and using the same dimension for ndim.

Discussion

Discrepancy measures the deviation from uniformity of a point set.
IDL Analyst Reference Guide IMSL_FAURE_NEXT_PT

1142 Chapter 24: Random Number Generation
The discrepancy of the point set:

is:

where the supremum is over all subsets of [0, 1]d of the form:

λ is the Lebesque measure, and:

is the number of the xj contained in E.

The sequence x1, x2, ... of points [0,1]d is a low-discrepancy sequence if there exists a
constant c(d), depending only on d, such that:

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The lowest
bound for the discrepancy is obtained for the smallest prime b≥d, so the keyword
Base defaults to the smallest prime greater than or equal to the dimension. The
generalized Faure sequence x1, x2, ..., is computed as follows:

Write the positive integer n in its b-ary expansion:

where ai (n) are integers:

The j-th coordinate of xn is:

x1 … xn 0 1,[] d
d 1,≥,∈, ,

Dn
d()

sup
E

A E n;()
n

------------------ λE–=

E 0 t1) … 0 td) 0 tj 1 1 j d,≤ ≤,≤ ≤, ,[××,[=

A E n;()

Dn
d()

c d() nlog()d

n
------------------≤

n ai n()b
i

i 0=

∞
∑=

0 ai n() b<≤

xn
j()

ckd
j()

ad n()b
k– 1–

1 j d≤ ≤,
d 0=

∞

∑
k 0=

∞

∑=
IMSL_FAURE_NEXT_PT IDL Analyst Reference Guide

Chapter 24: Random Number Generation 1143
The generator matrix for the series:

is defined to be:

and:

is an element of the Pascal matrix:

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence
itself. It can be shown that this shuffling preserves the low-discrepancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized Faure
sequence.

Example

In this example, five points in the Faure sequence are computed. The points are in the
three-dimensional unit cube.

Note that IMSL_FAURE_INIT is used to create a structure that holds the state of the
sequence. Each call to IMSL_FAURE_NEXT_PT returns the next point in the
sequence and updates the state structure.

state = IMSL_FAURE_INIT(3)
p = IMSL_FAURE_NEXT_PT(5, state)
PM, p

0.333689 0.492659 0.0640654
0.667022 0.825992 0.397399
0.778133 0.270436 0.175177
0.111467 0.603770 0.508510
0.444800 0.937103 0.841843

ckd
j()

ckd
j()

j
d k–

ckd=

ckd

ckd

d!
c! d c–()!
----------------------- k d≤

0 k d>

=

IDL Analyst Reference Guide IMSL_FAURE_NEXT_PT

1144 Chapter 24: Random Number Generation
Version History

6.4 Introduced
IMSL_FAURE_NEXT_PT IDL Analyst Reference Guide

Chapter 25

Math and Statistics
Utilities
This section contains the following topics:
Overview: Math and Statistics Utilities . . 1146 Math and Statistics Utilities Routines . . 1147
IDL Analyst Reference Guide 1145

1146 Chapter 25: Math and Statistics Utilities
Overview: Math and Statistics Utilities

This chapter describes general utility routines related to the IMSL library’s
mathematics and statistics routines. See “Math and Statistics Utilities Routines” on
page 1147 for a list of the included routines.
Overview: Math and Statistics Utilities IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1147
Math and Statistics Utilities Routines

Dates

IMSL_DAYSTODATE—Days since epoch to date.

IMSL_DATETODAYS—Date to days since epoch.

Constants and Data Sets

IMSL_CONSTANT—Natural and mathematical constants.

IMSL_MACHINE—Machine constants.

IMSL_STATDATA—Commonly analyzed data sets.

Binomial Coefficient

IMSL_BINOMIALCOEF—Evaluates the binomial coefficient.

Geometry

IMSL_NORM—Vector norms.

Matrix Norm

IMSL_MATRIX_NORM—Real coordinate matrix.

Matrix Entry and Display

PM—Formatted output of arrays using the standard linear algebraic convention:
“row” refers to the first index of the array and “column” refers to the second.

RM—Formatted input of arrays using the standard linear algebraic convention: “row”
refers to the first index of the array and “column” refers to the second.
IDL Analyst Reference Guide Math and Statistics Utilities Routines

1148 Chapter 25: Math and Statistics Utilities
IMSL_DAYSTODATE

The IMSL_DAYSTODATE procedure gives the date corresponding to the number of
days since January 1, 1900.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_DAYSTODATE, days, day[, month[, year]]

Arguments

days

Number of days since January 1, 1900.

day

On return, this named variable is assigned the day of the date specified by days.

month

If present, on return, this named variable is assigned the month of the date specified
by days.

year

If present, on return, this named variable is assigned the year of the date specified by
days. The year 1950 corresponds to the year 1950 A.D., and the year 50 corresponds
to year 50 A.D.

Discussion

The IMSL_DAYSTODATE procedure computes the date corresponding to the
number of days since January 1, 1900. For a negative input value of days, the date
computed is prior to January 1, 1900. This procedure is the inverse of the IDL
Analyst IMSL_DATETODAYS function.
IMSL_DAYSTODATE IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1149
The Gregorian calendar’s first day after October 4, 1502, which became October 15,
1582. Prior to that, the Julian calendar was in use.

Example

The following example uses IMSL_DAYSTODATE to compute the date for the 100th
day of 1986. This is accomplished by first using IMSL_DATETODAYS to get the
“day number” for December 31, 1985.

d0 = IMSL_DATETODAYS(31, 12, 1985)
IMSL_DAYSTODATE, d0 + 100, d, m, y
PM, d, m, y, TITLE = 'Day 100 of 1986 is (day-month-year)', $

FORMAT = '(20x, i3, i4, i7)'

Day 100 of 1986 is (day-month-year)
 10 4 1986

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_DAYSTODATE

1150 Chapter 25: Math and Statistics Utilities
IMSL_DATETODAYS

The IMSL_DATETODAYS function computes the number of days from January 1,
1900, to the given date.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_DATETODAYS([day[, month[, year]]])

Return Value

Number of days from January 1, 1900, to the given date. If negative, it indicates the
number of days prior to January 1, 1900.

Arguments

day

Day of the input date.

month

Month of the input date.

year

Year of the input date. The year 1950 corresponds to the year 1950 A.D., and the year
50 corresponds to year 50 A.D.

Discussion

The IMSL_DATETODAYS function returns the number of days from January 1,
1900, to the given date and returns negative values for days prior to January 1, 1900.
A negative year can be used to specify B.C. Input dates in year 0 and for October 5,
1582, through October 14, 1582, inclusive, do not exist; consequently, in these cases,
IMSL_DATETODAYS issues an error.
IMSL_DATETODAYS IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1151
The Gregorian calendar starts the first day after October 4, 1582, which became
October 15, 1582. Prior to that, the Julian calendar was in use.

Example

The following example uses IMSL_DATETODAYS to compute the number of days
from January 15, 1986, to February 28, 1986.

d0 = IMSL_DATETODAYS(15, 1, 1986)
d1 = IMSL_DATETODAYS(28, 2, 1986)
PM, d1 - d0, TITLE = 'Number of days from 1/15/86 to 2/28/86'

Number of days from 1/15/86 to 2/28/86
 44

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_DATETODAYS

1152 Chapter 25: Math and Statistics Utilities
IMSL_CONSTANT

The IMSL_CONSTANT function returns the value of various mathematical and
physical constants.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CONSTANT(name[, units] [, /DOUBLE])

Return Value

By default, returns the desired constant. If no value can be computed, NaN (Not a
Number) is returned.

Arguments

name

Scalar string specifying the name of the desired constant. The case of the characters is
not relevant when specifying name, i.e., character strings “PI”, “Pi”, “pI”, and “pi”
are equivalent. Spaces and underscores are allowed and ignored.

units

Scalar string specifying the units of the desired constant. If empty, then Systeme
International d’Unites (SI) units are assumed. The case of the characters is not
relevant when specifying units, i.e., character strings “METER”, “Meter”, and
“meter” are equivalent. Parameter units has the form “U1*U2*...*Um/V1/.../Vn,”
where Ui and Vi are the names of basic units or the names of basic units raised to a
power. Basic units must be separated by * or /. Powers are indicated by ^, as in “m^2”
for m2. Examples are “METER*KILOGRAM/SECOND”, “M*KG/S”, “METER”,
or “M/KG^2”.
IMSL_CONSTANT IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1153
Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The names allowed are listed in Table 25-1. Values marked with (mp) are exact (to
machine precision). The references in the right-hand column are indicated by code
numbers: (1) for Cohen and Taylor (1986), (2) for Liepman (1964), and (3) for
precomputed mathematical constants. The supported units are listed in Table 25-2.

Name Description Value Ref.

amu atomic mass unit 1.6605655 x 10–27 kg 1

ATM standard atm. pressure 1.01325 x 105 N/m2 (mp) 2

AU astronomical unit 1.496 x 1011 m

Avogadro Avogadro’s number, N 6.022045 x 1023 1/mole 1

Boltzman Boltzman’s constant, k 1.380662 x 10–23 J / K 1

C speed of light, c 2.997924580 x 108 m/s 1

Catalan Catalan’s constant 0.915965... (mp) 3

E base of natural logs, e 2.718... (mp) 3

ElectronCharge electron charge, e 1.6021892 x 10–19 C 1

ElectronMass electron mass, me 9.109534 x 10–31 kg 1

ElectronVolt electron volt, ev 1.6021892 x 10–19 J 1

Euler Euler’s constant, γ 0.577... (mp) 3

Faraday Faraday constant, F 9.648456 x 104 C/mole 1

FineStructure fine structure, α 7.2973506 x 10–3 1

Gamma Euler’s constant, γ 0.577... (mp) 3

Gas gas constant, R0 8.31441 J/mole/K 1

Table 25-1: Constant Names
IDL Analyst Reference Guide IMSL_CONSTANT

1154 Chapter 25: Math and Statistics Utilities
The units allowed are as follows:

Gravity gravitational constant, G 6.6720 x 10–11 N m2 /
kg2

1

Hbar Planck’s constant / 2π 1.0545887 x 10–34 J s 1

PerfectGasVolum
e

std. vol. ideal gas 2.241383 x 10–2 m3 /
mole

1

Pi Pi, π 3.141... (mp) 3

Planck Planck’s constant, h 6.626176 x 10–34 J s 1

ProtonMass proton mass, Mp 1.6726485 x 10–27 kg 1

Rydberg Rydberg’s constant,
Rinfinity

1.097373177 x 107 /m 1

Speedlight speed of light, c 2.997924580 x 108 m/s 1

StandardGravity standard g 9.80665 m/s2 (mp) 2

StandardPressure standard atm. pressure 1.01325 x 105 N/m2 (mp) 2

StefanBoltzman Stefan-Boltzman, σ 5.67032 x 10–8 W/K4 /
m2

1

WaterTriple triple point of water 2.7316 x 102 K 2

Unit Description

time day, hour = hr, min = minute, s = sec = second, year

frequency Hertz = Hz

mass AMU, g = gram, lb = pound, ounce = oz, slug

distance Angstrom, AU, feet = foot, in = inch,
m = meter = metre, micron, mile, mill, parsec, yard

Table 25-2: Supported Units

Name Description Value Ref.

Table 25-1: Constant Names (Continued)
IMSL_CONSTANT IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1155
area acre

volume l = liter = litre

force dyne, N = Newton

energy BTU, Erg, J = Joule

work W = watt

pressure ATM = atmosphere, bar

temperature degC = Celsius, degF = Fahrenheit, degK = Kelvin

viscosity poise, stoke

charge Abcoulomb, C = Coulomb, statcoulomb

current A = ampere, abampere, statampere

voltage Abvolt, V = volt

magnetic
induction

T = Tesla, Wb = Weber

other units l, farad, mole, Gauss, Henry, Maxwell, Ohm

Unit Description

Table 25-2: Supported Units (Continued)
IDL Analyst Reference Guide IMSL_CONSTANT

1156 Chapter 25: Math and Statistics Utilities
The metric prefixes listed in Table 25-3 can be used with the previous units. The one-
or two-letter prefixes can only be used with one-letter unit abbreviations.

There is no one-letter unit abbreviation for myria or mega since m means milli.

Examples

Example 1

In this example, Euler’s constant γ is obtained and printed. Euler’s constant is defined
to be as follows:

Prefix Definition Value

a atto 10–18

f femto 10–15

p pico 10–12

n nano 10–9

u micro 10–6

m milli 10–3

c centi 10–2

d deci 10–1

dk deca 102

k kilo 103

myria 104

mega 106

g giga 109

t tera 1012

Table 25-3: Supported Prefixes

γ 1
k
--- lnn–

k 1=

n 1–

∑n ∞→
lim=
IMSL_CONSTANT IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1157
PM, IMSL_CONSTANT('gamma')

0.577216

Example 2

In this example, the speed of light is obtained using several different units.

c1 = IMSL_CONSTANT('SpeedLight', 'meter/second')
c2 = IMSL_CONSTANT('SpeedLight', 'mile/second')
c3 = IMSL_CONSTANT('SpeedLight', 'cm/ns')
PM, 'speed of light = ', c1, c2, c3, $

Title =' meters/second ' + $
'miles/second cm/ns'

meters/second miles/second cm/ns
speed of light = 2.99792e+008 186282. 29.9792

Errors

Warning Errors

MATH_MASS_TO_FORCE—Conversion of units-of-mass to units-of-force required for
consistency.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_CONSTANT

1158 Chapter 25: Math and Statistics Utilities
IMSL_MACHINE

The IMSL_MACHINE function returns information describing the computer’s
arithmetic.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_MACHINE([, /DOUBLE] [, /FLOAT])

Return Value

The information describing the computer’s arithmetic is returned in a structure.

Keywords

DOUBLE

If present and nonzero, a structure containing the information describing the single-
precision, floating-point arithmetic is returned.

FLOAT

If present and nonzero, a structure containing the information describing the single-
precision, floating-point arithmetic is returned.

Discussion

The IMSL_MACHINE function returns information describing the computer’s
arithmetic. This can be used to make programs machine independent. The
information returned by IMSL_MACHINE is in the form of a structure. A different
structure is used for each type: integer, float, and double. Depending on how
IMSL_MACHINE is called, a different structure is returned.

The default action of IMSL_MACHINE is to return the structure IMACHINE which
contains integer information on the computer’s arithmetic. By using either the
keywords Float or Double, information about the floating- or double-precision
arithmetic is returned in structures FMACHINE or DMACHINE.
IMSL_MACHINE IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1159
The contents of the these structures are described below.

Integer Information: IMACHINE

Assume that integers are represented in M-digit, base A form as:

where σ is the sign and 0 ≤ xk < A for k = 0, ..., M. Then, Table 25-4 describes the
tags:

Assume that floating-point numbers are in N-digit, base B form as:

where σ is the sign and 0 ≤ xk < B for k = 1, ..., N for and Emin ≤ E ≤ Emax. Then,
Table 25-5 describes the tags:

Tag Definition

BITS_PER_CHAR C, bits per character

INTEGER_BASE A, the base

INTEGER_DIGITS Ms, the number of base-A digits in a short int

MAX_INTEGER , the largest short int

LONG_DIGITS Ml, the number of base-A digits in a long int

MAX_LONG , the largest long int

Table 25-4: Integer Tags

Tag Definition

FLOAT_BASE B, the base

FLOAT_DIGITS Nf, the number of base-B digits in float

FLOAT_MIN_EXP , the smallest float exponent

FLOAT_MAX_EXP , the largest float exponent

Table 25-5: Floating Point Tags

σ xkA
k

k 0=

M

∑

AMs 1–

AMl 1–

σB
E

xkB
k–

k 1=

N

∑

Eminf

Emaxf
IDL Analyst Reference Guide IMSL_MACHINE

1160 Chapter 25: Math and Statistics Utilities
Floating- and Double-precision Information: FMACHINE and
DMACHINE

Information concerning the floating- or double-precision arithmetic of the computer
is contained in the structures FMACHINE and DMACHINE. These structures are
returned into named variables by calling IMSL_MACHINE with the keywords Float
for FMACHINE and Double for DMACHINE.

Assume that float numbers are represented in Nf- digit, base B form as:

where σ is the sign, 0 ≤ xk < B for k = 1, 2, ..., Nf and

Note that if we make the assignment imach = IMSL_MACHINE(), then B =
imach.FLOAT_BASE, Nf = imach.FLOAT_DIGITS,

and:

The ANSI/IEEE 754-1985 standard for binary arithmetic uses NaN (Not a Number)
as the result of various otherwise illegal operations, such as computing 0/0. If the
assignment amach = IMSL_MACHINE(/Float) is made, then on computers that do
not support NaN, a value larger than amach. MAX_POS is returned in amach.NAN.
On computers that do not have a special representation for infinity, amach.POS_INF
contains the same value as amach.MAX_POS.

DOUBLE_DIGETS Nd, the number of base-B digits in double

DOUBLE_MIN_EXP , the largest long int

DOUBLE_MAX_EXP , the number of base-B digits in double

Tag Definition

Table 25-5: Floating Point Tags (Continued)

Emind

Emaxd

σB
E

xkB
k–

k 1=

N

∑

Eminf
 E Emaxf

≤ ≤

Eminf
imach.FLOAT_MIN_EXP=

Emaxf
imach.FLOAT_MAX_EXP=
IMSL_MACHINE IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1161
The structure IMACHINE is defined by Table 25-6:

The structure DMACHINE contains machine constants that define the computer’s
double arithmetic. Note that for double, if the assignment imach =
IMSL_MACHINE() is made, then:

B = imach.FLOAT_BASE, Nf = imach.DOUBLE_DIGITS

and:

Missing values in IDL Analyst procedures and functions are often indicated by NaN.
There is no missing-value indicator for integers. Users ususally have to convert from
their missing value indicators to NaN.

Example

In this example, all values returned by IMSL_MACHINE are printed on a machine
with IEEE (Institute for Electrical and Electronics Engineering) arithmetic.

i = IMSL_MACHINE()
f = IMSL_MACHINE(/FLOAT)
d = IMSL_MACHINE(/DOUBLE)
; Call HELP with the keyword STRUCTURE set to view the contents
; of the structures.

Tag Definition

MIN_POS BEminf –1, the smallest positive number

MAX_POS BEmaxf(1 – B –Nf), the largest number

MIN_REL_SPACE B – Nf, the smallest relative spacing

MAX_REL_SPACE B1– Nf, the largest relative spacing

LOG10_BASE log10(B)

NAN NaN

POS_INF positive machine infinity

NEG_INF negative machine infinity

Table 25-6: Floating or Double Precision Tags

Eminf
imach.DOUBLE_MIN_EXP=

Emaxf
imach.DOUBLE_MAX_EXP=
IDL Analyst Reference Guide IMSL_MACHINE

1162 Chapter 25: Math and Statistics Utilities
HELP, i, f, d, /STRUCTURE

** Structure IMACHINE, 13 tags, length=52:
 BITS_PER_CHAR LONG 8
 INTEGER_BASE LONG 2
 INTEGER_DIGITS LONG 15
 MAX_INTEGER LONG 32767
 LONG_DIGITS LONG 31
 MAX_LONGLONG 2147483647
 FLOAT_BASE LONG 2
 FLOAT_DIGITS LONG 24
 FLOAT_MIN_EXP LONG -125
 FLOAT_MAX_EXP LONG 128
 DOUBLE_DIGITS LONG 53
 DOUBLE_MIN_EXP LONG -1021
 DOUBLE_MAX_EXP LONG 1024

** Structure FMACHINE, 8 tags, length=32:
 MIN_POS FLOAT 1.17549e-38
 MAX_POS FLOAT 3.40282e+38
 MIN_REL_SPACE FLOAT 5.96046e-08
 MAX_REL_SPACE FLOAT 1.19209e-07
 LOG_10 FLOAT 0.301030
 NAN FLOAT NaN
 POS_INF FLOAT Inf
 NEG_INF FLOAT -Inf

** Structure DMACHINE, 8 tags, length=64:
 MIN_POS DOUBLE 2.2250739e-308
 MAX_POS DOUBLE 1.7976931e+308
 MIN_REL_SPACE DOUBLE 1.1102230e-16
 MAX_REL_SPACE DOUBLE 2.2204460e-16
 LOG_10 DOUBLE 0.30102998
 NAN DOUBLE NaN
 POS_INF DOUBLE Infinity
 NEG_INF DOUBLE -Infinity

Version History

6.4 Introduced
IMSL_MACHINE IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1163
IMSL_STATDATA

The IMSL_STATDATA function retrieves commonly analyzed data sets.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_STATDATA(choice)

Return Value

An array containing the desired data set is returned.

Arguments

choice

Data set indicator. See Table 25-7 for a list of values for choice.

choice Number
of Rows

Number of
Columns Description of Data Set

1 16 7 Longley

2 176 2 Wolfer sunspot

3 150 5 Fisher iris

4 144 1 Box and Jenkins

Series G

5 13 5 Draper and Smith

Appendix B

6 197 1 Box and Jenkins

Series A

Table 25-7: choice Values
IDL Analyst Reference Guide IMSL_STATDATA

1164 Chapter 25: Math and Statistics Utilities
Keyword

DOUBLE

If present and nonzero, double precision is used.

Discussion

The IMSL_STATDATA function retrieves a standard data set frequently cited in
statistics text books or in this manual. Table 25-8 gives the references for each data
set:

7 296 2 Box and Jenkins

Series J

8 100 4 Robinson Multichannel

Time Series

9 113 34 Afifi and Azen

Data Set A

choice References

1 Longley (1967)

2 Anderson (1971, p. 660)

3 Fisher (1936); Mardia et al. (1979, Table 1.2.2)

4 Box and Jenkins (1976, p. 531)

5 Draper and Smith (1981, pp. 629–630)

6 Box and Jenkins (1976, p. 525)

7 Box and Jenkins (1976, pp. 532–533)

Table 25-8: Standard Data Set References

choice Number
of Rows

Number of
Columns Description of Data Set

Table 25-7: choice Values (Continued)
IMSL_STATDATA IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1165
Example

In this example, IMSL_STATDATA is used to copy the Draper and Smith (1981,
Appendix B) data set into X.

x = IMSL_STATDATA(5)
PM, x

7.00000 26.0000 6.00000 60.0000 78.5000
1.00000 29.0000 15.0000 52.0000 74.3000
11.0000 56.0000 8.00000 20.0000 104.300
11.0000 31.0000 8.00000 47.0000 87.6000
7.00000 52.0000 6.00000 33.0000 95.9000
11.0000 55.0000 9.00000 22.0000 109.200
3.00000 71.0000 17.0000 6.00000 102.700
1.00000 31.0000 22.0000 44.0000 72.5000
2.00000 54.0000 18.0000 22.0000 93.1000
21.0000 47.0000 4.00000 26.0000 115.900
1.00000 40.0000 23.0000 34.0000 83.8000
11.0000 66.0000 9.00000 12.0000 113.300
10.0000 68.0000 8.00000 12.0000 109.400

Version History

8 Robinson (1967, p. 204)

9 Afifi and Azen (1979, pp. 16–22)

6.4 Introduced

choice References

Table 25-8: Standard Data Set References (Continued)
IDL Analyst Reference Guide IMSL_STATDATA

1166 Chapter 25: Math and Statistics Utilities
IMSL_BINOMIALCOEF

The IMSL_BINOMIALCOEF function evaluates the binomial coefficient.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BINOMIALCOEF(n, m [, /DOUBLE])

Return Value

The binomial coefficient:

is returned.

Arguments

m

Second parameter of the binomial coefficient. Parameter m must be nonnegative.

n

First parameter of the binomial coefficient. Parameter n must be nonnegative.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The binomial function is defined to be:

n
m

n
m
 n!

m! n m–()!
---------------------------=
IMSL_BINOMIALCOEF IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1167
with n ≥ m ≥ 0. Also, n must not be so large that the function overflows.

Example

In this example:

is computed and printed.

n = 9
m = 5
ans = IMSL_BINOMIALCOEF(n, m)
PRINT, 'binomial coefficient =', ans

binomial coefficient = 126.000

Version History

6.4 Introduced

9
5

IDL Analyst Reference Guide IMSL_BINOMIALCOEF

1168 Chapter 25: Math and Statistics Utilities
IMSL_NORM

The IMSL_NORM function computes various norms of a vector or the difference of
two vectors.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NORM(x[, y] [, INDEX_MAX=variable] [, INF=value]
[, ONE=value])

Return Value

The requested norm of the input vector. If the norm cannot be computed, NaN is
returned.

Arguments

x

Vector for which the norm is to be computed.

y

If present, IMSL_NORM computes the norm of (x – y).

Keywords

INDEX_MAX

Named variable into which the index of the element of x with the maximum modulus
is stored. If Index_Max is used, then the keyword Inf also must be used. If the
parameter y is specified, then the index of (x – y) with the maximum modulus is
stored.

INF

If present and nonzero, computes the infinity norm max|xi|.
IMSL_NORM IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1169
ONE

If present and nonzero, computes the 1-norm

Discussion

By default, IMSL_NORM computes the Euclidean norm as follows:

If the keyword One is set, then the 1-norm:

is returned. If the keyword Inf is set, the infinity norm max|xi| is returned. In the case
of the infinity norm, the index of the element with maximum modulus also is
returned.

If the parameter y is specified, the computations of the norms described above are
performed on (x – y).

Examples

Example 1

In this example, the Euclidean norm of an input vector is computed.

x = [1.0, 3.0, -2.0, 4.0]
n = IMSL_NORM(x)
PM, n, Title = 'Euclidean norm of x:'

Euclidean norm of x:
 5.47723

Example 2

This example computes max | xi – yi | and prints the norm and index.

x = [1.0, 3.0, -2.0, 4.0]

xi
i 0=

n 1–

∑

xi
2

i 0=

n 1–

∑

1
2

xi
i 0=

n 1–

∑

IDL Analyst Reference Guide IMSL_NORM

1170 Chapter 25: Math and Statistics Utilities
y = [4.0, 2.0, -1.0, -5.0]
n = IMSL_NORM(x, y, /Inf, Index_Max = imax)
PM, n, Title = 'Infinity norm of (x-y):'
PM, imax, Title = 'Element of (x-y) with maximum modulus:'

Infinity norm of (x-y):
 9.00000
Element of (x-y) with maximum modulus:
 3

Version History

6.4 Introduced
IMSL_NORM IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1171
IMSL_MATRIX_NORM

The IMSL_MATRIX_NORM function computes various norms of a rectangular
matrix, a matrix stored in band format, and a matrix stored in coordinate format.

Note
This routine requires an IDL Analyst license. For more information, contact your
ITT Visual Information Solutions sales or technical support representative.

Syntax

To compute various norms of a rectangular matrix:

Result = IMSL_MATRIX_NORM(a [, /DOUBLE] [, INF_NORM=value]
[, ONE_NORM=value] [, SYMMETRIC=value])

To compute various norms of a matrix stored in band format:

Result = IMSL_MATRIX_NORM(n, nlca, nuca, a [, /DOUBLE]
[, INF_NORM=value] [, ONE_NORM=value] [, SYMMETRIC=value])

To compute various norms of a matrix stored in coordinate format:

Result = IMSL_MATRIX_NORM(nrows, ncols, a [, /DOUBLE]
[, INF_NORM=value] [, ONE_NORM=value] [, SYMMETRIC=value])

Return Value

The requested norm of the input matrix, by default, the Frobenius norm. If the norm
cannot be computed, NaN is returned.

Arguments

a

Matrix for which the norm will be computed.

n

The order of matrix A.

ncols

The number of columns in matrix A.
IDL Analyst Reference Guide IMSL_MATRIX_NORM

1172 Chapter 25: Math and Statistics Utilities
nlca

Number of lower codiagonals of A.

nrows

The number of rows in matrix A.

nuca

Number of upper codiagonals of A.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INF_NORM

If present and nonzero, IMSL_MATRIX_NORM computes the infinity norm of
matrix A.

ONE_NORM

If present and nonzero, IMSL_MATRIX_NORM computes the one norm of matrix
A.

SYMMETRIC

If present and nonzero, matrix A is stored in symmetric storage mode. Keyword
Symmetric can not be used with a rectangular matrix.

Discussion

By default, IMSL_MATRIX_NORM computes the Frobenius norm:

If the keyword One_Norm is used, the one norm

is returned. If the keyword Inf_Norm is used, the infinity norm

A 2 A
2

ijj 0=

n 1–

∑
i 0=

m 1–

∑

1
2

=

IMSL_MATRIX_NORM IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1173
is returned.

Examples

Example 1

Compute the Frobenius norm, infinity norm, and one norm of matrix A.

a = TRANSPOSE([[1.0, 2.0, -2.0, 3.0], $
[-2.0, 1.0, 3.0, 0.0], [0.0, 3.0, 1.0, -7.0], $
[5.0, -2.0, 7.0, 6.0], [4.0, 3.0, 4.0, 0.0]])

frobenius_norm = IMSL_MATRIX_NORM(a)
inf_norm = IMSL_MATRIX_NORM(a, /INF_NORM)
one_norm = IMSL_MATRIX_NORM(a, /ONE_NORM)
PRINT, 'Frobenius norm = ', frobenius_norm
PRINT, 'Infinity norm = ', inf_norm
PRINT, 'One norm = ', one_norm

Frobenius norm = 15.6844
Infinity norm = 20.0000
One norm = 17.0000

Example 2

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is
stored in band storage mode.

nlca = 1
nuca = 1
n = 4
a = [0.0, 2.0, 3.0, -1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 3.0, 4.0, 0.0]
frobenius_norm = IMSL_MATRIX_NORM(n, nlca, nuca, a)
inf_norm = IMSL_MATRIX_NORM(n, nlca, nuca, a, /INF_NORM)
one_norm = IMSL_MATRIX_NORM(n, nlca, nuca, a, /ONE_NORM)
PRINT, 'Frobenius norm = ', frobenius_norm
PRINT, 'Infinity norm = ', inf_norm
PRINT, 'One norm = ', one_norm

Frobenius norm = 6.55744
Infinity norm = 5.00000
One norm = 8.00000

A A
j n

ij
i

m

1 0 1 0

1
= ∑

≤ ≤ − =

−
max

A A
i m

ij
j

n

∞ ≤ ≤ − =

−
= ∑max

0 1 0

1

IDL Analyst Reference Guide IMSL_MATRIX_NORM

1174 Chapter 25: Math and Statistics Utilities
Example 3

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is
stored in symmetric band storage mode.

nlca = 2
nuca = 2
n = 6
a = [0.0, 0.0, 7.0, 3.0, 1.0, 4.0, $

0.0, 5.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 4.0, 6.0, 3.0, 1.0]
frobenius_norm = IMSL_MATRIX_NORM(n, nlca, nuca, a, /SYMMETRIC)
inf_norm = IMSL_MATRIX_NORM(n, nlca, nuca, a, /INF_NORM, $

/SYMMETRIC)
one_norm = IMSL_MATRIX_NORM(n, nlca, nuca, a, /ONE_NORM, $

/SYMMETRIC)
PRINT, 'Frobenius norm = ', frobenius_norm
PRINT, 'Infinity norm = ', inf_norm
PRINT, 'One norm = ', one_norm

Frobenius norm = 16.9411
Infinity norm = 16.0000
One norm = 16.0000

Example 4

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is
stored in coordinate format.

nrows = 6
ncols = 6
a = REPLICATE(imsl_f_sp_elem, 15)
a(*).row = [0, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5]
a(*).col = [0, 1, 2, 3, 2, 0, 3, 4, 0, 3, 4, 5, 0, 1, 5]
a(*).val = [10.0, 10.0, -3.0, -1.0, 15.0, $

-2.0, 10.0, -1.0, -1.0, -5.0, 1.0, -3.0, -1.0, -2.0, 6.0]
frobenius_norm = IMSL_MATRIX_NORM(nrows, ncols, a)
inf_norm = IMSL_MATRIX_NORM(nrows, ncols, a, /INF_NORM)
one_norm = IMSL_MATRIX_NORM(nrows, ncols, a, /ONE_NORM)
PRINT, 'Frobenius norm = ', frobenius_norm
PRINT, 'Infinity norm = ', inf_norm
PRINT, 'One norm = ', one_norm

Frobenius norm = 24.8395
Infinity norm = 15.0000
One norm = 18.0000
IMSL_MATRIX_NORM IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1175
Example 5

Compute the Frobenius norm, infinity norm and one norm of matrix A. Matrix A is
stored in symmetric coordinate format.

nrows = 6
ncols = 6
a = REPLICATE(imsl_f_sp_elem, 9)
a(*).row = [0, 0, 0, 1, 1, 2, 2, 4, 4]
a(*).col = [0, 2, 5, 3, 4, 2, 5, 4, 5]
a(*).val = [10.0, -1.0, 5.0, 2.0, 3.0, 3.0, 4.0, -1.0, 4.0]
frobenius_norm = IMSL_MATRIX_NORM(nrows, ncols, a, /SYMMETRIC)
inf_norm = IMSL_MATRIX_NORM(nrows, ncols, a, /INF_NORM, $

/SYMMETRIC)
one_norm = IMSL_MATRIX_NORM(nrows, ncols, a, /ONE_NORM, $

/SYMMETRIC)
PRINT, 'Frobenius norm = ', frobenius_norm
PRINT, 'Infinity norm = ', inf_norm
PRINT, 'One norm = ', one_norm

Frobenius norm = 15.8745
Infinity norm = 16.0000
One norm = 16.0000

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_MATRIX_NORM

1176 Chapter 25: Math and Statistics Utilities
PM

The PM procedure performs formatted output of arrays using the standard linear
algebraic convention: “row” refers to the first index of the array and “column” refers
to the second. By contrast, other IDL routines (such as PRINT) perform formatted
output of arrays using the standard image processing convention: “column” refers to
the first index of the array and “row” refers to the second.

The PM procedure is used extensively in the examples in the IDL Analyst Reference
Guide. For multidimensional arrays, the syntax

PM, array

is equivalent to

PRINT, TRANSPOSE(array)

Syntax

PM, Array0 [, ... , Array19]

Arguments

Arrayn

The arrays to be displayed. The PM routine can display up to 20 arrays.

Keywords

None.

Example

; Define an array arr
arr = [[1.0, 3.0], [0.0, 4.0], [2.0, 1.0]]
; Print using PM and PRINT
PM, arr & PRINT & PRINT, arr

IDL prints:

1.00000 0.000000 2.00000
3.00000 4.00000 1.00000

1.00000 3.00000
0.000000 4.00000
2.00000 1.00000
PM IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1177
Version History

6.4 Introduced
IDL Analyst Reference Guide PM

1178 Chapter 25: Math and Statistics Utilities
RM

The RM procedure performs formatted input of arrays using the standard linear
algebraic convention: “row” refers to the first index of the array and “column” refers
to the second. By contrast, simply defining an array at the IDL command line creates
an array the standard image processing convention: “column” refers to the first index
of the array and “row” refers to the second.

The RM procedure is used extensively in the examples in the IDL Analyst Reference
Guide. For multidimensional arrays, defining an array interactively using RM is
equivalent to defining the same array using normal IDL syntax and then transposing
the array.

Syntax

RM, Array, Rows, Columns

Arguments

Array

A named variable that will contain the array.

Rows

An integer specifying the number of rows in the array.

Columns

An integer specifying the number of columns in the array.

Note
If the user enters more data than will fit in the specified number of columns, the
extra data is discarded.

Keywords

None
RM IDL Analyst Reference Guide

Chapter 25: Math and Statistics Utilities 1179
Example

Define a 3 row by 2 column array:

RM, arr, 3, 2

IDL prompts for input;

row 0: 1,4
row 1: 6,3
row 2: 9,9

Display the array using PM:

PM, arr

IDL Prints:

1.00000 4.00000
6.00000 3.00000
9.00000 9.00000

Display the array using PRINT:

PRINT, arr

IDL Prints:

1.00000 6.00000 9.00000
4.00000 3.00000 9.00000

Version History

6.4 Introduced
IDL Analyst Reference Guide RM

1180 Chapter 25: Math and Statistics Utilities
RM IDL Analyst Reference Guide

Appendix A

References
Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National
Bureau of Standards, Washington, D.C.

Afifi, A.A., and S.P. Azen (1979), Statistical Analysis: A Computer Oriented
Approach, 2d ed., Academic Press, New York.

Ahrens, J.H., and U. Dieter (1974), Computer methods for sampling from gamma,
beta, Poisson, and binomial distributions, Computing, 12, 223–246.

Akaike, H. (1978), A Bayesian analysis of the minimum AIC procedure, Ann.
Institute Statist. Mathematics., 30A, 9–14.

Akaike, H. (1973), Information theory and an extension of maximum likelihood
principle, Proc. 2nd International Symposium on Information Theory, Eds. B.N.
Petrov and F. Csaki, 267–281.

Akima, H. (1978), A method of bivariate interpolation and smooth surface fitting for
irregularly distributed data points, ACM Transactions on Mathematical Software, 4,
148–159.
IDL Analyst Reference Guide 1181

1182 Appendix A: References
Akima, H. (1970), A new method of interpolation and smooth curve fitting based on
local procedures, Journal of the ACM, 17, 589–602.

Anderson, R.L., and T.A. Bancroft (1952), Statistical Theory in Research, McGraw-
Hill Book Company, New York.

Anderson, T.W. (1971), The Statistical Analysis of Time Series, John Wiley & Sons,
New York.

Ashcraft, C. (1987), A vector implementation of the multifrontal method for large
sparse symmetric positive definite systems, Technical Report ETA-TR-51,
Engineering Technology Applications Division, Boeing Computer Services, Seattle,
Washington.

Ashcraft, C., R. Grimes, J. Lewis, B. Peyton, and H. Simon (1987), Progress in sparse
matrix methods for large linear systems on vector supercomputers. Intern. J.
Supercomputer Applic., 1(4), 10-29.

Atkinson, A.C. (1979), A family of switching algorithms for the computer generation
of beta random variates, Biometrika, 66, 141–145.

Atkinson, A.C. (1985), Plots, Transformations, and Regression, Claredon Press,
Oxford.

Atkinson, Ken (1978), An Introduction to Numerical Analysis, John Wiley & Sons,
New York.

Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb and Bessel
functions of real order to machine accuracy, Computer Physics Communication, 21,
297–314.

Barrett, J.C., and M.J.R. Healy (1978), A remark on Algorithm AS 6: Triangular
decomposition of a symmetric matrix, Applied Statistics, 27, 379–380.

Bays, Carter, and S.D. Durham (1976), Improving a poor random number generator,
ACM Transactions on Mathematical Software, 2, 59–64.

Bishop, Yvonne M.M., Stephen E. Fienberg, and Paul W. Holland (1975), Discrete
Multivariate Analysis: Theory and Practice, MIT Press, Cambridge, Mass.

Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-Variables, John
Wiley & Sons, New York.

de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag, New York.

Bosten, Nancy E., and E.L. Battiste (1974), Incomplete beta ratio, Communications
of the ACM, 17, 156–157.
IDL Analyst Reference Guide

Appendix A: References 1183
Box, George E.P., and Gwilyn M. Jenkins (1976), Time Series Analysis: Forecasting
and Control, revised ed., Holden-Day, Oakland.

Box, G.E.P., and P.W. Tidwell (1962), Transformation of the independent variables,
Technometrics, 4, 531–550.

Brent, Richard P. (1973), Algorithms for Minimization without Derivatives, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey.

Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall, Englewood
Cliffs, New Jersey.

Brown, Morton B., and Jacqualine K. Benedetti (1977), Sampling behavior and tests
for correlation in two-way contingency tables, Journal of the American Statistical
Association, 42, 309–315.

Brown, Morton E. (1983), MCDP4F, two-way and multiway frequency tables—
measures of association and the log-linear model (complete and incomplete tables),
in BMDP Statistical Software, 1983 Printing with Additions, (edited by W.J. Dixon),
University of California Press, Berkeley.

Carlson, R.E., and T.A. Foley (1991),The parameter R2 in multiquadric interpolation,
Computer Mathematical Applications, 21, 29–42.

Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape parameters,
Communications of the ACM, 21, 317–322.

Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of the
Fundamental Physical Constants, Codata Bulletin, Pergamon Press, New York.

Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley &
Sons, New York.

Conover, W.J., and Ronald L. Iman (1983), Introduction to Modern Business
Statistics, John Wiley & Sons, New York.

Cook, R. Dennis, and Sanford Weisberg (1982), Residuals and Influence in
Regression, Chapman and Hall, New York.

Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine computation of
complex Fourier series, Mathematics of Computation, 19, 297–301.

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution integrals,
Applied Statistics, 17, 190–192.

Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline functions,
Numerische Mathematik, 31, 377–403.
IDL Analyst Reference Guide

1184 Appendix A: References
Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith (1990), A
direct sparse linear equation solver using linked list storage, IMSL Technical Report
9006, IMSL, Houston.

D’Agostino, Ralph B., and Michael A. Stevens (1986), Goodness-of-Fit Techniques,
Marcel Dekker, New York.

Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical Integration,
Academic Press, Orlando, Florida.

Dallal, Gerald E. and Leland Wilkinson (1986), An analytic approximation to the
distribution of Lilliefor’s test statistic for normality, The American Statistician, 40,
294–296.

Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood
Cliffs, New Jersey.

Devore, Jay L (1982), Probability and Statistics for Engineering and Sciences,
Brooks/Cole Publishing Company, Monterey, Calif.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979), LINPACK User’s
Guide, SIAM, Philadelphia.

Draper, N.R., and H. Smith (1981), Applied Regression Analysis, 2d ed., John Wiley
& Sons, New York.

Du Croz, Jeremy, P. Mayes, and G. Radicati (1990), Factorization of band matrices
using Level-3 BLAS, Proceedings of CONPAR 90-VAPP IV, Lecture Notes in
Computer Science, Springer, Berlin, 222.

Duff, I. S., and J. K. Reid (1983), The multifrontal solution of indefinite sparse
symmetric linear equations. ACM Transactions on Mathematical Software, 9, 302-
325.

Duff, I. S., and J. K. Reid (1984), The multifrontal solution of unsymmetric sets of
linear equations. SIAM Journal on Scientific and Statistical Computing, 5, 633-641.

Duff, I. S., A. M. Erisman, and J. K. Reid (1986), Direct Methods for Sparse
Matrices, Clarendon Press, Oxford.

Efroymson, M.A. (1960), Multiple regression analysis, Mathematical Methods for
Digital Computers, Volume 1, (edited by A. Ralston and H. Wilf), John Wiley &
Sons, New York, 191–203.

Emmett, W.G. (1949), Factor analysis by Lawless method of maximum likelihood,
British Journal of Psychology, Statistical Section, 2, 90–97.
IDL Analyst Reference Guide

Appendix A: References 1185
Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for assessing initial
value methods, ACM Transactions on Mathematical Software, 13, 1–22.

Farebrother, R.W., and G. Berry (1974), A remark on Algorithm AS 6: Triangular
decomposition of a symmetric matrix, Applied Statistics, 23, 477.

Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems, The
Annals of Eugenics, 7, 179–188.

Fishman, George S., and Louis R. Moore (1982), A statistical evaluation of
multiplicative congruential random number generators with modulus 231 – 1, Journal
of the American Statistical Association, 77, 129–136.

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting data
with a digital computer, SIAM Journal on Applied Mathematics, 5, 74–88.

Franke, R. (1982), Scattered data interpolation: Tests of some methods, Mathematics
of Computation, 38, 181–200.

Furnival, G.M. and R.W. Wilson, Jr. (1974), Regressions by leaps and bounds,
Technometrics, 16, 499–511.

Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature formulas,
Mathematics of Computation, 22, 251–270.

Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential
Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Gentleman, W. Morven (1974), Basic procedures for large, sparse or weighted linear
least squares problems, Applied Statistics, 23, 448–454.

George, A., and J. W. H. Liu (1981), Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall, Englewood Cliffs, New Jersey.

Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model building and
practical aspects of nonlinear programming, Computational Mathematical
Programming, (edited by K. Schittkowski), NATO ASI Series, 15, Springer-Verlag,
Berlin, Germany.

Girschick, M.A. (1939), On the sampling theory of roots of determinantal equations,
Annals of Mathematical Statistics, 10, 203–224.

Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for solving
strictly convex quadratic programs, Mathematical Programming, 27, 1–33.

Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM Review, 15,
318–334.
IDL Analyst Reference Guide

1186 Appendix A: References
Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations, Johns
Hopkins University Press, Baltimore, Md.

Golub, G.H., and C.F. Van Loan (1989), Matrix Computations, 2d ed., The Johns
Hopkins University Press, Baltimore, Maryland.

Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature rules,
Mathematics of Computation, 23, 221–230.

Goodnight, James H. (1979), A tutorial on the SWEEP operator, The American
Statistician, 33, 149–158.

Gregory, Robert, and David Karney (1969), A Collection of Matrices for Testing
Computational Algorithms, Wiley-Interscience, John Wiley & Sons, New York.

Griffin, R., and K.A. Redish (1970), Remark on Algorithm 347: An efficient
algorithm for sorting with minimal storage, Communications of the ACM, 13, 54.

Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its
Applications, 34, 29–41.

Hageman, Louis A., and David M. Young (1981), Applied Iterative Methods,
Academic Press, New York.

Haldane, J.B.S. (1939), The mean and variance of χ2 when used as a test of
homogeneity, when expectations are small, Biometrika, 31, 346.

Hardy, R.L. (1971), Multiquadric equations of topography and other irregular
surfaces, Journal of Geophysical Research, 76, 1905–1915.

Harman, Harry H. (1976), Modern Factor Analysis, 3d ed. revised, University of
Chicago Press, Chicago.

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K.
Mesztenyi, John R. Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968),
Computer Approximations, John Wiley & Sons, New York.

Hartigan, John A. (1975), Clustering Algorithms, John Wiley & Sons, New York.

Hartigan, J.A., and M.A. Wong (1979), Algorithm AS 136: A K-means clustering
algorithm, Applied Statistics, 28, 100–108.

Hayter, Anthony J. (1984), A proof of the conjecture that the Tukey-Kramer multiple
comparisons procedure is conservative, Annals of Statistics, 12, 61–75.

Healy, M.J.R. (1968), Algorithm AS 6: Triangular decomposition of a symmetric
matrix, Applied Statistics, 17, 195–197.

Hemmerle, William J. (1967), Statistical Computations on a Digital Computer,
Blaisdell Publishing Company, Waltham, Mass.
IDL Analyst Reference Guide

Appendix A: References 1187
Higham, Nicholas J. (1988), FORTRAN Codes for estimating the one-norm of a real
or complex matrix, with applications to condition estimation, ACM Transactions on
Mathematical Software, 14, 381-396.

Hildebrand, F.B. (1956), Introduction to Numerical Analysis, McGraw Hill.

Hindmarsh, A.C. (1974), GEAR: Ordinary Differential Equation System Solver,
Lawrence Livermore National Laboratory Report UCID-30001, Revision 3,
Lawrence Livermore National Laboratory, Livermore, California.

Hinkley, David (1977), On quick choice of power transformation, Applied Statistics,
26, 67–69.

Hill, G.W. (1970), Student’s t-distribution, Communications of the ACM, 13, 617–
619.

Hoaglin, David C., and Roy E. Welsch (1978), The hat matrix in regression and
ANOVA, The American Statistician, 32, 17–22.

Hocking, R.R. (1972), Criteria for selection of a subset regression: Which one should
be used?, Technometrics, 14, 967–970.

Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.

Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User’s Guide for DVERK–A
Subroutine for Solving Nonstiff ODEs, Department of Computer Science Technical
Report 100, University of Toronto.

Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986), Constrained
interpolation and smoothing, Constructive Approximation, 2, 129–151.

Jackson, K.R., W.H. Enright, and T.E. Hull (1978), A theoretical criterion for
comparing Runge-Kutta formulas, SIAM Journal of Numerical Analysis, 15, 618 –
641.

Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM Transactions
on Mathematical Software, 1, 178–189.

Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real polynomials
using quadratic iteration, SIAM Journal on Numerical Analysis, 7, 545–566.

John, Peter W.M. (1971), Statistical Design and Analysis of Experiments, Macmillan
Company, New York.

Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten Zufalls-
zahlen, Metrika, 8, 5–15.
IDL Analyst Reference Guide

1188 Appendix A: References
Jöreskog, K.G. (1977), Factor analysis by least squares and maximum-likelihood
methods, Statistical Methods for Digital Computers, (edited by Kurt Enslein,
Anthony Ralston, and Herbert S. Wilf), John Wiley & Sons, New York, 125–153.

Kaiser, H.F. (1963), Image analysis, Problems in Measuring Change, (edited by C.
Harris), University of Wisconsin Press, Madison, Wis.

Kaiser, H.F., and J. Caffrey (1965), Alpha factor analysis, Psychometrika, 30, 1–14.

Kendall, Maurice G., and Alan Stuart (1973), The Advanced Theory of Statistics,
Volume 2: Inference and Relationship, 3rd ed., Charles Griffin & Company, London.

Kendall, Maurice G., and Alan Stuart (1979), The Advanced Theory of Statistics,
Volume 2: Inference and Relationship, 4th ed., Oxford University Press, New York.

Kendall, Maurice G., Alan Stuart, and J. Keith Ord (1983), The Advanced Theory of
Statistics, Volume 3: Design and Analysis, and Time Series, 4th. ed., Oxford
University Press, New York.

Kennedy, William J., Jr. and James E. Gentle (1980), Statistical Computing, Marcel
Dekker, New York.

Kinnucan, P., and H. Kuki (1968), A Single Precision Inverse Error Function
Subroutine, Computation Center, University of Chicago.

Kirk, Roger E. (1982), Experimental Design: Procedures for the Behavioral
Sciences, 2d ed., Brooks/Cole Publishing Company, Monterey, Calif.

Knuth, Donald E. (1981), The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, 2d ed., Addison-Wesley, Reading, Mass.

Lawley, D.N., and A.E. Maxwell (1971), Factor Analysis as a Statistical Method, 2d
ed., Butterworth, London.

Learmonth, G.P., and P.A.W. Lewis (1973), Naval Postgraduate School Random
Number Generator Package LLRANDOM, NPS55LW73061A, Naval Postgraduate
School, Monterey, Calif.

Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary function,
Communications of the ACM, 3, 602.

Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on Ranks,
Holden-Day, San Francisco.

Levenberg, K. (1944), A method for the solution of certain problems in least squares,
Quarterly of Applied Mathematics, 2, 164–168.

Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom number
generator for the System/360, IBM Systems Journal, 8, 136–146.
IDL Analyst Reference Guide

Appendix A: References 1189
Liepman, David S. (1964), Mathematical constants, Handbook of Mathematical
Functions, Dover Publications, New York.

Lilliefors, H.W. (1967), On the Kolmogorov-Smirnov test for normality with mean
and variance unknown, Journal of the American Statistical Association, 62, 534–544.

Liu, J. W. H. (1986), On the storage requirement in the out-of-core multifrontal
method for sparse factorization. ACM Transactions on Mathematical Software, 12,
249-264.

Liu, J. W. H. (1987), A collection of routines for an implementation of the
multifrontal method, Technical Report CS-87-10, Department of Computer Science,
York University, North York, Ontario, Canada.

Liu, J. W. H. (1989), The multifrontal method and paging in sparse Cholesky
factorization. ACM Transactions on Mathematical Software, 15, 310-325.

Liu, J. W. H. (1990), The multifrontal method for sparse matrix solution: theory and
practice, Technical Report CS-90-04, Department of Computer Science, York
University, North York, Ontario, Canada.

Longley, James W. (1967), An appraisal of least-squares programs for the electronic
computer from the point of view of the user, Journal of the American Statistical
Association, 62, 819–841.

Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons, New York.

Mardia, K.V., J.T. Kent, J.M. Bibby (1979), Multivariate Analysis, Academic Press,
New York.

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear
parameters, SIAM Journal on Applied Mathematics, 11, 431–441.

Martin, R.S., and J.H. Wilkinson (1971), The Modified LR algorithm for complex
Hessenberg matrices, Volume II: Linear Algebra Handbook, Springer, New York.

Micchelli, C.A. (1986), Interpolation of scattered data: Distance matrices and
conditionally positive definite functions, Constructive Approximation, 2, 11–22.

Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal recovery of smooth
functions, Numerische Mathematik, 26, 279–285.

Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward (1985),
Constrained Lp approximation, Constructive Approximation, 1, 93–102.

Müller, D.E. (1956), A method for solving algebraic equations using an automatic
computer, Mathematical Tables and Aids to Computation, 10, 208–215.
IDL Analyst Reference Guide

1190 Appendix A: References
Milliken, George A., and Dallas E. Johnson (1984), Analysis of Messy Data, Volume
1: Designed Experiments, Van Nostrand Reinhold, New York.

Miller, Rupert G., Jr. (1980), Simultaneous Statistical Inference, 2d ed., Springer-
Verlag, New York.

Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide for
MINPACK-1, Argonne National Laboratory Report ANL 80–74, Argonne, Illinois.

Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation and
Practice, McGraw-Hill, New York.

Murty, Katta G. (1983), Linear Programming, John Wiley and Sons, New York.

Nelson, Peter (1989), Multiple Comparisons of Means Using Simultaneous
Confidence Intervals, Journal of Quality Technology, 21, 232–241.

Neter, John, and William Wasserman (1974), Applied Linear Statistical Models,
Richard D. Irwin, Homewood, Ill.

Neter, John, William Wasserman, and Michael H. Kutner (1983), Applied Linear
Regression Models, Richard D. Irwin, Homewood, Illinois.

Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing
Company, Reading, Massachusetts.

Owen, D.B. (1965), A special case of the bivariate non-central t distribution,
Biometrika, 52, 437–446.

Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting with
minimal storage, Communications of the ACM, 13, 624.

Piessens, R., E. deDoncker-Kapenga, C.W. Überhuber, and D.K. Kahaner (1983),
QUADPACK, Springer-Verlag, New York.

Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained optimization
calculations, in Numerical Analysis Proceedings, Dundee 1977, Lecture Notes in
Mathematics, (edited by G. A. Watson), 630, Springer-Verlag, Berlin, Germany, 144–
157.

Powell, M.J.D. (1985), On the quadratic programming algorithm of Goldfarb and
Idnani, Mathematical Programming Study, 25, 46–61.

Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex quadratic
programming, DAMTP Report 1983/NA17, University of Cambridge, Cambridge,
England.
IDL Analyst Reference Guide

Appendix A: References 1191
Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische
Mathematik, 10, 177–183.

Rice, J.R. (1983), Numerical Methods, Software, and Analysis, Mcguire-Hill, New
York.

Rietman, Edward (1989), Exploring the Geometry of Nature, Windcrest Books, Blue
Ridge Summit, Pennsylvania.

Robinson, Enders A. (1967), Multichannel Time Series Analysis with Digital
Computer Programs, Holden-Day, San Francisco.

Royston, J.P. (1982a), An extension of Shapiro and Wilk’s W test for normality to
large samples, Applied Statistics, 31, 115–124.

Royston, J.P. (1982b), The W test for normality, Applied Statistics, 31, 176–180.

Royston, J.P. (1982c), Expected normal order statistics (exact and approximate),
Applied Statistics, 31, 161–165.

Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimum residual
algorithm for solving nonsymmetric linear systems, SIAM Journal of Scientific and
Statistical Computing, 7, 856-869.

Sallas, William M., and Abby M. Lionti (1988), Some useful computing formulas for
the nonfull rank linear model with linear equality restrictions, IMSL Technical
Report 8805, IMSL, Houston.

Savage, I. Richard (1956), Contributions to the theory of rank order statistics–the
two-sample case, Annals of Mathematical Statistics, 27, 590–615.

Schittkowski, K. (1980), Nonlinear programming codes, Lecture Notes in Economics
and Mathematical Systems, 183, Springer-Verlag, Berlin, Germany.

Schittkowski, K. (1983), On the convergence of a sequential quadratic programming
method with an augmented Lagrangian line search function, Mathematik Operations
for Schung and Statistik, Serie Optimization, 14, 197–216.

Schittkowski, K. (1986), NLPQL: A FORTRAN subroutine solving constrained
nonlinear programming problems, (edited by Clyde L. Monma), Annals of
Operations Research, 5, 485–500.

Schmeiser, Bruce (1983), Recent advances in generating observations from discrete
random variates, Computer Science and Statistics: Proceedings of the Fifteenth
Symposium on the Interface, (edited by James E. Gentle), North-Holland Publishing
Company, Amsterdam, 154–160.

Schmeiser, Bruce W., and A.J.G. Babu (1980), Beta variate generation via
exponential majorizing functions, Operations Research, 28, 917–926.
IDL Analyst Reference Guide

1192 Appendix A: References
Schmeiser, Bruce, and Voratas Kachitvichyanukul (1981), Poisson Random Variate
Generation, Research Memorandum 81-4, School of Industrial Engineering, Purdue
University, West Lafayette, Ind.

Schmeiser, Bruce W., and Ram Lal (1980), Squeeze methods for generating gamma
variates, Journal of the American Statistical Association, 75, 679–682.

Schwartz, G. (1978), Estimating the dimension of a model, Ann. Statist., 6, 461-464.

Searle, S.R. (1971), Linear Models, John Wiley & Sons, New York.

Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications of
the ACM, 18, 179–180.

Shampine, L.F., and C.W. Gear (1979), A user’s view of solving stiff ordinary
differential equations, SIAM Review, 21, 1–17.

Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with
minimal storage, Communications of the ACM, 12, 185–187.

Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B.
Moler (1976), Matrix Eigensystem Routines—EISPACK Guide, Springer-Verlag,
New York.

Smith, P.W. (1990), On knots and nodes for spline interpolation, Algorithms for
Approximation II, J.C. Mason and M.G. Cox, Eds., Chapman and Hall, New York.

Snedecor, George W., and William G. Cochran (1967), Statistical Methods, 6th ed.,
Iowa State University Press, Ames, Iowa.

Spurrier, John D., and Steven P. Isham (1985), Exact simultaneous confidence
intervals for pairwise comparisons of three normal means, Journal of the American
Statistical Association, 80, 438–442.

Stewart, G.W. (1973), Introduction to Matrix Computations, Academic Press, New
York.

Stoer, J. (1985), Principles of sequential quadratic programming methods for solving
nonlinear programs, Computational Mathematical Programming, (edited by K.
Schittkowski), NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.

Stoline, Michael R. (1981), The status of multiple comparisons: simultaneous
estimation of all pairwise comparisons in one-way ANOVA designs, The American
Statistician, 35, 134–141.

Strecok, Anthony J. (1968), On the calculation of the inverse of the error function,
Mathematics of Computation, 22, 144–158.
IDL Analyst Reference Guide

Appendix A: References 1193
Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae, Prentice-
Hall, Englewood Cliffs, New Jersey.

Temme, N.M. (1975), On the numerical evaluation of the modified Bessel function of
the third kind, Journal of Computational Physics, 19, 324–337.

Thompson, I.J., and A.R. Barnett (1987), Modified Bessel functions Iv(z) and Kv(z) of
real order and complex argument, to selected accuracy, Computer Physics
Communication, 47, 245–257.

Tukey, John W. (1962), The future of data analysis, Annals of Mathematical
Statistics, 33, 1–67.

Velleman, Paul F., and David C. Hoaglin (1981), Applications, Basics, and
Computing of Exploratory Data Analysis, Duxbury Press, Boston.

Walker, H. F. (1988), Implementation of the GMRES method using Householder
transformations, SIAM Journal of Scientific and Statistical Computing, 9, 152-163.

Watkins, David S., L. Elsner (1991), Convergence of algorithm of decomposition
type for the eigenvalue problem, Linear Algebra Applications, 143, 19–47.

Weisberg, S. (1985), Applied Linear Regression, 2nd edition, John Wiley & Sons,
New York.
IDL Analyst Reference Guide

1194 Appendix A: References
IDL Analyst Reference Guide

Index

A
abampere, 1155
Abcoulomb, 1155
Abvolt, 1155
acre, 1155
Adams’ method, 333

implicit, 337
Airy functions, 527

IMSL_AIRY_AI, 527
IMSL_AIRY_BI, 529

alpha-factor analysis method, 990
alternatives to least squares regression

IMSL_LIMSL_NORMREGRESS, 704
ampere, 1155
AMU, 1154
analysis of variance, 749

factorial design, 762

general linear model, 602
IMSL_ANOVA1, 752
IMSL_ANOVABALANCED, 783
IMSL_ANOVAFACT, 762
IMSL_ANOVANESTED, 774
IMSL_MULTICOMP, 771
n-way design, 762
one-way design, 756

Angstrom, 1154
ANOVA. See analysis of variance
ANSI/IEEE 754-1985, 1160
approximations

scattered data, 195
smooth cubic splines, 254

arbitrary dimension quadature
IMSL_INTFCN_QMC, 319

arbitrary dimension quadrature, 27, 283
IMSL_INTFCNHYPE, 315
IDL Analyst Reference Guide 1195

1196
area, 1155
association, measures of, 804
astronomical unit, 1153
asymptotic variances, 980
ATM, 1155
atmosphere, 1155
atmospheric pressure, standard, 1153
atomic mass unit, 1153
atto, 1156
AU, 1154
autoregressive parameters, 921
Avogadro’s number, 1153

B
backcasting, 917
backward difference operator, 932
backward glance, 647
backward selection, 641
balanced experimental design, 783
band storage mode, 1171
bar, 1155
base of natural logs, 1153
basic statistics

IMSL_FREQTABLE, 565
IMSL_NORM1SAMP, 552
IMSL_NORM2SAMP, 557
IMSL_RANKS, 579
IMSL_SIMPLESTAT, 546
IMSL_SORTDATA, 572

basic uniform generator, 1068, 1068
basis function, 234
Bessel function

first kind, 500
modified

first kind, 498
second kind, 503

second kind, 505
Bessel functions, 507, 507, 509
Bessel functions with real order and complex

argument

IMSL_BESSI, 498
IMSL_BESSI_EXP, 507
IMSL_BESSJ, 500
IMSL_BESSK, 503
IMSL_BESSK_EXP, 509
IMSL_BESSY, 505

beta distribution, 1090, 1099
beta function

real, 484
incomplete, 489
logarithmic, 487

binomial coefficient, 1166
binomial distribution, 1090
binomial distributions, 1109, 1111, 1113,

1116, 1124, 1128
binomial probability, 836
bisection process, 286
bivariate quadrature, 27, 283
bivariate quintic polynomial, 263
Blom normal scores, 583
Boltzman’s constant, 1153
Bonferroni method, 758
b-spline and cubic spline evaluation and inter-

polation
IMSL_SPINTEG, 230
IMSL_SPVALUE, 224

b-spline interpolation
IMSL_BSINTERP, 210
IMSL_BSKNOTS, 219

B-splines, 193
least-squares approximations

one-dimensional, 240, 242
one-dimensional, 212, 231
two-dimensional, 231

BTU, 1155

C
Catalan’s constant, 1153
categorical and discrete data analysis

IMSL_CAT_GLM, 819
Index IDL Analyst Reference Guide

1197
IMSL_CONTINGENCY, 798
IMSL_EXACT_ENUM, 811
IMSL_EXACT_NETWORK, 814

cauchy distribution, 1091
Cauchy principle value, 306, 307
Celsius, 1155
centi, 1156
characteristic roots, 979
characteristic vectors, 979
charge, 1155
Chebyshev moments, 301, 304
chi-square distribution, 1091
chi-squared

analysis, 798
goodness-of-fit test, 878, 880
measures relating to, 802
statistic, 802
test, 553, 558, 799

chi-squared statistics, 796
chi-squared test, 876
Cholesky factorization

symmetric nonnegative definite, 114
symmetric positive definite, 95

classification model, one-way, 752
classification variables, 602
Clenshaw-Curtis formula, 295, 301
cluster analysis, 970, 973
Cochran Q test, 867
coefficient of variation, 550
concavity, 205
condition numbers, 82, 88, 175
confidence intervals, 624, 659, 659

Bonferroni method, 753, 754, 755, 755, 756,
756, 758

Dunn-Sidák method, 753, 754, 755, 755,
756, 756, 757

means, 625
One-at-a-Time t (Fisher’s LSD) method, 753,

754, 755, 755, 756, 756, 759
prediction, 625
Scheffé method, 625, 753, 754, 755, 755,

756, 756, 758
Tukey method, 753, 754, 755, 755, 756, 756,

757
Tukey-Kramer method, 753, 754, 755, 755,

756, 756, 757
constants

computer, 1158
mathematical and physical, 1152

constants and date sets
IMSL_MACHINE, 1158

constraints, 248
contants and date sets

IMSL_CONSTANT, 1152
contingency coefficient, 799, 802, 900, 900,

901, 902, 902
contingency tables, 811

two-way, 798
continuous variables, 602
convolution, discrete of 1D arrays, 390
Cook’s D statistics, 625, 660
Cooley-Tukey algorithm, 374
coordinate format, 1171
copyrights, 2
Cornish-Fisher expansion, 1049
correlation and covariance

IMSL_COVARIANCES, 724
IMSL_PARTIAL_COV, 730
IMSL_POOLED_COV, 736
IMSL_ROBUST_COV, 740

correlation coefficient
multiple, 611

correlation matrix, 724, 725, 1111, 1116
correlation, descrete of 1D arrays, 395
correlations, 724, 730
cosine Fresnel integrals, 523
Coulomb, 1155
counts, 547, 572
covariances, 724

sample, 980
Cox and Stuart sign test, 851
Cramer’s V, 802
IDL Analyst Reference Guide Index

1198
cross-validation, 255
cubic spline interpolation

IMSL_CSINTERP, 200
IMSL_CSSHAPE, 205

cubic splines, 193, 200
approximations

smooth, 254
interpolation

endpoint conditions, 200
shape-preserving, 205

smoothing, 195, 195
current, 1155
curvilinear regression, 654

D
data sets, statistical

retrieving, 1163
dates

epoch to date, 1148
IMSL_DATETODAYS, 1150
IMSL_DAYSTODATE, 1148
number of days, 1150

deca, 1156
deci, 1156
degrees of freedom

for error, 610, 642, 652
for the model, 610, 642, 652
total corrected, 610, 642, 652

Delaunay triangulation, 263
derivatives, 326
DFFITS statistics, 597, 626, 661
diagnostics, 624, 659
differential equations

IMSL_ODE, 333
IMSL_PDE_MOL, 351
IMSL_POISSON2D, 366

differential equations, ordinary (IMSL_ODE)
general, 329
mildly stiff, 337
Rossler system, 343

Runge-Kutta method, 338
differentiation

IMSL_FCN_DERIV, 326
discrete Fourier cosine transformation, 377,

377
discrete uniform distribution, 1095
distance, 1154
distribution functions

beta probability, 1055
binomial distribution, 1058
binomial probability, 1060
chi-squared, noncentral, 1040
F distribution, 1045
gamma distribution, 1052
hypergeometric, 1062
normal

bivariate, 1037
Gaussian, 1034

inverse, 1034
inverse, 1034

Poisson, 1065
Student’s t, 1048

dummy variables, 603
Dunn-Sidák method, 757
dyne, 1155

E
eigenexpansion, 178
eigensystem analysis, 970

IMSL_EIG, 178
IMSL_EIGSYMGEN, 183
IMSL_GENEIG, 186

eigenvalues, 186
eigenvalues and eigenvectors

accuracy, 174
error analysis, 174
general, 178
generalized, reformulating, 175
symmetric positive definite, 183

eigenvectors, 186
Index IDL Analyst Reference Guide

1199
electron charge, 1153
electron mass, 1153
electron volt, 1153
elliptic integrals, 511, 515, 517

IMSL_ELE, 513
IMSL_ELK, 511
IMSL_ELRC, 521
IMSL_ELRD, 517
IMSL_ELRF, 515
IMSL_ELRJ, 519

endpoint conditions, 200
energy, 1155
equality/inequality constraints, 458
Equation, 400
Erg, 1155
Erlang distribution, 1053
error function

real, 477
complementary, 480

error functions
IMSL_BETA, 484
IMSL_BETAI, 489
IMSL_ERF, 477
IMSL_ERFC, 480
IMSL_LNBETA, 487

errors
alert, 18
fatal, 18

Euler’s constant, 1153
excess, coefficient of, 546, 549
exponential distribution, 1089
exponential mix distribution, 1092
exponential order statistics, 584
exponential scores, 579

F
F test statistic, 559, 562
factor analysis, 971, 983
factorial design, balanced, 762
factorization

Cholesky, 95
LU, 87
SVD, 106

factor-loading estimates, 983
Fahrenheit, 1155
farad, 1155
Faraday constant, 1153
fast Fourier transforms, 374

complex
one-dimensional, 380

continuous vs. discrete, 374
real

one-dimensional, 411, 411, 411
fatal errors, 18
Faure, 1138, 1142
Faure sequence, 1137, 1141, 1141

faure_next_point, 1141
femto, 1156
FFT. See fast Fourier transforms
fine structure, 1153
finite differences, forward, 672
first-order IMSL_ODEs, 330
Fisher’s LSD, 759
fixed points, 323
force, 1155
forecasts

IMSL_GARCH, 954
forward finite differences, 672
forward selection, 641
Fourier sine and cosine transforms, 303
frequencies

resolvable, 380
resolving dominant, 384

frequency, 1154
frequency tables

multiway, 572
one-way, 565

frequency tabulation, 575
Fresnel integrals

IMSL_FRESNEL_COSINE, 523
IMSL_FRESNEL_SINE, 525
IDL Analyst Reference Guide Index

1200
Friedmanís test, 862
F-statistic, 610

G
gamma distribution, 1089
gamma function

real
incomplete, 495
logarithmic, 491

gamma functions, 493
IMSL_GAMMAI, 495
IMSL_LNGAMMA, 491

gamma statistic, 800
gas constant, 1153
Gauss, 1155
Gauss Legendre quadrature, 3-point, 324
Gauss quadature

IMSL_INTFCN, 322
Gauss quadrature, 282, 322

10-point, 286
Gauss-Kronrod rules, 307

21-point, 286
7/15, 301

Gauss-Lobatto quadrature, 322
points and weights, 323

Gauss-Radau quadrature, 322
points, 323

Gauss-Seidel method, 241
Gear’s method, 333
general discrete distribution, 319, 1060, 1106,

1109, 1113, 1119, 1121, 1124, 1128, 1128,
1129

general distributions, 876
general goodness-of-fit tests

IMSL_CHISQTEST, 878
IMSL_KOLMOGOROV2, 891
IMSL_KOLMOGROV1, 888
IMSL_MVAR_NORMALITY, 894
IMSL_NORMALITY, 884

general linear models, 590, 602

Generalized Autoregressive Conditional Het-
eroskedastic, 954

generalized categorical models
IMSL_CAT_GLM, 819

generalized eigensystem problems
IMSL_EIGSYMGEN, 183
IMSL_GENEIG, 186

generalized feedback shift register method,
1068

generalized inverses, 106
generalized linear models, 796
generators

basic uniform, 1068, 1068
shuffled, 1069

geometric distribution, 1092
geometry

IMSL_NORM, 1168
vector norms, 1168

GFSR, 1074
GFSR generator, 1069
GFSR method, 1068
giga, 1156
Givens transformations, 613
globally adaptive scheme, 286
Goodman and Kruskal t, 805

for columns, 800
for rows, 800

goodness-of-fit
IMSL_CHISQTEST, 878
IMSL_KOLMOGOROV2, 891
IMSL_KOLMOGROV1, 888
IMSL_MVAR_NORMALITY, 894
IMSL_NORMALITY, 884
IMSL_RANDOMNESS_TEST, 899

goodness-of-fit tests, 876
gravitational constant, 1154
Gray code, 1139, 1143
Gregorian calendar, 1151
gridded data, 216
G-squared test, 799
Index IDL Analyst Reference Guide

1201
H
Hardy multiquadratic, 268
Henry, 1155
Hertz, 1154
hypergeometric distribution, 1093
hyper-rectangle, 315, 319

I
ideal gas, standard volume, 1154
IDL

copyrights, 2
trademarks, 2

IEEE arithmetic, 1161
ill-conditoning, 68
image analysis method, 987, 990
IMSL_AIRY_AI function, 527
IMSL_AIRY_BI function, 529
IMSL_ALLBEST procedure, 632
IMSL_ANOVA1 function, 752
IMSL_ANOVABALANCED function, 783
IMSL_ANOVAFACT function, 762
IMSL_ANOVANESTED function, 774
IMSL_ARMA

least-squares procedure, 917
method-of-moments procedure, 917
stationary, 933

IMSL_ARMA function, 915
IMSL_ARMA models

IMSL_ARMA, 915
IMSL_AUTOCORRELATION, 942
IMSL_BOXCOXTRANS, 937
IMSL_DIFFERENCE, 931
IMSL_GARCH, 954
IMSL_KALMAN, 959
IMSL_LACK_OF_FIT, 950
IMSL_PARTIAL_AC, 947

IMSL_AUTOCORRELATION function, 942
IMSL_BESSI function, 498
IMSL_BESSI_EXP function, 507

IMSL_BESSJ function, 500
IMSL_BESSK function, 503
IMSL_BESSK_EXP function, 509
IMSL_BESSY function, 505
IMSL_BETA function, 484
IMSL_BETACDF function, 1055
IMSL_BETAI function, 489
IMSL_BINOMIALCDF function, 1058
IMSL_BINOMIALCOEF function, 1166
IMSL_BINOMIALPDF function, 1060
IMSL_BINORMALCDF function, 1037
IMSL_BOXCOXTRANS function, 937
IMSL_BSINTERP function, 210
IMSL_BSKNOTS function, 219
IMSL_BSLSQ function, 238
IMSL_CAT_GLM function, 819
IMSL_CHFAC procedure, 95
IMSL_CHISQCDF function, 1040
IMSL_CHISQTEST function, 878
IMSL_CHNNDFAC procedure, 114
IMSL_CHNNDSOL function, 110
IMSL_CHSOL function, 91
IMSL_COCHRANQ function, 867
IMSL_CONLSQ function, 248
IMSL_CONSTANT function, 1152
IMSL_CONSTRAINED_NLP, 465
IMSL_CONSTRAINED_NLP function, 465
IMSL_CONT_TABLE procedure, 1119
IMSL_CONTINGENCY function, 798
IMSL_CONVOL1D function, 390
IMSL_CORR1D function, 395
IMSL_COVARIANCES function, 724
IMSL_CSINTERP function, 200
IMSL_CSSHAPE function, 205
IMSL_CSSMOOTH function, 254
IMSL_CSTRENDS function, 851
IMSL_DATETODAYS function, 1150
IMSL_DAYSTODATE procedure, 1148
IMSL_DIFFERENCE function, 931
IMSL_DISCR_ANALYSIS procedure, 994
IMSL_DISCR_TABLE function, 1124
IDL Analyst Reference Guide Index

1202
IMSL_EIG function, 178
IMSL_EIGSYMGEN function, 183
IMSL_ELE function, 513
IMSL_ELK function, 511
IMSL_ELRC function, 521
IMSL_ELRD function, 517
IMSL_ELRF function, 515
IMSL_ELRJ function, 519
IMSL_ERF function, 477
IMSL_ERFC function, 480
IMSL_EXACT_ENUM function, 811
IMSL_EXACT_NETWORK function, 814
IMSL_FACTOR_ANALYSIS function, 983
IMSL_FAURE_INIT function, 1137
IMSL_FAURE_NEXT_PT function, 1141
IMSL_FCDF function, 1045
IMSL_FCN_DERIV function, 326
IMSL_FCNLSQ function, 234
IMSL_FFTCOMP function, 377
IMSL_FFTINIT function, 387
IMSL_FMIMSL_INV, 433
IMSL_FMIMSL_INV function, 433
IMSL_FMIN function, 425
IMSL_FREQTABLE function, 565
IMSL_FRESNEL_COSINE function, 523
IMSL_FRESNEL_SINE function, 525
IMSL_FRIEDMANS_TEST function, 862
IMSL_GAMMA_ADV function, 493
IMSL_GAMMACDF function, 1052
IMSL_GAMMAI function, 495
IMSL_GARCH function, 954
IMSL_GENEIG procedure, 186
IMSL_GQUAD procedure, 322
IMSL_HYPERGEOCDF function, 1062
IMSL_HYPOTH_PARTIAL function, 677
IMSL_HYPOTH_SCPH function, 683
IMSL_HYPOTH_TEST function, 688
IMSL_INTFCN function, 284

algebraic-logarithmic singularities, 294
Cauchy principle value, 306
fourier sine and cosine transforms, 303

Gauss-Kronrod rules, 288
infinite or semi-infinite interval, 297
sine and cosine factors, 300
singular points given, 291
smooth functions using nonadaptive rule, 309
two-dimensional iterated integrals, 312

IMSL_INTFCN_QMC function, 319
IMSL_INTFCNHYPER function, 315
IMSL_INV function, 79
IMSL_K_MEANS function, 973
IMSL_KALMAN procedure, 959
IMSL_KELVIN_BEI0 function, 534
IMSL_KELVIN_BER0 function, 532
IMSL_KELVIN_KEI0 function, 538
IMSL_KOLMOGOROV1 function, 888
IMSL_KOLMOGOROV2 function, 891
IMSL_KTRENDS function, 870
IMSL_KW_TEST function, 859
IMSL_LACK_OF_FIT function, 950
IMSL_LAPLACE_INV function, 398
IMSL_LIMSL_NORMREGRESS function,

704
IMSL_LINLSQ function, 118
IMSL_LINPROG, 449
IMSL_LINPROG function, 449
IMSL_LNBETA function, 487
IMSL_LNGAMMA function, 491
IMSL_LUFAC procedure, 87
IMSL_LUSOL function, 81
IMSL_MACHINE function, 1158
IMSL_MATRIX_NORM function, 1171
IMSL_MINCONGEN function, 458
IMSL_MULTICOMP function, 771
IMSL_MULTIPREDICT function, 624
IMSL_MULTIREGRESS function, 609
IMSL_MVAR_NORMALITY function, 894
IMSL_NCTRENDS function, 848
IMSL_NONLINOPT function, 695
IMSL_NONLINREGRESS function, 667
IMSL_NORM function, 1168
IMSL_NORM1SAMP function, 552
Index IDL Analyst Reference Guide

1203
IMSL_NORM2SAMP function, 557
IMSL_NORMALCDF function, 1034
IMSL_NORMALITY function, 884
IMSL_ODE function, 333
IMSL_ODE. See differential equations
IMSL_PARTIAL_AC function, 947
IMSL_PARTIAL_COV function, 730
IMSL_PDE_MOL function, 351
IMSL_POISSON2D function, 366
IMSL_POISSONCDF function, 1065
IMSL_POLYPREDICT function, 659
IMSL_POLYREGRESS function, 651
IMSL_POOLED_COV function, 736
IMSL_PRINC_COMP function, 978
IMSL_QRFAC procedure, 102
IMSL_QRSOL function, 98
IMSL_QUADPROG function, 454
IMSL_RADBE function, 277
IMSL_RADBF function, 266
IMSL_RAND_FROM_DATA function, 1116
IMSL_RAND_GEN_CONT function, 1121
IMSL_RAND_GEN_DISCR function, 1128
IMSL_RAND_ORTH_MAT function, 1111
IMSL_RAND_TABLE_2WAY function, 1109
IMSL_RANDOM function, 1082
IMSL_RANDOM_ARMA function, 1132
IMSL_RANDOM_NPP function, 1102
IMSL_RANDOM_ORDER function, 1106
IMSL_RANDOM_SAMPLE function, 1113
IMSL_RANDOM_TABLE procedure, 1078
IMSL_RANDOMNESS_TEST function, 899
IMSL_RANDOMOPT procedure, 1073
IMSL_RANKS function, 579
IMSL_REGRESSORS function, 602
IMSL_ROBUST_COV function, 740
IMSL_SCAT2DINTERP function, 262
IMSL_SIGNTEST function, 836
IMSL_SIMPLESTAT function, 546
IMSL_SMOOTHDATA1D function, 258
IMSL_SORTDATA function, 572
IMSL_SP_BDFAC procedure, 140

IMSL_SP_BDPDFAC function, 156
IMSL_SP_BDPDSOL function, 153
IMSL_SP_BDSOL function, 136
IMSL_SP_CG function, 164
IMSL_SP_GMRES function, 160
IMSL_SP_LUFAC function, 129
IMSL_SP_LUSOL function, 123
IMSL_SP_MVMUL function, 168
IMSL_SP_PDFAC function, 149
IMSL_SP_PDSOL function, 144
IMSL_SPINTEG function, 230
IMSL_SPVALUE function, 224
IMSL_STATDATA function, 1163
IMSL_STEPWISE procedure, 641
IMSL_SURVIVAL_GLM function, 1008
IMSL_SVDCOMP function, 106
IMSL_TCDF function, 1048
IMSL_TIE_STATS function, 857
IMSL_WILCOXON function, 839
IMSL_ZEROFCN function, 413
IMSL_ZEROPOLY function, 410
IMSL_ZEROSYS function, 418
incomplete gamma function, 495
indicator variables, 603
inferences about the mean, 560
initial value problem (IVP), 329, 333

nonstiff, 329
stiff, 329

integrals
n-dimensional iterated, 316
two-dimensional iterated, 312, 313

integration, 319
arbitrary dimension quadrature, 27, 283
Gauss quadrature, 282, 322
multivariate

general, 281
hyper-rectangle, 315
two-dimensional, 312, 313

spline, one or two-dimensional, 230
univariate / bivariate

Cauchy principle, 306, 307
IDL Analyst Reference Guide Index

1204
Gauss-Kronrod rules, 288, 289
general, 280
infinite or semi-infinite interval, 297, 298
nonadaptive rule, 309, 310
sine or cosine factor, 300, 301
sine or cosine transform, 303, 304
smooth function, 309, 310
with algebraic-logarithmic singularities,

294, 295
with singularity points, 291, 292

interpolation
cubic spline

endpoint conditions, 200
shape preserving, 205

scattered data, 195
radial-basis fit, 277
radial-basis functions, 266

user-supplied, 272
smooth bivariate, 262
three-dimensional fit, 273

spline
knot sequence, 219
one-dimensional, 215
two-dimensional, 213

interpolation and approximation
IMSL_BSINTERP, 210
IMSL_BSKNOTS, 219
IMSL_BSLSQ, 238
IMSL_CONLSQ, 248
IMSL_CSINTERP, 200
IMSL_CSSHAPE, 205
IMSL_CSSMOOTH, 254
IMSL_FCNLSQ, 234
IMSL_RADBE, 277
IMSL_RADBF, 266
IMSL_SCAT2DINTERP, 262
IMSL_SMOOTHDATA1D, 258
IMSL_SPINTEG, 230
IMSL_SPVALUE, 224

inverse

complementary error function, 480
error function, 477
g3, 616
generalized, 616
Moore-Penrose, 616

inverse matrix, 79
IVP. See initial value problem

J
Jacobian matrix, 442, 668
Jenkins-Traub three-stage algorithm, 410
Joule, 1155
Julian calendar, 1149, 1151

K
Kalman filtering, 959
Kappa analysis, 796
kappa statistic, 800, 806
Kelvin, 1155
Kelvin functions

IMSL_KELVIN_BEI0, 534
IMSL_KELVIN_BER0, 532
IMSL_KELVIN_KEI0, 538
IMSL_KELVIN_KER0, 536

KELVIN_KERO function, 536
Kendall’s tb, 800
key sort, 574
kilo, 1156
K-means analysis, 973
knot sequence, 212
knots, 212, 219
Kolmogorov one-sample test, 888
Kolmogorov two-sample test, 891
Kruskal-Wallis test, 800, 806
k-sample trends test, 870
kurtosis, 546, 549
Index IDL Analyst Reference Guide

1205
L
lack-of-fit statistics, 653
lack-of-fit tests, 597
Least Absolute Value, 600
Least Maximum Value, 600
Least Squares

Alternatives
Least Absolute Value, 600
Least Maximum Value, 600
Lp Norm, 600

least squares approximation and smoothing
IMSL_BSLSQ, 238
IMSL_CONLSQ, 248
IMSL_CSSMOOTH, 254
IMSL_FCNLSQ, 234
IMSL_SMOOTHDATA1D, 258

least-squares fit, 26, 195, 199, 258, 609, 783,
848, 851, 857, 862, 888, 891

B-spline
one-dimensional, 240
two-dimensional, 242

spline
constrained, 248
one- or two-dimensional, 238

user-supplied function, 234
weighted, 618

least-squares method, 988
generalized, 987
unweighted, 987
weighted, 594

least-squares solution, 67
Lebesque measure, 1138, 1142
legalities, 2
Levenberg-Marquardt algorithm, modified,

441, 672
leverages, 597, 626
Lilliefors test, 884, 885
linear constraints, 118, 251
linear dependence, 593
linear eigensystem problems

IMSL_EIG, 178

linear equations with full matrices
IMSL_CHFAC, 95
IMSL_CHSOL, 91
IMSL_LUFAC, 87
IMSL_LUSOL, 81

linear least squares with full matrices
IMSL_CHNNDFAC, 114
IMSL_CHNNDSOL, 110
IMSL_LINLSQ, 118
IMSL_QRFAC, 102
IMSL_QRSOL, 98
IMSL_SVDCOMP, 106

linear least-squares problem, 118
linear programming problems, 449
linear regression

multiple, 588
simple, 588

linear system solution
general, 66, 66, 81
Hermitian positive definite, 93
matrix factorization, 66
multiple right-hand sides, 67, 84
symmetric nonnegative definite, 110
symmetric positive definite, 91

linear systems
IMSL_CHFAC, 95
IMSL_CHNNDFAC, 114
IMSL_CHNNDSOL, 110
IMSL_CHSOL, 91
IMSL_INV, 79
IMSL_LINLSQ, 118
IMSL_LUFAC, 87
IMSL_LUSOL, 81
IMSL_QRFAC, 102
IMSL_QRSOL, 98
IMSL_SP_BDFAC, 140
IMSL_SP_BDPDFAC, 156
IMSL_SP_BDPDSOL, 153
IMSL_SP_BDSOL, 136
IMSL_SP_CG, 164
IMSL_SP_GMRES, 160
IDL Analyst Reference Guide Index

1206
IMSL_SP_LUFAC, 129
IMSL_SP_LUSOL, 123
IMSL_SP_MVMUL, 168
IMSL_SP_PDFAC, 149
IMSL_SP_PDSOL, 144
IMSL_SVDCOMP, 106

linear trend test, 806
linearly constrained minimization, 449

IMSL_QUADPROG, 454
linearly dependent regressors, 614
logarithm, gamma function, 491
logarithm, real beta function, 487
logarithmic distribution, 1093
lognormal distribution

random numbers
lognormal distribution, 1094

low-discrepancy, 1139, 1143
low-discrepancy sequences

IMSL_FAURE_INIT, 1137
IMSL_FAURE_NEXT_PT, 1141

Lp Norm, 600
LU factorization, 87

M
MAD. See median absolute deviation
magnetic induction, 1155
Mallows Cp criterion, 635
Mann-Whitney U test, 842
mass, 1154
mathematical constants, 1152
matrices, sparse. See sparse matrices
matrix

notation, 68
matrix factorization, 66
matrix inversion

IMSL_INV, 79
linear system solution, 66

matrix norm
IMSL_MATRIX_NORM, 1171

maximum, 546, 549

maximum likelihood estimates, 964
maximum likelihood method, 987, 988
Maxwell, 1155
McNemar test, 801, 807
mean, 546, 549, 552, 610, 642, 652

exact, 799, 900, 900, 901, 902, 902
for two normal populations, 557
inferences about, 560
lower confidence limit, 547
normal population, 552
return value, 554
upper confidence limit, 547

mean square
error, 610, 642, 652
model, 610, 642, 652

measures of
association, 803
prediction, 804
uncertainty, 804

measures of association, 796
median, 550
median absolute deviation, 550
mega, 1156
method of provisional means, 727
micro, 1156
micron, 1154
mill, 1154
milli, 1156
minimization, 421, 458, 465

linearly constrained, 422
quadratic programming, 454
simplex algorithm, 449

nonlinearly constrained, 423
unconstrained, 422

nonlinear least squares, 441
quasi-Newton method, 433, 436
univariate, 425

minimum, 546, 549
missing values, 17, 600
models

general linear, 602
Index IDL Analyst Reference Guide

1207
multiple linear regression, 609, 632
nonlinear regression, 594, 667
polynomial, 589
polynomial regression, 659
regression, 624

modified Bessel function, 498
mole, 1155
Moore-Penrose inverses, 112, 116, 616
Müller’s method, 413
multiple linear regression

IMSL_MULTIPREDICT, 624
IMSL_REGRESSORS, 602
MULTIGRESS, 609

multiple linear regression models, 588, 602,
609, 632, 641, 783, 848, 851, 857, 862,
888, 891

multiple right-hand sides, 67
multiple-comparisons test

Student-Newman-Keuls, 771
multiplicative congruential generator, 1068
multiplicative generator, 1068
multivariate analysis

cluster analysis, 973
factor analysis, 983
IMSL_DISCR_ANALYSIS, 994
IMSL_FACTOR_ANALYSIS, 983
IMSL_K_MEANS, 973
IMSL_PRINC_COMP, 978
principal components, 978

multivariate distribution, 1116
multivariate linear regression - statistical infer-

ence and diagnostics
IMSL_HYPOTH_PARTIAL, 677
IMSL_HYPOTH_SCPH, 683
IMSL_HYPOTH_TEST, 688

multivariate normal distribution, 1085, 1090,
1100

multivariate quadrature, 281
multiway frequency table, 572
myria, 1156

N
NaN (Not a Number), 17, 600
natural logs, base, 1153
n-dimensional iterated integrals, 316
negative binomial, 1094
Newton’s Method, 205, 419
NIMSL_LINLSQ function, 441
nino, 1156
Noether test, 848
noncentral chi-squared distribution function,

1040
nonlinear equations

IMSL_ZEROFCN, 413
IMSL_ZEROPOLY, 410
IMSL_ZEROSYS, 418

nonlinear least-squares problems, 441
nonlinear programming problem, 465
nonlinear regression models, 594, 667
nonlinearly constrained minimization, 465

IMSL_MINCONGEN, 458
nonparametric statistics

IMSL_COCHRANQ_TEST, 867
IMSL_CSTRENDS, 851
IMSL_FRIEDSMANS_TEST, 862
IMSL_KTRENDS, 870
IMSL_KW_TEST, 859
IMSL_NCTRENDS, 848
IMSL_SIGNTEST, 836
IMSL_TIE_STATS, 857
IMSL_WILCOXON, 839

nonstiff IVPs, 329
nonuniform generators, 1070
normal distribution, 1088
normal populations

mean, 552
variances, 552

normal scores, 579
normality test, 884
not-a-knot condition, 200, 215, 226
numerical ranking, 579
Nyquest phenomenon, 380
IDL Analyst Reference Guide Index

1208
O
observations, number of, 547
Ohm, 1155
one sample tests - nonparametric statistics

IMSL_CSTRENDS, 851
IMSL_NCTRENDS, 848
IMSL_SIGNTEST, 836
IMSL_TIE_STATS, 857
IMSL_WILCOXON, 839

One-at-a-Time t method, 759
one-way classification model, 752
one-way frequency table, 565
optimal prediction, 800, 800
optimization

IMSL_CONSTRAINED_NLP, 465
IMSL_FMIMSL_INV, 433
IMSL_FMIN, 425
IMSL_LINPROG, 449
IMSL_MINCONGEN, 458
IMSL_QUADPROG, 454
NIMSL_LINLSQ, 441

ordinary differential equation. See differential
equations

over-determined system, 67
overflow, 17

P
parsec, 1154
partial correlations, 730
partial covariances, 730
partial differential equations, 331
partial pivoting, 82
Paterson rules, nested, 310
periodic interpolant, 201
phi, 799, 802, 900, 900, 901, 902, 902
physical constants, 1152
Pi, 1154
pico, 1156
piecewise polynomials, 192, 195, 231

Planck’s constant, 1154
PM procedure, 1176
poise, 1155
Poisson distribution, 1089, 1099
polynomial and nonlinear regression

IMSL_NONLINOPT, 695
IMSL_NONLINREGRESS, 667
IMSL_POLYPREDICT, 659
IMSL_POLYREGRESS, 651

polynomial models, 589
polynomial regression models, 659
pooled variances, 559
Powell hybrid algorithm, 418
predicted values, 624, 659, 659, 669
prediction coefficient, 804
pressure, 1155
principal components, 978
principal components method, 987, 987
principal factor method, 987, 987
probability distribution functions and inverses

IMSL_BETACDF, 1055
IMSL_BINOMIALCDF, 1058
IMSL_BINOMIALPDF, 1060
IMSL_BINORMALCDF, 1037
IMSL_CHISQCDF, 1040
IMSL_FCDF, 1045
IMSL_GAMMACDF, 1052
IMSL_HYPERGEOCDF, 1062
IMSL_NORMALCDF, 1034
IMSL_POISSONCDF, 1065
IMSL_TCDF, 1048

product moment correlation, 800
proton mass, 1154
provisional means, method of, 727
pseudorandom number generators, 876
pseudorandom numbers, 1102, 1116, 1119,

1121, 1124, 1128, 1129
pseudorandom order statistics, 1106, 1107,

1107
pseudorandom orthogonal matrix, 1111
pseudorandom sample, 1113
Index IDL Analyst Reference Guide

1209
p-values, 610, 642, 652, 803

Q
QP. See quadratic programming
QR factorization

linear least squares, 98
real matrix, 102

quadature
IMSL_FCN_DERIV, 326
IMSL_GQUAD, 322
IMSL_INTFCN, 284
IMSL_INTFCN_QMC, 319
IMSL_INTFCNHYPER, 315

quadratic programming
convex problems, 423, 455
dual algorithm, 423, 455
linearly constrained, 454

quadrature points and weights, 322
quasi-Monte Carlo, 319
quasi-Newton method, 436

R
R matrix, 593, 616, 670
R2 criterion, 610, 635, 642, 652

adjusted, 610, 632, 642, 652
radial-basis fit, 266
radial-basis functions, 195
random number generation

IMSL_CONT_TABLE, 1119
IMSL_DISCR_TABLE, 1124
IMSL_FAURE_INIT, 1137
IMSL_FAURE_NEXT_PT, 1141
IMSL_RAND_FROM_DATA, 1116
IMSL_RAND_GEN_CONT, 1121
IMSL_RAND_GEN_DISCR, 1128
IMSL_RAND_ORTH_MAT, 1111
IMSL_RAND_TABLE_2WAY, 1109
IMSL_RANDOM, 1082

IMSL_RANDOM_ARMA, 1132
IMSL_RANDOM_NPP, 1102
IMSL_RANDOM_ORDER, 1106
IMSL_RANDOM_SAMPLE, 1113
IMSL_RANDOM_TABLE, 1078
IMSL_RANDOMPT, 1073

random numbers, 1068
beta distribution, 1090, 1099
binomial distribution, 1090
cauchy distribution, 1091
chi-squared distribution, 1091
control the seed, 1073
discrete uniform distribution, 1095
exponential distribution, 1089
exponential mix distribution, 1092
gamma distribution, 1089
generate pseudorandom numbers, 1082
geometric distribution, 1092
hypergeometric distribution, 1093
IMSL_CONT_TABLE, 1119
IMSL_DISCR_TABLE, 1124
IMSL_RAND_FROM_DATA, 1116
IMSL_RAND_GEN_CONT, 1121
IMSL_RAND_GEN_DISCR, 1128
IMSL_RAND_ORTH_MAT, 1111
IMSL_RAND_TABLE_2WAY, 1109
IMSL_RANDOM, 1082
IMSL_RANDOM_NPP, 1102
IMSL_RANDOM_ORDER, 1106
IMSL_RANDOM_SAMPLE, 1113
IMSL_RANDOM_TABLE, 1078
IMSL_RANDOMPT, 1073
logarithmic distribution, 1093
multivariate normal distribution, 1085, 1090,

1100
negative binomial, 1094
normal distribution, 1088
Poisson distribution, 1089, 1099
select the form, 1073
Student’s t distribution, 1095
triangular distribution, 1095
IDL Analyst Reference Guide Index

1210
von Mises distribution, 1095
Weibull distribution, 1096

randomness test, 899
range, 546, 549
ranks, 106, 579
real beta function, 484
real complementary error function, 480
real error function, 477
real incomplete beta function, 489
rectangular matrix, 1171
regression

all best, 632
curvilinear, 651
general linear model, 602
IMSL_ALLBEST, 632
IMSL_HYPOTH_PARTIAL, 677
IMSL_HYPOTH_SCPH, 683
IMSL_HYPOTH_TEST, 688
IMSL_LIMSL_NORMREGRESS, 704
IMSL_MULTIPREDICT, 624
IMSL_NONLINOPT, 695
IMSL_NONLINREGRESS, 667
IMSL_POLYPREDICT, 659
IMSL_POLYREGRESS, 651
IMSL_REGRESSORS, 602
IMSL_STEPWISE, 641
MULTIGRESS, 609
multiple linear, 609
nonlinear, 667
polynomial least-squares, 651
simple linear, 588
stepwise, 641

regression coefficients, 612, 632, 644, 667
regression models, 588, 624
regression simple linear, 609
regressors, 602
residuals, 626, 661, 670

deleted, 597, 626, 661
jackknife, 597
standardized, 597, 626, 661

resolvable frequencies, 380

RM procedure, 1178
root of a system, 408
root of a system of equations

IMSL_ZEROSYS, 418
Runge-Kutta-Verner method

fifth-order, 330, 333
sixth-order, 330, 333

Rydberg’s constant, 1154

S
sample covariance, 980
Satterthwaite’s procedure, 562
Savage scores, 581
scaling results of IMSL_RANDOM, 1099
scattered data

approximation, 195
interpolation, 195

scattered data interpolation
IMSL_RADBE, 277
IMSL_RADBF, 266
IMSL_SCAT2DINTERP, 262

Scheffé confidence intervals, 625
Scheffé method, 758
shape-preserving cubic splines, 205
Shapiro-Wilk W test, 884, 885
shuffled generators, 1069
shuffling, 1073
sign test, 836
simple summary statistics

IMSL_NORM1SAMP, 552
IMSL_NORM2SAMP, 557
IMSL_SIMPLESTAT, 546

simplex algorithm, 449
sine Fresnel integrals, 525
single value decomposition (SVD), 67, 106
singularity, 68
skewness, coefficient of, 546, 549
slug, 1154
smooth data

cubic spline interpolant, 259
Index IDL Analyst Reference Guide

1211
error detection, 258
smoothed data, 258
smoothing parameter, 254
smoothing spline, 255
Snedecor’s F random variable, 1046
Somers’ D

for columns, 800
for rows, 800

sorting, 572, 575
key, 574

sparse matrices
band storage format, 73
Cholesky factorization of symmetric positive

definite, 156
compressed sparse column format, 76
conjugate gradient method, 164
direct methods, 69
general band system linear equation solution,

136
IMSL_SP_BDFAC, 140
IMSL_SP_BDPDFAC, 156
IMSL_SP_BDPDSOL, 153
IMSL_SP_BDSOL, 136
IMSL_SP_CG, 164
IMSL_SP_GMRES, 160
IMSL_SP_LUFAC, 129
IMSL_SP_LUSOL, 123
IMSL_SP_MVMUL, 168
IMSL_SP_PDFAC, 149
IMSL_SP_PDSOL, 144
introduction, 69
iterative methods, 70
linear equation solution, 123
LU factorization of, 129
LU factorization of band storage matrix, 140
matrix storage modes, 70
matrix-vector product of sparse matrix and

dense vector, 168
positive definite system, 149
restarted generalized minimum residual

method, 160

sparse coordinate storage format, 70
storage formats, choosing, 75
symmetric positive definite system, 153
symmetric positive definite system solution,

144
utilities, 70

Spearman rank correlation, 800
special functions, 473

IMSL_AIRY_AI, 527
IMSL_AIRY_BI, 529
IMSL_BESSI, 498
IMSL_BESSI_EXP, 507
IMSL_BESSJ, 500
IMSL_BESSK, 503
IMSL_BESSK_EXP, 509
IMSL_BESSY, 505
IMSL_BETA, 484
IMSL_BETAI, 489
IMSL_ELE, 513
IMSL_ELK, 511
IMSL_ELRC, 521
IMSL_ELRD, 517
IMSL_ELRF, 515
IMSL_ELRJ, 519
IMSL_ERF, 477
IMSL_ERFC, 480
IMSL_FRESNEL_COSINE, 523
IMSL_FRESNEL_SINE, 525
IMSL_GAMMAI, 495
IMSL_KELVIN_BEI0, 534
IMSL_KELVIN_BER0, 532
IMSL_KELVIN_KEI0, 538
IMSL_KELVIN_KER0, 536
IMSL_LNBETA, 487
IMSL_LNGAMMA, 491

speed of light, 1153
splines, 193

approximation
smooth cubic, 254

cubic, 193
evaluation, 224
IDL Analyst Reference Guide Index

1212
integration
one- or two-dimensional, 230

interpolation
knot-sequence, 219
one-dimensional, 215
two-dimensional, 213

least squares
constrained, 248
one- or two-dimensional, 238

smoothing, 255
structures for, 195
subspace, 239
tensor-product, 194, 211

standard atmospheric pressure, 1153
standard deviation, 546, 553, 554, 559, 610,

642, 652
exact, 799, 900, 900, 901, 902, 902

standard errors, 803
standard errors, for characteristic roots, 979
standard gravity, 1154
standard volume ideal gas, 1154
statampere, 1155
statcoulomb, 1155
state vector, 959
statespace model, 959
stationary IMSL_ARMA, 933
statistics in the two-way contingency table

IMSL_CONTINGENCY, 798
IMSL_EXACT_ENUM, 811
IMSL_EXACT_NETWORK, 814

Stefan-Boltzman, 1154
stepwise selection, 641
stiff IVPs, 329
stochastic processes

IMSL_RANDOM_ARMA, 1132
stoke, 1155
Stuart’s tc, 800
Student’s t distribution, 1095
Student’s t distribution function, 1048
Student-Newman-Keuls multiple-comparisons

test, 771

subspace, 234
sum of squares

for error, 610, 642, 652
for the model, 610, 642, 652
sequential, 615, 653
total corrected, 610, 642, 652

summary statistics, 594, 609
sum-of-squares and crossproducts matrix, 725
sums-of-squares

within-cluster, 974
survival analysis

IMSL_SURVIVAL_GLM, 1008
symmetric positive definite system, 91

T
t test statistic, 554, 560, 561
tabular data, 281
tabulate, sort, and rank

IMSL_FREQTABLE, 565
IMSL_RANKS, 579
IMSL_SORTDATA, 572

temperature, 1155
tensor-product splines, 194, 211
tera, 1156
Tesla, 1155
test for linear trend, 806
test for normality, 884
tests for randomness, 876

IMSL_RANDOMNESS_TEST, 899
tie statistics, 857
time, 1154
time constraints, 330
time series

autoregressive parameters, 915
backward differences, 932
Box-Jenkins forecasts, 924
difference, 931
moving average parameters, 915

time series and forecasting
IMSL_ARMA, 915
Index IDL Analyst Reference Guide

1213
IMSL_AUTOCORRELATION, 942
IMSL_BOXCOXTRANS, 937
IMSL_DIFFERENCE, 931
IMSL_GARCH, 954
IMSL_KALMAN, 959
IMSL_LACK_OF_FIT, 950
IMSL_PARTIAL_AC, 947

trademarks, 2
transformations, 599
transforms

IMSL_CONVOL1D, 390
IMSL_CORR1D, 395
IMSL_FFTCOMP, 377
IMSL_FFTINIT, 387
IMSL_LAPLACE_INV, 398

triangular distribution, 1095
triple point of water, 1154
trust region, 672
Tucker reliability coefficient, 986
Tukey method, 757
Tukey normal scores, 583
Tukey-Kramer method, 757
two or more samples tests - nonparametric sta-

tistics
IMSL_COCHRANQ_TEST, 867
IMSL_FRIEDMANS_TEST, 862
IMSL_KTRENDS, 870
IMSL_KW_TEST, 859

two-dimensional iterated integrals, 312, 313

U
uncertainty

coefficients, 800, 806
measures of, 804

unconstrained minimization, 433
IMSL_FMIN, 425
NIMSL_LINLSQ, 441

unit circle, 1086
univariate and bivariate quadature

IMSL_INTFCN, 284

univariate quadrature, 27, 283
univariate statistics, 546, 819, 1008, 1008
utilities

IMSL_CONSTANT, 1152
IMSL_DATETODAYS, 1150
IMSL_DAYSTODATE, 1148
IMSL_MACHINE, 1158
IMSL_MATRIX_NORM, 1171
IMSL_NORM, 1168

utility functions, 1145

V
Van der Waerden normal scores, 583
variable selection, 589, 632, 641

IMSL_ALLBEST, 632
IMSL_STEPWISE, 641

variables
classification, 602
continuous, 602
dummy, 603
indicator, 603

variance-covariance matrix, 724, 1083
variances, 546, 549, 552, 724

asymptotic, 980
for two normal populations, 557
inferences about, 562
inflation factor, 611
lower confidence limit, 547
normal population, 552
upper confidence limit, 547

variation, coefficient of, 546, 550, 610, 642,
652

vector norms, 1168
1-norm, 1169, 1169
Euclidean, 1169
infinity, 1169

viscosity, 1155
volt, 1155
voltage, 1155
volume, 1155
IDL Analyst Reference Guide Index

1214
von Mises distribution, 1095

W
water, triple point, 1154
watt, 1155
Weber, 1155
Weibull distribution, 1096
weighted least-squares fit, 594, 615, 618
Wilcoxon rank sum test, 839
Wilson-Hilferty approximation, 1041
work, 1155

Z
zeroes of a polynomial

IMSL_ZEROPOLY, 410
zeros of a function, 408

IMSL_ZEROFCN, 413
Muller’s method, 413

zeros of a polynomial, 408
Jenkins-Traub three-stage algorithm, 410

zeros of a system, 418
Index IDL Analyst Reference Guide

	IDL Analyst Reference Guide
	Contents
	Preface
	About IDL Analyst
	Using the IDL Analyst Documentation
	Error Handling

	Functional List of IMSL Routines
	Linear Systems
	Eigensystem Analysis
	Interpolation and Approximation
	Quadrature
	Differential Equations
	Transforms
	Nonlinear Equations
	Optimization
	Special Functions
	Basic Statistics and Random Number Generators
	Regression
	Correlation and Covariance
	Analysis of Variance
	Categorical and Discrete Data Analysis
	Nonparametric Statistics
	Goodness of Fit
	Time Series and Forecasting
	Multivariate Analysis
	Survival Analysis
	Probability Distribution Functions and Inverses
	Random Number Generation
	Math and Statistics Utilities

	Alphabetical Listing of IMSL Routines
	Part I: Mathematics Routines
	Linear Systems
	Overview: Linear Systems
	Linear Systems Routines
	IMSL_INV
	IMSL_LUSOL
	IMSL_LUFAC
	IMSL_CHSOL
	IMSL_CHFAC
	IMSL_QRSOL
	IMSL_QRFAC
	IMSL_SVDCOMP
	IMSL_CHNNDSOL
	IMSL_CHNNDFAC
	IMSL_LINLSQ
	IMSL_SP_LUSOL
	IMSL_SP_LUFAC
	IMSL_SP_BDSOL
	IMSL_SP_BDFAC
	IMSL_SP_PDSOL
	IMSL_SP_PDFAC
	IMSL_SP_BDPDSOL
	IMSL_SP_BDPDFAC
	IMSL_SP_GMRES
	IMSL_SP_CG
	IMSL_SP_MVMUL

	Eigensystem Analysis
	Overview: Eigensystem Analysis
	Eigensystem Routines
	IMSL_EIG
	IMSL_EIGSYMGEN
	IMSL_GENEIG

	Interpolation and Approximation
	Overview: Interpolation and Approximation
	Interpolation and Approximation Routines
	IMSL_CSINTERP
	IMSL_CSSHAPE
	IMSL_BSINTERP
	IMSL_BSKNOTS
	IMSL_SPVALUE
	IMSL_SPINTEG
	IMSL_FCNLSQ
	IMSL_BSLSQ
	IMSL_CONLSQ
	IMSL_CSSMOOTH
	IMSL_SMOOTHDATA1D
	IMSL_SCAT2DINTERP
	IMSL_RADBF
	IMSL_RADBE

	Quadrature
	Overview: Quadrature
	Quadrature Routines
	IMSL_INTFCN
	IMSL_INTFCN: Functions Based on Gauss-Kronrod Rules
	IMSL_INTFCN: Functions with Singular Points Given
	IMSL_INTFCN: Functions with Algebraic-logarithmic Singularities
	IMSL_INTFCN: Functions Over an Infinite or Semi-infinite Interval
	IMSL_INTFCN: Functions Containing a Sine or Cosine Factor
	IMSL_INTFCN: Computation of Fourier Sine or Cosine Transforms
	IMSL_INTFCN: Integrals in the Cauchy Principle Value Sense
	IMSL_INTFCN: Smooth Functions Using Nonadaptive Rule
	IMSL_INTFCN: Two-dimensional Iterated Integrals

	IMSL_INTFCNHYPER
	IMSL_INTFCN_QMC
	IMSL_GQUAD
	IMSL_FCN_DERIV

	Differential Equations
	Overview: Differential Equations
	Differential Equations Routines
	IMSL_ODE
	IMSL_PDE_MOL
	IMSL_POISSON2D

	Transforms
	Overview: Transforms
	Transforms Routines
	IMSL_FFTCOMP
	IMSL_FFTINIT
	IMSL_CONVOL1D
	IMSL_CORR1D
	IMSL_LAPLACE_INV

	Nonlinear Equations
	Overview: Nonlinear Equations
	Nonlinear Equations Routines
	IMSL_ZEROPOLY
	IMSL_ZEROFCN
	IMSL_ZEROSYS

	Optimization
	Overview: Optimization
	Optimization Routines
	IMSL_FMIN
	IMSL_FMINV
	IMSL_NLINLSQ
	IMSL_LINPROG
	IMSL_QUADPROG
	IMSL_MINCONGEN
	IMSL_CONSTRAINED_NLP

	Special Functions
	Overview: Special Functions
	Special Functions Routines
	IMSL_ERF
	IMSL_ERFC
	IMSL_BETA
	IMSL_LNBETA
	IMSL_BETAI
	IMSL_LNGAMMA
	IMSL_GAMMA_ADV
	IMSL_GAMMAI
	IMSL_BESSI
	IMSL_BESSJ
	IMSL_BESSK
	IMSL_BESSY
	IMSL_BESSI_EXP
	IMSL_BESSK_EXP
	IMSL_ELK
	IMSL_ELE
	IMSL_ELRF
	IMSL_ELRD
	IMSL_ELRJ
	IMSL_ELRC
	IMSL_FRESNEL_COSINE
	IMSL_FRESNEL_SINE
	IMSL_AIRY_AI
	IMSL_AIRY_BI
	IMSL_KELVIN_BER0
	IMSL_KELVIN_BEI0
	IMSL_KELVIN_KER0
	IMSL_KELVIN_KEI0

	Part II: Statistics Routines
	Basic Statistics
	Overview: Basic Statistics
	Basic Statistics Routines
	IMSL_SIMPLESTAT
	IMSL_NORM1SAMP
	IMSL_NORM2SAMP
	IMSL_FREQTABLE
	IMSL_SORTDATA
	IMSL_RANKS

	Regression
	Overview: Regression
	Regression Routines
	IMSL_REGRESSORS
	IMSL_MULTIREGRESS
	IMSL_MULTIPREDICT
	IMSL_ALLBEST
	IMSL_STEPWISE
	IMSL_POLYREGRESS
	IMSL_POLYPREDICT
	IMSL_NONLINREGRESS
	IMSL_HYPOTH_PARTIAL
	IMSL_HYPOTH_SCPH
	IMSL_HYPOTH_TEST
	IMSL_NONLINOPT
	IMSL_LNORMREGRESS

	Correlation and Covariance
	Overview: Correlation and Covariance
	Correlation and Covariance Routines
	IMSL_COVARIANCES
	IMSL_PARTIAL_COV
	IMSL_POOLED_COV
	IMSL_ROBUST_COV

	Analysis of Variance
	Overview: Analysis of Variance
	Analysis of Variance Routines
	IMSL_ANOVA1
	IMSL_ANOVAFACT
	IMSL_MULTICOMP
	IMSL_ANOVANESTED
	IMSL_ANOVABALANCED

	Categorical and Discrete Data Analysis
	Overview: Categorical and Discrete Data Analysis
	Categorical and Discrete Data Analysis Routines
	IMSL_CONTINGENCY
	IMSL_EXACT_ENUM
	IMSL_EXACT_NETWORK
	IMSL_CAT_GLM

	Nonparametric Statistics
	Overview
	Nonparametric Statistics Routines
	IMSL_SIGNTEST
	IMSL_WILCOXON
	IMSL_NCTRENDS
	IMSL_CSTRENDS
	IMSL_TIE_STATS
	IMSL_KW_TEST
	IMSL_FRIEDMANS_TEST
	IMSL_COCHRANQ
	IMSL_KTRENDS

	Goodness of Fit
	Overview: Goodness of Fit
	Goodness of Fit Routines
	IMSL_CHISQTEST
	IMSL_NORMALITY
	IMSL_KOLMOGOROV1
	IMSL_KOLMOGOROV2
	IMSL_MVAR_NORMALITY
	IMSL_RANDOMNESS_TEST

	Time Series and Forecasting
	Overview: Time Series and Forecasting
	Time Series and Forecasting Routines
	IMSL_ARMA
	IMSL_DIFFERENCE
	IMSL_BOXCOXTRANS
	IMSL_AUTOCORRELATION
	IMSL_PARTIAL_AC
	IMSL_LACK_OF_FIT
	IMSL_GARCH
	IMSL_KALMAN

	Multivariate Analysis
	Overview: Multivariate Analysis
	Multivariate Analysis Routines
	IMSL_K_MEANS
	IMSL_PRINC_COMP
	IMSL_FACTOR_ANALYSIS
	IMSL_DISCR_ANALYSIS

	Survival Analysis
	Overview: Survival Analysis
	Survival Analysis Routines
	IMSL_SURVIVAL_GLM

	Probability Distribution Functions and Inverses
	Overview: Probability Distribution Functions and Inverses
	Probability Distribution Functions and Inverses Routines
	IMSL_NORMALCDF
	IMSL_BINORMALCDF
	IMSL_CHISQCDF
	IMSL_FCDF
	IMSL_TCDF
	IMSL_GAMMACDF
	IMSL_BETACDF
	IMSL_BINOMIALCDF
	IMSL_BINOMIALPDF
	IMSL_HYPERGEOCDF
	IMSL_POISSONCDF

	Random Number Generation
	Overview: Random Number Generation
	Random Number Generation Routines
	IMSL_RANDOMOPT
	IMSL_RANDOM_TABLE
	IMSL_RANDOM
	IMSL_RANDOM_NPP
	IMSL_RANDOM_ORDER
	IMSL_RAND_TABLE_2WAY
	IMSL_RAND_ORTH_MAT
	IMSL_RANDOM_SAMPLE
	IMSL_RAND_FROM_DATA
	IMSL_CONT_TABLE
	IMSL_RAND_GEN_CONT
	IMSL_DISCR_TABLE
	IMSL_RAND_GEN_DISCR
	IMSL_RANDOM_ARMA
	IMSL_FAURE_INIT
	IMSL_FAURE_NEXT_PT

	Math and Statistics Utilities
	Overview: Math and Statistics Utilities
	Math and Statistics Utilities Routines
	IMSL_DAYSTODATE
	IMSL_DATETODAYS
	IMSL_CONSTANT
	IMSL_MACHINE
	IMSL_STATDATA
	IMSL_BINOMIALCOEF
	IMSL_NORM
	IMSL_MATRIX_NORM
	PM
	RM

	References
	Index

