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14 Chapter 1: Preface
About IDL Analyst

IDL Analyst combines the power of IDL with the IMSL C Numerical Library 
provided by Visual Numerics, Inc. The addition of the IMSL library gives IDL users 
access to an extensive and powerful set of mathematical and statistical analysis 
routines via the standard IDL programmer’s interface.

If you have used the IMSL libraries when creating C or FORTRAN applications, 
much of the functionality in IDL Analyst will be familiar. But because the IMSL 
functionality is exposed via an IDL interface, no linking or compiling is required. Use 
the IMSL routines as you would any other IDL function or procedure.

IDL Analyst provides a subset of the full IMSL C Numerical Library version 5. See 
Chapter 2, “Functional List of IMSL Routines” for a complete listing of the included 
routines.

Licensing

IDL Analyst is a separately licensed IDL module. IDL applications that incorporate 
IMSL functionality will not function if the IDL Analyst license is not present; this 
means that if you distribute an application that uses IMSL functionality, the end-users 
of your application must also have an IDL Analyst license. For information on 
runtime licensing of IMSL functionality, contact your ITT Visual Information 
Solutions sales representative.
About IDL Analyst IDL Analyst Reference Guide
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Using the IDL Analyst Documentation

The chapters of the IDL Analyst Reference Guide group routines with similar 
computational or analytical capabilities. To locate the appropriate function for a given 
problem, refer to Chapter 2, “Functional List of IMSL Routines”. If you know the 
name of the routine you wish to use, consult Chapter 3, “Alphabetical Listing of 
IMSL Routines” to locate the routine’s documentation.

Each chapter of the IDL Analyst Reference Guide provides an overview of the 
functionality described in that chapter, along with information on the types of 
problems addressed by that functionality.

Rows versus Columns

The IDL Analyst Reference Guide uses the standard linear algebraic convention for 
two-dimensional arrays: “row” refers to the first index of the array and “column” 
refers to the second. So for a 2D array A, A(i,j) is the element in row i and column j. 
The PM procedure makes this easy to visualize: 

a = INTARR( 4, 8 ) & a(2,5) = 1 & PM, a

IDL Prints:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0

Note that this is the opposite of the standard image processing convention used in 
most IDL documentation, where “column” refers to the first index of the array and 
“row” refers to the second. Using the standard IDL PRINT procedure, the above 
array would look like this:

a = INTARR( 4, 8 ) & a(2,5) = 1 & PRINT, a

IDL Prints:

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
IDL Analyst Reference Guide Using the IDL Analyst Documentation
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For additional information, see “Columns, Rows, and Array Majority” (Chapter 15, 
Building IDL Applications).

References

References are listed alphabetically by author in Appendix A, “References”.
Using the IDL Analyst Documentation IDL Analyst Reference Guide
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Error Handling

IDL Analyst uses IDL’s built-in error handling mechanisms for most errors. This 
section describes areas in which IDL Analyst may provide a greater level of control 
than IDL itself.

Underflow and Overflow

In most cases, IDL Analyst routines are written so that computations are not affected 
by underflow, provided the system (hardware or software) replaces an underflow with 
the value zero. Normally, system error messages indicating underflow can be ignored. 

IDL Analyst routines also are written to avoid overflow. A program that produces 
system error messages indicating overflow should be examined for programming 
errors such as incorrect input data, mismatch of parameter types, or improper 
dimensions. 

In many cases, the documentation for a function points out common pitfalls that can 
lead to failure of the algorithm.

Missing Values

Some IDL Analyst routines allow input data to contain missing values. These 
routines recognize as a missing value the special floating-point value referred to as 
“Not a Number” or NaN. The actual value varies on different computers, but it can be 
obtained by reference to the IMSL_MACHINE function.

The manner in which missing values are treated depends on the individual function as 
described in the documentation for that function.

For more information on special floating-point values (including NaN), see “Math 
Errors” (Chapter 8, Building IDL Applications).

Errors in User Code

IDL Analyst functions attempt to detect user errors and handle them in a way that 
provides as much information to the user as possible. In addition to the basic IDL 
error-handling facility, five levels of Informational Error severity are recognized. The 
error levels are described in Table 1-1.
IDL Analyst Reference Guide Error Handling
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Error Levels and Default Actions

The IMSL numerical library categorizes library errors with one of five severity levels:

Although IDL Analyst does not allow users to directly manipulate how these errors 
are interpreted internally, you can control which errors are printed to the IDL output 
log. All informational error messages are printed by default. Setting the system 
variable !QUIET to a nonzero value suppresses output of Notes, Alerts, and 
Warnings. Fatal and Terminal errors always halt execution of the IDL program and 
change the value of !ERROR_STATE.

Type Meaning

Note A note is issued to indicate the possibility of a trivial error or simply 
to provide information about the computations. A note does not 
update !ERROR_STATE.

Alert An alert indicates that the user should be advised about conditions 
that arise during computation. Underflow errors are generally 
categorized as alerts. An alert does not update !ERROR_STATE.

Warning A warning indicates the existence of a condition that may require 
corrective action by the user or calling routine. A warning error may 
be issued because the results are accurate to only a few decimal 
places, because some of the output may be erroneous but most of the 
output is correct, or because some assumptions underlying the 
analysis technique are violated. Often no corrective action is 
necessary and the condition can be ignored. A warning does not 
update !ERROR_STATE.

Fatal A fatal error indicates the existence of a condition that may be 
serious. In most cases, the user or calling routine must take corrective 
action to recover. A fatal error updates !ERROR_STATE.

Terminal A terminal error is serious. It usually is the result of an incorrect 
specification, such as specifying a negative number as the number of 
equations. Terminal errors may also be caused by various 
programming errors that are impossible to diagnose correctly within 
the IMSL library. If a terminal error occurs, first check that the 
arguments passed to the routine are in the correct order and have the 
correct data types. A terminal error updates !ERROR_STATE.

Table 1-1: Error levels generated by the IMSL numerical library
Error Handling IDL Analyst Reference Guide
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Handling Errors in IMSL Routines

When a fatal or terminal error occurs in an IMSL routine, the value of 
!ERROR_STATE is updated to reflect the fact that the error occurred. If you have 
implemented a CATCH block to handle errors in your own routine, you can use the 
value of !ERROR_STATE to determine which fatal or terminal error occurred in the 
IMSL library.

To determine whether the most recent error was generated by the IMSL library, 
inspect the NAME field of the !ERROR_STATE structure. Errors generated by the 
IMSL library will populate the NAME field with the string:

IDL_M_IMSL_LIBRARYERROR

If the error was generated in the IMSL library, inspect the MSG field of the 
!ERROR_STATE structure for information on which specific fatal or terminal error 
occurred. For example, attempting to invert a matrix in which every element is zero 
will generate a fatal error with the following message:

IMSL Error: IMSL_INV: Fatal error: MATH_SINGULAR_MATRIX: The input 
matrix is singular.

You could, for example, use the following code fragment to test for this particular 
error:

IF (STRPOS(!error_state.msg,'MATH_SINGULAR_MATRIX') GE 0) THEN $
BEGIN
Error handling code here...

ENDIF
IDL Analyst Reference Guide Error Handling
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Chapter 2

Functional List of 
IMSL Routines
This chapter contains a list of IMSL routines included in the IDL Analyst package, 
categorized by functional categories:

• “Linear Systems” on page 23

• “Eigensystem Analysis” on page 25

• “Interpolation and Approximation” on page 26

• “Quadrature” on page 27

• “Differential Equations” on page 28

• “Transforms” on page 29

• “Nonlinear Equations” on page 30

• “Optimization” on page 31

• “Special Functions” on page 32

• “Basic Statistics and Random Number Generators” on page 34

• “Regression” on page 35
IDL Analyst Reference Guide 21
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• “Correlation and Covariance” on page 37

• “Analysis of Variance” on page 38

• “Categorical and Discrete Data Analysis” on page 39

• “Nonparametric Statistics” on page 40

• “Goodness of Fit” on page 41

• “Time Series and Forecasting” on page 42

• “Multivariate Analysis” on page 43

• “Survival Analysis” on page 44

• “Probability Distribution Functions and Inverses” on page 45

• “Random Number Generation” on page 46

• “Math and Statistics Utilities” on page 48
IDL Analyst Reference Guide
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Linear Systems

See Chapter 4, “Linear Systems” or select a link below.

Matrix Inversion

IMSL_INV—General matrix inversion.

Linear Equations with Full Matrices

IMSL_LUSOL—Systems involving general matrices.

IMSL_LUFAC—LU factorization of general matrices.

IMSL_CHSOL—Systems involving symmetric positive definite matrices. 

IMSL_CHFAC—Factorization of symmetric positive definite matrices. 

Linear Least Squares with Full Matrices

IMSL_QRSOL—Least-squares solution. 

IMSL_QRFAC—Least-squares factorization. 

IMSL_SVDCOMP—Singular Value Decomposition (SVD) and generalized inverse. 

IMSL_CHNNDSOL—Solve and generalized inverse for positive semidefinite 
matrices. 

IMSL_CHNNDFAC—Factor and generalized inverse for positive semidefinite 
matrices. 

IMSL_LINLSQ—Linear constraints.

Sparse Matrices

IMSL_SP_LUSOL—Solve a sparse system of linear equations Ax = b.

IMSL_SP_LUFAC—Compute an LU factorization of a sparse matrix stored in either 
coordinate format or CSC format.

IMSL_SP_BDSOL—Solve a general band system of linear equations Ax = b.

IMSL_SP_BDFAC—Compute the LU factorization of a matrix stored in band 
storage mode.
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IMSL_SP_PDSOL—Solve a sparse symmetric positive definite system of linear 
equations Ax = b.

IMSL_SP_PDFAC—Compute a factorization of a sparse symmetric positive definite 
system of linear equations Ax = b.

IMSL_SP_BDPDSOL—Solve a symmetric positive definite system of linear 
equations Ax = b in band symmetric storage mode.

IMSL_SP_BDPDFAC—Compute the RTR Cholesky factorization of symmetric 
positive definite matrix, A, in band symmetric storage mode.

IMSL_SP_GMRES—Solve a linear system Ax = b using the restarted generalized 
minimum residual (GMRES) method.

IMSL_SP_CG—Solve a real symmetric definite linear system using a conjugate 
gradient method.

IMSL_SP_MVMUL—Compute a matrix-vector product involving a sparse matrix 
and a dense vector.
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Eigensystem Analysis

See Chapter 5, “Eigensystem Analysis” or select a link below.

Linear Eigensystem Problems

IMSL_EIG—General and symmetric matrices.

Generalized Eigensystem Problems

IMSL_EIGSYMGEN—Real symmetric matrices and B positive definite.

IMSL_GENEIG—General eigenexpansion of Ax=λBx. 
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Interpolation and Approximation

See Chapter 6, “Interpolation and Approximation” or select a link below.

Cubic Spline Interpolation

IMSL_CSINTERP—Derivative end conditions.

IMSL_CSSHAPE—Shape preserving. 

B-spline Interpolation

IMSL_BSINTERP—One-dimensional and two-dimensional interpolation. 

IMSL_BSKNOTS—Knot sequence given interpolation data. 

B-spline and Cubic Spline Evaluation and Integration

IMSL_SPVALUE—Evaluation and differentiation. 

IMSL_SPINTEG—Integration. 

Least-squares Approximation and Smoothing

IMSL_FCNLSQ—General functions.

IMSL_BSLSQ—Splines with fixed knots. 

IMSL_CONLSQ—Constrained spline fit. 

IMSL_CSSMOOTH—Cubic-smoothing spline. 

IMSL_SMOOTHDATA1D—Smooth one-dimensional data by error detection.

Scattered Data Interpolation

IMSL_SCAT2DINTERP—Akima’s surface-fitting method. 

IMSL_RADBF—Computes a fit using radial-basis functions. 

IMSL_RADBE—Evaluates a radial-basis fit. 
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Quadrature

See Chapter 7, “Quadrature” or select a link below.

Univariate and Bivariate Quadrature

IMSL_INTFCN—Integration of a user-defined univariate or bivariate function. 

Arbitrary Dimension Quadrature

IMSL_INTFCNHYPER—Iterated integral on a hyper-rectangle. 

IMSL_INTFCN_QMC—Intergrates a function on a hyper-rectangle using a Quasi 
Monte Carlo method.

Gauss Quadrature

IMSL_GQUAD—Gauss quadrature formulas. 

Differentiation

IMSL_FCN_DERIV—First, second, or third derivative of a function.
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Differential Equations

See Chapter 8, “Differential Equations” or select a link below.

IMSL_ODE—Adams-Gear or Runge-Kutta method.

IMSL_PDE_MOL—Solves a system of partial differential equations using the 
method of lines. 

IMSL_POISSON2D—Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle. 
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Transforms

See Chapter 9, “Transforms” or select a link below.

IMSL_FFTCOMP—Real or complex FFT.

IMSL_FFTINIT—Real or complex FFT initialization.

IMSL_CONVOL1D—Compute discrete convolution.

IMSL_CORR1D—Compute discrete correlation.

IMSL_LAPLACE_INV—Approximate inverse Laplace transform of a complex 
function.
IDL Analyst Reference Guide Transforms



30 Chapter 2: Functional List of IMSL Routines
Nonlinear Equations

See Chapter 10, “Nonlinear Equations” or select a link below.

Zeros of a Polynomial

IMSL_ZEROPOLY—Real or complex coefficients.

Zeros of a Function

IMSL_ZEROFCN—Real zeros of a function.

Root of a System of Equations

IMSL_ZEROSYS—Powell’s hybrid method.
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Optimization

See Chapter 11, “Optimization” or select a link below.

Unconstrained Minimization

IMSL_FMIN—(Univariate Function) Using function and possibly first derivative 
values. 

IMSL_FMINV—(Multivariate Function) Using quasi-Newton method. 

IMSL_NLINLSQ—(Nonlinear Least Squares) Using Levenberg-Marquardt 
algorithm. 

Linearly Constrained Minimization

IMSL_LINPROG—Dense linear programming. 

IMSL_QUADPROG—Quadratic programming. 

Nonlinearly Constrained Minimization

IMSL_MINCONGEN—Minimize a general objective function.

IMSL_CONSTRAINED_NLP—Using a sequential equality constrained quadratic 
programming method.
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Special Functions

See Chapter 12, “Special Functions” or select a link below.

Error Functions 

IMSL_ERF—Error function. 

IMSL_ERFC—Complementary error function. 

IMSL_BETA—Beta function. 

IMSL_LNBETA—Logarithmic beta function. 

IMSL_BETAI—Incomplete beta function. 

Gamma Functions

IMSL_LNGAMMA—Logarithmic gamma function. 

IMSL_GAMMA_ADV—Real gamma function. 

IMSL_GAMMAI—Incomplete gamma function. 

Bessel Functions with Real Order and Complex 
Argument

IMSL_BESSI—Modified Bessel function of the first kind. 

IMSL_BESSJ—Bessel function of the first kind. 

IMSL_BESSK—Modified Bessel function of the second kind. 

IMSL_BESSY—Bessel function of the second kind.

IMSL_BESSI_EXP—Bessel function e-|x|I0(x), Bessel function e-|x|I1(x).

IMSL_BESSK_EXP—Bessel function exK0(x), Bessel function exK1(x).

Elliptic Integrals

IMSL_ELK—Complete elliptic integral of the first kind.

IMSL_ELE—Complete elliptic integral of the second kind.

IMSL_ELRF—Carlson's elliptic integral of the first kind.

IMSL_ELRD—Carlson's elliptic integral of the second kind.
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IMSL_ELRJ—Carlson's elliptic integral of the third kind.

IMSL_ELRC—Special case of Carlson's elliptic integral.

Fresnel Integrals

IMSL_FRESNEL_COSINE—Cosine Fresnel integral.

IMSL_FRESNEL_SINE—Sine Fresnel integral.

Airy Functions

IMSL_AIRY_AI—Airy function, and derivative of the Airy function.

IMSL_AIRY_BI—Airy function of the second find, and derivative of the Airy 
function of the second kind.

Kelvin Functions

IMSL_KELVIN_BER0—Kelvin function ber of the first kind, order 0, and derivative 
of the Kelvin function ber.

IMSL_KELVIN_BEI0—Kelvin function bei of the first kind, order 0, and derivative 
of the Kelvin function bei.

IMSL_KELVIN_KER0—Kelvin function ker of the second kind, order 0, and 
derivative of the Kelvin function ker.

IMSL_KELVIN_KEI0—Kelvin function kei of the second kind, order 0 and 
derivative of the Kelvin function kei.
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Basic Statistics and Random Number 
Generators

See Chapter 13, “Basic Statistics” or select a link below.

Simple Summary Statistics

IMSL_SIMPLESTAT—Univariate summary statistics. 

IMSL_NORM1SAMP—Mean and variance inference for a single normal population.

IMSL_NORM2SAMP—Inferences for two normal populations. 

Tabulate, Sort, and Rank

IMSL_FREQTABLE—Tallies observations into a one-way frequency table.

IMSL_SORTDATA—Sorts data with options to tally cases into a multiway frequency 
table. 

IMSL_RANKS—Ranks, normal scores, or exponential scores. 
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Regression

See Chapter 14, “Regression” or select a link below.

Multiple Linear Regression

IMSL_REGRESSORS—Generates regressors for a general linear model. 

IMSL_MULTIREGRESS—Fits a multiple linear regression model and optionally 
produces summary statistics for a regression model. 

IMSL_MULTIPREDICT—Computes predicted values, confidence intervals, and 
diagnostics. 

Variable Selection

IMSL_ALLBEST—All best regressions. 

IMSL_STEPWISE—Stepwise regression. 

Polynomial and Nonlinear Regression

IMSL_POLYREGRESS—Fits a polynomial regression model. 

IMSL_POLYPREDICT—Computes predicted values, confidence intervals, and 
diagnostics. 

IMSL_NONLINREGRESS—Fits a nonlinear regression model. 

Multivariate Linear Regression—Statistical Inference 
and Diagnostics

IMSL_HYPOTH_PARTIAL—Construction of a completely testable hypothesis.

IMSL_HYPOTH_SCPH—Sums of cross products for a multivariate hypothesis.

IMSL_HYPOTH_TEST—Tests for the multivariate linear hypothesis.

Polynomial and Nonlinear Regression

IMSL_NONLINOPT—Fit a nonlinear regression model using Powell's algorithm.
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Alternatives to Least Squares Regression

IMSL_LNORMREGRESS—LAV, Lpnorm, and LMV criteria regression.
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Correlation and Covariance

See Chapter 15, “Correlation and Covariance” or select a link below.

IMSL_COVARIANCES—Variance-covariance or correlation matrix.

IMSL_PARTIAL_COV—Partial correlations and covariances.

IMSL_POOLED_COV—Pooled covariance matrix.

IMSL_ROBUST_COV—Robust estimate of covariance matrix.
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Analysis of Variance

See Chapter 16, “Analysis of Variance” or select a link below.

IMSL_ANOVA1—Analyzes a one-way classification model.

IMSL_ANOVAFACT—Analyzes a balanced factorial design with fixed effects. 

IMSL_MULTICOMP—Performs Student-Newman-Keuls multiple comparisons test.

IMSL_ANOVANESTED—Nested random model. 

IMSL_ANOVABALANCED—Balanced fixed, random, or mixed model. 
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Categorical and Discrete Data Analysis

See Chapter 17, “Categorical and Discrete Data Analysis” or select a link below.

Statistics in the Two-Way Contingency Table

IMSL_CONTINGENCY—Two-way contingency table analysis.

IMSL_EXACT_ENUM—Exact probabilities in a table; total enumeration. 

IMSL_EXACT_NETWORK—Exact probabilities in a table. 

Generalized Categorical Models

IMSL_CAT_GLM—Generalized linear models.
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Nonparametric Statistics

See Chapter 18, “Nonparametric Statistics” or select a link below.

One Sample Tests—Nonparametric Statistics

IMSL_SIGNTEST—Sign test. 

IMSL_WILCOXON—Wilcoxon rank sum test.

IMSL_NCTRENDS—Noehter’s test for cyclical trend. 

IMSL_CSTRENDS—Cox and Stuarts’ sign test for trends in location and dispersion. 

IMSL_TIE_STATS—Tie statistics. 

Two or More Samples Tests—Nonparametric 
Statistics

IMSL_KW_TEST—Kruskal-Wallis test. 

IMSL_FRIEDMANS_TEST—Friedman’s test. 

IMSL_COCHRANQ—Cochran's Q test. 

IMSL_KTRENDS—K-sample trends test. 
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Goodness of Fit

See Chapter 19, “Goodness of Fit” or select a link below.

General Goodness of Fit Tests

IMSL_CHISQTEST—Chi-squared goodness of fit test.

IMSL_NORMALITY—Shapiro-Wilk W test for normality. 

IMSL_KOLMOGOROV1—One-sample continuos data Kolmogorov-Smirnov. 

IMSL_KOLMOGOROV2—Two-sample continuos data Kolmogorov-Smirnov. 

IMSL_MVAR_NORMALITY—Mardia’s test for multivariate normality. 

Tests for Randomness

IMSL_RANDOMNESS_TEST—Runs test, Paris-serial test, d2 test or triplets tests.
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Time Series and Forecasting

See Chapter 20, “Time Series and Forecasting” or select a link below.

IMSL_ARMA Models

IMSL_ARMA—Computes least-squares or method-of-moments estimates of 
parameters and optionally computes forecasts and their associated probability limits.

IMSL_DIFFERENCE—Performs differencing on a time series.

IMSL_BOXCOXTRANS—Perform a Box-Cox transformation. 

IMSL_AUTOCORRELATION—Sample autocorrelation function. 

IMSL_PARTIAL_AC—Sample partial autocorrelation function. 

IMSL_LACK_OF_FIT—Lack-of-fit test based on the corrleation function. 

IMSL_GARCH—Compute estimates of the parameters of a GARCH(p,q) model. 

IMSL_KALMAN—Performs Kalman filtering and evaluates the likelihood function 
for the statespace model.
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Multivariate Analysis

See Chapter 21, “Multivariate Analysis” or select a link below.

• IMSL_K_MEANS—Performs a K-means (centroid) cluster analysis.

• IMSL_PRINC_COMP—Computes principal components.

• IMSL_FACTOR_ANALYSIS—Extracts factor-loading estimates. 

• IMSL_DISCR_ANALYSIS—Perform discriminant function analysis. 
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Survival Analysis

See Chapter 22, “Survival Analysis” or select a link below.

• IMSL_SURVIVAL_GLM—Analyzes survival data using a generalized linear 
model and estimates using various parametric modes. 
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Probability Distribution Functions and 
Inverses

See Chapter 23, “Probability Distribution Functions and Inverses” or select a link 
below.

IMSL_NORMALCDF—Normal (Gaussian) distribution function. 

IMSL_BINORMALCDF—Bivariate normal distribution. 

IMSL_CHISQCDF—Chi-squared distribution function. 

IMSL_FCDF—F distribution function. 

IMSL_TCDF—Student’s t distribution function. 

IMSL_GAMMACDF—Gamma distribution function. 

IMSL_BETACDF—Beta distribution function. 

IMSL_BINOMIALCDF—Binomial distribution function. 

IMSL_BINOMIALPDF—Binomial probability function.

IMSL_HYPERGEOCDF—Hypergeometric distribution function. 

IMSL_POISSONCDF—Poisson distribution function. 
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Random Number Generation

See Chapter 24, “Random Number Generation” or select a link below.

Random Numbers

IMSL_RANDOMOPT—Retrieves uniform (0, 1) multiplicative, congruential 
pseudorandom-number generator.

IMSL_RANDOM_TABLE—Sets or retrieves the current table used in either the 
shuffled or GFSR random number generator.

IMSL_RANDOM—Generates pseudorandom numbers. 

IMSL_RANDOM_NPP—Generates pseudorandom numbers from a nonhomo-
geneous Poisson proces.

IMSL_RANDOM_ORDER—Generates pseudorandom order statistics from a 
uniform (0, 1) distribution, or optionally from a standard normal distribution.

IMSL_RAND_TABLE_2WAY—Generates a pseudorandom two-way table.

IMSL_RAND_ORTH_MAT—Generates a pseudorandom orthogonal matrix or a 
correlation matrix.

IMSL_RANDOM_SAMPLE—Generates a simple pseudorandom sample from a 
finite population.

IMSL_RAND_FROM_DATA—Generates pseudorandom numbers from a 
multivariate distribution determined from a given sample.

IMSL_CONT_TABLE—Sets up table to generate pseudorandom numbers from a 
general continuous distribution.

IMSL_RAND_GEN_CONT—Generates pseudorandom numbers from a general 
continuous distribution.

IMSL_DISCR_TABLE—Sets up table to generate pseudorandom numbers from a 
general discrete distribution.

IMSL_RAND_GEN_DISCR—Generates pseudorandom numbers from a general 
discrete distribution using an alias method or optionally a table lookup method.

Stochastic Processes

IMSL_RANDOM_ARMA—Generate pseudorandom IMSL_ARMA process 
numbers. 
Random Number Generation IDL Analyst Reference Guide



Chapter 2: Functional List of IMSL Routines 47
Low-discrepancy Sequences

IMSL_FAURE_INIT—Initializes the structure used for computing a shuffled Faure 
sequence. 

IMSL_FAURE_NEXT_PT—Generates a shuffled Faure sequence. 
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Math and Statistics Utilities

See Chapter 25, “Math and Statistics Utilities” or select a link below.

Dates

IMSL_DAYSTODATE—Days since epoch to date.

IMSL_DATETODAYS—Date to days since epoch.

Constants and Data Sets

IMSL_CONSTANT—Natural and mathematical constants.

IMSL_MACHINE—Machine constants.

IMSL_STATDATA—Commonly analyzed data sets.

Binomial Coefficient

IMSL_BINOMIALCOEF—Evaluates the binomial coefficient.

Geometry

IMSL_NORM—Vector norms.

Matrix Norm

IMSL_MATRIX_NORM—Real coordinate matrix.

Matrix Entry and Display

PM—Formatted output of arrays using the standard linear algebraic convention: 
“row” refers to the first index of the array and “column” refers to the second.

RM—Formatted input of arrays using the standard linear algebraic convention: “row” 
refers to the first index of the array and “column” refers to the second.
Math and Statistics Utilities IDL Analyst Reference Guide



Chapter 3

Alphabetical Listing of 
IMSL Routines
This chapter contains an alphabetical listing of routines included in the IDL Analyst 
module.

“IMSL_AIRY_AI” on page 527—Evaluates the Airy function.

“IMSL_AIRY_BI” on page 529—Evaluates the Airy function of the second kind.

“IMSL_ALLBEST” on page 632—Selects the best multiple linear regression 
models.

“IMSL_ANOVA1” on page 752—Analyzes one-way classification model.

“IMSL_ANOVABALANCED” on page 783—Balanced fixed, random, or mixed 
model.

“IMSL_ANOVAFACT” on page 762—Analyzes a balanced factorial design with 
fixed effects.

“IMSL_ANOVANESTED” on page 774—Nested random mode. 
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“IMSL_ARMA” on page 915—Computes method-of-moments or least-squares 
estimates of parameters for a nonseasonal ARMA model.

“IMSL_AUTOCORRELATION” on page 942—Sample autocorrelation function.

“IMSL_BESSI” on page 498—Evaluates a modified Bessel function of the first kind 
with real order and real or complex parameters.

“IMSL_BESSI_EXP” on page 507—Evaluates the exponentially scaled modified 
Bessel function of the first kind of orders zero and one.

“IMSL_BESSJ” on page 500—Evaluates a Bessel function of the first kind with real 
order and real or complex parameters.

“IMSL_BESSK” on page 503—Evaluates a modified Bessel function of the second 
kind with real order and real or complex parameters.

“IMSL_BESSK_EXP” on page 509—Evaluates the exponentially scaled modified 
Bessel function of the third kind of orders zero and one.

“IMSL_BESSY” on page 505—Evaluates a Bessel function of the second kind with 
real order and real or complex parameters.

“IMSL_BETA” on page 484—Evaluates the real beta function B(x,y).

“IMSL_BETACDF” on page 1055—Evaluates the beta probability distribution 
function.

“IMSL_BETACDF” on page 1055—Evaluates the beta probability distribution 
function.

“IMSL_BETAI” on page 489—Evaluates the real incomplete beta function.

“IMSL_BINOMIALCDF” on page 1058—Evaluates the binomial distribution 
function.

“IMSL_BINOMIALCDF” on page 1058—Evaluates the binomial distribution 
function.

“IMSL_BINOMIALCOEF” on page 1166—Evaluate binomial coefficient.

“IMSL_BINOMIALPDF” on page 1060—Evaluates the binomial probability 
function.

“IMSL_BINORMALCDF” on page 1037—Evaluates the bivariate normal 
distribution function.

“IMSL_BINORMALCDF” on page 1037—Evaluates the bivariate normal 
distribution function.

“IMSL_BOXCOXTRANS” on page 937—Perform Box-Cox transformation
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“IMSL_BSINTERP” on page 210—Computes a one- or two-dimensional spline 
interpolant.

“IMSL_BSKNOTS” on page 219—Computes the knots for a spline interpolant.

“IMSL_BSLSQ” on page 238—Computes a one- or two-dimensional, least-squares 
spline approximation.

“IMSL_CAT_GLM” on page 819—Generalized linear models.

“IMSL_CHFAC” on page 95—Computes the Cholesky factor, L, of a real or 
complex symmetric positive definite matrix A, such that A = LLT.

“IMSL_CHISQCDF” on page 1040—Evaluates the chi-squared distribution 
function. Using a keyword, the inverse of the chi-squared distribution can be 
evaluated.

“IMSL_CHISQCDF” on page 1040—Evaluates the chi-squared distribution 
function. Using a keyword, the inverse of the chi-squared distribution can be 
evaluated.

“IMSL_CHISQTEST” on page 878—Performs a chi-squared goodness-of-fit test.

“IMSL_CHNNDFAC” on page 114—Computes the Cholesky factorization of the 
real matrix A such that A = RTR = LLT. 

“IMSL_CHNNDSOL” on page 110—Solves a real symmetric nonnegative definite 
system of linear equations Ax = b. Computes the solution to Ax = b given the 
Cholesky factor.

“IMSL_CHSOL” on page 91—Solves a symmetric positive definite system of real or 
complex linear equations Ax = b.

“IMSL_COCHRANQ” on page 867—Cochran's Q test.

“IMSL_CONLSQ” on page 248—Computes a least-squares constrained spline 
approximation.

“IMSL_CONSTANT” on page 1152—Returns the value of various mathematical and 
physical constants.

“IMSL_CONT_TABLE” on page 1119—Sets up a table to generate pseudorandom 
numbers from a general continuous distribution.

“IMSL_CONTINGENCY” on page 798—Performs a chi-squared analysis of a two-
way contingency table.

“IMSL_CONVOL1D” on page 390—Computes the discrete convolution of two one 
dimensional arrays.
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“IMSL_CORR1D” on page 395—Compute the discrete correlation of two one-
dimensional arrays.

“IMSL_COVARIANCES” on page 724—Computes the sample variance-covariance 
or correlation matrix.

“IMSL_CSINTERP” on page 200—Computes a cubic spline interpolant, specifying 
various endpoint conditions. The default interpolant satisfies the not-a-knot 
condition.

“IMSL_CSSHAPE” on page 205—Computes a shape-preserving cubic spline.

“IMSL_CSSMOOTH” on page 254—Computes a smooth cubic spline 
approximation to noisy data by using cross-validation to estimate the smoothing 
parameter or by directly choosing the smoothing parameter.

“IMSL_CSTRENDS” on page 851—Cox and Stuarts’ sign test for trends in location 
and dispersion.

“IMSL_DATETODAYS” on page 1150—Computes the number of days from 
January 1, 1900, to the given date.

“IMSL_DAYSTODATE” on page 1148—Gives the date corresponding to the 
number of days since January 1, 1900.

“IMSL_DIFFERENCE” on page 931—Differences a seasonal or nonseasonal time 
series.

“IMSL_DISCR_ANALYSIS” on page 994—Perform discriminant function analysis.

“IMSL_DISCR_TABLE” on page 1124—Sets or retrieves the current table used in 
either the shuffled or GFSR random number generator

“IMSL_DISCR_TABLE” on page 1124—Sets up a table to generate pseudorandom 
numbers from a general discrete distribution.

“IMSL_EIG” on page 178—Computes the eigenexpansion of a real or complex 
matrix A. If the matrix is known to be symmetric or Hermitian, a keyword can be 
used to trigger more efficient algorithms.

“IMSL_EIGSYMGEN” on page 183—Computes the generalized eigenexpansion of 
a system Ax = λBx. The matrices A and B are real and symmetric, and B is positive 
definite.

“IMSL_ELE” on page 513—Evaluates the complete elliptic integral of the second 
kind E(x).

“IMSL_ELK” on page 511—Evaluates the complete elliptic integral of the kind K(x).
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“IMSL_ELRC” on page 521—Evaluates an elementary integral from which inverse 
circular functions, logarithms and inverse hyperbolic functions can be computed.

“IMSL_ELRD” on page 517—Evaluates Carlson’s elliptic integral of the second 
kind RD(x, y, z).

“IMSL_ELRF” on page 515—Evaluates Carlson’s elliptic integral of the first kind 
RF(x, y, z).

“IMSL_ELRJ” on page 519—Evaluates Carlson’s elliptic integral of the third kind 
RJ(x, y, z, r).

“IMSL_ERF” on page 477—Evaluates the real error function erf(x). Using a 
keyword, the inverse error function erf-1(x) can be evaluated.

“IMSL_ERFC” on page 480—Evaluates the real complementary error function 
erf(x). Using a keyword, the inverse complementary error function erf-1(x) can be 
evaluated.

“IMSL_EXACT_ENUM” on page 811—Exact probabilities in a table; total 
enumeration.

“IMSL_EXACT_NETWORK” on page 814—Exact probabilities in a table.

“IMSL_FACTOR_ANALYSIS” on page 983—Extracts initial factor-loading 
estimates in factor analysis.

“IMSL_FAURE_INIT” on page 1137—Initializes the structure used for computing a 
shuffled Faure sequence.

“IMSL_FAURE_NEXT_PT” on page 1141—Generates shuffled Faure sequence.

“IMSL_FCDF” on page 1045—Evaluates the F distribution function. Using a 
keyword, the inverse of the F distribution function can be evaluated.

“IMSL_FCDF” on page 1045—Evaluates the F distribution function. Using a 
keyword, the inverse of the F distribution function can be evaluated.

“IMSL_FCN_DERIV” on page 326—Computes the first, second, or third derivative 
of a user-supplied function.

“IMSL_FCNLSQ” on page 234—Computes a least-squares fit using user-supplied 
functions.

“IMSL_FFTCOMP” on page 377—Computes discrete Fourier transform of a real or 
complex sequence. Using keywords, a real-to-complex transform or two-dimensional 
complex Fourier transform can be computed.

“IMSL_FFTINIT” on page 387—Computes parameters for a one-dimensional FFT 
to be used in the IMSL_FFTCOMP function with keyword Init_Params.
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“IMSL_FMIN” on page 425—Finds the minimum point of a smooth function f (x) of 
a single variable using function evaluations and, optionally, through both function 
evaluations and first derivative evaluations.

“IMSL_FMINV” on page 433—Minimizes a function f(x) of n variables using a 
quasi-Newton method.

“IMSL_FREQTABLE” on page 565—Tallies observations into a one-way frequency 
table.

“IMSL_FRESNEL_COSINE” on page 523—Evaluates cosine Fresnel integral.

“IMSL_FRESNEL_SINE” on page 525—Evaluates sine Fresnel integral.

“IMSL_FRIEDMANS_TEST” on page 862—Friedman’s test.

“IMSL_GAMMA_ADV” on page 493—Evaluate the real gamma function.

“IMSL_GAMMACDF” on page 1052—Evaluates the gamma distribution function.

“IMSL_GAMMACDF” on page 1052—Evaluates the gamma distribution function.

“IMSL_GAMMAI” on page 495—Evaluates the incomplete gamma function γ(a,x).

“IMSL_GAMMAI” on page 495—Evaluate incomplete gamma function.

“IMSL_GARCH” on page 954—Compute estimates of the parameters of a 
GARCH(p,q) model

“IMSL_GENEIG” on page 186—Computes the generalized eigenexpansion of a 
system Ax = λBx.

“IMSL_GQUAD” on page 322—Computes a Gauss, Gauss-Radau, or Gauss-Lobatto 
quadrature rule with various classical weight functions.

“IMSL_HYPERGEOCDF” on page 1062—Evaluates the hypergeometric 
distribution function.

“IMSL_HYPERGEOCDF” on page 1062—Evaluates the hypergeometric 
distribution function.

“IMSL_HYPOTH_PARTIAL” on page 677—Constructs an equivalent completely 
testable multivariate general linear hypothesis HβU = G  from a partially testable 
hypothesis HpβU = Gp.

“IMSL_HYPOTH_SCPH” on page 683—Computes the matrix of sums of squares 
and crossproducts for the multivariate general linear hypothesis HβU = G given the 
regression fit. 
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“IMSL_HYPOTH_TEST” on page 688—Performs tests for a multivariate general 
linear hypothesis HβU = G given the hypothesis sums of squares and crossproducts 
matrix SH. 

“IMSL_INTFCN” on page 284—Integrates a user-supplied function using different 
combinations of keywords and parameters.

“IMSL_INTFCN_QMC” on page 319—Integrates a function on a hyper-rectangle 
using a quasi-Monte Carlo method.

“IMSL_INTFCNHYPER” on page 315—Integrates a function on a hyper-rectangle.

“IMSL_INV” on page 79—Computes the inverse of a real or complex, square matrix.

“IMSL_K_MEANS” on page 973—Performs a K-means (centroid) cluster analysis.

“IMSL_KALMAN” on page 959—Performs Kalman filtering and evaluates the 
likelihood function or the state-space model.

“IMSL_KELVIN_BEI0” on page 534—Evaluates the Kelvin function of the first 
kind, bei, of order zero. 

“IMSL_KELVIN_BER0” on page 532—Evaluates the Kelvin function of the first 
kind, ber, of order zero. 

“IMSL_KELVIN_KEI0” on page 538—Evaluates the Kelvin function of the second 
kind, kei, of order zero. 

“IMSL_KELVIN_KER0” on page 536—Evaluates the Kelvin function of the second 
kind, ker, of order zero.

“IMSL_KOLMOGOROV1” on page 888—One-sample continuos data Kolmogorov-
Smirnov.

“IMSL_KOLMOGOROV2” on page 891—Two-sample continuos data Kolmogorov-
Smirnov.

“IMSL_KTRENDS” on page 870—K-sample trends test.

“IMSL_KW_TEST” on page 859—Kruskal-Wallis test.

“IMSL_LAPLACE_INV” on page 398—Computes the inverse Laplace transform of 
a complex function.

“IMSL_NLINLSQ” on page 441—Solves a linear least-squares problem with linear 
constraints.

“IMSL_LACK_OF_FIT” on page 950—Lack-of-fit test based on the correlation 
function
IDL Analyst Reference Guide



56 Chapter 3: Alphabetical Listing of IMSL Routines
“IMSL_LINPROG” on page 449—Solves a linear programming problem using the 
revised simplex algorithm.

“IMSL_LNBETA” on page 487—Evaluates the logarithm of the real beta function ln 
β(x,y).

“IMSL_LNBETA” on page 487—Evaluate the log of the real beta function.

“IMSL_LNGAMMA” on page 491—Evaluates the logarithm of the absolute value of 
the gamma function log Γ(x).

“IMSL_LNGAMMA” on page 491—Evaluate the logarithm of the absolute value of 
the gamma function.

“IMSL_LNORMREGRESS” on page 704—Fits a multiple linear regression model 
using criteria other than least squares. Namely, LNORMREGRESS allows the user to 
choose Least Absolute Value (L1), Least Lp norm (Lp), or Least Maximum Value 
(Minimax or L∞) method of multiple linear regression.

“IMSL_LUFAC” on page 87—Computes the LU factorization of a real or complex 
matrix.

“IMSL_LUSOL” on page 81—Solves a general system of real or complex linear 
equations Ax = b.

“IMSL_MACHINE” on page 1158—Returns information describing the computer’s 
arithmetic.

“IMSL_MATRIX_NORM” on page 1171—Computes various norms of a rectangular 
matrix, a matrix stored in band format, and a matrix stored in coordinate format.

“IMSL_MINCONGEN” on page 458—Minimizes a general objective function 
subject to linear equality/inequality constraints.

“IMSL_MULTICOMP” on page 771—Performs Student-Newman-Keuls multiple-
comparisons test.

“IMSL_MULTIPREDICT” on page 624—Computes predicted values, confidence 
intervals, and diagnostics after fitting a regression model.

“IMSL_MULTIREGRESS” on page 609—Fits a multiple linear regression model 
using least squares and optionally compute summary statistics for the regression 
model.

“IMSL_MVAR_NORMALITY” on page 894—Mardia’s test for multivariate 
normality.

“IMSL_NLINLSQ” on page 441—Solves a nonlinear least-squares problem using a 
modified Levenberg-Marquardt algorithm.
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“IMSL_NCTRENDS” on page 848—Noehter’s test for cyclical trend.

“IMSL_NONLINOPT” on page 695—Fits data to a nonlinear model (possibly with 
linear constraints) using the successive quadratic programming algorithm (applied to 
the sum of squared errors, sse = Σ(yi − f(xi; θ))2) and either a finite difference gradient 
or a user-supplied gradient.

“IMSL_NONLINREGRESS” on page 667—Fits a nonlinear regression model.

“IMSL_NORM” on page 1168—Computes various norms of a vector or the 
difference of two vectors.

“IMSL_NORMALCDF” on page 1034—Evaluates the standard normal (Gaussian) 
distribution function. Using a keyword, the inverse of the standard normal (Gaussian) 
distribution can be evaluated.

“IMSL_NORMALCDF” on page 1034—Solves an initial value problem, which is 
possibly stiff, using the Adams-Gear methods for ordinary differential equations. 
Using keywords, the Runge-Kutta-Verner fifth-order and sixth-order method can be 
used if the problem is known not to be stiff.

“IMSL_NORMALCDF” on page 1034—Evaluates the standard normal (Gaussian) 
distribution function. Using a keyword, the inverse of the standard normal (Gaussian) 
distribution can be evaluated.

“IMSL_NORM1SAMP” on page 552—Computes statistics for mean and variance 
inferences using a sample from a normal population.

“IMSL_NORM2SAMP” on page 557—Computes statistics for mean and variance 
inferences using samples from two independently normal populations.

“IMSL_NORMALITY” on page 884—Performs a test for normality.

“IMSL_PARTIAL_AC” on page 947—Sample partial autocorrelation function

“IMSL_PARTIAL_COV” on page 730—Partial correlations and covariances.

“IMSL_PDE_MOL” on page 351—Solves a system of partial differential equations 
of the form ut = f(x, t, u, ux, uxx)  using the method of lines. The solution is 
represented with cubic Hermite polynomials.

“IMSL_POISSON2D” on page 366—Solves Poisson’s or Helmholtz’s equation on a 
two-dimensional rectangle using a fast Poisson solver based on the HODIE finite-
difference scheme on a uniform mesh.

“IMSL_POISSONCDF” on page 1065—Evaluates the Poisson distribution function.

“IMSL_POISSONCDF” on page 1065—Evaluates the Poisson distribution function.
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“IMSL_POLYPREDICT” on page 659—Computes predicted values, confidence 
intervals, and diagnostics after fitting a polynomial regression model.

“IMSL_POLYREGRESS” on page 651—Performs a polynomial least-squares 
regression.

“IMSL_POOLED_COV” on page 736—Pooled covariance matrix.

“IMSL_PRINC_COMP” on page 978—Computes principal components.

“IMSL_QRFAC” on page 102—Computes the QR factorization of a real matrix A.

“IMSL_QRSOL” on page 98—Solves a real linear least-squares problem Ax = b.

“IMSL_QUADPROG” on page 454—Solves a quadratic programming (QP) problem 
subject to linear equality or inequality constraints.

“IMSL_RADBE” on page 277—Evaluates a radial-basis fit computed by 
IMSL_RADBF.

“IMSL_RADBF” on page 266—Computes an approximation to scattered data in Rn 
for n ≥ 2 using radial-basis functions.

“IMSL_RAND_FROM_DATA” on page 1116—Generates pseudorandom numbers 
from multivariate distribution determined from a given sample.

“IMSL_RAND_GEN_CONT” on page 1121—Generates pseudorandom numbers 
from a general continuous distribution.

“IMSL_RAND_GEN_DISCR” on page 1128—Generates pseudorandom numbers 
from a general discrete distribution using an alias method or optionally a table lookup 
method.

“IMSL_RAND_ORTH_MAT” on page 1111—Generates a pseudorandom 
orthogonal matrix or a correlation matrix

“IMSL_RAND_TABLE_2WAY” on page 1109—Generates a pseudorandom two-
way table. 

“IMSL_RANDOM” on page 1082—Generates pseudorandom numbers. The default 
distribution is a uniform (0, 1) distribution, but many different distributions can be 
specified through the use of keywords.

“IMSL_RANDOM_ARMA” on page 1132—Generate pseudorandom 
IMSL_ARMA process numbers

“IMSL_RANDOM_NPP” on page 1102—Generates pseudorandom numbers from a 
nonhomogeneous Poisson process. 
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“IMSL_RANDOM_ORDER” on page 1106—Generates pseudorandom order 
statistics from a standard normal distribution. 

“IMSL_RANDOM_SAMPLE” on page 1113—Generates a simple pseudorandom 
sample from a finite population

“IMSL_RANDOMNESS_TEST” on page 899—Runs test, Paris-serial test, d2 test 
or triplets tests.

“IMSL_RANDOMOPT” on page 1073—Uses keywords to set or retrieve the 
random number seed or to select the uniform (0, 1) multiplicative, congruential 
pseudorandom-number generator.

“IMSL_RANKS” on page 579—Computes the ranks, normal scores, or exponential 
scores for a vector of observations.

“IMSL_REGRESSORS” on page 602—Generates regressors for a general linear 
model.

“IMSL_ROBUST_COV” on page 740—Robust estimate of covariance matrix.

“IMSL_SCAT2DINTERP” on page 262—Computes a smooth bivariate interpolant 
to scattered data that is locally a quintic polynomial in two variables.

“IMSL_SIGNTEST” on page 836—Performs a sign test.

“IMSL_SIMPLESTAT” on page 546—Computes basic univariate statistics.

“IMSL_SMOOTHDATA1D” on page 258—Smooth one-dimensional data by error 
detection.

“IMSL_SORTDATA” on page 572—Sorts observations by specified keys, with 
option to tally cases into a multiway frequency table.

“IMSL_SP_BDFAC” on page 140—Compute the LU factorization of a matrix stored 
in band storage mode.

“IMSL_SP_BDPDFAC” on page 156—Compute the RTR Cholesky factorization of 
symmetric positive definite matrix, A, in band symmetric storage mode.

“IMSL_SP_BDPDSOL” on page 153—Solve a symmetric positive definite system 
of linear equations Ax = b in band symmetric storage mode. 

 “IMSL_SP_BDSOL” on page 136—Solve a general band system of linear equations 
Ax = b. 

“IMSL_SP_CG” on page 164—Solve a real symmetric definite linear system using a 
conjugate gradient method. Using keywords, a preconditioner can be supplied.
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“IMSL_SP_GMRES” on page 160—Solve a linear system Ax = b using the restarted 
generalized minimum residual (GMRES) method.

“IMSL_SP_LUFAC” on page 129—Compute an LU factorization of a sparse matrix 
stored in either coordinate format or CSC format. 

“IMSL_SP_LUSOL” on page 123—Solve a sparse system of linear equations Ax = 
b. 

“IMSL_SP_MVMUL” on page 168—Compute a matrix-vector product involving 
sparse matrix and a dense vector.

“IMSL_SP_PDFAC” on page 149—Solve a sparse symmetric positive definite 
system of linear equations Ax = b. 

“IMSL_SP_PDSOL” on page 144—Solve a sparse symmetric positive definite 
system of linear equations Ax = b. 

“IMSL_SPINTEG” on page 230—Computes the integral of a one- or two-
dimensional spline.

“IMSL_SPVALUE” on page 224—Computes values of a spline or values of one of 
its derivatives.

“IMSL_STATDATA” on page 1163—Retrieves commonly analyzed data sets.

“IMSL_STEPWISE” on page 641—Builds multiple linear regression models using 
forward, backward, or stepwise selection.

“IMSL_SURVIVAL_GLM” on page 1008—Analyzes survival data using a 
generalized linear model and estimates using various parametric modes. 

“IMSL_SVDCOMP” on page 106—Computes the singular value decomposition 
(SVD), A=USVT, of a real or complex rectangular matrix A. An estimate of the rank 
of A also can be computed.

“IMSL_TIE_STATS” on page 857—Tie statistics.

“IMSL_TCDF” on page 1048—Evaluates the Student’s t distribution function.

“IMSL_TCDF” on page 1048—Evaluates the Student’s t distribution function.

“IMSL_WILCOXON” on page 839—Performs a Wilcoxon rank sum test.

“IMSL_ZEROFCN” on page 413—Finds the real zeros of a real function using 
Müller’s method.

“IMSL_ZEROPOLY” on page 410—Finds the zeros of a polynomial with real or 
complex coefficients using the companion matrix method or, optionally, the Jenkins-
Traub, three-stage algorithm.
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“IMSL_ZEROSYS” on page 418—Solves a system of n nonlinear equations using a 
modified Powell hybrid algorithm.
IDL Analyst Reference Guide



62 Chapter 3: Alphabetical Listing of IMSL Routines
IDL Analyst Reference Guide



Part I: Mathematics
Routines





Chapter 4

Linear Systems
This section contains the following topics:
Overview: Linear Systems . . . . . . . . . . . . . .  66 Linear Systems Routines  . . . . . . . . . . . . . .  77
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Overview: Linear Systems

This section introduces some of the mathematical concepts used with IDL Analyst.

Matrix Inversion

The IMSL_INV function inverts an n x n nonsingular matrix—either real or complex. 
The inverse also can be obtained by using the INVERSE keyword in functions for 
solving systems of linear equations. You do not need to compute the inverse of a 
matrix if the purpose is to solve one or more systems of linear equations. Even with 
multiple right-hand sides, solving a system of linear equations by computing the 
inverse and performing matrix multiplication is usually more expensive than the 
method discussed in the next section.

Solving Systems of Linear Equations

A square system of linear equations has the form Ax = b, where A is a user-specified 
n x n matrix, b is a given n-vector, and x is the solution n-vector. You must specify 
each entry of A and b. The entire vector x is returned as output.

When A is invertible, a unique solution to Ax = b exists. The most commonly used 
direct method for solving Ax = b factors the matrix A into a product of triangular 
matrices and solves the resulting triangular systems of linear equations. Functions 
that use direct methods for solving systems of linear equations all compute the 
solution to Ax = b. You can use IDL Analyst functions IMSL_LUSOL, 
IMSL_CHSOL, and IMSL_CHNNDSOL to compute x.

Matrix Factorizations

In some applications, you may only want to factor the n x n matrix A into a product of 
two triangular matrices. Functions and procedures that end with “FAC” are designed 
to compute these factorizations. Suppose that in addition to the solution x of a linear 
system of equations Ax = b, you want the LU factorization of A. First, use the 
IMSL_LUFAC procedure to obtain the LU factorization in a condensed format, then 
call IMSL_LUSOL with this factorization and a right-hand side b to compute the 
solution. If the factorization is desired in separate, full matrices, call the 
IMSL_LUFAC procedure with the keywords L and U to return L and U separately.

Besides the basic matrix factorizations, such as LU and LLT, additional matrix 
factorizations also are provided. For a real matrix A, QR factorization can be 
computed by the IMSL_QRFAC procedure. Functions for computing the Singular 
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Value Decomposition (SVD) of a matrix are discussed in “Singular Value 
Decomposition and Generalized Inverse” on page 67.

Multiple Right-hand Sides

In a case in which a system of linear equations has more than one right-hand side 
vector, it is most economical to find the solution vectors by first factoring the 
coefficient matrix A into products of triangular matrices. Then, the resulting 
triangular systems of linear equations are solved for each right-hand side. When A is 
a real general matrix, compute access to the LU factorization of A by using the 
IMSL_LUFAC procedure. The solution xk for the k-th right-hand side vector bk is 
then found by two triangular solves, Lyk = bk and Uxk = yk. The IMSL_LUSOL 
function is called with the computed factorization and is used to solve each right-
hand side. You can follow this process when using other functions for solving 
systems of linear equations.

Least-squares Solution and QR Factorization

Least-squares solutions are usually computed for an over-determined system of linear 
equations Am x n x = b, where m > n. A least-squares solution x minimizes the 
Euclidean length of the residual vector r = Ax – b. The IMSL_QRSOL function 
computes a unique least-squares solution for x when A has full-column rank. If A is 
rank-deficient, then the base solution for some variables is computed. These variables 
consist of the resulting columns after the interchanges. The QR decomposition, with 
column interchanges or pivoting, is computed such that AP = QR. Here, Q is 
orthogonal, R is upper-trapezoidal with its diagonal elements nonincreasing in 
magnitude, and P is the permutation matrix determined by the pivoting. The base 
solution xB is obtained by solving R(PT)x = QTb for the base variables. For details, 
see “Discussion” on page 100. You can compute the QR factorization of a matrix A, 
such that AP = QR with a user-specified P, using the IMSL_QRFAC procedure.

Singular Value Decomposition and Generalized 
Inverse 

The SVD of an m by n matrix A is a matrix decomposition, A = USVT. With 
q = min(m, n), the factors Um x q and Vn x q are orthogonal matrices, and Sq x q is a 
nonnegative diagonal matrix with nonincreasing diagonal terms. The 
IMSL_SVDCOMP function computes the singular values of A by default. By using 
keywords, you can also obtain part or all of the U and V matrices, an estimate of the 
rank of A, and the generalized inverse of A.
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Ill-conditioning and Singularity

An m x n matrix A is mathematically singular if an x ≠ 0 exists such that Ax = 0. In 
this case, the system of linear equations Ax = b does not have a unique solution. 
However, a matrix A is numerically singular if it is “close” to a mathematically 
singular matrix. Such problems are called ill-conditioned. If the numerical results 
with an ill-conditioned problem are unacceptable, either use more accuracy if 
available (for type float switch to double) or obtain an approximate solution to the 
system. One form of approximation can be obtained using the SVD of A: If 
q = min(m, n) and: 

then the approximate solution is given by the following: 

The scalars ti,i are defined by: 

Specify the value of tol. This value determines how “close” the given matrix is to a 
singular matrix. Further restrictions may apply to the number of terms in the sum, k ≤ 
q. For example, there may be a value of k ≤ q such that the scalars | (bTui)|, i > k, are 
smaller than the average uncertainty in the right-hand side b. This means that these 
scalars can be replaced by zero, and b is replaced by a vector that is within the stated 
uncertainty of the problem.

Notation

Since many functions and procedures described in this chapter operate on both real or 
complex matrices, the notation AH is used to represent both the transpose of A if A is 
real and the conjugate transpose if A is complex.
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Sparse Matrices: Direct Methods

Several routines employ direct methods (as opposed to iterative methods) for solving 
problems involving sparse matrices. 

For general sparse linear systems, IMSL_SP_LUFAC and IMSL_SP_LUSOL form a 
factor/solve function pair. If a sparse matrix the problem Ax = b is to be solved for a 
single A, but multiple right-hand sides, b, then IMSL_SP_LUFAC should first be 
used to compute an LU decomposition of A, then follow multiple calls to 
IMSL_SP_LUSOL (one for each right-hand side, b). If only one right-hand side, b, is 
involved then IMSL_SP_LUSOL can be called directly, in which case the factor step 
is computed internally by IMSL_SP_LUSOL.

For general banded systems, IMSL_SP_BDSOL and IMSL_SP_BDFAC form a 
factor/solve pair. The relationship between SP_BSFAC and IMSL_SP_BDSOL is 
similar to that of IMSL_SP_LUFAC and IMSL_SP_LUSOL.

The functions IMSL_SP_PDFAC and IMSL_SP_PDSOL are provided for working 
with systems involving sparse symmetric positive definite matrices. The relationship 
between IMSL_SP_PDFAC and IMSL_SP_PDSOL is similar to that of 
IMSL_SP_LUFAC and IMSL_SP_LUSOL.

The functions SP_BDDFAC and IMSL_SP_BDPDSOL are provided for working 
with systems involving banded symmetric positive definite matrices. The relationship 
between IMSL_SP_BDPDFAC and IMSL_SP_BDPDSOL is similar to that of 
IMSL_SP_LUFAC and IMSL_SP_LUSOL.

• IMSL_SP_LUFAC—LU factorization of general matrices.

• IMSL_SP_LUSOL—Systems involving general matrices.

• IMSL_SP_BDFAC—LU factorization of band matrices.

• IMSL_SP_BDSOL—Systems involving band matrices.

• IMSL_SP_PDFAC—Factorization of symmetric positive definite matrices.

• IMSL_SP_PDSOL—Systems involving symmetric positive definite matrices.

• IMSL_SP_BDPDFAC—Cholesky factorization of symmetric positive definite 
matrices in band symmetric storage mode.

• IMSL_SP_BDPDSOL— Systems involving symmetric positive definite 
matrices in band symmetric storage mode
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Sparse Matrices: Iterative Methods

Two routines employ iterative methods (as opposed to direct methods) for solving 
problems involving sparse matrices. 

The IMSL_SP_GMRES function, based on the FORTRAN subroutine GMRESD by 
H. F. Walker, solves the linear system Ax = b using the GMRES method. This method 
is described in detail by Saad and Schultz (1986) and Walker (1988).

The IMSL_SP_CG function solves the symmetric definite linear system Ax = b using 
the conjugate gradient method with optional preconditioning. This method is 
described in detail by Golub and Van Loan (1983, chapter 10), and in Hageman and 
Young (1981, chapter 7). 

• IMSL_SP_GMRES—Restarted generalized minimum residual (GMRES) 
method.

• IMSL_SP_CG—Conjugate gradient method.

Sparse Matrices: Utilities

Utilities designed to aid with the manipulation of sparse matrices are also provided. 
The common operation of matrix-vector multiplication can be efficiently executed 
using the IMSL_SP_MVMUL function. 

Sparse Matrices: Matrix Storage Modes

The dense linear algebra functions in IDL Analyst require input consisting of matrix 
dimensions and all values for the matrix entries. This is not practical for sparse linear 
algebra. Three different storage formats can be used for the functions in the sparse 
matrix sections. These methods include:

• Sparse Coordinate Storage Format

• Band Storage Format

• Compressed Sparse Column (CSC) Format

Sparse Coordinate Storage Format 

Only the non-zero elements of a sparse matrix need to be communicated to a 
function. Sparse coordinate storage format stores the value of each matrix entry along 
with that entry’s row and column index. The following structures are defined by IDL 
Analyst to make it easy to store sparse matrices:
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{imsl_f_sp_elem, row:0L, col:0L, val:float(0.0)}
{imsl_d_sp_elem, row:0L, col:0L, val:double(0.0)}
{imsl_c_sp_elem, row:0L, col:0L, val:complex(0.0)}
{imsl_z_sp_elem, row:0L, col:0L, val:dcomplex(0.0)}

As an example consider the 6 x 6 matrix: 

The matrix A has 15 non-zero elements, and its sparse coordinate representation 
would be:

Since this representation does not rely on order, an equivalent form would be:

There are different ways this data could be used to initialize. Consider the following 
program fragment:

A = replicate(imsl_f_sp_elem, 15)
a(*).row = [0, 1, 1, 1, 2, $

 3, 3, 3, 4, 4, $
4, 4, 5, 5, 5]

a(*).col = [0, 1, 2, 3, 2, $
0, 3, 4, 0, 3, $

row 0 1 1 1 2 3 3 3 4 4 4 4 5 5 5

col 0 1 2 3 2 0 3 4 0 3 4 5 0 1 5

val 2 9 -3 -1 5 -2 -7 -1 -1 -5 1 -3 -1 -2 6

row 5 4 3 0 5 1 2 1 4 3 1 4 3 5 4

col 0 0 0 0 1 1 2 2 3 3 3 4 4 5 5

val -1 -1 -2 2 -2 9 5 -3 -5 -7 -1 1 -1 6 -3

A

2 0 0 0 0 0

0 9 3– 1– 0 0

0 0 5 0 0 0

2– 0 0 7– 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=
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4, 5, 0, 1, 5]
a(*).val = [2, 9, -3, -1, 5,$

-2, -7, -1, -1, -5, 1, $
-3, -1, -2, 6]

B = replicate(imsl_f_sp_elem, 15)
b(*).row = [5, 4, 3, 0, 5, $

 1, 2, 1, 4, 3, $
1, 4, 3, 5, 4]

b(*).col = [0, 0, 0, 0, 1, $
1, 2, 2, 3, 3, $
 3, 4, 4, 5, 5]

b(*).val = [-1, -1, -2, 2, -2,$
9, 5, -3, -5, -7, -1, $
1, -1, 6, -3]

Both a and b represent the sparse matrix A.

A sparse symmetric or Hermitian matrix is a special case, since it is only necessary to 
store the diagonal and either the upper or lower triangle. As an example, consider the 
5 x 5 linear system: 

The Hermitian and symmetric positive definite system solvers in this module expect 
the diagonal and lower triangle to be specified. The sparse coordinate form for the 
lower triangle is given by

The following program fragment will initialize H.

A = replicate(imsl_c_sp_elem, 7)
a(*).row = [0, 1, 2, 3, 1, 2, 3]
a(*).col = [0, 1, 2, 3, 0, 1, 2]
a(*).val = [COMPLEX(4, 0), COMPLEX(4, 0), $

row 0 1 2 3 1 2 3

col 0 1 2 3 0 1 2

val (4,0) (4,0) (4,0) (4,0) (1,1) (1,1) (1,1)

H

4 1 i– 0 0

1 i+ 4 1 i– 0

0 1 i+ 4 1 i–

0 0 1 i+ 4

=
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COMPLEX(4, 0), COMPLEX(4, 0), $
COMPLEX(1, 1), COMPLEX(1, 1), $
COMPLEX(1, 1)] 

There are some important points to note here. Note that H is not symmetric, but rather 
Hermitian. The functions that accept Hermitian data understand this and operate 
assuming that: 

The Sparse Matrix Module cannot take advantage of the symmetry in matrices that 
are not positive definite. A symmetric matrix that happens to be indefinite cannot be 
stored in this compact symmetric form. Rather, both upper and lower triangles must 
be specified and the sparse general solver called.

Band Storage Format

A band matrix is an M x N matrix A with all of its non-zero elements “close” to the 
main diagonal. Specifically, values Aij = 0 if i – j > nlca or j – i > nuca. The integer 
m = nlca + nuca + 1 is the total band width. The diagonals, other than the main 
diagonal, are called codiagonals. While any M x N matrix is a band matrix, band 
storage format is only useful when the number of non-zero codiagonals is much less 
than N.

In band storage format, the nlca lower codiagonals and the nuca upper codiagonals 
are stored in the rows of an array of size m x N. The elements are stored in the same 
column of the array as they are in the matrix. The values Aij inside the band width are 
stored in the linear array in positions [(i – j + nuca + 1)*i + j]. This results in a 
row-major, one-dimensional mapping from the two-dimensional notion of the matrix.

For example, consider the 5 x 5 matrix A with 1 lower and 2 upper codiagonals:  

hij hji=

A

A0 0, A0 1, A0 2, 0 0

A1 0, A1 1, A1 2, A1 3, 0

0 A2 1, A2 2, A2 3, A2 4,

0 0 A3 2, A3 3, A3 4,

0 0 0 A4 3, A4 4,

=
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In band storage format, the data would be arranged as: 

This data would be then be stored contiguously, row-major order, in an array of 
length 20.

As an example, consider the following tridiagonal matrix: 

The following code segment will store this matrix in band storage format:

a = [0, 1, 2, 3, 4, $
10, 20, 30, 40, 50, $
5, 6, 7, 8, 0]

As in the sparse coordinate representation, there is a space saving symmetric version 
of band storage. As an example, we look at the following 5 x 5 symmetric problem: 

0 0 A0 2, A1 3, A2 4,

0 A0 1, A1 2, A2 3, A3 4,

A0 0, A1 1, A2 2, A3 3, A4 4,

A1 0, A2 1, A3 2, A4 3, 0

A

10 1 0 0 0

5 20 2 0 0

0 6 30 3 0

0 0 7 40 4

0 0 0 8 50

=

A

A0 0, A0 1, A0 2, 0 0

A0 1, A1 1, A1 2, A1 3, 0

A0 2, A1 2, A2 2, A2 3, A2 4,

0 A1 3, A2 3, A3 3, A3 4,

0 0 A2 4, A3 4, A4 4,

=
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In band symmetric storage format, the data would be arranged as: 

The following Hermitian example illustrates the procedure: 

The following program fragments stores H in h, using band symmetric storage 
format:

h = complexarr(15)
h(0:1) = 0
h(2:4) = complex(1,1)
h(5) = 0
h(6:9) = complex(1,1)
h(10:14) = 8

Choosing Between Banded and Coordinate Forms

Any matrix can be stored in either sparse coordinate or band format; which format to 
use depends on the sparsity pattern of the matrix. A matrix with all non-zero data 
stored in bands close to the main diagonal is probably a good candidate for band 
format. If non-zero information is scattered more or less uniformly through the 
matrix, sparse coordinate format is the best choice. The following two cases are 
extreme examples. First, consider an n x n matrix with all elements on the main 
diagonal and the (0,n–1) and (n–1,0) entries non-zero. The sparse coordinate vector 
would be n + 2 units long. An array of length 2n2 – n would be required to store the 
band representation, nearly twice as much storage as a dense solver might require. 
Second, consider a tridiagonal matrix with all diagonal, superdiagonal and 
subdiagonal entries non-zero. In band format, an array of length 3n is needed. In 
sparse coordinate format, a vector of length 3n – 2 is required. But the problem is 
that, for instance with floating-point precision on a 32 bit machine, each of those 3n –

0 0 A0 2, A1 3, A2 4,

0 A0 1, A1 2, A2 3, A3 4,

A0 0, A1 1, A2 2, A3 3, A4 4,

H

8 1 i+ 1 i+ 0 0

1 i– 8 1 i+ 1 i+ 0

1 i– 1 i– 8 1 i+ 1 i+

0 1 i– 1 i– 8 1 i+

0 0 1 i– 1 i– 8

=
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2 units in coordinate format requires three times as much storage as any of the 3n 
units needed for band representation. This is due to carrying the row and column 
indices in coordinate form. Band storage evades this requirement by being essentially 
an ordered list, and defining location in the original matrix by position in the list.

Compressed Sparse Column (CSC) Format

Functions that accept data in coordinate format can also accept data stored in the 
format described in the Users’ Guide for the Harwell-Boeing Sparse Matrix 
Collection. The scheme is column oriented, with each column held as a sparse vector, 
represented by a list of the row indices of the entries in an integer array and a list of 
the corresponding values in a separate float (double, complex, dcomplex) array. Data 
for each column are stored consecutively and in order. A separate integer array holds 
the location of the first entry of each column and the first free location. Only entries 
in the lower triangle and diagonal are stored for symmetric and Hermitian matrices. 
All arrays are based at zero, which is in contrast to the Harwell-Boeing test suite’s 
one-based arrays. 

As in the Users’ Guide for the Harwell-Boeing Sparse Matrix Collection, we 
illustrate the storage scheme with the following example. The 5x5 matrix: 

would be stored in the arrays colptr (location of first entry), rowind (row indices), and 
values (non-zero entries) as follows: 

Subscripts 0 1 2 3 4 5 6 7 8 9 10

colptr 0 3 5 7 9 11

rowind 0 4 2 3 0 1 4 0 3 4 1

values 1 5 2 4 -3 -2 -5 -1 -4 6 3

1 3– 0 1– 0

0 0 2– 0 3

2 0 0 0 0

0 4 0 4– 0

5 0 5– 0 6
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Linear Systems Routines

Matrix Inversion

IMSL_INV—General matrix inversion.

Linear Equations with Full Matrices

IMSL_LUSOL—Systems involving general matrices.

IMSL_LUFAC—LU factorization of general matrices.

IMSL_CHSOL—Systems involving symmetric positive definite matrices. 

IMSL_CHFAC—Factorization of symmetric positive definite matrices. 

Linear Least Squares with Full Matrices

IMSL_QRSOL—Least-squares solution. 

IMSL_QRFAC—Least-squares factorization. 

IMSL_SVDCOMP—Singular Value Decomposition (SVD) and generalized inverse. 

IMSL_CHNNDSOL—Solve and generalized inverse for positive semidefinite 
matrices. 

IMSL_CHNNDFAC—Factor and generalized inverse for positive semidefinite 
matrices. 

IMSL_LINLSQ—Linear constraints.

Sparse Matrices

IMSL_SP_LUSOL—Solve a sparse system of linear equations Ax = b.

IMSL_SP_LUFAC—Compute an LU factorization of a sparse matrix stored in either 
coordinate format or CSC format.

IMSL_SP_BDSOL—Solve a general band system of linear equations Ax = b.

IMSL_SP_BDFAC—Compute the LU factorization of a matrix stored in band 
storage mode.

IMSL_SP_PDSOL—Solve a sparse symmetric positive definite system of linear 
equations Ax = b.
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IMSL_SP_PDFAC—Compute a factorization of a sparse symmetric positive definite 
system of linear equations Ax = b.

IMSL_SP_BDPDSOL—Solve a symmetric positive definite system of linear 
equations Ax = b in band symmetric storage mode.

IMSL_SP_BDPDFAC—Compute the RTR Cholesky factorization of symmetric 
positive definite matrix, A, in band symmetric storage mode.

IMSL_SP_GMRES—Solve a linear system Ax = b using the restarted generalized 
minimum residual (GMRES) method.

IMSL_SP_CG—Solve a real symmetric definite linear system using a conjugate 
gradient method.

IMSL_SP_MVMUL—Compute a matrix-vector product involving a sparse matrix 
and a dense vector.
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IMSL_INV

The IMSL_INV function computes the inverse of a real or complex, square matrix. 

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_INV(a [,/DOUBLE])

Return Value

A two-dimensional matrix containing the inverse of the matrix A.

Arguments

a

Two-dimensional matrix containing the matrix to be inverted.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Example

RM, a, 3, 3
; Define the matrix to be inverted.
row 0: 1 3 3
row 1: 1 3 4
row 2: 1 4 4
ainv = IMSL_INV(a)
; Call IMSL_INV to perform the inversion.
PM, a
; Output the original matrix.
 1.00000      3.00000      3.00000
 1.00000      3.00000      4.00000
 1.00000      4.00000      4.00000
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PM, ainv
; Output the computed inverse.
 4.00000     -0.00000     -3.00000

 0.00000     -1.00000      1.00000
 -1.00000 1.00000      0.00000

PM, a # ainv
; Check the results.
 1.00000      0.00000      0.00000
 0.00000      1.00000      0.00000
 0.00000      0.00000      1.00000

Errors

Fatal Errors

MATH_SINGULAR_MATRIX—Input matrix is singular.

Version History

6.4 Introduced
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IMSL_LUSOL

The IMSL_LUSOL function solves a general system of real or complex linear 
equations Ax = b. 

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LUSOL(b [, a] [, CONDITION=variable] [, /DOUBLE] 
[, FACTOR=variable] [, INVERSE=variable] [, PIVOT=variable] 
[, TRANSPOSE=value])

Return Value

A one-dimensional array containing the solution of the linear system Ax = b. 

Arguments

b

One-dimensional matrix containing the right-hand side.

a

Two-dimensional matrix containing the coefficient matrix. Element A(i, j) contains 
the j-th coefficient of the i-th equation.

Keywords

CONDITION

Named variable into which an estimate of the L1 condition number is stored. This 
keyword cannot be used with keywords PIVOT and FACTOR.

DOUBLE

If present and nonzero, double precision is used.
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FACTOR

Named variable in which the LU factorization of A, computed by the IMSL_LUFAC 
procedure, is stored. The strictly lower-triangular part of this array contains 
information necessary to construct L, and the upper-triangular part contains U. The 
PIVOT and FACTOR keywords must be used together. The FACTOR and 
CONDITION keywords cannot be used together.

INVERSE

Named variable into which the inverse of the matrix A is stored.

PIVOT

Named variable into which the pivot sequence for the factorization, computed by the 
IMSL_LUFAC procedure, is stored. The PIVOT and FACTOR keywords must be 
used together. The PIVOT and CONDITION keywords cannot be used together. 

TRANSPOSE

If present and nonzero, AH x = b is solved.

Discussion

The IMSL_LUSOL function solves a system of linear algebraic equations with a real 
or complex coefficient matrix A. Any of several related computations can be 
performed by using keywords. These extra tasks include solving AHx = b or 
computing the solution of Ax = b given the LU factorization of A. The function first 
computes the LU factorization of A with partial pivoting such that L–1PA = U. 

The matrix U is upper-triangular, while L–1A ≡ Pn – 1 Ln – 2Pn – 2...L0 P0 A ≡ U. The 
factors Pi and Li are defined by the partial pivoting. Each Pi is an interchange of row i 
with row j ≥ i. Thus, Pi is defined by that value of j. Every Li = miei

T is an elementary 
elimination matrix. The vector mi is zero in entries 0, ... , i – 1. This vector is stored as 
column i in the strictly lower-triangular part of the working matrix containing the 
decomposition information. 

The factorization efficiency is based on a technique of “loop unrolling and jamming” 
by Dr. Leonard J. Harding of the University of Michigan, Ann Arbor, Michigan. The 
solution of the linear system is then found by solving two simpler systems, y = L–1b 
and x = U–1y. When the solution to the linear system or the inverse of the matrix is 
sought, an estimate of the L1 condition number of A is computed using the same 
algorithm as in Dongarra et al. (1979). If the estimated condition number is greater 
than 1/ε (where ε is the machine precision), a warning message is issued. This 
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indicates that very small changes in A may produce large changes in the solution x. 
The IMSL_LUSOL function fails if U, the upper-triangular part of the factorization, 
has a zero diagonal element.

Examples

Example 1: Solving a System

This example solves a system of three linear equations. This is the simplest use of the 
function. The equations are as follows:

x0 + 3x1 + 3x2 = 1

x0 + 3x1 + 4x2 = 4

x0 + 4x1 + 3x2 = –1

RM, a, 3, 3
; Input a matrix containing the coefficients.
row 0: 1 3 3
row 1: 1 3 4
row 2: 1 4 3
RM, b, 3, 1
; Input a vector containing the right-hand side.
row 0: 1
row 1: 4
row 2: -1
x = IMSL_LUSOL(b, a)
; Call IMSL_LUSOL to compute the solution.
PM, x, Title = 'Solution'
; Print solution and residual.
Solution

-2.00000
-2.00000
3.00000

PM, a # x - b, Title = 'Residual'
Residual

0.00000
0.00000
0.00000
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Example 2: Transpose Problem

This example solves the transpose problem AHx = b.

RM, a, 3, 3
; Input the matrix containing the coefficients.
row 0: 1 3 3
row 1: 1 3 4
row 2: 1 4 3
RM, b, 3, 1
; Input the vector containing the right-hand side.
row 0: 1
row 1: 4
row 2: -1
x = IMSL_LUSOL(b, a, /Transpose)
; Call IMSL_LUSOL with keyword Transpose set.
PM, x, Title = 'Solution'
; Print the solution and the residual.
Solution

4.00000
-4.00000
1.00000

PM, TRANSPOSE(a) # x - b, Title = 'Residual'
Residual

0.00000
0.00000
0.00000

Example 3: Solving with Multiple Right-hand Sides 

This example computes the solution of two systems. Only the right-hand sides differ. 
The matrix and first right-hand side are given in the initial example. The second right-
hand side is the vector c = [0.5, 0.3, 0.4]T. The factorization information is computed 
by the IMSL_LUFAC procedure and is used to compute the solutions in calls to 
IMSL_LUSOL. 

RM, a, 3, 3
; Input the coefficient matrix.
row 0: 1 3 3
row 1: 1 3 4
row 2: 1 4 3
RM, b, 3, 1
; Input the first right-hand side.
row 0: 1
row 1: 4
row 2: -1
RM, c, 3, 1
; Input the second right-hand side.
row 0: .5
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row 1: .3
row 2: .4
IMSL_LUFAC, a, pvt, fac
; Call IMSL_LUFAC to factor the coefficient matrix.
x = IMSL_LUSOL(b, Factor = fac, Pivot = pvt)
; Call IMSL_LUSOL with factored form of the coefficient 
; matrix and the first right-hand side.
PM, x, Title = 'Solution'
; Print the solution of Ax = b.
Solution

-2.00000
-2.00000
3.00000

PM, a # x - b, Title = 'Residual'
Residual

0.00000
0.00000
0.00000

y = IMSL_LUSOL(c, Factor = fac, Pivot = pvt)
; Call IMSL_LUSOL with factored form of the coefficient 
; matrix and the second right-hand side.
PM, y, Title = 'Solution'
; Print the solution of Ax = b.
Solution

1.40000
-0.100000
-0.200000

PM, a # y - c, $
Title = 'Residual', Format = '(f8.5)'

Residual
0.00000
0.00000
0.00000

Errors

Warning Errors

MATH_ILL_CONDITIONED—Input matrix is too ill-conditioned. An estimate of the 
reciprocal of its L1 condition number is #. The solution might not be accurate.

Fatal Errors

MATH_SINGULAR_MATRIX—Input matrix is singular.
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Version History

See Also

IMSL_SP_LUFAC

6.4 Introduced
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IMSL_LUFAC

The IMSL_LUFAC procedure computes the LU factorization of a real or complex 
matrix.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_LUFAC, a[, pivot[, fac] [, CONDITION=variable] [, /DOUBLE] 
[, INVERSE=variable] [, L=variable] [, PA=variable] [, TRANSPOSE=value] 
[, U=variable]]

Arguments

a

Two-dimensional matrix containing the coefficient matrix. Element A (i, j) contains 
the j-th coefficient of the i-th equation.

fac

A named variable that will contain a two-dimensional matrix containing the LU 
factorization of A. The strictly lower-triangular part of this matrix contains 
information necessary to construct L, and the upper-triangular part contains U. 

pivot

A named variable that will contain a one-dimensional matrix containing the pivot 
sequence of the factorization. 

Keywords

CONDITION

Named variable into which an estimate of the L1 condition number is stored. 

DOUBLE

If present and nonzero, double precision is used. 
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INVERSE

Named variable into which the inverse of the matrix A is stored.

L

Named variable into which the strictly lower-triangular matrix L of the LU 
factorization is stored.

PA

Named variable into which the matrix resulting from applying the pivot permutation 
to A is stored. 

TRANSPOSE

If present and nonzero, ATX=b is solved. 

U

Named variable into which the upper-triangular matrix U of the LU factorization is 
stored.

Discussion

Any of several related computations can be performed by using keywords. These 
extra tasks include computing the LU factorization of AT, computing an estimate of 
the L1 condition number, and returning L or U separately.

The IMSL_LUFAC procedure computes the LU factorization of A with partial 
pivoting such that L–1PA = U. The matrix U is upper-triangular, while 
L–1A ≡ Pn – 1 Ln – 2Pn – 2...L0 P0 A ≡ U. The factors Pi and Li are defined by the partial 
pivoting. Each Pi is an interchange of row i with row i ≥ j. Thus, Pi is defined by that 
value of j. Every Li = miei

T is an elementary elimination matrix. The vector mi is zero 
in entries 0, ..., i – 1. This vector is stored as column i in the strictly lower-triangular 
part of the working array containing the decomposition information.

The factorization efficiency is based on a technique of “loop unrolling and jamming” 
due to Dr. Leonard J. Harding of the University of Michigan, Ann Arbor, Michigan. 
When the inverse of the matrix is sought, an estimate of the L1 condition number of A 
is computed using the same algorithm as in Dongarra et al. (1979). If the estimated 
condition number is greater than 1/ε (where ε is the machine precision), a warning 
message is issued. This indicates that very small changes in A may produce large 
changes in the solution x. The IMSL_LUFAC procedure fails if U, the upper-
triangular part of the factorization, has a zero diagonal element.
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Examples

Example 1

This example computes the LU factorization of a matrix and prints it out in the 
default form with the information needed to construct L and U combined in one array. 
The matrix is as follows: 

RM, a, 3, 3
; Input the matrix to be factored.
row 0: 1 3 3
row 1: 1 3 4
row 2: 1 4 3
IMSL_LUFAC, a, pvt, fac
; Factor the matrix by calling IMSL_LUFAC.
PM, fac, Title = 'LU factors of A'
; Print the results.
LU factors of A

1.00000      3.00000      3.00000
-1.00000      1.00000      0.00000
-1.00000     -0.00000      1.00000

PM, pvt, Title = 'Pivot sequence'
Pivot sequence

1
3
3

Example 2

This example computes the factorization, uses keywords to return the factorization in 
separate named variables, and returns the original matrix after the pivot permutation 
is applied.

RM, a, 3, 3
; Input the matrix to be factored.
row 0: 1 3 3

row 1: 1 3 4
row 2: 1 4 3

IMSL_LUFAC, a, L = l, U = u, PA = pa
; Call IMSL_LUFAC with the keywords L and U.
PM, l, Title = 'L'
; Print the results.
L

1 3 3

1 3 4

1 4 3
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1.00000      0.00000      0.00000
1.00000      1.00000      0.00000
1.00000      0.00000      1.00000

PM, u, Title = 'U'

U
1.00000      3.00000      3.00000
0.00000      1.00000      0.00000
0.00000      0.00000      1.00000

PM, l # u - pa, $
Title = 'Residual: L # U - PA'
Residual: L # U - PA

0.00000      0.00000      0.00000
0.00000      0.00000      0.00000
0.00000      0.00000      0.00000

Errors

Warning Errors

MATH_ILL_CONDITIONED—Input matrix is too ill-conditioned. An estimate of the 
reciprocal of its L1 condition number is #. The solution might not be accurate. 

Fatal Errors

MATH_SINGULAR_MATRIX—Input matrix is singular.

Version History

6.4 Introduced
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IMSL_CHSOL

The IMSL_CHSOL function solves a symmetric positive definite system of real or 
complex linear equations Ax = b. 

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CHSOL(b[, a] [, CONDITION=variable] [, /DOUBLE] 
[, FACTOR=variable] [, INVERSE=variable])

Return Value

The solution of the linear system Ax = b. 

Arguments

b

One-dimensional matrix containing the right-hand side.

a

Two-dimensional matrix containing the coefficient matrix. Matrix A (i, j) contains the 
j-th coefficient of the i-th equation.

Keywords

CONDITION

Named variable into which an estimate of the L1 condition number is stored. The 
CONDITION and FACTOR keywords cannot be used together. 

DOUBLE

If present and nonzero, double precision is used.
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FACTOR

Named variable in which the LLH factorization of A is stored. The lower-triangular 
part of this matrix contains L, and the upper-triangular part contains LH. The 
CONDITION and FACTOR keywords cannot be used together. 

INVERSE

Specifies a named variable into which the inverse of the matrix A is stored. This 
keyword is not allowed if A is complex. 

Discussion

The IMSL_CHSOL function solves a system of linear algebraic equations having a 
symmetric positive definite coefficient matrix A. The function first computes the 
Cholesky factorization LLH of A. The solution of the linear system is then found by 
solving the two simpler systems, y = L–1b and  x = L–Hy. An estimate of the L1 
condition number of A is computed using the same algorithm as in Dongarra et al. 
(1979). If the estimated condition number is greater than 1/ε (where ε is the machine 
precision), a warning message is issued. This indicates that very small changes in A 
may produce large changes in the solution x.

The IMSL_CHSOL function fails if L, the lower-triangular matrix in the 
factorization, has a zero diagonal element.

Examples

Example 1

RM, a, 3, 3
; Define the coefficient matrix.
row 0:  1  -3  2
row 1: -3  10 -5
row 2:  2  -5  6
RM, b, 3, 1
; Define the right-hand side.
row 0: 27
row 1: -78
row 2:  64
x = IMSL_CHSOL(b, a)
; Call IMSL_CHSOL to compute the solution.
PM, x, Title = 'Solution'
Solution

1.00000
-4.00000
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7.00000
PM, a # x - b, Title = 'Residual'
Residual

0.00000
0.00000
0.00000

Example 2

This example solves a system of five linear equations with Hermitian positive definite 
coefficient matrix. The equations are as follows:

2x0 + (–1 + i ) x1 = 1 + 5i

(–1 –i ) x0 + 4x1 + (1 + 2i ) x2 = 12 – 6i

(–1 –2i ) x1 + 10x2 + 4ix3 = 1 + (–16i )

(–4ix2) + 6x3 + (i + 1)x4 = –3 –3i

(1 – i ) x3 + 9x4 = 25 + 16i

RM, a, 5, 5, /Complex
; Input the complex matrix A.
row 0: 2       (-1,1) 0      0      0
row 1: (-1,-1) 4      (1,2)  0      0
row 2: 0       (1,-2) 10     (0,4)  0
row 3: 0       0      (0,-4) 6      (1,1)
row 4: 0       0      0      (1,-1) 9
RM, b, 5, 1, /Complex
; Input the right-hand side.
row 0: (1, 5)
row 1: (12, -6)
row 2: (1, -16)
row 3: (-3, -3)
row 4: (25, 16)
x = IMSL_CHSOL(b, a)
; Compute the solution.
PM, x, Title = 'Solution', Format = '("(",f8.5,",",f8.5,")")'

; Output the results.
Solution

( 2.00000, 1.00000)
( 3.00000,-0.00000)
(-1.00000,-1.00000)
( 0.00000,-2.00000)
( 3.00000, 2.00000)

PM, a # x-b, Title = 'Residual', Format='("(",f8.5,",",f8.5,")")'
Residual

( 0.00000, 0.00000)
( 0.00000,-0.00000)
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( 0.00000, 0.00000)
( 0.00000, 0.00000)
( 0.00000, 0.00000)

Errors

Warning Errors

MATH_ILL_CONDITIONED—Input matrix is too ill-conditioned. An estimate of the 
reciprocal of its L1 condition number is #. The solution might not be accurate.

Fatal Errors

MATH_NONPOSITIVE_MATRIX—Leading # by # submatrix of the input matrix is not 
positive definite.

MATH_SINGULAR_MATRIX—Input matrix is singular.

MATH_SINGULAR_TRI_MATRIX—Input triangular matrix is singular. The index of 
the first zero diagonal element is #.

Version History

6.4 Introduced
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IMSL_CHFAC

The IMSL_CHFAC procedure computes the Cholesky factor, L, of a real or complex 
symmetric positive definite matrix A, such that A = LLH.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_CHFAC, a, fac [, CONDITION=variable] [, /DOUBLE] 
[, INVERSE=variable]

Arguments

a

Two-dimensional matrix containing the coefficient matrix. Element A (i, j) contains 
the j-th coefficient of the i-th equation.

fac

A named variable that will contain a two-dimensional matrix containing the Cholesky 
factorization of A. Note that fac contains L in the lower triangle and LH in the upper 
triangle.

Keywords

CONDITION

Named variable into which an estimate of the L1 condition number is stored. 

DOUBLE

If present and nonzero, double precision is used.

INVERSE

Named variable into which the inverse of the matrix A is stored. This keyword is not 
allowed if A is complex.
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Discussion

The IMSL_CHFAC procedure computes the Cholesky factorization LLH of a 
symmetric positive definite matrix A. When the inverse of the matrix is sought, an 
estimate of the L1 condition number of A is computed using the same algorithm as in 
Dongarra et al. (1979). If the estimated condition number is greater than 1/ε (where ε 
is the machine precision), a warning message is issued. This indicates that very small 
changes in A may produce large changes in the solution x.

The IMSL_CHFAC function fails if L, the lower-triangular matrix in the 
factorization, has a zero diagonal element.

Example

This example computes the Cholesky factorization of a 3 x 3 matrix.

RM, a, 3, 3
; Define the matrix A.
row 0:  1  -3  2
row 1: -3  10 -5
row 2:  2  -5  6
IMSL_CHFAC, a, fac
; Call IMSL_CHFAC to compute the factorization.
PM, fac, Title = 'Cholesky factor'
Cholesky factor

1.00000     -3.00000      2.00000
-3.00000      1.00000      1.00000
2.00000      1.00000      1.00000

Errors

Warning Errors

MATH_ILL_CONDITIONED—Input matrix is too ill-conditioned. An estimate of the 
reciprocal of its L1 condition number is #. The solution might not be accurate.

Fatal Errors

MATH_NONPOSITIVE_MATRIX—Leading # by # submatrix of the input matrix is not 
positive definite.

MATH_SINGULAR_MATRIX—Input matrix is singular.

MATH_SINGULAR_TRI_MATRIX—Input triangular matrix is singular. The index of 
the first zero diagonal element is #.
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Version History

6.4 Introduced
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IMSL_QRSOL

The IMSL_QRSOL function solves a real linear least-squares problem Ax = b.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_QRSOL(b[, a] [, AUXQR=variable] [, BASIS=variable] 
[, /DOUBLE] [, QR=variable] [, PIVOT=variable] [, RESIDUAL=variable] 
[, TOLERANCE=value])

Return Value

The solution, x, of the linear least-squares problem Ax = b.

Arguments

b

Matrix containing the right-hand side.

a

(Optional) Two-dimensional matrix containing the coefficient matrix. Element A (i, j) 
contains the j-th coefficient of the i-th equation.

Keywords

AUXQR

Named variable in which the matrix containing the scalars τk of the Householder 
transformations that define the decomposition, as computed in the IMSL_QRFAC 
procedure, is stored. The AUXQR, PIVOT, and QR keywords must be used together. 

BASIS

Named variable containing an integer specifying the number of columns used in the 
solution. The value BASIS = k, if |rk,k| < TOLERANCE*|r0,0| and 
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|ri,i| ≥ TOLERANCE*|r0,0| for i = 0, 1, ..., k – 1. For more information on the use of 
this option, see “Discussion” on page 100. 

DOUBLE

If present and nonzero, double precision is used.

QR

Named variable which stores the matrix containing Householder transformations that 
define the decomposition, as computed in the IMSL_QRFAC procedure. The 
AUXQR, PIVOT, and QR keywords must be used together. 

PIVOT

Named variable in which the array containing the desired variable order and usage 
information is stored. The AUXQR, PIVOT, and QR keywords must be used together. 

• On input, if PIVOT (k) > 0, then column k of A is an initial column. If 
PIVOT (k) = 0, then the column of A is a free column and can be interchanged 
in the column pivoting. If PIVOT (k) < 0, then column k of A is a final column. 
If all columns are specified as initial (or final) columns, then no pivoting is 
performed. (The permutation matrix P is the identity matrix in this case.)

• On output, PIVOT (k) contains the index of the column of the original matrix 
that has been interchanged into column k.

• Default: PIVOT (*) = 0

Note
If IMSL_QRSOL is used to solve a problem previously factored in IMSL_QRFAC, 
the matrix specified by PIVOT should contain the same information that the 
IMSL_QRFAC parameter PIVOT contained upon output.

RESIDUAL

Named variable in which the matrix containing the residual vector b – Ax is stored. 

TOLERANCE

Nonnegative tolerance used to determine the subset of columns of A to be included in 
the solution. Default: TOLERANCE = SQRT(ε), where ε is machine precision
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Discussion

IMSL_QRSOL solves a system of linear least-squares problems Ax = b with column 
pivoting. It computes a QR factorization of the matrix AP, where P is the permutation 
matrix defined by the pivoting, and computes the smallest integer k satisfying 
|rk,k| < TOLERANCE*|r0,0| to the output keyword BASIS. 

Householder transformations:

Qk = I – τkukuk
T, k = 0, ..., min(m – 1, n) – 1 

compute the factorization. The decomposition is computed in the form Qmin (m – 1, n) 

– 1 ... Q0 AP = R, so AP = QR where Q = Q0 ... Qmin (m – 1, n) – 1. Since each 
Householder vector uk has zeros in the first k + 1 entries, it is stored as part of column 
k of QR. The upper-trapezoidal matrix R is stored in the upper-trapezoidal part of the 
first min(m, n) rows of QR. The solution x to the least-squares problem is computed 
by solving the upper-triangular system of linear equations R (0:k, 0:k) y (0:k) = (QTb) 
(0:k) with k = Basis – 1. The solution is completed by setting y (k:n – 1) to zero and 
rearranging the variables, x = Py.

If the QR and AUXQR keywords are specified, then the function computes the least-
squares solution to Ax = b given the QR factorization previously defined. There are 
Basis columns used in the solution. Hence, in the case that all columns are free, x is 
computed as described in the default case.

Example

This example illustrates the least-squares solution of four linear equations in three 
unknowns by using column pivoting. This is equivalent to least-squares quadratic 
polynomial fitting to four data values. The polynomial is written as 
p(t) = x0 + tx1 + t2x2 and the data pairs (ti, bi ), ti = 2(i + 1), i = 0, 1, 2, 3. The solution 
to Ax = b is returned by the IMSL_QRSOL function.

RM, a, 4, 3
; Define the coefficient matrix.

row 0:  1 2 4
row 1:  1 4 16
row 2:  1 6 36
row 3:  1 8 64

RM, b, 4, 1
; Define the right-hand side.

row 0:  4.999
row 1:  9.001
row 2:  12.999
row 3:  17.001

x = IMSL_QRSOL(b, a)
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; Call IMSL_QRSOL.
PM, x, Title = 'Solution', Format = '(f8.5)'
; Output the results.
Solution

0.99900
2.00020
0.00000

PM, a # x - b, Title = 'Residual', Format = '(f10.7)'
Residual

 0.0004015
-0.0011997
 0.0012007
-0.0004005

Errors

Fatal Errors

MATH_SINGULAR_TRI_MATRIX—Input triangular matrix is singular. The index of 
the first zero diagonal term is #.

Version History

See Also

IMSL_SP_LUFAC

6.4 Introduced
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IMSL_QRFAC

The IMSL_QRFAC procedure computes the QR factorization of a real matrix A.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_QRFAC, a [, pivot [, auxqr, qr] [, AP=variable] [, BASIS=variable] [, /
DOUBLE] [, Q=variable] [, R=variable] [, TOLERANCE=value]]

Arguments

a

A two-dimensional matrix containing the coefficient matrix. Element A(i,j) contains 
the j-th coefficient of the i-th equation. 

pivot

A one-dimensional matrix containing the desired variable order and usage 
information.

• On input, if pivot (k) > 0, then column k of A is an initial column. If 
pivot (k) = 0, then the column of A is a free column and can be interchanged in 
the column pivoting. If pivot (k) < 0, then column k of A is a final column. If all 
columns are specified as initial (or final) columns, then no pivoting is 
performed. (The permutation matrix P is the identity matrix in this case.) 
Default: pivot (*) = 0

• On output, pivot (k) contains the index of the column of the original matrix that 
has been interchanged into column k.

auxqr

Matrix containing the scalars τk of the Householder transformations that define the 
decomposition.

qr

Matrix containing the Householder transformations that define the decomposition.
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Keywords

AP

Named variable into which the product AP of the identity AP = QR is stored. This 
keyword is useful when attempting to compute the residual AP – QR.

BASIS

Named variable into which an integer containing the number of columns used in the 
solution is stored. The value BASIS = k, if |rk,k| < TOLERANCE*|r0,0| and 
|ri,i| ≥ TOLERANCE*|r0,0| for i = 0, 1, ..., k – 1. For more information, see 
“Discussion” on page 103.

DOUBLE

If present and nonzero, double precision is used.

Q

Named variable in which the two-dimensional matrix containing the orthogonal 
matrix of the AP = QR factorization is stored.

R

Named variable in which the two-dimensional matrix containing the upper-triangular 
matrix of the AP = QR decomposition is stored.

TOLERANCE

Nonnegative tolerance used to determine the subset of columns of A to be included in 
the solution. Default: TOLERANCE = SQRT(ε), where ε is machine precision

Discussion

The IMSL_QRFAC procedure computes a QR factorization of the matrix AP, where 
P is the permutation matrix defined by the pivoting and computes the smallest integer 
k satisfying |rk,k| < TOLERANCE*|r0,0| to the keyword BASIS. 

Householder transformations:

Qk = I – τkukuk
T, k = 0, ..., min(m – 1, n) – 1 

compute the factorization. The decomposition is computed in the form Qmin (m – 1, n) 

– 1 ... Q0AP = R, so AP = QR where Q = Q0 ... Qmin (m – 1, n) – 1. Since each 
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Householder vector uk has zeros in the first k + 1 entries, it is stored as part of column 
k of QR. The upper-trapezoidal matrix R is stored in the upper-trapezoidal part of the 
first min(m, n) rows of QR. 

When computing the factorization, the procedure computes the QR factorization of 
AP with P defined by the input pivot and by column pivoting among “free” columns. 
Before the factorization, initial columns are moved to the beginning of the array A 
and the final columns to the end. Neither initial nor final columns are permuted 
further during the computation. Only the free columns are moved.

Example

Using the same data as the first example given for the IMSL_QRSOL function, this 
sample computes the QR factorization of the coefficient. Using keywords, the 
factorization is returned in the full matrices, rather than the default condensed format.

RM, a, 4, 3
; Define the coefficient matrix.
row 0:  1 2 4
row 1:  1 4 16
row 2:  1 6 36
row 3:  1 8 64
IMSL_QRFAC, a, pvt, Q = q, R = r, AP = ap
; Call IMSL_QRFAC using keywords Q, R, and AP.
PM, q, Title = 'Q', Format = '(4f12.6)'
; Output the results.
Q

-0.053149   -0.542171    0.808224   -0.223607
-0.212598   -0.657436   -0.269408    0.670820
-0.478345   -0.345794   -0.449013   -0.670820
-0.850390    0.392754    0.269408    0.223607

PM, r, Title = 'R', Format = '(3f12.6)'
R

-75.259552  -10.629880   -1.594482
0.000000   -2.646819   -1.152647
0.000000    0.000000    0.359211
0.000000    0.000000    0.000000

PM, pvt, Title = 'Pvt'
Pvt

3
2
1
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PM, q # r - ap, Title = 'Residual', Format = '(3f12.6)'
Residual

-0.000004   -0.000001   -0.000000
0.000000   -0.000000    0.000000
0.000000   -0.000000   -0.000000
0.000000   -0.000000   -0.000000

Errors

Fatal Errors

MATH_SINGULAR_TRI_MATRIX—Input triangular matrix is singular. The index of 
the first zero diagonal term is #.

Version History

6.4 Introduced
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IMSL_SVDCOMP

The IMSL_SVDCOMP function computes the singular value decomposition (SVD), 
A = USVT, of a real or complex rectangular matrix A. An estimate of the rank of A 
also can be computed.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SVDCOMP(a [, /DOUBLE] [, INVERSE=variable] 
[, RANK=variable] [, TOL_RANK=variable] [, U=variable] [, V=variable])

Return Value

One-dimensional array containing ordered singular values of A. 

Arguments

a

Two-dimensional matrix containing the coefficient matrix. Element A (i, j) contains 
the j-th coefficient of the i-th equation.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

Named variable into which the generalized inverse of the matrix A is stored.

RANK

Named variable into which an estimate of the rank of A is stored.
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TOL_RANK

Named variable containing the tolerance used to determine when a singular value is 
negligible and replaced by the value zero. If TOL_RANK > 0, then a singular value 
si,i is considered negligible if si,i ≤ TOL_RANK. If TOL_RANK < 0, then a singular 
value si,i is considered negligible if si,i ≤ TOL_RANK * ||A||infinity. 

In this case, |TOL_RANK| should be an estimate of relative error or uncertainty in the 
data.

U

Named variable into which the left-singular vectors of A are stored.

V

Named variable into which the right-singular vectors of A are stored.

Discussion

The IMSL_SVDCOMP function computes the singular value decomposition of a real 
or complex matrix A. It reduces the matrix A to a bidiagonal matrix B by pre- and 
post-multiplying Householder transformations, then, it computes singular value 
decomposition of B using the implicit-shifted QR algorithm. An estimate of the rank 
of the matrix A is obtained by finding the smallest integer k such that 
sk,k ≤ TOL_RANK or sk,k ≤ TOL_RANK * ||A||infinity. 

Since si + 1, i + 1 ≤ s i,i , it follows that all the s i,i satisfy the same inequality for i = k, 
..., min(m, n) – 2. The rank is set to the value k. If A = USVT, its generalized inverse is 
A+ = VS+UT. Here, S+ = diag (s–1

0,0,..., s–1
i,i, 0, ..., 0). Only singular values that are 

not negligible are reciprocated. If the keyword INVERSE is specified, the function 
first computes the singular value decomposition of the matrix A, then computes the 
generalized inverse. The IMSL_SVDCOMP function fails if the QR algorithm does 
not converge after 30 iterations. 

Examples

Example 1

This example computes the singular values of a 6-by-4 real matrix.

RM, a, 6, 4
; Define the matrix.
row 0: 1 2 1 4
row 1: 3 2 1 3
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row 2: 4 3 1 4
row 3: 2 1 3 1
row 4: 1 5 2 2
row 5: 1 2 2 3
; Call IMSL_SVDCOMP and output the results.
singvals = IMSL_SVDCOMP(a)
PM, singvals

11.4850
3.26975
2.65336
2.08873

Example 2

This example computes the singular value decomposition of the 6-by-4 real matrix A. 
Matrices U and V are returned using keywords U and V.

RM, a, 6, 4
; Define the matrix.
row 0: 1 2 1 4
row 1: 3 2 1 3
row 2: 4 3 1 4
row 3: 2 1 3 1
row 4: 1 5 2 2
row 5: 1 2 2 3
; Call IMSL_SVDCOMP with keywords U and V and output the results.
singvals = IMSL_SVDCOMP(a, U = u, V = v)
PM, singvals, Title = 'Singular values', Format = '(f12.6)'
Singular values

   11.485018
    3.269752
    2.653356
    2.088730

PM, u, Title = 'Left singular vectors, U', Format = '(4f12.6)'
Left singular vectors, U

-0.380476    0.119671    0.439083   -0.565399
-0.403754    0.345111   -0.056576    0.214776
-0.545120    0.429265    0.051392    0.432144
-0.264784   -0.068320   -0.883861   -0.215254
-0.446310   -0.816828    0.141900    0.321270
-0.354629   -0.102147   -0.004318   -0.545800

PM, v, Title = 'Right singular vectors, V', Format = '(4f12.6)'
Right singular vectors, V

-0.444294    0.555531   -0.435379    0.551754
-0.558067   -0.654299    0.277457    0.428336
-0.324386   -0.351361   -0.732099   -0.485129
-0.621239    0.373931    0.444402   -0.526066
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Errors

Warning Errors

MATH_SLOWCONVERGENT_MATRIX—Convergence cannot be reached after 30 
iterations.

Version History

6.4 Introduced
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IMSL_CHNNDSOL

The IMSL_CHNNDSOL function solves a real symmetric nonnegative definite 
system of linear equations Ax = b. Computes the solution to Ax = b given the 
Cholesky factor.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CHNNDSOL(b[, a] [, /DOUBLE] [, FACTOR=value] 
[, INVERSE=variable] [, TOLERANCE=value])

Return Value

A solution x of the linear system Ax = b.

Arguments

b

Matrix containing the right-hand side.

a

(Optional) Two-dimensional matrix containing the coefficient matrix. Element A(i, j) 
contains the j-th coefficient of the i-th equation.

Keywords

DOUBLE

If present and nonzero, double precision is used.

FACTOR

The LLT factorization of A. The lower-triangular part of this matrix contains L, and 
the upper-triangular part contains LT.
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INVERSE

Named variable into which the inverse of the matrix A is stored.

TOLERANCE

Tolerance used in determining linear dependence. Default: TOLERANCE = 100ε, 
where ε is machine precision

Discussion

The IMSL_CHNNDSOL function solves a system of linear algebraic equations 
having a symmetric nonnegative definite (positive semidefinite) coefficient matrix. It 
first computes a Cholesky (LLH or RHR) factorization of the coefficient matrix A.

The factorization algorithm is based on the work of Healy (1968) and proceeds 
sequentially by columns. The i-th column is declared to be linearly dependent on the 
first i – 1 columns if: 

where ε (specified by TOLERANCE) may be set. When a linear dependence is 
declared, all elements in the i-th row of R (column of L) are set to zero.

Modifications due to Farebrother and Berry (1974) and Barrett and Healy (1978) for 
checking for matrices that are not nonnegative definite also are incorporated. The 
IMSL_CHNNDSOL function declares A to be not nonnegative definite and issues an 
error message if either of the following conditions is satisfied:

1.   

2.  

aii rji
2

j 0=

i 1–

∑–  ε aii≤

aii rii
2

j 0=

i 1–

∑ rii
2<=

aik rjirjk
j 0=

i 1–

∑– ε aiiakk> k i>,r 0= and
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Healy’s (1968) algorithm and the IMSL_CHNNDSOL function permit the matrices A 
and R to occupy the same storage. Barrett and Healy (1978), in their remark, neglect 
this fact. The IMSL_CHNNDSOL function uses: 

in condition 2 above to remedy this problem.

If an inverse of the matrix A is required and the matrix is not (numerically) positive 
definite, then the resulting inverse is a symmetric g2 inverse of A. For a matrix G to be 
a g2 inverse of a matrix A, G must satisfy conditions 1 and 2 for the Moore-Penrose 
inverse but generally fail conditions 3 and 4. The four conditions for G to be a Moore-
Penrose inverse of A are as follows:

1. AGA = A

2. GAG = G

3. AG is symmetric

4. GA is symmetric

The solution of the linear system Ax = b is computed by solving the factored version 
of the linear system RTRx = b as two successive triangular linear systems. In solving 
the triangular linear systems, if the elements of a row of R are all zero, the 
corresponding element of the solution vector is set to zero. For a detailed description 
of the algorithm, see Section 2 in Sallas and Lionti (1988). This routine is useful to 
solve normal equations in a linear least-squares problem.

Example

A solution to a system of four linear equations is obtained. Maindonald (1984, pp. 
83–86, 104–105) discusses the computations for the factorization and solution to this 
problem.

RM, a, 4, 4
; Define the coefficient matrix.
row 0: 36 12 30  6
row 1: 12 20  2 10
row 2: 30  2 29  1
row 3:  6 10  1 14
RM, b, 4, 1
; Define the right-hand side.
row 0: 18
row 1: 22

rij
2

j 0=

i 1–

∑   for aii
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row 2:  7
row 3: 20
x = IMSL_CHNNDSOL(b, a)
; Define the right-hand side.
PM, x
; Output the results.

0.166667
0.500000
0.00000
1.00000

Errors

Warning Errors 

MATH_INCONSISTENT_EQUATIONS_2—Linear system of equations is inconsistent.

MATH_NOT_NONNEG_DEFINITE—Matrix A is not nonnegative definite.

Version History

6.4 Introduced
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IMSL_CHNNDFAC

The IMSL_CHNNDFAC procedure computes the Cholesky factorization of the real 
matrix A such that A = RTR = LLT.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_CHNNDFAC, a, fac [, /DOUBLE] [, INVERSE=variable] 
[, TOLERANCE=value]

Arguments

a

Two-dimensional matrix containing the coefficient matrix. Element A(i, j) contains 
the j-th coefficient of the i-th equation.

fac

Matrix containing the LLT factorization of A.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

Named variable into which the inverse of the matrix A is stored.

TOLERANCE

Used in determining linear dependence. Default: TOLERANCE = 100 ε, where ε is 
machine precision
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Discussion

The factorization algorithm is based on the work of Healy (1968) and proceeds 
sequentially by columns. The i-th column is declared to be linearly dependent on the 
first i – 1 columns if: 

where ε (specified in TOLERANCE) may be set. When a linear dependence is 
declared, all elements in the i-th row of R (column of L) are set to zero.

Modifications due to Farebrother and Berry (1974) and Barrett and Healy (1978) for 
checking for matrices that are not nonnegative definite also are incorporated. The 
IMSL_CHNNDFAC procedure declares A to not be nonnegative definite and issues 
an error message if either of the following conditions is satisfied:

1.  

2.  

Healy’s (1968) algorithm and the IMSL_CHNNDFAC procedure permit the matrices 
A and R to occupy the same storage. Barrett and Healy (1978) in their remark neglect 
this fact. The IMSL_CHNNDFAC procedure uses:  

aii rji
2

j 0=

i 1–

∑–  ε aii≤

aii rii
2

j 0=

i 1–

∑– ε aii–<

aik rjirjk
j 0=

i 1–

∑– ε aiiakk> k i>,r 0= and

rij
2

j 0=

i 1–

∑
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for  

in condition 2 above to remedy this problem.

If an inverse of the matrix A is required and the matrix is not (numerically) positive 
definite, then the resulting inverse is a symmetric g2 inverse of A. For a matrix G to be 
a g2 inverse of a matrix A, G must satisfy conditions 1 and 2 for the Moore-Penrose 
inverse, but generally fail conditions 3 and 4. The four conditions for G to be a 
Moore-Penrose inverse of A are as follows:

1. AGA = A

2. GAG = G

3. AG is symmetric

4. GA is symmetric

Example

The symmetric nonnegative definite matrix in the initial example of 
IMSL_CHNNDSOL is used to compute the factorization only in the first call to 
IMSL_CHNNDFAC. Then, IMSL_CHNNDSOL is called with both the LLT 
factorization and the right-hand side vector as the input to compute a solution x.

RM, a, 4, 4
; Define the coefficient matrix.
row 0: 36 12 30 6
row 1: 12 20 2 10
row 2: 30 2 29 1
row 3: 6 10 1 14
IMSL_CHNNDFAC, a, fac
PM, fac, Title = 'Factor', Format = '(4f12.3)'
Factor

6.000       2.000       5.000       1.000
2.000       4.000      -2.000       2.000
5.000      -2.000       0.000       0.000
1.000       2.000       0.000       3.000

RM, b, 4, 1
; Define the right-hand side.
row 0: 18
row 1: 22
row 2: 7
row 3: 20
; Compute the solution and output.
x = IMSL_CHNNDSOL(b, Factor = fac)

aii
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PM, x, Title = 'Solution'
Solution

0.166667
0.500000
0.00000
1.00000

Errors

Warning Errors

MATH_INCONSISTENT_EQUATIONS_2—Linear system of equations is inconsistent.

MATH_NOT_NONNEG_DEFINITE—Matrix A is not nonnegative definite. 

Version History

6.4 Introduced
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IMSL_LINLSQ

The IMSL_LINLSQ function solves a linear least-squares problem with linear 
constraints.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LINLSQ( b, a, c, bl, bu, contype [, ABS_TOLERANCE=value] 
[, /DOUBLE] [, ITMAX=value] [, REL_TOLERANCE=value] 
[, RESIDUAL=variable] [, XLB=array] [, XUB=array])

Return Value

One-dimensional array of length nca containing the approximate solution.

Arguments

a

Two-dimensional array of size nra by nca containing the coefficients of the least-
squares equations, where nra is the number of least-squares equations and nca is the 
number of variables.

B

One-dimensional array of length nra containing the right-hand sides of the least-
squares equations.

C

Two-dimensional array of size ncon by nca containing the coefficients of the 
constraints, where ncon is the number of constraints.

BL

One-dimensional array of length ncon containing the lower limit of the general 
constraints. If there is no lower limit on the i-th constraint, then bl(i) will not be 
referenced.
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BU

One-dimensional array of length ncon containing the upper limit of the general 
constraints. If there is no upper limit on the i-th constraint, then bu(i) will not be 
referenced. 

CONTYPE

One-dimensional array of length ncon indicating the type of constraints exclusive of 
simple bounds, where CONTYPE(i) = 0, 1, 2, 3 indicates =, ≤, ≥, and range 
constraints, respectively. 

contype(i) constraint

0

  

2

  

3

  

4

  

c i j,( )
j 0=
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∑ bl i( )=

c i j,( )
j 0=
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∑  bu i( )≤

bl i( ) c i j,( )
j 0=

nca 1–

∑≤

bl i( ) c i j,( )
j 0=
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∑  bu i( )≤ ≤
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Keywords

ABS_TOLERANCE

Absolute rank determination tolerance to be used. Default: 
ABS_TOLERANCE = SQRT(machine epsilon).

DOUBLE

If present and nonzero, double precision is used.

ITMAX

Set the maximum number of iterations. Default: ITMAX = 5*max(nra, nca)

REL_TOLERANCE

Relative rank determination tolerance to be used. Default: 
REL_TOLERANCE = SQRT(machine epsilon).

RESIDUAL

Named variable into which an one-dimensional array containing the residuals b − Ax 
of the least-squares equations at the approximate solution is stored.

XLB

One-dimensional array of length nca containing the lower bound on the variables. If 
there is no lower bound on the i-th variable, then Xlb(i) should be set to 1.0e30.

XUB

One-dimensional array of length nca containing the upper bound on the variables. If 
there is no upper bound on the i-th variable, then XUB(i) should be set to −1.0e30.

Discussion

The IMSL_LINLSQ function solves linear least-squares problems with linear 
constraints. These are systems of least-squares equations of the form

Ax ≅  b

subject to

bl ≤ Cx ≤ bu

xl ≤ x ≤ xu
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Here A is the coefficient matrix of the least-squares equations, b is the right-hand 
side, and C is the coefficient matrix of the constraints. The vectors bl, bu, xl and xu are 
the lower and upper bounds on the constraints and the variables, respectively. The 
system is solved by defining dependent variables y ≡ Cx and then solving the least-
squares system with the lower and upper bounds on x and y. The equation Cx − y = 0 
is a set of equality constraints. These constraints are realized by heavy weighting, i.e., 
a penalty method, Hanson (1986, pp. 826-834).

Examples

Example 1

This example solves the following problem in the least-squares sense:

3x1 + 2x2 + x3 = 3.3

4x1 +2x2 + x3 = 2.2

2x1 + 2x2 + x3 = 1.3

x1 + x2 + x3 = 1.0

Subject to:

x1 + x2 + x3 ≤ 1

0 ≤ x1 ≤ 0.5

0 ≤ x2 ≤ 0.5

0 ≤ x3 ≤ 0.5

a  =  TRANSPOSE([[3.0, 2.0, 1.0], [4.0, 2.0, 1.0], $
[2.0, 2.0, 1.0], [1.0, 1.0, 1.0]])

b  =  [3.3, 2.3, 1.3, 1.0]
c  =  [[1.0], [1.0], [1.0]]
xub  =  [0.5, 0.5, 0.5]
xlb  =  [0.0, 0.0, 0.0]
contype  =  [1]
bc  =  [1.0]
; Note that only upper bound is set for contype =1.
sol  =  IMSL_LINLSQ(b, a, c, bc, bc, contype, Xlb = xlb, Xub = xub)
PM, sol, Title = 'Solution'

0.500000
0.300000
0.200000
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Example 2

The same problem solved in the first example is solved again. This time residuals of 
the least-squares equations at the approximate solution are returned, and the norm of 
the residual vector is printed.

a  =  TRANSPOSE([[3.0, 2.0, 1.0], [4.0, 2.0, 1.0], $
[2.0, 2.0, 1.0], [1.0, 1.0, 1.0]])

b  =  [3.3, 2.3, 1.3, 1.0] 
c  =  [[1.0], [1.0], [1.0]]
xub  =  [0.5, 0.5, 0.5]
xlb  =  [0.0, 0.0, 0.0]
contype  =  [1]
bc  =  [1.0]
sol  =  IMSL_LINLSQ(b, a, c, bc, bc, contype, Xlb = xlb, $

Xub = xub, Residual = residual)
PM, sol, Title = 'Solution'
Solution

0.500000
0.300000
0.200000

PM, residual, Title = 'Residual'
Residual

-1.00000
0.500000
0.500000
0.00000

PRINT, 'Norm of Residual =', IMSL_NORM(residual)
Norm of Residual =      1.22474

Version History

6.4 Introduced
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IMSL_SP_LUSOL

The IMSL_SP_LUSOL function solves a sparse system of linear equations Ax = b. 
By using keywords, any of several related computations can be performed.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_LUSOL(b[, a] [, CONDITION=variable] [, /CSC_COL] 
[, /CSC_ROW] [, /CSC_VAL] [, FACTOR_COORD=value] 
[, GWTH_FACTOR=variable] [, GWTH_LIM=value] [, /HYBRID_DENSITY] 
[, /HYBRID_ORDER] [, ITER_REFINE=value] [, PIVOTING=value] 
[, MEMORY_BLOCK=value] [, N_NONZERO=variable] 
[, N_SEARCH_ROWS=value] [, SMALLEST_PVT=variable] 
[, STABILITY=value] [, TOL_DROP=value] [, TRANSPOSE=value])

Return Value

A one-dimensional array containing the solution of the linear system Ax = b. 

Arguments

b

One-dimensional matrix containing the right-hand side.

A

(Optional) Sparse matrix stored as an array of structures containing the coefficient 
matrix A(i,j). See “Sparse Matrices: Direct Methods” on page 69 and its related 
sections for a description of structures used for sparse matrices.

Keywords

CONDITION

Named variable into which an estimate of the L1 condition number is stored. The 
FACTOR_COORD and CONDITION keywords cannot be used together.
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CSC_COL

Accept the coefficient matrix in compressed sparse column (CSC) format. See 
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage 
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used 
together.

CSC_ROW

Accept the coefficient matrix in compressed sparse column (CSC) format. See 
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage 
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used 
together.

CSC_VAL

Accept the coefficient matrix in compressed sparse column (CSC) format. 
See“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage 
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used 
together.

FACTOR_COORD

The LU factorization of A as computed by IMSL_SP_LUFAC. If this keyword is 
used, then the argument A should not be used. This keyword is useful if solutions to 
systems involving the same coefficient matrix and multiple right-hand sides will be 
solved. The keywords FACTOR_COORD and CONDITION cannot be used together. 

GWTH_FACTOR

Named variable into which the largest element in absolute value at any stage of the 
Gaussian elimination divided by the largest element in absolute value in A is stored.

GWTH_LIM

The computation stops if the growth factor exceeds GWTH_LIMIT. Default: 
GWTH_LIMIT = 1.0e16

HYBRID_DENSITY

Enable the function to switch to a dense factorization method when the density of the 
active submatrix reaches 0.0 ≤ Hybrid_density ≤ 1.0 and the order of the active 
submatrix is less than or equal to Hybrid_order. The keywords HYBRID_DENSITY 
and HYBRID_ORDER must be used together.
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HYBRID_ORDER

Enable the function to switch to a dense factorization method when the density of the 
active submatrix reaches 0.0 ≤ Hybrid_density ≤ 1.0 and the order of the active 
submatrix is less than or equal to Hybrid_order. The keywords HYBRID_DENSITY 
and HYBRID_ORDER must be used together.

ITER_REFINE

If present and nonzero, iterative refinement will be applied.

PIVOTING

Scalar value specifying the pivoting method to use. For Row Markowitz, set 
PIVOTING to 1; for Column Markowitz, set PIVOTING to 2; and for Symmetric 
Markowitz, set PIVOTING to 3. Default: PIVOTING = 3

MEMORY_BLOCK

Supply the number of non-zeros which will be added to the factor if current 
allocations are inadequate. Default: MEMORY_BLOCK = N_ELEMENTS(a)

N_NONZERO

Named variable into which the total number of non-zeros in the factor is stored.

N_SEARCH_ROWS

The number of rows which have the least number of non-zero elements that will be 
searched for a pivot element. Default: N_SEARCH_ROWS = 3

SMALLEST_PVT

Named variable into which the value of the pivot element of smallest magnitude that 
occurred during the factorization is stored.

STABILITY

The absolute value of the pivot element must be bigger than the largest element in 
absolute value in its row divided by STABILITY. Default: STABILITY = 10.0

TOL_DROP

Possible fill-in is checked against this tolerance. If the absolute value of the new 
element is less than TOL_DROP, it will be discarded. Default: TOL_DROP = 0.0
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TRANSPOSE

If present and nonzero, ATx = b is solved.

Discussion

The IMSL_SP_LUSOL function solves a system of linear equations Ax = b, where A 
is sparse. In its default usage, it solves the so-called one off problem, by first 
performing an LU factorization of A using the improved generalized symmetric 
Markowitz pivoting scheme. The factor L is not stored explicitly because the saxpy 
operations performed during the elimination are extended to the right-hand side, 
along with any row interchanges. Thus, the system Ly = b is solved implicitly. The 
factor U is then passed to a triangular solver which computes the solution x from 
Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually 
more efficient to compute the factorization once, and perform multiple forward and 
back solves with the various right-hand sides. In this case the factor L is explicitly 
stored and a record of all row as well as column interchanges is made. The solve step 
then solves the two triangular systems Ly = b and Ux = y. In this case, you should 
first call IMSL_SP_LUFAC to compute the factorization, then use the keyword 
FACTOR_COORD with the IMSL_SP_LUSOL function.

If the solution to ATx = b is required, specify the keyword Transpose. This keyword 
only alters the forward elimination and back substitution so that the operations 
UTy = b and LTx = y are performed to obtain the solution. So, with one call to 
IMSL_SP_LUFAC to produce the factorization, solutions to both Ax = b and ATx = b 
can be obtained. 

The keyword CONDITION is used to calculate and return an estimation of the L1 
condition number of A. The algorithm used is due to Higham. Specifying 
CONDITION causes a complete L to be computed and stored, even if a one-off 
problem is being solved. This is due to the fact that Higham’s method requires a 
solution to problems of the form Az = r and ATz = b .

The default pivoting strategy is symmetric Markowitz (PIVOTING = 3). If a row or 
column oriented problem is encountered, there may be some reduction in fill-in by 
selecting either PIVOTING = 1 for Row Markowitz, or PIVOTING = 2 for column 
Markowitz. The Markowitz strategy will search a pre-elected number of rows or 
columns for pivot candidates. The default number is three, but this can be changed by 
using the keyword N_SEARCH_ROWS.

The keyword TOL_DROP can be used to set a tolerance which can reduce fill-in. 
This works by preventing any new fill element which has magnitude less than the 
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specified drop tolerance from being added to the factorization. Since this can 
introduce substantial error into the factorization, it is recommended that the keyword 
ITER_REFINE be used to recover more accuracy in the final solution. The trade-off 
is between space savings from the drop tolerance and the extra time needed in 
repeated solve steps needed for refinement. 

The IMSL_SP_LUSOL function provides the option of switching to a dense 
factorization method at some point during the decomposition. This option is enabled 
by specifying the keywords HYBRID_DENSITY and HYBRID_ORDER. 
HYBRID_DENSITY specifies a minimum density for the active submatrix before a 
format switch will occur. A density of 1.0 indicates complete fill-in. 
HYBRID_ORDER places an upper bound of the order of the active submatrix which 
will be converted to dense format. This is used to prevent a switch from occurring too 
early, possibly when the O(n3) nature of the dense factorization will cause 
performance degradation. Note that this option can significantly increase heap 
storage requirements.

Example

As an example, consider the following matrix:  

Let xT = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33, –34, 31)T. The number of 
nonzeros in A is 15. 

A = replicate(imsl_f_sp_elem, 15)
; Define the sparse matrix A using coordinate storage format.
a(*).row = [0, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5]
a(*).col = [0, 1, 2, 3, 2, 0, 3, 4, 0, 3, 4, 5, 0, 1, 5]
a(*).val = [10, 10, -3, -1, 15, -2, 10, -1, -1, -5, $

1, -3, -1, -2, 6]
b = [10, 7, 45, 33, -34, 31]
; Define the right-hand side.
x = IMSL_SP_LUSOL(b, a)
; Call IMSL_SP_LUSOL, then print out result and the residual.
PM, x

A

10 0 0 0 0 0

0 10 3– 1– 0 0

0 0 15 0 0 0
2– 0 0 10 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=
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1.0000000
2.0000000
3.0000000
4.0000000
5.0000000
6.0000000

PM, IMSL_SP_MVMUL(6, 6, a, x) - b
0.0000000
-8.8817842e-16
0.0000000
0.0000000
0.0000000
0.0000000

Version History

See Also

IMSL_SP_LUFAC

6.4 Introduced
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IMSL_SP_LUFAC

The IMSL_SP_LUFAC function computes an LU factorization of a sparse matrix 
stored in either coordinate format or CSC format. Using keywords, any of several 
related computations can be performed.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_LUFAC(a, n_rows [, CONDITION=variable] [, /CSC_COL] 
[, /CSC_ROW] [, /CSC_VAL] [, GWTH_FACTOR=variable] 
[, GWTH_LIM=value] [, /HYBRID_DENSITY] [, /HYBRID_ORDER] 
[,/ITER_REFINE=value] [, MEMORY_BLOCK=value] 
[, N_NONZEROS=variable] [, N_SEARCH_ROWS=value] 
[, PIVOTING=value] [, SMALLEST_PVT=variable] [, STABILITY=value] 
[, TOL_DROP=value] [, TRANSPOSE=value])

Return Value

Structure containing the LU factorization of A.

Arguments

a

Sparse matrix stored as an array of structures containing the coefficient matrix A(i,j). 
See “Sparse Matrices: Direct Methods” on page 69 and its related sections for a 
description of structures used for sparse matrices.

n_rows

The number of rows in a.

Keywords

CONDITION

Named variable into which an estimate of the L1 condition number is stored. 
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CSC_COL

Accept the coefficient matrix in compressed sparse column (CSC) format. See 
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage 
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used 
together.

CSC_ROW

Accept the coefficient matrix in compressed sparse column (CSC) format. See 
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage 
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used 
together.

CSC_VAL

Accept the coefficient matrix in compressed sparse column (CSC) format. See 
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage 
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used 
together.

GWTH_FACTOR

Named variable into which the largest element in absolute value at any stage of the 
Gaussian elimination divided by the largest element in absolute value in A is stored.

GWTH_LIM

The computation stops if the growth factor exceeds GWTH_LIMIT. Default: 
GWTH_LIMIT = 1.0e16 

HYBRID_DENSITY

Enable the function to switch to a dense factorization method when the density of the 
active submatrix reaches 0.0 ≤ HYBRID_DENSITY ≤ 1.0 and the order of the active 
submatrix is less than or equal to HYBRID_ORDER. The keywords 
HYBRID_DENSITY and HYBRID_ORDER must be used together.

HYBRID_ORDER

Enable the function to switch to a dense factorization method when the density of the 
active submatrix reaches 0.0 ≤ HYBRID_DENSITY ≤ 1.0 and the order of the active 
submatrix is less than or equal to HYBRID_ORDER. The keywords 
HYBRID_DENSITY and HYBRID_ORDER must be used together.
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ITER_REFINE

If present and nonzero, iterative refinement will be applied.

MEMORY_BLOCK

Supply the number of non-zeros which will be added to the factor if current 
allocations are inadequate. Default: MEMORY_BLOCK = N_ELEMENTS(a) 

N_NONZEROS

Named variable into which the total number of non-zeros in the factor is stored. 

N_SEARCH_ROWS

The number of rows which have the least number of non-zero elements that will be 
searched for a pivot element. Default: N_SEARCH_ROWS = 3 

PIVOTING

Scalar value specifying the pivoting method to use. For Row Markowitz, set 
PIVOTING to 1; for Column Markowitz, set PIVOTING to 2; and for Symmetric 
Markowitz, set PIVOTING to 3. Default: PIVOTING = 3 

SMALLEST_PVT

Named variable into which the value of the pivot element of smallest magnitude that 
occurred during the factorization is stored.

STABILITY

The absolute value of the pivot element must be bigger than the largest element in 
absolute value in its row divided by STABILITY. Default: STABILITY = 10.0 

TOL_DROP

Possible fill-in is checked against this tolerance. If the absolute value of the new 
element is less than TOL_DROP, it will be discarded. Default: TOL_DROP = 0.0 

TRANSPOSE

If present and nonzero, ATx = b is solved.
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Discussion

The IMSL_SP_LUFAC function computes an LU factorization of A using the 
improved generalized symmetric Markowitz pivoting scheme. 

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually 
more efficient to compute the factorization once, and perform multiple forward and 
back solves with the various right-hand sides. In this case, the factor L is explicitly 
stored and a record of all rows as well as column interchanges is made. The solve step 
then solves the two triangular systems Ly = b and Ux = y. In this case, first call 
IMSL_SP_LUFAC to compute the factorization, then use the keyword 
FACTOR_COORD with the IMSL_SP_LUSOL function.

If the solution to ATx = b is required, specify the keyword TRANSPOSE. This 
keyword only alters the forward elimination and back substitution so that the 
operations UTy = b and LTx = y are performed to obtain the solution. So, with one call 
to IMSL_SP_LUFAC to produce the factorization, solutions to both Ax = b and ATx 
= b can be obtained. 

The keyword CONDITION is used to calculate and return an estimation of the L1 
condition number of A. The algorithm used is due to Higham. Specifying 
CONDITION causes a complete L to be computed and stored, even if a one-off 
problem is being solved. This is due to the fact that Higham’s method requires 
solution to problems of the form Az = r and ATz = r.

The default pivoting strategy is symmetric Markowitz (PIVOTING = 3). If a row or 
column oriented problem is encountered, there may be some reduction in fill-in by 
selecting either PIVOTING = 1 for row Markowitz, or PIVOTING = 2 for column 
Markowitz. The Markowitz strategy will search a pre-elected number of rows or 
columns for pivot candidates. The default number is three, but this can be changed by 
using the keyword N_SEARCH_ROWS.

The keyword TOL_DROP can be used to set a tolerance which can reduce fill-in. 
This works by preventing any new fill element which has magnitude less than the 
specified drop tolerance from being added to the factorization. Since this can 
introduce substantial error into the factorization, it is recommended that the keyword 
ITER_REFINE be used to recover more accuracy in the final solution. The trade-off 
is between space savings from the drop tolerance and the extra time needed in 
repeated solve steps needed for refinement. 

The IMSL_SP_LUFAC function provides the option of switching to a dense 
factorization method at some point during the decomposition. This option is enabled 
by specifying the keywords HYBRID_DENSITY and HYBRID_ORDER. 
HYBRID_DENSITY specifies a minimum density for the active submatrix before a 
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format switch will occur. A density of 1.0 indicates complete fill-in. 
HYBRID_ORDER places an upper bound of the order of the active submatrix which 
will be converted to dense format. This is used to prevent a switch from occurring too 
early, possibly when the O(n3) nature of the dense factorization will cause 
performance degradation. Note that this option can significantly increase heap 
storage requirements.
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Example

As an example, consider the following matrix: 

Let:

x1
T = (1, 2, 3, 4, 5, 6)

so that: 

x1 = (10, 7, 45, 33, –34, 31)T, 

and let:

x2
T = (5, 10, 15, 15, 10, 5)

so that:

Ax2 = (50, 40, 225, 130, –85, 5)T

This example factors A using IMSL_SP_LUFAC, and computes solutions to the 
systems Ax1 = b1 and Ax2 = b2 using the computed factor as input to 
IMSL_SP_LUSOL.

A = replicate(imsl_f_sp_elem, 15)
; Define the sparse matrix A using coordinate storage format.
a(*).row = [0, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5]
a(*).col = [0, 1, 2, 3, 2, 0, 3, 4, 0, 3, 4, 5, 0, 1, 5]
a(*).val = [10, 10, -3, -1, 15, -2, 10, -1, -1, -5, $

1, -3, -1, -2, 6]
b1 = [10, 7, 45, 33, -34, 31]
b2 = [50, 40, 225, 130, -85, 5]
; Define the right-hand sides.
factor = IMSL_SP_LUFAC(a, 6)
; Compute the LU factorization.
x1 = IMSL_SP_LUSOL(b1, factor_coord = factor)
; Call IMSL_SP_LUSOL with factor and b1, then print result 
; and the sum of the residuals.
PM, x1

A

10 0 0 0 0 0

0 10 3– 1– 0 0

0 0 15 0 0 0

2– 0 0 10 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=
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1.0000000
2.0000000
3.0000000
4.0000000
5.0000000
6.0000000

PM, TOTAL(ABS(IMSL_SP_MVMUL(6, 6, a, x1) - b1))
8.8817842e-16

x2 = IMSL_SP_LUSOL(b2, factor_coord = factor)
; Call IMSL_SP_LUSOL with factor and b2, then print out 
; result and the sum of the residuals.
PM, x2

5.0000000
10.000000
15.000000
15.000000
10.000000
5.0000000

PM, TOTAL(ABS(IMSL_SP_MVMUL(6, 6, a, x2) - b2))
1.4210855e-14

Version History

See Also

IMSL_SP_LUSOL

6.4 Introduced
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IMSL_SP_BDSOL

The IMSL_SP_BDSOL function solves a general band system of linear equations 
Ax = b. By using keywords, any of several related computations can be performed.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_BDSOL(b, nlca, nuca[, a] [, BLK_FACTOR=value] 
[, CONDITION=variable] [, /DOUBLE] [, FACTOR=array] [, PIVOT=array] 
[, TRANSPOSE=value] )

Return Value

A one-dimensional array containing the solution of the linear system Ax = b. 

Arguments

b

One-dimensional matrix containing the right-hand side.

nlca

Number of lower codiagonals in a.

nuca

Number of upper codiagonals in a.

a

(Optional) Array of size (nlca + nuca + 1) x n containing the n x n banded coefficient 
matrix in band storage mode A(i, j). See “Band Storage Format” on page 73 for a 
description of band storage mode.
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Keywords

BLK_FACTOR

The blocking factor. This keyword must be set no larger than 32. Default: 
BLK_FACTOR = 1.

CONDITION

Named variable into which an estimate of the L1 condition number is stored. This 
keyword cannot be used with PIVOT and FACTOR. 

DOUBLE

If present and nonzero, double precision is used. 

FACTOR

An array of size (2*nlca + nuca + 1) x N_ELEMENTS(b) containing the LU 
factorization of A with column pivoting, as returned from IMSL_SP_BDFAC. The 
keywords PIVOT and FACTOR must be used together. The keywords FACTOR and 
CONDITION cannot be used together. 

PIVOT

One-dimensional array containing the pivot sequence. The keywords PIVOT and 
FACTOR must be used together. The keywords PIVOT and CONDITION cannot be 
used together. 

TRANSPOSE

If present and nonzero, ATx = b is solved.

Discussion

The IMSL_SP_BDSOL function solves a system of linear algebraic equations with a 
real or complex band matrix A. It first computes the LU factorization of A with based 
on the blocked LU factorization algorithm given in Du Croz, et al, (1990). Level-3 
BLAS invocations were replaced by in-line loops. The blocking factor 
BLK_FACTOR has the default value of 1, but can be reset to any positive value not 
exceeding 32.

The solution of the linear system is then found by solving two simpler systems, 
y = L–1b and x = U–1y. When the solution to the linear system or the inverse of the 
IDL Analyst Reference Guide IMSL_SP_BDSOL
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matrix is sought, an estimate of the L1 condition number of A is computed using 
Higham’s modifications to Hager’s method, as given in Higham (1988). If the 
estimated condition number is greater than 1/ε (where ε is the machine precision), a 
warning message is issued. This indicates that very small changes in A may produce 
large changes in the solution x. The IMSL_SP_BDSOL function fails if U, the upper 
triangular part of the factorization, has a zero diagonal element.

Example

Consider the 1000 x 1000 banded matrix below: 

This example computes the solution to Ax = b, where b is a random vector.

n_rows = 1000L
nlca = 1L
nuca = 1L
a = DBLARR(n_rows*(nlca+nuca+1))
a(1:n_rows-1) = 4
a(n_rows:2*n_rows-1) = -1
a(2*n_rows:*) = 4
; Fill A with the values of the bands.
seed = 123L
b = RANDOMU(seed, n_rows)
; Compute a random right-hand side.
x = IMSL_SP_BDSOL(b, nlca, nuca, a)
; Compute the solution using IMSL_SP_BDSOL above, 
; and output residual.
PM, TOTAL(ABS(IMSL_SP_MVMUL(n_rows, n_rows, nlca, nuca, a, x)-b))

1.2367884e-13

A

1– 4
4 1– 4

4 1– .

. . .

. –1 4

4 1– 4

4 1–

=
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Version History

See Also

IMSL_SP_BDFAC

6.4 Introduced
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IMSL_SP_BDFAC

The IMSL_SP_BDFAC procedure computes the LU factorization of a matrix stored 
in band storage mode.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_SP_BDFAC, nlca, nuca, n_rows, a, pivot, factor [, BLK_FACTOR=value] 
[, CONDITION=variable] [, /DOUBLE]

Arguments

a

Array of size (nlca + nuca + 1) x n containing the n x n banded coefficient matrix in 
band storage mode A(i,j). See “Band Storage Format” on page 73 for a description of 
band storage mode. 

factor

A named variable that will contain an array of size (2*nlca + nuca + 1) x n_rows 
containing the LU factorization of A with column pivoting. The keywords FACTOR 
and CONDITION cannot be used together. 

n_rows

Number of rows in a.

nlca

Number of lower codiagonals in a.

nuca

Number of upper codiagonals in a.
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pivot

A named variable that will contain a one-dimensional array containing the pivot 
sequence. The keywords PIVOT and CONDITION cannot be used together. 

Keywords

BLK_FACTOR

The blocking factor. This keyword must be set no larger than 32. Default: 
BLK_FACTOR = 1.

CONDITION

Named variable into which an estimate of the L1 condition number is stored. The 
keyword CONDITION cannot be used with arguments pivot or factor. 

DOUBLE

If present and nonzero, double precision is used. 

Discussion

The IMSL_SP_BDFAC function computes the LU factorization of A with based on 
the blocked LU factorization algorithm given in Du Croz, et al, (1990). Level-3 
BLAS invocations were replaced by in-line loops. The blocking factor 
BLK_FACTOR has the default value of 1, but can be reset to any positive value not 
exceeding 32.

An estimate of the L1 condition number of A is computed using Higham’s 
modifications to Hager’s method, as given in Higham (1988). If the estimated 
condition number is greater than 1/ε (where ε is the machine precision), a warning 
message is issued. This indicates that very small changes in A may produce large 
changes in the solution x.
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Example

Consider the 1000 x 1000 banded matrix below:

This example computes the solution to Ax1 = b1 and Ax2 = b2, where b1 and b2 are 
random vectors. The factorization is computed just once, using IMSL_SP_BDFAC, 
and the solutions are computed using IMSL_SP_BDSOL.

n_rows = 1000L
nlca = 1L
nuca = 1L
a = DBLARR(n_rows*(nlca+nuca+1))
a(1:n_rows-1) = 4
a(n_rows:2*n_rows-1) = -1
a(2*n_rows:*) = 4
; Fill A with the values of the bands.
seed = 123L
b1 = RANDOMU(seed, n_rows)
b2 = RANDOMU(seed, n_rows)
; Fill random vectors
IMSL_SP_BDFAC, nlca, nuca, n_rows, a, pivot, factor
; Compute the factorization using IMSL_SP_BDFAC.
x1 = IMSL_SP_BDSOL(b1, nlca, nuca, Factor = factor, Pivot = pivot)
; Compute solution of Ax1 = b1 above, and output residual below.
PM, TOTAL(ABS(IMSL_SP_MVMUL(n_rows, n_rows, nlca, nuca, $

a, x1)-b1))

1.2367884e-13

x2 = IMSL_SP_BDSOL(b2, nlca, nuca, Factor = factor, Pivot = pivot)
; Compute the solution of Ax2 = b2 above, and output residual.
PM, TOTAL(ABS(IMSL_SP_MVMUL(n_rows, n_rows, nlca, nuca, $

a, x2)-b2))

9.1537888e-14

A

1– 4

4 1– 4

4 1– .

. . .

. –1 4

4 1– 4

4 1–

=
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Version History

See Also

IMSL_SP_BDSOL

6.4 Introduced
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IMSL_SP_PDSOL

The IMSL_SP_PDSOL function solves a sparse symmetric positive definite system 
of linear equations Ax = b. 

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_PDSOL(b,[, a] [, /CSC_COL] [, /CSC_ROW] [, /CSC_VAL] 
[, FACTOR=value] [, LG_DIAG=value] [, MULTIFRONTAL=value] 
[, N_NONZERO=variable] [, SM_DIAG=value] )

Return Value

A one-dimensional array containing the solution of the linear system Ax = b. 

Arguments

b

One-dimensional matrix containing the right-hand side.

a

(Optional) Sparse matrix stored as an array of structures containing non-zeros in 
lower triangle of the coefficient matrix A(i,j). See “Sparse Matrices: Direct Methods” 
on page 69 and its related sections for a description of structures used for sparse 
matrices.

Keywords

CSC_COL

Accept the coefficient matrix in compressed sparse column (CSC) format. See 
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage 
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used 
together.
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CSC_ROW

Accept the coefficient matrix in compressed sparse column (CSC) format. See 
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage 
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used 
together.

CSC_VAL

Accept the coefficient matrix in compressed sparse column (CSC) format. See 
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage 
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used 
together.

FACTOR

The factorization of A as computed by IMSL_SP_PDFAC. If this keyword is used, 
then the argument a should not be used. This keyword is useful if solutions to systems 
involving the same coefficient matrix and multiple right-hand sides will be solved.

LG_DIAG

The largest diagonal element that occurred during the numeric factorization. This 
keyword is not valid if the keyword FACTOR is used.

MULTIFRONTAL

If present and nonzero, perform the numeric factorization using a multifrontal 
technique. By default a standard factorization is computed based on a sparse 
compressed storage scheme. The keywords MULTIFRONTAL and FACTOR cannot 
be used together. 

N_NONZERO

Named variable into which the total number of non-zeros in the factor is stored. This 
keyword is not valid if the keyword FACTOR is used.

SM_DIAG

The smallest diagonal element that occurred during the numeric factorization. This 
keyword is not valid if the keyword FACTOR is used.
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Discussion

The IMSL_SP_PDSOL function solves a system of linear algebraic equations having 
a sparse symmetric positive definite coefficient matrix A. In IMSL_SP_PDSOL 
default usage, a symbolic factorization of a permutation of the coefficient matrix is 
computed first, then a numerical factorization is performed. The solution of the linear 
system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a 
minimum degree ordering and then setting up a sparse data structure for the Cholesky 
factor, L. This step only requires the “pattern” of the sparse coefficient matrix, that is, 
the locations of the non-zero elements but not any of the elements themselves. 

The numerical factorization can be carried out in one of two ways. By default, the 
standard factorization is performed based on a sparse compressed storage scheme. 
This is fully described in George and Liu (1981). Optionally, a multifrontal technique 
can be used. The multifrontal method requires more storage but will be faster in 
certain cases. The multifrontal factorization is based on the routines in Liu (1987). 
For a detailed description of this method, see Liu (1990), also Duff and Reid (1983, 
1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989).

If an application requires that several linear systems be solved where the coefficient 
matrix is the same but the right-hand sides change, the IMSL_SP_PDFAC function 
can be used to precompute the Cholesky factor. Then the keyword FACTOR can be 
used in IMSL_SP_PDSOL to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following 
calculations:

Ly1 = Pb 

LTy2 = y1 

x = PTy2 

The permutation information, P, is carried in the numeric factor structure.
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Example

As an example consider the 5 x 5 coefficient matrix:  

Let xT = (5, 4, 3, 2, 1) so that Ax = (55, 83, 103, 97, 82)T. The number of non-zeros in 
the lower triangle of A is nz = 10. The sparse coordinate form for the lower triangle is 
given by:

Since this representation is not unique, an equivalent form would be:

A = REPLICATE(imsl_f_sp_elem, 10) 
a(*).row = [0, 1, 2, 2, 3, 3, 4, 4, 4, 4]
a(*).col = [0, 1, 0, 2, 2, 3, 0, 1, 3, 4]
a(*).val = [10, 20, 1, 30, 4, 40, 2, 3, 5, 50] 
b = [55.0d0, 83, 103, 97, 82] 
x = IMSL_SP_PDSOL(b, a)
PM, x

5.0000000
4.0000000
3.0000000
2.0000000

row 0 1 2 2 3 3 4 4 4 4

col 0 1 0 2 2 3 0 1 3 4

val 10 20 1 30 4 40 2 3 5 50

row 3 4 4 4 0 1 2 2 3 4

col 3 0 1 3 0 1 0 2 2 4

val 40 2 3 5 10 20 1 30 4 50

a

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

=
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1.0000000

Version History

See Also

IMSL_SP_PDFAC

6.4 Introduced
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IMSL_SP_PDFAC

The IMSL_SP_PDFAC function computes a factorization of a sparse symmetric 
positive definite system of linear equations Ax = b. 

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_PDFAC(a, n_rows [, /CSC_COL] [, /CSC_ROW] [, /CSC_VAL] 
[, LG_DIAG=value] [, MULTIFRONTAL=value] [, N_NONZERO=variable] 
[, SM_DIAG=value] )

Return Value

The factorization of Ax = b. 

Arguments

a

Sparse matrix stored as an array of structures containing non-zeros in lower triangle 
of the coefficient matrix A(i,j). See “Sparse Matrices: Direct Methods” on page 69 
and its related sections for a description of structures used for sparse matrices.

n_rows

The number of rows in a.

Keywords

CSC_COL

Accept the coefficient matrix in compressed sparse column (CSC) format. See 
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage 
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used 
together.
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CSC_ROW

Accept the coefficient matrix in compressed sparse column (CSC) format. See 
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage 
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used 
together.

CSC_VAL

Accept the coefficient matrix in compressed sparse column (CSC) format. See 
“Sparse Coordinate Storage Format” on page 70 for a discussion of this storage 
scheme. The keywords CSC_COL, CSC_ROW, and CSC_VAL must be used 
together.

LG_DIAG

The largest diagonal element that occurred during the numeric factorization. 

MULTIFRONTAL

If present and nonzero, perform the numeric factorization using a multifrontal 
technique. By default a standard factorization is computed based on a sparse 
compressed storage scheme 

N_NONZERO

Specifies a named variable into which the total number of non-zeros in the factor is 
stored.

SM_DIAG

The smallest diagonal element that occurred during the numeric factorization. 

Discussion

The IMSL_SP_PDFAC function computes a factorization of a sparse symmetric 
positive definite coefficient matrix A. In this function’s default usage, a symbolic 
factorization of a permutation of the coefficient matrix is computed first. Then a 
numerical factorization is performed. 

The symbolic factorization step of the computation consists of determining a 
minimum degree ordering and then setting up a sparse data structure for the Cholesky 
factor, L. This step only requires the “pattern” of the sparse coefficient matrix, that is, 
the locations of the non-zero elements but not any of the elements themselves. 
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The numerical factorization can be carried out in one of two ways. By default, the 
standard factorization is performed based on a sparse compressed storage scheme. 
This is fully described in George and Liu (1981). Optionally, a multifrontal technique 
can be used. The multifrontal method requires more storage but will be faster in 
certain cases. The multifrontal factorization is based on the routines in Liu (1987). 
For a detailed description of this method, see Liu (1990), also Duff and Reid (1983, 
1984), Ashcraft (1987), Ashcraft, et al. (1987), and Liu (1986, 1989).

If an application requires that several linear systems be solved where the coefficient 
matrix is the same but the right-hand sides change, IMSL_SP_PDFAC can be used to 
precompute the Cholesky factor. Then the keyword Factor can be used in 
IMSL_SP_PDSOL to efficiently solve all subsequent systems.

Given numeric factorization, x is obtained by the following calculations:

Ly1 = Pb 

LTy2 = y1 

x = PTy2 

The permutation information, P, is carried in the numeric factor structure.

Example

As an example consider the 5 x 5 coefficient matrix: 

Let x1
T = (5, 4, 3, 2, 1) so that Ax1 = (55, 83, 103, 97, 82)T. Let x2

T = (1, 2, 3, 4, 5) so 
that Ax2 = (23, 55, 107, 197, 278)T. The number of non-zeros in the lower triangle of 
A is nz = 10. The sparse coordinate form for the lower triangle is given by: 

row 0 1 2 2 3 3 4 4 4 4

col 0 1 0 2 2 3 0 1 3 4

val 10 20 1 30 4 40 2 3 5 50

a

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

=
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Since this representation is not unique, an equivalent form would be:

A = REPLICATE(imsl_f_sp_elem, 10) 
a(*).row = [0, 1, 2, 2, 3, 3, 4, 4, 4, 4]
a(*).col = [0, 1, 0, 2, 2, 3, 0, 1, 3, 4]
a(*).val = [10, 20, 1, 30, 4, 40, 2, 3, 5, 50] 
b1 = [55, 83, 103, 97, 82] 
b2 = [23, 55, 107, 197, 278]
factor = IMSL_SP_PDFAC(a, 5)
x1 = IMSL_SP_PDSOL(b1, FACTOR = factor)
PM, x1

5.0000000
4.0000000
3.0000000
2.0000000
1.0000000

x2 = IMSL_SP_PDSOL(b2, FACTOR = factor)
PM, x2

1.0000000
2.0000000
3.0000000
4.0000000
5.0000000

Version History

See Also

IMSL_SP_PDSOL

row 3 4 4 4 0 1 2 2 3 4

col 3 0 1 3 0 1 0 2 2 4

val 40 2 3 5 10 20 1 30 4 50

6.4 Introduced
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IMSL_SP_BDPDSOL

The IMSL_SP_BDPDSOL function solves a symmetric positive definite system of 
linear equations Ax = b in band symmetric storage mode. Using keywords, any of 
several related computations can be performed.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_BDPDSOL(b, ncoda[, a] [, CONDITION=variable] 
[, /DOUBLE] [, FACTOR=array])

Return Value

A one-dimensional array containing the solution of the linear system Ax = b. 

Arguments

b

One-dimensional matrix containing the right-hand side.

ncoda

Number of upper codiagonals in a.

a

(Optional) Array of size (ncoda + 1) x n containing the n x n banded coefficient 
matrix in band symmetric storage mode A(i, j). See “Band Storage Format” on 
page 73 for a description of band symmetric storage mode.
IDL Analyst Reference Guide IMSL_SP_BDPDSOL



154 Chapter 4: Linear Systems
Keywords

CONDITION

Named variable into which an estimate of the L1 condition number is stored. This 
keyword cannot be used if a previously computed factorization is specified with the 
keyword FACTOR.

DOUBLE

If present and nonzero, double precision is used. 

FACTOR

An array of size (ncoda + 1) x N_ELEMENTS(b) containing the RTR factorization of 
A in band symmetric storage mode, as returned from IMSL_SP_BDPDFAC.

Discussion

The IMSL_SP_BDPDSOL function solves a system of linear algebraic equations 
with a symmetric positive definite band coefficient matrix A. It computes the RTR 
Cholesky factorization of A. R is an upper triangular band matrix.

The L1 condition number of A is computed using Higham’s modifications to Hager’s 
method, as given in Higham (1988). If the estimated condition number is greater than 
1/ε (where ε is the machine precision), a warning message is issued. This indicates 
that very small changes in A may produce large changes in the solution x.

The IMSL_SP_BDPDSOL function fails if any submatrix of R is not positive definite 
or if R has a zero diagonal element. These errors occur only if A is very close to a 
singular matrix or to a matrix which is not positive definite.

The IMSL_SP_BDPDSOL function is partially based on the LINPACK subroutines 
CPBFA and SPBSL; see Dongarra et al. (1979).
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Example

Solve a system of linear equations Ax = b, where:  

n = 4L
ncoda = 2L
a = DBLARR((ncoda+1)*n)
a(0:n-1) = [0, 0, -1, 1]
a(n:2L*n-1) = [0, 0, 2, -1]
a(2L*n:*) = [2, 4, 7, 3]
; Define A in band symmetric storage mode.
b = [6, -11, -11, 19]
x = IMSL_SP_BDPDSOL(b, ncoda, a)
; Compute the solution
PM, x

4.0000000
-6.0000000
2.0000000
9.0000000

Version History

See Also

IMSL_SP_BDFAC

IMSL_SP_BDPDFAC

6.4 Introduced

A

2 0 1– 0

0 4 2 1

1– 2 7 1–

0 1 1– 3

=

b

6

11–

11–

19

=
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IMSL_SP_BDPDFAC

The IMSL_SP_BDPDFAC function computes the RTR Cholesky factorization of 
symmetric positive definite matrix, A, in band symmetric storage mode.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_BDPDFAC(a, n, ncoda [, CONDITION=variable] 
[, /DOUBLE])

Return Value

An array of size (ncoda + 1) x n containing the RTR factorization of A in band 
symmetric storage mode.

Arguments

a

Array of size (ncoda + 1) x n containing the n x n banded coefficient matrix in band 
symmetric storage mode A(i,j). See “Band Storage Format” on page 73 for a 
description of band symmetric storage mode.

n

Number rows in a.

ncoda

Number of upper codiagonals in a.

Keywords

CONDITION

Specifies a named variable into which an estimate of the L1 condition number is 
stored. 
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DOUBLE

If present and nonzero, double precision is used. 

Discussion

The IMSL_SP_BDPDFAC function computes the RTR Cholesky factorization of A. R 
is an upper triangular band matrix.

The L1 condition number of A is computed using Higham’s modifications to Hager’s 
method, as given in Higham (1988). If the estimated condition number is greater than 
1/ε (where ε is the machine precision), a warning message is issued. This indicates 
that very small changes in A may produce large changes in the solution x.

The IMSL_SP_BDPDFAC function fails if any submatrix of R is not positive definite 
or if R has a zero diagonal element. These errors occur only if A is very close to a 
singular matrix or to a matrix which is not positive definite.

The IMSL_SP_BDPDFAC function is partially based on the LINPACK subroutines 
CPBFA and SPBSL; see Dongarra et al. (1979).
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Example

Solve a system of linear equations Ax = b, using both IMSL_SP_BDPDFAC and 
IMSL_SP_BDPDSOL, where:  

n = 4L
ncoda = 2L
a = DBLARR((ncoda+1)*n)
a(0:n-1) = [0, 0, -1, 1]
a(n:2L*n-1) = [0, 0, 2, -1]
a(2L*n:*) = [2, 4, 7, 3]
; Define A in band symmetric storage mode.
b = [6, -11, -11, 19]
factor = IMSL_SP_BDPDFAC(a, n, ncoda)
; Use IMSL_SP_BDPDFAC to compute the factorization.
x = IMSL_SP_BDPDSOL(b, ncoda, Factor=factor)
; Compute the solution
PM, x

4.0000000
-6.0000000
2.0000000
9.0000000

Version History

6.4 Introduced

A

2 0 1– 0

0 4 2 1

1– 2 7 1–

0 1 1– 3

=

b

6

11–

11–

19

=
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See Also

IMSL_SP_BDFAC

IMSL_SP_BDPDSOL
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IMSL_SP_GMRES

The IMSL_SP_GMRES function solves a linear system Ax = b using the restarted 
generalized minimum residual (GMRES) method.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_GMRES(amultp, b [, /DOUBLE] [, HH_REORTH=value] 
[, ITMAX=value] [, MAX_KRYLOV=value] [, PRECOND=value] 
[, TOLERANCE=value])

Return Value

A one-dimensional array containing the solution of the linear system Ax = b. 

Arguments

amultp

Scalar string specifying a user supplied function that computes z = Ap. The function 
accepts the argument p, and returns the vector Ap.

b

One-dimensional matrix containing the right-hand side.

Keywords

DOUBLE

If present and nonzero, double precision is used. 

HH_REORTH

If present and nonzero, perform orthogonalization by Householder transformations, 
replacing the Gram-Schmidt process.
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ITMAX

Initially set to the maximum number of GMRES iterations allowed. On exit, the 
number of iterations used is returned. Default: ITMAX = 1000

MAX_KRYLOV

The maximum Krylov subspace dimension, that is, the maximum allowable number 
of GMRES iterations allowed before restarting. Default: 
MAX_KRYLOV = Minimum(N_ELEMENTS(b), 20).

PRECOND

Scalar sting specifying a user supplied function which sets z = M–1r, where M is the 
preconditioning matrix.

TOLERANCE

The algorithm attempts to generate x such that: 

where t = TOLERANCE. Default: TOLERANCE = SQRT(machine precision).

Discussion

The IMSL_SP_GMRES, function based on the FORTRAN subroutine GMRESD by 
H. F. Walker, solves the linear system Ax = b using the GMRES method. This method 
is described in detail by Saad and Schultz (1986) and Walker (1988).

The GMRES method begins with an approximate solution x0 and an initial residual 
r0 = b – Ax0. At iteration m, a correction zm is determined in the Krylov subspace:

κm(v) = span(v, Av, ..., Am–1v) 

v = r0 which solves the least squares problem: 

Then at iteration m, xm = x0 + zm.

Orthogonalization by Householder transformations requires less storage but more 
arithmetic than Gram-Schmidt. However, Walker (1988) reports numerical 

b Ax– 2 τ b 2≤

min
z κm r0( )∈( )

b A x0 z+( )– 2
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experiments which suggest the Householder approach is more stable, especially as 
the limits of residual reduction are reached.

Example

This example finds the solution to a linear system. The coefficient matrix is stored in 
coordinate format. Consider the following matrix: 

Let xT = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33, –34, 31)T. The number of 
nonzeros in A is 15. 

FUNCTION Amultp, p
; This function uses IMSL_SP_MVMUL to multiply a sparse 
; matrix stored in coordinate storage mode and a vector. 
; The common block holds the sparse matrix.

COMMON Gmres_ex1, nrows, ncols, a
RETURN, IMSL_SP_MVMUL(nrows, ncols, a, p)

END

PRO Gmres1
; This procedure defines the sparse matrix A stored in coordinate
; storage mode, and then calls IMSL_SP_GMRES to compute the
; solution to Ax = b.

COMMON Gmres_ex1, nrows, ncols, a
; Initialize sparse matrix structure variables
@imsl_init

A = REPLICATE(imsl_f_sp_elem, 15)
a(*).row = [0, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5]
a(*).col = [0, 1, 2, 3, 2, 0, 3, 4, 0, 3, 4, 5, 0, 1, 5]
a(*).val = [10, 10, -3, -1, 15, -2, 10, -1, -1, -5, $

1, -3, -1, -2, 6]
nrows = 6
ncols = 6
b = [10, 7, 45, 33, -34, 31]
itmax = 10
; Itmax is input/output. 

A

10 0 0 0 0 0

0 10 3– 1– 0 0

0 0 15 0 0 0

2– 0 0 10 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=
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x = IMSL_SP_GMRES('amultp', b, Itmax = itmax)
pm, x, title = 'Solution to Ax = b'
pm, itmax, title = 'Number of iterations'

END
; Output of this procedure:
Solution to Ax = b

1.0000000
2.0000000
3.0000000
4.0000000
5.0000000
6.0000000

Number of iterations
6

Version History

6.4 Introduced
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IMSL_SP_CG

The IMSL_SP_CG function solves a real symmetric definite linear system using a 
conjugate gradient method. A preconditioner can be supplied by using keywords.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SP_CG(amultp, b [, /DOUBLE] [, ITMAX=value] 
[, JACOBI=vector] [, PRECOND=value] [, REL_ERR=value])

Return Value

A one-dimensional array containing the solution of the linear system Ax = b. 

Arguments

amultp

Scalar string specifying a user supplied function which computes z = Ap. The 
function accepts the argument p, and returns the vector Ap.

b

One-dimensional matrix containing the right-hand side.

Keywords

DOUBLE

If present and nonzero, double precision is used. 

ITMAX

Initially set to the maximum number of GMRES iterations allowed. On exit, the 
number of iterations used is returned. Default: ITMAX = 1000
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JACOBI

If present, use the Jacobi preconditioner, that is, M = diag(A). The supplied vector 
Jacobi should be set so that JACOBI(i) = Ai,i. 

PRECOND

Scalar string specifying a user supplied function which sets z = M –1r, where M is the 
preconditioning matrix.

REL_ERR

Initially set to relative error desired. On exit, the computed relative error is returned. 
Default: REL_ERR = SQRT(machine precision)

Discussion

The IMSL_SP_CG function solves the symmetric definite linear system Ax = b using 
the conjugate gradient method with optional preconditioning. This method is 
described in detail by Golub and Van Loan (1983, chapter 10), and in Hageman and 
Young (1981, chapter 7). 

The preconditioning matrix M, is a matrix that approximates A, and for which the 
linear system Mz = r is easy to solve. These two properties are in conflict; balancing 
them is a topic of much current research. In the default usage of IMSL_SP_CG, 
M = I. If the keyword JACOBI is selected, M is set to the diagonal of A. 

The number of iterations needed depends on the matrix and the error tolerance. As a 
rough guide:  

for  

See the academic references for details.

Let M be the preconditioning matrix, let b, p, r, x, and z be vectors and let t be the 
desired relative error. Then the algorithm used is as follows: 

 

 

 

Itmax n=

n 1»

λ 1–=

p0 x0=

r1 b Ap–=
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Here λ is an estimate of λmax(G), the largest eigenvalue of the iteration matrix G = I – 
M–1A. The stopping criterion is based on the result (Hageman and Young, 1981, 
pages 148-151):  

where . It is also known that: 

for k 1 … itmax, ,=

zk M
1–
rk=

if k 1then=

βk 1=

pk zk=

else

βk zk
T

rk( ) zk 1–
T

rk 1–( )⁄=
pk zk βkpk+=

endif

zk Ap=

αk zk 1–
T

zk 1–( ) zk
T

pk( )⁄=

xk xk αkpk+=
rk rk αkzk–=

if zk 2 τ 1 λ–( ) xk 2≤( )then

recompute λ
if zk 2 τ 1 λ–( ) xk 2≤( )exit

endif

endfor

xk x– M

x M
----------------------- 1

1 λmax G( )–
----------------------------- 
  zk M

xk M

--------------
 
 
 

≤

x M
2

x
T

Mx=

λmax T1( ) λmax T2( ) …  λmax G( ) 1<≤ ≤≤
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where the Tn are the symmetric, tridiagonal matrices: 

with µk = 1 – βk/αk–1, µ1 = 1 – 1/α1, and ωk = SQRT(βk)/αk–1. Usually the eigenvalue 
computation is needed for only a few of the iterations.

Example

This example finds the solution to a linear system. The coefficient matrix is stored as 
a full matrix. 

FUNCTION Amultp, p
; Since A is in dense form, we use the # operator to perform the 
; matrix-vector product. The common block us used to hold A.

COMMON Cg_comm1, a
RETURN, a#p

END
Pro CG_EX1

COMMON Cg_comm1, a
a = TRANSPOSE([[ 1, -3, 2], [-3, 10, -5], [ 2, -5, 6]])
b = [27, -78, 64]
x = IMSL_SP_CG('amultp', b)
; Use IMSL_SP_CG to compute the solution, then output 
; the result.
PM, x, title = 'Solution to Ax = b'

END
; Output of this procedure:
Solution to Ax = b

1.0000000
-4.0000000
7.0000000

Version History

6.4 Introduced

Tn

µ1 ω2

ω2 µ2 ω3

ω3 µ3 ω4

=
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IMSL_SP_MVMUL

The IMSL_SP_MVMUL function computes a matrix-vector product involving sparse 
matrix and a dense vector.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Matrix stored in coordinate format:

Result = IMSL_SP_MVMUL(n_rows, n_cols, a, x [, SYMMETRIC=value] )

Matrix stored in band format:

Result = IMSL_SP_MVMUL(n_rows, n_cols, nlca, nuca, a, x 
[, SYMMETRIC=value] )

Return Value

A one-dimensional array containing the product Ax = b. 

Arguments

nrows

Number of rows in the matrix a.

ncols

Number of columns in the matrix a. 

nlca

Number of lower codiagonals in a. nuca should be used if a is stored in band format.

nuca

Number of upper codiagonals in a. nlca should be used if a is stored in band format.
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a

If in coordinate format, a sparse matrix stored as an array of structures. If banded, an 
array of size (nlca + nuca + 1) x nrows containing the nrows x ncols banded 
coefficient matrix in band storage mode. If banded, and the keyword SYMMETRIC 
is set, an array of size (nlca + 1) x nrows containing the nrows x ncols banded 
coefficient matrix in band symmetric storage mode A(i,j). See “Band Storage 
Format” on page 73 for a description of band storage mode.

x

One-dimensional matrix containing the vector to be multiplied by a.

Keywords

SYMMETRIC

If present and nonzero, then a is stored in symmetric mode. If A is in coordinate 
format, then Ax + ATx – diag(A) is returned. If A is banded, then it must be in band 
symmetric storage mode. See “Band Storage Format” on page 73 for a description of 
band storage modes.

Discussion

The IMSL_SP_MVMUL function computes a matrix-vector product involving a 
sparse matrix and a dense vector.

If A is stored in coordinate format, then the arguments  nrows, ncols, a, and x should 
be used. If the keyword SYMMETRIC is set, then Ax + ATx – diag(A) is returned.

If A is a banded, then the arguments nrows, ncols, nlca, nuca, a, and x should be used. 
If the keyword SYMMETRIC is set, then A must be in band symmetric storage mode, 
and the number of codiagonals should be used for both nlca and nuca.
IDL Analyst Reference Guide IMSL_SP_MVMUL



170 Chapter 4: Linear Systems
Examples

Example 1

This example computes Ax, where A is stored in coordinate format. 

Let xT = (1, 2, 3, 4, 5, 6)

A = replicate(imsl_f_sp_elem, 15)
; Define the sparse matrix A using coordinate storage format.
a(*).row = [0, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5]
a(*).col = [0, 1, 2, 3, 2, 0, 3, 4, 0, 3, 4, 5, 0, 1, 5]
a(*).val = [10, 10, -3, -1, 15, -2, 10, -1, -1, -5, $

1, -3, -1, -2, 6]
x = [1, 2, 3, 4, 5, 6]
ax = IMSL_SP_MVMUL(6, 6, a, x)
PM, ax

10.000000
7.0000000
45.000000
33.000000
-34.000000
31.000000

A

10 0 0 0 0 0

0 10 3– 1– 0 0

0 0 15 0 0 0

2– 0 0 10 1– 0

1– 0 0 5– 1 3–

1– 2– 0 0 0 6

=
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Example 2

This example computes Ax, where A is stored in band mode. Consider the 1000 x 
1000 banded matrix below: 

Let x(*) = 2.

n_rows = 1000L
nlca = 1L
nuca = 1L
a = DBLARR(n_rows*(nlca+nuca+1))
a(1:n_rows-1) = 4
a(n_rows:2*n_rows-1) = -1
a(2*n_rows:*) = 4
; Fill A with the values of the bands.
x = DBLARR(n_rows)
x(*) = 2
; Fill up x.
expected = DBLARR(n_rows)
expected(*) = 14
expected(0) = 6
expected(n_rows-1) = 6
; Define the expected result.
ax = IMSL_SP_MVMUL(n_rows, n_rows, nlca, nuca, a, x)
; Compute the product, then output the difference between the 
; computed result and the expected result.
PRINT, TOTAL(ABS(ax-expected))

0.0000000

A

1– 4

4 1– 4

4 1– .

. . .
. –1 4

4 1– 4

4 1–

=
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Example 3

This example computes Ax, where A is stored in band symmetric mode. Let ,  

n = 4L
ncoda = 2L
a = DBLARR((ncoda+1)*n)
a(0:n-1) = [0, 0, -1, 1]
a(n:2L*n-1) = [0, 0, 2, -1]
a(2L*n:*) = [2, 4, 7, 3]
; Fill up contents of A.
x = [4, -6, 2, 9]
ax = IMSL_SP_MVMUL(n, n, ncoda, ncoda, a, x, /Symmetric)
; Call IMSL_SP_MVMUL with the keyword Symmetric set.
PM, ax

6.0000000
-11.000000
-11.000000
19.000000

Version History

6.4 Introduced

A

2 0 1– 0

0 4 2 1

1– 2 7 1–

0 1 1– 3

=

x

4

6–

2

9

=
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Eigensystem Analysis
This section contains the following topics:
Overview: Eigensystem Analysis  . . . . . . .  174 Eigensystem Routines  . . . . . . . . . . . . . . .  177
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Overview: Eigensystem Analysis

An ordinary linear eigensystem problem is represented by the equation Ax = λx, 
where A denotes an n x n matrix. The value λ is an eigenvalue, and x ≠ 0 is the 
corresponding eigenvector. The eigenvector is determined up to a scalar factor. In all 
functions, this factor is chosen so that x has Euclidean length 1, and the component of 
x of largest magnitude is positive. If x is a complex vector, this component of largest 
magnitude is scaled to be real and positive. The entry where this component occurs 
can be arbitrary for eigenvectors having non-unique maximum magnitude values. 

A generalized linear eigensystem problem is represented by Ax = λBx, where A and B 
are n x n matrices. The value λ is a generalized eigenvalue, and x is the corresponding 
generalized eigenvector. The generalized eigenvectors are normalized in the same 
manner as for ordinary eigensystem problems.

Error Analysis and Accuracy 

This section discusses ordinary eigenvalue problems. Except in special cases, 
functions do not return the exact eigenvalue-eigenvector pair for the ordinary 
eigenvalue problem Ax = λx. Typically, the computed pair:

  

is an exact eigenvector-eigenvalue pair for a “nearby” matrix A + E. Information 
about E is known only in terms of bounds of the form:

|| E ||2 ≤ f(n) || A ||2 ε 

The value of f (n) depends on the algorithm but is typically a small fractional power 
of n. The parameter ε  is the machine precision. The following is by a theorem due to 
Bauer and Fike (see Golub and Van Loan 1989, p. 342):

   for all λ in  

where σ (A) is the set of all eigenvalues of A (called the spectrum of A), X is the 
matrix of eigenvectors:

|| · ||2 

is Euclidean length, and κ (X) is the condition number of X defined as:

κ (X) = || X ||2 || X–1 ||2 

If A is a real symmetric or complex Hermitian matrix, then its eigenvector matrix X is 
respectively orthogonal or unitary. For these matrices, κ (X) = 1.

x̃ λ̃,

min λ̂ λ–  κ X( ) E 2≤ σ A( )
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The accuracy of the computed eigenvalues:

 and eigenvectors  

can be checked by computing their performance index τ. The performance index is 
defined to be: 

where ε is again the machine precision.

The performance index τ is related to the error analysis because:

 

where E is the “nearby” matrix discussed above.

While the exact value of τ is precision and data dependent, the performance of an 
eigensystem analysis function is defined as excellent if τ < 1, good if 1 ≤ τ ≤ 100, and 
poor if τ > 100. This is an arbitrary definition, but large values of τ can serve as a 
warning that there is a significant error in the calculation.

If the condition number κ (X) of the eigenvector matrix X is large, there can be large 
errors in the eigenvalues even if τ is small. In particular, it is often difficult to 
recognize near-multiple eigenvalues or unstable mathematical problems from 
numerical results. This facet of the eigenvalue problem is often difficult for users to 
understand. Suppose the accuracy of an individual eigenvalue is desired. This can be 
answered approximately by computing the condition number of an individual 
eigenvalue (see Golub and Van Loan 1989, pp. 344–345). For matrices A such that 
the computed array of normalized eigenvectors X is invertible, the condition number 
of λj is:

 

the Euclidean length of the j-th row of X –1. An approximate bound for the accuracy 
of a computed eigenvalue is then given by:

κ ∈  || A || 

To compute an approximate bound for the relative accuracy of an eigenvalue, divide 
this bound by |λj|.

Reformulating Generalized Eigenvalue Problems 

The generalized eigenvalue problem Ax = λBx is often difficult to analyze because it 
is frequently ill-conditioned. Occasionally, there are changes of variables that can be 

λ̃ j x̃j

τ
max Ax̃j λ̃j x̃j– 2

nε A 2 x̃j 2

-------------------------------=
1 j n≤ ≤

Ex̃j 2 Ax̃j λ̃ jx̃j– 2=

κ j ej
T

X
1–

=
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performed on the given problem to ease this ill-conditioning. Using an example 
where B is singular, but A is nonsingular, define the reciprocal µ = λ–1, then the roles 
of A and B are interchanged so that the reformulated problem Bx = µAx is solved. 
Those generalized eigenvalues µj = 0 correspond to eigenvalues λj = infinity. The 
remaining λj = µj

–1. The generalized eigenvectors for λj correspond to those for µj.

If B is nonsingular, you can solve the ordinary eigenvalue problem Cx = λx, where 
C = B–1A. Matrix C is subject to perturbations due to ill-conditioning and rounding 
errors when computing B–1A. Computing condition numbers of the eigenvalues for C 
may, however, be helpful for analyzing the accuracy of results for the generalized 
problem.

Another method to consider to reduce the generalized problem to an alternate 
ordinary problem: first compute a matrix decomposition B = PQ, where both P and Q 
are matrices that are “simple” to invert. Then, the given generalized problem is 
equivalent to the ordinary eigenvalue problem Fy = λy. The matrix F = P–1AQ–1 and 
the unnormalized eigenvectors of the generalized problem are given by x = Q–1y. An 
example of this reformulation is used in the case where A and B are real and 
symmetric, with B positive definite. IMSL_EIGSYMGEN uses P = RT and Q = R, 
where R is an upper-triangular matrix obtained from a Cholesky decomposition, B = 
RTR. The matrix F = R–TAR–1 is symmetric and real. Computation of the eigenvalue-
eigenvector expansion for F is based on the IMSL_EIG function.
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Eigensystem Routines

Linear Eigensystem Problems

IMSL_EIG—General and symmetric matrices.

Generalized Eigensystem Problems

IMSL_EIGSYMGEN—Real symmetric matrices and B positive definite.

IMSL_GENEIG—General eigenexpansion of Ax=λBx. 
IDL Analyst Reference Guide Eigensystem Routines
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IMSL_EIG

The IMSL_EIG function computes the eigenexpansion of a real or complex matrix A. 
If the matrix is known to be symmetric or Hermitian, a keyword can be used to trigger 
more efficient algorithms.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_EIG(a [, /DOUBLE] [, /LOWER_LIMIT] [, NUMBER=value] 
[, SYMMETRIC=value] [, /UPPER_LIMIT] [, VECTORS=variable])

Return Value

A one-dimensional matrix containing the complex eigenvalues of the matrix.

Arguments

a

Two-dimensional matrix containing the data.

Keywords

DOUBLE

If present and nonzero, double precision is used.

LOWER_LIMIT

Forces the IMSL_EIG function to return the eigenvalues and, optionally, eigenvectors 
that lie in the interval within the lower limit LOWER_LIMIT and upper limit 
UPPER_LIMIT. If LOWER_LIMIT is specified, the keywords UPPER_LIMIT and 
SYMMETRIC must also be specified. Default: (LOWER_LIMIT, UPPER_LIMIT) = 
(-infinity, +infinity)
IMSL_EIG IDL Analyst Reference Guide
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NUMBER

Number of eigenvalues and eigenvectors in the range 
(LOWER_LIMIT, UPPER_LIMIT). This keyword is only available if also using the 
keyword SYMMETRIC.

SYMMETRIC

If present and nonzero, a is assumed to be symmetric in the real case and Hermitian 
in the complex case. Using SYMMETRIC triggers the use of a more appropriate 
algorithm for symmetric and Hermitian matrices.

UPPER_LIMIT

Forces the IMSL_EIG function to return the eigenvalues and, optionally, eigenvectors 
that lie in the interval within the lower limit LOWER_LIMIT and upper limit 
UPPER_LIMIT. If UPPER_LIMIT is specified, SYMMETRIC and LOWER_LIMIT 
must also be specified. Default: (LOWER_LIMIT, UPPER_LIMIT) = 
(-infinity, +infinity)

VECTORS

The named variable into which the two-dimensional array containing the 
eigenvectors of the matrix a is stored.

Discussion

If A is a real, general matrix, the IMSL_EIG function computes the eigenvalues of A 
by a two-phase process. The matrix is reduced to upper Hessenberg form by 
elementary orthogonal or Gauss similarity transformations, then the eigenvalues are 
computed using a QR or combined LR-QR algorithm (Golub and Van Loan 1989, 
pp. 373–382, and Watkins and Elsner 1990). The combined LR-QR algorithm is 
based on an implementation by Jeff Haag and David Watkins. Eigenvectors are then 
calculated as required. When eigenvectors are computed, the QR algorithm is used to 
compute the eigenexpansion. When only eigenvalues are required, the combined 
LR-QR algorithm is used.

If A is a complex, general matrix, the IMSL_EIG function computes the eigenvalues 
of A by a two-phase process. The matrix is reduced to upper Hessenberg form by 
elementary Gauss transformations, then the eigenvalues are computed using an 
explicitly shifted LR algorithm. Eigenvectors are calculated during the iterations for 
the eigenvalues (Martin and Wilkinson 1971).
IDL Analyst Reference Guide IMSL_EIG
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If A is a real, symmetric matrix and the keyword SYMMETRIC is used, the 
IMSL_EIG function computes the eigenvalues of A by a two-phase process. The 
matrix is reduced to tridiagonal form by elementary orthogonal similarity 
transformations, then the eigenvalues are computed using a rational QR or bisection 
algorithm. Eigenvectors are calculated as required (see Parlett 1980, pp. 169–173).

If A is a complex, Hermitian matrix and the keyword SYMMETRIC is used, the 
IMSL_EIG function computes the eigenvalues of A by a two-phase process. The 
matrix is reduced to tridiagonal form by elementary orthogonal similarity 
transformations, then the eigenvalues are computed using a rational QR or bisection 
algorithm. Eigenvectors are calculated as required.

If keyword SYMMETRIC is used, it is possible to force the IMSL_EIG function to 
return the eigenvalues and, optionally, eigenvectors that lie in a specified interval. The 
interval is defined using keywords LOWER_LIMIT and UPPER_LIMIT. The 
NUMBER keyword is provided to return the number of elements of the returned 
array that contain valid eigenvalues. The first NUMBER elements of the returned 
array contain the computed eigenvalues, and all remaining elements contain NaN 
(Not a Number).

Examples

Example 1

This example computes the eigenvalues of a real 3-by-3 matrix.

RM, a, 3, 3
; Define the matrix.
row 0:  8  -1  -5
row 1: -4   4  -2
row 2: 18  -5  -7
eigval = IMSL_EIG(a)
; Call IMSL_EIG to compute the eigenvalues.
PM, eigval, Title = 'Eigenvalues of A'
; Output the results.
Eigenvalues of A

( 2.00000, 4.00001)
( 2.00000, -4.00001)
( 1.00000, 0.00000)
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Example 2

This example is a variation of the first example. It computes the eigenvectors as well 
as the eigenvalues.

RM, a, 3, 3
; Define the 3-by-3 matrix.
row 0:  8 -1 -5
row 1: -4  4 -2
row 2: 18 -5 -7
eigval = IMSL_EIG(a, Vectors = eigvec)
; Call IMSL_EIG using keyword Vectors to specify named 
; variable into which the eigenvectors are stored.
PM, eigval, Title = 'Eigenvalues of A'
; Output the eigenvalues.
Eigenvalues of A

( 2.00000, 4.00000)
( 2.00000, -4.00000)
( 1.00001, 0.00000)

PM, eigvec, Title = 'Eigenvectors of A'
; Output the eigenvectors.
Eigenvectors of A

( 0.316228, 0.316228)( 0.316228, -0.316228)
( 0.408248, 0.00000)
( 2.08616e-07, 0.632455)( 2.08616e-07, -0.632455)
( 0.816497, 0.00000)
( 0.632456, 0.00000)( 0.632456, 0.00000)
( 0.408247, 0.00000)

Example 3

This example computes Eigenvalues of a complex matrix.

RM, a, 4, 4, /Complex
; Define a complex matrix.
row 0: (5, 9) (5,  5) (-6, -6) (-7, -7)
row 1: (3, 3) (6, 10) (-5, -5) (-6, -6)
row 2: (2, 2) (3,  3) (-1, 3) (-5, -5)
row 3: (1, 1) (2,  2) (-3, -3) ( 0,  4)
eigval = IMSL_EIG(a)
; Call IMSL_EIG to compute the eigenvalues.
PM, eigval, Title = 'Eigenvalues of A'
; Output the results.
Eigenvalues of A

( 4.00000, 8.00000)
( 3.00000, 7.00000)
( 2.00000, 6.00000)
( 1.00000, 5.00000)
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Errors

Warnings

MATH_SLOW_CONVERGENCE_GEN—Iteration for an eigenvalue did not converge after 
# iterations.

Version History

6.4 Introduced
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IMSL_EIGSYMGEN

The IMSL_EIGSYMGEN function computes the generalized eigenexpansion of a 
system Ax = λBx. The matrices A and B are real and symmetric, and B is positive 
definite.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_EIGSYMGEN(a, b [, /DOUBLE] [, VECTORS=array])

Return Value

One-dimensional array containing the eigenvalues of the symmetric matrix.

Arguments

a

Two-dimensional matrix containing symmetric coefficient matrix A.

b

Two-dimensional matrix containing the positive definite symmetric coefficient matrix 
B.

Keywords

DOUBLE

If present and nonzero, double precision is used.

VECTORS

Compute eigenvectors of the problem. A two-dimensional array containing the 
eigenvectors is returned in the variable name specified by VECTORS.
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Discussion

The IMSL_EIGSYMGEN function computes the eigenvalues of a symmetric, 
positive definite eigenvalue problem by a three-phase process (Martin and Wilkinson 
1971). Matrix B is reduced to factored form using the Cholesky decomposition. 
These factors are used to form a congruence transformation that yields a symmetric 
real matrix whose eigenexpansion is obtained. The problem is then transformed back 
to the original coordinates. Eigenvectors are calculated and transformed as required.

Examples

Example 1

This example computes the generalized eigenexpansion of a system Ax = λBx, where 
A and B are 3-by-3 matrices.

RM, a, 3, 3
; Define the matrix A.
row 0: 1.1 1.2 1.4
row 1: 1.2 1.3 1.5
row 2: 1.4 1.5 1.6
RM, b, 3, 3
; Define the matrix B.
row 0: 2 1 0
row 1: 1 2 1
row 2: 0 1 2
eigval = IMSL_EIGSYMGEN(a, b)
; Call IMSL_EIGSYMGEN to compute the eigenexpansion.
PM, eigval, Title = 'Eigenvalues'
; Output the results.
Eigenvalues

1.38644
-0.0583479
-0.00309042

Example 2

This example is a variation of the first example. It computes the eigenvectors as well 
as the eigenvalues.

RM, a, 3, 3
; Define the matrix A.
row 0: 1.1 1.2 1.4
row 1: 1.2 1.3 1.5
row 2: 1.4 1.5 1.6
RM, b, 3, 3
; Define the matrix B.
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row 0: 2 1 0
row 1: 1 2 1
row 2: 0 1 2
eigval = IMSL_EIGSYMGEN(a, b, Vectors = eigvec)
; Call IMSL_EIGSYMGEN with keyword Vectors to specify the named
; variable in which the vectors are stored.
PM, eigval, Title = 'Eigenvalues'
; Output the eigenvalues.

Eigenvalues
 1.38644
 -0.0583478
 -0.00309040

PM, eigvec, Title = 'Eigenvectors'
; Output the eigenvectors.
Eigenvectors

0.643094    -0.114730    -0.681688
-0.0223849    -0.687186     0.726597
0.765460     0.717365  -0.0857800

Errors

Warning Errors

MATH_SLOW_CONVERGENCE_SYM—Iteration for an eigenvalue failed to converge in 
100 iterations before deflating.

Fatal Errors

MATH_SUBMATRIX_NOT_POS_DEFINITE—Leading submatrix of the input matrix is 
not positive definite.

MATH_MATRIX_B_NOT_POS_DEFINITE—Matrix B is not positive definite.

Version History

6.4 Introduced
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IMSL_GENEIG

The IMSL_GENEIG procedure computes the generalized eigenexpansion of a 
system Ax = λBx.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_GENEIG, a, b, alpha, beta [, /DOUBLE] [, VECTORS=variable]

Arguments

a

Two-dimensional array of size n-by-n containing coefficient matrix A.

alpha

One-dimensional array of size n containing scalars αi. If βi ≠ 0, λi = αi /βi for i = 0, 
..., n – 1 are the eigenvalues of the system. 

b

Two-dimensional array of size n-by-n containing coefficient matrix B.

beta

One-dimensional array of size n.

Keywords

DOUBLE

If present and nonzero, double precision is used.
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VECTORS

Named variable into which a two-dimensional array of size n-by-n containing 
eigenvectors of the problem is stored. Each vector is normalized to have Euclidean 
length equal to one.

Discussion

The IMSL_GENEIG function uses the QZ algorithm to compute the eigenvalues and 
eigenvectors of the generalized eigensystem Ax = λBx, where A and B are matrices of 
order n. The eigenvalues for this problem can be infinite, so α and β are returned 
instead of λ. If β is nonzero, λ = α/β.

The QZ algorithm first simultaneously reduces A to upper-Hessenberg form and B to 
upper-triangular form, then it uses orthogonal transformations to reduce A to quasi-
upper-triangular form while keeping B upper triangular. The generalized eigenvalues 
and eigenvectors for the reduced problem are then computed.

The IMSL_GENEIG function is based on the QZ algorithm due to Moler and Stewart 
(1973), as implemented by the EISPACK routines QZHES, QZIT and QZVAL; see 
Garbow et al. (1977).

Examples

Example 1

This example computes the eigenvalue, λ, of system Ax = λBx, where: 

a  =  TRANSPOSE([[1.0, 0.5, 0.0], [-10.0, 2.0, 0.0], $
[5.0, 1.0, 0.5]])

b  =  TRANSPOSE([[0.5, 0.0, 0.0], [3.0, 3.0, 0.0], $
[4.0, 0.5, 1.0]])

; Compute eigenvalues
IMSL_GENEIG, a, b, alpha, beta
; Print eigenvalues
PM, alpha/beta, Title = 'Eigenvalues'
Eigenvalues

( 0.833334, 1.99304)
( 0.833333, -1.99304)
( 0.500000, 0.00000)

A
1.0 0.5 0.0

10.0– 2.0 0.0
5.0 1.0 0.5

= and B
0.5 0.0 0.0

3.0 3.0 0.0
4.0 0.5 1.0

=
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Example 2

This example finds the eigenvalues and eigenvectors of the same eigensystem given 
in the last example.

a  =  TRANSPOSE([[1.0, 0.5, 0.0], [-10.0, 2.0, 0.0], $
[5.0, 1.0, 0.5]])

b  =  TRANSPOSE([[0.5, 0.0, 0.0], [3.0, 3.0, 0.0], $
[4.0, 0.5, 1.0]])

; Compute eigenvalues
IMSL_GENEIG, a, b, alpha, beta, Vectors = vectors
; Print eigenvalues
PM, alpha/beta, Title = 'Eigenvalues'
Eigenvalues

( 0.833332, 1.99304)
( 0.833332, -1.99304)
( 0.500000, -0.00000)

; Print eigenvectors
PM, vectors, Title = 'Eigenvectors'
Eigenvectors

( -0.197112, 0.149911)( -0.197112, -0.149911)
( -1.53306e-08, 0.00000)
( -0.0688163, -0.567750)( -0.0688163, 0.567750)
( -4.75248e-07, 0.00000)
( 0.782047, 0.00000)( 0.782047, 0.00000)
( 1.00000, 0.00000)

Example 3

This example solves the eigenvalue, λ, of system Ax = λBx, where: 

a  =  TRANSPOSE([$
 [COMPLEX(1.0, 0.0), COMPLEX(0.5, 1.0), COMPLEX(0.0, 5.0)], $
 [COMPLEX(-10.0, 0.0), COMPLEX(2.0, 1.0), COMPLEX(0.0, 0.0)], $
 [COMPLEX(5.0, 1.0), COMPLEX(1.0, 0.0), COMPLEX(0.5, 3.0)]])
b  =  TRANSPOSE([$
 [COMPLEX(0.5, 0.0), COMPLEX(0.0, 0.0), COMPLEX(0.0, 0.0)], $
 [COMPLEX(3.0, 3.0), COMPLEX(3.0, 3.0), COMPLEX(0.0, 1.0)], $
 [COMPLEX(4.0, 2.0), COMPLEX(0.5, 1.0), COMPLEX(1.0, 1.0)]])
; Compute eigenvalues
IMSL_GENEIG, a, b, alpha, beta
; Print eigenvalues
PM, alpha/beta, Title  =  'Eigenvalues'
Eigenvalues

A
1 0.5 i+ 5i

10– 2 i+ 0

5 i+ 1 0.5 3i+

= and B
0.5 0 0

3 3i+ 3 3i+ i

4 2i+ 0.5 i+ 1 i+

=
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( -8.18016, -25.3799)
( 2.18006, 0.609113)
( 0.120108, -0.389223)

Example 4

This example finds the eigenvalues and eigenvectors of the same eigensystem given 
in the last example.

a  =  TRANSPOSE([$
 [COMPLEX(1.0, 0.0), COMPLEX(0.5, 1.0), COMPLEX(0.0, 5.0)], $
 [COMPLEX(-10.0, 0.0), COMPLEX(2.0, 1.0), COMPLEX(0.0, 0.0)], $
 [COMPLEX(5.0, 1.0), COMPLEX(1.0, 0.0), COMPLEX(0.5, 3.0)]])
b  =  TRANSPOSE([$
 [COMPLEX(0.5, 0.0), COMPLEX(0.0,0.0), COMPLEX(0.0, 0.0)], $
 [COMPLEX(3.0,3.0), COMPLEX(3.0,3.0), COMPLEX(0.0, 1.0)], $
 [COMPLEX(4.0, 2.0), COMPLEX(0.5, 1.0), COMPLEX(1.0, 1.0)]])
; Compute eigenvalues
IMSL_GENEIG, a, b, alpha, beta, Vectors = vectors
; Print eigenvalues
PM, alpha/beta, Title = 'Eigenvalues'
Eigenvalues

( -8.18018, -25.3799)
( 2.18006, 0.609112)
( 0.120109, -0.389223)

; Print eigenvecters
PM, vectors, Title = 'Eigenvectors'
Eigenvectors

( -0.326709, -0.124509)( -0.300678, -0.244401)
( 0.0370698, 0.151778)
( 0.176670, 0.00537758)( 0.895923, 0.00000)
( 0.957678, 0.00000)
( 0.920064, 0.00000)( -0.201900, 0.0801192)
( -0.221511, 0.0968290)

Version History

6.4 Introduced
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This section contains the following topics:
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Overview: Interpolation and Approximation

Many functions in this chapter produce cubic piecewise polynomial or general spline 
functions that either interpolate or approximate given data or are support functions 
for the evaluation and integration of these functions. Three major subdivisions of 
functions are provided. The cubic spline functions begin with the prefix CS and use 
the piecewise polynomial representation. The spline functions begin with the prefix 
BS and use the B-spline representation. The third major subdivision includes 
functions that operate on the output of both the cubic spline and B-spline functions. 
Most spline functions are based on routines documented by de Boor (1978).

General purpose routines also are provided for general least-squares fit to data and 
routines to interpolate or approximate scattered data in Rn for n ≥ 1.

Piecewise Polynomials 

A univariate piecewise polynomial function, p, is specified by giving its breakpoint 
sequence , the order k (degree k – 1) of its polynomial pieces, and the k x (n – 
1) matrix C of its local polynomial coefficients. In terms of this information, the 
piecewise polynomial (ppoly) function is given by the following equation: 

The breakpoint sequence ξ is assumed to be strictly increasing, and the ppoly 
function is extended to the entire real axis by extrapolation from the first and last 
intervals. This representation is redundant when the ppoly function is known to be 
smooth. For example, if p is known to be continuous, then c1, i+1 can be computed 
from the cji as follows: 

For smooth ppoly, the nonredundant representation is used in terms of the “basis” or 
B-splines, at least when such a function is first to be determined.

ζ R
n∈

p x( ) cij

x ξ i–( )j 1–

j 1–( )!
--------------------------

j 1=

k

∑= for ξ i  x  ξ i 1+≤ ≤

c1 i 1+, p ξ i 1+( ) cij

ξ i 1+ ξ i–( )j 1–

j 1–( )!
-----------------------------------

j 1=

k

∑= =
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Splines and B-splines 

B-splines provide a particularly convenient and suitable basis for a given class of 
smooth ppoly functions. Such a class is specified by giving its breakpoint sequence, 
its order k, and the required smoothness across each of the interior breakpoints. The 
corresponding B-spline basis is specified by giving its knot sequence . The 
specification rule is the following: If the class is to have all derivatives up to and 
including the j-th derivative continuous across the interior breakpoint ξi, then the 
number ξi should occur k – j – 1 times in the knot sequence. Assuming that ξ1 and ξn 
are the endpoints of the interval of interest, choose the first k knots equal to ξ1 and the 
last k knots equal to ξn. This can be done since the B-splines are defined to be right 
continuous near ξ1 and left continuous near ξn.

When the above construction is completed, a knot sequence t of length M is 
generated and m: = M – k B-splines of order k (for example, B0, ..., Bm – 1) span the 
ppoly functions on the interval with the indicated smoothness. That is, each ppoly 
function in this class has a unique representation:

 

as a linear combination of B-splines. A B-spline is a particularly compact ppoly 
function. The function Bi is a nonnegative function that is nonzero only on the 
interval [ti, ti + k ]. More precisely, the support of the i-th B-spline is [ti, ti + k ]. No 
ppoly function in the same class (other than the zero function) has smaller support 
(i.e., vanishes on more intervals) than a B-spline. This makes B-splines particularly 
attractive basis functions since the influence of any particular B-spline coefficient 
extends only over a few intervals. When it is necessary to emphasize the dependence 
of the B-spline on its parameters, the notation:

Bi, k, t 

is used to denote the i-th B-spline of order k for the knot sequence t.

Cubic Splines 

Cubic splines are smooth (i.e., C1 or C2), fourth-order ppoly functions. For historical 
and other reasons, cubic splines are the most frequently used ppoly functions. 
Therefore, special functions are provided for their construction and evaluation. These 
routines use the ppoly representation as described above for general ppoly functions 
(with k = 4).

Two cubic spline interpolation functions, IMSL_CSINTERP and IMSL_CSSHAPE, 
are provided. The IMSL_CSINTERP function allows the user to specify various 
endpoint conditions (such as the value of the first or second derivative at the right and 

t R
m∈

p a0B0 a1B1 … am 1– Bm 1–+ + +=
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left points). This means that the natural cubic spline can be obtained using this 
function by setting the second derivative to zero at both endpoints. The 
IMSL_CSSHAPE function is designed so that the shape of the curve matches the 
shape of the data. In particular, one option of this function preserves the convexity of 
the data while the default attempts to minimize oscillations.

It is possible that the cubic spline interpolation functions will produce unsatisfactory 
results. For example, the interpolant may not have the shape required by the user, or 
the data may be noisy and require a least-squares fit. The IMSL_BSINTERP 
interpolation function is more flexible, as it allows the user to choose the knots and 
order of the spline interpolant. The user is encouraged to use this routine and exploit 
the flexibility provided.

Tensor-product Splines 

The simplest method of obtaining multivariate interpolation and approximation 
functions is to take univariate methods and form a multivariate method via tensor 
products. In the case of two-dimensional spline interpolation, the derivation proceeds 
as follows: Let tx be a knot sequence for splines of order kx and ty be a knot sequence 
for splines of order ky. Let Nx + kx be the length of tx and Ny + ky be the length of ty. 
Then, the tensor-product spline has the following form: 

Given two sets of points:

 and  

for which the corresponding univariate interpolation problem can be solved, the 
tensor-product interpolation problem finds the coefficients cnm, so that the following 
is true: 

This problem can be solved efficiently by repeatedly solving univariate interpolation 
problems as described in de Boor (1978, p. 347). Three-dimensional interpolation can 
be handled in an analogous manner. This chapter provides functions that compute the 

cnmBn kx tx, , x( )Bm ky ty, , y( )
n 0=

Nx 1–

∑
m 0=

Ny 1–

∑

xi{ } i 1=
Nx yi{ } i 1=

Ny

cnmBn kx tx, , xi( )Bm ky ty, , yj( )
n 0=

Nx 1–

∑
m 0=

Ny 1–

∑ fij=
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two-dimensional, tensor-product spline coefficients given two-dimensional 
interpolation data (IMSL_BSINTERP) and functions that compute the two-
dimensional, tensor-product spline coefficients for a tensor-product, least-squares 
problem (IMSL_BSLSQ). In addition, evaluation, differentiation, and integration 
routines (IMSL_SPVALUE and IMSL_SPINTEG) are provided for the two-
dimensional, tensor-product spline functions. 

Scattered-data Interpolation and Approximation 

IDL Analyst provides functions to interpolate and approximate scattered data in Rn 
for n ≥ 1. The IMSL_SCAT2DINTERP function interpolates scattered data in the 
plane and is based on work by Akima (1978), which uses C1 piecewise quintics on a 
triangular mesh. The IMSL_RADBF function can be used to either interpolate or 
approximate scattered data in Rn for n ≥ 1. The IMSL_RADBF function computes 
approximations based on radial-basis functions. The fit computed by IMSL_RADBF 
can be evaluated using the IMSL_RADBE function. 

Least Squares 

IDL Analyst includes functions for smoothing noisy data. The IMSL_FCNLSQ 
function computes regressions with user-supplied functions. The IMSL_BSLSQ 
function computes a one- or two-dimensional, least-squares fit using splines with 
fixed knots or variable knots. This function produces cubic-spline, least-squares fit by 
default. Keywords allow the user to choose the order and the knot sequence. 

IDL Analyst contains many functions that provide for polynomial regression and 
general linear regression.

Smoothing by Cubic Splines 

One “smoothing spline” function is provided. The default action of 
IMSL_CSSMOOTH estimates a smoothing parameter by cross-validation, then 
returns the cubic spline that smooths the data. If the user chooses to supply a 
smoothing parameter, this function returns the appropriate cubic spline.

Structures for Splines and Piecewise Polynomials 

This section is optional and is intended for users interested in more details concerning 
the structures for splines and piecewise polynomials.
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A spline can be viewed as a mapping with domain Rd and target Rr, where d and r are 
positive integers. For this version of IDL Analyst, only r = 1 is supported. Thus, if s is 
a spline, then the following is true for some d and r:

 

This implies that such a spline s must have d knot sequences and orders (one for each 
domain dimension). Thus, associated with s, knots and orders are as follows:

t0, ..., td – 1 

k0, ..., kd – 1 

The precise form of the spline follows:

s(x) = (s0(x), ..., sr – 1(x))  

where: 

Note that ni is the number of knots in ti minus the order ki.

All the information for a spline is stored in a structure. Since the components of this 
structure are generally of varying lengths, an anonymous structure is defined for each 
spline. An example of the information returned by the HELP command with the 
keyword STRUCTURES set and an argument containing a spline structure follows:

x = FINDGEN(10)
y = IMSL_RANDOM(10)
spline = IMSL_BSINTERP(x, y)
HELP, spline, /Structure
** Structure $1, 7 tags, 116 length:
DOMAIN_DIM LONG      1
TARGET_DIM LONG      1
ORDER           LONG      4
NUM_COEF        LONG      10
NUM_KNOTS       LONG      14
KNOTS           FLOAT     Array(14)
COEF            FLOAT     Array(10)

s: R
d

R
r→

x x1 … xd, ,( ) R
d∈=

si x( ) := … cj0 … jd 1–, ,
i

B
j0 k0 t0, ,

…B
jd 1– kd 1– td 1–, ,

j0 0=

n0 1–

∑
jd 1– 0=

nd 1– 1–

∑
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For ppoly functions, a ppoly is viewed as a mapping with domain Rd and target Rr, 
where d and r are positive integers. Thus, if p is a ppoly, then the following is true for 
some d and r:

 

For this version of IDL Analyst, only r = 1 is supported. This implies that such a 
ppoly p must have d breakpoint sequences and orders (one for each domain 
dimension). Thus, associated with p, breakpoints and orders are as follows:

ξ1, ..., ξd

k1, ..., kd

The precise form of the ppoly follows:

p(x) = (p0(x), ..., pr(x))

where: 

with:

L j :=max {1, min{M j, nj – 1}}

where M j is chosen so that: 

(with  and ). 

Note that nj is the number of breakpoints in ξ j.

p: R
d

R
r→

x x1 … xd, ,( ) R
d∈=

pi x( ) := … c
L1 … Ld l1 … ld, , , , ,
i x1 ξL1

1
–( )l1

l1!
---------------------------…

xd ξLd
d–( )

ld

ld!
---------------------------

l1 0=

k1 1–

∑
ld 0=

kd 1–

∑

ξ
M j
j

 xj ξM j 1+
j<≤ j 1 … d, ,=

ξ0
j ∞–= ξnj 1+

j ∞=
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All the information for a spline is stored in a structure. Since the components of this 
structure are generally of varying lengths, an anonymous structure is defined for each 
spline. An example of the information returned by the HELP command with the 
keyword STRUCTURES set and an argument containing a spline structure is as 
follows:

x = FINDGEN(10)
y = IMSL_RANDOM(10)
ppoly = IMSL_CSINTERP(x, y)
HELP, ppoly, /Structure
Structure <103bc00>, 7 tags, length=204, data length=204, refs=1:
DOMAIN_DIM LONG 1
TARGET_DIM LONG 1
ORDER LONG Array[1]
NUM_COEF LONG Array[1]
NUM_BREAKPOINTS LONG Array[1]
BREAKPOINTS FLOAT Array[10]
COEF FLOAT Array[36]
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Interpolation and Approximation Routines

Cubic Spline Interpolation

IMSL_CSINTERP—Derivative end conditions.

IMSL_CSSHAPE—Shape preserving. 

B-spline Interpolation

IMSL_BSINTERP—One-dimensional and two-dimensional interpolation. 

IMSL_BSKNOTS—Knot sequence given interpolation data. 

B-spline and Cubic Spline Evaluation and Integration

IMSL_SPVALUE—Evaluation and differentiation. 

IMSL_SPINTEG—Integration. 

Least-squares Approximation and Smoothing

IMSL_FCNLSQ—General functions.

IMSL_BSLSQ—Splines with fixed knots. 

IMSL_CONLSQ—Constrained spline fit. 

IMSL_CSSMOOTH—Cubic-smoothing spline. 

IMSL_SMOOTHDATA1D—Smooth one-dimensional data by error detection.

Scattered Data Interpolation

IMSL_SCAT2DINTERP—Akima’s surface-fitting method. 

IMSL_RADBF—Computes a fit using radial-basis functions. 

IMSL_RADBE—Evaluates a radial-basis fit. 
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IMSL_CSINTERP

The IMSL_CSINTERP function computes a cubic spline interpolant, specifying 
various endpoint conditions. The default interpolant satisfies the not-a-knot 
condition.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CSINTERP(xdata, fdata [, /DOUBLE] [, /ILEFT=value] 
[, /IRIGHT=value] [, /LEFT=value] [, /PERIODIC] [, /RIGHT=value]) 

Return Value

A structure that represents the cubic spline interpolant. 

Arguments

xdata

One-dimensional array containing the abscissas of the interpolation problem. 

fdata

One-dimensional array containing the ordinates for the interpolation problem. 

Keywords

DOUBLE

If present and nonzero, double precision is used. 

ILEFT

Sets the value for the first or second derivative of the interpolant at the left endpoint. 
The keyword ILEFT is used to specify which derivative is set: ILEFT = 1 for the first 
derivative and ILEFT = 2 for the second derivative. The only valid values for ILEFT 
are 1 or 2. If ILEFT is specified, then the keyword LEFT also must be used. 
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IRIGHT

Sets the value for the first or second derivative of the interpolant at the right endpoint. 
The keyword IRIGHT is used to specify which derivative is set: IRIGHT = 1 for the 
first derivative and IRIGHT = 2 for the second derivative. The only valid values for 
IRIGHT are 1 or 2. If IRIGHT is specified, then the keyword RIGHT also must be 
used. 

LEFT

Sets the value for the first or second derivative of the interpolant at the left endpoint. 
Use with the keyword ILEFT. If ILEFT = i, then the interpolant s satisfies 
s(i)(xL) = LEFT. Here, xL is the leftmost abscissa. 

PERIODIC

If present and nonzero, computes the C2 periodic interpolant to the data. The 
following is satisfied: 

s(i)
 (xL) = s(i) (xR)  i = 0, 1, 2

where s, xL, and xR are defined above.

RIGHT

Sets the value for the first or second derivative of the interpolant at the right endpoint. 
Use with the keyword IRIGHT. If IRIGHT = i, then the interpolant s satisfies 
s(i)(xR) = RIGHT. Here, xR is the rightmost abscissa. 

Discussion

The IMSL_CSINTERP function computes a C2 cubic spline interpolant to a set of 
data points (xi, fi) for the following:

i = 0, ..., (N_ELEMENTS(xdata) – 1) = (n – 1)

The breakpoints of the spline are the abscissas. For all univariate interpolation 
functions, the abscissas need not be sorted. Endpoint conditions are to be selected by 
the user. The user can specify not-a-knot, or first or second derivatives at each 
endpoint or C2 periodicity can be requested (see de Boor 1978, Chapter 4). If no 
defaults are selected, then the not-a-knot spline interpolant is computed. If the 
PERIODIC keyword is selected, then all other keywords are ignored and a C2 is 
computed. In this case, if the fdata values at the left and right endpoints are not the 
same, a warning message is issued and the right value is set equal to the left. If the 
LEFT and ILEFT or RIGHT and IRIGHT keywords are used, the user has the ability 
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to select the values of the first or second derivative at either endpoint. The default 
case (when the keyword is not used) is the not-a-knot condition on that endpoint. 
Thus, when no keywords are chosen, this function produces the not-a-knot 
interpolant.

If the data (including the endpoint conditions) arise from the values of a smooth (for 
example, C4) function f, i.e., fi = f(xi), then the error behaves in a predictable fashion. 
Let ξ be the breakpoint vector for the above spline interpolant. Then, the maximum 
absolute error satisfies: 

where the following is true: 

Examples

Example 1

In this example, a cubic spline interpolant, as shown in Figure 6-1, to function values 
is computed and plotted along with the original data. Since the default settings are 
used, the interpolant is determined by the not-a-knot condition (see de Boor 1978).

x = FINDGEN(11)/10
; Generate the abscissas.
f = SIN(15 * x)
; Generate the function values.
pp = IMSL_CSINTERP(x, f)
; Compute the spline interpolant.
ppval = IMSL_SPVALUE(FINDGEN(100)/99, pp)
PLOT, FINDGEN(100)/99, ppval
; Plot the results.
OPLOT, x, f, Psym = 6

f s– ξ0 ξn,[ ]  C f
4( )

ξ0 ξn,[ ] ξ 4≤

ξ  := max ξ i 1+ ξ i– .

i 0 … n 1–, ,=
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Example 2

In this example, a cubic spline interpolant to function values is computed. The value 
of the derivative at the left endpoint and the value of the second derivative at the right 
endpoint are specified. The resulting spline and original data are then plotted as 
shown in Figure 6-2.

x = FINDGEN(11)/10
y = SIN(15 * x)
pp = IMSL_CSINTERP(x, y, ILeft = 1, Left = 0, $
IRight = 2, Right = -225 * SIN(15))
ppval = IMSL_SPVALUE(FINDGEN(100)/99, pp)
PLOT, FINDGEN(100)/99, ppval
OPLOT, x, y, Psym = 6

Figure 6-1: Cubic Spline Interpolant
IDL Analyst Reference Guide IMSL_CSINTERP
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Errors

Warning Errors

MATH_NOT_PERIODIC—Data are not periodic. The rightmost fdata value is set to the 
leftmost fdata value.

Fatal Errors

MATH_DUPLICATE_XDATA_VALUES—The xdata values must be distinct.

Version History

Figure 6-2: Cubic Spline Interpolant with Endpoint Conditions

6.4 Introduced
IMSL_CSINTERP IDL Analyst Reference Guide



Chapter 6: Interpolation and Approximation 205
IMSL_CSSHAPE

The IMSL_CSSHAPE function computes a shape-preserving cubic spline.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CSSHAPE(xdata, fdata [, /CONCAVE] [, /DOUBLE] 
[, ITMAX=value])

Return Value

A structure that represents the cubic spline interpolant.

Arguments

xdata

One-dimensional array containing the abscissas of the interpolation problem.

fdata

One-dimensional array containing the ordinates for the interpolation problem.

Keywords

CONCAVE

If present and nonzero, IMSL_CSSHAPE produces a cubic interpolant that preserves 
the concavity of the data.

DOUBLE

If present and nonzero, double precision is used.

ITMAX

Allows the user to set the maximum number of iterations of Newton’s Method. To use 
ITMAX, the keyword CONCAVE must also be set. Default: ITMAX = 25.
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Discussion

The IMSL_CSSHAPE function computes a C1 cubic spline interpolant to a set of 
data points (xi, fi) for the following:

i = 0, ..., (N_ELEMENTS(xdata) – 1) = (n – 1)

The breakpoints of the spline are the abscissas. This computation is based on a 
method by Akima (1970) to combat wiggles in the interpolant. Endpoint conditions 
are automatically determined by the program (see Akima 1970, de Boor 1978).

If the CONCAVE keyword is set, then this function computes a cubic spline 
interpolant to the data. For ease of explanation, xi < xi + 1 is assumed, although it is 
not necessary for the user to sort these data values. If the data are strictly convex, then 
the computed spline is convex, C2, and minimizes the expression

over all convex C1 functions that interpolate the data. In the general case, when the 
data have both convex and concave regions, the convexity of the spline is consistent 
with the data, and the above integral is minimized under the appropriate constraints. 
For more information on this interpolation scheme, refer to Micchelli et al. (1985) 
and Irvine et al. (1986).

One important feature of the splines produced by this function is that it is not 
possible, a priori, to predict the number of breakpoints of the resulting interpolant. In 
most cases, there will be breakpoints at places other than data locations. This function 
should be used when it is important to preserve the convex and concave regions 
implied by the data.

Both methods are nonlinear, and although the interpolant is a piecewise cubic, cubic 
polynomials are not reproduced. (However, linear polynomials are reproduced.) This 
explains the theoretical error estimate below.

If the data points arise from the values of a smooth (for example, C4) function f, i.e., 
fi = f(xi), then the error behaves in a predictable fashion. Let ξ be the breakpoint 
vector for either of the above spline interpolants. Then, the maximum absolute error 
satisfies: 

g″( )2

x1

xn

∫

f s– ξ0 ξn,[ ]  C f
2( )

ξ0 ξn,[ ] ξ 2≤
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where: 

and ξm is the last breakpoint.

The returned value for this function is a structure. This structure contains all the 
information to determine the spline (stored as a piecewise polynomial) that is 
computed by this function. For example, the following code sequence evaluates this 
spline at x and returns the value in y:

y = IMSL_SPVALUE(x, spline)

Examples

Example 1

In this example, a cubic spline interpolant to function values is computed. 
Evaluations of the computed spline are plotted along with the original data values.

x = FINDGEN(10)/9
; Define the abscissas.
f = FLTARR(10)
f(0:4) = 0.25
f(5:9) = 0.75
; Define the function values.
pp = IMSL_CSSHAPE(x, f)
; Compute the interpolant.
ppval = IMSL_SPVALUE(FINDGEN(100)/99, pp)
; Evaluate the interpolant at 100 values in [0,1]. 
PLOT, FINDGEN(100)/99, ppval
; Plot the results.
OPLOT, x, f, Psym = 6

ξ := max ξ i 1+ ξ i–

i 0 … n 1–, ,=
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Example 2

This example compares interpolants computed by IMSL_CSINTERP and 
IMSL_CSSHAPE with the keyword CONCAVE, as shown in Figure 6-4.

x = [0, .1, .2, .3, .4, .5, .6, .8, 1]
y = [0, .9, .95, .9, .1, .05, .05, .2, 1]
; Define the data set and compute interpolant from IMSL_CSINTERP.
pp1 = IMSL_CSINTERP(x, y)
pp2 = IMSL_CSSHAPE(x, y, /Concave)
; Compute the interpolant from IMSL_CSSHAPE with keyword Concave.
x2 = FINDGEN(100)/99
PLOT, x2, IMSL_SPVALUE(x2, pp1), Linestyle = 2
OPLOT, x2, IMSL_SPVALUE(x2, pp2)
OPLOT, x, y, Psym = 6
XYOUTS, .4, .9, 'IMSL_CSINTERP', Charsize = 1.2
OPLOT, [.73, .85], [.925, .925], Linestyle = 2
XYOUTS, .4, .8, 'IMSL_CSSHAPE !cwith CONCAVE', Charsize = 1.2
OPLOT, [.73, .85], [.8, .8]
XYOUTS, .4, .6, 'Original data', Charsize = 1.2
OPLOT, [.73], [.622], Psym = 6

Figure 6-3: Shape-Preserving Cubic Spline
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Errors

Warning Errors

MATH_MAX_ITERATIONS_REACHED—Maximum number of iterations has been 
reached. The best approximation is returned.

Fatal Errors

MATH_DUPLICATE_XDATA_VALUES—The xdata values must be distinct.

Version History

Figure 6-4: Cubic Spline Comparison

6.4 Introduced
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IMSL_BSINTERP

The IMSL_BSINTERP function computes a one- or two-dimensional spline 
interpolant.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BSINTERP(xdata, fdata [, /DOUBLE] [, XKNOTS=value] 
[, XORDER=value] [, YKNOTS=value] [, YORDER=value])

or

Result = IMSL_BSINTERP(xdata, ydata, fdata [, DOUBLE=value] 
[, XKNOTS=value] [, XORDER=value] [, YKNOTS=value] 
[, YORDER=value])

Return Value

A structure containing information that defines the one- or two-dimensional spline.

Arguments

If a one-dimensional spline is desired, then the arguments xdata and fdata are 
required. If a two-dimensional, tensor-product spline is desired, then xdata, ydata, 
and fdata are required.

xdata 

Array containing the abscissas in the x-direction of the interpolation problem.

ydata

Array containing the abscissas in the y-direction of the interpolation problem.

fdata

Array containing the ordinates of the interpolation problem. If a one-dimensional 
spline is being computed, then fdata (i) is the data value at xdata (i). If a two-
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dimensional spline is being computed, then fdata is a two-dimensional array, where 
fdata (i, j) is the data value at (xdata (i), ydata (i)).

Keywords

DOUBLE

If present and nonzero, double precision is used.

XKNOTS

Specifies the array of knots in the x-direction to be used when computing the 
definition of the spline. Default: knots are selected by the IMSL_BSKNOTS function 
using its defaults.

XORDER

Specifies the order of the spline in the x-direction. Default: XORDER = 4, i.e., cubic 
splines.

YKNOTS

Specifies the array of knots in the y-direction to be used when computing the 
definition of the spline. Default: knots are selected by the IMSL_BSKNOTS function 
using its defaults.

YORDER

Specifies the order of the spline in the y-direction. If a one-dimensional spline is 
being computed, then YORDER has no effect on the computations. Default: 
YORDER = 4, i.e., cubic splines.

Discussion 

The IMSL_BSINTERP function is designed to compute either a one-dimensional 
spline interpolant or two-dimensional, tensor-product spline interpolant to input data. 
The decision of whether to compute the one- or two-dimensional spline is based on 
the number of arguments passed to the function. Keywords are provided to allow the 
user to specify the order of the spline and the knots used for the spline. When 
computing a one-dimensional spline, the available keywords are XORDER and 
XKNOTS. When computing a two-dimensional spline, the order and knots in 
x-direction and/or y-direction can be specified using the keywords XORDER, 
XKNOTS, YORDER, and YKNOTS.
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Separate discussions on one- and two-dimensional splines follow.

One-dimensional B-splines

Given the data points x = xdata, f = fdata, and the number of elements (n) in xdata 
and fdata, the default action of IMSL_BSINTERP computes a cubic (k = 4) spline 
interpolant s to the data using the default knot sequence generated by the 
IMSL_BSKNOTS function.

Optional keyword XORDER allows the user to choose the order, k, of the spline 
interpolant; optional keyword XKNOTS allows user specification of knots.

The IMSL_BSINTERP function is based on the routine SPLINT by de Boor (1978, p. 
204).

First, IMSL_BSINTERP sorts the xdata vector and stores the result in x. The 
elements of the fdata vector are permuted appropriately and stored in f, yielding the 
equivalent data (xi, fi) for i = 0 to n – 1.

The following preliminary checks are performed on the data:

xi < xi + 1 i = 0, ..., n – 2 

ti < ti + k i = 0, ..., n – 1

tt ≤ ti + 1 i = 0, ..., n + k – 2

The first test checks to see that the abscissas are distinct. The second and third 
inequalities verify that a valid knot sequence has been specified.

In order for the interpolation matrix to be nonsingular, tk – 1 ≤ xi ≤ tn is also checked 
for i = 0 to n – 1. This first inequality in the last check is necessary since the method 
used to generate the entries of the interpolation matrix requires that the k possibly 
nonzero B-splines at xi:

Bj – k + 1, ..., Bj where j satisfies tj ≤ xi < tj + 1 

be well-defined (that is, j – k + 1 ≥ 0). 

General conditions are not known for the exact behavior of the error in spline 
interpolation; however, if t and x are selected properly and the data points arise from 
the values of a smooth (for example, Ck) function f, i.e., fi = f(xi), then the error 
behaves in a predictable fashion. The maximum absolute error satisfies:  

f s– tk 1– tn,[ ] C f
k( )

tk 1– tn,[ ] t
k≤
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where the following is true: 

For more information on this, see de Boor (1978, Chapter 13) and the references 
therein. This function can be used in place of the IMSL_CSINTERP function.

The returned value for this function is a structure. This structure contains all the 
information to determine the spline (stored as a linear combination of B-splines) that 
is computed by this function. For example, the following code sequence evaluates this 
spline at x and returns the value in y:

y = IMSL_SPVALUE(x, spline)

Two-dimensional, Tensor-product B-splines

If arguments xdata, ydata, and fdata are all included in the call to the 
IMSL_BSINTERP function, the function computes a two-dimensional, tensor-
product spline interpolant. The tensor-product spline interpolant to data {(xi, yj, fij)}, 
where 0 ≤ i ≤ nx – 1 and 0 ≤ j ≤ ny – 1, has the form: 

where kx and ky are the orders of the splines. These numbers are defaulted to 4 but can 
be set to any positive integer using keywords XORDER and YORDER. Likewise, tx 
and ty are the corresponding knot sequences (XKNOTS and YKNOTS). These values 
are defaulted to the knots returned by the IMSL_BSKNOTS function. The algorithm 
requires that the following is true:

tx (kx – 1) ≤ xi ≤ tx (nx) 0 ≤ i ≤ nx – 1 

ty (ky – 1) ≤ yj ≤ ty (ny) 0 ≤ j ≤ ny – 1 

t := max ti 1+ ti–
i k 1– … n 1–, ,=

cnm Bn kx tx, , x( )Bm ky ty, , y( )
n 0=

nx 1–

∑
m 0=

ny 1–

∑
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Tensor-product spline interpolants in two dimensions can be computed quite 
efficiently by solving (repeatedly) two univariate interpolation problems. The 
computation is motivated by the following observations: 

Setting: 

note that for each fixed i from 0 to nx – 1, there are ny linear equations in the same 
number of unknowns as can be seen below: 

The same matrix appears in the previous equation.

 

Thus, this matrix is factored only once, then the factorization to solve the nx right-
hand sides is applied. Once this is done and hmi is computed, then the coefficients cnm 
are solved using the relation: 

for m from 0 to ny – 1, which involves one factorization and ny solutions to the 
different right-hand sides. This ability of the IMSL_BSINTERP function is based on 
the SPLI2D routine by de Boor (1978, p. 347).

cnm Bn kx tx, , xi( )Bm ky ty, , yj( )
n 0=

nx 1–

∑
m 0=

ny 1–

∑ fij=

hmi cnmBn kx tx, , xi( )
n 0=

nx 1–

∑=

hmiBm ky ty, , yi( )
m 0=

ny 1–

∑ fij=

Bm ky ty, , yj( )[ ] 1  m j   ny 1–≤,≤

cnmBn kx tx, , xi( )
n 0=

nx 1–

∑ hmi=
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The returned value is a structure containing all the information to determine the 
spline (stored in B-spline format) that is computed by this function. For example, the 
following code sequence evaluates this spline at (x, y) and returns the value in z:

z = IMSL_SPVALUE(x, y, spline)

Examples

Example 1

In this example, a one-dimensional B-spline interpolant to function values is 
computed, as shown in Figure 6-5. Evaluations of the computed spline are then 
plotted along with the original data values. Since the default settings are being used, 
the interpolant is determined by the not-a-knot condition (see de Boor 1978).

x = FINDGEN(11)/10
; Define data values.
f = SIN(15 * x)
bs = IMSL_BSINTERP(x, f)
; Compute interpolant.
bsval = IMSL_SPVALUE(FINDGEN(100)/99, bs)
PLOT, FINDGEN(100)/99, bsval
; Output results.
OPLOT, x, f, Psym = 6
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Example 2

In this example, a two-dimensional, tensor-product B-spline interpolant to gridded 
data is computed as shown in Figure 6-6.

x = FINDGEN(5)/4
; Define the abscissas in the x-direction.
y = FINDGEN(5)/4
; Define the abscissas in the y-direction.
f = FLTARR(5, 5)
; Define the sample function values.
FOR i = 0, 4 DO $

f(i, *) = SIN(2 * x(i)) - COS(5 * y)
bs = IMSL_BSINTERP(x, y, f)
; Compute the spline interpolant.
bsval = IMSL_SPVALUE(FINDGEN(20)/19, FINDGEN(20)/19, bs)
; Use IMSL_SPVALUE to evaluate the computed spline.
!P.Charsize = 1.5
!P.Multi = [0, 1, 2]
WINDOW, XSize = 400, YSize = 800
; Plot the original and computed surfaces in a tall window.

Figure 6-5: B-Spline Interpolant
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SURFACE, f, x, y
SURFACE, bsval, FINDGEN(20)/19, $
FINDGEN(20)/19

Figure 6-6: Two-Dimensional B-Spline
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Errors

Warning Errors

MATH_ILL_COND_INTERP_PROB—Interpolation matrix is ill-conditioned. Solution 
might not be accurate.

Fatal Errors

MATH_DUPLICATE_XDATA_VALUES—The xdata values must be distinct.

MATH_YDATA_NOT_INCREASING—The ydata values must be strictly increasing.

MATH_KNOT_MULTIPLICITY—Multiplicity of the knots cannot exceed the order of 
the spline.

MATH_KNOT_NOT_INCREASING—Knots must be nondecreasing.

MATH_KNOT_XDATA_INTERLACING—The i-th smallest element of xdata (xi) must 
satisfy ti ≤ xi < ti + Order, where t is the knot sequence.

MATH_XDATA_TOO_LARGE—Array xdata must satisfy 
xdatai ≤ tndata, for i = 1, ..., ndata.

MATH_XDATA_TOO_SMALL—Array xdata must satisfy 
xdatai ≥ tOrder – 1, for i = 1, ..., ndata.

MATH_KNOT_DATA_INTERLACING—The i-th smallest element of the data arrays 
xdata and ydata must satisfy ti ≤ datai + Order, where t is the knot sequence.

MATH_DATA_TOO_LARGE—Data arrays xdata and ydata must satisfy 
datai ≤ tnum_data, for i = 1, ..., num_data.

MATH_DATA_TOO_SMALL—Data arrays xdata and ydata must satisfy
datai ≥ tOrder – 1, for i = 1, ..., num_data.

Version History

6.4 Introduced
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IMSL_BSKNOTS

The IMSL_BSKNOTS function computes the knots for a spline interpolant.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BSKNOTS(xdata [, /DOUBLE] [, ITMAX=value] 
[, ORDER=value] [, /OPTIMUM])

Return Value

A one-dimensional array containing the computed knots.

Arguments

xdata

One-dimensional array containing the abscissas of the interpolation problem.

Keywords

DOUBLE

If present and nonzero, double precision is used.

ITMAX

Integer value used to set the maximum number of iterations of Newton’s method. To 
use this keyword, the keyword OPTIMUM must also be set. Default: ITMAX = 10.

ORDER

Order of the spline subspace for which the knots are desired. Default: ORDER = 4, 
i.e., cubic splines.
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OPTIMUM

If present and nonzero, knots that satisfy an optimal criterion are computed. See 
“Discussion” on page 220 for more information.

Discussion

Given the data points x = xdata, the order of the spline k = ORDER, and the number 
n = N_ELEMENTS (xdata) of elements in xdata, the default action of 
IMSL_BSKNOTS returns a knot sequence that is appropriate for interpolation of data 
on x by splines of order k (the default order is k = 4). The knot sequence is contained 
in its n + k elements. If k is even and it is assumed that the entries in the input vector x 
are increasing, then the resulting knot sequence t is returned as follows:

ti = x0   for i = 0, ..., k – 1

ti = xi – k/2 – 1   for i = k, ..., n – 1 (1)

ti = xn – 1   for i = n, ..., n + k – 1

There is some discussion concerning this selection of knots in de Boor (1978, p. 211). 
If k is odd, then t is returned as follows: 

It is not necessary to sort the values in xdata.

If keyword OPTIMUM is set, then the knot sequence returned minimizes the constant 
c in the error estimate:

|| f – s || ≤ c || f (k) || 

where f is any function in Ck and s is the spline interpolant to f at the abscissa x with 
knot sequence t.

The algorithm is based on a routine described by de Boor (1978, p. 204), which in 
turn is based on a theorem of Micchelli et al. (1976).

ti x0=

ti xn 1–=

ti
1
2
--- x

i k 1–
2

------------– 1–
x

i 1– k 2–
2

------------–
+

 
 
 

=

for i 0 … k 1–, ,=

for i k … n 1–, ,=

for i n … n k 1–+, ,=
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Examples

Example 1

In this example, knots for a cubic spline are generated and printed. Notice that the 
knots are stacked at the endpoints; also, the second and next-to-last data points are 
not knots.

x = FINDGEN(6)
knots = IMSL_BSKNOTS(x)

PM, knots, FORMAT = '(f5.2)'
 0.00
 0.00
 0.00
 0.00
 2.00
 3.00
 5.00
 5.00
 5.00
 5.00

Example 2

This example compares the default knots with the knots returned using keyword 
OPTIMIZE as shown in Figure 6-7. The order is changed from the default value of 4 
to 3.

x = FINDGEN(11)/10
; Define the abscissa values.
f = FLTARR(11)
; Define the function values.
f(0:3) = .25
f(4:7) = .5
f(8:10) = .25
sp1 = IMSL_BSINTERP(x, f)
; Compute the default spline.
knots2 = IMSL_BSKNOTS(x, /OPTIMUM, ORDER = 3)
; Compute the optimum knots of order 3.
sp2 = IMSL_BSINTERP(x, f, XKNOTS = knots2, XORDER = 3)
; Compute the spline of order 3, with the optimum knots.
x2 = FINDGEN(100)/99
; Evaluate the two splines for plotting.
sp1eval = IMSL_SPVALUE(x2, sp1)
sp2eval = IMSL_SPVALUE(x2, sp2)
PLOT, x2, sp1eval, Linestyle = 2
; Plot the results.
OPLOT, x2, sp2eval
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OPLOT, x, f, PSYM = 6
XYOUTS, .25, .18, 'With optimum knots:', CHARSIZE = 1.5
OPLOT, [.65, .75], [.188, .188]
XYOUTS, .25, .135, 'With default knots:', CHARSIZE = 1.5
OPLOT, [.65, .75], [.143, .143], LINESTYLE = 2
XYOUTS, .3, .09, 'Original data', CHARSIZE = 1.5
OPLOT, [.70], [.098], PSYM = 6

Errors

Warning Errors

MATH_NO_CONV_NEWTON—Newton’s method iteration did not converge.

Fatal Errors

MATH_DUPLICATE_XDATA_VALUES—The xdata values must be distinct.

MATH_ILL_COND_LIN_SYS—Interpolation matrix is singular. The xdata values may 
be too close together.

Figure 6-7: Optimum Knot Placement
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Version History

6.4 Introduced
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IMSL_SPVALUE

The IMSL_SPVALUE function computes values of a spline or values of one of its 
derivatives.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SPVALUE(x, spline [, XDERIV=value] [, YDERIV=value])

or

Result = IMSL_SPVALUE(x, y, spline [, XDERIV=value] [, YDERIV=value])

Return Value

The values of a spline or one of its derivatives.

Arguments

If evaluation of a one-dimensional spline is desired, then arguments x and spline are 
required. If evaluation of a two-dimensional spline is desired, then x, y, and spline are 
required.

x

Scalar value or an array of values at which the spline is to be evaluated in the x-
direction. If x is an array, then x must be strictly increasing, i.e.,  x (i) < x (i + 1) for 
i = 0, (N_ELEMENTS (x) – 2).

y

Scalar value or an array of values at which the spline is to be evaluated in the y-
direction. This argument should only be used if spline is a two-dimensional, tensor-
product spline. If y is an array, then x must be strictly increasing, i.e., y (i) < y (i + 1) 
for i = 0, (N_ELEMENTS (y) – 2).

spline

Structure that represents the spline.
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Keywords

XDERIV

Let XDERIV = p, and let s be the spline that is represented by spline. If s is a one-
dimensional spline, this keyword produces the p-th derivative of s at x, s(p) (x). If s is 
a two-dimensional spline, this keyword specifies the order of the partial derivative in 
the x-direction. Let q = YDERIV, which has a default value of 0. Then, 
IMSL_SPVALUE produces the (p, q)-th derivative of s at (x, y), s(p, q)(x, y). Default: 
XDERIV = 0

YDERIV

If s = spline is a two-dimensional spline, this keyword specifies the order of the 
partial derivative in the y-direction. Let p = XDERIV, which has a default value of 
zero, and q = YDERIV. Then, IMSL_SPVALUE produces the (p, q)-th derivative of s 
at (x, y), s(p, q)(x, y). If spline is a one-dimensional spline, this keyword has no effect 
on computations. Default: YDERIV = 0

Discussion

The IMSL_SPVALUE function can be used to evaluate splines of the following type:

• Piecewise polynomials returned by IMSL_CSINTERP, IMSL_CSSHAPE, and 
IMSL_CSSMOOTH.

• One-dimensional B-splines returned by IMSL_BSINTERP, IMSL_BSLSQ, 
and IMSL_CONLSQ.

• Two-dimensional, tensor-product B-splines returned from IMSL_BSINTERP 
and IMSL_BSLSQ.

If spline is a piecewise polynomial, the IMSL_SPVALUE function computes the 
values of a cubic spline or one of its derivatives. In this case, supply the arguments x 
and spline, but do not supply the argument y. If x is a scalar, then a scalar is returned. 
If x is a one-dimensional array, then a one-dimensional array of values is returned. 
The first and last pieces of the cubic spline are extrapolated so that the cubic spline 
structures returned by the cubic spline routines are defined and can be evaluated on 
the entire real line. This ability is based on the routine PPVALU by de Boor (1978, p. 
89).

If spline is a one-dimensional B-spline, the IMSL_SPVALUE function computes the 
values of a spline or one of its derivatives. In this case, the user is required to supply 
the arguments x and spline and must not supply the argument y. If x is a scalar, then a 
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scalar is returned. If x is a one-dimensional array, then a one-dimensional array of 
values is returned. This ability is based on the routine BVALUE by de Boor (1978, p. 
144).

If spline is a two-dimensional, tensor-product B-spline, the IMSL_SPVALUE 
function computes the values of a tensor-product spline or one of its derivatives. In 
this case, the user is required to supply the arguments x, y, and spline. If x and y are 
both scalars, then a scalar is returned. If x and y are both one-dimensional arrays, then 
a two-dimensional array of values is returned, where the (i, j)-th element of the 
returned matrix is the desired value of spline (x (i), y (j)). This ability is based on the 
discussion in de Boor (1978, pp. 351–353). 

Examples

Example 1

This example computes a cubic spline interpolant to function values. The spline is 
then evaluated, and the results are plotted as shown in Figure 6-8. Since the default 
settings are used, the interpolant is determined by the not-a-knot condition (see 
de Boor 1978).

x = FINDGEN(10)/9
f = SIN(15 * x)
pp = IMSL_CSINTERP(x, f)
x2 = FINDGEN(100)/99
ppeval = IMSL_SPVALUE(x2, pp)
PLOT, x2, ppeval
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Example 2

This example computes a two-dimensional, tensor-product B-spline using 
IMSL_BSINTERP, then uses IMSL_SPVALUE to evaluate the spline on a grid, and 
plots the results as shown in Figure 6-9.

x = FINDGEN(5)/4
y = FINDGEN(5)/4
f = FLTARR(5, 5)
FOR i = 0, 4 DO f(i,*) = SIN(2 * !Pi * x(i)) * (-COS(!Pi*y/2))
; Generate the data.
bs = IMSL_BSINTERP(x, y, f)
; Compute the spline by calling IMSL_BSINTERP.
bsval = FLTARR(20, 20)
FOR i = 0, 19 DO BSVAL(i, *) = IMSL_SPVALUE(i/19., FINDGEN(20)/19, 
bs)
; Evaluate the spline on a grid.
!P.Multi = [0, 1, 2]
WINDOW, XSize = 400, YSize = 800
; Plot the original data and the evaluations of the spline in the
; same plot window.
ax = 50
; The angle of rotation about x-axis in plots is defined by ax. 

Figure 6-8: Spline Evaluation Plot
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!P.Charsize = 1.5
SURFACE, f, x, y, Ax = ax, XTitle = 'X', YTitle = 'Y'
SURFACE, bsval, FINDGEN(20)/19, FINDGEN(20)/19, Ax = ax, $

XTitle = 'X', YTitle = 'Y'

Figure 6-9: Two-Dimensional Spline Plot Evaluation
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Errors

Warning Errors

MATH_X_NOT_WITHIN_KNOTS—Value of x does not lie within the knot sequence.

MATH_Y_NOT_WITHIN_KNOTS—Value of y does not lie within the knot sequence.

Fatal Errors

MATH_KNOT_MULTIPLICITY—Multiplicity of the knots cannot exceed the order of 
the spline.

MATH_KNOT_NOT_INCREASING—Knots must be nondecreasing.

Version History

6.4 Introduced
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IMSL_SPINTEG

The IMSL_SPINTEG function computes the integral of a one- or two-dimensional 
spline.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SPINTEG(a, b, spline)

Result = IMSL_SPINTEG(a, b, c, d, spline)

Return Value

If spline is a one-dimensional spline, then the returned value is the integral from a to 
b of spline. If spline is a two-dimensional, tensor-product spline, then the returned 
value is the value of the integral of spline over the rectangle [a, b] x [c, d]. If no value 
can be computed, NaN (Not a Number) is returned.

Arguments

If integration of a one-dimensional spline is desired, then arguments a, b, and spline 
are required. If integration of a two-dimensional spline is desired, then a, b, c, d, and 
spline are required.

a

Right endpoint of integration.

b

Left endpoint of integration.

c

Right endpoint of integration for the second variable of the tensor-product spline. 
This argument should only be used if spline is a two-dimensional, tensor-product 
spline.
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d

Left endpoint of integration for the second variable of the tensor-product spline. This 
argument should only be used if spline is a two-dimensional, tensor-product spline.

spline

Structure that represents the spline to be integrated.

Discussion

The IMSL_SPINTEG function can be used to integrate splines of the following type:

• Piecewise polynomials returned by IMSL_CSINTERP, IMSL_CSSHAPE, and 
IMSL_CSSMOOTH.

• One-dimensional B-splines returned by IMSL_BSINTERP, IMSL_BSLSQ, 
and IMSL_CONLSQ.

• Two-dimensional, tensor-product B-splines returned from IMSL_BSINTERP 
and IMSL_BSLSQ.

If s = spline is a one-dimensional piecewise polynomial or B-spline, then 
IMSL_SPINTEG computes:

 

If spline is a one-dimensional B-spline, then this function uses identity (22) of 
de Boor (1978, p. 115).

If s = spline is a two-dimensional, tensor-product spline, then the arguments c and d 
are required, and IMSL_SPINTEG computes: 

This function uses the (univariate integration) identity (22) of de Boor (1978, p. 151): 

where t0 ≤ x ≤ tr. It assumes (for all knot sequences) that the first and last k knots are 
stacked; that is, t0 = . . . = tk – 1 and tn = . . . = tn + k – 1, where k is the order of the 
spline in the x or y direction.
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Example

This example computes a cubic spline interpolant to function values. The values of 
the integral of this spline are then compared with the exact integral values. Since the 
default settings are being used, the interpolant is determined by the not-a-knot 
condition (de Boor 1978).

n = 21
; Generate the data.
x = FINDGEN(n)/(n - 1)
f = SIN(15 * x)
pp = IMSL_CSINTERP(x, f)
; Compute the interpolant.
results = FLTARR(22, 4)
; Define an array to hold some results to be output later.
FOR i = n/2, 3 * n/2 DO BEGIN $
x2 = i/FLOAT(2 * n - 2) &$

y = IMSL_SPINTEG(0, x2, pp) &$
results(i - n/2, *) = &$
[x2, (1 - COS(15 * x2))/15, y, &$
ABS((1 - COS(15 * x2))/15 - y)] &$

; Loop over different limits of integration and compare the 
; results with the true answer.
ENDFOR
PM, results, FORMAT = '(4f12.4)', $

Title  = ' X True Approx Error'
; Output the results.

X        True        Approx      Error
0.2500      0.1214      0.1215      0.0001
0.2750      0.1036      0.1037      0.0001
0.3000      0.0807      0.0808      0.0001
0.3250      0.0559      0.0560      0.0001
0.3500      0.0325      0.0327      0.0001
0.3750      0.0139      0.0141      0.0002
0.4000      0.0027      0.0028      0.0002
0.4250      0.0003      0.0004      0.0002
0.4500      0.0071      0.0073      0.0002
0.4750      0.0223      0.0224      0.0001
0.5000      0.0436      0.0437      0.0001
0.5250      0.0681      0.0682      0.0001
0.5500      0.0924      0.0925      0.0001
0.5750      0.1131      0.1132      0.0001
0.6000      0.1274      0.1275      0.0001
0.6250      0.1333      0.1333      0.0001
0.6500      0.1298      0.1299      0.0001
0.6750      0.1176      0.1177      0.0001
0.7000      0.0984      0.0985      0.0001
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0.7250      0.0747      0.0748      0.0001
0.7500      0.0499      0.0500      0.0001
0.7750      0.0274      0.0276      0.0001

Errors

Warning Errors

MATH_SPLINE_LEFT_ENDPT—Left endpoint of x integration is not within the knot 
sequence. Integration occurs only from tOrder – 1 to b.

MATH_SPLINE_RIGHT_ENDPT—Right endpoint of x integration is not within the 
knot sequence. Integration occurs only from tOrder – 1 to a.

MATH_SPLINE_LEFT_ENDPT_1—Left endpoint of x integration is not within the 
knot sequence. Integration occurs only from b to tSpline_Space_Dim – 1.

MATH_SPLINE_RIGHT_ENDPT_1—Right endpoint of x integration is not within the 
knot sequence. Integration occurs only from a to tSpline_Space_Dim – 1.

MATH_SPLINE_LEFT_ENDPT_2—Left endpoint of y integration is not within the 
knot sequence. Integration occurs only from tOrder – 1 to d.

MATH_SPLINE_RIGHT_ENDPT_2—Right endpoint of y integration is not within the 
knot sequence. Integration occurs only from tOrder – 1 to c.

MATH_SPLINE_LEFT_ENDPT_3—Left endpoint of y integration is not within the 
knot sequence. Integration occurs only from d to tSpline_Space_Dim – 1.

MATH_SPLINE_RIGHT_ENDPT_3—Right endpoint of y integration is not within the 
knot sequence. Integration occurs only from c to tSpline_Space_Dim – 1.

Fatal Errors

MATH_KNOT_MULTIPLICITY—Multiplicity of the knots cannot exceed the order of 
the spline.

MATH_KNOT_NOT_INCREASING—Knots must be nondecreasing.

Version History

6.4 Introduced
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IMSL_FCNLSQ

The IMSL_FCNLSQ function computes a least-squares fit using user-supplied 
functions.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FCNLSQ(f, nbasis, xdata, fdata [, /DOUBLE] 
[, INTERCEPT=variable] [, SSE=variable] [, WEIGHTS=value])

Return Value

A one-dimensional array containing the coefficients of the basis functions.

Arguments

f

Scalar string specifying the name of a user-supplied function that defines the 
subspace from which the least-squares fit is to be performed. The k-th basis function 
evaluated at x is f (k, x), where k = 1, 2, ..., nbasis.

nbasis

Number of basis functions.

xdata

One-dimensional array containing the abscissas of the least-squares problem.

fdata

One-dimensional array containing the ordinates of the least-squares problem.
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Keywords

DOUBLE

If present and nonzero, double precision is used.

INTERCEPT

Named variable into which the coefficient of a constant function used to augment the 
user-supplied basis functions in the least-squares fit is stored. Setting this keyword 
forces an intercept to be added to the model.

SSE

Named variable into which the error sum of squares is stored.

WEIGHTS

Array of weights used in the least-squares fit.

Discussion

The IMSL_FCNLSQ function computes a best least-squares approximation to given 
univariate data of the form:

 

by M basis functions:

 

(where M = nbasis). In particular, the default for this function returns the coefficients 
a which minimize:  

where w = WEIGHTS, n = N_ELEMENTS (xdata), x = xdata, and f = fdata.
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If the optional keyword INTCERCEPT is used, then an intercept is placed in the 
model and the coefficients a, returned by IMSL_FCNLSQ, minimize the error sum of 
squares as indicated below: 

Example

In this example, the following function is fit:

1 + sinx + 7sin3x

This function is evaluated at 90 equally spaced points on the interval [0, 6]. Four basis 
functions, 1, sinx, sin2x, and sin3x, are used.

.RUN
; Define the basis functions.
FUNCTION f, k, x
IF (k EQ 1) THEN RETURN, 1. $

ELSE RETURN, SIN((k - 1) * x)
END

n = 90
xdata = 6 * FINDGEN(n)/(n - 1)
fdata = 1 + SIN(xdata) + 7 * SIN(3 * xdata)
nbasis = 4
; Generate the data.
coefs = IMSL_FCNLSQ('f', nbasis, xdata, fdata)
; Compute the coefficients summing IMSL_FCNLSQ.
PM, coefs, FORMAT = '(f10.5)'

; Print the results.
1.00000
1.00000
0.00000
7.00000

wi fi intercept– aj 1– Fj xi( )
j 1=
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Errors

Warning Errors

MATH_LINEAR_DEPENDENCE—Linear dependence of the basis functions exists. One 
or more components of coef are set to zero.

MATH_LINEAR_DEPENDENCE_CONST—Linear dependence of the constant function 
and basis functions exists. One or more components of coef are set to zero.

Fatal Errors

MATH_NEGATIVE_WEIGHTS_2—All weights must be greater than or equal to zero.

Version History

6.4 Introduced
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IMSL_BSLSQ

The IMSL_BSLSQ function computes a one- or two-dimensional, least-squares 
spline approximation.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BSLSQ(xdata, fdata, xspacedim [, /DOUBLE] [, OPTIMIZE=value] 
[, SSE=variable] [, XKNOTS=value] [, XORDER=value] [, XWEIGHTS=value] 
[, YKNOTS=value] [, YORDER=value] [, YWEIGHTS=value])

or

Result = IMSL_BSLSQ(xdata, ydata, fdata, xspacedim, yspacedim 
[, DOUBLE=value] [, OPTIMIZE=value] [, SSE=variable] [, XKNOTS=value] 
[, XORDER=value] [, XWEIGHTS=value] [, YKNOTS=value] 
[, YORDER=value] [, YWEIGHTS=value]) 

Return Value

A structure containing all the information to determine the spline fit.

Arguments

If a one-dimensional B-spline is desired, then arguments xdata, fdata, and xspacedim 
are required. If a two-dimensional, tensor-product B-spline is desired, then arguments 
xdata, ydata, fdata, xspacedim, and yspacedim are required.

xdata

One-dimensional array containing the data points in the x-direction.

ydata

One-dimensional array containing the data points in the y-direction.
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fdata

Array containing the values to be approximated. If a one-dimensional approximation 
is to be computed, then fdata is a one-dimensional array. If a two-dimensional 
approximation is to be computed, then fdata is a two-dimensional array, where fdata 
(i, j) contains the value at (xdata (i), ydata(j)).

xspacedim

Linear dimension of the spline subspace for the x variable. It should be smaller than 
the number of data points in the x-direction and greater than or equal to the order of 
the spline in the x-direction (whose default value is 4).

yspacedim

Linear dimension of the spline subspace for the y variable. It should be smaller than 
the number of data points in the y-direction and greater than or equal to the order of 
the spline in the y-direction (whose default value is 4).

Keywords

DOUBLE

If present and nonzero, double precision is used.

OPTIMIZE

If present and nonzero, optimizes the knot locations by attempting to minimize the 
least-squares error as a function of the knots. This keyword is only active if a one-
dimensional spline is being computed.

SSE

Set this keyword equal to a named variable that will contain the weighted error sum 
of squares is stored.

XKNOTS

Specifies the array of knots in the x-direction to be used when computing the 
definition of the spline. Default: knots are equally spaced in the x-direction.

XORDER

Specifies the order of the spline in the x-direction. Default: XORDER = 4, i.e., cubic 
splines.
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XWEIGHTS

Array containing the weights to use in the x-direction. Default: all weights equal to 1.

YKNOTS

Specifies the array of knots in the y-direction to be used when computing the 
definition of the spline. Default: knots are equally spaced in the y-direction.

YORDER

Specifies the order of the spline in the y-direction. If a one-dimensional spline is 
being computed, then YORDER has no effect on the computations. Default: 
YORDER = 4, i.e., cubic splines.

YWEIGHTS

Array containing the weights to use in the y-direction. If a one-dimensional spline is 
being computed, then YWEIGHTS has no effect on the computations. Default: all 
weights equal to 1.

Discussion

The IMSL_BSLSQ function computes a least-squares approximation to weighted 
data returning either a one-dimensional B-spline or a two-dimensional, tensor-
product B-spline. The determination of whether to return a one- or two-dimensional 
spline is made based on the number of arguments passed to the function.

One-dimensional, B-spline Least-squares Approximation

Make the following identifications:

n = N_ELEMENTS(xdata) 

x = xdata 

f = fdata

m = xspacedim 

k = XOrder 

For convenience, assume that the sequence x is increasing (although the function does 
not require this).

By default, k = 4 and the knot sequence selected equally distributes the knots through 
the distinct xi’s. In particular, the m + k knots are generated in [x0 , xn – 1 ] with k 
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knots stacked at each of the extreme values. The interior knots are equally spaced in 
the interval.

Once knots t and weights w are determined (and assuming that keyword OPTIMIZE 
is not set), then the function computes the spline least-squares fit to the data by 
minimizing over the linear coefficients aj, such that: 

where Bj, j = 0, . . ., m – 1, is a (B-spline) basis for the spline subspace.

The XORDER keyword allows the user to choose the order of the spline fit. The 
XKNOTS keyword allows user specification of knots. The one-dimensional 
functionality of IMSL_BSLSQ is based on the routine L2APPR by de Boor (1978, p. 
255).

If the keyword OPTIMIZE is used, the function attempts to find the best placement of 
knots that minimizes the least-squares error to the given data by a spline of order k 
with m coefficients. For this problem, it is necessary that m > k. Then, to find the 
minimum of the functional, use the following: 

The technique employed here uses the fact that for a fixed-knot sequence t the 
minimization in a is a linear least-squares problem that is easily solved. Thus, 
objective function F is a function of only t by setting the following:

G(t) = minF(a, t) 

A Gauss-Seidel (cyclic coordinate) method is then used to reduce the value of the 
new objective function G. In addition to this local method, there is a global heuristic 
built into the algorithm that is useful if the data arise from a smooth function. This 
heuristic is based on the routine NEWNOT of de Boor (1978, pp. 184, 258–261).

The guess, tg, for the knot sequence is either provided by the user or is the default. 
This must be a valid knot sequence for splines of order k with:
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with tg nondecreasing and tg
i < tg

i + k for i = 0, ..., m – 1. 

In regard to execution speed, this function can be several orders of magnitude slower 
than a simple least-squares fit.

The return value for this function is a structure containing all the information to 
determine the spline (stored in B-spline form) that is computed by this function.

In Figure 6-10, two cubic splines are fit to SQRT( |x| ). Both splines are cubics with 
the same xspacedim = 8. The first spline is computed with the default settings, while 
the second spline is computed by optimizing the knot locations using the OPTIMIZE 
keyword.

Two-dimensional, B-spline Least-squares Approximation

If a two-dimensional, tensor-product B-spline is desired, the IMSL_BSLSQ function 
computes a tensor-product spline, least-squares approximation to weighted, tensor-
product data. The input for this function consists of data vectors to specify the tensor-
product grid for the data, two vectors with the weights (optional, the default is 1), the 
values of the surface on the grid, and the specification for the tensor-product spline 
(optional, a default is chosen). The grid is specified by the two vectors x = xdata and 
y = ydata of length n = N_ELEMENTS(xdata) and m= N_ELEMENTS(ydata), 

Figure 6-10: Two Fits to Noisy SQRT( |x| )
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respectively. A two-dimensional array f = fdata contains the data values to be fit. The 
two vectors wx = XWEIGHTS and wy = YWEIGHTS contain the weights for the 
weighted, least-squares problem. The information for the approximating tensor-
product spline can be provided using keywords XORDER, YORDER, XKNOTS, and 
YKNOTS. This information is contained in kx = XORDER, tx = XKNOTS, and n = 
xspacedim for the spline in the first variable, and in ky = YOrder, ty = YKnots, and 
m = yspacedim for the spline in the second variable.

This function computes coefficients for the tensor-product spline by solving the 
normal equations in tensor-product form as discussed in de Boor (1978, Chapter 17). 
For more information, see the paper by Grosse (1980).

As the computation proceeds, coefficients c are obtained minimizing: 

where the function Bkl is the tensor-product of two B-splines of order kx and ky:

 

The spline:  

and its partial derivatives can be evaluated using IMSL_SPVALUE.

The return value for this function is a structure containing all the information to 
determine the spline that is computed by this function. For example, the following 
code sequence evaluates this spline (stored in the structure sp) at (x, y) and returns the 
value in v:

v = IMSL_SPVALUE(x, y, sp)

Examples

Example 1

This example fits data generated from a trigonometric polynomial:

1 + sinx + 7sin3x + ε 
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where ε is a random uniform deviate over the range [–1, 1]. The data is obtained by 
evaluating this function at 90 equally spaced points on the interval [0, 6]. This data is 
fit with a cubic spline with 12 degrees of freedom (eight equally spaced interior 
knots). The computed fit and original data are then plotted, as shown in Figure 6-11, 
as follows:

n = 90
x = 6 * FINDGEN(n)/(n - 1)
f = 1 + SIN(x) + 7 * SIN(3 * x) + (1 - 2 * IMSL_RANDOM(n))
; Set up the data.
sp = IMSL_BSLSQ(x, f, 8)
; Compute the spline fit.
speval = IMSL_SPVALUE(x, sp)
; Evaluate the computed spline at the original data abscissa.
PLOT, x, speval
; Plot the results.
OPLOT, x, f, Psym = 6

Figure 6-11: One-Dimensional Least-Squares B-Spline Fit
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Example 2

This example fits noisy data that arises from the function exsin (x + y) + ε, where ε is 
a random uniform deviate in the range (–1, 1), on the rectangle [0, 3] x [0, 5]. This 
function is sampled on a 50 x 25 grid and the original data and the evaluations of the 
computed spline are plotted as shown in Figure 6-12.

nx = 50
ny = 25
; Generate noisy data on a 50 x 25 grid.
x = 3 * FINDGEN(nx)/(nx - 1)
y = 5 * FINDGEN(ny)/(ny - 1)
f = FLTARR(nx, ny)
FOR i = 0, nx - 1 DO f(i, *) = EXP(x(i)) * $

SIN(x(i) + y) + 2 * IMSL_RANDOM(ny) - 1
sp = IMSL_BSLSQ(x, y, f, 5, 7)
; Call IMSL_BSLSQ to compute the least-squares fit. Notice that 
; xspacedim = 5 and yspacedim = 7.
speval = IMSL_SPVALUE(x, y, sp)
; Evaluate the fit on the original grid.
!P.Multi = [0, 1, 2]
WINDOW, XSize = 500, YSize = 800
; Plot the original data and the fit in the same window.
SURFACE, f, x, y, Ax = 45, XTitle = 'X', YTitle = 'Y'
SURFACE, speval, x, y, Ax = 45, XTitle = 'X', YTitle = 'Y'
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Figure 6-12: Two-Dimensional B-Spline Fit to Noisy Data
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Errors

Warning Errors 

MATH_ILL_COND_LSQ_PROB—Least-squares matrix is ill-conditioned. Solution 
might not be accurate. 

MATH_SPLINE_LOW_ACCURACY—There may be less than one digit of accuracy in 
the least-squares fit. Try using higher precision if possible.

MATH_OPT_KNOTS_STACKED_1—Knots found to be optimal are stacked more than 
Order. This indicates that fewer knots will produce the same error sum of squares. 
Knots have been separated slightly.

Fatal Errors

MATH_KNOT_MULTIPLICITY—Multiplicity of the knots cannot exceed the order of 
the spline.

MATH_KNOT_NOT_INCREASING—Knots must be nondecreasing.

MATH_SPLINE_LRGST_ELEMNT—Data arrays xdata and ydata must satisfy datai ≤ 
tSpline_Space_Dim, for i = 1, ..., num_data.

MATH_SPLINE_SMLST_ELEMNT—Data arrays xdata and ydata must satisfy datai ≥ 
tOrder – 1, for i = 1, ..., num_data.

MATH_NEGATIVE_WEIGHTS—All weights must be greater than or equal to zero.

MATH_DATA_DECREASING—The xdata values must be nondecreasing.

MATH_XDATA_TOO_LARGE—Array xdata must satisfy 
xdatai ≤ tndata, for i = 1, ..., ndata.

MATH_XDATA_TOO_SMALL—Array xdata must satisfy 
xdatai ≥ tOrder – 1, for i = 1, ..., ndata.

MATH_OPT_KNOTS_STACKED_2—Knots found to be optimal are stacked more than 
Order. This indicates fewer knots will produce the same error sum of squares.

Version History

6.4 Introduced
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IMSL_CONLSQ

The IMSL_CONLSQ function computes a least-squares constrained spline 
approximation.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CONLSQ(xdata, fdata, spacedim, constraints[, nhard] [, /DOUBLE] 
[, KNOTS=value] [, ORDER=value] [, WEIGHTS=value])

Return Value

A structure that represents the spline fit.

Arguments

xdata

One-dimensional array containing the abscissas of the least-squares problem.

fdata

One-dimensional array containing the ordinates of the least-squares problem.

spacedim

Linear dimension of the spline subspace. It should be smaller than the number of data 
points and greater than or equal to the order of the spline (whose default value is 4).

constraints

Array of structures containing the abscissas at which the fit is to be constrained, the 
derivative of the spline that is to be constrained, the type of constraints, and any lower 
or upper limits. A description of the structure fields follows.

• XVAL—Point at which fit is constrained (float).

• DER—Derivative value of the spline to be constrained (long int).
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• TYPE—Types of the general constraints (long int).

• BL—Lower limit of the general constraints (float).

• BU—Upper limit of the general constraints (float).

Note
To constrain the integral of the spline over the closed interval (c, d), set constraints 
(i).XVAL = c and constraints (i + 1).XVAL = d. For consistency, insist that 
constraints (i).TYPE = constraints (i + 1).TYPE = 5, 6, 7, or 8 and c ≤ d.

constraints(i).TYPE-th constraint 

1   

2   

3   

4   

5   

6   

7   

8   

20 periodic end conditions

99 disregard this constraint

In order to have two-point constraints, 
constraints(i).TYPE = constraints(i + 1).TYPE is needed.

constraints(i).TYPE i-th constraint 

9   

10   

11   

12   

nhard

(Optional) Number of entries of constraints involved in the “hard” constraints. Note 
that 0 ≤ nhard ≤ (SIZE (constraints)) (1). The default, nhard = 0, always results in a 
fit, while setting nhard = (SIZE (constraints)) (1) forces all constraints to be met. The 
“hard” constraints must be met or the function signals fail. The “soft” constraints 
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need not be satisfied, but there is an attempt to satisfy the “soft” constraints. The 
constraints must be listed in terms of priority with the most important constraints 
first. Thus, all “hard” constraints must precede “soft” constraints. If infeasibility is 
detected among the “soft” constraints, the function satisfies, in order, as many of the 
“soft” constraints as possible. Default: nhard = 0

Keywords

DOUBLE

If present and nonzero, double precision is used.

KNOTS

Specifies the array of knots to be used when computing the spline. Default: knots are 
equally spaced.

ORDER

Specifies the order of the spline. Default: ORDER = 4, i.e., cubic splines.

WEIGHTS

Array containing the weights to be used. Default: all weights equal 1.

Discussion

The IMSL_CONLSQ function produces a constrained, weighted, least-squares fit to 
data from a spline subspace. Constraints involving one-point, two-points, or integrals 
over an interval are allowed. 

The types of constraints supported by the functions are of four types: 

An interval, Ip, (which may be a point, a finite interval, or a semi-infinite interval) is 
associated with each of these constraints.

or f t( )
yp

yp 1+∫ dt=

or periodic end conditions=
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The input for this function consists of the data set (xi, fi) for i = 1, ..., N (where 
N = N_ELEMENTS(xdata)); that is, the data which is to be fit and the dimension of 
the spline space from which a fit is to be computed, spacedim. The constraints 
argument is an array of structures that contains the abscissas of the points involved in 
specifying the constraints, as well as information relating the type of constraints and 
the constraint interval. The optional argument nhard allows users of this code to 
specify which constraints must be met and which constraints can be removed in order 
to compute a fit. The algorithm tries to satisfy all the constraints, but if the constraints 
are inconsistent, then it drops constraints in the reverse order specified, until either a 
consistent set of constraints is found or the “hard” constraints are determined to be 
inconsistent (the “hard” constraints are those involving constraints(0), ..., 
constraints(nhard – 1)). 

Let nf denote the number of feasible constraints as described above. The function 
solved the problem:

subject to: 

This linearly constrained least-squares problem is treated as a quadratic program and 
is solved by invoking IMSL_QUADPROG.

The choice of weights depends on the data uncertainty in the problem. In some cases, 
there is a natural choice for the weights based on the estimates of errors in the data 
points.

Determining feasibility of linear constraints is a numerically sensitive task. If 
difficulties are encountered, a quick fix is to widen the constraint intervals Ip.

Example

This example is a simple application of IMSL_CONLSQ. Data from the function 
x/2 + sin(x/2) contaminated with random noise is generated and then fit with cubic 
splines. The function is increasing so it is hoped that the least-squares fit also is 
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increasing. This is not the case for the unconstrained least-squares fit generated by the 
IMSL_BSLSQ function. The derivative is then forced to be greater than zero at 15 
equally spaced points and IMSL_CONLSQ is called. The resulting curve is 
monotone as shown in Figure 6-13.

IMSL_RANDOMOPT, Set = 234579
; Set the random seed.
ndata = 15;
spacedim = 8;
; Generate the data to be fit.
x = 10 * FINDGEN(ndata)/(ndata - 1)
y = .5 * (x) + SIN(.5 * (x)) + IMSL_RANDOM(ndata) - .5
sp1 = IMSL_BSLSQ(x, y, spacedim)
; Compute the unconstrained least-squares fit.
nconstraints = 15
; Define the constraints to be used by IMSL_CONLSQ.
constraints = REPLICATE({constraint, $

XVAL:0.0, DER:0L, TYPE:0L, BL:0.0, BU:0.0}, nconstraints)
; Define an array of constraint structures. Each element of the
; array contains one structure that defines a constraint.
constraints.XVAL = 10*FINDGEN(nconstraints)/(nconstraints-1)
; Put a constant at 15 equally spaced points.
FOR i = 0, nconstraints - 1 DO BEGIN &$

constraints(i).DER  = 1 &$
constraints(i).TYPE = 3 &$
constraints(i).BL   = 0. &$

ENDFOR
; Define constraints to force the second derivative to be greater
; than zero at the 15 equally spaced points.
sp2 = IMSL_CONLSQ(x, y, spacedim, constraints)
; Call IMSL_CONLSQ.
nplot = 100
xplot = 10 * FINDGEN(nplot)/(nplot - 1)
yplot1 = IMSL_SPVALUE(xplot, sp1)
yplot2 = IMSL_SPVALUE(xplot, sp2)
PLOT, xplot, yplot1, Linestyle = 2
; Plot the results.
OPLOT, xplot, yplot2
OPLOT, x, y, Psym = 6
XYOUTS, 1, 4.5, 'IMSL_CONLSQ', Charsize = 2
XYOUTS, 1, 4, 'IMSL_BSLSQ', Charsize = 2
OPLOT, [5.0, 6.0], [4.6, 4.6]
OPLOT, [5.0, 6.0], [4.1, 4.1], Linestyle = 2
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Version History

Figure 6-13: Monotonic B-Spline Fit to Noisy Data

6.4 Introduced
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IMSL_CSSMOOTH

The CSSMOTH function computes a smooth cubic spline approximation to noisy 
data by using cross-validation to estimate the smoothing parameter or by directly 
choosing the smoothing parameter.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CSSMOOTH(xdata, fdata [, /DOUBLE] [, SMPAR=value] 
[, WEIGHTS=value])

Return Value

The structure that represents the cubic spline.

Arguments

xdata

One-dimensional array containing the abscissas of the problem.

fdata

One-dimensional array containing the ordinates of the problem.

Keywords

DOUBLE

If present and nonzero, double precision is used.

SMPAR

Specifies the real, scalar smoothing parameter explicitly. See “Discussion” on 
page 255 for more details.
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WEIGHTS

Array containing the weights to be used in the problem. Default: all weights are equal 
to 1

Discussion

The IMSL_CSSMOOTH function is designed to produce a C2 cubic spline 
approximation to a data set in which the function values are noisy. This spline is 
called a smoothing spline.

Consider first the situation when the optional keyword SMPAR is selected. Then, a 
natural cubic spline with knots at all the data abscissas x = xdata is computed, but it 
does not interpolate the data (xi, fi). The smoothing spline s is the unique C2 function 
which minimizes:

subject to the constraint: 

where w = WEIGHTS, σ = SMPAR is the smoothing parameter, and 
n = N_ELEMENTS(xdata).

Recommended values for σ depend on the weights w. If an estimate for the standard 
deviation of the error in the value fi is available, then wi should be set to the inverse of 
this value. The smoothing parameter σ should be chosen in the confidence interval 
corresponding to the left side of the above inequality; that is: 

 

The IMSL_CSSMOOTH function is based on an algorithm of Reinsch (1967). This 
algorithm also is discussed in de Boor (1978, pp. 235–243).

The default for this function chooses the smoothing parameter σ by a statistical 
technique called cross-validation. For more information on this topic, refer to Craven 
and Wahba (1979).
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The return value for this function is a structure containing all the information to 
determine the spline (stored as a piecewise polynomial) that is computed by this 
procedure.

Example

In this example, function values are contaminated by adding a small “random” 
amount to the correct values. The IMSL_CSSMOOTH function is used to 
approximate the original, uncontaminated data as shown in Figure 6-14.

n = 25
x = 6 * FINDGEN(n)/(n - 1)
f = SIN(x) + .5 * (IMSL_RANDOM(n) - .5)
; Generate the data.
pp = IMSL_CSSMOOTH(x, f)
; Compute the fit.
x2 = 6 * FINDGEN(100)/99
; Evaluate the computed fit at 100 values in [0, 6].
ppeval = IMSL_SPVALUE(x2, pp)
PLOT, x2, ppeval
; Plot the results.
OPLOT, x, f, Psym = 6, Symsize = .5

Figure 6-14: Smoothing Spline
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Errors

Warning Errors

MATH_MAX_ITERATIONS_REACHED—Maximum number of iterations has been 
reached. The best approximation is returned.

Fatal Errors

MATH_DUPLICATE_XDATA_VALUES—The xdata values must be distinct.

MATH_NEGATIVE_WEIGHTS—All weights must be greater than or equal to zero.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_CSSMOOTH



258 Chapter 6: Interpolation and Approximation
IMSL_SMOOTHDATA1D

The IMSL_SMOOTHDATA1D function smooths one-dimensional data by error 
detection.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SMOOTHDATA1D(x, y [, DISTANCE=value] [, /DOUBLE] 
[, ITMAX=value] [, SC=value])

Return Value

One-dimensional array containing the smoothed data.

Arguments

x

One-dimensional array containing the abscissas of the data points. 

y

One-dimensional array containing the ordinates of the data points. 

Keywords

DISTANCE

Proportion of the distance the ordinate in error is moved to its interpolating curve. It 
must be in the range 0.0 to 1.0. Default: DISTANCE = 1.0

DOUBLE

If present and nonzero, double precision is used.

ITMAX

The maximum number of iterations allowed. Default: ITMAX = 500
IMSL_SMOOTHDATA1D IDL Analyst Reference Guide



Chapter 6: Interpolation and Approximation 259
SC

The stopping criterion. SC should be greater than or equal to zero. Default: SC = 0.0

Discussion

The IMSL_SMOOTHDATA1D function is designed to smooth a data set that is 
mildly contaminated with isolated errors. In general, the routine will not work well if 
more than 25% of the data points are in error. The routine IMSL_SMOOTHDATA1D 
is based on an algorithm of Guerra and Tapia (1974).

Setting N_ELEMENTS(x) = n, Y = f, Result = s and X= x, the algorithm proceeds as 
follows. Although the user need not an ordered x sequence, we will assume that x is 
increasing for simplicity. The algorithm first sorts the x values into an increasing 
sequence and then continues. A cubic spline interpolant is computed for each of the 
6-point data sets (initially setting s = f ):

(xj, sj) j = i – 3, ... , i + 3   j ≠ i 

where i = 4, ... , n – 3. For each i the interpolant, which we will call Si, is compared 
with the current value of si, and a ‘point energy’ is computed as:

pei = Si(xi) – si 

Setting sc = SC, the algorithm terminates either if ITMAX iterations have taken place 
or if:

 

If the above inequality is violated for any i, then we update the i-th element of s by 
setting si = si + d(pei), where d = DISTANCE. Note that neither the first three nor the 
last three data points are changed. Thus, if these points are inaccurate, care must be 
taken to interpret the results.

The choice of the parameters DISTANCE, SC and ITMAX are crucial to the 
successful usage of this subroutine. If the user has specific information about the 
extent of the contamination, then he should choose the parameters as follows: 
DISTANCE = 1, SC = 0 and ITMAX to be the number of data points in error. On the 
other hand, if no such specific information is available, then choose 
DISTANCE = 0.5, ITMAX ≤ 2n, and:

 

In any case, we would encourage the user to experiment with these values.
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Example

We take 91 uniform samples from the function 5 + (5 + t2 sin t )/t on the interval 
[1, 10]. First, define function F from which samples will be taken

FUNCTION F, xdata
RETURN, (xdata*xdata*SIN(xdata) + 5)/xdata + 5

END

Next, we contaminate 10 of the samples and try to recover the original function 
values.

isub  =  [5, 16, 25, 33, 41, 48, 55, 61, 74, 82]
rnoise  =  [2.5, -3.0, -2.0, 2.5, 3.0, -2.0, -2.5, 2.0, -2.0, 3.0]

; Example 1: No specific information available.
dis  =  0.5
sc  =  0.56
itmax  =  182
; Set values for xdata and fdata.     
xdata  =  1 + 0.1*FINDGEN(91)
fdata  = f(xdata)

; Contaminate the data.
fdata(isub)  =  fdata(isub) + rnoise

; Smooth the data.
sdata  = IMSL_SMOOTHDATA1D(xdata, fdata, Itmax = itmax, $

Distance = dis, Sc = sc)

; Output the results.
PM, [[f(xdata(isub))], [fdata(isub)], [sdata(isub)]], $

Title  =  '        F(X)    F(X) + noise     sdata'      
        F(X)    F(X) + noise     sdata
      9.82958      12.3296      9.87030
      8.26338      5.26338      8.21537
      5.20083      3.20083      5.16823
      2.22328      4.72328      2.26399
      1.25874      4.25874      1.30825
      3.16738      1.16738      3.13830
      7.16751      4.66751      7.13076
      10.8799      12.8799      10.9092
      12.7739      10.7739      12.7075
      7.59407      10.5941      7.63885

; Example 2: Specific information available.
dis  =  1.0
sc  =  0.0
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itmax  =  10.0
; A warning message is produce because the maximum number 
; of iterations is reached.
sdata = IMSL_SMOOTHDATA1D(xdata, fdata, Itmax = itmax, $

Distance = dis, Sc = sc)
% IMSL_SMOOTHDATA1D: Warning: MATH_ITMAX_EXCEEDED
; Maximum number of iterations limit 'ITMAX' = 10 exceeded. The
; best answer found is returned. Output the results.
PM, [[f(xdata(isub))], [fdata(isub)], [sdata(isub)]], $

      Title  =  '        F(X)    F(X) + noise     sdata'      
        F(X)    F(X) + noise     sdata
      9.82958      12.3296      9.83127
      8.26338      5.26338      8.26223
      5.20083      3.20083      5.19946
      2.22328      4.72328      2.22495
      1.25874      4.25874      1.26142
      3.16738      1.16738      3.16958
      7.16751      4.66751      7.16986
      10.8799      12.8799      10.8779
      12.7739      10.7739      12.7699
      7.59407      10.5941      7.59194

Version History

6.4 Introduced
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IMSL_SCAT2DINTERP

The IMSL_SCAT2DINTERP function computes a smooth bivariate interpolant to 
scattered data that is locally a quintic polynomial in two variables.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SCAT2DINTERP(xydata, fdata, xout, yout [, /DOUBLE])

Return Value

A two-dimensional array containing the grid of values of the interpolant. 

Arguments

xydata

Two-dimensional array containing the data points for the interpolation problem. 
Argument xydata is dimensioned (2, N_ELEMENTS (fdata)). The i-th data point (xi, 
yi) is stored in xydata (0, i) = xi and xydata (1, i) = yi.

fdata

One-dimensional array containing the values to be interpolated.

xout

One-dimensional array specifying the x values for the output grid. It must be strictly 
increasing.

yout

One-dimensional array specifying the y values for the output grid. It must be strictly 
increasing.
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Keywords

DOUBLE

If present and nonzero, double precision is used. 

Discussion

The IMSL_SCAT2DINTERP function computes a C1 interpolant to scattered data in 
the plane. Given the data points (in R3): 

where n = N_ELEMENTS(xydata) / 2, IMSL_SCAT2DINTERP returns the values of 
the interpolant s on the user-specified grid. The computation of s is as follows.

First, the Delaunay triangulation of the points:

 

is computed. On each triangle T in this triangulation, s has the following form: 

Thus, s is a bivariate quintic polynomial on each triangle of the triangulation. In 
addition:

 

and s is continuously differentiable across the boundaries of neighboring triangles. 
These conditions do not exhaust the freedom implied by the above representation. 
This additional freedom is exploited in an attempt to produce an interpolant that is 
faithful to the global shape properties implied by the data. For more information on 
this procedure, refer to the article by Akima (1978). The output grid is specified by 
the two real vectors, xout and yout, that represent the first (second) coordinates of the 
grid.

Example

In this example, IMSL_SCAT2DINTERP is used to fit a surface to randomly 
scattered data. The resulting surface and the original data points are then plotted as 
shown in Figure 6-15.
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IMSL_RANDOMOPT, Set = 12345
ndata = 15
xydata = FLTARR(2, ndata)
xydata(*) = IMSL_RANDOM(2 * ndata)
fdata = IMSL_RANDOM(ndata)
x = xydata(0, *)
y = xydata(1, *)
ngrid = 20
xout = FINDGEN(ngrid)/(ngrid - 1)
yout = FINDGEN(ngrid)/(ngrid - 1)
; Define the grid used to evaluate the computed surface.
surf = IMSL_SCAT2DINTERP(xydata, fdata, xout, yout)
; Call IMSL_SCAT2DINTERP.
SURFACE, surf, xout, yout, /Save, Ax = 45, Charsize = 1.5
; Plot the computed surface.
PLOTS,  x, y, fdata, /T3d, Symsize = 2, Psym = 2
; Plot the original data points.

Errors

Fatal Errors

MATH_DUPLICATE_XYDATA_VALUES—Two-dimensional data values must be 
distinct.

MATH_XOUT_NOT_STRICTLY_INCRSING—Vector xout must be strictly increasing.

Figure 6-15: Fit to Scattered Data
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MATH_YOUT_NOT_STRICTLY_INCRSING—Vector yout must be strictly increasing.

Version History

6.4 Introduced
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IMSL_RADBF

The IMSL_RADBF function computes an approximation to scattered data in Rn for 
n ≥ 2 using radial-basis functions.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RADBF(abscissa, fdata, num_centers [, BASIS=string] 
[, CENTERS=value] [, DELTA=value] [, /DOUBLE] 
[, RANDOM_SEED=value] [, RATIO_CENTERS=value] [, WEIGHTS=value])

Return Value

A structure that represents the radial-basis fit.

Arguments

abscissa

Two-dimensional array containing the abscissas of the data points. Parameter 
abscissa (i, j) is the abscissa value of the j-th data point in the i-th dimension.

fdata

One-dimensional array containing the ordinates for the problem.

num_centers

Number of centers to be used when computing the radial-basis fit. The num_centers 
argument should be less than or equal to N_ELEMENTS (fdata).
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Keywords

BASIS

Character string specifying a user-supplied function to compute the values of the 
radial functions. The form of the input function is ϕ (r). Default: the Hardy 
multiquadratic

CENTERS

User-supplied centers. See “Discussion” below for details.

DELTA

Delta used  in the default  basis  function, φ (r) = SQRT(r2 + δ2). Default: 
DELTA = 1.

DOUBLE

If present and nonzero, double precision is used. 

RANDOM_SEED

Value of the random seed used when determining the random subset of abscissa to 
use as centers. By changing the value of seed on different calls to IMSL_RADBF, 
with the same data set, a different set of random centers are chosen. Setting 
RANDOM_SEED to zero forces the random number seed to be based on the system 
clock, so possibly, a different set of centers is chosen each time the program is 
executed. Default: RANDOM_SEED = 234579.

RATIO_CENTERS

Desired ratio of centers placed on an evenly spaced grid to the total number of 
centers. There is a condition: The same number of centers placed on a grid for each 
dimension must be equal. Thus, the actual number of centers placed on a grid is 
usually less than RATIO_CENTERS * num_centers, but is never more than 
RATIO_CENTERS * num_centers. The remaining centers are randomly chosen from 
the set of abscissa given in abscissa. Default: RATIO_CENTERS = 0.5

WEIGHTS

Requires the user to provide the weights. Default: all weights equal 1.
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Discussion

The IMSL_RADBF function computes a least-squares fit to scattered data in Rd. 
More precisely, let n = N_ELEMENTS (fdata), x = abscissa, f = fdata, and 
d = N_ELEMENTS (abscissa (0, *)). Then:

 

 

This function computes a function F which approximates the above data in the sense 
that it minimizes the sum-of-squares error: 

where w = WEIGHTS.

The functional form of F is, of course, restricted as follows: 

The function φ is called the radial function. It maps R1 into R1. It needs to be defined 
only for the nonnegative reals. For the purpose of this routine, the user supplied a 
function:

 

Note that the value of delta is defaulted to 1. It can be set by the user by using 
keyword Delta.

The default-basis function is called the Hardy multiquadric and is defined as:

 

A key feature of this routine is the user’s control over the selection of the basis 
function.

In order to obtain the default selection of centers, first compute the number of centers 
that will be on a grid and the number that will be on a random subset of the abscissa. 
Next, compute those centers on a grid. Finally, a random subset of abscissa is 
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obtained. This determines where the centers are placed. The selection of centers is 
discussed in more detail below. 

First, the computed grid is restricted to have the same number of grid values in each 
of the “dimension” directions. Then, the number of centers placed on a grid, 
num_gridded, is computed as follows:

 

 

 

Note that there are β grid values in each of the “dimension” directions. Then:

num_random = (num_centers) – (num_gridded)

How many centers are placed on a grid and how many are placed on a random subset 
of the abscissa is now known. The gridded centers are computed such that they are 
equally spaced in each of the “dimension” directions. The last problem is to compute 
a random subset, without replacement, of the abscissa. The selection is based on a 
random seed. The default seed is 234579. The user can change this using optional 
keyword IMSL_RANDOM_SEED. Once the subset is computed, the abscissa as 
centers is used.

Since the selection of good centers for a specific problem is an unsolved problem at 
this time, ultimate flexibility is given to the user; that is, the user can select centers 
using keyword CENTERS. As a rule of thumb, the centers should be interspersed 
with the abscissa.

The return value for this function is a pointer to the structure containing all the 
information necessary to evaluate the fit. This pointer is then passed to the 
IMSL_RADBE function to produce values of the fitted function.

Examples

Example 1: Fitting Noisy Data with Default Radial Function

In this example, IMSL_RADBF is used to fit noisy data. Four plots are generated 
using different values for num_centers as shown in Figure 6-16. The plots generated 
by running this example are included after the code. Note that the triangles represent 
the placement of the centers.

PRO radbf_ex1
!P.Multi = [0, 2, 2]
ndata = 10
noise_size = .05
xydata = DBLARR(1, ndata)

α Ratio_Centers( ) num_centers( )=

β α1 dimension⁄
=

num_gridded βdimension
=
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fdata = DBLARR(ndata)
; Set up parameters.
IMSL_RANDOMOPT, Set = 234579
; Set the random number seed.
noise = 1 - 2 * IMSL_RANDOM(ndata, /Double)
; Generate the noisy data.
xydata(0, *) = 15 * IMSL_RANDOM(ndata)
fdata = REFORM(COS(xydata(0, *)) + noise_size * noise, ndata)
FOR i = 0, 3 DO BEGIN 

num_centers = ndata/3 + i
; Loop on different values of num_centers.
radial_struct = IMSL_RADBF(xydata, fdata, num_centers)
; Compute the fit.
a = DBLARR(1, 100)
a(0, *) = 15 * FINDGEN(100)/99.
fit = IMSL_RADBE(a, radial_struct) 
; Evaluate fit.
title = 'Fit with NUM_CENTERS = ' + $

STRCOMPRESS(num_centers, /Remove_All)
PLOT, xydata(0, *), fdata, Title = title, $ 

Psym = 6, Yrange = [-1.25, 1.25]
; Plot results.
OPLOT, a(0, *), fit
; Plot the original data as squares.
OPLOT, radial_struct.CENTERS, $

MAKE_ARRAY(num_centers, Value=-1.25), Psym = 5
; Plot the x-values of the centers as triangles.

END
END
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Figure 6-16: Fits using Differential Values for Num_centers
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Example 2: Fitting Noisy Data with User-supplied Radial 
Function

This example fits the same data as the first example, but the user supplies the radial 
function and sets RATIO_CENTERS to zero. The radial function used in this 
example is φ (r) = ln (1 + r2). Four plots are generated using different values for 
num_centers as shown in Figure 6-17. The plots generated by running this example 
are included after the code. Note that the triangles represent the placement of the 
centers.

FUNCTION user_fcn, distance
; Define the radial function.
RETURN, ALOG(1 + distance^2)

END

PRO radbf_ex2
; Set up parameters.
!P.Multi = [0, 2, 2]
ndata = 10
noise_size = .05
xydata = DBLARR(1, ndata)
fdata = DBLARR(ndata)
IMSL_RANDOMOPT, Set = 234579
; Set the random number seed.
noise = 1 - 2 * IMSL_RANDOM(ndata, /Double)
; Generate the noisy data.
xydata(0, *) = 15 * IMSL_RANDOM(ndata)
fdata = REFORM(COS(xydata(0,*)) + noise_size * noise, ndata)
FOR i = 0, 3 DO BEGIN 

; Loop on different values of num_centers.
num_centers = ndata/3 + i
radial_struct = IMSL_RADBF(xydata, fdata, $

num_centers, Ratio_Centers = 0, Basis = 'user_fcn')
; Compute the fit.
a = DBLARR(1, 100)
a(0, *) = 15 * FINDGEN(100)/99.
fit = IMSL_RADBE(a, radial_struct) 
; Evaluate fit.
title = 'Fit with NUM_CENTERS = ' + $

STRCOMPRESS(num_centers, /Remove_All)
PLOT, xydata(0,*), fdata, Title = title, $

Psym = 6, Yrange = [-1.25, 1.25]
; Plot results.
OPLOT, a(0, *), fit
OPLOT, radial_struct.CENTERS, $

MAKE_ARRAY(num_centers,Value = -1.25), Psym = 5
END
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END

Example 3: Fitting a Surface to Three-dimensional Scattered 
Data

This example fits a surface to scattered data. The scattered data is generated using the 
function f (x, y) = exp (ln (y + 1) sin (x)). The plots generated by running this example 
are included after the code as shown in Figure 6-18 and Figure 6-19.

FUNCTION f, x1, x2
; This function generates the scattered data function values.
RETURN, EXP(ALOG10(x2 + 1)) * SIN(x1)

END

PRO radbf_ex3
; Set up initial parameters.
IMSL_RANDOMOPT, Set = 123457
ndata          = 50
num_centers   = ndata
xydata        = DBLARR(2, ndata)
fdata         = DBLARR(ndata)

Figure 6-17: Fit using a User-Defined Radial Function
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xrange        = 8
yrange        = 5
xydata(0,*) = xrange * IMSL_RANDOM(ndata, /Double)
xydata(1,*) = yrange * IMSL_RANDOM(ndata, /Double)
fdata(*) = f(xydata(0, *), xydata(1, *))
; Generate data.
radial_struct = IMSL_RADBF(xydata, fdata, num_centers, Ratio=0)
; Compute fit using IMSL_RADBF.
WINDOW, /Free
; Plot results.
nx = 25
ny = 25
; Variables nx and ny are coarseness of the plotted surfaces.
xyfit      = DBLARR(2, nx * ny)
xyfit(0, *) = xrange * (FINDGEN(nx * ny)/ny)/(nx - 1)
xyfit(1, *) = yrange * (FINDGEN(nx * ny) MOD ny)/(ny - 1)

zfit = TRANSPOSE(REFORM(IMSL_RADBE(xyfit, Radial_Struct), $
ny, nx))

; Use TRANSPOSE and REFORM in order to get the results
; into a form that SURFACE can use.
xt = xrange * FINDGEN(nx)/(nx-1)
yt = yrange * FINDGEN(ny)/(ny-1)
SURFACE, zfit, xt, yt, /Save, Zrange = [MIN(zfit), MAX(zfit)]
PLOTS, xydata(0, *), xydata(1, *), fdata, $

/T3d, Psym = 4, Symsize = 2
; Plot the original data points over the surface plot.
WINDOW, /Free
orig = DBLARR(nx, ny)
FOR i = 0, (nx-1) DO FOR j = 0, (ny-1) DO $

orig(i, j) = f(xt(i), yt(j))
SURFACE, orig, xt, yt, Zrange = [MIN(zfit), MAX(zfit)]
; Plot original function.

END
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Figure 6-18: Surface Fit to Scattered Data
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Version History

Figure 6-19: Function used to Generate Scattered Data

6.4 Introduced
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IMSL_RADBE

The IMSL_RADBE function evaluates a radial-basis fit computed by 
IMSL_RADBF.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RADBE(abscissa, radial_fit)

Return Value

An array containing the values of the radial-basis fit at the desired values.

Arguments

abscissa

Two-dimensional array containing the abscissa of the data points at which the fit is 
evaluated. Argument abscissa (i, j) is the abscissa value of the j-th data point in the 
i-th dimension.

radial_fit

Radial-basis structure to be used for the evaluation.

Discussion

The IMSL_RADBE function evaluates a radial-basis fit from data generated by 
IMSL_RADBF. 

Example

See “IMSL_RADBF” on page 266 for examples using IMSL_RADBE.
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Version History

6.4 Introduced
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Quadrature
This section contains the following topics:
Overview: Quadrature . . . . . . . . . . . . . . . .  280 Quadrature Routines . . . . . . . . . . . . . . . . .  283
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Overview: Quadrature

This section introduces some of the mathematical concepts used in the IDL Analyst 
integration routines.

Univariate and Bivariate Quadrature 

The first function in this chapter, IMSL_INTFCN, is designed to compute 
approximations to integrals of the following form:

or:

The weight function w is used to incorporate known singularities (either algebraic or 
logarithmic) or to incorporate oscillations. The default action of this function 
assumes univariate quadrature, a weight function w(x) = 1, and the existence of 
endpoint singularities. Even if no endpoint singularities exist, the default method is 
still effective for general-purpose integration. If more efficiency is desired, then a 
more specialized method can be specified through the use of specific parameter and 
keyword combinations. The available methods can be summarized as follows, where 
the description refers to subsections of the documentation for the IMSL_INTFCN 
function:

• w(x) = 1 

• Integration of a function with endpoint singularities (default method)

• Integration of a function based on Gauss-Kronrod rules

• Integration of a function with singular points given

• Integration of a function over an infinite or semi-infinite interval 

• Integration of a smooth function using a nonadaptive method

• Integration of a two-dimensional iterated integral

• w(x) = sinωx or w(x) = cosωx

• Integration of a function containing a sine or cosine factor 

f x( )w x( ) xd
a

b

∫

f x y,( ) xd yd
g x( )

h x( )

∫
a

b

∫
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• Computing the Fourier sine or cosine transform

• , where the ln factors are optional

• Integration of functions with algebraic-logarithmic singularities

• w(x) = 1/(x – c)

• Integrals in the Cauchy principle value sense 

The IMSL_INTFCN function returns an estimated answer R and provides keywords 
to specify a requested absolute error ε, the requested relative error ρ, and a named 
variable in which to return an estimate of the error E. These numbers are related in 
the equation:

One situation that arises in univariate quadrature concerns the approximation of 
integrals when only tabular data is given. The functions above do not directly address 
this question. However, the standard method for handling this problem is to 
interpolate the data then integrate the interpolant. This can be accomplished by using 
the IDL Analyst spline interpolation functions with the spline integration function, 
“IMSL_SPINTEG” on page 230.

Multivariate Quadrature 

Two functions, IMSL_INTFCN and IMSL_INTFCNHYPER, have been included in 
this chapter that can be used to approximate certain multivariate integrals.

IMSL_INTFCN can be called with additional parameters and keywords to return an 
approximation to a two-dimensional iterated integral of the form:

The IMSL_INTFCNHYPER function returns an approximation to the integral of a 
function of n variables over a hyper-rectangle as shown in the equation:

When working with two-dimensional, tensor-product tabular data, use the IDL 
Analyst spline interpolation the IMSL_BSINTERP function, followed by the spline 
integration the IMSL_SPINTEG function. 
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Gauss Quadrature 

For a fixed number of nodes, N, the Gauss quadrature rule is the unique rule that 
integrates polynomials of degree less than 2N. These quadrature rules can be easily 
computed using the IMSL_GQUAD procedure, which produces the points {xi} and 
weights {wi} for i = 1, ..., N that satisfy:

for all functions f that are polynomials of degree less than 2N. The weight functions w 
can be selected from Table 7-1: 

Where permissible, IMSL_GQUAD also computes Gauss-Radau and Gauss-Lobatto 
quadrature rules.

w(x) Interval Name

1 (–1, 1) Legendre

 (–1, 1) Chebyshev 1st kind

 (–1, 1) Chebyshev 2nd kind

 (–infinity, 
infinity)

Hermite

 (–1, 1) Jacobi

 (0, infinity) Generalized Laguerre

1/cosh(x) (–infinity, 
infinity)

Hyperbolic cosine

Table 7-1: Weight Functions
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Quadrature Routines

Univariate and Bivariate Quadrature

IMSL_INTFCN—Integration of a user-defined univariate or bivariate function. 

Arbitrary Dimension Quadrature

IMSL_INTFCNHYPER—Iterated integral on a hyper-rectangle. 

IMSL_INTFCN_QMC—Intergrates a function on a hyper-rectangle using a Quasi 
Monte Carlo method.

Gauss Quadrature

IMSL_GQUAD—Gauss quadrature formulas. 

Differentiation

IMSL_FCN_DERIV—First, second, or third derivative of a function.
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IMSL_INTFCN

The IMSL_INTFCN function integrates a user-supplied function. Using different 
combinations of keywords and parameters, several types of integration can be 
performed including the following:

• IMSL_INTFCN: Functions with Endpoint Singularities (the default method)

• IMSL_INTFCN: Functions Based on Gauss-Kronrod Rules

• IMSL_INTFCN: Functions with Singular Points Given

• IMSL_INTFCN: Functions with Algebraic-logarithmic Singularities

• IMSL_INTFCN: Functions Over an Infinite or Semi-infinite Interval

• IMSL_INTFCN: Functions Containing a Sine or Cosine Factor

• IMSL_INTFCN: Computation of Fourier Sine or Cosine Transforms

• IMSL_INTFCN: Integrals in the Cauchy Principle Value Sense

• IMSL_INTFCN: Smooth Functions Using Nonadaptive Rule

• IMSL_INTFCN: Two-dimensional Iterated Integrals

Different types of integration are specified by supplying different sets of parameters 
and keywords to the IMSL_INTFCN function. Refer to the discussion that pertains to 
the type of integration you wish to perform for the corresponding function syntax.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_INTFCN(f, a, b [, /DOUBLE] [, ERR_ABS=value] 
[, ERR_EST=variable] [, ERR_REL=value] [, MAX_SUBINTER=value] 
[, N_SUBINTER=variable] [, N_EVALS=variable]) 

Return Value

An estimate of the desired integral. If no value can be computed, the floating-point 
value NaN (Not a Number) is returned.
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Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The 
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

Keywords

The following keywords can be used in any combination with each method of 
integration except the nonadaptive method, which is triggered by the keyword 
SMOOTH.

DOUBLE

Set this keyword to perform computations using double precision.

ERR_ABS

Set this keyword to a value specifying the accuracy desired. Default: 
ERR_ABS=SQRT(ε), where ε is the machine precision.

ERR_EST

Set this keyword equal to a named variable that will contain an estimate of the 
absolute value of the error. 

ERR_REL

Set this keyword to a value specifying the relative accuracy desired. Default: 
ERR_REL=SQRT(ε), where ε is the machine precision

MAX_SUBINTER

Set this keyword equal to the number of subintervals allowed. Default: 
MAX_SUBINTER=500.
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N_SUBINTER

Set this keyword equal to a named variable that will contain the number of 
subintervals generated.

N_EVALS

Set this keyword equal to a named variable that will contain the number of 
evaluations of Function.

Discussion of Default Method

The default method used by IMSL_INTFCN is a general-purpose integrator that uses 
a globally adaptive scheme to reduce the absolute error. It subdivides the interval 
[a, b] and uses a 21-point Gauss-Kronrod rule to estimate the integral over each 
subinterval. The error for each subinterval is estimated by comparison with the 10-
point Gauss quadrature rule. The subinterval with the largest estimated error is then 
bisected, and the same procedure is applied to both halves. The bisection process is 
continued until either the error criterion is satisfied, the roundoff error is detected, the 
subintervals become too small, or the maximum number of subintervals allowed is 
reached. This method uses an extrapolation procedure known as the ε-algorithm. This 
method is based on the subroutine QAGS by Piessens et al. (1983).

Should the default method fail to produce acceptable results, consider one of the 
more specialized methods available by using method-specific keywords for this 
function.

Example

An estimate of:

 

is computed, then compared to the actual value.

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, x^2
END

ans = IMSL_INTFCN('f', 0, 3)
; Call IMSL_INTFCN to compute the integral.
PM, 'Computed Answer:', ans
; Output the results.
Computed Answer:

x2 xd
0

3
∫
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9.00000
PM, 'Exact - Computed:', 3^2 - ans
Exact - Computed:

0.00000

Errors

The integration methods supported by IMSL_INTFCN may generate any of the 
following errors.

Warning Errors

MATH_ROUNDOFF_CONTAMINATION—Roundoff error, preventing the requested 
tolerance from being achieved, has been detected.

MATH_PRECISION_DEGRADATION—Degradation in precision has been detected.

MATH_EXTRAPOLATION_ROUNDOFF—Roundoff error in the extrapolation table, 
preventing requested tolerance from being achieved, has been detected.

MATH_EXTRAPOLATION_PROBLEMS—Extrapolation table, constructed for 
convergence acceleration of the series formed by the integral contributions of the 
cycles, does not converge to the requested accuracy.

MATH_BAD_INTEGRAND_BEHAVIOR—Bad integrand behavior occurred in one or 
more cycles.

Fatal Errors

MATH_DIVERGENT—Integral is probably divergent or slowly convergent.

MATH_MAX_SUBINTERVALS—Maximum number of subintervals allowed has been 
reached.

MATH_MAX_CYCLES—Maximum number of cycles allowed has been reached.

MATH_MAX_STEPS—Maximum number of steps allowed have been taken. The 
integrand is too difficult for this routine.

Version History

6.4 Introduced
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IMSL_INTFCN:
Functions Based on Gauss-Kronrod Rules

This version of the IMSL_INTFCN function integrates functions using a globally 
adaptive scheme based on Gauss-Kronrod rules.

Note
The RULE keyword must be supplied to use this integration method.

Syntax

Result = IMSL_INTFCN(f, a, b, RULE = {1-6} [, RULE=value] )

Return Value

The value of:

is returned. If no value can be computed, the floating-point value NaN (Not a 
Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The 
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

f x( ) xd
a

b
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Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under 
“Keywords” on page 285, the following keywords are available:

RULE

Set this keyword equal to an integer representing the Gauss-Kronrod rule to use. 
Possible values are:

Discussion

This method is a general-purpose integrator that uses a globally adaptive scheme to 
reduce the absolute error. It subdivides the interval [a, b] and uses a (2k+1)-point 
Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each 
subinterval is estimated by comparison with the k-point Gauss quadrature rule. The 
subinterval with the largest estimated error is then bisected, and the same procedure is 
applied to both halves. The bisection process is continued until either the error 
criterion is satisfied, roundoff error is detected, the subintervals become too small, or 
the maximum number of subintervals allowed is reached. This method is based on the 
subroutine QAG by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singularities 
if they exist.

Rule Gauss-Kronrod Rule

1 7-15 points

2 10-21 points

3 15-31 points

4 20-41 points

5 25-51 points

6 30-61 points

Table 7-2: Corresponding Gauss-Kronrod Rules
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Example

The value of:

is computed. Since the integrand is oscillatory, RULE = 6 is used. The exact value is 
0.50406706. The values of the actual and estimated error are machine dependent.

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, SIN(1/x) 
END

ans = IMSL_INTFCN('f', 0, 1, RULE=6)
; Call IMSL_INTFCN, to compute the integral based on the
; specified Gauss-Kronrod rule.
PM, 'Computed Answer:',ans
; Output the results.
Computed Answer:

0.504051
exact = .50406706

PM, 'EXACT - COMPUTED:', exact - ans
Exact - Computed:

1.62125e-05

Errors

See “Errors” on page 287.

1 x⁄( )sin xd
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IMSL_INTFCN:
Functions with Singular Points Given

This version of the IMSL_INTFCN function integrates functions with singularity 
points given.

Note
The SING_PTS keyword must be supplied to use this integration method.

Syntax

Result = IMSL_INTFCN(f, a, b, SING_PTS=points [, SING_PTS=vector] )

Return Value

The value of:

is returned. If no value can be computed, the floating-point value NaN (Not a 
Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The 
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

f x( ) xd
a

b
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Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under 
“Keywords” on page 285, the following keywords are available:

SING_PTS

Set this keyword equal to a vector of abcissa values for the singularities. The values 
should be interior to the interval [a, b].

Discussion

This method is a special-purpose integrator that uses a globally adaptive scheme to 
reduce the absolute error. It subdivides the interval [a, b] into N+1 user-supplied 
subintervals, where N is the number of singular points, and uses a 21-point 
Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each 
subinterval is estimated by comparison with the 10-point Gauss quadrature rule. The 
subinterval with the largest estimated error is then bisected, and the same procedure is 
applied to both halves. The bisection process is continued until either the error 
criterion is satisfied, the roundoff error is detected, the subintervals become too small, 
or the maximum number of subintervals allowed is reached. This method uses an 
extrapolation procedure known as the ε-algorithm. This method is based on the 
subroutine QAGP by Piessens et al. (1983). 

Example

The value of:

 

is computed. The values of the actual and estimated error are machine dependent. 
Note that this subfunction never evaluates the user-supplied function at the user-
supplied breakpoints.

.RUN
; Define the function to be integrated. 
FUNCTION f, x

RETURN, x^3 * ALOG(ABS((x^2 - 1) * $
(x^ 2 - 2)))

END

ans = IMSL_INTFCN('f', 0, 3, $
Sing_Pts = [1, SQRT(2)], N_Evals = nevals)
; Call IMSL_INTFCN using keyword Sing_Pts to specify 
; the singular points.

x
3
ln x

2
1–( ) x

2
2–( ) xd

0

3
∫ 61ln2

77
4
------ln7 27–+=
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PM, 'Computed Answer:', ans
; Output the results.
Computed Answer:

52.7408
exact = 61 * ALOG(2) + (77/4.) * ALOG(7) - 27
PM, 'Exact - Computed:', exact - ans
Exact - Computed:

-2.67029e-05
PM, 'Number of Function Evaluations:', nevals
Number of Function Evaluations:

819

Errors

See “Errors” on page 287.
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IMSL_INTFCN:
Functions with Algebraic-logarithmic Singularities

This version of the IMSL_INTFCN function integrates functions with algebraic-
logarithmic singularities.

Note
The Alpha and Beta arguments must be supplied to use this integration method.

Syntax

Result = IMSL_INTFCN(f, a, b, Alpha, Beta,
/ALGEBRAIC | /ALG_LEFT_LOG | /ALG_LOG | /ALG_RIGHT_LOG)

Return Value

The value of:

is returned, where w (x) is defined by one of the keywords below. If no value can be 
computed, the floating-point value NaN (Not a Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The 
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

Alpha

The strength of the singularity at a. Must be greater than –1.

f x( )w x( ) xd
a

b
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Beta

Strength of the singularity at b. Must be greater than –1.

Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under 
“Keywords” on page 285, exactly one of the following keywords may be specified:

ALGEBRAIC

Set this keyword to use the weight function . This is the default weight 
function for this method.

ALG_LEFT_LOG

Set this keyword to use the weight function .

ALG_LOG

Set this keyword to use the weight function .

ALG_RIGHT_LOG

Set this keyword to use the weight function .

Discussion

This method is a special-purpose integrator that uses a globally adaptive scheme to 
reduce the absolute error. It computes integrals whose integrands have the special 
form w (x) f (x), where w (x) is a weight function. A combination of modified 
Clenshaw-Curtis and Gauss-Kronrod formulas is employed. This method is based on 
the subroutine QAWS, which is fully documented by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singularities 
if they exist.

Example

The value of:

x a–( )α
b x–( )β

x a–( )α
b x–( )β

x a–( )log

x a–( )α
b x–( )β

x a–( ) x b–( )loglog

x a–( )α
b x–( )β

x b–( )log

1 x+( ) 1 x–( )[ ] 1 2⁄
x( )ln xd

0

1

∫ 3 2( ) 4–ln( )
9

------------------------------=
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is computed.

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, SQRT((1 + x))
END

ans = $
IMSL_INTFCN('f', 0, 1, /Alg_Left_Log, 1.0, .5 )
; Call IMSL_INTFCN with keyword Alg_Left_Log set and values for the
; method parameters alpha and beta.
PM, 'Computed Answer:', ans
; Output the results.
; Computed Answer: -0.213395
exact = (3 * ALOG(2) - 4)/9
PM, 'Exact - Computed:', exact - ans
; Exact - Computed: 1.49012e-08

Errors

See “Errors” on page 287.
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IMSL_INTFCN:
Functions Over an Infinite or Semi-infinite Interval

This version of the IMSL_INTFCN function integrates functions over an infinite or 
semi-infinite interval.

Note
One of the INF_INF, INF_BOUND, or BOUND_INF keywords must be supplied to 
use this integration method.

Syntax

Result = IMSL_INTFCN(f, /INF_INF )

or

Result = IMSL_INTFCN(f, Bound, /INF_BOUND | /BOUND_INF )

Return Value

The value of:

 

is returned, where a and b are appropriate integration limits. If no value can be 
computed, the floating-point value NaN (Not a Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The 
function f accepts one scalar parameter and returns a single scalar of the same type.

Bound

A scalar value specifying the finite limit of integration. If either of the keywords 
INF_BOUND or BOUND_INF are specified, this argument is required.

f x( ) xd
a

b
∫
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Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under 
“Keywords” on page 285, exactly one of the following keywords may be specified:

INF_INF

Set this keyword to integrate f over the range ( –infinity, infinity).

INF_BOUND

Set this keyword to integrate f over the range ( –infinity,bound ).

BOUND_INF

Set this keyword to integrate f over the range ( bound, infinity).

Discussion

This method is a special-purpose integrator that uses a globally adaptive scheme to 
reduce the absolute error. It initially transforms an infinite or semi-infinite interval 
into the finite interval [0, 1]. It then uses the same strategy that is used when 
integrating functions with singularity points given (see “IMSL_INTFCN: Functions 
with Singular Points Given” on page 291). This method is based on the subroutine 
QAGI by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singularities 
if they exist.

Example

The value of:

 

is computed.

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, ALOG(x)/(1 + (10 * x)^2)
END

ans = IMSL_INTFCN('f', 0, /Bound_Inf)
; Call IMSL_INTFCN with keyword Bound_Inf set. Notice that 
; only lower limit of integration is given.

ln x( )
1 10x( )2+
-------------------------- xd

0

∞
∫ πln 10( )–

20
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PM, 'Computed Answer:', ans
; Output the results.
Computed Answer:

-0.361689
exact = -!Pi * ALOG(10)/20
PM, 'Exact - Computed:', exact - ans
Exact - Computed:

5.96046e-08

Errors

See “Errors” on page 287.
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IMSL_INTFCN:
Functions Containing a Sine or Cosine Factor

This version of the IMSL_INTFCN function integrates functions containing a sine or 
a cosine factor.

Note
The Omega argument and one of the SINE, or COSINE keywords must be supplied 
to use this integration method.

Syntax

Result = IMSL_INTFCN(f, a, b, Omega 
, /SINE | /COSINE [, MAX_MOMENTS=value])

Return Value

The value of:

where the weight function w (ωx) is defined by the keywords below, is returned. If no 
value can be computed, the floating-point value NaN (Not a Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The 
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

Omega

A scalar expression specifying the frequency of the trigonometric weighting function.

f x( )w ωx( ) xd
a

b
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Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under 
“Keywords” on page 285, the following keywords may be specified:

SINE

Set this keyword to use sin (ωx) for the integration weight function. If SINE is 
supplied, COSINE must not be present.

COSINE

Set this keyword to use cos (ωx) for the integration weight function. IF COSINE is 
supplied, SINE must not be present.

MAX_MOMENTS

Set this keyword equal to a scalar expression specifying an upper bound on the 
number of Chebyshev moments that can be stored. Increasing (decreasing) this 
number may increase (decrease) execution speed and space used. Default: 
MAX_MOMENTS = 21 

Discussion

This method is a special-purpose integrator that uses a globally adaptive scheme to 
reduce the absolute error. It computes integrals whose integrands have the special 
form w (x) f (x), where w (x) is either cos (ωx) or sin (ωx). Depending on the length of 
the subinterval in relation to the size of ω, either a modified Clenshaw-Curtis 
procedure or a Gauss-Kronrod 7/15 rule is employed to approximate the integral on a 
subinterval. This method is based on the subroutine QAWO by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singularities 
if they exist.

Example

The value of:

x
2

3πx( )sin xd
0

1
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is computed. The exact answer is:

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, x^2
END

ans = IMSL_INTFCN('f', 0, 1, 3 * !Pi, /Sine)
; Call IMSL_INTFCN with Sine set and value for method 
; parameter omega.
PM, 'Computed Answer:', ans
; Output the results.
Computed Answer:

0.101325
exact = ((3 * !Pi)^2 - 2)/((3 * !pi)^3) - 2/(3 * !Pi)^3
PM, 'Exact - Computed:', exact - ans
Exact - Computed:

0.00000

Errors

See “Errors” on page 287.

3π( )2
4–

3π( )3
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IMSL_INTFCN:
Computation of Fourier Sine or Cosine Transforms

This version of the IMSL_INTFCN function computes Fourier sine or cosine 
transforms.

Note
The Omega argument and one of the SINE, or COSINE keywords must be supplied 
to use this integration method.

Syntax

Result = IMSL_INTFCN(f, a, Omega, /SINE | /COSINE 
[, MAX_MOMENTS=value] [, N_CYCLES=variable])

Return Value

The value of:

where the weight function w (ωx) is defined by the keywords below, is returned. If no 
value can be computed, the floating-point value NaN (Not a Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The 
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

Omega

A scalar expression specifying the frequency of the trigonometric weighting function.

f x( )w ωx( ) xd
a
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Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under 
“Keywords” on page 285, the following keywords may be specified:

SINE

Set this keyword to use sin (ωx) for the integration weight function. If SINE is 
supplied, COSINE must not be present.

COSINE

Set this keyword to use cos (ωx) for the integration weight function. IF COSINE is 
supplied, SINE must not be present.

MAX_MOMENTS

Set this keyword equal to a scalar expression specifying an upper bound on the 
number of Chebyshev moments that can be stored. Increasing (decreasing) this 
number may increase (decrease) execution speed and space used. Default: 
MAX_MOMENTS = 21 

N_CYCLES

Set this keyword equal to a named variable that will contain the number of cycles.

Discussion

This method is a special-purpose integrator that uses a globally adaptive scheme to 
reduce the absolute error. It computes integrals whose integrands have the special 
form w (x) f (x), where w (x) is either cos (ωx) or sin (ωx). The integration interval is 
always semi-infinite of the form [a, infinity]. This method is based on the subroutine 
QAWF by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singularities 
if they exist.

Example

The value of:
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is computed. Notice that the function is coded to protect for the singularity at zero.

.RUN
; Define the function to be integrated.
FUNCTION f, x

IF (x EQ 0) THEN RETURN, x $
ELSE RETURN, 1/SQRT(x)

END

ans = IMSL_INTFCN('f', 0, !Pi/2, /Cosine)
; Call IMSL_INTFCN with keyword Cosine set and a value for 
; the method specific parameter omega.
PM, 'Computed Answer:', ans
; Output the results.
Computed Answer:

1.00000
exact = 1.0

PM, 'Exact - Computed:', exact - ans
Exact - Computed:

-1.19209e-007

Errors

See “Errors” on page 287.
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IMSL_INTFCN:
Integrals in the Cauchy Principle Value Sense

This version of the IMSL_INTFCN function computes integrals of the form:

in the Cauchy principal value sense.

Note
The Singular_Pt argument and the CAUCHY keyword must be supplied to use this 
integration method.

Syntax

Result = IMSL_INTFCN(f, a, b, Singular_Pt, /CAUCHY)

Return Value

The value of:

is returned. If no value can be computed, the floating-point value NaN (Not a 
Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The 
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

f x( )
x c–
----------- xd
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b
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Singular_Pt

A scalar expression specifying the singular point. The singular point must not equal a 
or b.

Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under 
“Keywords” on page 285, the following keywords may be specified:

CAUCHY

Set this keyword to compute the specified integral in the Cauchy principal value 
sense.

Discussion

This method uses a globally adaptive scheme in an attempt to reduce the absolute 
error. It computes integrals whose integrands have the special form w (x) f (x), where 
w (x) = 1/(x – Singular_Pt). If Singular_Pt lies in the interval of integration, then the 
integral is interpreted as a Cauchy principal value. A combination of modified 
Clenshaw-Curtis and Gauss-Kronrod formulas is employed. The method is an 
implementation of the subroutine QAWC by Piessens et al. (1983).

If this method is used, the function should be coded to protect endpoint singularities 
if they exist.

Example

The Cauchy principal value of: 

is computed.

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, 1/(5 * x^3 + 6)
END

ans = IMSL_INTFCN('f', -1, 5, 0, /Cauchy)
; Call IMSL_INTFCN with keyword Cauchy set.
PM, 'Computed Answer:', ans

1
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3
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5
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; Output the results.
Computed Answer:

-0.0899440
exact = ALOG(125/631.)/18

PM, 'Exact - Computed:', exact - ans
Exact - Computed:

1.49012e-08

Errors

See “Errors” on page 287.
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IMSL_INTFCN:
Smooth Functions Using Nonadaptive Rule

This version of the IMSL_INTFCN function integrates smooth functions using a 
nonadaptive rule.

Note
The SMOOTH keyword must be supplied to use this integration method.

Syntax

Result = IMSL_INTFCN(f, a, b, [, /SMOOTH] [, /DOUBLE] [, ERR_ABS=value] 
[, ERR_EST=variable] [, ERR_REL=value] )

Return Value

The value of:

is returned. If no value can be computed, the floating-point value NaN (Not a 
Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The 
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

f x( ) xd
a

b
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Keywords

Because this integration method is nonadaptive, the global IMSL_INTFCN keywords 
listed in the main section do not apply. A complete list of the available keywords is 
given below. This method requires the use of keyword SMOOTH.

SMOOTH

Set this keyword to use a nonadaptive rule to compute the integral.

DOUBLE

Set this keyword to perform computations using double precision.

ERR_ABS

Set this keyword to a value specifying the accuracy desired. Default: 
ERR_ABS=SQRT(ε), where ε is the machine precision

ERR_EST

Set this keyword equal to a named variable that will contain an estimate of the 
absolute value of the error. 

ERR_REL

Set this keyword to a value specifying the relative accuracy desired. Default: 
ERR_REL=SQRT(ε), where ε is the machine precision

Discussion

This method is designed to integrate smooth functions. It implements a nonadaptive 
quadrature procedure based on nested Paterson rules of order 10, 21, 43, and 87. 
These rules are positive quadrature rules with degree of accuracy 19, 31, 64, and 130, 
respectively. This method applies these rules successively, estimating the error until 
either the error estimate satisfies the user-supplied constraints or the last rule is 
applied.

This method is not very robust, but for certain smooth functions, it can be efficient. 
This method is based on the subroutine QNG by Piessens et al. (1983). If this method 
is used, the function should be coded to protect endpoint singularities if they exist.
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Example

The value of:

is computed.

.RUN
; Define the function to integrate.
FUNCTION f, x

RETURN, x * EXP(x)
END

ans = IMSL_INTFCN('f', 0, 2, /Smooth)
; Call IMSL_INTFCN with keyword Smooth set.
PM, 'Computed Answer:', ans
Computed Answer:

8.38906
exact = EXP(2) + 1

PM, 'Exact - Computed:', exact - ans
Exact - Computed:

9.53674e-07 

Errors

See “Errors” on page 287.
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IMSL_INTFCN:
Two-dimensional Iterated Integrals

This version of the IMSL_INTFCN function integrates two-dimensional iterated 
integrals.

Note
The TWO_DIMENSIONAL keyword must be supplied to use this integration 
method.

Syntax

Result = IMSL_INTFCN(f, a, b, g, h, /TWO_DIMENSIONAL)

Return Value

The value of:

is returned. If no value can be computed, the floating-point value NaN (Not a 
Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The 
function f accepts one scalar parameter and returns a single scalar of the same type.

a

A scalar expression specifying the lower limit of integration.

b

A scalar expression specifying the upper limit of integration.

f x y,( ) yd xd
g x( )

h x( )

∫
a

b

∫

IMSL_INTFCN: Two-dimensional Iterated Integrals IDL Analyst Reference Guide



Chapter 7: Quadrature 313
g

Scalar string specifying the name of a user-supplied IDL Analyst function used to 
evaluate the lower limit of the inner integral. Function g accepts one scalar parameter 
and returns a single scalar of the same type.

h

Scalar string specifying the name of a user-supplied IDL Analyst function used to 
evaluate the upper limit of the inner integral. Function h accepts one scalar parameter 
and returns a single scalar of the same type.

Keywords

In addition to the global IMSL_INTFCN keywords listed in the main section under 
“Keywords” on page 285, the following keyword must be specified:

TWO_DIMENSIONAL

Set this keyword to integrate a two-dimensional iterated integral.

Discussion

This method approximates the following two-dimensional iterated integral:

The lower-numbered rules are used for less smooth integrands, while the higher-order 
rules are more efficient for smooth (oscillatory) integrands.

If this method is used, the function should be coded to protect endpoint singularities 
if they exist.

Example

This example computes the value of the integral:

.RUN
; Define the function to be integrated.
FUNCTION f, x, y

f x y,( ) yd xd
g x( )

h x( )
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RETURN, SIN(x + y)
END

.RUN
; Define the function for the lower limit of the inner integral.
FUNCTION g, x

RETURN, x
END

.RUN
; Define the function for the upper limit of the inner integral.
FUNCTION h, x

RETURN, 2 * x
END

ans = IMSL_INTFCN('f',0,1,'g','h',/Two_Dimensional)
; Call IMSL_INTFCN with keyword Two_Dimensional set and the names
; of the functions defining the limits of the inner integral.
PM, 'Computed Answer:', ans
Computed Answer:

0.407609
exact = -SIN(3)/3 + SIN(2)/2

PM, 'Exact - Computed:', exact - ans
Exact - Computed:

-5.96046e-08

Errors

See “Errors” on page 287.
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IMSL_INTFCNHYPER

The IMSL_INTFCNHYPER function integrates a function on a hyper-rectangle as 
follows:

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_INTFCNHYPER(f, a, b [, ERR_ABS=value] [, ERR_EST=variable] 
[, ERR_REL=value] [, MAX_EVALS=value])

Return Value 

The value of the hyper-rectangle function is returned. If no value can be computed, 
the floating-point value NaN (Not a Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The 
function f accepts an array of data points at which the function is to be evaluated and 
returns the scalar value of the function.

a

A vector specifying the lower limit of integration.

b

A vector specifying the upper limit of integration.

… f x0 …xn 1–,( ) xn 1– …d x0d
an 1–

bn 1–

∫
a0

b0

∫
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Keywords

ERR_ABS

Set this keyword to a value specifying the accuracy desired. Default: 
ERR_ABS=SQRT(ε), where ε is the machine precision

ERR_EST

Set this keyword equal to a named variable that will contain an estimate of the 
absolute value of the error. 

ERR_REL

Set this keyword to a value specifying the relative accuracy desired. Default: 
ERR_REL=SQRT(ε), where ε is the machine precision

MAX_EVALS

Set this keyword to a scalar value specifying the number of evaluations allowed. 
Default: MAX_EVALS = 1,000,000 for n ≤ 2 and MAX_EVALS = 256n for n > 2, 
where n is the number of independent variables of f.

Discussion

The IMSL_INTFCNHYPER function approximates the following n-dimensional 
iterated integral:

An estimate of the error is returned in the optional keyword ERR_EST. The 
approximation is achieved by iterated applications of product Gauss formulas. The 
integral is first estimated by a two-point, tensor-product formula in each direction. 
Then, for ( i = 0, ..., n – 1 ), the function calculates a new estimate by doubling the 
number of points in the i-th direction, but halving the number immediately afterwards 
if the new estimate does not change appreciably. This process is repeated until either 
one complete sweep results in no increase in the number of sample points in any 
dimension, the number of Gauss points in one direction exceeds 256, or the number 
of function evaluations needed to complete a sweep exceeds MAX_EVALS.

… f x0 …xn 1–,( ) xn 1– …d x0d
an 1–

bn 1–

∫
a0

b0

∫
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Example

This example computes the integral of: 

on an expanding cube. The values of the error estimates are machine dependent. The 
exact integral over R is π3/2.

.RUN
; Define the function to be integrated.
FUNCTION f, x

RETURN, EXP(-TOTAL(x^2))
END

limit = !Pi^1.5
; Compute the exact value of the integral.
PM, '    Limit:', limit

Limit: 5.56833
FOR i = 1, 6 DO  BEGIN $

a = [-i/2., -i/2., -i/2.] &$
b = [i/2., i/2., i/2.] &$
ans = IMSL_INTFCNHYPER('f', a, b) &$
PRINT, 'integral = ', ans, ' limit = ', limit
; Compute values of the integral over expanding cubes and
; output the results after each call to IMSL_INTFCNHYPER.
integral = 0.785213 limit = 5.56833
 integral = 3.33231 limit = 5.56833
 integral = 5.02107 limit = 5.56833
 integral = 5.49055 limit = 5.56833
 integral = 5.56135 limit = 5.56833
 integral = 5.56771 limit = 5.56833

Errors

Warning Errors

MATH_MAX_EVALS_TOO_LARGE—The keyword MAX_EVALS was set too large.

Fatal Errors

MATH_NOT_CONVERGENT—Maximum number of function evaluations has been 
reached, and convergence has not been attained.

e
x0

2 x1
2 x2

2+ +( )–
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Version History

6.4 Introduced
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IMSL_INTFCN_QMC

The IMSL_INTFCN_QMC function integrates a function on a hyper-rectangle using 
a quasi-Monte Carlo method.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_INTFCN_QMC(f, a, b [, BASE=value] [, /DOUBLE] 
[, ERR_ABS=value] [, ERR_EST=variable] [, ERR_REL=value] 
[, MAX_EVALS=value] [, SKIP=value])

Return Value

The value of:

is returned. If no value can be computed, the floating-point value NaN (Not a 
Number) is returned.

Arguments

f

A scalar string specifying the name of a user-supplied function to be integrated. The 
function f accepts an array of data points at which the function is to be evaluated and 
returns the scalar value of the function.

a

A vector specifying the lower limit of integration.

b

A vector specifying the upper limit of integration.

… f x0 …xn 1–,( ) xn 1– …d x0d
an 1–

bn 1–

∫
a0

b0

∫
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Keywords

BASE

Set this keyword equal to the value of BASE used to compute the Faure sequence.

DOUBLE

Set this keyword to perform computations using double precision.

ERR_ABS

Set this keyword to a value specifying the accuracy desired. Default: 
ERR_ABS=1 × e-4.

ERR_EST

Set this keyword equal to a named variable that will contain an estimate of the 
absolute value of the error. 

ERR_REL

Set this keyword to a value specifying the relative accuracy desired. Default: 
ERR_REL=1 × e-4.

MAX_EVALS

Set this keyword equal to the number of evaluations allowed. If MAX_EVALS is not 
supplied, the number of evaluations is unlimited.

SKIP

Set this keyword equal to the value of SKIP used to compute the Faure sequence.

Discussion

Integration of functions over hypercubes by direct methods, such as 
IMSL_INTFCNHYPER, is practical only for fairly low dimensional hypercubes. 
This is because the amount of work required increases exponential as the dimension 
increases.

An alternative to direct methods is Monte Carlo, in which the integral is evaluated as 
the value of the function averaged over a sequence of randomly chosen points. Under 
mild assumptions on the function, this method will converge like 1/n1/2, where n is 
the number of points at which the function is evaluated.
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It is possible to improve on the performance of Monte Carlo by carefully choosing 
the points at which the function is to be evaluated. Randomly distributed points tend 
to be non-uniformly distributed. The alternative to at sequence of random points is a 
low-discrepancy sequence. A low-discrepancy sequence is one that is highly uniform.

This function is based on the low-discrepancy Faure sequence, as computed by 
IMSL_FAURE_NEXT_PT.

Example

FUNCTION F, x
S = 0.0
sign = -1.0
FOR i = 0, N_ELEMENTS(x)-1 DO BEGIN

prod = 1.0
FOR j = 0, i DO BEGIN

prod = prod*x(j)
END
S = S + sign*prod
sign = -sign

END
RETURN, s

END
ndim = 10
a = FLTARR(ndim)
a(*) = 0
b = FLTARR(ndim)
b(*) = 1
result = IMSL_INTFCN_QMC( 'f', a, b)
PM, result
   -0.333010

Version History

6.4 Introduced
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IMSL_GQUAD

The IMSL_GQUAD procedure computes a Gauss, Gauss-Radau, or Gauss-Lobatto 
quadrature rule with various classical weight functions.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_GQUAD, n, weights, points [, /CHEBY_FIRST] [, /CHEBY_SECOND] [, /
COSH] [, /DOUBLE] [, /HERMITE] [, JACOBI=vector] 
[, LAGUERRE=parameter] [, FIXED_POINTS=vector] 

Arguments

n

The number of quadrature points.

weights

A named variable that will contain an array of length n containing the quadrature 
weights.

points

A named variable that will contain an array of length n containing quadrature points. 
The default action of this routine is to produce the Gauss Legendre points and 
weights.

Keywords

CHEBY_FIRST

Set this keyword to compute the Gauss points and weights using the weight function:

 

on the interval (–1, 1).

1 1 x2–⁄
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CHEBY_SECOND

Set this keyword to compute the Gauss points and weights using the weight function:

 

on the interval (–1, 1).

COSH

Set this keyword to computes the Gauss points and weights using the weight function 
1/cosh (x) on the interval ( –infinity, infinity ).

DOUBLE

Set this keyword to perform computations using double precision.

HERMITE

Set this keyword to compute the Gauss points and weights using the weight function 
exp (–x2) on the interval ( –infinity, infinity ).

JACOBI

Set this keyword equal to a two-element vector containing the parameters α and β to 
be used in the weight function . If this keyword is present, 
IMSL_GQUAD computes the Gauss points and weights using the weight function 

 on the interval (–1, 1).

LAGUERRE

Set this keyword equal to a scalar parameter α to be used in the weight function 
exp (–x) xα. If this keyword is present, IMSL_GQUAD computes the Gauss points 
and weights using the weight function exp (–x) xa on the interval (0, infinity).

FIXED_POINTS

Set this keyword equal to a one- or two-element vector specifying the fixed points.

• If FIXED_POINTS is a scalar or one-element vector, IMSL_GQUAD 
computes the Gauss-Radau points and weights using the specified weight 
function and the fixed point. This formula integrates polynomials of degree 
less than 2N–1 exactly. 

• If FIXED_POINTS is a two-element vector, IMSL_GQUAD computes the 
Gauss-Lobatto points and weights using the specified weight function and the 

1 x
2

–

1 x–( )α
1 x+( )β

1 x–( )α
1 x+( )β
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fixed points. This formula integrates polynomials of degree less than 2N–2 
exactly.

Discussion

The IMSL_GQUAD procedure produces the points and weights for the Gauss, 
Gauss-Radau, or Gauss-Lobatto quadrature formulas for some of the most popular 
weights. The default weight is the weight function identically equal to 1 on the 
interval (–1, 1). In fact, it is slightly more general than this suggests because the extra 
one or two points that can be specified do not have to lie at the endpoints of the 
interval. This procedure is a modification of the subroutine GAUSSQUADRULE 
(Golub and Welsch 1969).

In the default case, the procedure returns points in x = points and weights in 
w = weights so that:

for all functions f that are polynomials of degree less than 2N.

If the keyword FIXED_POINTS is specified, then one or two of the above xi is equal 
to the values specified by FIXED_POINTS. In general, the accuracy of the above 
quadrature formula degrades when n increases. The quadrature rule integrates all 
functions f that are polynomials of degree less than 2N – F, where F is the number of 
fixed points.

Example

This example computes the three-point Gauss Legendre quadrature points and 
weights, then uses them to approximate the integrals as follows:

Notice that the integrals are exact for the first six monomials, but the last 
approximation is in error. In general, the Gauss rules with k-points integrate 
polynomials with degree less than 2k exactly.

IMSL_GQUAD, 3, weights, points
; Call IMSL_GQUAD to get the weights and points.
error = FLTARR(7)
; Define an array to hold the errors.
FOR i = 0, 6 DO error(i) = $

(TOTAL(weights*(points^i))-(1-(i MOD 2))*2./(i+1))

f x( )w x( ) xd
a

b

∫ f xi( )wi
i 0=

N 1–

∑=

x
i

x       i=0,… 6,d
1–

1

∫
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; Compute the errors for seven monomials.
PM, 'Error:', error
; Output the results.
Error:

 -2.38419e-07
 2.68221e-07
 -5.96046e-08
 2.08616e-07
 2.98023e-08
 1.78814e-07
 -0.0457142

Version History

6.4 Introduced
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IMSL_FCN_DERIV

The IMSL_FCN_DERIV function computes the first, second, or third derivative of a 
user-supplied function.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FCN_DERIV(f, x [, /DOUBLE] [, ORDER=value] 
[, STEPSIZE=value] [, TOLERANCE=value])

Return Value

An estimate of the first, second or third derivative of f at x. If no value can be 
computed, NaN is returned.

Arguments

f

A scalar string specifying a user-supplied function whose derivative at x will be 
computed.

x

The point at which the derivative will be evaluated.

Keywords

DOUBLE

Set this keyword to perform computations using double precision.

ORDER

Set this keyword equal to the order of the desired derivative (1, 2 or 3). Default: 
ORDER = 1
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STEPSIZE

Set this keyword equal to the beginning value used to compute the size of the interval 
for approximating the derivative. STEPSIZE must be chosen small enough that f is 
defined and reasonably smooth in the interval (x – 4.0*STEPSIZE, 
x + 4.0*STEPSIZE), yet large enough to avoid roundoff problems. Default: 
STEPSIZE = 0.01

TOLERANCE

Set this keyword equal to the relative error desired in the derivative estimate. 
Convergence is assumed when (2/3) |d2 – d1| < TOLERANCE, for two successive 
derivative estimates, d1 and d2. Default: TOLERANCE =  where ε is machine 
epsilon.

Discussion

The IMSL_FCN_DERIV function produces an estimate to the first, second, or third 
derivative of a function. The estimate originates from first computing a spline 
interpolant to the input function using values within the interval (x – 4.0*STEPSIZE, 
x + 4.0*STEPSIZE), then differentiating the spline at x.

Examples

Example 1

This example obtains the approximate first derivative of the function 
f(x) = –2sin(3x/2) at the point x = 2.

FUNCTION fcn, x
f  =  -2*SIN(1.5*x)   

   RETURN,  f
END

deriv1 = IMSL_FCN_DERIV('fcn', 2.0)
PRINT, "f'(x)   = ", deriv1
f'(x)   =       2.97008

Example 2

This example obtains the approximate first, second, and third derivative of the 
function f(x) = –2sin(3x/2) at the point x = 2.

FUNCTION fcn,  x
f  =  -2*SIN(1.5*x)   

ε4
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   RETURN,  f
END

deriv1  =  IMSL_FCN_DERIV('fcn', 2.0, /Double)
deriv2  =  IMSL_FCN_DERIV('fcn', 2.0, ORDER = 2, /Double)
deriv3  =  IMSL_FCN_DERIV('fcn', 2.0, ORDER = 3, /Double)
PRINT, "f'(x)   = ", deriv1, ',  error =', $

ABS(deriv1 + 3.0*COS(1.5*2.0))
f'(x)   =        2.9699775,  error =   1.1094893e-07
PRINT, "f''(x)  = ", deriv2, ',  error =', $

ABS(deriv2 - 4.5*SIN(1.5*2.0))
f''(x)  =       0.63504004,  error =   5.1086361e-08
PRINT, "f'''(x) = ", deriv3, ',  error =', $

ABS(deriv3 - 6.75*COS(1.5*2.0))
f'''(x) =       -6.6824494,  error =   1.1606068e-08

Version History

6.4 Introduced
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Differential Equations
This section contains the following topics:
Overview: Differential Equations  . . . . . . .  330 Differential Equations Routines . . . . . . . .  332
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Overview: Differential Equations

This section introduces some of the mathematical concepts used with IDL Analyst.

Ordinary Differential Equations 

An ordinary differential equation is an equation involving one or more dependent 
variables called yi, one independent variable, t, and derivatives of the yi with respect 
to t.

In the initial value problem (IVP), the initial or starting values of the dependent 
variables yi at a known value t = t0 are given. Values of yi(t) for t > t0 or t < t0 are 
required.

The IMSL_ODE function solves the IVP for ODEs of the form:

  

with yi(t = t0) specified. Here, fi is a user-supplied function that must be evaluated at 
any set of values (t, y0, ..., yN – 1), i = 0, ..., N – 1.

The previous problem statement is abbreviated by writing it as a system of first-order 
ODEs, y(t) = [y0(t), ..., yN – 1(t) ]T , f(t, y) = [f0(t, y), ..., fN – 1(t, y)]T, so that the 
problem becomes y' = f(t, y) with initial values y(t0).

The system:

 

is said to be stiff if some of the eigenvalues of the Jacobian matrix:

 

are large and negative. This is frequently the case for differential equations modeling 
the behavior of physical systems such as chemical reactions proceeding to 
equilibrium where subspecies effectively complete their reactions in different epochs. 
An alternate model concerns discharging capacitors such that different parts of the 
system have widely varying decay rates (or time constants).

Users typically identify stiff systems by the fact that certain numerical differential 
equation solvers, such as the Runge-Kutta-Verner fifth-order and sixth-order method, 
are inefficient or they fail completely. Special methods are often required. The most 
common inefficiency is that a large number of evaluations of f(t, y) and, hence, an 
excessive amount of computer time are required to satisfy the accuracy and stability 
requirements of the software. In such cases, the keyword R_K_V should not be 

dyi

dt
------- yi ′ fi t y0…yn 1–,( )= = i 0 …N 1–,=

td
dy y ′ f t y,( )= =

∂yi′( ) ∂yj( )⁄{ }
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specified when using the IMSL_ODE function. For more about stiff systems, see 
Gear (1971, Chapter 11) or Shampine and Gear (1979).

Partial Differential Equations

The routine IMSL_PDE_MOL solves the IVP problem for systems of the form: 

subject to the boundary conditions: 

and subject to the initial conditions:

ui(x, t = t0) = gi(x)

for i = 1, …, N. Here, fi, gi,: 

are user-supplied, j = 1, 2.

The routine IMSL_POISSON2D solves Laplace’s, Poisson’s, or Helmholtz’s 
equation in two dimensions. This routine uses a fast Poisson method to solve a PDE 
of the form: 

over a rectangle, subject to boundary conditions on each of the four sides. The scalar 
constant c and the function f are user specified. 

ui∂
t∂

------- fi x t u1, ..., un, 
u1∂
x∂

--------, ..., 
uN∂
x∂

---------, 
u

2
1∂

x
2∂

----------, ..., 
u

2
N∂

x
2∂

-----------, ,
 
 
 

=

α
i( )
1

ui a( ) β+
i( )
1

ui∂
x∂

------- a( ) γ1 t( )=

α
i( )
2

ui b( ) β+
i( )
2

ui∂
x∂

------- b( ) γ2 t( )=

α
i( )
j

, and β
i( )
j

u
2∂
x

2∂
--------

u
2

1∂

y
2∂

---------- cu+ + f x y,( )=
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Differential Equations Routines

IMSL_ODE—Adams-Gear or Runge-Kutta method.

IMSL_PDE_MOL—Solves a system of partial differential equations using the 
method of lines. 

IMSL_POISSON2D—Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle. 
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IMSL_ODE

The IMSL_ODE function solves an initial value problem, which is possibly stiff, 
using the Adams-Gear methods for ordinary differential equations. Using keywords, 
the Runge-Kutta-Verner fifth-order and sixth-order method can be used if you know 
the problem is not stiff.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ODE(t, y, f [, /DOUBLE] [, FLOOR=value] [, HINIT=value] 
[, HMAX=value] [, HMIN=value] [, MAX_EVALS=value] 
[, MAX_STEPS=value] [, N_STEP=variable] [, N_EVALS=variable] 
[, NORM=value] [, R_K_V=value] [, SCALE=value] [, TOLERANCE=value] 
[, JACOBIAN=string] [, MAX_ORD=value] [, METHOD=value] 
[, MITER=value] [, N_JEVALS=value] )

Return Value

A two-dimensional array containing the approximate solutions for each specified 
value of the independent variable. The elements (i, *) are the solutions for the i-th 
variable.

Arguments

t

One-dimensional array containing values of the independent variable. Parameter t(0) 
should contain the initial independent variable value, and the remaining elements of t 
should be filled with values of the independent variable at which a solution is desired.

y

Array containing the initial values of the dependent variables.
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f

Scalar string specifying a user-supplied function to evaluate the right-hand side. This 
function takes two parameters, t and y, where t is the current value of the independent 
variable and y is defined above.

The return value of this function is an array defined by the following equation:

 

Keywords

DOUBLE

If present and nonzero, double precision is used.

FLOOR

Used with IMSL_NORM. Provides a positive lower bound for the error norm option 
with value 2. Default: FLOOR = 1.0

HINIT

Scalar value used for the initial value for the step size h. Steps are applied in the 
direction of integration. Default: HINIT = 0.001 | t (i + 1 ) – t (i) |

HMAX

Scalar value used as the maximum value for the step size h. If keyword R_K_V is set, 
HMAX = 2.0 is used. Default: largest machine-representable number

HMIN

Scalar value used as the minimum value for the step size h. Default: HMIN = 0.0

MAX_EVALS

Integer value used in the maximum number of function evaluations allowed per time 
step. Default: MAX_EVALS = no enforced limit

MAX_STEPS

Integer value used in the maximum number of steps allowed per time step. Default: 
MAX_STEPS = 500

f t y,( ) dy
dt
------ y'= =
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N_STEP

Named variable into which the array containing the number of steps taken at each 
value of t is stored.

N_EVALS

Named variable into which the array containing the number of function evaluations 
used at each value of t is stored.

NORM

Switch determining the error norm. In the following, ei is the absolute value of the 
error estimate for yi.

• 0—Minimum of the absolute error and the relative error equals the maximum 
of ei/max ( |yi|, 1) for i = 0, ..., N_ELEMENTS (y) – 1.

• 1—Absolute error, equals maxiei.

• 2—The error norm is maxi(ei/wi), where wi = max ( |yi|, Floor).

• Default: NORM = 0.

R_K_V

If present and nonzero, uses the Runge-Kutta-Verner fifth-order and sixth-order 
method.

SCALE

Scalar value used as a measure of the scale of the problem, such as an approximation 
to the Jacobian along the trajectory. Default: SCALE = 1

TOLERANCE

Scalar value used to set the tolerance for error control. An attempt is made to control 
the norm of the local error such that the global error is proportional to TOLERANCE. 
Default: TOLERANCE = 0.001

Adams Gear (Default) Method Only

JACOBIAN

Scalar string specifying a user-supplied function to evaluate the Jacobian matrix. This 
function takes three parameters, x, y, and yprime, where x and y are defined in the 
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description of the user-supplied function f of the Arguments section and yprime is the 
array returned by the user-supplied function f. The return value of this function is a 
two-dimensional array containing the partial derivatives. Each derivative ∂y'i / ∂yj is 
evaluated at the provided (x, y) values and is returned in array location (i, j).

MAX_ORD

Defines the highest order formula of implicit Adams type or BDF type to use. 
Default: value 12 for Adams formulas; value 5 for BDF formulas

METHOD

Chooses the class of integration methods:

• 1—Uses implicit Adams method.

• 2—Uses backward differentiation formula (BDF) methods.

• Default: METHOD = 2.

MITER

Chooses the method for solving the formula equations:

• 1—Uses function iteration or successive substitution.

• 2—Uses chord or modified Newton method and a user-supplied Jacobian 
matrix.

• 3—Same as 2 except Jacobian is approximated within the function by divided 
differences.

• Default: MITER = 3.

Adams Gear (Default) Method Only

N_JEVALS

Named variable into which the array containing the number of Jacobian function 
evaluations used at each value of t is stored. The values returned are nonzero only if 
the keyword JACOBIAN is also used.

Discussion

The IMSL_ODE function finds an approximation to the solution of a system of first-
order differential equations of the form:
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with given initial conditions for y at the starting value for t. The function attempts to 
keep the global error proportional to a user-specified tolerance. The proportionality 
depends on the differential equation and the range of integration.

The function returns a two-dimensional array with the (i, j)-th component containing 
the i-th approximate solution at the j-th time step. Thus, the returned matrix has 
dimension (N_ELEMENTS (y), N_ELEMENTS (t)). It is important to notice here 
that the initial values of the problem also are included in this two-dimensional matrix.

The code is based on using backward differentiation formulas not exceeding order 
five as outlined in Gear (1971) and implemented by Hindmarsh (1974). There is an 
optional use of the code that employs implicit Adams formulas. This use is intended 
for nonstiff problems with expensive functions y′ = f(t, y).

If the keyword R_K_V is set, the IMSL_ODE function uses the Runge-Kutta-Verner 
fifth-order and sixth-order method and is efficient for nonstiff systems where the 
evaluations of f(t, y) are not expensive. The code is based on an algorithm designed 
by Hull et al. (1976) and Jackson et al. (1978) and uses Runge-Kutta formulas of 
order five and six developed by J.H. Verner.

Examples

Example 1

This is a mildly stiff example problem (F2) from the test set of Enright and Pryce 
(1987).

y'0  = – y0 – y0y1 + k0y1

y'1  = –k1y1 + k2 (1 – y1) y0

y0(0)  = 1

y1(0)  = 0

k0  = 294.

k1  = 3.

k2  = 0.01020408

.RUN 
; Define function f.
FUNCTION f, t, y

 RETURN, [-y(0) - y(0) * y(1) + 294. * y(1), $
 -3.*y(1) + 0.01020408*(1. - y(1)) * y(0)]

END

td
dy y ′ f t y,( )= =
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yp = IMSL_ODE([0, 120, 240], [1, 0], 'f')
; Call the IMSL_ODE code with the values of the independent 
; variable at which a solution is desired and the initial 
; conditions.
PM, yp, FORMAT = '(3f10.6)', $

Title = '  y(0)  y(120) y(240)'
; Output results.

 y(0)  y(120) y(240)
 1.000000 0.514591 0.392082
0.000000 0.001749 0.001333

Now solve the same problem but with a user supplied Jacobian.

.RUN
; Define function f.
FUNCTION f, t, y

RETURN, [-y(0)-y(0)*y(1)+294.0*y(1), $
-3.0*y(1)+0.01020408*(1.0-y(1))*y(0)]

END

.RUN
FUNCTION jacob, x, y, dydx

dydx = [ [-y(1)-1,0.01020408*(1-y(1))], $
[294-y(0),-0.01020408*y(0)-3] ]

  RETURN, dydx
END

yp = IMSL_ODE( [0,120,240], [1,0], 'f', JACOBIAN='jacob', MITER=2)
PM, yp, FORMAT='(3f10.6)', TITLE='    y(0)      y(120)     y(240)'

Example 2: Runge-Kutta Method

This example solves:

 

over the interval [0, 1] with the initial condition y(0) = 1 using the Runge-Kutta-
Verner fifth-order and sixth-order method. The solution is y(t) = e–t.

.RUN
; Define function f.
FUNCTION f, t, y

 RETURN, -y
END

yp = IMSL_ODE([0, 1], [1], 'f', /R_K_V)
; Call IMSL_ODE with the keyword R_K_V set.

td
dy y–=
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PM, yp, Title = 'Solution'
; Output results.
Solution

 1.00000  0.367879
PM, yp(1) - EXP(-1), Title = 'Error'
Error

 0.00000
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Example 3: Predator-Prey Problem

Consider a predator-prey problem with rabbits and foxes. Let r be the density of 
rabbits, and let f be the density of foxes. In the absence of any predator-prey 
interaction, the rabbits would increase at a rate proportional to their number, and the 
foxes would die of starvation at a rate proportional to their number. Mathematically, 
the model without species interaction is approximated by the following equations: 

With species interaction, the rate at which the rabbits are consumed by the foxes is 
assumed to equal the value 2rf. The rate at which the foxes increase because they are 
consuming the rabbits, is equal to rf. Thus, the model differential equations to be 
solved are as follows: 

For illustration, the initial conditions are taken to be r(0) = 1 and f (0) = 3. The 
interval of integration is 0 ≤ t ≤ 40. In the program, y(0) = r and y(1) = f. The 
IMSL_ODE function is then called with 100 time values from 0 to 40. The results are 
shown in Figure 8-1.

.RUN
; Define the function f.
FUNCTION f, t, y

yp = y
yp(0) = 2 * y(0) * (1 - y(1))
yp(1) = -y(1) * (1 - y(0))
RETURN, yp

END

y = [1, 3]
; Set the initial values and time values.
t = 40 * FINDGEN(100)/99
y = IMSL_ODE(t, y, 'f', /R_K_V)
; Call IMSL_ODE with R_K_V set to use the Runge-Kutta method.
PLOT, y(0, *), y(1, *), Psym = 2, XTitle = 'Density of Rabbits', $

YTitle = 'Density of Foxes'
; Plot the result.

r ′ 2r=

f ′ f–=

r ′ 2r 2rf–=

f ′ f– rf+=
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Example 4: Stiff Problems and Changing Defaults

This problem is a stiff example (F5) from the test set of Enright and Pryce (1987). An 
initial step size of h = 10–7 is suggested by these authors. When solving a problem 
that is known to be stiff, using double precision is advisable. The IMSL_ODE 
function is forced to use the suggested initial step size and double precision by using 
keywords.

y'0 = k0 ( –k1y0y1 + k2y3 – k3 y0y2 ) 

y'1 = – k0k1y0y1 + k4y3 

y'2 = k0 ( –k3y0y2 + k5y3 )

y'3 = k0 ( k1y0y1 – k2y3 + k3 y0y2 )

y0(0) = 3.365 x 10–7 

y1(0) = 8.261 x 10–3 

y2(0) = 1.641 x 10–3 

y3(0) = 9.380 x 10–6 

Figure 8-1: Predator-Prey Plot
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k0 = 1011 

k1 = 3.

k2 = 0.0012

k3 = 9.

k4 = 2 x 107

k5 = 0.001

The results are shown in Figure 8-2.

.RUN
; Define the function.
FUNCTION f, t, y

k = [1d11, 3., .0012, 9., 2d7, .001]
yp = [k(0)*(-k(1)*y(0)*y(1)+k(2)*y(3)- $

k(3)*y(0)*y(2)),-k(0)*k(1)*y(0)*y(1)+ $
k(4)*y(3),k(0)*(-k(3)*y(0)*y(2) + $
k(5)*y(3)),k(0)* (k(1)*y(0)*y(1)- $
k(2)*y(3)+k(3)*y(0)*y(2))]

RETURN, yp
END

t = FINDGEN(500)/5e6
; Set up the values of the independent variable.
y = [3.365e-7, 8.261e-3, 1.641e-3, 9.380e-6]
; Set the initial values.
y = IMSL_ODE(t, y, 'f', Hinit = 1d-7, /Double)
; Call IMSL_ODE.
!P.Multi = [0, 2, 2]
!P.Font = 0
PLOT, t, y(0, *), Title = '!8y!I0!5', XTICKS=2
PLOT, t, y(1, *), Title = '!8y!I1!5', XTICKS=2
PLOT, t, y(2, *), Title = '!8y!I2!5', XTICKS=2
PLOT, t, y(3, *), Title = '!8y!I3!5', XTICKS=2
; Plot each variable on a separate axis.
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Example 5: Strange Attractors—The Rossler System

This example illustrates a strange attractor. The strange attractor used is the Rossler 
system, a simple model of a truncated Navier-Stokes equation. The Rossler system is 
given by relation below.

y'0 = – y1 – y2

y'1 = y0 + a y1

y'2 = b + y0 y2 – c y2

The initial conditions and constants are shown below.

y0(0) = 1 

y1(0) = 0

y2(0) = 0

a = 0.2

b = 0.2

Figure 8-2: Plot for Each Variable
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c = 5.7

The results are shown in Figure 8-3.

.RUN
; Define function f.
FUNCTION f, t, y

COMMON constants, a, b, c
; Define some common variables.
yp = y
yp(0) = -y(1) - y(2)
yp(1) = y(0) + a * y(1)
yp(2) = b + y(0) * y(2) - c * y(2)
RETURN, yp

END

COMMON constants, a, b, c
a = .2
b = .2
c = 5.7

; Assign values to the common variables.
ntime = 5000
; Set the number of values of the independent variable.
time_range = 200
; Set the range of the independent variable to 0, ..., 200.
max_steps = 20000
; Allow up to 20,000 steps per value of the independent variable.
t = FINDGEN(ntime)/(ntime - 1) * time_range
y = [1, 0, 0]
; Set the initial conditions.
y = IMSL_ODE(t, y, 'f', Max_Steps = max_steps, /Double)
; Call IMSL_ODE using keywords Max_Steps and Double.
!P.Charsize = 1.5
SURFACE, FINDGEN(2, 2), /Nodata, $
XRange = [MIN(y(0, *)), MAX(y(0, *))], $
YRange = [MIN(y(1, *)), MAX(y(1, *))], $
ZRange = [MIN(y(2, *)), MAX(y(2, *))], $
XTitle = '!6y!i0', YTitle = 'y!i1', $
ZTitle = 'y!i2', Az = 25, /Save
PLOTS, y(0, *), y(1, *), y(2, *), /T3d
; Set up axes to plot solution. SURFACE draws the axes and defines
; the transformation used in PLOTS. The transformation is saved
; using keyword Save in SURFACE, then applied in PLOTS using T3d.
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Example 6: Coupled, Second-order System

Consider the two-degrees-of-freedom system represented by the model (and 
corresponding free-body diagrams) in Figure 8-4. Assuming y1 is greater than y0 
causes the spring k1 to be in tension, as seen by the tensile force k1 (y1 – y0).

Figure 8-3: Rossler System Plot
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Note
If y0 is taken to be greater than y1, then spring k1 is in compression, with the spring 
force k1 (y0 – y1). Both methods give correct results when a summation of forces is 
written.

The differential equations of motion for the system are written as follows: 

Figure 8-4: Two-Degrees of Freedom System

m0y··0 k– 0y0 k1 y1 y0–( )+=

m1y··1 k– 1 y1 y0–( ) k– 2y1=
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Thus: 

If given the mass and spring constant values: 

the following is true: 

Now, in order to convert this problem into one which IMSL_ODE can be used to 
solve, choose the following variables: 

y··0
k0 k1+

m0
----------------- 
  y0–

k1

m0
------- 
  y1+=

y··1
k1

m1
------- 
  y0

k1 k2+

m1
----------------- 
 – y1=

m0 m1 1kg= =

k0 k1 k2 1000
N
m
----= = =

y··0 2000–( )y0 1000( )y1+=

y··1 1000( )y0 2000y1–=

z 0( ) y0=

z 1( ) y1=

z 2( ) y· 0=

z 3( ) y· 1=

k 0( ) 2000–=

k 1( ) 1000=
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which yields the following equations: 

The last four equations are the object of the return values of the user-supplied 
function in the exact order as previously specified.

The example below loops through four different sets of initial values for z. The results 
are shown in Figure 8-5.

.RUN
; Define a function.
FUNCTION f, t, z

k = [-2000, 1000]
RETURN, [z(2), z(3), k(0) * z(0) + k(1) * $

z(1), k(1) * z(0) + k(0) * z(1)]
END

.RUN
t = FINDGEN(1000)/999
; Independent variable, t, is between 0 and 1.
!P.MULTI = [0, 2, 2]
; Place all four plots in one window.
FOR i = 0, 3 DO BEGIN

z = [1, i/3., 0, 0]
z = IMSL_ODE(t, z, 'f', Max_Steps = 1000, Hinit = 0.001, /R_K_V)
PLOT, t, z(0, *), Thick = 2, Title = 'Displacement of Mass'
; Plot the displacement of m0 as a solid line.
OPLOT, t, z(1, *), Linestyle = 1, Thick = 2
; Overplot the displacement of m1 as a dotted line.

ENDFOR
END

y· 0 z 2( )=

y· 1 z 3( )=

y··0 k 0( )z 0( ) k 1( )z 1( )+=

y··1 k 1( )z 0( ) k 0( )z 1( )+=
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The displacement for m0 is the solid line, and the dotted line represents the 
displacement for m1. Note that when the initial conditions for:

 and  

are equal, the displacement of the masses is equal for all values of the independent 
variable (as seen in the fourth plot). Also, the two principal modes of this problem 
occur when the following is true: 

Figure 8-5: Second Order Systems with Differential Initial Values

y· 0 y· 1

y· 0 y· 1 1= =

y··0 1= y··1, 1=
IDL Analyst Reference Guide IMSL_ODE



350 Chapter 8: Differential Equations
Errors

Fatal Errors

MATH_ODE_TOO_MANY_EVALS—Completion of the next step would make the 
number of function evaluations #, but only # evaluations are allowed.

MATH_ODE_TOO_MANY_STEPS—Maximum number of steps allowed; # used. The 
problem may be stiff.

MATH_ODE_FAIL—Unable to satisfy the error requirement. TOLERANCE = # may 
be too small.

Version History

6.4 Introduced
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IMSL_PDE_MOL

The IMSL_PDE_MOL function solves a system of partial differential equations of 
the form ut = f(x, t, u, ux, uxx) using the method of lines. The solution is represented 
with cubic Hermite polynomials.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_PDE_MOL(t, y, xbreak, f_ut, f_bc [, /DOUBLE] 
[, DERIV_INIT=array] [, HINIT=value] [, TOLERANCE=value] )

Return Value

Three-dimensional array of size npde by nx by N_ELEMENTS(t) containing the 
approximate solutions for each specified value of the independent variable.

Arguments

t

One-dimensional array containing values of independent variable.  Element t(0) 
should contain the initial independent variable value (the initial time, t0) and the 
remaining elements of t should be values of the independent variable at which a 
solution is desired.

y

Two-dimensional array of size npde by nx containing the initial values, where npde is 
the number of differential equations and nx is the number of mesh points or lines. It 
must satisfy the boundary conditions.

xbreak

One-dimensional array of length nx containing the breakpoints for the cubic Hermite 
splines used in the x discretization. The points in xbreak must be strictly increasing. 
The values xbreak(0) and xbreak(nx − 1) are the endpoints of the interval.
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f_ut

Scalar string specifying an user-supplied function to evaluate ut. Function f_ut 
accepts the following arguments:

• npde—Number of equations.

• x—Space variable, x.

• t—Time variable, t.

• u—One-dimensional array of length npde containing the dependent values, u.

• ux—One-dimensional array of length npde containing the first derivatives, ux.

• uxx—One-dimensional array of length npde containing the second derivative, 
uxx.

The return value of this function is an one-dimensional array of length npde 
containing the computed derivatives ut.

f_bc—Scalar string specifying user-supplied procedure to evaluate boundary 
conditions. The boundary conditions accepted by IMSL_PDE_MOL are: 

Note
Users must supply the values αk and βk, which determine the values γk. Since γk can 
depend on t values, γk' also are required.

• npde—Number of equations. (Input)

• x—Space variable, x. (Input)

• t—Time variable, t. (Input)

• alpha—Named variable into which an one-dimensional array of length npde 
containing the αk values is stored. (Output)

• beta—Named variable into which an one-dimensional array of length npde 
containing the βk values is stored. (Output)

α β
∂
∂

γk k k
k

ku
u
x

+ =
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gammap

Named variable into which an one-dimensional array of length npde containing the 
derivatives is stored. (Output):

Keywords

DOUBLE

If present and nonzero, double precision is used.

DERIV_INIT

Two-dimensional array that supplies the derivative values ux(x, t(0)). This derivative 
information is input as: 

Default: Derivatives are computed using cubic spline interpolation

HINIT

Initial step size in the t integration. This value must be nonnegative. If HINIT is zero, 
an initial step size of 0.001|ti+1 - ti| will be arbitrarily used. The step will be applied in 
the direction of integration. Default: HINIT = 0.0

TOLERANCE

Differential equation error tolerance. An attempt to control the local error in such a 
way that the global relative error is proportional to TOLERANCE. Default: 
TOLERANCE = 100.0*ε, where ε is machine epsilon. 

dγk

dt
-------- γ′k=

Deriv_Init k i,( )
uk∂
ux∂

-------- x t 0( ),( )=
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Discussion

Let M = npde, N = nx and xi = xbreak(i). The routine IMSL_PDE_MOL uses the 
method of lines to solve the partial differential equation system: 

with the initial conditions:

uk = uk(x, t) at t = t0, where t0 = t(0)

and the boundary conditions:

for k = 1, ..., M.

Cubic Hermite polynomials are used in the x variable approximation so that the trial 
solution is expanded in the series: 

where φi(x) and ψi(x) are standard basis functions for cubic Hermite polynomials 
with the knots x1 < x2 < ... < xN. These are piecewise cubic polynomials with 
continuous first derivatives. At the breakpoints, they satisfy: 

According to the collocation method, the coefficients of the approximation are 
obtained so that the trial solution satisfies the differential equation at the two 
Gaussian points in each subinterval: 

uk∂
t∂

-------- fk x t u1, ..., uM, 
u1∂
x∂

--------, ..., 
uM∂
x∂

----------, 
u

2
1∂

x
2∂

----------, ..., 
u

2
M∂

x
2∂

------------, ,
 
 
 

=

αkuk βk

u∂ k

x∂
--------+ γk             at x x1 and at x xN== =

uk
ˆ x t,( ) ai k, t( )φi x( ) bi k, t( )ψi x( )+( )

i 1=

N

∑=

φi xl( ) δil= ψi xl( ) 0=

φid

xd
------- xl( ) 0=

ψid

xd
-------- xl( ) δil=

p2j 1– xj
3 3–

6
---------------- xj 1+ xj–( )+=

p2j xj
3 3–

6
---------------- xj 1+ xj+( )+=
IMSL_PDE_MOL IDL Analyst Reference Guide



Chapter 8: Differential Equations 355
for j = 1, ..., N. The collocation approximation to the differential equation is:

 

for k = 1, ..., M and j = 1, ..., 2(N − 1).

This is a system of 2M(N − 1) ordinary differential equations in 2M N unknown 
coefficient functions, ai,k and bi,k. This system can be written in the matrix−vector 
form as A dc/dt = F (t, y) with c(t0) = c0 where c is a vector of coefficients of length 
2M N and c0 holds the initial values of the coefficients. The last 2M equations are 
obtained by differentiating the boundary conditions: 

for k = 1, ..., M.

The initial conditions uk(x, t0) must satisfy the boundary conditions. Also, the γk(t) 
must be continuous and have a smooth derivative, or the boundary conditions will not 
be properly imposed for t > t0.

If αk = βk = 0, it is assumed that no boundary condition is desired for the k-th 
unknown at the left endpoint. A similar comment holds for the right endpoint. Thus, 
collocation is done at the endpoint. This is generally a useful feature for systems of 
first-order partial differential equations.

If the number of partial differential equations is M = 1 and the number of breakpoints 
is N = 4, then: 

The vector c is:

c = [a1, b1, a2, b2, a3, b3, a4, b4]T 

ai k,d

td
-----------φi pj( )

bi k,d

td
------------ψi pj( )+ fk pj t û1 pj( ), ..., ûM pj( ), ..., û1( )

xx
pj( ), ..., ûM( )

xx
pj( ), ,( )=

α β
γ

k
k

k
k kda

dt
db
dt

d
dt

+ =

A

α1 β1

φ1 p1( ) ψ1 p1( ) φ2 p1( ) ψ2 p1( )

φ1 p2( ) ψ1 p2( ) φ2 p2( ) ψ2 p2( )

φ3 p3( ) ψ3 p3( ) φ4 p3( ) ψ4 p3( )

φ3 p4( ) ψ3 p4( ) φ4 p4( ) ψ4 p4( )

φ5 p5( ) ψ5 p5( ) φ6 p5( ) ψ6 p5( )

φ5 p6( ) ψ5 p6( ) φ6 p6( ) ψ6 p6( )

α4 β4

=
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and the right-side F is:

 

If M > 1, then each entry in the above matrix is replaced by an M x M diagonal 
matrix. The element α1 is replaced by diag(α1,1, ..., α1,M ). The elements αN, β1 and 
βN are handled in the same manner. The φi(pj) and ψi(pj) elements are replaced by 
φi(pj)IM and ψi(pj)IM where IM is the identity matrix of order M. See Madsen and 
Sincovec (1979) for further details about discretization errors and Jacobian matrix 
structure.

The input array y contains the values of the ak,i. The initial values of the bk,i are 
obtained by using the IDL Analyst cubic spline routine IMSL_CSINTERP to 
construct functions:

 

such that:

 

The IDL Analyst routine IMSL_SPVALUE is used to approximate the values: 

There is an optional use of IMSL_PDE_MOL that allows the user to provide the 
initial values of bk,i.

The order of matrix A is 2MN and its maximum bandwidth is 6M − 1. The band 
structure of the Jacobian of F with respect to c is the same as the band structure of A. 
This system is solved using a modified version of IMSL_ODE. Some of the linear 
solvers were removed. Numerical Jacobians are used exclusively. The algorithm is 
unchanged. Gear’s BDF method is used as the default because the system is typically 
stiff.

Four examples of PDEs are now presented that illustrate how users can interface their 
problems with IMSL_PDE_MOL. The examples are small and not indicative of the 
complexities that most practitioners will face in their applications.

F γ'1 x1( ) f p1( ) f p2( ) f p3( ) f p4( ) f p5( ) f p6( ) γ'1 x1( ), , , , , , ,[ ] T
=

ûk x t0,( )

ûk xi t0,( ) aki=

ûkd

xd
-------- xi t0,( ) bk i,≡
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Examples

Example 1

This equation solves the normalized linear diffusion PDE, ut = uxx, 0 ≤ x ≤ 1, t > t0. 
The initial values are t0 = 0, u(x, t0) = u0 = 1. There is a “zero-flux” boundary 
condition at x = 1, namely ux(1, t) = 0, (t > t0). The boundary value of u(0, t) is 
abruptly changed from u0 to the value u1 = 0.1. This transition is completed by 
t = tδ = 0.09.

Due to restrictions in the type of boundary conditions successfully processed by 
IMSL_PDE_MOL, it is necessary to provide the derivative boundary value function 
γ′ at x = 0 and at x = 1. The function γ at x = 0 makes a smooth transition from the 
value u0 at t = t0 to the value u1 at t = tδ. The transition phase for γ′ is computed by 
evaluating a cubic interpolating polynomial. For this purpose, the function 
subprogram IMSL_SPVALUE. The interpolation is performed as a first step in the 
user-supplied procedure f_bc. The function and derivative values γ(t0) = u0, γ′(t0) = 0, 
γ(tδ) = u1, and γ′(tδ) = 0, are used as input to routine IMSL_CSINTERP to obtain the 
coefficients evaluated by IMSL_SPVALUE. Notice that γ′(t) = 0, t > tδ. The 
evaluation routine IMSL_SPVALUE will not yield this value so logic in the 
procedure f_bc assigns γ′(t) = 0, t > tδ.

Save the following code as pde_mol_example1, then compile and run:

FUNCTION f_ut,  npde,  x,  t,  u,  ux,  uxx
; Define the PDE
   ut  =  uxx
   RETURN, ut
END

PRO f_bc,  npde,  x,  t,  alpha, beta, gammap
COMMON ex1_pde, first, ppoly
first  =  1
alpha  =  FLTARR(npde)
beta  =  FLTARR(npde)
gammap  =  FLTARR(npde)
delta  =  0.09
; Compute interpolant first time only
IF (first EQ 1) THEN BEGIN

first  =  0
ppoly  =  IMSL_CSINTERP([0.0,  delta],  [1.0,  0.1], $

ileft = 1,  left = 0.0,  iright = 1,  right = 0.0)
ENDIF
; Define the boundary conditions.   
IF (x EQ 0.0) THEN  BEGIN

alpha(0)  =  1.0
IDL Analyst Reference Guide IMSL_PDE_MOL



358 Chapter 8: Differential Equations
beta(0)  =  0.0
gammap(0)  =  0.0
; If in the boundary layer, compute nonzero gamma prime 
IF (t LE delta) THEN gammap(0)  =  $

IMSL_SPVALUE(t,  ppoly,  xderiv  =  1)
END ELSE BEGIN

; These are for x  =  1
alpha(0)  =  0.0
beta(0)  =  1.0
gammap(0)  =  0.0

END
RETURN

END

PRO pde_mol_example1
COMMON ex1_pde, first, ppoly
npde  =  1
nx  =  8
nstep  =  10
; Set breakpoints and initial conditions
xbreak  =  FINDGEN(nx)/(nx - 1)
y  =  FLTARR(npde, nx)
y(*)  =  1.0
; Initialize the solver
t  =  FINDGEN(nstep)/(nstep) + 0.1
t  =  [0.0, t*t]
; Solve the problem
res  =  IMSL_PDE_MOL(t, y,  xbreak,  'f_ut',  'f_bc')
num = INDGEN(8) + 1
FOR i = 1, 10 DO BEGIN

PRINT,  'solution at t = ',  t(i)
PRINT, num, FORMAT = '(8I7)'
PM,  res(0,  *,  i), FORMAT = '(8F7.4)'

ENDFOR
END

IDL Prints:

solution at t =     0.0100000
      1      2      3      4      5      6      7      8
 0.9691 0.9972 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
solution at t =     0.0400000
      1      2      3      4      5      6      7      8
 0.6247 0.8708 0.9624 0.9908 0.9981 0.9997 1.0000 1.0000
solution at t =     0.0900000
      1      2      3      4      5      6      7      8
 0.1000 0.4602 0.7169 0.8671 0.9436 0.9781 0.9917 0.9951
solution at t =      0.160000
      1      2      3      4      5      6      7      8
 0.1000 0.3130 0.5071 0.6681 0.7893 0.8708 0.9168 0.9315
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solution at t =      0.250000
      1      2      3      4      5      6      7      8
 0.1000 0.2567 0.4045 0.5354 0.6428 0.7224 0.7710 0.7874
solution at t =      0.360000
      1      2      3      4      5      6      7      8
 0.1000 0.2176 0.3292 0.4292 0.5125 0.5751 0.6139 0.6270
solution at t =      0.490000
      1      2      3      4      5      6      7      8
 0.1000 0.1852 0.2661 0.3386 0.3992 0.4448 0.4731 0.4827
solution at t =      0.640000
      1      2      3      4      5      6      7      8
 0.1000 0.1588 0.2147 0.2648 0.3066 0.3381 0.3577 0.3643
solution at t =      0.810000
      1      2      3      4      5      6      7      8
 0.1000 0.1387 0.1754 0.2083 0.2358 0.2565 0.2694 0.2738
solution at t =       1.00000
      1      2      3      4      5      6      7      8
 0.1000 0.1242 0.1472 0.1678 0.1850 0.1980 0.2060 0.2087

Example 2

This example solves Problem C from Sincovec and Madsen (1975). The equation is 
of diffusion-convection type with discontinuous coefficients. This problem illustrates 
a simple method for programming the evaluation routine for the derivative, ut. Note 
that the weak discontinuities at x = 0.5 are not evaluated in the expression for ut. The 
results are shown in Figure 8-6. The problem is defined as:   

Save the following code as pde_mol_example2, then compile and run:

FUNCTION f_ut,  npde,  x,  t,  u,  ux,  uxx

ut u∂ t∂⁄ ∂ x∂ D x( ) u∂ x∂⁄( )⁄ v x( ) u∂ x∂⁄–= =

x 0 1,[ ] ,t 0>∈

D x( )
5     if 0  x 0.5   <≤
1     if 0.5 x  1.0≤<




=

v x( )
1000.0     if 0  x 0.5   <≤
1              if 0.5 x  1.0≤<




=

u x 0,( )
1     if x 0=

0     if x 0<



=

u 0 t,( ) 1,= u 1 t,( ) 0=
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; Define the PDE
ut  =  FLTARR(npde)
IF (x LE 0.5) THEN BEGIN

d  =  5.0
v  =  1000.0

END ELSE BEGIN
d  =  1.0
v  =  1.0

END
ut(0)  =  d*uxx(0) - v*ux(0)
RETURN, ut

END

PRO f_bc,  npde,  x,  t,  alpha, beta, gammap
; Define the Boundary Conditions
alpha  =  FLTARR(npde)
beta  =  FLTARR(npde)
gammap  =  FLTARR(npde)
alpha(0)  =  1.0
beta(0)  =  0.0
gammap(0)  =  0.0
RETURN

END

PRO pde_mol_example2
npde  =  1
nx  =  100
nstep  =  10
; Set breakpoints and initial conditions
xbreak  =  FINDGEN(nx)/(nx - 1)
y  =  FLTARR(npde, 100)
y(*)  =  0.0
y(0)  =  1.0
; Initialize the solver
mach  =  IMSL_MACHINE(/FLOAT)
tol  =  SQRT(mach.MAX_REL_SPACE)
hinit  =  0.01*tol
PRINT, 'tol = ', tol, ' and hinit = ', hinit
t  =  [0.0, FINDGEN(nstep)/(nstep)  +  0.1]
; Solve the problem
res  =  IMSL_PDE_MOL(t,  y,  xbreak,  'f_ut',  'f_bc', $

tolerance  =  tol,  hinit  =  hinit)
; Plot results at current ti=ti+1
PLOT, xbreak, res(0,*,10), psym = 3, yrange=[0 , 1.25], $

title = 'Solution at t = 1.0'
END
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Example 3

In this example, using IMSL_PDE_MOL, the linear normalized diffusion PDE 
ut = uxx is solved but with an optional use that provides values of the derivatives, ux, 
of the initial data. Due to errors in the numerical derivatives computed by spline 
interpolation, more precise derivative values are required when the initial data is 
u(x, 0) = 1 + cos[(2n − 1)πx], n > 1. The boundary conditions are “zero flux” 
conditions ux(0, t) = ux(1, t) = 0 for t > 0. Note that the initial data is compatible with 
these end conditions since the derivative function:

 

vanishes at x = 0 and x = 1.

This optional usage signals that the derivative of the initial data is passed by the user.

Figure 8-6: Diffusion-Convection Type with Discontinuous Coefficients

ux x 0,( ) u x 0,( )d
xd

-------------------- 2n 1–( )– π 2n 1–( )πx[ ]sin= =
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Save the following code as pde_mol_example3, then compile and run:

FUNCTION f_ut,  npde,  x,  t,  u,  ux,  uxx
; Define the PDE
ut  =  fltARR(npde)
ut(0)  =  uxx(0)
RETURN, ut

END

PRO f_bc,  npde,  x,  t,  alpha, beta, gammap
; Define the boundary conditions
alpha  =  FLTARR(npde)
beta  =  FLTARR(npde)
gammap  =  FLTARR(npde)
alpha(0)  =  0.0
beta(0)  =  1.0
gammap(0)  =  0.0
RETURN

END

PRO pde_mol_example3
npde  =  1
nx  =  10
nstep  =  10
arg  =  9.0*!Pi
; Set breakpoints and initial conditions
xbreak  =  FINDGEN(nx)/(nx - 1)
y  =  FLTARR(npde,  nx)
y(0, *)  =  1.0 + COS(arg*xbreak)
di  =  y
di(0, *)  =  -arg*SIN(arg*xbreak)
; Initialize the solver
mach  =  IMSL_MACHINE(/FLOAT)
tol = SQRT(mach.MAX_REL_SPACE)
t  =  [FINDGEN(nstep + 1)*(nstep*0.001)/(nstep)]
; Solve the problem
res  =  IMSL_PDE_MOL(t,  y,  xbreak,  'f_ut',  'f_bc', $

Tolerance = tol,  Deriv_Init = di)
; Print results at every other ti=ti+1
FOR i = 2, 10, 2 DO BEGIN

PRINT,  'solution at t = ',  t(i)
PM,  res(0, *, i), FORMAT = '(10F10.4)'
PRINT,  'derivative at t = ',  t(i)
PM,  di(0, *, i)
PRINT

ENDFOR
END

IDL Prints:
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solution at t =    0.00200000
    1.2329    0.7671    1.2329    0.7671    1.2329
    0.7671    1.2329    0.7671    1.2329    0.7671
derivative at t =    0.00200000
      0.00000  9.58505e-07  7.96148e-09  1.25302e-06
 -1.61002e-07  1.91968e-06 -1.60244e-06  3.85856e-06
 -4.83314e-06  2.02301e-06

solution at t =    0.00400000
    1.0537    0.9463    1.0537    0.9463    1.0537
    0.9463    1.0537    0.9463    1.0537    0.9463
derivative at t =    0.00400000
      0.00000  6.64098e-07 -5.12883e-07  8.55131e-07
 -6.11177e-07 -2.76893e-06  7.84288e-08  2.97113e-06
 -2.32777e-07  2.02301e-06

solution at t =    0.00600000
    1.0121    0.9879    1.0121    0.9879    1.0121
    0.9879    1.0121    0.9879    1.0121    0.9879
derivative at t =    0.00600000
      0.00000  7.42109e-07 -5.29244e-08 -1.98559e-07
 -1.19702e-06 -8.66795e-07  1.17180e-07  7.09625e-07
  4.31432e-07  2.02301e-06

solution at t =    0.00800000
    1.0027    0.9973    1.0027    0.9973    1.0027
    0.9973    1.0027    0.9973    1.0027    0.9973
derivative at t =    0.00800000
      0.00000  3.56892e-07 -3.80790e-07 -9.99308e-07
 -1.96765e-07  7.72356e-07  8.50576e-08  1.11979e-07
  4.74838e-07  2.02301e-06
solution at t =     0.0100000
    1.0008    0.9992    1.0008    0.9992    1.0008
    0.9992    1.0008    0.9992    1.0008    0.9992
derivative at t =     0.0100000
      0.00000  2.40533e-07 -4.27171e-07 -1.25933e-06
  3.60702e-08  6.42627e-07 -1.00818e-07  2.08207e-07
  1.12973e-06  2.02301e-06

Example 4

In this example, consider the linear normalized hyperbolic PDE, utt = uxx, the 
“vibrating string” equation. This naturally leads to a system of first order PDEs. 
Define a new dependent variable ut = v. Then, vt = uxx is the second equation in the 
system. Take as initial data u(x, 0) = sin(πx) and ut(x, 0) = v(x, 0) = 0. The ends of the 
string are fixed so u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0. The exact solution to this 
problem is u(x, t) = sin(πx) cos(πt). Residuals are computed at the output values of t 
for 0 < t ≤ 2. Output is obtained at 200 steps in increments of 0.01.
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Even though the sample code IMSL_PDE_MOL gives satisfactory results for this 
PDE, users should be aware that for nonlinear problems, “shocks” can develop in the 
solution. The appearance of shocks may cause the code to fail in unpredictable ways. 
See Courant and Hilbert (1962), pp 488-490, for an introductory discussion of shocks 
in hyperbolic systems.

Save the following code as pde_mol_example4, then compile and run:

FUNCTION f_ut,  npde,  x,  t,  u,  ux,  uxx
; Define the PDE
ut  =  FLTARR(npde)
ut(0)  =  u(1)
ut(1)  =  uxx(0)
RETURN, ut

END

PRO f_bc,  npde,  x,  t,  alpha, beta, gammap
; Define the boundary conditions
alpha  =  FLTARR(npde)
beta  =  FLTARR(npde)
gammap  =  FLTARR(npde)
alpha(0)  =  1
alpha(1)  =  1
beta(0)  =  0
beta(1)  =  0
gammap(0)  =  0
gammap(1)  =  0
RETURN

END

PRO pde_mol_example4
npde  =  2
nx  =  10
nstep  =  200
; Set breakpoints and initial conditions
xbreak  =  FINDGEN(nx)/(nx - 1)
y  =  FLTARR(npde,  nx)
y(0, *)  =  SIN(!Pi*xbreak)
y(1, *)  =  0
di  =  y
di(0, *)  =  !Pi*COS(!Pi*xbreak)
di(1, *)  =  0.0
; Initialize the solver
mach  =  IMSL_MACHINE(/FLOAT)
tol  =  SQRT(mach.MAX_REL_SPACE)
t  =  [0.0, 0.01 + FINDGEN(nstep)*2.0/(nstep)]
; Solve the problem
u  =  IMSL_PDE_MOL(t,  y,  xbreak,  'f_ut',  'f_bc', $

Tolerance  =  tol,  Deriv_Init  =  di) 
IMSL_PDE_MOL IDL Analyst Reference Guide



Chapter 8: Differential Equations 365
err  =  0.0
pde_error  =  FLTARR(nstep)
FOR j  =  1,  N_ELEMENTS(t) - 1 DO BEGIN

FOR i = 0, nx - 1 DO BEGIN
err = (err) > (u(0, i, j) - $

SIN(!Pi*xbreak(i))*COS(!Pi*t(j)))
ENDFOR

ENDFOR
PRINT, 'Maximum error in u(x, t) = ', err

END

IDL Prints:

Maximum error in u(x, t) =   0.000626385

Version History

6.4 Introduced
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IMSL_POISSON2D

The IMSL_POISSON2D function solves Poisson’s or Helmholtz’s equation on a 
two-dimensional rectangle using a fast Poisson solver based on the HODIE finite-
difference scheme on a uniform mesh.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_POISSON2D(rhs_pde, rhs_bc, coef_u, nx, ny, ax, bx, ay, by, bc_type 
[, /DOUBLE] [, ORDER=value])

Return Value

Two-dimensional array of size nx by ny containing solution at the grid points.

Arguments

rhs_pde

Scalar string specifying the name of the user-supplied function to evaluate the right-
hand side of the partial differential equation at a scalar value x and scalar value y.

rhs_bc

Scalar string specifying the name of the user-supplied function to evaluate the right-
hand side of the boundary conditions, on side side, at scalar value x and scalar value y. 
The value of side will be one of the integer values shown in Table 8-1.

Integer Side

0 right side

1 bottom side

Table 8-1: Integer Values
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coef_u

Value of the coefficient of u in the differential equation.

nx

Number of grid lines in the x-direction. nx must be at least 4. See “Discussion” on 
page 369 section for further restrictions on nx.

ny

Number of grid lines in the y-direction. ny must be at least 4. See “Discussion” on 
page 369 section for further restrictions on ny.

ax

The value of x along the left side of the domain.

bx

The value of x along the right side of the domain.

ay

The value of y along the bottom of the domain.

by

The value of y along the top of the domain.

2 left side

3 top side

Integer Side

Table 8-1: Integer Values
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bc_type

One-dimensional array of size 4 indicating the type of boundary condition on each 
side of the domain or that the solution is periodic. The sides are numbered as shown 
in Table 8-2.

The three possible boundary condition types are shown in Table 8-3.

Keywords

DOUBLE

If present and nonzero, double precision is used.

ORDER

Order of accuracy of the finite-difference approximation. It can be either 2 or 4. 
Default: ORDER = 4 

Array Side           Location

bc_type(0) right x = bx

bc_type(1) bottom y = ay

bc_type(2) left x = ax

bc_type(3) top y = by

Table 8-2: Side Numbering

Type Condition

bc_type(i) = 1 Dirichlet condition. Value of u is given.

bc_type(i) = 2 Neuman condition. Value of du/dx is given (on the right or 
left sides) or du/dy (on the bottom or top of the domain).

bc_type(i) = 3 Periodic condition.

Table 8-3: Boundary Condition Types
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Discussion

Let c = coef_u, ax = ax, bx = bx, ay = ay, by = by, nx = nx and ny = ny.

IMSL_POISSON2D is based on the code HFFT2D by Boisvert (1984). It solves the 
equation:

on the rectangular domain (ax, bx) x (ay, by) with a user-specified combination of 
Dirichlet (solution prescribed), Neumann (first-derivative prescribed), or periodic 
boundary conditions. The sides are numbered clockwise, starting with the right side, 
as shown in Figure 8-7.

When c = 0 and only Neumann or periodic boundary conditions are prescribed, then 
any constant may be added to the solution to obtain another solution to the problem. 
In this case, the solution of minimum ∞-norm is returned.

The solution is computed using either a second-or fourth-order accurate finite-
difference approximation of the continuous equation. The resulting system of linear 

Figure 8-7: Side Numbering

x
2

2

∂
∂ u

y
2

2

∂
∂ u cu+ + p=
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algebraic equations is solved using fast Fourier transform techniques. The algorithm 
relies on the fact that nx – 1 is highly composite (the product of small primes). For 
details of the algorithm, see Boisvert (1984). If nx – 1 is highly composite then the 
execution time of IMSL_POISSON2D is proportional to nxny log2 nx. If evaluations 
of p(x, y) are inexpensive, then the difference in running time between ORDER = 2 
and ORDER = 4 is small.

The grid spacing is the distance between the (uniformly spaced) grid lines. It is given 
by the formulas hx = (bx – ax)/(nx – 1) and hy = (by – ay)/(ny – 1). The grid spacings 
in the x and y directions must be the same, i.e., nx and ny must be such that hx is equal 
to hy. Also, as noted above, nx and ny must be at least 4. To increase the speed of the 
fast Fourier transform, nx – 1 should be the product of small primes. Good choices 
are 17, 33, and 65.

If –coef_u is nearly equal to an eigenvalue of the Laplacian with homogeneous 
boundary conditions, then the computed solution might have large errors.

Example

This example solves the equation: 

with the boundary conditions:

 

on the bottom side and:

 

on the other three sides. The domain is the rectangle [0, 1/4] x [0, 1/2]. The output of 
IMSL_POISSON2D is a 17 x 33 table of values. The functions IMSL_SPVALUE are 
used to print a different table of values.

FUNCTION rhs_pde,  x,  y
; Define the right side of the PDE
f  =  (-2.0*SIN(x + 2.0*y) + 16.0*EXP(2.0*x + 3.0*y))   
RETURN,  f

END

FUNCTION rhs_bc,  side,  x,  y
; Define the boundary conditions
IF (side EQ 1) THEN $        

; Bottom side

u
2∂
x2∂

-------- u
2∂
y

2∂
-------- 3u+ + 2– x 2y+( )sin 16e

2x 3y+
+=

u∂
y∂

----- 2 x 2y+( )cos 3e
2x 3y+

+=

m x 2y+( ) e
2x 3y+

+( )sin=
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f  =  2.0*COS(x + 2.0*y) + 3.0*EXP(2.0*x + 3.0*y) $
ELSE $                     

; All other sides, 0, 2, 3
f  =  SIN(x + 2.0*y) + EXP(2.0*x + 3.0*y)

RETURN,  f
END

PRO print_results, x, y, utable
FOR j  =  0, 4 DO FOR i  =  0, 4 DO  $

PRINT,  x(i),  y(j),  utable(i, j),  $
ABS(utable(i,  j) - SIN(x(i) + 2.0*y(j)) - $
EXP(2.0*x(i) + 3.0*y(j)))

END
nx  =  17
nxtable  =  5
ny  =  33
nytable  =  5
; Set rectangle size
ax  =  0.0
bx  =  0.25
ay  =  0.0
by  =  0.5
; Set boundary conditions
bc_type  =  [1, 2, 1, 1]
; Coefficient of u
coef_u  =  3.0
; Solve the PDE
u  =  IMSL_POISSON2D('rhs_pde', 'rhs_bc', coef_u, nx, ny, ax, $

bx, ay, by, bc_type)
; Set up for interpolation
xdata  =  ax + (bx - ax)*FINDGEN(nx)/(nx - 1)
ydata  =  ay + (by - ay)*FINDGEN(ny)/(ny - 1)
; Compute interpolant
sp  =  IMSL_BSINTERP(xdata,  ydata,  u)
x  =  ax + (bx - ax)*FINDGEN(nxtable)/(nxtable - 1)
y  =  ay + (by - ay)*FINDGEN(nytable)/(nytable - 1)
utable  =  IMSL_SPVALUE(x, y, sp)
; Print computed answer and absolute on nxtabl by nytabl grid
PRINT,'         X            Y            U         Error'
print_results, x, y, utable
         X            Y            U         Error
      0.00000      0.00000      1.00000      0.00000
    0.0625000      0.00000      1.19560  4.88758e-06
     0.125000      0.00000      1.40869  7.39098e-06
     0.187500      0.00000      1.64139  4.88758e-06
     0.250000      0.00000      1.89613  1.19209e-07
      0.00000     0.125000      1.70240  1.19209e-07
    0.0625000     0.125000      1.95615  6.55651e-06
     0.125000     0.125000      2.23451  9.53674e-06
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     0.187500     0.125000      2.54067  6.67572e-06
     0.250000     0.125000      2.87830      0.00000
      0.00000     0.250000      2.59643  4.76837e-07
    0.0625000     0.250000      2.93217  9.05991e-06
     0.125000     0.250000      3.30337  1.31130e-05
     0.187500     0.250000      3.71482  8.82149e-06
     0.250000     0.250000      4.17198  2.38419e-07
      0.00000     0.375000      3.76186  2.38419e-07
    0.0625000     0.375000      4.21634  9.05991e-06
     0.125000     0.375000      4.72261  1.31130e-05
     0.187500     0.375000      5.28776  8.58307e-06
     0.250000     0.375000      5.91989  4.76837e-07
      0.00000     0.500000      5.32316  4.76837e-07
    0.0625000     0.500000      5.95199      0.00000
     0.125000     0.500000      6.65687  4.76837e-07
     0.187500     0.500000      7.44826      0.00000
     0.250000     0.500000      8.33804  1.43051e-06

Version History

6.4 Introduced
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Transforms
This section contains the following topics:
Overview: Transforms . . . . . . . . . . . . . . . .  374 Transforms Routines  . . . . . . . . . . . . . . . .  376
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Overview: Transforms

This section introduces some of the mathematical concepts used with IDL Analyst.

Fast Fourier Transforms

A fast Fourier transform (FFT) is a discrete Fourier transform that is computed 
efficiently. The straightforward method for computing the Fourier transform takes 
approximately n2 operations, where n is the number of points in the transform, while 
the FFT (which computes the same values) takes approximately nlogn operations. 
The algorithms in this chapter are modeled after the Cooley-Tukey (1965) algorithm. 
These functions are most efficient for integers that are highly composite, that is, 
integers that are a product of the small primes 2, 3, and 5. 

For the IMSL_FFTCOMP function, there is a corresponding initialization function 
(IMSL_FFTINIT). Use IMSL_FFTINIT only when repeatedly transforming one-
dimensional sequences of the same data type and length. In this situation, the 
initialization function computes the initial setup once; subsequently, the user calls the 
main function with the appropriate keyword. This may result in substantial 
computational savings. In addition to the one-dimensional transformation described 
above, the IMSL_FFTCOMP function also can be used to compute a complex two-
dimensional FFT and its inverse.

Continuous Versus Discrete Fourier Transform 

There is a close connection between the discrete Fourier transform and the 
continuous Fourier transform. The continuous Fourier transform is defined by 
Brigham (1974) as follows:

f̂ ω( ) Ff( ) ω( ) f t( )e
2πiωt–

td
∞–

∞

∫= =
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Begin by making the following approximation:

If the last integral approximated using the rectangle rule with spacing h = T/n, the 
result is given below:

Finally, setting ω = j / T for j = 0, ..., n – 1 yields: 

where the vector f h = (f (–T / 2), ..., f ((n – 1) h – T / 2)). Thus, after scaling the 
components by (–1) jh, the discrete Fourier transform as computed in 
IMSL_FFTCOMP (with input f h) is related to an approximation of the continuous 
Fourier transform by the above formula.

If the function f is expressed as a function, then the continuous Fourier transform:

 

can be approximated using the IDL Analyst IMSL_INTFCN function to compute a 
Fourier transform as described in “IMSL_INTFCN” on page 284. 

f̂ ω( ) f t( )e
2πiωt–

td
T 2⁄–

T 2⁄

∫≈

                          f t T 2⁄–( )e
2πiω t T 2⁄–( )–

td
0

T

∫=

                         e
πiωT

f t T 2⁄–( )e
2πiωt–

td
0

T

∫=

f
ˆ ω( ) e

πiωT
h e

2πiωkh–
f kh T 2⁄–( )

k 0=

n 1–

∑≈

f
ˆ

j T⁄( ) e
πij

h e
2πij k n⁄( )–

f kh T 2⁄–( )
k 0=

n 1–

∑≈ 1–
j
h e

2πij k n⁄( )–
f k

h

k 0=

n 1–

∑=

f̂
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Transforms Routines

IMSL_FFTCOMP—Real or complex FFT.

IMSL_FFTINIT—Real or complex FFT initialization.

IMSL_CONVOL1D—Compute discrete convolution.

IMSL_CORR1D—Compute discrete correlation.

IMSL_LAPLACE_INV—Approximate inverse Laplace transform of a complex 
function.
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IMSL_FFTCOMP

The IMSL_FFTCOMP function computes the discrete Fourier transform of a real or 
complex sequence. Using keywords, a real-to-complex transform or a two-
dimensional complex Fourier transform can be computed.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FFTCOMP(a [, COSINE=value] [, SINE=value] [, /DOUBLE] 
[, COMPLEX=value] [, BACKWARD=value] [, INIT_PARAMS=array] )

Return Value

Transformed sequence. If A is one-dimensional, type of A determines whether the 
real or complex transform is computed, where A is array a. If A is two-dimensional, 
complex transform is always computed.

Arguments

a

Array containing the periodic sequence.

Keywords

COSINE

If present and nonzero, then IMSL_FFTCOMP computes the discrete Fourier cosine 
transformation of an even sequence. 

SINE

If present and nonzero, then IMSL_FFTCOMP computes the discrete Fourier sine 
transformation of an odd sequence. 
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DOUBLE

If present and nonzero, double precision is used.

COMPLEX

If present and nonzero, the complex transform is computed. If A is complex, this 
keyword is not required to ensure that a complex transform is computed. If A is real, 
it is promoted to complex internally.

BACKWARD

If present and nonzero, the backward transform is computed. See “Discussion” below 
for more details on this option.

INIT_PARAMS

Array containing parameters used when computing a one-dimensional FFT. If 
IMSL_FFTCOMP is used repeatedly with arrays of the same length and data type, it 
is more efficient to compute these parameters only once with a call to the 
IMSL_FFTINIT function.

Discussion

The IMSL_FFTCOMP function’s default action is to compute the FFT of array A, 
with the type of FFT performed dependent upon the data type of the input array A. (If 
A is a one-dimensional real array, the real FFT is computed; if A is a one-dimensional 
complex array, the complex FFT is computed; and if A is a two-dimensional real or 
complex array, the complex FFT is computed.) If the complex FFT of a one-
dimensional real array is desired, the keyword COMPLEX should be specified. The 
keywords SINE and COSINE allow IMSL_FFTCOMP to be used to compute the 
discrete Fourier sine or cosine transformation of a one dimensional real array. The 
remainder of this section is divided into separate discussions of the various uses of 
IMSL_FFTCOMP.

Case 1: One-dimensional Real FFT

If A is one-dimensional and real, the IMSL_FFTCOMP function computes the 
discrete Fourier transform of a real array of length n = N_ELEMENTS (a). The 
method used is a variant of the Cooley-Tukey algorithm, which is most efficient when 
n is a product of small prime factors. If n satisfies this condition, then the 
computational effort is proportional to nlogn.
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By default, IMSL_FFTCOMP computes the forward transform. If n is even, the 
forward transform is as follows: 

If n is odd, qm is defined as above for m from 1 to (n – 1) / 2.

Let f be a real-valued function of time. Suppose f is sampled at n equally spaced time 
intervals of length ∆ seconds starting at time t0:

pi = f(t0 + i∆) i = 0, 1, ..., n – 1

Assume that n is odd for the remainder of the discussion for the case in which A is 
real. The IMSL_FFTCOMP function treats this sequence as if it were periodic of 
period n. In particular, it assumes that f(t0) = f(t0 + n∆). Hence, the period of the 
function is assumed to be T = n∆. The above transform is inverted for the following: 

This formula can be interpreted in the following manner: The coefficients q produced 
by IMSL_FFTCOMP determine an interpolating trigonometric polynomial to the 
data. That is, if the equations are defined as: 

then the result is as follows:

f(t0 + i∆ ) = g(t0 + i∆ )

q2m 1– pk
2πkm

n
---------------cos

k 0=

n 1–

∑=

q2m pk
2πkm

n
---------------sin

k 0=

n 1–

∑–=

q0 pk
k 0=

n 1–

∑=

pm
1
n
--- q0 2 q2k 1+

2π k 1+( )m
n

-----------------------------cos

k 0=

n 3–( ) 2⁄

∑ 2 q2k 2+
2π k 1+( )m

n
-----------------------------sin

k 0=

n 3–( ) 2⁄

∑–+=

g t( )
1
n
--- q0 2 q2k 1+

2π k 1+( ) t t0–( )
n∆

-----------------------------------------cos

k 0=

n 3–( ) 2⁄

∑ 2 q2k 2+

2π k 1+( ) t t0–( )
n∆

-----------------------------------------sin

k 0=

n 3–( ) 2⁄

∑–+=

g t( ) 1
n
--- q0 2 q2k 1+

2π k 1+( ) t t0–( )
T

-----------------------------------------cos

k 0=

n 3–( ) 2⁄

∑ 2 q2k 2+

2π k 1+( ) t t0–( )
T

-----------------------------------------sin

k 0=

n 3–( ) 2⁄

∑–+=
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Now suppose the dominant frequencies are to be obtained. Form the array P of length 
(n + 1) / 2 as follows: 

These numbers correspond to the energy in the spectrum of the signal. In particular, 
Pk corresponds to the energy level at the following frequency: 

Furthermore, note that there are only: 

resolvable frequencies when n observations are taken. This is related to the Nyquist 
phenomenon, which is induced by discrete sampling of a continuous signal. Similar 
relations hold for the case when n is even.

If the keyword BACKWARD is specified, the backward transform is computed. If n 
is even, the backward transform is as follows: 

If n is odd, the following is true: 

The backward Fourier transform is the unnormalized inverse of the forward Fourier 
transform.

IMSL_FFTCOMP is based on the real FFT in FFTPACK, which was developed by 
Paul Swarztrauber at the National Center for Atmospheric Research.

Case 2: One-dimensional Complex FFT

If A is one-dimensional and complex, the IMSL_FFTCOMP function computes the 
discrete Fourier transform of a complex array of size n = N_ELEMENTS (a). The 
method used is a variant of the Cooley Tukey algorithm, which is most efficient when 

P0 q0=

Pk q2k 1+
2

q2k
2

+= k 1 2 ... n 1–( ) 2⁄, , ,=

k
T
--- k

n∆
-------= k 0 1 ...

n 1–
2

------------, , ,=

n 1+( ) 2⁄ T 2∆( )⁄≈

qm p0 1–( )m 1+
pn 1– 2 p2k 1+

2π k 1+( )m
n

-----------------------------cos

k 0=

n 2⁄ 2–

∑ 2 p2k 2+
2π k 1+( )m

n
-----------------------------sin

k 0=

n 2⁄ 2–

∑–+ +=

qm p0 2 p2k 1+ cos
2π k 1+( )m

n
-----------------------------

k 0=

n 3–( ) 2⁄

∑ 2 p2k 2+
2π k 1+( )m

n
-----------------------------sin

k 0=

n 3–( ) 2⁄

∑–+=
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n is a product of small prime factors. If n satisfies this condition, the computational 
effort is proportional to nlogn.

By default, IMSL_FFTCOMP computes the forward transform as in the equation 
below: 

Note, the Fourier transform can be inverted as follows: 

This formula reveals the fact that, after properly normalizing the Fourier coefficients, 
you have coefficients for a trigonometric interpolating polynomial to the data. 

If the keyword BACKWARD is used, the following computation is performed: 

Furthermore, the relation between the forward and backward transforms is that they 
are unnormalized inverses of each other. In other words, the following code fragment 
begins with an array p and concludes with an array p2 = np:

q = IMSL_FFTCOMP(p)
p2 = IMSL_FFTCOMP(q, /Backward)

Case 3: Two-dimensional FFT

If A is two-dimensional and real or complex, the IMSL_FFTCOMP function 
computes the discrete Fourier transform of a two-dimensional complex array of size n 
x m where n = N_ELEMENTS (a (*, 0)) and m = N_ELEMENTS (a (0, *)). The 
method used is a variant of the Cooley-Tukey algorithm, which is most efficient when 
both n and m are a product of small prime factors. If n and m satisfy this condition, 
then the computational effort is proportional to nmlognm.

qj pme
2πimj–( ) n⁄

m 0=

n 1–

∑=

pm
1
n
--- qje

2πij m n⁄( )

j 0=

n 1–

∑=

qj pme
2πim j n⁄( )

m 0=

n 1–

∑=
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By default, given a two-dimensional array, IMSL_FFTCOMP computes the forward 
transform as in the following equation: 

Note, the Fourier transform can be inverted as follows: 

This formula reveals the fact that, after properly normalizing the Fourier coefficients, 
you have the coefficients for a trigonometric interpolating polynomial to the data.

If the keyword BACKWARD is used, the following computation is performed: 

Case 4: Cosine Transform of a Real Sequence:

If the keyword COSINE is present and nonzero, the IMSL_FFTCOMP function 
computes the discrete Fourier cosine transform of a real vector of size N. The method 
used is a variant of the Cooley-Tukey algorithm, which is most efficient when N – 1 is 
a product of small prime factors. If N satisfies this condition, then the computational 
effort is proportional to N logN. Specifically, given an N-vector p, IMSL_FFTCOMP 
returns in q: 

where p = array a and q = result. 

Finally, note that the Fourier cosine transform is its own (unnormalized) inverse. 

qjk pste
2πijs/n–

e
2πikt/m–

t 0=

m 1–

∑
s 0=

n 1–

∑=

pjk
1

nm
-------- qste

2πijs/n
e

2πikt/m

t 0=

m 1–

∑
s 0=

n 1–

∑=

pjk qste
2πijs/n

e
2πikt/m

t 0=

m 1–

∑
s 0=

n 1–

∑=

qm 2 pn

n 1=

N 2–

∑
mnπ
N 1–
------------- 
 sin s0 sN 1– 1–( )m

+ +=
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Case 5: Sine Transform of a Real Sequence

If the keyword SINE is present and nonzero, the IMSL_FFTCOMP function 
computes the discrete Fourier sine transform of a real vector of size N. The method 
used is a variant of the Cooley-Tukey algorithm, which is most efficient when N + 1 
is a product of small prime factors. If N satisfies this condition, then the 
computational effort is proportional to N logN. Specifically, given an N-vector p, 
IMSL_FFTCOMP returns in q: 

where p = array a and q = result. 

Finally, note that the Fourier sine transform is its own (unnormalized) inverse. 

Examples

Example 1

This example uses a pure cosine wave as a data array, and its Fourier series is 
recovered. The Fourier series is an array with all components zero except at the 
appropriate frequency where it has an n/2.

n = 7
; Fill up the data array with a pure cosine wave.
p = COS(FINDGEN(n) * 2 * !Pi/n)
PM, p

1.00000
0.623490
-0.222521
-0.900969
-0.900969
-0.222521
0.623490

q = IMSL_FFTCOMP(p)
; Call IMSL_FFTCOMP to compute the FFT.
PM, q, FORMAT = '(f8.3)'
; Output results.
0.000
3.500

qm 2 pn

n 0=

N 2–

∑
m 1+( ) n 1+( )π

N 1+
---------------------------------------- 
 sin=
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0.000
-0.000
-0.000
0.000
-0.000

Example 2: Resolving Dominant Frequencies

The following procedure demonstrates how the FFT can be used to resolve the 
dominant frequency of a signal. Call IMSL_FFTCOMP with a data vector of length 
n = 15, filled with pure, exponential signals of increasing frequency and decreasing 
strength. Using the computed FFT, the relative strength of the frequencies is resolved. 
It is important to note that for an array of length n, at most (n + 1)/2 frequencies can 
be resolved using the computed FFT. 

.RUN
PRO power_spectrum

n = 15
; Define the length of the signal.
num_freq = n/2 + (n MOD 2)
z = COMPLEX(0, FINDGEN(n) * 2 * !Pi/n)
p = COMPLEXARR(n)
FOR i = 0, num_freq - 1 DO p = p + EXP(i * z)/(i + 1)
; Fill up the data array.
q = IMSL_FFTCOMP(p)
; Compute the FFT.
power = FLTARR(num_freq)
IF ((n MOD 2) EQ 0) THEN BEGIN

power(0) = ABS(q(0))^2
FOR i = 1,(num_freq - 2) DO $

power(i) = q(i) * CONJ(q(i)) + q(n-i-1) * CONJ(q(n-i-1))
power(num_freq - 1)=q(num_freq - 1)*CONJ(q(num_freq - 1))

ENDIF
; Determine the strengths of the frequencies. The method is
; dependent upon whether n is even or odd.
IF ((n MOD 2) EQ 1) THEN BEGIN

FOR i = 1,(num_freq - 1) DO power(i) = $
q(i)^2 + q(n - i)^2

power(0) = q(0)^2
ENDIF
PRINT, '   frequency  strength' &$
PRINT, '   ---------  --------' &$
FOR i = 0,7 DO PRINT, i, power(i)
; Display frequencies and strengths.

END

frequency  strength
---------  --------
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    0      225.000
    1      56.2500
    2      25.0000
    3      14.0625
    4      9.00000
    5      6.25000
    6      4.59183
    7      3.51562

Example 3: Computing a Two-dimensional FFT

This example computes the forward transform of a two-dimensional matrix followed 
by the backward transform. Notice that the process of computing the forward 
transform followed by the backward transform multiplies the entries of the original 
matrix by the product of the lengths of the two dimensions.

n = 4
m = 5
p = COMPLEXARR(n, m)
FOR i = 0, n - 1 DO BEGIN &$

z = COMPLEX(0, 2 * i * 2 * !Pi/n) &$
FOR j = 0, m - 1 DO BEGIN &$

w = COMPLEX(0, 5 * j * 2 * !Pi/m) &$
p(i, j) = EXP(z) * EXP(w) &$

ENDFOR &$
ENDFOR
q = IMSL_FFTCOMP(p)
p2 = IMSL_FFTCOMP(q, /Backward)
FORMAT = '(4("(",f6.2,",",f5.2,")",2x))'
PM, p, FORMAT = format, TITLE = 'p'
p

( 1.0, 0.0)( 1.0, 0.0)( 1.0, 0.0)( 1.0, 0.0)
( 1.0, 0.0)(-1.0,-0.0)(-1.0,-0.0)(-1.0,-0.0)
(-1.0,-0.0)(-1.0,-0.0)( 1.0, 0.0)( 1.0, 0.0)
( 1.0, 0.0)( 1.0, 0.0)( 1.0, 0.0)(-1.0,-0.0)
(-1.0,-0.0)(-1.0,-0.0)(-1.0,-0.0)(-1.0,-0.0)

PM, q, FORMAT = format, TITLE = 'q = IMSL_FFTCOMP(p)'
q = IMSL_FFTCOMP(p)

( 0.0, 0.0)(-0.0, 0.0)( 0.0, 0.0)(-0.0, 0.0)
( 0.0, 0.0)(-0.0,-0.0)( 0.0,-0.0)( 0.0,-0.0)
( 0.0, 0.0)(-0.0, 0.0)(20.0, 0.0)(-0.0,-0.0)
(-0.0,-0.0)( 0.0,-0.0)( 0.0,-0.0)( 0.0,-0.0)
( 0.0, 0.0)(-0.0, 0.0)(-0.0,-0.0)(-0.0,-0.0)

PM, p2, FORMAT = format, TITLE = 'p2 = IMSL_FFTCOMP(q, /BACKWARD)'
p2 = IMSL_FFTCOMP(q, /Backward)

( 20., 0.)( 20., 0.)( 20., 0.)( 20., 0.)
( 20., 0.)(-20.,-0.)(-20.,-0.)(-20.,-0.)
(-20.,-0.)(-20.,-0.)( 20., 0.)( 20., 0.)
( 20., 0.)( 20., 0.)( 20., 0.)(-20.,-0.)
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(-20.,-0.)(-20.,-0.)(-20.,-0.)(-20.,-0.)

Version History

6.4 Introduced
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IMSL_FFTINIT

The IMSL_FFTINIT function computes the parameters for a one-dimensional FFT to 
be used in the IMSL_FFTCOMP function with the keyword INIT_PARAMS.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FFTINIT(n [, /DOUBLE] [, COMPLEX=value] [, SINE=value] 
[, COSINE=value])

Return Value

A one-dimensional array of length 2n + 15 that can then be used by 
IMSL_FFTCOMP when the optional parameter INIT_PARAMS is specified.

Arguments

n

Length of the sequence to be transformed.

Keywords

DOUBLE

If present and nonzero, double precision is used and the returned array is double 
precision. This keyword does not have an effect if the initialization is being computed 
for a complex FFT.

COMPLEX

If present and nonzero, the parameters for a complex transform are computed.

SINE

If present and nonzero, then parameters for a discrete Fourier cosine transformation 
are returned. See the IMSL_FFTCOMP keyword SINE.
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COSINE

If present and nonzero, then parameters for a discrete Fourier cosine transformation 
are returned. See the IMSL_FFTCOMP keyword SINE.

Discussion

The IMSL_FFTINIT function should be used when many calls are to be made to 
IMSL_FFTCOMP without changing the data type of the array and the length of the 
sequence. The default action of IMSL_FFTINIT is to compute the parameters 
necessary for a real FFT. If parameters for a complex FFT are needed, the keyword 
COMPLEX should be specified.

The IMSL_FFTINIT function is based on the routines RFFTI and RFFTI in 
FFTPACK, which was developed by Paul Swarztrauber at the National Center for 
Atmospheric Research.

Example

In this example, two distinct, real FFTs are computed by calling IMSL_FFTINIT 
once, then calling IMSL_FFTCOMP twice.

.RUN
n = 7
; Define the length of the signals.
init_params = IMSL_FFTINIT(7)
; Initialize the parameters by calling IMSL_FFTINIT.
FOR j = 0, 2 DO BEGIN

p = COS(j * FINDGEN(n) * 2 * !Pi/n)
q = IMSL_FFTCOMP(p, Init_Params = init_params)
PM, 'p', 'q', FORMAT = '(7x, a1, 10x, a1)'
FOR i = 0, n - 1 DO PM, p(i), q(i), FORMAT = '(f10.5, f10.2)'

ENDFOR
END

; For each pass through loop, compute a real FFT of an array of
; length n and output both original signal and computed FFT.

 p q
 1.00000  7.00
 1.00000  0.00
 1.00000  0.00
 1.00000  0.00
 1.00000  0.00
 1.00000  -0.00
 1.00000  0.00
 p q
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 1.00000  0.00
 0.62349  3.50
 -0.22252  0.00
 -0.90097  -0.00
 -0.90097  -0.00
 -0.22252  0.00
 0.62349  -0.00
 p q
 1.00000  -0.00
 -0.22252  0.00
 -0.90097  -0.00
 0.62349  3.50
 0.62349  -0.00
 -0.90097  0.00
 -0.22252  0.00

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_FFTINIT



390 Chapter 9: Transforms
IMSL_CONVOL1D

The IMSL_CONVOL1D function computes the discrete convolution of two one-
dimensional arrays.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CONVOL1D(x, y [, DIRECT=value] [, PERIODIC=value])

Return Value

A one-dimensional array containing the discrete convolution of x and y. 

Arguments

x

One-dimensional array.

y

One-dimensional array.

Keywords

DIRECT

If present and nonzero, causes the computations to be done by the direct method 
instead of the FFT method regardless of the size of the vectors passed in. 

PERIODIC

If present and nonzero, then a circular convolution is computed. 
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Discussion

The IMSL_CONVOL1D function computes the discrete convolution of two 
sequences x and y. 

Let nx be the length of x, and ny denote the length of y. If the keyword PERIODIC is 
set, then nz = max{nx, ny}, otherwise nz is set to the smallest whole number, 
nz ≥ nx + ny – 1, of the form:

 

The arrays x and y are then zero-padded to a length nz. Then, we compute: 

where the index on x is interpreted as a nonnegative number between 0 and nz – 1.

The technique used to compute the zi’s is based on the fact that the (complex discrete) 
Fourier transform maps convolution into multiplication. Thus, the Fourier transform 
of z is given by:

 

where the following equation is true: 

The technique used here to compute the convolution is to take the discrete Fourier 
transform of x and y, multiply the results together component-wise, and then take the 
inverse transform of this product. It is very important to make sure that nz is the 
product of small primes if PERIODIC is set. If nz is a product of small primes, then 
the computational effort will be proportional to nzlog (nz). If PERIODIC is not set, 
then nz is chosen to be a product of small primes.

We point out that if x and y are not complex, then no complex transforms of x or y are 
taken, since a real transforms can simulate the complex transform above. Such a 
strategy is six times faster and requires less space than when using the complex 
transform.

nz 2
α

3
β
5

γ
=    : α β, γ  nonnegative integers,

zi xi j– yj
j 0=

nz 1–

∑=

ẑ n( ) x̂ n( )ŷ n( )=

ẑ n( ) zme
2πimnnz⁄–

m 0=

nz 1–

∑=
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Example

This example computes simple moving-average digital filter plots of 5-point and 25-
point moving-average filters of noisy data. Results are shown in figures Figure 9-1 
and Figure 9-2.

PRO Convol1d_ex1
IMSL_RANDOMOPT, SET = 1234579L
; Set the random number seed.
ny = 100
t = FINDGEN(ny)/(ny-1)
y = SIN(2*!PI*t) + .5*IMSL_RANDOM(ny, /Uniform) -.25
; Define a 1-period sine wave with added noise.
win=0
FOR nfltr = 5, 25, 20 DO BEGIN

nfltr_str = strcompress(nfltr,/Remove_All)
fltr = fltarr(nfltr)
fltr(*) = 1./nfltr
; Define the NFLTR-point moving average array.
z = IMSL_CONVOL1D(fltr, y, /Periodic)
; Convolve filter and signal, using keyword Periodic.
WINDOW, win++
PLOT, y, LINESTYLE = 1, TITLE = nfltr_str + $

'-point Moving Average'
OPLOT, shift(z, -nfltr/2)

ENDFOR
END
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Figure 9-1: 5 Point Moving Average
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Version History

Figure 9-2: 25 Point Moving Average

6.4 Introduced
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IMSL_CORR1D

The IMSL_CORR1D function computes the discrete correlation of two one-
dimensional arrays.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CORR1D(x[, y] [, PERIODIC=value])

Return Value

A one-dimensional array containing the discrete convolution of x and x, or x and y if y 
is supplied.

Arguments

x

One-dimensional array.

y

(Optional) One-dimensional array.

Keywords

PERIODIC

If present and nonzero, then the input data is periodic.

Discussion

The IMSL_CORR1D function computes the discrete correlation of two sequences x 
and y. If only one argument is passed, then IMSL_CORR1D computes the discrete 
correlation of x and x. 
IDL Analyst Reference Guide IMSL_CORR1D



396 Chapter 9: Transforms
More precisely, let n be the length of x and y. If PERIODIC is set, then nz = n, 
otherwise nz is set to the smallest whole number, nz ≥ 2n – 1, of the form:

 

The arrays x and y are then zero-padded to a length nz. Then, we compute: 

where the index on x is interpreted as a positive number between 0 and nz – 1. 

The technique used to compute the zi’s is based on the fact that the (complex discrete) 
Fourier transform maps correlation into multiplication. Thus, the Fourier transform of 
z is given by: 

where the following equation is true: 

Thus, the technique used here to compute the correlation is to take the discrete 
Fourier transform of x and the conjugate of the discrete Fourier transform of y, 
multiply the results together component-wise, and then take the inverse transform of 
this product. It is very important to make sure that nz is the product of small primes if 
the keyword PERIODIC is selected. If nz is the product of small primes, then the 
computational effort will be proportional to nzlog(nz). If PERIODIC is not set, then a 
good value is chosen for nz so that the Fourier transforms are efficient and nz ≥ 2n – 1. 
This will mean that both vectors may be padded with zeros.

If x and y are not complex, then no complex transforms of x or y are taken, since a real 
transforms can simulate the complex transform above. Such a strategy is six times 
faster and requires less space than when using the complex transform.

nz 2
α

3
β
5

γ
=    : α β, γ  nonnegative integers,

zi xi j+ yj
j 0=

nz 1–

∑=

ẑj x̂jyj
ˆ=

ẑj zme
2πimn nz⁄–

m 0=

nz 1–

∑=
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Example

This example computes a periodic correlation between two distinct signals x and y. 
We have 100 equally spaced points on the interval [0, 2π] and f1(x) = sin (x). We 
define x and y as follows: 

Note that the maximum value of z (the correlation of x with y) occurs at i = 25, which 
corresponds to the offset.

n = 100
t = 2*!DPI*FINDGEN(n)/(n-1)
x = SIN(t)
y = SIN(t+!dpi/2)
; Define the signals and compute the norms of the signals.
xnorm = IMSL_NORM(x)
ynorm = IMSL_NORM(y)
z = IMSL_CORR1D(x, y, /Periodic)/(xnorm*ynorm)
; Compute periodic correlation, and find the largest normalized
; element of the result.
max_z = (SORT(z))(N_ELEMENTS(z)-1)
PRINT, max_z, z(max_z)

25  1.00

Version History

6.4 Introduced

xi f1
2πi

n 1–
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i 0 ... n 1–, ,= =

yi f1
2πi

n 1–
------------ π

2
---+

 
 
 

i 0 ... n 1–, ,= =
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IMSL_LAPLACE_INV

The IMSL_LAPLACE_INV function computes the inverse Laplace transform of a 
complex function.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LAPLACE_INV(f, sigma0, t [, BIG_COEF_LOG=variable] 
[, BVALUE=parameter] [, COND_ERR=variable] [, DISC_ERR=variable] 
[, /DOUBLE] [, ERR_EST=variable] [, INDICATORS=variable] [, K=variable] 
[, MTOP=value] [, PSEUDO_ACC=value] [, R=variable] [, SIGMA=parameter] 
[, SMALL_COEF_LOG=variable] [, TRUNC_ERR=variable])

Return Value

One-dimensional array of length n whose i-th component contains the approximate 
value of the inverse Laplace transform at the point t(i).

Arguments

f

Scalar string specifying the user-supplied function for which the inverse Laplace 
transform will be computed.

sigma0

An estimate for the maximum of the real parts of the singularities of f. If unknown, 
set sigma0 = 0.0.

t

One-dimensional array of size n containing the points at which the inverse Laplace 
transform is desired.
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Keywords

BIG_COEF_LOG

Named variable into which the logarithm of the largest coefficient in the decay 
function is stored. See “Discussion” on page 401 for details.

BVALUE

The second parameter of the Laguerre expansion. If BVALUE is less than 
2.0*(Sigma − sigma0), it is reset to 2.5*(Sigma − sigma0). Default: 
BVALUE = 2.5*(Sigma − sigma0)

COND_ERR

Named variable into which the estimate of the pseudo condition error on the basis of 
minimal noise levels in the function values is stored.

DISC_ERR

Named variable into which the estimate of the pseudo discretization error is stored.

DOUBLE

If present and nonzero, double precision is used.

ERR_EST

Named variable into which an overall estimate of the pseudo error, DISC_EST + 
TRUNC_ERR + COND_ERR is stored. See “Discussion” on page 401 for details.

INDICATORS

Named variable into which an one-dimensional array of length n containing the 
overflow/underflow indicators for the computed approximate inverse Laplace 
transform is stored. Table 9-1 shows, for the i-th point at which the transform is 
computed, what INDICATORS(i) signifies.
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K

Named variable into which the coefficient of the decay function is stored. See 
“Discussion” on page 401 for details.

MTOP

An upper limit on the number of coefficients to be computed in the Laguerre 
expansion. The keyword MTOP must be a multiple of four. Default: MTOP = 1024

PSEUDO_ACC

The required absolute uniform pseudo accuracy for the coefficients and inverse 
Laplace transform values. Default: PSEUDO_ACC = SQRT(ε), where ε is machine 
epsilon

R

Named variable into which the base of the decay function is stored. See “Discussion” 
on page 401 for details.

Indicators(i) Meaning

1 Normal termination.

2 The value of the inverse Laplace transform is too large to be 
representable. This component of the result is set to NaN.

3 The value of the inverse Laplace transform is found to be too 
small to be representable. This component of the result is set to 
0.0.

4 The value of the inverse Laplace transform is estimated to be too 
large, even before the series expansion, to be representable. This 
component of the result is set to NaN.

5 The value of the inverse Laplace transform is estimated to be too 
small, even before the series expansion, to be representable. This 
component of the result is set to 0.0.

Table 9-1: Indicator Meanings
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SIGMA

The first parameter of the Laguerre expansion. If SIGMA is not greater than sigma0, 
it is reset to sigma0+ 0.7. Default: Sigma = sigma0+ 0.7

SMALL_COEF_LOG

Named variable into which the logarithm of the smallest nonzero coefficient in the 
decay function is stored. See “Discussion” on page 401 for details.

TRUNC_ERR

Named variable into which the estimate of the pseudo truncation error is stored.

Discussion

The IMSL_LAPLACE_INV function computes the inverse Laplace transform of a 
complex-valued function. Recall that if f is a function that vanishes on the negative 
real axis, then the Laplace transform of f is defined by:

It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on a modification of 
Weeks’ method (see Weeks (1966)) due to Garbow et al. (1988). This method is 
suitable when f has continuous derivatives of all orders on [0, ∞). In particular, given 
a complex-valued function F(s) = L[f] (s), f can be expanded in a Laguerre series 
whose coefficients are determined by F. This is fully described in Garbow et al. 
(1988) and Lyness and Giunta (1986).

The algorithm attempts to return approximations g(t) to f(t) satisfying: 

where ε = PSEUDO_ACC and σ = Sigma > sigma0. The expression on the left is 
called the pseudo error. An estimate of the pseudo error is available in ERR_EST.

The first step in the method is to transform F to φ where: 

L f[ ] s( ) e
sx–

f x( ) xd
0

∞

∫=

g t( ) f t( )–

e
σt

------------------------ ε<

φ z( ) b
1 z–
-----------F b

1 z–
----------- b

2
--- σ+– 

 =
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Then, if f is smooth, it is known that φ is analytic in the unit disc of the complex plane 
and hence has a Taylor series expansion: 

φ z( ) asz
s

s 0=

∞

∑=
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which converges for all z whose absolute value is less than the radius of convergence 
Rc. This number is estimated in the output keyword R. Using the output keyword K, 
the smallest number K is estimated which satisfies: 

for all R < Rc.

The coefficients of the Taylor series for φ can be used to expand f in a Laguerre 
series: 

Examples

Example 1

This example computes the inverse Laplace transform of the function (s – 1)−2, and 
prints the computed approximation, true transform value, and difference at five 
points. The correct inverse transform is xex. From Abramowitz and Stegun (1964).

.RUN
FUNCTION fcn, x

; Return 1/(s - 1)**2
one  =  COMPLEX(1.0,  0.0)
f  =  one/((x - one)*(x - 1))
RETURN, f

END

.RUN
n  =  5
; Initialize t and compute inverse.
t  =  FINDGEN(n) + 0.5
l_inverse  =  IMSL_LAPLACE_INV('fcn',  1.5,  t)
; Compute true inverse, relative difference.
true_inverse = t*EXP(t)
relative_diff = ABS((l_inverse - true_inverse) / true_inverse)
PM, [[t(0:*)],  [l_inverse(0:*)],  [true_inverse(0:*)],  $

[relative_diff(0:*)]],  $
Title  =  ' t          f_inv        true       diff'

END

         t          f_inv        true       diff
     0.500000     0.824348     0.824361  1.48223e-05
      1.50000      6.72247      6.72253  1.01432e-05

| |a K
R

s s<

f t( ) ase
bt 2⁄–

s 0=

∞

∑ Ls bt( )=
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      2.50000      30.4562      30.4562  2.50504e-07
      3.50000      115.906      115.904  1.84310e-05
      4.50000      405.053      405.077  5.90648e-05

Example 2

This example computes the inverse Laplace transform of e−1/s/s, and prints the 
computed approximation, true transform value, and difference at five points. 
Additionally, the inverse is returned, and a required accuracy for the inverse 
transform values is specified. The correct inverse transform is:

 

.RUN
FUNCTION fcn, x

; Return (1/s)(exp(-1/s)
one  =  COMPLEX(1.0,  0.0)
s_inverse = one / x
f  =  s_inverse*EXP(-1*(s_inverse))
RETURN, f

END

.RUN
n  =  5
; Initialize t and compute inverse.
t  =  FINDGEN(n) + 0.5
l_inverse  =  IMSL_LAPLACE_INV('fcn', 0.0, t, $

Pseudo_Acc = 1.0e-6, Indicator = indicator)
true_inverse = FLOAT(IMSL_BESSJ(0, 2.0*SQRT(t)))
relative_diff = ABS((l_inverse - true_inverse) / true_inverse)
FOR i  =  0, 4 DO BEGIN

IF (indicator(i) EQ 0) THEN BEGIN
PM, t(i), l_inverse(i), true_inverse(i), $

relative_diff(i), $ 
Title = ' t f_inv true diff'

ENDIF ELSE BEGIN
PRINT, 'Overflow or underflow noted.'

ENDELSE
ENDFOR
END

        t          f_inv        true       diff
     0.500000     0.559134     0.559134  1.06602e-07
        t          f_inv        true       diff
      1.50000   -0.0229669   -0.0229670  4.21725e-06
        t          f_inv        true       diff
      2.50000    -0.310045    -0.310045  9.61226e-08
        t          f_inv        true       diff

J0 2 x( )
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      3.50000    -0.401115    -0.401115  2.22896e-07
        t          f_inv        true       diff
      4.50000    -0.370335    -0.370336  4.02369e-07

Version History

6.4 Introduced
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Nonlinear Equations
This section contains the following topics:
Overview: Nonlinear Equations  . . . . . . . .  408 Nonlinear Equations Routines  . . . . . . . . .  409
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Overview: Nonlinear Equations

This section introduces some of the mathematical concepts used with IDL Analyst.

Zeros of a Polynomial 

A polynomial function of degree n can be expressed as follows:

p(z) = anzn + an–1zn – 1 + ... + a1z + a0 

where an ≠ 0. The IMSL_ZEROPOLY function finds zeros of a polynomial with real 
or complex coefficients using either the companion method or the Jenkins-Traub 
three-stage algorithm.

Zeros of a Function

The IMSL_ZEROFCN function uses Müller’s method to find the real zeros of a real-
valued function.

Root of System of Equations 

A system of equations can be stated as follows:

fi(x) = 0, for i = 0, 1, ..., n – 1

where , and fi : R
n → R.

The IMSL_ZEROSYS function uses a modified hybrid method due to M.J.D. Powell 
to find the zero of a system of nonlinear equations.

x R
n∈
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Nonlinear Equations Routines

Zeros of a Polynomial

IMSL_ZEROPOLY—Real or complex coefficients.

Zeros of a Function

IMSL_ZEROFCN—Real zeros of a function.

Root of a System of Equations

IMSL_ZEROSYS—Powell’s hybrid method.
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IMSL_ZEROPOLY

The IMSL_ZEROPOLY function finds the zeros of a polynomial with real or 
complex coefficients using the companion matrix method or, optionally, the Jenkins-
Traub, three-stage algorithm.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ZEROPOLY(coef [, /DOUBLE] [, COMPANION=value] 
[, JENKINS_TRAUB=value])

Return Value

The complex array of zeros of the polynomial.

Arguments

coef

Array containing coefficients of the polynomial in increasing order by degree. The 
polynomial is coef (n) zn + coef (n – 1) zn – 1 + ... + coef (0).

Keywords

DOUBLE

If present and nonzero, double precision is used.

COMPANION

If present and nonzero, the companion matrix method is used. Default: companion 
matrix method

JENKINS_TRAUB

If present and nonzero, the Jenkins-Traub, three-stage algorithm is used.
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Discussion

The IMSL_ZEROPOLY function computes the n zeros of the polynomial:

p (z) = an zn + an – 1zn – 1 + ... + a1 z + a0 

where the coefficients ai for i = 0, 1, ..., n are real and n is the degree of the 
polynomial.

The default method used by IMSL_ZEROPOLY is the companion matrix method. 
The companion matrix method is based on the fact that if Ca denotes the companion 
matrix associated with p(z), then det (zI – Ca) = a(z), where I is an n x n identity 
matrix. Thus, det (z0I – Ca) = 0 if, and only if, z0 is a zero of p(z). This implies that 
computing the eigenvalues of Ca will yield the zeros of p(z). This method is thought 
to be more robust than the Jenkins-Traub algorithm in most cases, but the companion 
matrix method is not as computationally efficient. Thus, if speed is a concern, the 
Jenkins-Traub algorithm should be considered.

If the keyword JENKINS_TRAUB is set, then IMSL_ZEROPOLY function uses the 
Jenkins-Traub three-stage algorithm (Jenkins and Traub 1970, Jenkins 1975). The 
zeros are computed one-at-a-time for real zeros or two-at-a-time for a complex 
conjugate pair. As the zeros are found, the real zero or quadratic factor is removed by 
polynomial deflation.

Example

This example finds the zeros of the third-degree polynomial:

p (z) = z3 – 3z2 + 4z – 2

where z is a complex variable.

coef = [-2, 4, -3, 1]
; Set the coefficients.
zeros = IMSL_ZEROPOLY(coef)
; Compute the zeros.
PM, zeros, Title = $
'The complex zeros found are: '
; Print results.
The complex zeros found are:
( 1.00000, 0.00000)
( 1.00000, -1.00000)
(  1.00000,  1.00000)
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Errors

Warning Errors

MATH_ZERO_COEFF—First several coefficients of the polynomial are equal to zero. 
Several of the last roots are set to machine infinity to compensate for this problem.

MATH_FEWER_ZEROS_FOUND—Fewer than (N_ELEMENTS (coef) – 1) zeros were 
found. The root vector contains the value for machine infinity in the locations that do 
not contain zeros.

Version History

6.4 Introduced
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IMSL_ZEROFCN

The IMSL_ZEROFCN function finds the real zeros of a real function using Müller’s 
method.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ZEROFCN(f [, /DOUBLE] [, ERR_ABS=value] 
[, ERR_REL=value] [, ETA=value] [, EPS=value] [, INFO=array] 
[, ITMAX=value] [, N_ROOTS=value] [, XGUESS=array] )

Return Value

An array containing the zeros x of the function.

Arguments

f

Scalar string specifying a user-supplied function for which the zeros are to be found. 
The f function accepts one scalar parameter from which the function is evaluated and 
returns a scalar of the same type.

Keywords

DOUBLE

If present and nonzero, double precision is used.

ERR_ABS

First stopping criterion. A zero, xi, is accepted if | f (xi) | < ERR_ABS. Default: 
ERR_ABS = SQRT(ε), where ε is the machine precision
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ERR_REL

Second stopping criterion. A zero, xi, is accepted if the relative change of two 
successive approximations to xi is less than ERR_REL. Default: 
ERR_REL = SQRT(ε), where ε is the machine precision

ETA

Spread criteria for multiple zeros. If the zero, xi, has been computed and 
| xi – xj | < EPS, where xj is a previously computed zero, then the computation is 
restarted with a guess equal to xi + ETA. Default: ETA = 0.01

EPS

See ETA. Default: EPS = SQRT(ε), where ε is the machine precision.

INFO

Array of length N_ROOTS containing convergence information. The value INFO 
(j – 1) is the number of iterations used in finding the j-th zero when convergence is 
achieved. If convergence is not obtained in ITMAX iterations, INFO (j – 1) is greater 
than ITMAX.

ITMAX

Maximum number of iterations per zero. Default: ITMAX = 100.

N_ROOTS

Number of roots for IMSL_ZEROFCN to find. Default: N_ROOTS = 1.

XGUESS

Array with N_ROOTS components containing the initial guesses for the zeros. 
Default: XGUESS = 0

Discussion

The IMSL_ZEROFCN function computes n real zeros of a real function f. Given a 
user-supplied function f (x) and an n-vector of initial guesses x0, x1, ..., xn–1, the 
function uses Müller’s method to locate n real zeros of f. The function has two 
convergence criteria. The first criterion requires that | f (xi

(m)) | be less than 
ERR_ABS. The second criterion requires that the relative change of any two 
successive approximations to an xi be less than ERR_REL. Here, xi

(m) is the m-th 
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approximation to xi. Let ERR_ABS be denoted by ε1, and ERR_REL be denoted by 
ε2. The criteria can be stated mathematically as follows.
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IMSL_ZEROFCN has two convergence criteria; “convergence” is the satisfaction of 
either criterion. 

Criterion 1: 

Criterion 2: 

“Convergence” is the satisfaction of either criterion.

Example

This example finds a real zero of the third-degree polynomial:

f(x) = x3 – 3x2 + 3x – 1

The results are shown in Figure 10-1.

.RUN
; Define function f.
FUNCTION f, x

return, x^3 - 3 * x^2 + 3 * x - 1
END

zero = IMSL_ZEROFCN('f')
; Compute the real zero(s).
x = 2 * FINDGEN(100)/99
PLOT, x, f(x)
; Plot results.
OPLOT, [zero], [f(zero)], Psym = 6
XYOUTS, .5, .5, 'Computed zero is at x = ' + $

STRING(zero(0)), Charsize = 1.5

f xi
m( )

( ) ε1<

xi
m 1+( )

xi
m( )

–

xi
m( )

--------------------------------- ε2<
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Errors

Warning Errors 

MATH_NO_CONVERGE_MAX_ITER—Function failed to converge within ITMAX 
iterations for at least one of the N_ROOTS roots.

Version History

Figure 10-1: IMSL_ZEROFCN Function

6.4 Introduced
IDL Analyst Reference Guide IMSL_ZEROFCN



418 Chapter 10: Nonlinear Equations
IMSL_ZEROSYS

The IMSL_ZEROSYS function solves a system of n nonlinear equations, fi (x) = 0, 
using a modified Powell hybrid algorithm.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ZEROSYS(f, n [, /DOUBLE] [, ERR_REL=value] 
[, FNORM=value] [, JACOBIAN=string] [, ITMAX=value] [, XGUESS=array])

Return Value

An array containing a solution of the system of equations.

Arguments

f

Scalar string specifying a user-supplied function to evaluate the system of equations 
to be solved. The f function accepts one parameter containing the point at which the 
functions are to be evaluated and returns the computed function values at the given 
point.

n

Number of equations to be solved and the number of unknowns.

Keywords

DOUBLE

If present and nonzero, double precision is used.
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ERR_REL

Stopping criterion. The root is accepted if the relative error between two successive 
approximations to this root is less than ERR_REL. Default: ERR_REL = SQRT(ε), 
where ε is the machine precision.

FNORM

Scalar with the value f 
2

0 + ... + f 2n–1
 at the point x.

JACOBIAN

Scalar string specifying a user-supplied function to evaluate the x n Jacobian. The 
function accepts as parameter the point at which the Jacobian is to be evaluated and 
returns a two-dimensional matrix defined by result (i, j) = ∂fi/∂xj.

ITMAX

Maximum allowable number of iterations. Default: ITMAX = 200.

XGUESS

Array with N components containing the initial estimate of the root. Default: 
XGUESS = 0.

Discussion

The IMSL_ZEROSYS function is based on the MINPACK subroutine HYBRDJ, 
which uses a modification of the hybrid algorithm due to M.J.D. Powell. This 
algorithm is a variation of Newton’s Method, which takes precautions to avoid 
undesirable large steps or increasing residuals. For further discussion, see Moré et al. 
(1980).

Example

The following 2 x 2 system of nonlinear equations is solved: 

f(x) = x0 + x1 – 3

f(x) = x0
2 + x1

2 – 9

.RUN
; Define the system through the function f.
FUNCTION f, x

RETURN, [x(0)+x(1)-3, x(0)^2+x(1)^2-9]
END
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PM, IMSL_ZEROSYS('f', 2), $
Title = 'Solution of the system:', FORMAT = '(f10.5)'
; Compute the solution and output the results.
Solution of the system:

 0.00000
 3.00000

Errors

Warning Errors

MATH_TOO_MANY_FCN_EVALS—Number of function evaluations has exceeded 
ITMAX. A new initial guess can be tried.

MATH_NO_BETTER_POINT—Keyword ERR_REL is too small. No further 
improvement in the approximate solution is possible.

MATH_NO_PROGRESS—Iteration has not made good progress. A new initial guess 
can be tried.

Version History

6.4 Introduced
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Overview: Optimization

This section introduces some of the mathematical concepts used with IDL Analyst.

Unconstrained Minimization

The unconstrained minimization problem can be stated as follows: 

where f : Rn → R is continuous and has derivatives of all orders required by the 
algorithms. The functions for unconstrained minimization are grouped into three 
categories: univariate functions, multivariate functions, and nonlinear least-squares 
functions.

For the univariate functions, it is assumed that the function is unimodal within the 
specified interval. For discussion on unimodality, see Brent (1973).

A quasi-Newton method is used for the multivariate IMSL_FMINV function. The 
default is to use a finite-difference approximation of the gradient of f(x). Here, the 
gradient is defined to be the following vector:  

When the exact gradient can be easily provided, the grad argument should be used.

The nonlinear least-squares function uses a modified Levenberg-Marquardt 
algorithm. The most common application of the function is the nonlinear data-fitting 
problem where the user is trying to fit the data with a nonlinear model.

These functions are designed to find only a local minimum point. However, a 
function may have many local minima. Try different initial points and intervals to 
obtain a better local solution.

Double-precision arithmetic is recommended for the functions when the user 
provides only the function values.

Linearly Constrained Minimization 

The linearly constrained minimization problem can be stated as follows: 

min f x( )
x IRn∈

f x( )∇ f x( )∂
x1∂

----------- f x( )∂
x2∂

----------- ...
f x( )∂
xn∂

-----------, , ,=

min f x( )
x IRn∈
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subject to: 

where f : Rn → R, A1 and A2 are coefficient matrices and b1 and b2 are vectors. If f(x) 
is linear, then the problem is a linear programming problem; if f(x) is quadratic, the 
problem is a quadratic programming problem. 

The IMSL_LINPROG function uses a revised simplex method to solve small- to 
medium-sized linear programming problems. No sparsity is assumed since the 
coefficients are stored in full matrix form. 

The IMSL_QUADPROG function is designed to solve convex quadratic 
programming problems using a dual quadratic programming algorithm. If the given 
Hessian is not positive definite, then IMSL_QUADPROG modifies it to be positive 
definite. In this case, output should be interpreted with care because the problem has 
been changed slightly. Here, the Hessian of f(x) is defined to be the n x n matrix as 
follows: 

Nonlinearly Constrained Minimization 

The nonlinearly constrained minimization problem can be stated as follows: 

subject to:

   

   

where f : Rn → R and gi : R
n → R for i = 1, 2, ..., m .

The routine IMSL_CONSTRAINED_NLP uses a sequential equality constrained 
quadratic programming method. A more complete discussion of this algorithm is in 
“IMSL_CONSTRAINED_NLP” on page 465. 

A1x b1=

A2x b2≥

f x( )∇ 2
xi xj∂

2

∂
∂ f x( )=

min f x( )
x IRn∈

gi x( ) 0= for i 1 2 ... m1, , ,=

gi x( ) 0≥ for i m1 1 ...,+ m,=
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Optimization Routines

Unconstrained Minimization

IMSL_FMIN—(Univariate Function) Using function and possibly first derivative 
values. 

IMSL_FMINV—(Multivariate Function) Using quasi-Newton method. 

IMSL_NLINLSQ—(Nonlinear Least Squares) Using Levenberg-Marquardt 
algorithm. 

Linearly Constrained Minimization

IMSL_LINPROG—Dense linear programming. 

IMSL_QUADPROG—Quadratic programming. 

Nonlinearly Constrained Minimization

IMSL_MINCONGEN—Minimize a general objective function.

IMSL_CONSTRAINED_NLP—Using a sequential equality constrained quadratic 
programming method.
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IMSL_FMIN

The IMSL_FMIN function finds the minimum point of a smooth function f (x) of a 
single variable using function evaluations and, optionally, through both function 
evaluations and first derivative evaluations.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FMIN(f, a, b[, grad] [, /DOUBLE] [, ERR_ABS=value] 
[, ERR_REL=value] [, FVALUE=value] [, GVALUE=value] 
[, MAX_EVALS=value] [, STEP=value] [, TOL_GRAD=value] 
[, XGUESS=value])

Return Value

The point at which a minimum value of f is found. If no value can be computed, then 
NaN (Not a Number) is returned.

Arguments

f

Scalar string specifying a user-supplied function to compute the value of the function 
to be minimized. Function f accepts the point at which the function is to be evaluated 
and returns the computed function value at this point.

a

Lower endpoint of the interval in which the minimum point of f is to be located.

b

Upper endpoint of the interval in which the minimum point of f is to be located.
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grad

Scalar string specifying a user-supplied function to compute the first derivative of the 
function. The grad function accepts the point at which the derivative is to be 
evaluated and returns the computed derivative at this point.

Keywords

DOUBLE

If present and nonzero, double precision is used.

ERR_ABS

Required absolute accuracy in the final value of  x. On a normal return, there are 
points on either side of x within a distance ERR_ABS at which f is no less than f at x. 
The keyword ERR_ABS cannot be used if the optional argument grad is supplied. 
Default: ERR_ABS = 0.0001.

ERR_REL

Required relative accuracy in the final value of x. This is the first stopping criterion. 
On a normal return, the solution x is in an interval that contains a local minimum and 
is less than or equal to max (1.0, | x |) * ERR_REL. When the given ERR_REL is less 
than zero, SQRT(ε) is used as ERR_REL, where ε is the machine precision. The 
keyword ERR_REL can only be used if the optional argument grad is supplied. 
Default: ERR_REL = SQRT(ε).

FVALUE

Function value at point x. The keyword FVALUE can only be used if the optional 
argument grad is supplied.

GVALUE

Derivative value at point x. The keyword GVALUE can only be used if the optional 
argument grad is supplied.

MAX_EVALS

Maximum number of function evaluations allowed. Default: MAX_EVALS = 1000.
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STEP

Order of magnitude estimate of the required change in x. The keyword STEP cannot 
be used if the optional argument grad is supplied. Default: STEP = 1.0

TOL_GRAD

Derivative tolerance used to decide if the current point is a local minimum. This is the 
second stopping criterion. Parameter x is returned as a solution when grad is less than 
or equal to TOL_GRAD. The keyword TOL_GRAD should be nonnegative; 
otherwise, zero is used. The keyword TOL_GRAD can only be used if the optional 
argument grad is supplied. Default: TOL_GRAD = SQRT(ε), where ε is the machine 
precision.

XGUESS

Initial guess of the minimum point of f. Default: XGUESS = (a + b)/2

Discussion

The IMSL_FMIN function uses a safeguarded, quadratic interpolation method to find 
a minimum point of a univariate function. Both the code and the underlying algorithm 
are based on the subroutine ZXLSF written by M.J.D. Powell at the University of 
Cambridge.

The IMSL_FMIN function finds the least value of a univariate function, f, which is 
specified by the function f. (Other required data are two points A and B that define an 
interval for finding a minimum point from an initial estimate of the solution, x0, 
where x0 = XGUESS.) The algorithm begins the search by moving from x0 to 
x = x0 + s, where s = STEP is an estimate of the required change in  x and may be 
positive or negative. The first two function evaluations indicate the direction to the 
minimum point, and the search strides out along this direction until a bracket on a 
minimum point is found or until x reaches one of the endpoints a or b. During this 
stage, the step length increases by a factor of between 2 and 9 per function evaluation. 
The factor depends on the position of the minimum point that is predicted by 
quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, the three points are as 
follows:

x1, x2, x3, with x1 < x2 < x3, f(x1) ≥ f(x2), and f(x2) ≥ f(x3)
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Considered the following rules when choosing the new x from these three points:

• The estimate of the minimum point that is given by quadratic interpolation of 
the three function values

• A tolerance parameter η, which depends on the closeness of |f| to a quadratic

• Whether x2 is near the center of the range between x1 and x3 or is relatively 
close to an end of this range

In outline, the value of x is as near as possible to predicted minimum point, subject to 
being at least ε from x2 and subject to being in the longer interval between x1 and x2 
or x2 and x3, when x2 is close to x1 or x3.

The algorithm is intended to provide fast convergence when f has a positive and 
continuous second derivative at the minimum and to avoid gross inefficiencies in 
pathological cases, such as the following:

f(x) = x + 1.001 | x |

The algorithm can automatically make ε large in the pathological cases. In this case, 
it is usual for a new value of x to be at the midpoint of the longer interval that is 
adjacent to the least calculated function value. The midpoint strategy is used 
frequently when changes to f are dominated by computer rounding errors, which 
happens if the user requests an accuracy that is less than the square root of the 
machine precision. In such cases, the subroutine claims to have achieved the required 
accuracy if it decides that there is a local minimum point within distance δ of x, 
where δ = ERR_ABS, even though the rounding errors in f may cause the existence of 
other local minimum points nearby. This difficulty is inevitable in minimization 
routines that use only function values, so high-precision arithmetic is recommended.

If the argument grad is supplied, then the IMSL_FMIN function uses a descent 
method with either the secant method or cubic interpolation to find a minimum point 
of a univariate function. It starts with an initial guess and two endpoints. If any of the 
three points is a local minimum point and has least function value, the function 
terminates with a solution; otherwise, the point with least function value is used as 
the starting point.
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From the starting point, for example xc, the function value fc = f (xc), the derivative 
value gc = g (xc), and a new point xn, defined by xn = xc – gc, are computed. The 
function fn = f (xn) and the derivative gn = g (xn) are then evaluated. If either fn ≥ f c or 
gn has the opposite sign of gc, then a minimum point exists between xc and xn, and an 
initial interval is obtained; otherwise, since xc is kept as the point that has lowest 
function value, an interchange between xn and xc is performed. The secant method is 
then used to get a new point: 

Let xn <− xs. Repeat this process until an interval containing a minimum is found or 
one of the following convergence criteria is satisfied:

Criterion 1: | xc – xn | ≤ εc 

Criterion 2: | gc | ≤ εg 

where εc = max {1.0, | xc |} * ε, ε is a relative error tolerance and εg is a gradient 
tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new 
point. The function and derivative are then evaluated at that point; accordingly, a 
smaller interval that contains a minimum point is chosen. A safeguarded method is 
used to ensure that the interval be reduced by at least a fraction of the previous 
interval. Another cubic interpolation is then performed, and this function is repeated 
until one of the stopping criteria is met.

Examples

Example 1

This example finds a minimum point of f(x) = ex – 5x. The results are shown in Figure 
11-1.

.RUN
; Define the function to be used.
FUNCTION f, x

RETURN, EXP(x) - 5 * x
END

xmin = IMSL_FMIN('f', -100, 100)
; Call IMSL_FMIN to compute the minimum.
PM, xmin
; Print results.

 1.60943

x s xc gc–
gn gc–

xn xc–
----------------

 
 
 

=
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x = 10 * FINDGEN(100)/99 - 5
!P.Font = 0
PLOT, x, f(x), Title = '!8f(x) = e!Ex!N-5x!3', XTitle = 'x', $

YTitle = 'f(x)'
; Plot results.
OPLOT, [xmin], [f(xmin)], Psym = 6
str = '(' + STRCOMPRESS(xmin) + ',' + STRCOMPRESS(f(xmin)) + ')'
OPLOT, [xmin],[f(xmin)], Psym = 6
XYOUTS, -5, 80, 'Minimum point:!C' + str, Charsize = 1.2

Example 2

This example supplies the grad argument and finds a minimum point of 
f(x) = x (x3 – 1 ) + 10 with an initial guess x0 = 3. The results are shown in Figure 11-
2.

.RUN
FUNCTION f, x

RETURN, x * (x^3 - 1) + 10
END

Figure 11-1: Minimum Point of a Smooth Function
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.RUN
FUNCTION grad, x

RETURN, 4 * x^3 - 1
END

xmin = IMSL_FMIN('f', -10, 10, 'grad')
x = 4 * FINDGEN(100)/99 - 2
PLOT, x, f(x), Title = '!8f(x) = x(x!E3!N-1)+10!3', $

XTitle ='x', YTitle = 'f(x)'
OPLOT, [xmin], [f(xmin)], Psym = 6
str = '(' + STRCOMPRESS(xmin) + ',' + STRCOMPRESS(f(xmin)) + ')'
XYOUTS, -1.5, 25, 'Minimum point:'+str, Charsize = 1.2

Errors

Warning Errors

MATH_MIN_AT_LOWERBOUND—Final value of x is at the lower bound.

Figure 11-2: Minimum Point of a Smooth Function
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MATH_MIN_AT_UPPERBOUND—Final value of x is at the upper bound.

MATH_MIN_AT_BOUND—Final value of x is at a bound.

MATH_NO_MORE_PROGRESS—Computer rounding errors prevent further refinement 
of x.

MATH_TOO_MANY_FCN_EVAL—Maximum number of function evaluations exceeded.

Version History

6.4 Introduced
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IMSL_FMINV

The IMSL_FMINV function minimizes a function f(x) of n variables using a quasi-
Newton method.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FMINV(f, n [, /DOUBLE] [, GRAD=string] [, FSCALE=string] 
[, FVALUE=variable] [, IHESS=parameter] [, ITMAX=value] 
[, MAX_EVALS=value] [, MAX_GRAD=value] [, MAX_STEP=value] 
[, N_DIGIT=value] [, TOL_GRAD=value] [, TOL_RFCN=value] 
[, TOL_STEP=value] [, XGUESS=array] [, XSCALE=array])

Return Value

The minimum point x of the function. If no value can be computed, NaN is returned.

Arguments

f

Scalar string specifying a user-supplied function to evaluate the function to be 
minimized. Function f accepts the point at which the function is evaluated and returns 
the computed function value at the point.

n

Number of variables.

Keywords

DOUBLE

If present and nonzero, double precision is used.
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GRAD

Scalar string specifying a user-supplied function to compute the gradient. The GRAD 
function accepts the point at which the gradient is evaluated and returns the computed 
gradient at the point.

FSCALE

Scalar containing the function scaling. The keyword FSCALE is used mainly in 
scaling the gradient. See the keyword TOL_GRAD for more detail. Default: 
FSCALE = 1.0.

FVALUE

Name of a variable into which the value of the function at the computed solution is 
stored.

IHESS

Hessian initialization parameter. If IHESS is zero, the Hessian is initialized to the 
identity matrix; otherwise, it is initialized to a diagonal matrix containing max 
( f (t), fs) * si on the diagonal, where t = XGUESS, fs = FSCALE, and s = XSCALE. 
Default: IHESS = 0.

ITMAX

Maximum number of iterations. Default: ITMAX = 100.

MAX_EVALS

Maximum number of function evaluations. Default: MAX_EVALS = 400.

MAX_GRAD

Maximum number of gradient evaluations. Default: MAX_GRAD = 400.

MAX_STEP

Maximum allowable step size. Default: MAX_STEP = 1000max(ε1, ε2), where: 

ε2 = || s ||2, s = XSCALE, and t = XGUESS

ε1 siti( )2

i 1=

n

∑=
IMSL_FMINV IDL Analyst Reference Guide



Chapter 11: Optimization 435
N_DIGIT

Number of good digits in function. Default: machine dependent.

TOL_GRAD

Scaled gradient tolerance. 

The i-th component of the scaled gradient at x is calculated as: 

where:

 

s = XSCALE, and fs = FSCALE. Default: TOL_GRAD = ε1/2 (ε1/3 in double) 
where ε is the machine precision.

TOL_RFCN

Relative function tolerance. Default: 
TOL_RFCN = max(10–10, ε 2/3),  max(10–20, ε 2/3) in double.

TOL_STEP

Scaled step tolerance. 

The i-th component of the scaled step between two points x and y is computed 
as: 

where s = XSCALE. Default: TOL_STEP = ε 2/3

XGUESS

Array with n components containing an initial guess of the computed solution. 
Default: XGUESS (*) = 0.

XSCALE

Array with n components containing the scaling vector for the variables. The 
keyword XSCALE is used mainly in scaling the gradient and the distance between 

gi max xi 1 si⁄,( )×
max f x( ) fs,( )

----------------------------------------------------

g f x( )∇=

xi yi–

max xi 1 si⁄,( )
------------------------------------
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two points (see the keywords TOL_GRAD and TOL_STEP for more detail). Default: 
XSCALE (*) = 1.0.

Discussion

The IMSL_FMINV function uses a quasi-Newton method to find the minimum of a 
function f (x) of n variables. The problem is stated below: 

Given a starting point xc, the search direction is computed according to the formula:

d = –B–1gc 

where B is a positive definite approximation of the Hessian and gc is the gradient 
evaluated at xc.

A line search is then used to find a new point:

xn = xc + λ d, λ > 0 

such that: 

f(xn) ≤ f(xc) α gTd 

where . 

Finally, the optimality condition:

|| g(x) || ≤ ε

is checked, where ε is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula: 

where s = xn – xc and y = gn – gc. Another search direction is then computed to begin 
the next iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

In this implementation, the first stopping criterion for IMSL_FMINV occurs when 
the norm of the gradient is less than the given gradient tolerance TOL_GRAD. The 
second stopping criterion for IMSL_FMINV occurs when the scaled distance 
between the last two steps is less than the step tolerance TOL_STEP.

Since by default, a finite-difference method is used to estimate the gradient for some 
single-precision calculations, an inaccurate estimate of the gradient may cause the 

min f x( )
x IRn∈

α 0 0.5,( )∈

B B Bss
T

B

s
T

Bs
----------------– yy

T

y
T

s
---------+←
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algorithm to terminate at a noncritical point. In such cases, high-precision arithmetic 
is recommended or keyword GRAD is used to provide more accurate gradient 
evaluation.

Examples

Example 1

The function f(x) = 100 (x2 – x1
2)2 + (1 – x1)2 is minimized.

.RUN
; Define the function.
FUNCTION f, x

xn = x
xn(0) = x(1) - x(0)^2
xn(1) = 1 - x(0)
RETURN, 100 * xn(0)^2 + xn(1)^2

END

xmin = IMSL_FMINV('f', 2)
; Call IMSL_FMINV to compute the minimum.
PM, xmin, Title = 'Solution:'
; Output the solution.
Solution:

 0.999986
 0.999971

PM, f(xmin), Title = 'Function value:'
Function value:

 2.09543e-10

Example 2

The function f(x) = 100 (x2 – x1
2)2 + (1 – x1)2 is minimized with the initial guess 

x = ( –1.2, 1.0). In the following plot, the asterisk marks the minimum. The results are 
shown in Figure 11-3.

.RUN
; Define the function.
FUNCTION f, x

xn = x
xn(0) = x(1) - x(0)^2
xn(1) = 1 - x(0)
RETURN, 100 * xn(0)^2 + xn(1)^2

END

.RUN
; Define the gradient function.
FUNCTION grad, x
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g = x
g(0) = -400 * (x(1) - x(0)^2) * x(0) - 2 * (1 - x(0))
g(1) = 200 * (x(1) - x(0)^2)
RETURN, g

END

xmin = IMSL_FMINV('f', 2, grad = 'grad',$
XGuess = [-1.2, 1.0], Tol_Grad = .0001)

; Call IMSL_FMINV with the gradient function, an initial guess, 
; and a scaled gradient tolerance.
x = 4 * FINDGEN(100)/99 - 2
y = x
surf = FLTARR(100, 100)
FOR i = 0, 99 DO FOR j = 0, 99 do $

surf(i, j) = f([x(i), y(j)])
; Evaluate function f on 100 x 100 grid for use in CONTOUR.
str = '(' + STRCOMPRESS(xmin(0)) + ',' + $
STRCOMPRESS(xmin(1)) + ',' + STRCOMPRESS(f(xmin)) + ')'
!P.Charsize = 1.5
CONTOUR, surf, x, y, Levels = [20*FINDGEN(6), $

500 + FINDGEN(7)*500], /C_Annotation, $
Title='!18Rosenbrock Function!C' + 'Minimum Point:!C' + $
str, Position = [.1, .1, .8, .8]

; Call CONTOUR. Customize the contour plot, including the title
; of the plot.
OPLOT, [xmin(0)], [xmin(1)], Psym = 2, Symsize = 2
; Plot the solution as an asterisk.
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Errors

Informational Errors

MATH_STEP_TOLERANCE—Scaled step tolerance satisfied. Current point may be an 
approximate local solution, but it is also possible that the algorithm is making very 
slow progress and is not near a solution or that TOL_STEP is too big.

Warning Errors

MATH_REL_FCN_TOLERANCE—Relative function convergence. Both the actual and 
predicted relative reductions in the function are less than or equal to the relative 
function convergence tolerance.

Figure 11-3: Rosenbrock Function Plot
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MATH_TOO_MANY_ITN—Maximum number of iterations exceeded.

MATH_TOO_MANY_FCN_EVAL—Maximum number of function evaluations exceeded.

MATH_TOO_MANY_GRAD_EVAL—Maximum number of gradient evaluations 
exceeded.

MATH_UNBOUNDED—Five consecutive steps have been taken with the maximum step 
length. 

MATH_NO_FURTHER_PROGRESS—Last global step failed to locate a point lower than 
the current x value. 

Fatal Errors

MATH_FALSE_CONVERGENCE—Iterates appear to converge to a noncritical point. It 
is possible that incorrect gradient information is used, or the function is 
discontinuous, or the other stopping tolerances are too tight.

Version History

6.4 Introduced
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IMSL_NLINLSQ

The IMSL_NLINLSQ function solves a nonlinear least-squares problem using a 
modified Levenberg-Marquardt algorithm.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NLINLSQ(f, m, n [, /DOUBLE] [, FJAC=variable] 
[, FSCALE=array] [, FVEC=variable] [, INTERN_SCALE=variable] 
[, ITMAX=value] [, JACOBIAN=string] [, JTJ_INVERSE=variable] 
[, MAX_EVALS=value] [, MAX_JACOBIAN=value] [, MAX_STEP=value] 
[, N_DIGITS=value] [, RANK=value] [, TOL_AFCN=value] 
[, TOL_GRAD=value] [, TOL_RFCN=value] [, TOLERANCE=value] 
[, TRUST_REGION=value] [, XGUESS=array] [, XLB=array] 
[, XSCALE=array] [, XUB=array])

Return Value

The solution x of the nonlinear least-squares problem. If no solution can be 
computed, NULL is returned.

Arguments

f

Scalar string specifying a user-supplied function to evaluate the function that defines 
the least-squares problem. Function f accepts the following two parameters and 
returns an array of length m containing the function values at x:

m—Number of functions.

x—Array length n containing the point at which the function is evaluated.

m

Number of functions.
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n

Number of variables where n ≤ m.

Keywords

DOUBLE

If present and nonzero, double precision is used.

FJAC

Name of the variable into which an array of size m x n containing the Jacobian at the 
approximate solution is stored.

FSCALE

Array with m components containing the diagonal scaling matrix for the functions. 
The i-th component of FSCALE is a positive scalar specifying the reciprocal 
magnitude of the i-th component function of the problem. Default: FSCALE (*) = 1.

FVEC

Name of the variable into which a real array of length m containing the residuals at 
the approximate solution is stored.

INTERN_SCALE

Internal variable scaling option. With this keyword, the values for XSCALE are set 
internally.

ITMAX

Maximum number of iterations. Default: ITMAX = 100.

JACOBIAN

Scalar string specifying a user-supplied function to compute the Jacobian. This 
function accepts two parameters and returns an n x m array containing the Jacobian at 
the point s input point. Note that each derivative ∂fi/∂xj should be returned in the (i, j) 
element of the returned matrix. The parameters of the function are as follows:

m—Number of equations. 

x—Array of length n at which the point Jacobian is evaluated.
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JTJ_INVERSE

Name of the variable into which an array of size n x n containing the inverse matrix of 
JTJ, where J is the final Jacobian, is stored. If JTJ is singular, the inverse is a 
symmetric g2 inverse of JTJ. (See “IMSL_CHNNDSOL” on page 110 for a 
discussion of generalized inverses and the definition of the g2 inverse.)

MAX_EVALS

Maximum number of function evaluations. Default: MAX_EVALS = 400.

MAX_JACOBIAN

Maximum number of Jacobian evaluations. Default: MAX_JACOBIAN = 400.

MAX_STEP

Maximum allowable step size. Default: MAX_STEP = 1000 max(ε1, ε2), where: 

 

s = XSCALE, and t = XGUESS

N_DIGITS

Number of good digits in the function. Default: machine dependent.

RANK

Name of the variable into which the rank of the Jacobian is stored.

TOL_AFCN

Absolute function tolerance. Default: TOL_AFCN = max(10–20, ε2), [max(10–40, ε2) 
in double], where ε is the machine precision.

TOL_GRAD

Scaled gradient tolerance. 

The i-th component of the scaled gradient at x is calculated as: 

ε1 siti
2

i 1=

n

∑=

ε2 s 2=
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where , s = XScale, and:

Default: TOL_GRAD = ε1/2 (ε1/3 in double), where ε is the machine precision.

TOL_RFCN

Relative function tolerance. Default: TOL_RFCN = max(10–10, ε2/3), 
[max(10–40, ε2/3) in double], where ε is the machine precision.

TOLERANCE

Tolerance used in determining linear dependence for the computation of the inverse 
of JTJ. If the keyword JACOBIAN is specified, the default is TOLERANCE = 100ε, 
where ε is the machine precision; otherwise, the default is SQRT(ε), where ε is the 
machine precision.

TRUST_REGION

Size of initial trust-region radius. Default: based on the initial scaled Cauchy step.

XGUESS

Array with n components containing an initial guess. Default: XGUESS (*) = 0.

Tol_Step—Scaled step tolerance. 

The i-th component of the scaled step between two points x and y is computed 
as: 

where s = XSCALE.

Default: Tol_Step = ε2/3, where ε is the machine precision

gi max xi 1 si⁄,( )×
1
2
--- F x( )

2

2
----------------------------------------------------

g F x( )∇=

F x( )
2

2
fi

i 1=

m

∑ x( )2
=

xi yy–

max xi 1 si⁄,( )
------------------------------------
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XLB

One dimensional array with n components containing the lower bounds on the 
variables. The keywords Xlb and Xub must be used together.

XSCALE

Array with n components containing the scaling vector for the variables. The 
keyword XSCALE is used mainly in scaling the gradient and the distance between 
two points (see the keywords TOL_GRAD and TOL_STEP for more detail). Default: 
XSCALE (*) = 1.

XUB

One dimensional array with n components containing the upper bounds on the 
variables. The keywords XLB and XUB must be used together.

Discussion

The specific algorithm used in IMSL_NLINLSQ is dependent on whether the 
keywords XLB and XUB are supplied. If the keywords XLB and XUB are not 
supplied, then the IMSL_NLINLSQ function is based on the MINPACK routine 
LMDER by Moré et al. (1980).

The IMSL_NLINLSQ function, based on the MINPACK routine LMDER by Moré et 
al. (1980), uses a modified Levenberg-Marquardt method to solve nonlinear least-
squares problems. The problem is stated as follows: 

where m ≥ n,  F : Rn → Rm  and  fi (x) is the i-th component function of F(x). From 
a current point, the algorithm uses the trust region approach: 

subject to  

to get a new point xn. Compute xn as:

xn = xc – (J(xc)
T J(xc) + µc I )

–1 J(xc)
TF(xc) 

where µc = 0  if  δc ≥ || (J(xc)
T J(xc))

–1 J(xc)
TF(xc) ||2 and µc > 0 otherwise. 

min
1
2
---F x( )

T
F x( )

1
2
--- fi x( )

2

i 1=

m

∑=

min F xc( ) J xc( ) xn xc–( )+ 2x IRn∈

xn xc– 2  δc≤
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The value µc is defined by the function. The vector and matrix F(xc) and J(xc) are the 
function values and the Jacobian evaluated at the current point xc. This function is 
repeated until the stopping criteria are satisfied.

The first stopping criterion for IMSL_NLINLSQ occurs when the norm of the 
function is less than the absolute function tolerance, TOL_AFCN. The second 
stopping criterion occurs when the norm of the scaled gradient is less than the given 
gradient tolerance TOL_GRAD. The third stopping criterion for IMSL_NLINLSQ 
occurs when the scaled distance between the last two steps is less than the step 
tolerance TOL_STEP. For more details, see Levenberg (1944), Marquardt (1963), or 
Dennis and Schnabel (1983, Chapter 10).

If the keywords XLB and XUB are supplied, then the IMSL_NLINLSQ function uses 
a modified Levenberg-Marquardt method and an active set strategy to solve nonlinear 
least-squares problems subject to simple bounds on the variables. The problem is 
stated as follows:

subject to l ≤ x ≤ u where m ≥ n, F : Rn → Rm, and fi(x) is the i-th component function 
of F(x). From a given starting point, an active set IA, which contains the indices of 
the variables at their bounds, is built. A variable is called a “free variable” if it is not 
in the active set. The routine then computes the search direction for the free variables 
according to the formula:

d = – (JTJ + µI)–1 JTF

where µ is the Levenberg-Marquardt parameter, F = F(x), and J is the Jacobian with 
respect to the free variables. The search direction for the variables in IA is set to zero. 
The trust region approach discussed by Dennis and Schnabel (1983) is used to find 
the new point. Finally, the optimality conditions are checked. The conditions are:

||g (xi)|| ≤ ε, li < xi < ui

g (xi) < 0, xi = ui

g (xi) > 0, xi = li

where ε is a gradient tolerance. This process is repeated until the optimality criterion 
is achieved.

The active set is changed only when a free variable hits its bounds during an iteration 
or the optimality condition is met for free variables but not for all variables in IA, the 
active set. In the latter case, a variable that violates the optimality condition will be 
dropped out of IA. For more detail on the Levenberg-Marquardt method, see 

min 
1
2
---F x( )T

F x( ) 1
2
--- fi x( )2

i 1=

m

∑=
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Levenberg (1944) or Marquardt (1963). For more detail on the active set strategy, see 
Gill and Murray (1976).

Since a finite-difference method is used to estimate the Jacobian for some single-
precision calculations, an inaccurate estimate of the Jacobian may cause the 
algorithm to terminate at a noncritical point. In such cases, high-precision arithmetic 
is recommended. Also, whenever the exact Jacobian can be easily provided, the 
keyword JACOBIAN should be used.

Example

In this example, the nonlinear data-fitting problem found in Dennis and Schnabel 
(1983, p. 225):

is solved with the data t = [1, 2, 3] and y = [2, 4, 3].

.RUN
; Define the function that defines the least-squares problem.
FUNCTION f, m, x

y = [2, 4, 3]
t = [1, 2, 3]
RETURN, EXP(x(0) * t) - y

END

solution = IMSL_NLINLSQ('f', 3, 1)
; Call IMSL_NLINLSQ.
PM, solution, Title = 'The solution is:'

; Output the results.
The solution is:

 0.440066
PM, f(m, solution), Title = 'The function values are:'

The function values are:
 -0.447191
 -1.58878
 0.744159

min
1
2
--- fi x( )

2
     where  fi x( )

i 0=

3

∑ fi x( ) etix yi–= =
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Errors

Informational Errors

MATH_STEP_TOLERANCE—Scaled step tolerance satisfied. The current point may be 
an approximate local solution, but it is also possible that the algorithm is making very 
slow progress and is not near a solution or that TOL_STEP is too big.

Warning Errors

MATH_LITTLE_FCN_CHANGE—Both the actual and predicted relative reductions in 
the function are less than or equal to the relative function tolerance.

MATH_TOO_MANY_ITN—Maximum number of iterations exceeded.

MATH_TOO_MANY_FCN_EVAL—Maximum number of function evaluations exceeded.

MATH_TOO_MANY_JACOBIAN_EVAL—Maximum number of Jacobian evaluations 
exceeded.

MATH_UNBOUNDED—Five consecutive steps have been taken with the maximum step 
length.

Fatal Errors

MATH_FALSE_CONVERGE—Iterates appear to be converging to a noncritical point.

Version History

6.4 Introduced
IMSL_NLINLSQ IDL Analyst Reference Guide



Chapter 11: Optimization 449
IMSL_LINPROG

The IMSL_LINPROG function solves a linear programming problem using the 
revised simplex algorithm.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LINPROG(a, b, c [, BU=array] [, /DOUBLE] [, DUAL=variable] 
[, IRTYPE=array] [, ITMAX=value] [, OBJ=variable] [, XLB=array] 
[, XUB=array])

Return Value

The solution x of the linear programming problem.

Arguments

a

Two-dimensional matrix containing the coefficients of the constraints. The 
coefficient for the i-th constraint is contained in A (i, *).

b

One-dimensional matrix containing the right-hand side of the constraints. If there are 
limits on both sides of the constraints, b contains the lower limit of the constraints.

c

One-dimensional array containing the coefficients of the objective function.
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Keywords

BU

Array with N_ELEMENTS(b) elements containing the upper limit of the constraints 
that have both the lower and the upper bounds. If no such constraint exists, BU is not 
needed.

DOUBLE

If present and nonzero, double precision is used.

DUAL

Name of the variable into which the array with N_ELEMENTS(c) elements, 
containing the dual solution, is stored.

IRTYPE

Array with N_ELEMENTS(b) elements indicating the types of general constraints in 
the matrix A. Let ri = Ai0x0 + ... + Ain–1 xn–1. The value of IRTYPE (i) is described in 
Table 11-1.

Default: IRTYPE (*) = 0

ITMAX

Maximum number of iterations. Default: ITMAX = 10,000

OBJ

Name of the variable into which the optimal value of the objective function is stored.

Irtype (i) Constraints

0 ri = bi

1 ri ≤ bu

2 ri ≥ bi

3 bi ≤ ri ≤ bu

Table 11-1: Constraint Types
IMSL_LINPROG IDL Analyst Reference Guide



Chapter 11: Optimization 451
XLB

Array with N_ELEMENTS(c) elements containing the lower bound on the variables. 
If there is no lower bound on a variable, 1030 should be set as the lower bound. 
Default: XLB (*) = 0

XUB

Array with N_ELEMENTS(c) elements containing the upper bound on the variables. 
If there is no upper bound on a variable, –1030 should be set as the upper bound. 
Default: XUB (*) = infinity

Discussion

The IMSL_LINPROG function uses a revised simplex method to solve linear 
programming problems; i.e., problems of the form: 

subject to: 

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors 
bl, bu, xl, and xu are the lower and upper bounds on the constraints and the variables.

For a complete discussion of the revised simplex method, see Murtagh (1981) or 
Murty (1983). This problem can be solved more efficiently.

Example

In this example, the linear programming problem in the standard form:

min f(x) = –x0 – 3x1

subject to: 

is solved.

RM, a, 4, 6
; Define the coefficients of the constraints.
row 0: 1 1 1  0 0 0
row 1: 1 1 0 -1 0 0
row 2: 1 0 0  0 1 0
row 3: 0 1 0  0 0 1

min c
T

x
x IRn∈

bl  Ax  bu≤ ≤

xl  x  xu≤ ≤
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RM, b, 4, 1
; Define the right-hand side of the constraints.
row 0: 1.5
row 1: .5
row 2: 1
row 3: 1
RM, c, 6, 1
; Define the coefficients of the objective function.
row 0: -1
row 1: -3
row 2: 0
row 3: 0
row 4:  0
row 5: 0
PM, IMSL_LINPROG(a, b, c), Title = 'Solution'
; Call IMSL_LINPROG and print the solution.
Solution

0.500000
1.00000
0.00000
1.00000
0.500000
0.00000

Errors

Warning Errors

MATH_PROB_UNBOUNDED—Problem is unbounded.

MATH_TOO_MANY_ITN—Maximum number of iterations exceeded.

MATH_PROB_INFEASIBLE—Problem is infeasible.

Fatal Errors

MATH_NUMERIC_DIFFICULTY—Numerical difficulty occurred. If float is currently 
being used, using double may help.

x0 + x1 + x2 = 1.5

x0 + x1 – x3 = 0.5

x0 + x4 = 1.0

x1 + x5 = 1.0

xi 0 for i,≥ 0 ... 5, ,=
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MATH_BOUNDS_INCONSISTENT—Bounds are inconsistent.

Version History

6.4 Introduced
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IMSL_QUADPROG

The IMSL_QUADPROG function solves a quadratic programming (QP) problem 
subject to linear equality or inequality constraints.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_QUADPROG(a, b, g, h [, DIAG=variable] [, /DOUBLE] 
[, DUAL=variable] [, MEQ=value] [, OBJ=variable])

Return Value

The solution x of the QP problem.

Arguments

a

Two-dimensional matrix containing the linear constraints.

b

One-dimensional matrix of the right-hand sides of the linear constraints.

g

One-dimensional array of the coefficients of the linear term of the objective function.

h

Two-dimensional array of size N_ELEMENTS(g) x N_ELEMENTS(g) containing 
the Hessian matrix of the objective function. It must be symmetric positive definite. If 
h is not positive definite, the algorithm attempts to solve the QP problem with h 
replaced by h + Diag*I, such that h + Diag*I is positive definite.
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Keywords

DIAG

Name of the variable into which the scalar, equal to the multiple of the identity matrix 
added to h to give a positive definite matrix, is stored.

DOUBLE

If present and nonzero, double precision is used.

DUAL

Name of the variable into which an array with N_ELEMENTS(g) elements, 
containing the Lagrange multiplier estimates, is stored.

MEQ

Number of linear equality constraints. If MEQ is used, then the equality constraints 
are located at a(i, *) for i = 0, ..., Meq – 1. 
Default: MEQ = N_ELEMENTS(a(*, 0)) n; i.e., all constraints are equality 
constraints.

OBJ

Name of variable into which optimal object function found is stored.

Discussion

The IMSL_QUADPROG function is based on M.J.D. Powell’s implementation of the 
Goldfarb and Idnani dual quadratic programming (QP) algorithm for convex QP 
problems subject to general linear equality/inequality constraints (Goldfarb and 
Idnani 1983). That is, problems of the form: 

subject to: 

given the vectors b0, b1, and g, and the matrices H, A0, and A1. Matrix H is required to 
be positive definite. In this case, a unique x solves the problem, or the constraints are 

min g
T

x
1
2
---x

T
Hx+

x IRn∈

A1x b1=

A2x b2≥
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inconsistent. If H is not positive definite, a positive definite perturbation of H is used 
in place of H. For more details, see Powell (1983, 1985).

If a perturbation of H, H + αI, is used in the QP problem, H + αI also should be used 
in the definition of the Lagrange multipliers.

Example

In this example, the QP problem:

min f(x) = –x2
0 + x2

1
 + x2

2 + x2
3 + x2

4 – 2x1x2
  – 2x3x4

 –2x0 

subject to:

x0 + x1 + x2 + x3 + x4 = 5

x2 – 2x3 – 2x4 = –3

is solved.

RM, a, 2, 5
; Define the coefficient matrix A.
row 0: 1 1 1 1  1
row 1: 0 0 1 -2 -2
h = [[2, 0, 0, 0, 0], [0, 2, -2,  0, 0], $

[0, -2,  2, 0, 0], [0,  0,  0,  2, -2], $
[0, 0, 0, -2, 2]]

; Define the Hessian matrix of the objective function. Notice
; that since h is symmetric, the array concatenation operators
; “[ ]” are used to define it.
b = [5, -3]
; Define b.
g = [ -2, 0, 0, 0, 0]
; Define g.
x = IMSL_QUADPROG(a, b, g, h)
; Call IMSL_QUADPROG.
PM, x
; Output solution.
Solution:

 1.00000
 1.00000
 1.00000
 1.00000
 1.00000
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Errors

Warning Errors

MATH_NO_MORE_PROGRESS—Due to the effect of computer rounding error, a change 
in the variables fails to improve the objective function value. Usually, the solution is 
close to optimum.

Fatal Errors

MATH_SYSTEM_INCONSISTENT—System of equations is inconsistent. There is no 
solution.

Version History

6.4 Introduced
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IMSL_MINCONGEN

The IMSL_MINCONGEN function minimizes a general objective function subject to 
linear equality/inequality constraints.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax 

Result = IMSL_MINCONGEN(f, a, b, xlb, xub [, ACTIVE_CONST=variable] 
[, /DOUBLE] [, GRAD=string] [, LAGRANGE_MULT=variable] 
[, MAX_FCN=value] [, MEQ=value] [, NUM_ACTIVE=variable] 
[, OBJ=variable] [, TOLERANCE=value] [, XGUESS=array]) 

Return Value

One-dimensional array of length nvar containing the computed solution.

Arguments

a

Two-dimensional array of size ncon by nvar containing the equality constraint 
gradients in the first MEQ rows followed by the inequality constraint gradients, 
where ncon is the number of linear constraints (excluding simple bounds) and nvar is 
the number of variables. See the keyword MEQ for setting the number of equality 
constraints.

b

One-dimensional array of size ncon containing the right-hand sides of the linear 
constraints. Specifically, the constraints on the variables xi, i = 0, nvar – 1, 
are ak,0x0 + ... + ak,nvar–1xnvar–1 = bk, k = 0, ..., Meq – 1 and
ak,0x0 + ... + ak,nvar–1xnvar–1 ≤ bk, k = Meq, ..., ncon – 1. Note that the data that define 
the equality constraints come before the data of the inequalities.
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f

Scalar string specifying a user-supplied function to evaluate the function to be 
minimized. Function f accepts a one-dimensional array of length 
n = N_ELEMENTS(x) containing the point at which the function is evaluated. The 
return value of this function is the function value at x.

xlb

One-dimensional array of length nvar containing the lower bounds on the variables; 
choose a very large negative value if a component should be unbounded below or set 
xlb(i) = xub(i) to freeze the i-th variable. Specifically, these simple bounds are xlb(i) ≤ 
xi, for i = 0, ..., nvar–1.

xub

One-dimensional array of length nvar containing the upper bounds on the variables; 
choose a very large positive value if a component should be unbounded above. 
Specifically, these simple bounds are xi ≤ xub(i), for i = 0, nvar – 1.

Keywords

ACTIVE_CONST

Named variable into which an one-dimensional array of length NUM_ACTIVE 
containing the indices of the final active constraints is stored.

DOUBLE

If present and nonzero, double precision is used.

GRAD

Scalar string specifying the name of the user-supplied function to compute the 
gradient at the point x. The GRAD function accepts a one-dimensional array of length 
nvar. The return value of this function is a one-dimensional array of length nvar 
containing the values of the gradient of the objective function.

LAGRANGE_MULT

Named variable into which an one-dimensional array of length NUM_ACTIVE 
containing the Lagrange multiplier estimates of the final active constraints is stored.
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MAX_FCN

Maximum number of function evaluations. Default: MAX_FCN = 400

MEQ

Number of linear equality constraints. Default: MEQ = 0

NUM_ACTIVE

Named variable into which the final number of active constraints is stored.

OBJ

Named variable into which the value of the objective function is stored.

TOLERANCE

The nonnegative tolerance on the first order conditions at the calculated solution. 
Default: TOLERANCE = SQRT(ε), where ε is machine epsilon.

XGUESS

One-dimensional array with nvar components containing an initial guess. Default: 
XGUESS = 0

Discussion

The IMSL_MINCONGEN function is based on M.J.D. Powell’s TOLMIN, which 
solves linearly constrained optimization problems, i.e., problems of the form:

min f(x)

subject to:

A1x = b1 

A2x ≤ b2 

xl ≤ x ≤ xu 

given the vectors b1, b2, xl , and xu and the matrices A1 and A2.

The algorithm starts by checking the equality constraints for inconsistency and 
redundancy. If the equality constraints are consistent, the method will revise x0, the 
initial guess, to satisfy:

A1x = b1 
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Next, x0 is adjusted to satisfy the simple bounds and inequality constraints. This is 
done by solving a sequence of quadratic programming subproblems to minimize the 
sum of the constraint or bound violations.

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality 
constraints that have small residuals. Here, the simple bounds are treated as 
inequality constraints. Let Ik be the set of indices of active constraints. The following 
quadratic programming problem:

 

subject to:

ajd = 0,  

ajd ≤ 0,  

is solved to get (dk, λk) where aj is a row vector representing either a constraint in A1 
or A2 or a bound constraint on x. In the latter case, the aj = ei for the bound constraint 
xi ≤ (xu)i and aj = -ei for the constraint -xi ≤ (xl)i. Here, ei is a vector with 1 as the i-th 
component, and zeros elsewhere. Variables λk are the Lagrange multipliers, and Bk is 
a positive definite approximation to the second derivative ∇ 2 f(xk).

After the search direction dk is obtained, a line search is performed to locate a better 
point. The new point xk+1 = xk +αkdk has to satisfy the conditions:

f(xk + αkdk) ≤ f(xk) + 0.1 αk (dk)T ∇  f(xk) 

and:

(dK)T∇  f(xk + αkdk) ≤ 0.7 (dk)T∇  f(xK) 

The main idea in forming the set Jk is that, if any of the equality constraints restricts 
the step-length αk, then its index is not in Jk. Therefore, small steps are likely to be 
avoided.

Finally, the second derivative approximation BK, is updated by the BFGS formula, if 
the condition:

(dK)T∇ f(xk + αkdk) − ∇  f(xk) > 0

holds. Let xk ← xk+1, and start another iteration.

The iteration repeats until the stopping criterion:

|| ∇  f(xk) - AkλK||2 ≤ τ 

is satisfied. Here τ is the supplied tolerance. For more details, see Powell (1988, 
1989). 

minf x
k( ) d

T
f∇ x

k( ) 1
2
---d

T
B

k
d+ +

j Ik∈

j Jk∈
IDL Analyst Reference Guide IMSL_MINCONGEN



462 Chapter 11: Optimization
Since a finite difference method is used to approximate the gradient for some single 
precision calculations, an inaccurate estimate of the gradient may cause the algorithm 
to terminate at a noncritical point. In such cases, high precision arithmetic is 
recommended. Also, if the gradient can be easily provided, the input keyword GRAD 
should be used.

Examples

Example 1

In this example, the problem: 

.RUN
FUNCTION fcn,  x

   f  =  x(0)*x(0) + x(1)*x(1) + x(2)*x(2) + x(3)*x(3) + $
         x(4)*x(4) - 2.0*x(1)*x(2) - 2.0*x(3) * x(4) - $
         2.0*x(0) 
   RETURN,  f

END

meq = 2
a = TRANSPOSE([[1.0, 1.0, 1.0, 1.0, 1.0], $

[0.0, 0.0, 1.0, -2.0, -2.0]])
b = [5.0, -3.0]
xlb = FLTARR(5)
xlb(*) = 0.0
xub = FLTARR(5)
xub(*) = 10.0
; Set !QUIET to suppress note errors
!QUIET = 1
x  =  IMSL_MINCONGEN('fcn', a, b, xlb, xub, Meq = meq)
PM, x, Title = 'Solution'

Solution
      1.00000
      1.00000
      1.00000
      1.00000

minf x( ) x
2

1
x

2

2
x

2

3
x

2

3
x

2

3
2x2x3 2x4x5 2x1–––+ + + +=

subject to x1 x2 x3 x4 x5+ + + + 5=

x3 2x4– 2x5– 3–=

0  x  10≤ ≤
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      1.00000

Example 2

In this example, the problem from Schittkowski (1987):

min f(x) = -x0x1x2 

subject to –x0 – 2x1 – 2x2 ≤ 0 

x0 + 2x1 + 2x2 ≤ 72

0 ≤ x0 ≤ 20

0 ≤ x1 ≤ 11

0 ≤ x2 ≤ 42

is solved with an initial guess of x0 = 10, x1 = 10 and x2 = 10.

.RUN
FUNCTION fcn,  x

f  =  -x(0)*x(1)*x(2) 
RETURN,  f

END

.RUN
FUNCTION gradient, x

g  =  FLTARR(3)
g(0)  =  -x(1)*x(2)
g(1)  =  -x(0)*x(2)
g(2)  =  -x(0)*x(1)
RETURN, g   

END 

meq = 0
a = TRANSPOSE([[-1.0, -2.0, -2.0], [1.0, 2.0, 2.0]])
b = [0.0, 72.0]
xlb = FLTARR(3)
xlb(*) = 0.0
xub = [20.0, 11.0, 15.0]
xguess = FLTARR(3)
xguess(*) = 10.0
; Set !QUIET to suppress note errors
!QUIET = 1
x  =  IMSL_MINCONGEN('fcn', a, b, xlb, xub, Meq = meq, $

Grad = 'gradient', Xguess = xguess, Obj = obj)
PM, x, Title = 'Solution'

Solution
20.0000
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11.0000
15.0000

PRINT, 'Objective value =', obj

Objective value = -3300.00

Version History

6.4 Introduced
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IMSL_CONSTRAINED_NLP

The IMSL_CONSTRAINED_NLP function solves a general nonlinear programming 
problem using a sequential equality constrained quadratic programming method.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CONSTRAINED_NLP (f, m, n [, /DOUBLE] [, DEL0=value] 
[, DELMIN=string] [, DIFFTYPE=value] [, EPSDIF=value] [, EPSFCN=value] 
[, GRAD=value] [, IBTYPE=string] [, ITMAX=value] [, MEQ=value] 
[, OBJ=value] [, SCFMAX=string] [, SMALLW=string] [, TAU0=value] 
[, TAUBND=value] [, XGUESS=array] [, XLB=variable] [, XSCALE=vector] 
[, XUB=variable])

Return Value

The solution of the nonlinear programming problem.

Arguments

f

Scalar string specifying a user-supplied procedure to evaluate the objective function 
and constraints at a given point. The input parameters are:

• x—One dimensional array at which the objective function or a constraint is 
evaluated. 

• iact—Integer indicating whether evaluation of the objective function is 
requested or evaluation of a constraint is requested. If iact is zero, then an 
objective function evaluation is requested. If iact is nonzero then the value if 
iact indicates the index of the constraint to evaluate.

• result—If iact is zero, then Result is the computed objective function at the 
point x. If iact is nonzero, then Result is the requested constraint value at the 
point x.
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• ierr—Integer variable. On input ierr is set to 0. If an error or other undesirable 
condition occurs during evaluation, then ierr should be set to 1. Setting ierr to 
1 will result in the step size being reduced and the step being tried again. (If 
ierr is set to 1 for XGUESS, then an error is issued.)

m

Total number of constraints.

n

Number of variables.

Keywords

DOUBLE

If present and nonzero, double precision is used.

DEL0

In the initial phase of minimization, a constraint is considered binding if: 

Good values are between .01 and 1.0. If DEL0 is too small, then identification 
of the correct set of binding constraints may be delayed. Conversely, if DEL0 
is too large, then the method will often escape to the full regularized SQP 
method. This method uses individual slack variables for any active constraint, 
which is quite costly. For well-scaled problems DEL0 = 1.0 is reasonable. 
Default: DEL0 = .5* Tau0.

DELMIN

Scalar which defines allowable constraint violations of the final accepted result. 
Constraints are satisfied if |gi(x)| is less than or equal to DELMIN, and gi(x) is greater 
than or equal to (-Delmin) respectively. Default: DELMIN = min(Del0/10, 
max(epsdif, min(del0/10, max(1.E-6* del0, smallw))

DIFFTYPE

Type of numerical differentiation to be used. Default: DIFFTYPE = 1

gi x( )
max 1 gi∇ x( ),( )
---------------------------------------------   Del0≤ i Me 1 ... M, ,+=
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• 1—Use a forward difference quotient with discretization stepsize 
0.1(epsfcn1/2) component-wise relative.

• 2—Use the symmetric difference quotient with discretization stepsize 
0.1(epsfcn1/3) component-wise relative.

• 3—Use the sixth order approximation computing a Richardson extrapolation 
of three symmetric difference quotient values. This uses a discretization 
stepsize 0.01(epsfcn1/7).

This keyword is not valid if the keyword GRAD is supplied.

EPSDIF

Relative precision in gradients. Default: EPSDIF = eps where eps is the machine 
precision. This keyword is not valid if the keyword GRAD is supplied.

EPSFCN

Relative precision of the function evaluation routine. Default: EPSFCN = eps where 
eps is the machine precision. This keyword is not valid if the keyword GRAD is 
supplied.

GRAD

Scalar string specifying a user-supplied procedure to evaluate the gradients at a given 
point. The procedure specified by GRAD has the following parameters:

• x—One dimensional array at which the gradient of the objective function or 
gradient of a constraint is evaluated. 

• iact—Integer indicating whether evaluation of the gradient of the objective 
function is requested or evaluation of gradient of a constraint is requested. If 
iact is zero, then an objective function evaluation is requested. If iact is 
nonzero then the value if iact indicates the index of the constraint to evaluate.

• result—If iact is zero, then Result is the computed gradient of the objective 
function at the point x. If iact is nonzero, then Result is the gradient of the 
requested constraint value at the point x.

IBTYPE

Scalar indicating the types of bounds on variables.

• 0—User supplies all the bounds.

• 1—All variables are non-negative.
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• 2—All variables are nonpositive.

• 3—User supplies only the bounds on first variable; all other variables have the 
same bounds.

• Default: no bounds are enforced

ITMAX

Maximum number of iterations allowed. Default: ITMAX = 200

MEQ

Number of equality constraints. Default: MEQ = m

OBJ

Name of a variable into which a scalar containing the value of the objective function 
at the computed solution is stored.

SCFMAX

Scalar containing the bound for the internal automatic scaling of the objective 
function. Default: SCFMAX = 1.0e4

SMALLW

Scalar containing the error allowed in the multipliers. For example, a negative 
multiplier of an inequality constraint is accepted (as zero) if its absolute value is less 
than SMALLW. Default: SMALLW = exp(2*log(eps/3)) where eps is the machine 
precision.

TAU0

A universal bound describing how much the unscaled penalty-term may deviate from 
zero.

IMSL_CONSTRAINED_NLP assumes that within the region described by: 

all functions may be evaluated safely. The initial guess, however, may violate these 
requirements. In that case, an initial feasibility improvement phase is run by 
IMSL_CONSTRAINED_NLP until such a point is found. A small TAU0 diminishes 
the efficiency of IMSL_CONSTRAINED_NLP, because the iterates then will follow 

gi x( )
i 1=

Me

∑ min 0 gi x( ),( )
i Me 1+=

M

∑   Tau0≤–
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the boundary of the feasible set closely. Conversely, a large TAU0 may degrade the 
reliability of the code. Default TAU0 = 1.0

TAUBND

Amount by which bounds may be violated during numerical differentiation. Bounds 
are violated by TAUBND (at most) only if a variable is on a bound and finite 
differences are taken for gradient evaluations. This keyword is not valid if the 
keyword GRAD is supplied. Default: TAUBND = 1.0.

XGUESS

Array with n components containing an initial guess of the computed solution. 
Default: XGUESS = X, with the smallest value of  that satisfies the bounds.

XLB

Named variable, containing a one-dimensional array with n components, containing 
the lower bounds on the variables. (Input, if IBTYPE = 0; Output, if IBTYPE = 1 or 
2; Input/Output, if IBTYPE = 3). If there is no lower bound on a variable, the 
corresponding XLB value should be set to negative machine infinity. Default: no 
lower bounds are enforced on the variables

XSCALE

Vector of length n setting the internal scaling of the variables. The initial value given 
and the objective function and gradient evaluations however are always in the original 
unscaled variables. The first internal variable is obtained by dividing values x(I) by 
XSCALE(I). This keyword is not valid if the keyword GRAD is supplied.

In the absence of other information, set all entries to 1.0. Default: XSCALE(*) = 1.0.

XUB

Named variable, containing a one-dimensional array with n components, containing 
the upper bounds on the variables. (Input, if IBTYPE = 0; Output, if IBTYPE = 1 or 
2; Input/Output, if IBTYPE = 3). If there is no upper bound on a variable, the 
corresponding XUB value should be set to positive machine infinity. Default: no 
upper bounds are enforced on variables.

Description

The routine IMSL_CONSTRAINED_NLP provides an interface to a licensed version 
of subroutine DONLP2, a code developed by Peter Spellucci (1998). It uses a 

X 2
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sequential equality constrained quadratic programming method with an active set 
technique, and an alternative usage of a fully regularized mixed constrained 
subproblem in case of nonregular constraints (for example, linear dependent 
gradients in the “working sets”). It uses a slightly modified version of the Pantoja-
Mayne update for the Hessian of the Lagrangian, variable dual scaling and an 
improved Armjijo-type stepsize algorithm. Bounds on the variables are treated in a 
gradient-projection like fashion. Details may be found in the following two papers: 

• P. Spellucci: An SQP method for general nonlinear programs using only 
equality constrained subproblems. Math. Prog. 82, (1998), 413-448.

• P. Spellucci: A new technique for inconsistent problems in the SQP method. 
Math. Meth. of Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, 
Heidelberg, Germany).

The problem is stated as follows: 

subject to:

,    

,   

 

Although default values are provided for input keywords, it may be necessary to 
adjust these values for some problems. Through the use of keywords, 
IMSL_CONSTRAINED_NLP allows for several parameters of the algorithm to be 
adjusted to account for specific characteristics of problems. The DONLP2 Users 
Guide provides detailed descriptions of these parameters as well as strategies for 
maximizing the performance of the algorithm. The DONLP2 Users Guide is 
available in the “manuals” subdirectory of the main product installation directory. In 
addition, the following are guidelines to consider when using 
IMSL_CONSTRAINED_NLP.

• A good initial starting point is very problem-specific and should be provided 
by the calling program whenever possible. For more details, see the keyword 
XGUESS.

• Gradient approximation methods can have an effect on the success of 
IMSL_CONSTRAINED_NLP. Selecting a higher order approximation 
method may be necessary for some problems. For more details, see the 
keyword DIFFTYPE.

• If a two-sided constraint:

min f x( )
x IRn∈

gj x( ) 0= for j 1 ... me, ,=

gj x( ) 0≥ for j me 1+ ... m, ,=

xl  x  xu≤ ≤ )
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is transformed into two constraints:

 

then choose:

 

or at least try to provide an estimate for that value. This will increase the 
efficiency of the algorithm. For more details, see the keyword DEL0.

• The parameter ierr provided in the interface to the user supplied function f can 
be very useful in cases when evaluation is requested at a point that is not 
possible or reasonable. For example, if evaluation at the requested point would 
result in a floating point exception, then setting ierr to 1 and returning without 
performing the evaluation will avoid the exception. 
IMSL_CONSTRAINED_NLP will then reduce the stepsize and try the step 
again. Note, if ierr is set to 1 for the initial guess, then an error is issued.

Example

The problem:

min F(x) = (x1 – 2)2 + (x2 – 1)2 

subject to:

g1(x) = x1 – 2x2 + 1 = 0

g2(x) = –x2
1 /4 – x2

2 + 1 ≥ 0

is solved first with finite difference gradients, then with analytic gradients.

PRO Nlp_grad, x, iact, result
CASE iact OF

0:result = [ 2 * (x(0) - 2.), 2 * (x(1)-1.)]
1:result = [1., -2. ]
2:result = [-0.5*x(0), -2.0*x(1)]

   ENDCASE
   RETURN
END

PRO Nlp_fcn, x, iact, result, ierr
tmp1 = x(0)-2.
tmp2 = x(1) - 1.
CASE iact OF

0:result = tmp1^2 + tmp2^2
1:result = x(0) -2.*x(1) + 1.

i  gi x( )  u≤ ≤

g2i x( ) 0≥ and g2i 1+ x( ) 0≥

Del0
1
2
--- ui li–( ) max 1 gi∇ x( ),{ }⁄<
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2:result = -(x(0)^2)/4. - x(1)^2 + 1.
ENDCASE
ierr = 0

END

; Ex #1, Finite difference gradients
ans1 = IMSL_CONSTRAINED_NLP('nlp_fcn', 2, 2, MEQ = 1)
PM, ans1, title='X with finite difference gradient'
   
; Ex #2, Analytic gradients
ans2 = IMSL_CONSTRAINED_NLP('nlp_fcn', 2, 2, MEQ = 1, $

GRAD = 'nlp_grad')
PM, ans2, title='X with Analytic gradient'

Output

X with finite difference gradient
     0.822877
     0.911439
X with Analytic gradient
     0.822877
     0.911438

Version History

6.4 Introduced
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Special Functions 
This section contains the following topics: 
Overview: Special Functions . . . . . . . . . . .  474 Special Functions Routines  . . . . . . . . . . .  475
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Overview: Special Functions

This chapter describes special functions included in IDL Analyst. See “Special 
Functions Routines” on page 475 for a list of the included routines.
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Special Functions Routines

Error Functions 

IMSL_ERF—Error function. 

IMSL_ERFC—Complementary error function. 

IMSL_BETA—Beta function. 

IMSL_LNBETA—Logarithmic beta function. 

IMSL_BETAI—Incomplete beta function. 

Gamma Functions

IMSL_LNGAMMA—Logarithmic gamma function. 

IMSL_GAMMA_ADV—Real gamma function. 

IMSL_GAMMAI—Incomplete gamma function. 

Bessel Functions with Real Order and Complex 
Argument

IMSL_BESSI—Modified Bessel function of the first kind. 

IMSL_BESSJ—Bessel function of the first kind. 

IMSL_BESSK—Modified Bessel function of the second kind. 

IMSL_BESSY—Bessel function of the second kind.

IMSL_BESSI_EXP—Bessel function e-|x|I0(x), Bessel function e-|x|I1(x).

IMSL_BESSK_EXP—Bessel function exK0(x), Bessel function exK1(x).

Elliptic Integrals

IMSL_ELK—Complete elliptic integral of the first kind.

IMSL_ELE—Complete elliptic integral of the second kind.

IMSL_ELRF—Carlson's elliptic integral of the first kind.

IMSL_ELRD—Carlson's elliptic integral of the second kind.

IMSL_ELRJ—Carlson's elliptic integral of the third kind.
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IMSL_ELRC—Special case of Carlson's elliptic integral.

Fresnel Integrals

IMSL_FRESNEL_COSINE—Cosine Fresnel integral.

IMSL_FRESNEL_SINE—Sine Fresnel integral.

Airy Functions

IMSL_AIRY_AI—Airy function, and derivative of the Airy function.

IMSL_AIRY_BI—Airy function of the second find, and derivative of the Airy 
function of the second kind.

Kelvin Functions

IMSL_KELVIN_BER0—Kelvin function ber of the first kind, order 0, and derivative 
of the Kelvin function ber.

IMSL_KELVIN_BEI0—Kelvin function bei of the first kind, order 0, and derivative 
of the Kelvin function bei.

IMSL_KELVIN_KER0—Kelvin function ker of the second kind, order 0, and 
derivative of the Kelvin function ker.

IMSL_KELVIN_KEI0—Kelvin function kei of the second kind, order 0 and 
derivative of the Kelvin function kei.
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IMSL_ERF

The IMSL_ERF function evaluates the real error function erf(x). Using a keyword, 
the inverse error function erf –1(x) can be evaluated.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ERF(x [, /DOUBLE] [, /INVERSE])

Return Value

The value of the error function erf(x).

Arguments

x

Expression for which the error function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

Evaluates the real inverse error function erf–1(x). The inverse error function is defined 
only for –1 < x < 1.

Discussion

The error function erf(x) is defined below:

erf x( ) 2

π
------- e

t2–
td

0

x

∫=
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All values of x are legal. The inverse error function y = erf –1(x) is such that x = erf (y).

Examples

Example 1

Plot the error function over [ –3, 3 ]. The results are shown in Figure 12-1.

x = 6 * FINDGEN(100)/99 - 3
PLOT, x, IMSL_ERF(x), XTitle = 'x', YTitle = 'erf(x)'

Example 2

Plot the inverse of the error function over ( –1, –1). The results are shown in Figure 
12-2.

x = 2 * FINDGEN(100)/99 - 1
PLOT, x, IMSL_ERF(x(1:98), /Inverse), XTitle = 'x', $

YTitle = 'erf!E-1!N(x)'

Figure 12-1: Plot of erf(x)
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Version History

Figure 12-2: Plot of erf–1(x)

6.4 Introduced
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IMSL_ERFC

The IMSL_ERFC function evaluates the real complementary error function erfc(x). 
Using a keyword, the inverse complementary error function erfc–1(x) can be 
evaluated.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ERFC(x [, /DOUBLE] [, /INVERSE])

Return Value

The value of the complementary error function erfc(x).

Arguments

x

Expression for which the complementary error function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

Evaluates the inverse complementary error function erfc–1(x).   The parameter must 
be in the range 0 < x < 2.
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Discussion

The complementary error function erfc(x) is defined as:

where parameter x must not be so large that the result underflows. Approximately, x 
should be less than:

 

where s is the smallest representable floating-point number. 

The inverse complementary error function y = erfc–1(x) is such that x = erfc(y).

Examples

Example 1

Plot the complementary error function over [–3, 3]. The results are shown in Figure 
12-3.

x = FINDGEN(100)/99
PLOT, 6 * x - 3, IMSL_ERFC(6 * x - 3), XTitle = 'x', $

YTitle = 'erfc(x)'

Figure 12-3: Plot of erf(x)

erfc x( ) 2

π
------- e

t2–
td

x

∞

∫=

-ln π s( )[ ] 1 2⁄
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Example 2

Plot the inverse of the complementary error function over (0, 2). The results are 
shown in Figure 12-4.

x = FINDGEN(100)/99
PLOT, 2 * x(1:98), IMSL_ERFC(2 * x(1:98), /Inverse), $

XTitle = 'x', YTitle = 'erfc!E-1!N(x)'

Errors

Alert Errors

MATH_LARGE_ARG_UNDERFLOW—Parameter x must not be so large that the result 
underflows. Very approximately, x should be less than:

 

where ε is the machine precision.

Warning Errors

MATH_LARGE_ARG_WARN—Parameter |x| should be less than 

 

where ε is the machine precision, to prevent the answer from being less accurate than 
half precision.

Figure 12-4: Plot of erfc–1(x)

2 ε 4π( )⁄–

1 ε( )⁄
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Fatal Errors

MATH_ERF_ALGORITHM—Algorithm failed to converge.

MATH_SMALL_ARG_OVERFLOW—Computation of:

 

must not overflow.

MATH_REAL_OUT_OF_RANGE—Function is defined only for 0 < x < 2.

Version History

6.4 Introduced

e
x2

erfc x( )
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IMSL_BETA

The IMSL_BETA function evaluates the real beta function β(x, y).]

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BETA(x, y [, /DOUBLE])

Return Value

The value of the beta function β(x, y). If no result can be computed, then NaN (Not a 
Number) is returned.

Arguments

x

First beta parameter. It must be positive.

y

Second beta parameter. It must be positive.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The beta function, β(x, y), is defined as:

 

requiring that x > 0 and y > 0. It underflows for large parameters.

β x y,( ) Γ x( )Γ y( )
Γ x y+( )
--------------------- t

x 1–
1 t–( )y 1–

td
0

1
∫= =
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Example

Plot the beta function over [ε, 1/4 + ε] x [ε, 1/4 + ε] for ε = 0.01. The results are 
shown in Figure 12-5.

x = 1e-2 + .25 * FINDGEN(25)/24
y = x
b = FLTARR(25, 25)
FOR i = 0, 24 DO b(i, *) = IMSL_BETA(x(i), y)
; Compute values of the beta function.
SURFACE, b, x, y, XTitle = 'X', YTitle = 'Y', Az = 320, ZAxis = 2
; Plot the computed values as a surface and rotate the plot.

Figure 12-5: Real Beta Function Plot
IDL Analyst Reference Guide IMSL_BETA
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Errors

Alert Errors

MATH_BETA_UNDERFLOW—Parameters must not be so large that the result 
underflows.

Fatal Errors

MATH_ZERO_ARG_OVERFLOW—One of the parameters is so close to zero that the 
result overflows.

Version History

6.4 Introduced
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IMSL_LNBETA

The IMSL_LNBETA function evaluates the logarithm of the real beta function ln 
β(x, y).

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LNBETA(x, y [, /DOUBLE])

Return Value

The value of the logarithm of the beta function β(x, y).

Arguments

x

First argument of the beta function. It must be positive.

y

Second argument of the beta function. It must be positive.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion 

The beta function, β(x, y), is defined as:

 

and IMSL_LNBETA returns ln β(x, y). The logarithm of the beta function requires 
that x > 0 and y > 0. It can overflow for very large parameters.

β x y,( ) Γ x( )Γ y( )
Γ x y+( )
--------------------- t

x 1–
1 t–( )y 1–

td
0

1
∫= =
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Example

Evaluate the log of the beta function ln β (0.5, 0.2).

PM, IMSL_LNBETA(.5, .2)
      1.83556

Errors

Warning Errors

MATH_X_IS_TOO_CLOSE_TO_NEG_1—Result is accurate to less than one precision 
because the expression –x / (x + y) is too close to –1.

Version History

6.4 Introduced
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IMSL_BETAI

The IMSL_BETAI function evaluates the real incomplete beta function.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BETAI(x, a, b [, /DOUBLE])

Return Value

The value of the incomplete beta function.

Arguments

x

Upper limit of integration.

a

First beta distribution parameter.

b

Second beta distribution parameter.

Keywords

DOUBLE

If present and nonzero, double precision is used.
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Discussion

The incomplete beta function is defined as: 

requiring that 0 ≤ x ≤ 1, a > 0, and b > 0. It underflows for sufficiently small x and 
large a. This underflow is not reported as an error. Instead, the value zero is returned. 

Example

In this example, I0.61(2.2, 3.7) is computed and printed.

PM, IMSL_BETAI(.61, 2.2, 3.7)
     0.882172

Version History

6.4 Introduced

Ix a b,( )
βx a b,( )

β a b,( )
------------------

1
β a b,( )
--------------- t

a 1–
1 t–( )b 1–

td
0

x
∫= =
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IMSL_LNGAMMA

The IMSL_LNGAMMA function evaluates the logarithm of the absolute value of the 
gamma function log|Γ(x)|.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LNGAMMA(x [, /DOUBLE])

Return Value

The value of the logarithm of gamma function log|Γ(x)|.

Arguments

x

Expression for which the logarithm of the absolute value of the gamma function is to 
be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The logarithm of the absolute value of the gamma function log|Γ(x)| is computed.

Example

In this example, log|Γ(3.5)| is computed and printed.

PM, IMSL_LNGAMMA(3.5)
      1.20097
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Errors

Warning Errors

MATH_NEAR_NEG_INT_WARN—Result is accurate to less than one-half precision 
because x is too close to a negative integer.

Fatal Errors

MATH_NEGATIVE_INTEGER—Parameter for the function cannot be a negative 
integer.

MATH_NEAR_NEG_INT_FATAL—Parameter for the function is too close to a negative 
integer.

MATH_LARGE_ABS_ARG_OVERFLOW—Parameter |x| must not be so large that the 
result overflows.

Version History

6.4 Introduced
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IMSL_GAMMA_ADV

The IMSL_GAMMA_ADV function evaluates the real gamma function.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_GAMMA_ADV(x [, /DOUBLE])

Return Value

The value of the gamma function Γ(x).

Arguments

x

Point at which the gamma function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The gamma function, Γ(x), is defined to be:

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It 
underflows for x << 0 and overflows for large x. It also overflows for values near 
negative integers.

Γ x( ) t
x 1–

e
t–

td
0

∞

∫=
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Example

In this example, Γ(1.5) is computed and printed.

x  =  1.5
ans  =  IMSL_GAMMA_ADV(x)
PRINT, 'Gamma(', x, ') =', ans
Gamma( 1.50000) = 0.886227

Errors

Alert Errors

STAT_SMALL_ARG_UNDERFLOW—The parameter x must be large enough that 
Γ(x) does not underflow. The underflow limit occurs first for parameters close to 
large negative half integers. Even though other parameters away from these half 
integers may yield machine-representable values of Γ(x), such parameters are 
considered illegal. 

Warning Errors

STAT_NEARR_NEG_INT_WARN—The result is accurate to less than one-half 
precision because x is too close to a negative integer.

Fatal Errors

STAT_ZERO_ARG_OVERFLOW—The parameter for the gamma function is too 
close to zero.

STAT_NEAR_NEG_INT_FATAL—The parameter for the function is too close to a 
negative integer.

STAT_LARGE_ARG_OVERFLOW—The function overflows because x is too large.

STAT_CANNOT_FIND_XMIN—The algorithm used to find xmin failed. This error 
should never occur.

STAT_CANNOT_FIND_XMAX—The algorithm used to find xmax failed. This error 
should never occur.

Version History

6.4 Introduced
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IMSL_GAMMAI

The IMSL_GAMMAI function evaluates the incomplete gamma function γ(a, x).

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_GAMMAI(a, x [, /DOUBLE])

Return Value

The value of the incomplete gamma function γ(a, x).

Arguments

a

Integrand exponent parameter. It must be positive.

x

Upper limit of integration. It must be nonnegative.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The incomplete gamma function, γ(a, x), is defined as follows:

γ a x,( ) t
a 1–

e
t–

td
0

x

∫=
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The incomplete gamma function is defined only for a > 0. Although γ(a, x) is well-
defined for x > –infinity, this algorithm does not calculate γ(a, x) for negative x. For 
large a and sufficiently large x, γ(a, x) may overflow. Gamma function γ(a, x) is 
bounded by Γ(a), and users may find this bound a useful guide in determining legal 
values for a.

Example

Plot the incomplete gamma function over [0.1, 1.1] x [0, 4]. The results are shown in 
Figure 12-6.

x = 4. * FINDGEN(25)/24
a = 1e-1 + FINDGEN(25)/24
b = FLTARR(25, 25)
FOR i = 0, 24 DO b(i, *) = IMSL_GAMMAI(a(i), x)
!P.Charsize = 2.5
SURFACE, b, a, x, XTitle = 'a', YTitle = 'X'

Figure 12-6: Incomplete Gamma Function Plot
IMSL_GAMMAI IDL Analyst Reference Guide
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Errors

Fatal Errors

MATH_NO_CONV_200_TS_TERMS—Function did not converge in 200 terms of Taylor 
series.

MATH_NO_CONV_200_CF_TERMS—Function did not converge in 200 terms of the 
continued fraction.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_GAMMAI
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IMSL_BESSI

The IMSL_BESSI function evaluates a modified Bessel function of the first kind with 
real order and real or complex parameters.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BESSI(order, z [, /DOUBLE] [, SEQUENCE=value])

Return Value

The desired value of the modified Bessel function.

Arguments

order

Real parameter specifying the desired order. The argument order must be greater than 
–1/2.

z

Real or complex parameter for which the Bessel function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

SEQUENCE

If present and nonzero, a one-dimensional array of length n containing the values of 
the Bessel function through the series is returned by IMSL_BESSI, where 
n = N_ELEMENTS(SEQUENCE). The i-th element of this array is the Bessel 
function of order (order + i) at z for i = 0, ... (n – 1).
IMSL_BESSI IDL Analyst Reference Guide
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Discussion

The IMSL_BESSI function evaluates a modified Bessel function of the first kind with 
real order and real or complex parameters. The data type of the returned value is 
always complex.

The Bessel function, Iv(z), is defined as follows: 

For large parameters, z, Temme’s (1975) algorithm is used to find Iv(z). The Iv(z) 
values are recurred upward (if stable). This involves evaluating a continued fraction. 
If this evaluation fails to converge, the answer may not be accurate. For moderate and 
small parameters, Miller’s method is used.

Example

In this example, J0.3 + v–1(1.2 + 0.5i), v = 1, ... 4 is computed and printed first by 
calling IMSL_BESSI four times in a row, then by using the keyword SEQUENCE.

z = COMPLEX(1.2, .5)
FOR i = 0, 3 DO PM, IMSL_BESSI(i + .3, z)

( 1.16339, 0.396301)
( 0.447264, 0.332142)
( 0.0821799, 0.127165)
( 0.00577678, 0.0286277)

PM, IMSL_BESSI(.3, z, Sequence = 4), Title = 'With SEQUENCE:'
With SEQUENCE:

(  1.16339, 0.396301)
( 0.447264, 0.332142)
( 0.0821799, 0.127165)
( 0.00577678, 0.0286277)

Version History

6.4 Introduced

Iν z( ) e νπi 2⁄– Jν ze
πi 2⁄( ) for π– argz  

π
2
---≤<=
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IMSL_BESSJ

The IMSL_BESSJ function evaluates a Bessel function of the first kind with real 
order and real or complex parameters.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BESSJ(order, z [, /DOUBLE] [, SEQUENCE=value])

Return Value

The desired value of the Bessel function.

Arguments

order

Real parameter specifying the desired order. The argument order must be greater than 
–1/2.

z

Real or complex parameter for which the Bessel function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

SEQUENCE

If present and nonzero, a one-dimensional array of length n containing the values of 
the Bessel function through the series is returned by IMSL_BESSJ, where 
n = NELEMENTS(SEQUENCE). The i-th element of this array is the Bessel 
function of order (order + i) at z for i = 0, ... (n – 1).
IMSL_BESSJ IDL Analyst Reference Guide
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Discussion

The IMSL_BESSJ function evaluates a Bessel function of the first kind with real 
order and real or complex parameters. The data type of the returned value is always 
complex.

The Bessel function, Jv(z), is defined as follows:

 

for:

 

This function is based on the code BESSCC of Barnett (1981) and Thompson and 
Barnett (1987). This code computes Jv(z) from the modified Bessel function Iv(z), 
using the following relation with:

 

Example

In this example, J0.3 + v–1(1.2 + 0.5i), v = 1, ..., 4 is computed and printed.

z = COMPLEX(1.2, .5)
FOR i = 0, 3 DO PM, IMSL_BESSJ(i + .3, z)

( 0.773756, -0.106925)
( 0.400001,  0.158598)
(  0.0867063, 0.0920276)
( 0.00844932, 0.0239868)

PM, IMSL_BESSJ(.3, z, Sequence = 4), Title = 'With SEQUENCE:'
With SEQUENCE:

( 0.773756, -0.106925)
( 0.400001, 0.158598)
(  0.0867063, 0.0920276)
( 0.00844932, 0.0239868)

Jν z( ) 1
π
--- z θ νθ–sin( )dθ γπ( )sin

π
------------------ e

z t νt–sinh
dt

0

∞
∫–cos

0

π
∫=

argz
π
2
---<

ρ eiπ 2⁄=

Jν z( )
ρIν z ρ⁄( ) for π 2⁄ argz  π≤<–

ρ3Iν ρ3z( ) for π argz  π 2⁄≤<–






=
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Version History

6.4 Introduced
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IMSL_BESSK

The IMSL_BESSK function evaluates a modified Bessel function of the second kind 
with real order and real or complex parameters.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BESSK(order, z [, /DOUBLE] [, SEQUENCE=value])

Return Value

The desired value of the modified Bessel function.

Arguments

order

Real parameter specifying the desired order. The argument order must be greater than 
–1/2.

z

Real or complex parameter for which the Bessel function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

SEQUENCE

If present and nonzero, a one-dimensional array of length n containing the values of 
the Bessel function through the series is returned by IMSL_BESSK, where 
n = NELEMENTS(SEQUENCE). The i-th element of this array is the Bessel 
function of order (order + i) at z for i = 0, ... (n – 1). 
IDL Analyst Reference Guide IMSL_BESSK
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Discussion

The IMSL_BESSK function evaluates a modified Bessel function of the second kind 
with real order and real or complex parameters. The data type of the returned value is 
always complex.

The Bessel function, Kv(z), is defined as follows:

 

This function is based on the code BESSCC of Thompson (1981) and Thompson and 
Barnett (1987). For moderate or large parameters, z, Temme’s (1975) algorithm is 
used to find Kv (z). This involves evaluating a continued fraction. If this evaluation 
fails to converge, the answer may not be accurate. For small z, a Neumann series is 
used to compute Kv (z). Upward recurrence of the Kv (z) is always stable.

Example

In this example, K0.3 + v–1(1.2 + 0.5i), v = 1, ..., 4 is computed and printed.

z = COMPLEX(1.2, .5)
FOR i = 0, 3 DO PM, IMSL_BESSK(i + .3, z)

( 0.245546, -0.199599)
( 0.335637, -0.362005)
( 0.586718, -1.12610)
( 0.719457, -4.83864)

PM, IMSL_BESSK(.3, z, Sequence = 4), Title = 'With SEQUENCE:'
With SEQUENCE:

( 0.245546, -0.199599)
( 0.335637, -0.362005)
( 0.586718, -1.12610)
( 0.719456, -4.83864)

Version History

6.4 Introduced

Kν z( ) π
2
---e

νπi 2⁄
iJν iz( ) Yν iz( )–[ ] for π argz   

π
2
---≤<–=
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IMSL_BESSY

The IMSL_BESSY function evaluates a Bessel function of the second kind with real 
order and real or complex parameters.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BESSY(order, z [, /DOUBLE] [, SEQUENCE=value])

Return Value

The desired value of the modified Bessel function.

Arguments

order

Real parameter specifying the desired order. The argument order must be greater than 
–1/2.

z

Real or complex parameter for which the Bessel function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

SEQUENCE

If present and nonzero, a one-dimensional array of length n containing the values of 
the Bessel function through the series is returned by IMSL_BESSY, where 
n = NELEMENTS(SEQUENCE). The i-th element of this array is the Bessel 
function of order (order + i) at z for i = 0, ... (n – 1).
IDL Analyst Reference Guide IMSL_BESSY
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Discussion

The IMSL_BESSY function evaluates a Bessel function of the second kind with real 
order and real or complex parameters. The data type of the returned value is always 
complex.

The Bessel function, Yv(z), is defined as follows:

This function is based on the code BESSCC of Thompson (1981) and Thompson and 
Barnett (1987). This code computes Yv(z) from the modified Bessel functions Iv(z) 
and Kv(z), using the following relation: 

Example

In this example, Y0.3 + v–1(1.2 + 0.5i), v = 1, ..., 4 is computed and printed.

z = COMPLEX(1.2, .5)
FOR i = 0, 3 DO PM, IMSL_BESSY(i + .3, z)

( -0.0131453, 0.379593)
(  -0.715533, 0.338082)
( -1.04777, 0.794969)
( -1.62487, 3.68447)

PM, IMSL_BESSY(.3, z, Sequence = 4), Title = 'With SEQUENCE:'
With SEQUENCE:

( -0.0131453, 0.379593)
( -0.715533, 0.338082)
( -1.04777, 0.794969)
( -1.62487,  3.68447)

Version History

6.4 Introduced
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IMSL_BESSI_EXP

The IMSL_BESSI_EXP function evaluates the exponentially scaled modified Bessel 
function of the first kind of orders zero and one.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BESSI_EXP(order, x [, /DOUBLE])

Return Value

The value of the exponentially scaled modified Bessel function of the first kind of 
order zero or one evaluated at x.

Arguments

order

Order of the function. The order must be either zero or one.

x

Argument for which the function value is desired.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

If the argument order is zero, the Bessel function is I0(x) is defined to be:

I0 x( ) 1
π
--- x θcos( )cos θd

0

π

∫=
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If order is one, the function I1(x) is defined to be:

If order is one then IMSL_BESSI_EXP underflows if |x|/2 underflows. 

Example

The expression e-4.5I0 (4.5) is computed directly by calling IMSL_BESSI_EXP and 
indirectly by calling IMSL_BESSI. The absolute difference is printed. For large x, the 
internal scaling provided by IMSL_BESSI_EXP avoids overflow that may occur in 
IMSL_BESSI.

Output

ans = IMSL_BESSI_EXP(0, 4.5)
error = ABS(ans - EXP(-4.5)*IMSL_BESSI(0, 4.5))
PRINT, ans
     0.194198
PRINT, 'Error =', error
Error = 4.4703484e-08

Version History

6.4 Introduced

I1 x( ) 1
π
--- e

x θcos θcos θd
0

π

∫=
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IMSL_BESSK_EXP

The IMSL_BESSK_EXP function evaluates the exponentially scaled modified 
Bessel function of the third kind of orders zero and one.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BESSK_EXP(order, x [, /DOUBLE])

Return Value

The value of the exponentially scaled Bessel function exK0(x) or exK1(x)

Arguments

order

Order of the function. The order must be either zero or one.

x

Argument for which the function value is desired.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

If the argument order is zero, the Bessel function K0(x) is defined to be:

K0 x( ) x tsin( )cos td
0

∞

∫=
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If order is one, the value of the Bessel function K1(x):

The argument x must be greater than zero for the result to be defined.

Example

The expression: 

is computed directly by calling IMSL_BESSK_EXP, and indirectly by calling 
IMSL_BESSK. The absolute difference is printed. For large x, the internal scaling 
provided by IMSL_BESSK_EXP avoids underflow that may occur in IMSL_BESSK.

ans = IMSL_BESSK_EXP(0, 0.5)
error = ABS(ans - (EXP(0.5))*IMSL_BESSK(0, 0.5))
PRINT, ans

1.52411
PRINT, 'Error =', error
Error = 1.1920929e-07

Errors

Fatal Errors

MATH_SMALL_ARG_OVERFLOW—The argument x must be large enough (x > max 
(1/b, s) where s is the smallest representable positive number and b is the largest 
representable number) that K1(x) does not overflow.

Version History

6.4 Introduced

K1 x( ) 1
π
--- e

x θcos θcos θd
0

π

∫=

eK0 05( ).
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IMSL_ELK

The IMSL_ELK function evaluates the complete elliptic integral of the kind K(x).

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result  = IMSL_ELK(x [, /DOUBLE])

Return Value

The complete elliptic integral K(x).

Arguments

x

Argument for which the function value is desired.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The complete elliptic integral of the first kind is defined to be:

The argument x must satisfy 0 ≤ x < 1; otherwise, IMSL_ELK returns the largest 
representable floating-point number.

The function K(x) is computed using IMSL_ELRF and the relation 
K(x) = RF(0, 1 − x, 1).

K x( ) θd

1 x θ2
sin–[ ]

1 2⁄
--------------------------------------      for 0 x 1<≤

0

π 2⁄

∫=
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Example

The integral K(0) is evaluated.

PRINT, IMSL_ELK(0.0)
      1.57080

Version History

6.4 Introduced
IMSL_ELK IDL Analyst Reference Guide
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IMSL_ELE

The IMSL_ELE function evaluates the complete elliptic integral of the second kind 
E(x).

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ELE(x [, /DOUBLE])

Return Value

The complete elliptic integral E(x).

Arguments

x

Argument for which the function value is desired.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The complete elliptic integral of the second kind is defined to be:

The argument x must satisfy 0 ≤ x < 1; otherwise, IMSL_ELE returns the largest 
representable floating-point number.

E x( ) 1 x θ2
sin–[ ]

1 2⁄
θ     for 0 x 1<≤d

0

π 2⁄
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The function E(x) is computed using the routine IMSL_ELRF and IMSL_ELRD. The 
computation is done using the relation: 

Example

The integral E(0.33) is evaluated.

PRINT, IMSL_ELE(0.33)
      1.43183 

Version History

6.4 Introduced

E x( ) RF 01 x1,–,( ) x
3
---R

D
01 x1,–,( )–=
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IMSL_ELRF

The IMSL_ELRF function evaluates Carlson’s elliptic integral of the first kind RF(x, 
y, z).

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ELRF(x, y, z [, /DOUBLE])

Return Value

The complete elliptic integral RF(x, y, z).

Arguments

x

First argument for which the function value is desired. It must be nonnegative.

y

Second argument for which the function value is desired. It must be nonnegative.

z

Third argument for which the function value is desired. It must be nonnegative.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_ELRF
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Discussion

Carlson’s elliptic integral of the second kind is defined to be: 

The arguments must be nonnegative and less than or equal to b/5. In addition, x + y, 
x + z, and y + z must be greater than or equal to 5s. Should any of these conditions 
fail, IMSL_ELRF is set to b. Here, b is the largest and is the smallest representable 
number.

The IMSL_ELRF function is based on the code by Carlson and Notis (1981) and the 
work of Carlson (1979).

Example

The integral RF(0, 1, 2) is computed.

PRINT, IMSL_ELRF(0.0, 1.0, 2.0)
      1.31103

Version History

6.4 Introduced

RF x y z, ,( ) 1
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------------------------------------------------------------
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IMSL_ELRD

The IMSL_ELRD function evaluates Carlson’s elliptic integral of the second kind 
RD(x, y, z).

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ELRD(x, y, z [, /DOUBLE])

Return Value

The complete elliptic integral RD(x, y, z)

Arguments

x

First argument for which the function value is desired. It must be nonnegative.

y

Second argument for which the function value is desired. It must be nonnegative.

z

Third argument for which the function value is desired. It must be positive.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_ELRD



518 Chapter 12: Special Functions
Discussion

Carlson’s elliptic integral of the second kind is defined to be: 

Arguments must be nonnegative and less than or equal to 0.69(−lnε)1/9s-2/3 where e is 
the machine precision, s is the smallest representable positive number. Furthermore, x 
+ y and z must be greater than max{3s2/3, 3/b2/3}, where b is the largest floating point 
number. If any of these conditions is false, then IMSL_ELRD returns b.

The IMSL_ELRD function is based on the code by Carlson and Notis (1981) and the 
work of Carlson (1979).

Example

The integral RD(0, 2, 1) is computed.

PRINT, IMSL_ELRD(0.0, 2.0, 1.0)
      1.79721

Version History

6.4 Introduced
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IMSL_ELRJ

The IMSL_ELRJ function evaluates Carlson’s elliptic integral of the third kind RJ (x, 
y, z, ρ).

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ELRJ(x, y, z, rho [, /DOUBLE])

Return Value

The complete elliptic integral RJ (x, y, z, ρ).

Arguments

rho

Fourth argument for which the function value is desired. It must be positive.

x

First argument for which the function value is desired. It must be nonnegative.

y

Second argument for which the function value is desired. It must be nonnegative.

z

Third argument for which the function value is desired. It must be positive.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_ELRJ
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Discussion

Carlson’s elliptic integral of the third kind is defined to be: 

The arguments must be nonnegative. In addition, x + y, x + z, y + z and ρ must be 
greater than or equal to (5s)1/3 and less than or equal to 0.3(b/5)1/3, where s is the 
smallest representable floating-point number. Should any of these conditions fail 
IMSL_ELRJ is set to b, the largest floating-point number.

The IMSL_ELRJ function is based on the code by Carlson and Notis (1981) and the 
work of Carlson (1979). 

Example

The integral RJ (2, 3, 4, 5) is computed.

PRINT, IMSL_ELRJ(2.0, 3.0, 4.0, 5.0)
     0.142976

Version History

6.4 Introduced

RJ x y z, , ρ,( ) 3
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IMSL_ELRC

The IMSL_ELRC function evaluates an elementary integral from which inverse 
circular functions, logarithms and inverse hyperbolic functions can be computed.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ELRC(x, y [, /DOUBLE])

Return Value

The elliptic integral RC (x, y).

Arguments

x

First argument for which the function value is desired. It must be nonnegative and 
must satisfy the conditions given below.

y

Second argument for which the function value is desired. It must be nonnegative and 
must satisfy the conditions given below.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_ELRC
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Discussion

Carlson’s elliptic integral of the third kind is defined to be: 

The argument x must be nonnegative, y must be positive, and x + y must be less than 
or equal to b/5 and greater than or equal to 5s. If any of these conditions are false, the 
IMSL_ELRC is set to b. Here, b is the largest and s is the smallest representable 
floating-point number.

The IMSL_ELRC function is based on the code by Carlson and Notis (1981) and the 
work of Carlson (1979).

Example

The integral RC (2.25, 2) is computed.

PRINT, IMSL_ELRC(2.25, 2.0)
     0.693147

Version History

6.4 Introduced

RC x y( , )
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IMSL_FRESNEL_COSINE

The IMSL_FRESNEL_COSINE function evaluates the cosine Fresnel integral.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FRESNEL_COSINE(x [, /DOUBLE])

Return Value

The value of the cosine Fresnel integral evaluated at x.

Arguments

x

Argument for which the function value is desired.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The cosine Fresnel integral is defined to be

Example

The Fresnel integral C(1.75) is evaluated.

PRINT, IMSL_FRESNEL_COSINE(1.75)
     0.321935

C x( ) π
2
---t

2

 
 cos td

0

x

∫=
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Version History
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IMSL_FRESNEL_SINE

The IMSL_FRESNEL_SINE function evaluates the sine Fresnel integral.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FRESNEL_SINE(x [, /DOUBLE])

Return Value

The value of the sine Fresnel integral evaluated at x.

Arguments

x

Argument for which the function value is desired.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The sine Fresnel integral is defined to be:

Example

The Fresnel integral S(1.75) is evaluated.

PRINT, IMSL_FRESNEL_SINE(1.75)
     0.499385

S x( ) π
2
---t

2

 
 sin td

0

x

∫=
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IMSL_AIRY_AI

The IMSL_AIRY_AI function evaluates the Airy function.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_AIRY_AI(x [, DERIVATIVE=value] [, /DOUBLE])

Return Value

The value of the Airy function evaluated at x, Ai(x).

Arguments

x

Argument for which the function value is desired.

Keywords

DERIVATIVE

If present and nonzero, then the derivative of the Airy function is computed.

DOUBLE

If present and nonzero, double precision is used.

Discussion

The airy function Ai(x) is defined to be:

Ai x( ) 1
π
--- xt

1
3
---t

3
+ 

 cos td
0

∞

∫ x

3π2
---------K1 3⁄

2
3
---x

3 2⁄
 
 = =
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The Bessel function Kv(x) is defined in “IMSL_BESSK” on page 503.

If x < −1.31ε-2/3, then the answer will have no precision. If x < −1.31ε-1/3, the answer 
will be less accurate than half precision. Here ε is the machine precision.

x should be less than xmax so the answer does not underflow. Very approximately, 
xmax = {−1.5lns}2/3, where s = the smallest representable positive number. 

If the keyword DERIVATIVE is set, then the airy function Ai′(x) is defined to be the 
derivative of the Airy function, Ai(x) (see the “IMSL_AIRY_AI” on page 527). If 
x < −1.31ε-2/3, then the answer will have no precision. If x < −1.31ε-1/3, the answer 
will be less accurate than half precision. Here ε is the machine precision. x should be 
less than xmax so the answer does not underflow. Very approximately, 
xmax = {−1.51lns}, where s is the smallest representable positive number.

Example

In this example, Ai(−4.9) and Ai'(−4.9) are evaluated.

PRINT, IMSL_AIRY_AI(-4.9)
     0.374536 
PRINT, IMSL_AIRY_AI(-4.9, /Derivative)    
     0.146958

Version History

6.4 Introduced
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IMSL_AIRY_BI

The IMSL_AIRY_BI function evaluates the Airy function of the second kind.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result  = IMSL_AIRY_BI(x [, DERIVATIVE=value] [, /DOUBLE])

Return Value

The value of the Airy function evaluated at x, Bi(x).

Arguments

x

Argument for which the function value is desired.

Keywords

DERIVATIVE

If present and nonzero, then the derivative of the Airy function of the second kind is 
computed.

DOUBLE

If present and nonzero, double precision is used.
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Discussion

The airy function Bi(x) is defined to be:

It can also be expressed in terms of modified Bessel functions of the first kind, Iv(x), 
and Bessel functions of the first kind Jv(x) (see “IMSL_BESSI” on page 498, and 
“IMSL_BESSJ” on page 500):

and:

Here ε is the machine precision. If x < −1.31ε–2/3, then the answer will have no 
precision. If x < −1.31ε–1/3, the answer will be less accurate than half precision. In 
addition, x should not be so large that exp[(2/3)x3/2] overflows.

If the keyword DERIVATIVE is set, the airy function Bi′(x) is defined to be the 
derivative of the Airy function of the second kind, Bi(x) (see “IMSL_AIRY_BI” on 
page 529). If x < −1.31ε–2/3, then the answer will have no precision. If x < −1.31ε–1/3, 
the answer will be less accurate than half precision. Here ε is the machine precision. 
In addition, x should not be so large that exp[(2/3)x3/2] overflows.

Example

In this example, Bi(−4.9) and Bi′(-4.9) are evaluated.

PRINT, IMSL_AIRY_BI(-4.9)
    -0.0577468
PRINT, IMSL_AIRY_BI(-4.9, /Derivative)
     0.827219

Bi x( ) 1
π
--- xt

1
3
---t

3
– 

 exp td
0

∞

∫
1
π
--- xt

1
3
---t

3
+ 

 sin td
0

∞

∫= =

Bi x( ) x
3
--- I 1 3⁄–

2
3
---x

3 2⁄
 
  I1 3⁄

2
3
---x

3 2⁄
 
 +       for  x 0>=

Bi x( ) x–
3

------ J 1 3⁄–
2
3
--- x

3 2⁄
 
  J1 3⁄

2
3
--- x

3 2⁄
 
 –       for  x 0<=
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IMSL_KELVIN_BER0

The IMSL_KELVIN_BER0 function evaluates the Kelvin function of the first kind, 
ber, of order zero.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_KELVIN_BER0(x [, DERIVATIVE=value] [, /DOUBLE])

Return Value

The value of the Kelvin function of the first kind, ber, of order zero evaluated at x.

Arguments

x

Argument for which the function value is desired.

Keywords

DERIVATIVE

If present and nonzero, then the derivative of the Kelvin function of the first kind, ber, 
of order zero evaluated at x is computed.

DOUBLE

If present and nonzero, double precision is used.

Discussion

The Kelvin function ber0(x) is defined to be ℜ J0(xe3πi/4). The Bessel function J0(x) is 
defined: 

J0 x( ) 1
π
--- x θsin( )cos θd

0

π

∫=
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If the keyword DERIVATIVE is set, the function ber0′(x) is defined to be:

If |x| > 119, NaN is returned.

The IMSL_KELVIN_BER0 function is based on the work of Burgoyne (1963).

Example

In this example, ber0 (0.4) and ber0′ (0.6) are evaluated.

PRINT, IMSL_KELVIN_BER0(0.4)
     0.999600
PRINT, IMSL_KELVIN_BER0(0.6, /DERIVATIVE)
   -0.0134985

Version History

6.4 Introduced

xd
d ber0 x( )
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IMSL_KELVIN_BEI0

The IMSL_KELVIN_BEI0 function evaluates the Kelvin function of the first kind, 
bei, of order zero.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_KELVIN_BEI0(x [, DERIVATIVE=value] [, /DOUBLE])

Return Value

The value of the Kelvin function of the first kind, bei, of order zero evaluated at x.

Arguments

x

Argument for which the function value is desired.

Keywords

DERIVATIVE

If present and nonzero, then the derivative of the Kelvin function of the first kind, bei, 
of order zero evaluated at x is computed.

DOUBLE

If present and nonzero, double precision is used.

Discussion

The Kelvin function bie0(x) is defined to be . The Bessel function J0(x) 
is defined: 

ℑ J0 xe
3πι 4⁄( )

J0 x( ) 1
π
--- x θsin( )cos θd

0

π

∫=
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In IMSL_KELVIN_BEI0, x must be less than 119.

If the keyword DERIVATIVE is set, the function bei0′(x) is defined to be: 

If the keyword DERIVATIVE is set and |x| > 119, NaN is returned.

The IMSL_KELVIN_BEI0 function is based on the work of Burgoyne (1963).

Example

In this example, bei0(0.4) and bei0′(0.6) are evaluated.

PRINT, IMSL_KELVIN_BEI0(0.4)
    0.0399982
PRINT, IMSL_KELVIN_BEI0(0.6, /DERIVATIVE)
     0.299798

Version History

6.4 Introduced

d
dx

xbei0( )
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IMSL_KELVIN_KER0

The KELVIN_KERO function evaluates the Kelvin function of the second kind, ker, 
of order zero.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_KELVIN_KER0(x [, DERIVATIVE=value] [, /DOUBLE])

Return Value

The value of the Kelvin function of the second kind, ker, of order zero evaluated at x.

Arguments

x

Argument for which the function value is desired.

Keywords

DERIVATIVE

If present and nonzero, then the derivative of the Kelvin function of the second kind, 
ker, of order zero evaluated at x is computed.

DOUBLE

If present and nonzero, double precision is used.

Discussion

The modified Kelvin function ker0(x) is defined to be ℜ K0(xepi/4). The Bessel 
function K0(x) is defined: 

K0 x( ) x tsin( )cos td
0

π

∫=
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If the keyword DERIVATIVE is set, the function ker0′(x) is defined to be: 

If x < 0, NaN (Not a Number) is returned. If x ≥ 119, then zero is returned.

The IMSL_KELVIN_KER0 function is based on the work of Burgoyne (1963).

Example

In this example, ker0(0.4) and ker0′(0.6) are evaluated.

PRINT, IMSL_KELVIN_KER0(0.4)
      1.06262
PRINT, IMSL_KELVIN_KER0(0.6, /DERIVATIVE)
     -1.45654

Version History

6.4 Introduced

d
dx

xker0( )
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IMSL_KELVIN_KEI0

The IMSL_KELVIN_KEI0 function evaluates the Kelvin function of the second 
kind, kei, of order zero.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_KELVIN_KEI0(x [, DERIVATIVE=value] [, /DOUBLE])

Return Value

The value of the Kelvin function of the second kind, kei, of order zero evaluated at x.

Arguments

x

Argument for which the function value is desired.

Keywords

DERIVATIVE

If present and nonzero, then the derivative of the Kelvin function of the second kind, 
kei, of order zero evaluated at x is computed.

DOUBLE

If present and nonzero, double precision is used.

Discussion

The modified Kelvin function kei0(x) is defined to be . The Bessel 
function K0(x) is defined as: 

ℑ K0 xe
3πι 4⁄( )

K0 x( ) x tsin( )cos td
0

∞

∫=
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If the keyword DERIVATIVE is set, the function kei0′(x) is defined to be: 

The IMSL_KELVIN_KEI0 function is based on the work of Burgoyne (1963).

If x < 0, NaN (Not a Number) is returned. If x ≥ 119, zero is returned.

Example

In this example, kei0(0.4) and kei0′(0.6) are evaluated.

PRINT, IMSL_KELVIN_KEI0(0.4)
    -0.703800
PRINT, IMSL_KELVIN_KEI0(0.6, /DERIVATIVE)
     0.348164

Version History

6.4 Introduced

d
dx

xkei0( )
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Chapter 13

Basic Statistics
This section contains the following topics:
Overview: Basic Statistics . . . . . . . . . . . . .  544 Basic Statistics Routines  . . . . . . . . . . . . .  545
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Overview: Basic Statistics

The functions for computations of basic statistics generally have relatively simple 
input parameters. The data are input in either a one- or two-dimensional array. As 
usual, when a two-dimensional array is used, the rows contain observations and the 
columns represent variables. Most of the functions in this chapter allow for missing 
values. Missing value codes can be set using IMSL_MACHINE.

Several functions in this chapter perform statistical tests. These functions generally 
return a “p-value” for the test, often as the return value for the C function. The 
p-value is between 0 and 1 and is the probability of observing data that would yield a 
test statistic as extreme or more extreme under the assumption of the null hypothesis. 
Hence, a small p-value is evidence for the rejection of the null hypothesis.
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Basic Statistics Routines

Simple Summary Statistics

IMSL_SIMPLESTAT—Univariate summary statistics. 

IMSL_NORM1SAMP—Mean and variance inference for a single normal population.

IMSL_NORM2SAMP—Inferences for two normal populations. 

Tabulate, Sort, and Rank

IMSL_FREQTABLE—Tallies observations into a one-way frequency table.

IMSL_SORTDATA—Sorts data with options to tally cases into a multiway frequency 
table. 

IMSL_RANKS—Ranks, normal scores, or exponential scores. 
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IMSL_SIMPLESTAT

The IMSL_SIMPLESTAT function computes basic univariate statistics.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SIMPLESTAT(x)

Return Value

A two-dimensional matrix containing some simple statistics for each variable x. If 
Median and Median_And_Scale are not used as keywords, then element (i, j) of the 
returned matrix contains the i-th statistic of the j-th variable. Refer to Table 13-1 for a 
list of results.

i Statistic Returned in Element (i, *)

0 mean

1 variance

2 standard deviation

3 coefficient of skewness

4 coefficient of excess (kurtosis)

5 minimum value

6 maximum value

7 range

8 coefficient of variation (when defined)

If the coefficient of variation is not defined, zero is returned.

Table 13-1: IMSL_SIMPLESTAT Results
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Arguments

x

Data matrix. The data value for the i-th observation of the j-th variable should be in 
the matrix element (i, j).

Keywords

CONF_MEANS

Scalar specifying the confidence level for a two-sided interval estimate of the means 
(assuming normality) in percent. The CONF_MEANS keyword must be between 0.0 
and 100.0 and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with 
confidence level c, set CONF_MEANS = 100.0 – 2.0(100.0 – c) (at least 50 percent). 
Default: 95-percent confidence interval is computed

CONF_VARIANCES

Confidence level for a two-sided interval estimate of the variances (assuming 
normality) in percent. The confidence intervals are symmetric in probability (rather 
than in length). For one-sided confidence interval with confidence level c, set 
CONF_MEANS = 100.0 – 2.0(100.0 – c) (at least 50 percent). Default: 95-percent 
confidence interval is computed.

DOUBLE

If present and nonzero, double precision is used.

9 number of observations (the counts)

10 lower confidence limit for the mean (assuming normality)

The default is a 95-percent confidence interval.

11 upper confidence limit for the mean (assuming normality)

12 lower confidence limit for the variance (assuming normality)

The default is a 95-percent confidence interval.

13 upper confidence limit for the variance (assuming normality)

i Statistic Returned in Element (i, *)

Table 13-1: IMSL_SIMPLESTAT Results (Continued)
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ELEMENTWISE

If present and nonzero, all nonmissing data for any variable is used in computing the 
statistics for that variable. Default action: if an observation (row of x) contains a 
missing value, the observation is excluded from computations for all variables. In 
either case, if weights and/or frequencies are specified and the value of the weight 
and/or frequency is missing, the observation is excluded from computations for all 
variables.

FREQUENCIES

One-dimensional array containing the frequency for each observation. Default: each 
observation has a frequency of 1

MEDIAN_ONLY

If present and nonzero, medians are computed and stored in elements (14, *) of the 
returned matrix of simple statistics. The MEDIAN_ONLY and 
MEDIAN_AND_SCALE keywords cannot be used together. 

MEDIAN_AND_SCALE

If present and nonzero, specified, the medians, the medians of the absolute deviations 
from the medians, and a simple robust estimate of scale are computed and stored in 
elements (14, *), (15, *), and (16, *) of the returned matrix of simple statistics. The 
MEDIAN_ONLY and MEDIAN_AND_SCALE keywords cannot be used together. 

WEIGHTS

One-dimensional array containing the weight for each observation. Default: each 
observation has a weight of 1.

Discussion

The IMSL_SIMPLESTAT function computes the sample mean, variance, minimum, 
maximum, and other basic statistics for the data in x. It also computes confidence 
intervals for the mean and variance (under the hypothesis that the sample is from a 
normal population).

Frequencies, fi’s, are interpreted as multiple occurrences of the other values in the 
observations. In other words, a row of x with a frequency variable having a value of 2 
has the same effect as two rows with frequencies of 1. The total of the frequencies is 
used in computing all the statistics based on moments (mean, variance, skewness, and 
kurtosis). Weights, wi’s, are not viewed as replication factors. The sum of the weights 
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is used only in computing the mean (the weighted mean is used in computing the 
central moments). Both weights and frequencies can be zero, but neither can be 
negative. In general, a zero frequency means that the row is to be eliminated from the 
analysis; no further processing or error checking is done on the row. A weight of zero 
results in the row being counted, and updates are made of the statistics.

The definitions of some of the statistics are given below in terms of a single variable x 
of which the i-th datum is xi.

Mean 

Variance 

Skewness 

Excess or Kurtosis 

Minimum

xmin = min(xi) 

Maximum

xmax = max(xi)

Range

xmax – xmin 

xw

fiwixi∑
fiwi∑

---------------------=

sw
2 fiwi xi xw–( )2

∑
n 1–

-----------------------------------------=

fiwi xi xw–( )3
n⁄∑

fiwi xi xw–( )2
n⁄∑

3 2⁄
------------------------------------------------------------------

fiwi xi xw–( )4
n⁄∑

fiwi xi xw–( )2
n⁄∑

2
------------------------------------------------------------- 3–
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Coefficient of Variation 

Median 

Median Absolute Deviation

 

Simple Robust Estimate of Scale

 

where  

is the inverse of the standard normal distribution function evaluated at 3/4. This 
standardizes MAD in order to make the scale estimate consistent at the normal 
distribution for estimating the standard deviation (Huber 1981, pp. 107–108).

Example

This example uses data from Draper and Smith (1981). There are five variables and 
13 observations.

x = IMSL_STATDATA(5)
stats = IMSL_SIMPLESTAT(x)
; Call IMSL_SIMPLESTAT.
labels = ['means', 'variances', 'std. dev', $

'skewness', 'kurtosis', 'minima', $
'maxima', 'ranges', 'C.V.', 'counts', $
'lower mean', 'upper mean', 'lower var', 'upper var']

; Define the character strings that will be used as labels for the
; rows of the output.
FOR i = 0, 13 DO PM, labels(i), stats(i, *), $

FORMAT = '(a10, 5f9.3)'
; Output the results.
means 7.462 48.154 11.769 30.000 95.423
variances 34.603 242.141 41.026 280.167 226.314
std. dev 5.882 15.561  6.405 16.738 15.044
skewness 0.688 -0.047  0.611  0.330 -0.195
kurtosis 0.075 -1.323 -1.079 -1.014 -1.342

sw

xw
------ for x 0≠

median xi{ }
middle xi after sorting if n is odd

average of middle two xi 's if n is even






=

MAD median  xi median xj{ }  –{=

MAD Φ 1–
3 4⁄( )⁄

Φ 1–
3 4⁄( ) 0.6745≈
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minima 1.000 26.000  4.000 6.000 72.500
maxima 21.000 71.000 23.000 60.000 115.900
ranges 20.000 45.000 19.000 54.000 43.400
C.V. 0.788  0.323  0.544  0.558 0.158
counts 13.000 13.000 13.000 13.000 13.000
lower mean 3.907 38.750  7.899 19.885 86.332
upper mean 11.016 57.557 15.640 40.115 104.514
lower var 17.793 124.512 21.096 144.065 116.373
upper var 94.289 659.817 111.792 763.434 616.688

Version History

6.4 Introduced
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IMSL_NORM1SAMP

The IMSL_NORM1SAMP function computes statistics for mean and variance 
inferences using a sample from a normal population.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NORM1SAMP(x [, CHI_SQ_NULL_HYP=value] 
[, CI_MEAN=variable] [, CI_VAR=variable] [, CHI_SQ_TEST=variable] 
[, CONF_MEAN=value] [, CONF_VAR=value] [, /DOUBLE] 
[, STDEV=variable] [, T_NULL_HYP=value] [, T_TEST=variable])

Return Value

The mean of the sample.

Arguments

x

One-dimensional array containing the observed values.

Keywords

CHI_SQ_NULL_HYP

Null hypothesis value for the chi-squared test for the variance. Default: 
CHI_SQ_NULL_HYP = 1.0

CI_MEAN

Named variable into which the two-element array containing the lower confidence 
limit for the mean, and the upper confidence limit for the mean is stored.
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CI_VAR

Named variable into which the two-element array containing lower and upper 
confidence limits for the variance is stored.

CHI_SQ_TEST

Named variable into which the three-element array containing statistics associated 
with the chi-squared test is stored. The first element contains the degrees of freedom 
associated with the chi-squared test for variances, the second element contains the 
test statistic, and the third element contains the probability of a larger chi-squared 
value. The chi-squared test is a test of the hypothesis σ2 = σ2

0, where σ2
0 is the null 

hypothesis value as described in CHI_SQ_NULL_HYP.

CONF_MEAN

Confidence level (in percent) for two-sided interval estimate of the mean. The 
keyword CONF_MEAN must be between 0.0 and 100.0 and is often 90.0, 95.0, or 
99.0. For a one-sided confidence interval with confidence level c (at least 50 percent), 
set CONF_MEAN = 100.0 – 2.0 x (100.0 – c). Default: 95-percent confidence 
interval is computed.

CONF_VAR

Confidence level (in percent) for two-sided interval estimate of the variances. 
Keyword CONF_VAR must be between 0.0 and 100.0 and is often 90.0, 95.0, or 
99.0. For a one-sided confidence interval with confidence level c (at least 50 percent), 
set CONF_VAR = 100.0 – 2.0 x (100.0 – c). Default: 95-percent confidence interval 
is computed.

DOUBLE

If present and nonzero, double precision is used.

STDEV

Variable into which the standard deviation of the sample is stored.

T_NULL_HYP

Null hypothesis value for t test for the mean. Default: T_NULL_HYP = 0.0
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T_TEST

Named variable into which the three-element array containing statistics associated 
with the t test is stored. The first element contains the degrees of freedom associated 
with the t test for the mean, the second element contains the test statistic, and the third 
element contains the probability of a larger t in absolute value. The t test is a test of 
the hypothesis µ = µ0, where µ0 is the null hypothesis value as described in 
T_NULL_HYP.

Discussion

Statistics for mean and variance inferences using a sample from a normal population 
are computed, including confidence intervals and tests for both mean and variance. 
The definitions of mean and variance are given below. The summation in each case is 
over the set of valid observations, based on the presence of missing values in the data.

Mean, return value 

Standard deviation 

The t statistic for the two-sided test concerning the population mean is given by: 

where s and  

are given above. This quantity has a T distribution with n – 1 degrees of freedom.

The chi-squared statistic for the two-sided test concerning the population variance is 
given by: 

where s is given above. This quantity has a χ2 distribution with n – 1 degrees of 
freedom.

x
xi∑

n----------=

s
xi x–( )2

∑
n 1–

--------------------------=

t
x µ0–

s n⁄
--------------=

x

χ2 n 1–( )s
2

σ0
2

---------------------=
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Examples

Example 1

This example uses data from Devore (1982, p. 335), which is based on data published 
in the Journal of Materials. There are 15 observations; the mean is the only output. 

x = [26.7, 25.8, 24.0, 24.9, 26.4, $
25.9, 24.4, 21.7, 24.1, 25.9, $
27.3, 26.9, 27.3, 24.8, 23.6]
PRINT, 'Sample Mean = ', IMSL_NORM1SAMP(x)
Sample Mean = 25.3133

Example 2

This example uses the same data as the initial example. The hypothesis H0: µ = 20.0 
is tested. The extremely large t value and the correspondingly small p-value provide 
strong evidence to reject the null hypothesis. First, a procedure to print the results is 
defined.

.RUN
PRO print_results, mean, stdev, $

ci_mean, t_test
PM, mean, Title = 'Sample Mean:'
PM, stdev, Title = 'Sample Standard Deviation:'
PM, '(', ci_mean(0), ci_mean(1), ')', $

Title = '95% CI for the mean:'
PM, ' '
PM, ' df = ', t_test(0), Title = 't-test statistics:'
PM, '   t   = ', t_test(1)
PM, '   p-value = ', t_test(2)

END

x = [26.7, 25.8, 24.0, 24.9, 26.4, 25.9, 24.4,$
21.7, 24.1, 25.9, 27.3, 26.9, 27.3, 24.8, 23.6]

mean = IMSL_NORM1SAMP(x, Stdev = stdev, Ci_Mean = ci_mean, $
T_Null_Hyp = 40.0, T_Test = t_test)

print_results, mean, stdev, ci_mean, t_test

Sample Mean:
  25.3133

Sample Standard Deviation:
 1.57882

95% CI for the mean:
(  24.4390  26.1877) 

t-test statistics:
 df  =   14.0000
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 t   =      -36.0277
 p-value = 0.00000

Version History

6.4 Introduced
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IMSL_NORM2SAMP

The IMSL_NORM2SAMP function computes statistics for mean and variance 
inferences using samples from two independently normal populations.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NORM2SAMP(x1, x2 [, CI_DIFF_EQ_VAR=variable] 
[, CI_DIFF_NE_VAR=variable] [, CONF_MEAN=value] [, CONF_VAR=value] 
[, CI_COMM_VAR=variable] [, CI_RATIO_VAR=variable] 
[, CHI_SQ_NULL_HYP=value] [, CHI_SQ_TEST=variable] [, /DOUBLE] 
[, F_TEST=variable] [, MEAN_X1=value] [, MEAN_X2=value] 
[, POOLED_VAR=variable] [, STDEV_X1=variable] [, STDEV_X2=variable] 
[, T_TEST_EQ_VAR=variable] [, T_TEST_NE_VAR=variable] 
[, T_TEST_NULL_HYP=value])

Return Value

Difference in means of the mean of the second sample from the first sample.

Arguments

x1

One-dimensional array containing the first sample.

x2

One-dimensional array containing the second sample.

Keywords

CI_DIFF_EQ_VAR

Named variable into which the two-element array containing the lower confidence 
limit and the upper limit for the mean of the first population minus the mean of the 
second, assuming equal variances is stored.
IDL Analyst Reference Guide IMSL_NORM2SAMP



558 Chapter 13: Basic Statistics
CI_DIFF_NE_VAR

Named variable into which the two-element array containing the lower confidence 
limit and the upper limit for the mean of the first population minus the mean of the 
second, assuming unequal variances, is stored.

CONF_MEAN

Confidence level for two-sided interval estimate of the mean of x1 minus the mean of 
x2, in percent. The keyword CONF_MEAN must be between 0.0 and 100.0 and is 
often 90.0, 95.0, or 99.0. For a one-sided confidence interval with confidence level c 
(at least 50 percent), set CONF_MEAN = 100.0 – 2.0 x (100.0 – c). Default: 
CONF_MEAN = 95.0

CONF_VAR

Confidence level for inference on variances. Under the assumption of equal 
variances, the pooled variance is used to obtain a two-sided CONF_VAR percent 
confidence interval for the common variance if CI_COMM_VAR is specified. 
Without making the assumption of equal variances, the ratio of the variances is of 
interest. A two-sided CONF_VAR percent confidence interval for the ratio of the 
variance of the first sample to that of the second sample is computed and is returned if 
CI_RATIO_VAR is specified. The confidence intervals are symmetric in probability. 
Default: CONF_VAR = 95.0

CI_COMM_VAR

Named variable into which the two-element array containing the lower confidence 
limit and the upper confidence limit for the common (or pooled) variance is stored.

CI_RATIO_VAR

Named variable into which the two-element array containing the approximate lower 
confidence limit and the approximate upper confidence limit for the ratio of the 
variance of the first population to the second is stored.

CHI_SQ_NULL_HYP

Null hypothesis value for the chi-squared test. Default: CHI_SQ_NULL_HYP = 1.0

CHI_SQ_TEST

Named variable into which the three-element array containing statistics associated 
with the chi-squared test for σ2 = σ2

0, where σ2 is the common (or pooled) variance 
and σ2

0 is the null hypothesis value, is stored. (See the description for 
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CHI_SQ_NULL_HYP.) The first element contains the degrees of freedom, the 
second element contains the chi-squared value, and the third element contains the 
probability of a larger chi-squared value, p-value. This test assumes equal variances.

DOUBLE

If present and nonzero, double precision is used.

F_TEST

Named variable into which the four-element array containing statistics associated 
with the F test for equality of variances is stored. The first element contains the 
degrees of freedom for the numerator, the second element contains the degrees of 
freedom for the denominator, the third element contains the F test value, and the 
fourth element contains the probability of a larger F value, p-value, assuming the null 
hypothesis (H0: σ2

1 = σ2
2) is true.

MEAN_X1

Means of the first sample.

MEAN_X2

Means of the second sample.

POOLED_VAR

Named variable into which the pooled variance for the two samples is stored.

STDEV_X1

Named variable into which the standard deviation of the first sample is stored.

STDEV_X2

Named variable into which the standard deviation of the second sample is stored.

T_TEST_EQ_VAR

Variable into which the three-element array containing statistics associated with a t 
test for µ1 – µ2 = d, where d is the null hypothesis value, is stored. (See the 
description of T_TEST_NULL_HYP.) The first element contains degrees of freedom, 
second element contains the t value, and third element contains the probability of a 
larger t in absolute value, assuming the null hypothesis is true. This test assumes 
equal variances.
IDL Analyst Reference Guide IMSL_NORM2SAMP



560 Chapter 13: Basic Statistics
T_TEST_NE_VAR

Named variable into which the three-element array containing statistics associated 
with a t test for µ1 – µ2 = d, where d is the null hypothesis value, is stored. (See the 
description for T_TEST_NULL_HYP.) The first element contains the degrees of 
freedom for Satterthwaite’s approximation, the second element contains the t value, 
and the third element contains the probability of a larger t in absolute value, assuming 
the null hypothesis is true. This test does not assume equal variances. 

T_TEST_NULL_HYP

Null hypothesis value for the t test. Default: T_TEST_NULL_HYP = 0.0

Discussion

The IMSL_NORM2SAMP function computes statistics for making inferences about 
the means and variances of two normal populations, using independent samples in x1 
and x2. For inferences concerning parameters of a single normal population, see 
“IMSL_NORM1SAMP” on page 552.

Let µ1 and σ2
1 be the mean and variance of the first population, and let µ2 and σ2

2 be 
the corresponding quantities of the second population. The function contains test 
statistics and confidence intervals for difference in means, equality of variances, and 
the pooled variance.

The means and variances for the two samples are as follows: 

and: 

Inferences about the Means

The test that the difference in means equals a certain value, for example, µ0, depends 
on whether or not the variances of the two populations can be considered equal. If the 
variances are equal and T_TEST_NULL_HYP equals zero, the test is the two-sample 
t test, which is equivalent to an analysis-of-variance test. The pooled variance for the 
difference-in-means test is as follows: 

x1 x1i n1⁄∑ 
  ,  = x2 x2i∑ 

  n2⁄=

s1
2

x1i x1–( )2

n1 1–( )
------------------------- s2

2
x2i x2–( )2

n2 1–( )
-------------------------∑=,∑=
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The t statistic is as follows: 

Also, the confidence interval for the difference in means can be obtained by 
specifying CI_DIFF_EQ_VAR.

If the population variances are not equal, the ordinary t statistic does not have a t 
distribution and several approximate tests for the equality of means have been 
proposed. (For example, see Anderson and Bancroft 1952, and Kendall and Stuart 
1979.) One of the earliest tests devised for this situation is the Fisher-Behrens test, 
based on Fisher’s concept of fiducial probability. A procedure used if 
T_TEST_NE_VAR and/or CI_DIFF_NE_VAR are specified is the Satterthwaite’s 
procedure, as suggested by H.F. Smith and modified by F.E. Satterthwaite (Anderson 
and Bancroft 1952, p. 83).

The test statistic is:

where:

Under the null hypothesis of µ1 – µ2 = d, this quantity has an approximate t 
distribution with degrees of freedom given by the following equation:

s
2 n1 1–( )s1 n2 1–( )s2+

n1 n2 2–+
-------------------------------------------------------=

t
x1 x2– d–

s 1 n1⁄( ) 1 n2⁄( )+
-----------------------------------------------=

t ′ x1 x2– d–( ) sd⁄=

sd s1
2

n1⁄( ) s2
2

n2⁄( )+=

df
sd

4

s1
2

n1⁄( )
2

n1 1–
---------------------

s2
2

n2⁄( )
2

n2 1–
---------------------+

--------------------------------------------------=
IDL Analyst Reference Guide IMSL_NORM2SAMP



562 Chapter 13: Basic Statistics
Inferences about the Variances

The F statistic for testing the equality of variances is given by:

F = s2
max / s

2
min, 

where s2
max is the maximum of s2

1 and s2
2. If the variances are equal, this quantity 

has an F distribution with n1 – 1 and n2 – 1 degrees of freedom, where n1 is the 
sample size corresponding to s2

max.

Generally, it is not recommended that the results of the F test be used to decide 
whether to use the regular t test or the modified t′ on a single set of data. The 
modified t′ (Satterthwaite’s procedure) is the more conservative approach to use if 
there is doubt about the equality of the variances.

Examples

Example 1

This example, taken from Conover and Iman (1983, p. 294), involves scores on 
arithmetic tests of two grade-school classes. The question is whether a group taught 
by an experimental method has a higher mean score. Only the difference in means is 
output. The data are shown in Table 13-2. 

Scores for Standard Group Scores for Experimental 
Group

72 111

75 118

77 128

80 138

104 140

110 150

125 163

 164

 169

Table 13-2: Class Scores
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x1 = [72, 75, 77, 80, 104, 110, 125]
x2 = [111, 118, 128, 138, 140, 150, 163, 164, 169]
PRINT, 'difference of means = ', IMSL_NORM2SAMP(x1, x2)
difference of means =      -50.4762

Example 2

The same data is used for this example as for the initial example. Here, the results of 
the t test are output. The variances of the two populations are assumed to be equal. It 
is seen from the output that there is strong reason to believe that the two means are 
different (t value of –4.804). Since the lower 97.5-percent confidence limit does not 
include zero, the null hypothesis is that µ1 ≤ µ2 would be rejected at the 0.05 
significance level. (The closeness of the values of the sample variances provides 
some qualitative substantiation of the assumption of equal variances.) First, define a 
procedure to print the results.

PRO print_results, diff, sp, ci, t
PM, diff, Title = 'Difference of Means: '
PM, sp, Title = 'Pooled Variance: '
PM, 'CI for Difference of Means is (', ci(0), ',', ci(1), ')'
PM, ' '
PM, 't-test for Equal Variances:'
PM, t(0), Title = 'Degrees of Freedom:'
PM, t(1), Title = 't statistic: '
PM, t(2), Title = 'P-Value:'

END
x1 = [72, 75, 77, 80, 104, 110, 125]
x2 = [111, 118, 128, 138, 140, 150, 163, 164, 169]
diff = IMSL_NORM2SAMP(x1, x2, Pooled_Var = sp, $

Ci_Diff_Eq_Var = ci, T_Test_Eq_Var = t)
print_results, diff, sp, ci, t
Difference of Means: 
 -50.4762
Pooled Variance: 
   434.633
CI for Difference of Means is 

(     -73.0100,     -27.9424)
t-test for Equal Variances:
Degrees of Freedom:
  14.0000
t statistic: 
 -4.80436
P-Value:
 0.000280258
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Version History

6.4 Introduced
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IMSL_FREQTABLE

The IMSL_FREQTABLE function tallies observations into a one-way or two-way 
frequency table.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FREQTABLE(x, nxbins[, y, nybins] [, CUTPOINTS=array] 
[, CUTPOINTS=array] [, CLASS_MARKS=array] [, /DOUBLE] 
[, LOWER_BOUND=value] [, UPPER_BOUND=value])

Return Value

One-dimensional or two-dimensional array containing the counts.

Arguments

nxbins

Number of intervals (bins) for x.

nybins

(Optional) Number of intervals (bins) for y. 

x

One-dimensional array containing the observations for the first variable.

y

(Optional) One-dimensional array containing the observations for the second 
variable.
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Keywords

CUTPOINTS

(Use this keyword if two positional arguments are used) Specifies a one-dimensional 
array of length nxbins containing the cutpoints to use. This option allows unequal 
intervals. The initial interval is closed on the right and contains the initial cutpoint as 
its right endpoint. The last interval is open on the left and includes all values greater 
than the last cutpoint. The remaining nxbins − 2 intervals are open on the left and 
closed on the right. The argument nxbins must be greater than 3 for this option. If 
CUTPOINTS is used, no other keywords should be specified.

CUTPOINTS

(Use this keyword if four positional arguments are used.) Specifies a one-dimensional 
array of cutpoints (boundaries). CUTPOINTS must be a one-dimensional array of 
length (nxbins – 1) + (nybins – 1) containing the cutpoints for x in the first (nxbins–1) 
elements followed by the cutpoints for y in the final (nybins–1) elements. 

CLASS_MARKS

If two positional arguments are used, this keyword specifies a one-dimensional array 
containing equally spaced class marks in ascending order. The class marks are the 
midpoints of each of the nxbins, and each interval is taken to have length 
(CLASS_MARKS(1) – CLASS_MARKS(0)). The argument nxbins must be greater 
than or equal to 2 for this option. If CLASS_MARKS is used, then no other keywords 
should be specified.

If four positional arguments are used, this keyword specifies a one-dimensional array 
containing equally spaced class marks in ascending order. The class marks are the 
midpoints of each interval. The keyword CLASS_MARKS must be a one-
dimensional array of length (nxbins + nybins) containing the class marks for x in the 
first nxbins elements followed by the class marks for y in the final nybins elements. 

DOUBLE

If present and nonzero, double precision is used.

LOWER_BOUND

If two positional arguments are used, use this keyword and the UPPER_BOUND 
keyword together to specify two semi-infinite intervals that are used as the initial and 
last interval. The LOWER_BOUND and UPPER_BOUND keywords must be used 
together. The initial interval is closed on the right and includes LOWER_BOUND as 
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its right endpoint. The last interval is open on the left and includes all values greater 
than UPPER_BOUND. The remaining nxbins − 2 intervals are of length. 
(UPPER_BOUND – LOWER_BOUND)/(nxbins – 2) and are open on the left and 
closed on the right. The argument nxbins must be greater than or equal to 3 for this 
option.

If four positional arguments are used, use this keyword with the UPPER_BOUND 
keyword to specify intervals of equal lengths. The LOWER_BOUND and 
UPPER_BOUND keywords must be used together. See “Discussion” below for 
details.

UPPER_BOUND

If two positional arguments are used, use this keyword along with the 
LOWER_BOUND keyword to specify two semi-infinite intervals that are used as the 
initial and last interval. The UPPER_BOUND and LOWER_BOUND keywords 
must be used together. The initial interval is closed on the right and includes 
LOWER_BOUND as its right endpoint. The last interval is open on the left and 
includes all values greater than UPPER_BOUND. The remaining nxbins − 2 intervals 
are of length (UPPER_BOUND – LOWER_BOUND)/( nxbins – 2)and are open on 
the left and closed on the right. LOWER_BOUND must also be specified with this 
keyword. The argument nxbins must be greater than or equal to 3 for this option. 

If four positional arguments are used, use this keyword with the LOWER_BOUND 
keyword to specify intervals of equal lengths. The UPPER_BOUND and 
LOWER_BOUND keywords must be used together. See “Discussion” below for 
details.

Discussion

If Two Positional Arguments Are Used

The default action of IMSL_FREQTABLE is to group data into nxbins categories of 
size (max (x) – min (x))/nxbins. The initial interval is closed on the left and open on 
the right. The remaining intervals are open on the left and closed on the right. Using 
keywords, the types of intervals used may be changed.

If UPPER_BOUND and LOWER_BOUND are specified, two semi-infinite intervals 
are used as the initial and last interval. The initial interval is closed on the right and 
includes LOWER_BOUND as its right endpoint. The last interval is open on the left 
and includes all values greater than UPPER_BOUND. The remaining nxbins – 2 
intervals are of length (UPPER_BOUND – LOWER_BOUND)/(nxbins – 2) and are 
open on the left and closed on the right. The argument nxbins must be greater than or 
equal to 3 for this option.
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If the keyword CLASS_MARKS is used, equally spaced class marks in ascending 
order must be provided in an array of length nxbins. The class marks are the 
midpoints of each of the nxbins, and each interval is taken to have the following 
length:

(CLASS_MARKS(1) – CLASS_MARKS(0))

The argument nxbins must be greater than or equal to 2 for this option. 

If the keyword CUTPOINTS is used, cutpoints (bounders) must be provided in an 
array of length nxbins. This option allows unequal intervals. The initial interval is 
closed on the right and contains the initial cutpoint as its right endpoint. The last 
interval is open on the left and includes all values greater than the last cutpoint. The 
remaining nxbins − 2 intervals are open on the left and closed on the right. The 
argument nxbins must be greater than 3 for this option.

If Four Positional Arguments Are Used

By default, nxbins intervals of equal length are used. Let xmin and xmax be the 
minimum and maximum values in x, respectively, with similar meanings for ymin and 
ymax. Then, table(0, 0) is the tally of observations with the x value less than or equal 
to xmin + (xmax–xmin)/nxbins, and the y value less than or equal to ymin + (ymax–
ymin)/ny. 

If UPPER_BOUND and LOWER_BOUND are specified, intervals of equal lengths 
are used just as in the default case, except the upper and lower bounds are taken as 
supplied keywords xmin = LOWER_BOUND(0), xmax = UPPER_BOUND(0), 
ymin = LOWER_BOUND(1), and ymax = UPPER_BOUND(1), instead of the actual 
minima and maxima in the data. Therefore, the first and last intervals for both 
variables are semi-infinite in length. 

If CUTPOINTS is specified, cutpoints (boundaries) must be provided. The keyword 
CUTPOINTS must be a one-dimensional array of length (nxbins – 1) + (nybins – 1) 
containing the cutpoints for x in the first (nxbins–1) elements followed by the 
cutpoints for y in the final (nybins–1) elements. 

If CLASS_MARKS is specified, equally spaced class marks in ascending order must 
be provided. The class marks are the midpoints of each interval. The keyword 
CLASS_MARKS must be a one-dimensional array of length (nxbins + nybins) 
containing the class marks for x in the first nxbins elements followed by the class 
marks for y in the final nybins elements.
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Examples

Example 1: One-way Frequency Table

The data for this example is from Hinkley (1977) and Velleman and Hoaglin (1981). 
Data includes measurements (in inches) of precipitation in Minneapolis/St. Paul 
during the month of March for 30 consecutive years.

x = [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, $
3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, $
2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05]

; Define the data set.
table = IMSL_FREQTABLE(x, 10)
; Call IMSL_FREQTABLE with nxbins = 10.
PRINT, '   Bin Number  Count' &$

PRINT, '   ----------  -----'  &$
FOR i = 0, 9 DO PRINT, i + 1, table(i)

Bin Number  Count
----------  -----
 1      4.00000
 2      8.00000
 3      5.00000
 4      5.00000
 5      3.00000
 6      1.00000
 7      3.00000
 8      0.00000
 9      0.00000
 10 1.00000

Example 2: Two-way Frequency Table

The data for x in this example is the same as in the example above. The data for y 
were created by adding small integers to x.

nxbins  =  5
nybins  =  6
; Define the data set.
x  =  [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, $

2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, $
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, $
1.89, 0.90, 2.05]

y  =  [1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, $
3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, $
1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, $
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2.89, 2.90, 5.05]

; Default usage of IMSL_FREQTABLE
table  =  IMSL_FREQTABLE(x, nxbins, y, nybins)
PM, table, FORMAT = '(6(F8.5,  2X))', $

Title = '                          counts'
                          counts
 4.00000   2.00000   4.00000   2.00000   0.00000   0.00000
 0.00000   4.00000   3.00000   2.00000   1.00000   0.00000
 0.00000   0.00000   1.00000   2.00000   0.00000   1.00000
 0.00000   0.00000   0.00000   0.00000   1.00000   2.00000
 0.00000   0.00000   0.00000   0.00000   0.00000   1.00000
lb  =  [1, 2]
up  =  [4, 6]
; Using user-defined bounds
table  =  IMSL_FREQTABLE(x, nxbins, y, nybins, Upper_Bound = up, $

Lower_Bound = lb)
PM, table, FORMAT = '(6(F8.5,  2X))', $

Title = '                          counts'
                          counts
 3.00000   2.00000   4.00000   0.00000   0.00000   0.00000
 0.00000   5.00000   5.00000   2.00000   0.00000   0.00000
 0.00000   0.00000   1.00000   3.00000   2.00000   0.00000
 0.00000   0.00000   0.00000   0.00000   0.00000   2.00000
 0.00000   0.00000   0.00000   0.00000   1.00000   0.00000
cm  =  [0.5, 1.5, 2.5, 3.5, 4.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5]
; Using class-marks
table  =  IMSL_FREQTABLE(x, nxbins, y, nybins, Class_Marks = cm)
PM, table, FORMAT = '(6(F8.5,  2X))', $

Title = '                          counts'
                          counts
 3.00000   2.00000   4.00000   0.00000   0.00000   0.00000
 0.00000   5.00000   5.00000   2.00000   0.00000   0.00000
 0.00000   0.00000   1.00000   3.00000   2.00000   0.00000
 0.00000   0.00000   0.00000   0.00000   0.00000   2.00000
 0.00000   0.00000   0.00000   0.00000   1.00000   0.00000
cp  =  [1, 2, 3, 4, 2, 3, 4, 5, 6]
; Using cutpoints
table  =  IMSL_FREQTABLE(x, nxbins, y, nybins, Cutpoints = cp)
PM, table, FORMAT = '(6(F8.5,  2X))', $

Title = '                          counts'
                          counts
 3.00000   2.00000   4.00000   0.00000   0.00000   0.00000
 0.00000   5.00000   5.00000   2.00000   0.00000   0.00000
 0.00000   0.00000   1.00000   3.00000   2.00000   0.00000
 0.00000   0.00000   0.00000   0.00000   0.00000   2.00000
 0.00000   0.00000   0.00000   0.00000   1.00000   0.00000
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IMSL_SORTDATA

The IMSL_SORTDATA function sorts observations by specified keys, with option to 
tally cases into a multiway frequency table.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SORTDATA(x, n_keys [, ASCENDING=value] 
[, DESCENDING=value] [, /DOUBLE] [, FREQUENCIES=array] 
[, INDICES_KEYS=array] [, LIST_CELLS=variable] [, N_CELLS=variable] 
[, N_LIST_CELLS=variable] [, PERMUTATION=variable] 
[, TABLE_BAL=variable] [, TABLE_N=variable] 
[, TABLE_VALUES=variable] [, TABLE_UNBAL=variable])

Return Value

The sorted array.

Arguments

n_keys

Number of columns of x on which to sort. The first n_keys columns of x are used as 
the sorting keys. (Exception: See the keyword INDICES_KEYS).

x

One- or two-dimensional array containing the observations to be sorted.

Keywords

ASCENDING

If present and nonzero, the sort is in ascending order. (Default) The keywords 
ASCENDING and DESCENDING cannot be used together. 
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DESCENDING

If present and nonzero, the sort is in descending order. The keywords ASCENDING 
and DESCENDING cannot be used together. 

DOUBLE

If present and nonzero, double precision is used.

FREQUENCIES

One-dimensional array containing the frequency for each observation in x. Default: 
FREQUENCIES (*) = 1

INDICES_KEYS

One-dimensional array of length n_keys giving the column numbers of x which are to 
be used in the sort. Default: INDICES_KEYS(*) = 0, 1, ..., n_keys – 1

LIST_CELLS

Named variable into which the two-dimensional array of length N_LIST_CELLS x 
n_keys containing, for each row, a list of the levels of n_keys corresponding 
classification variables that describe a cell, is stored. The keywords N_LIST_CELLS, 
LIST_CELLS, and TABLE_UNBAL must be used together.

N_CELLS

Named variable into which the a one-dimensional array containing the number of 
observations per group is stored. A group contains observations (rows) in x that are 
equal with respect to the method of comparison. The first N_CELLS (0) rows of the 
sorted x are in group number 1. The next N_CELLS (1) rows of the sorted x are in 
group number 2, etc. The last N_Cells(N_ELEMENTS(N_Cells) – 1) rows of the 
sorted x are in group number N_ELEMENTS(N_Cells).

N_LIST_CELLS

Named variable into which the number of nonempty cells is stored. The keywords 
N_LIST_CELLS, LIST_CELLS, and TABLE_UNBAL must be used together.

PERMUTATION

Named variable into which a one-dimensional array containing the rearrangement 
(permutation) of the observations (rows) is stored.
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TABLE_BAL

Named variable into which an array of length 
Table_N(0) + Table_N(1) + ... + Table_N(n_keys – 1), containing the frequencies in 
the cells of the table to be fit, is stored. Empty cells are included in TABLE_BAL, 
and each element of TABLE_BAL is nonnegative. The cells of TABLE_BAL are 
sequenced so that the first variable cycles through its Table_N(0) categories one time, 
the second variable cycles through its Table_N(1) categories Table_N(0) times, the 
third variable cycles through its Table_N(2) categories Table_N(0) x Table_N(1) 
times, etc., up to the n_keys-th variable, which cycles through its 
Table_N(n_keys – 1) categories:

Table_N(0) + Table_N(1) + Table_N(n_keys – 2)

times. The keywords TABLE_N, TABLE_VALUES, and TABLE_BAL must be used 
together.

TABLE_N

Named variable into which a one-dimensional array of length n_keys, containing in 
its i-th element (i = 0, 1, ..., (n_keys – 1)) the number of levels or categories of the i-th 
classification variable (column), is stored. The keywords TABLE_N, 
TABLE_VALUES, and TABLE_BAL must be used together.

TABLE_VALUES

Named variable into which an array of length 
Table_N(0) + Table_N(1) + ... + Table_N(n_keys – 1), containing the values of the 
classification variables, is stored. The first Table_N(0) elements of TABLE_VALUES 
contain the values for the first classification variable. The next Table_N(1) contain the 
values for the second variable. The last Table_N(n_keys – 1) positions contain the 
values for the last classification variable. The keywords TABLE_N, 
TABLE_VALUES, and TABLE_BAL must be used together.

TABLE_UNBAL

Named variable into which the one-dimensional array of length N_LIST_CELLS 
containing the frequency for each cell is stored. The keywords N_LIST_CELLS, 
LIST_CELLS, and TABLE_UNBAL must be used together.

Discussion

The IMSL_SORTDATA function can perform both a key sort and/or tabulation of 
frequencies into a multiway frequency table.
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Sorting

The IMSL_SORTDATA function sorts the rows of real matrix x using particular 
columns in x as the keys. The sort is algebraic with the first key as the most 
significant, the second key as the next most significant, etc. When x is sorted in 
ascending order, the resulting sorted array is such that the following is true:

• For i = 0, 1, ..., N_ELEMENTS (x(*, 0)) – 2,
x(1, INDICES_KEYS(0)) ≤ x(i + 1, INDICES_KEYS(0))

• For k = 1, ..., n_keys – 1, if
x(1, INDICES_KEYS(j)) = x(i + 1, INDICES_KEYS(j)) for
j = 0, 1, ..., k – 1, then
x(1, INDICES_KEYS(j)) = x(i + 1, INDICES_KEYS(k))

The observations also can be sorted in descending order.

The rows of x containing the missing value code NaN in at least one of the specified 
columns are considered as an additional group. These rows are moved to the end of 
the sorted x.

The sorting algorithm is based on a quicksort method given by Singleton (1969) with 
modifications by Griffin and Redish (1970) and Petro (1970). 

Frequency Tabulation

The IMSL_SORTDATA function determines the distinct values in multivariate data 
and computes frequencies for the data. This function accepts the data in the matrix x 
but performs computations only for the variables (columns) in the first n_keys 
columns of x (Exception: see optional the keyword INDICES_KEYS). In general, the 
variables for which frequencies should be computed are discrete; they should take on 
a relatively small number of different values. Variables that are continuous can be 
grouped first. The IMSL_FREQTABLE function can be used to group variables and 
determine the frequencies of groups.

When the TABLE_N, TABLE_VALUES, and TABLE_BAL keywords are specified, 
IMSL_SORTDATA fills the vector TABLE_VALUES with the unique values of the 
variables and tallies the number of unique values of each variable in the vector 
TABLE_BAL. Each combination of one value from each variable forms a cell in a 
multiway table. The frequencies of these cells are entered in TABLE_BAL so that the 
first variable cycles through its values exactly once and the last variable cycles 
through its values most rapidly. Some cells cannot correspond to any observations in 
the data; in other words, “missing cells” are included in the TABLE_BAL table and 
have a value of zero.
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When N_LIST_CELLS, LIST_CELLS, and TABLE_UNBAL are specified, the 
frequency of each cell is entered in TABLE_UNBAL so that the first variable cycles 
through its values exactly once and the last variable cycles through its values most 
rapidly. All cells have a frequency of at least 1, i.e., there is no “missing cell.” The 
array LIST_CELLS can be considered “parallel” to TABLE_UNBAL because row i 
of LIST_CELLS is the set of n_keys values that describes the cell for which row i of 
TABLE_UNBAL contains the corresponding frequency.

Examples

Example 1

The rows of a 10 x 3 matrix x are sorted in ascending order using Columns 0 and 1 as 
the keys. There are two missing values (NaNs) in the keys. The observations 
containing these values are moved to the end of the sorted array.

f = IMSL_MACHINE(/Float)
c0 =[1.0, 2.0, 1.0, 1.0, 2.0, 1.0, f.NaN, 1.0, 2.0, 1.0]
c1 =[1.0, 1.0, 1.0, 1.0, f.NaN, 2.0, 2.0, 1.0, 2.0, 1.0]
c2 =[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 9.0]
x = [ [c0], [c1], [c2] ]
PM, x, Title = 'Unsorted Matrix'
Unsorted Matrix
 1.00000      1.00000      1.00000
 2.00000      1.00000      2.00000
1.00000      1.00000      3.00000
 1.00000      1.00000      4.00000
 2.00000          NaN      5.00000
 1.00000      2.00000      6.00000
 NaN      2.00000      7.00000
 1.00000      1.00000      8.00000
 2.00000      2.00000      9.00000
 1.00000      1.00000      9.00000
PM, IMSL_SORTDATA(x, 2), Title = 'Sorted Matrix'
Sorted Matrix:
 1.00000      1.00000      1.00000
 1.00000      1.00000      9.00000
 1.00000      1.00000      3.00000
 1.00000      1.00000      4.00000
 1.00000      1.00000      8.00000
 1.00000      2.00000      6.00000
 2.00000      1.00000      2.00000
 2.00000      2.00000      9.00000
 NaN      2.00000      7.00000
 2.00000          NaN      5.00000
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Example 2

This example uses the same data as the previous example. The permutation of the 
rows is output using the keyword Permutation.

f = IMSL_MACHINE(/Float)
c0 =[1.0, 2.0, 1.0, 1.0, 2.0, 1.0, f.NaN, 1.0, 2.0, 1.0]
c1 =[1.0, 1.0, 1.0, 1.0, f.NaN, 2.0, 2.0, 1.0, 2.0, 1.0]
c2 =[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 9.0]
; Fill up a matrix, including some missing values.
x = [ [c0], [c1], [c2] ]
PM, x, Title = 'Unsorted Matrix'
; Output the unsorted matrix.
Unsorted Matrix
 1.00000      1.00000      1.0000
 2.00000      1.00000      2.00000
 1.00000      1.00000      3.00000
 1.00000      1.00000      4.00000
 2.00000          NaN      5.00000
 1.00000      2.00000      6.00000
 NaN      2.00000      7.00000
 1.00000      1.00000      8.00000
 2.00000      2.00000      9.00000
 1.00000      1.00000      9.00000
y = IMSL_SORTDATA(x, 2, Permutation = permutation)
; Use IMSL_SORTDATA to sort x.
PM, y, Title = 'Sorted Matrix:'
Sorted Matrix:
 1.00000      1.00000      1.00000
 1.00000      1.00000      9.00000
 1.00000      1.00000      3.00000
 1.00000      1.00000      4.00000
 1.00000      1.00000      8.00000
 1.00000      2.00000      6.00000
 2.00000      1.00000      2.00000
 2.00000      2.00000      9.00000
 NaN      2.00000      7.00000
 2.00000          NaN      5.00000
PM, permutation, Title = 'Permutation Matrix:'
; Print the permutation vector.
Permutation Matrix:
 0
 9
 2
 3
 7
 5
 1
 8
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 6
 4
z = x(permutation, *)
PM, z, Title = 'Sorted Matrix'
; Use the permutation vector to sort the data.
Sorted Matrix
 1.00000      1.00000      1.00000
 1.00000      1.00000      9.00000
 1.00000      1.00000      3.00000
 1.00000      1.00000      4.00000
 1.00000      1.00000      8.00000
 1.00000      2.00000      6.00000
 2.00000      1.00000      2.00000
 2.00000      2.00000      9.00000
 NaN 2.00000      7.00000
 2.00000          NaN      5.00000

Version History

6.4 Introduced
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IMSL_RANKS

The IMSL_RANKS function computes the ranks, normal scores, or exponential 
scores for a vector of observations.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RANKS(x [, AVERAGE_TIE=value] [, BLOM_SCORES=value] 
[, /DOUBLE] [, EXP_NORM_SCORES=value] [, FUZZ=value] 
[, HIGHEST=value] [, LOWEST=value] [, RANDOM_SPLIT=value] 
[, RANKS=value] [, SAVAGE_SCORES=value] [, TUKEY_SCORES=value] 
[, VDW_SCORES=value])

Return Value

A one-dimensional array containing the rank (or optionally, a transformation of the 
rank) of each observation.

Arguments

x

One-dimensional array containing the observations to be ranked. 

Keywords

AVERAGE_TIE

Average of the scores of the tied observations (default).

Note
At most, one of these keywords (AVERAGE_TIE, HIGHEST, LOWEST, 
RANDOM_SPLIT) can be set to a nonzero value to change the method used to 
assign a score to tied observations.
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BLOM_SCORES

Blom version of normal scores.

Note
At most, one of these keywords (RANKS, BLOM_SCORES, TUKEY_SCORES, 
VDW_SCORES, EXP_NORM_SCORES, SAVAGE_SCORES) can be set to a 
nonzero value to specify the type of values returned.

DOUBLE

If present and nonzero, double precision is used.

EXP_NORM_SCORES

Expected value of normal order statistics (for tied observations, the average of the 
expected normal scores)

Note
At most, one of these keywords (RANKS, BLOM_SCORES, TUKEY_SCORES, 
VDW_SCORES, EXP_NORM_SCORES, SAVAGE_SCORES) can be set to a 
nonzero value to specify the type of values returned.

FUZZ

Value used to determine when two items are tied. If ABS(x(I) – x(J)) is less than or 
equal to FUZZ, then x(I) and x(J) are said to be tied. Default: FUZZ = 0.0

HIGHEST

Highest score in the group of ties.

Note
At most, one of these keywords (AVERAGE_TIE, HIGHEST, LOWEST, 
RANDOM_SPLIT) can be set to a nonzero value to change the method used to 
assign a score to tied observations.

LOWEST

Lowest score in the group of ties.
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Note
At most, one of these keywords (AVERAGE_TIE, HIGHEST, LOWEST, 
RANDOM_SPLIT) can be set to a nonzero value to change the method used to 
assign a score to tied observations.

RANDOM_SPLIT

Tied observations are randomly split using a random-number generator.

Note
At most, one of these keywords (AVERAGE_TIE, HIGHEST, LOWEST, 
RANDOM_SPLIT) can be set to a nonzero value to change the method used to 
assign a score to tied observations.

RANKS

Ranks (default).

Note
At most, one of these keywords (RANKS, BLOM_SCORES, TUKEY_SCORES, 
VDW_SCORES, EXP_NORM_SCORES, SAVAGE_SCORES) can be set to a 
nonzero value to specify the type of values returned.

SAVAGE_SCORES

Savage scores (expected value of exponential order statistics).

Note
At most, one of these keywords (RANKS, BLOM_SCORES, TUKEY_SCORES, 
VDW_SCORES, EXP_NORM_SCORES, SAVAGE_SCORES) can be set to a 
nonzero value to specify the type of values returned.

TUKEY_SCORES

Tukey version of normal scores.

Note
At most, one of these keywords (RANKS, BLOM_SCORES, TUKEY_SCORES, 
VDW_SCORES, EXP_NORM_SCORES, SAVAGE_SCORES) can be set to a 
nonzero value to specify the type of values returned.
IDL Analyst Reference Guide IMSL_RANKS



582 Chapter 13: Basic Statistics
VDW_SCORES

Van der Waerden version of normal scores.

Note
At most, one of these keywords (RANKS, BLOM_SCORES, TUKEY_SCORES, 
VDW_SCORES, EXP_NORM_SCORES, SAVAGE_SCORES) can be set to a 
nonzero value to specify the type of values returned.

Discussion

Ties

If the assignment RANK = IMSL_RANKS(x) is made, then in data without ties, the 
output values are the ordinary ranks (or a transformation of the ranks) of the data in x. 
If x(i) has the smallest value among the values in x and there is no other element in x 
with this value, then RANK(i) = 1. If both x(i) and x(j) have the same smallest value, 
then the output value depends on the option used to break ties. Table 13-3 shows the 
results for some of the keywords.

When the ties are resolved randomly, IMSL_RANDOM is used to generate random 
numbers. Different results occur from different executions of the program unless the 
“seed” of the random-number generator is set explicitly by use of 
IMSL_RANDOMOPT ( ).

Scores

Normal and other functions of the ranks can optionally be returned. Normal scores 
can be defined as the expected values, or approximations to the expected values, of 
order statistics from a normal distribution. The simplest approximations are obtained 

Keyword Result

Average_Tie Result (i ) = Result (j ) = 1.5

Highest Result (i ) = Result (j ) = 2.0

Lowest Result (i ) = Result (j ) = 1.0

Random_Split Result (i ) = 1.0 and Result (j ) = 2.0

or, randomly, Result ( i ) = 2.0 and Result (j ) = 1.0

Table 13-3: Tie Results
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by evaluating the inverse cumulative normal distribution function, 
IMSL_NORMALCDF (with the keyword INVERSE), at the ranks scaled into the 
open interval (0,1). 

In the Blom version (Blom 1958), the scaling transformation for the rank 
ri (1 ≤ ri ≤ n, where n is the sample size) is (ri – 3/8) / (n + 1/4). The Blom normal 
score corresponding to the observation with rank ri is: 

where Φ(⋅) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation; that is, if x(i) 
equals x(j) (within FUZZ) and their value is the k-th smallest in the data set, the Blom 
normal scores are determined for ranks of k and k + 1. Then, these normal scores are 
averaged or selected in the manner specified. (Whether the transformations are made 
first or the ties are resolved first is irrelevant, except when Average_Tie is specified.)

In the Tukey version (Tukey 1962), the scaling transformation for the rank ri is 
(ri – 1/3) / (n + 1/3). The Tukey normal score corresponding to the observation with 
rank ri follows: 

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling 
transformation for the rank ri is ri /(n + 1). The Van der Waerden normal score 
corresponding to the observation with rank ri is as follows: 

Ties are handled in the same way as for the Blom normal scores.

When option EXP_NORM_SCORES is nonzero, the output values are the expected 
values of the normal order statistics from a sample of size n = N_ELEMNTS(x). If 
the value in x(i) is the k-th smallest, then the value output in RANK (i) is E(zk), where 
E(·) is the expectation operator, and zk is the k-th order statistic in a sample of size n 
from a standard normal distribution. Ties are handled in the same way as for the Blom 
normal scores.

Φ 1– ri 3 8⁄–

n 1 4⁄+
-------------------

 
 
 

Φ 1– ri 1 3⁄–

n 1 3⁄+
-------------------

 
 
 

Φ 1– ri

n 1+
------------
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Savage scores are the expected values of the exponential order statistics from a 
sample of size n. These values are called Savage scores because of their use in a test 
discussed by Savage (1956) and Lehmann (1975). If the value in x(i) is the k-th 
smallest, then the value output in RANK (i) is E(yk) where yk is the k-th order statistic 
in a sample of size n from a standard exponential distribution. The expected value of 
the k-th order statistic from an exponential sample of size n follows: 

Ties are handled in the same way as for the Blom normal scores.

Example

The data for this example, from Hinkley (1977), contains 30 observations. Note that 
the fourth and sixth observations are tied, and the third and twentieth observations are 
tied.

x = [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,$
1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,$
0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,$
1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05]

r = IMSL_RANKS(x)
; Call IMSL_RANKS.
FOR i = 0, 29 DO PM, i + 1, r(i), FORMAT = '(i5, f7.1)'

 1    5.0
 2   18.0
 3    6.5
 4   11.5
 5   21.0
 6   11.5
 7    2.0
 8   15.0
 9   29.0
 10   24.0
 11   27.0
 12   28.0
 13   16.0
 14   23.0
 15    3.0
 16   17.0

1
n
--- 1

n 1–
------------ … 1

n k– 1+
---------------------+ + +
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 17   13.0
 18    1.0
 19    4.0
 20    6.5
 21   26.0
 22   19.0
 23   10.0
 24   14.0
 25   30.0
 26   25.0
 27    9.0
 28   20.0
 29    8.0
 30   22.0

Version History

6.4 Introduced
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Regression
This section contains the following topics:
Overview: Regression  . . . . . . . . . . . . . . . .  588 Regression Routines . . . . . . . . . . . . . . . . .  601
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Overview: Regression

The regression models in this chapter include the simple and multiple linear 
regression models, the multivariate general linear model, the polynomial model, and 
the nonlinear regression model. Functions for fitting regression models, computing 
summary statistics from a fitted regression, computing diagnostics, and computing 
confidence intervals for individual cases are provided. Also provided are methods for 
building a model from a set of candidate variables. 

Simple and Multiple Linear Regression

The simple linear regression model is:

yi = β0 + β1xi + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the 
dependent variable, the xi’s are the settings of the independent (explanatory) variable, 
β0 and β1 are the intercept and slope parameters (respectively), and the εi’s are 
independently distributed normal errors, each with mean zero and variance σ2. The 
multiple linear regression model is:

yi = β0 + β1xi1 + β2xi2 + ... + βkxik + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the 
dependent variable; the xi1’s, xi2’s, ..., xik’s are the settings of the k independent 
(explanatory) variables; β0, β1, ... , βk are the regression coefficients; and the εi’s are 
independently distributed normal errors, each with mean zero and variance σ2.

“IMSL_MULTIREGRESS” on page 609 fits both the simple and multiple linear 
regression models using a fast Given’s transformation and includes an option for 
excluding the intercept β0. The responses are input in array y, and the independent 
variables are input in array x, where the individual cases correspond to the rows and 
the variables correspond to the columns. In addition to computing the fit, 
MULTIREGRESS also can optionally compute summary statistics.

After the model has been fitted using IMSL_MULTIREGRESS, 
“IMSL_MULTIPREDICT” on page 624 computes predicted values, confidence 
intervals, and case statistics for the fitted model. The information about the fit is 
communicated from IMSL_MULTIREGRESS to MULTIPREDICT by using 
keyword Predict_Info.
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No Intercept Model

Several functions provide the option for excluding the intercept from a model. In 
most practical applications, the intercept should be included in the model. For 
functions that use the sum-of-squares and crossproducts matrix as input, the no-
intercept case can be handled by using the raw sum-of-squares and crossproducts 
matrix as input in place of the corrected sum-of-squares and crossproducts. The raw 
sum-of-squares and crossproducts matrix can be computed as:

(x1, x2, ... , xk, y)T (x1, x2, ... , xk, y)

Variable Selection

Variable selection can be performed by “IMSL_ALLBEST” on page 632, which 
computes all best-subset regressions, or by “IMSL_STEPWISE” on page 641, which 
computes stepwise regression. The method used by ALLBEST is generally preferred 
over that used by STEPWISE because ALLBEST implicitly examines all possible 
models in the search for a model that optimizes some criterion while stepwise does 
not examine all possible models. However, the computer time and memory 
requirements for ALLBEST can be much greater than that for STEPWISE when the 
number of candidate variables is large.

Polynomial Model

The polynomial model is:

yi = β0 + β1 xi + β2 x
2

i + ... + βk x
k

i + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the 
dependent variable; the xi’s are the settings of the independent (explanatory) variable; 
β0, β1, ..., βk are the regression coefficients; and the εi’s are independently distributed 
normal errors each with mean zero and variance σ2.

Function “IMSL_POLYREGRESS” on page 651 fits a polynomial regression model 
with the option of determining the degree of the model and also produces summary 
information. Function “IMSL_POLYPREDICT” on page 659 computes predicted 
values, confidence intervals, and case statistics for the model fit by POLYREGRESS. 

The information about the fit is communicated from IMSL_POLYREGRESS to 
IMSL_POLYPREDICT by using keyword Predict_Info. 
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Specification of X for the General Linear Model

Variables used in the general linear model are either continuous or classification 
variables. Typically, multiple regression models use continuous variables, whereas 
analysis of variance models use classification variables. Although the notation used 
to specify analysis of variance models and multiple regression models may look quite 
different, the models are essentially the same. The term “general linear model” 
emphasizes that a common notational scheme is used for specifying a model that may 
contain both continuous and classification variables.

A general linear model is specified by its effects (sources of variation). An effect is 
referred to in this text as a single variable or a product of variables. (The term “effect” 
is often used in a narrower sense, referring only to a single regression coefficient.) In 
particular, an “effect” is composed of one of the following: 

• a single continuous variable 

• a single classification variable 

• several different classification variables 

• several continuous variables, some of which may be the same 

• continuous variables, some of which may be the same, and classification 
variables, which must be distinct 

Effects of the first type are common in multiple regression models. Effects of the 
second type appear as main effects in analysis of variance models. Effects of the third 
type appear as interactions in analysis of variance models. Effects of the fourth type 
appear in polynomial models and response surface models as powers and 
crossproducts of some basic variables. Effects of the fifth type appear in analysis of 
covariance models as regression coefficients that indicate lack of parallelism of a 
regression function across the groups. 

The analysis of a general linear model occurs in two stages. The first stage calls 
function “IMSL_REGRESSORS” on page 602 to specify all regressors except the 
intercept. The second stage calls “IMSL_MULTIREGRESS” on page 609, at which 
point the model is specified as either having (default) or not having an intercept. 
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For the sake of this discussion, define a variable intcep as shown in Table 14-1:

The remaining parameters and keywords (n_continuous, n_class, Class_Columns, 
Var_Effects, and Indices_Effects) are defined for IMSL_REGRESSORS. All have 
defaults except for n_continuous and n_class, both of which must be specified. (See 
the documentation for the “IMSL_REGRESSORS” on page 602 for a discussion of 
the defaults.) The meaning of each of these input parameters is as follows:

n_continuous—Number of continuous variables. 

n_class—Number of classification variables.

Class_Columns—Index vector containing the column numbers of x that are the 
classification variables.

Var_Effects—Vector containing the number of variables associated with each effect 
in the model.

Indices_Effects—Index vector containing the column numbers of x for each variable 
for each effect.

Suppose the data matrix has as its first four columns two continuous variables in 
Columns 0 and 1 and two classification variables in Columns 2 and 3. The data might 
appear as shown in Table 14-2:

Option intcep Action

No intercept 0 An intercept is not in the model.

Intercept (default) 1 An intercept is in the model.

Table 14-1: intcep Definitions

Column 0 Column 1 Column 2 Column 3

11.23 1.23 1.0 5.0

12.12 2.34 1.0 4.0

12.34 1.23 1.0 4.0

4.34 2.21 1.0 5.0

5.67 4.31 2.0 4.0

4.12 5.34 2.0 1.0

Table 14-2: Data Matrix
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Each distinct value of a classification variable determines a level. The classification 
variable in Column 2 has two levels. The classification variable in Column 3 has three 
levels. (Integer values are recommended, but not required, for values of the 
classification variables. The values of the classification variables corresponding to the 
same level must be identical.)

Some examples of regression functions and their specifications are as shown in Table 
14-3:

Functions for Fitting the Model

“IMSL_MULTIREGRESS” on page 609 fits a multiple general linear model, where 
regressors for the general linear model have been generated using 
“IMSL_REGRESSORS” on page 602. 

4.89 9.31 2.0 1.0

9.12 3.71 2.0 1.0

Regression 
Functions

intce
p

n_clas
s

Class_
Column

s

Var_Effect
s

Indices
_

Effects

β0 + β1x1 1 0 1 0

β0 + β1x1 + β2x2
1 1 0 1, 2 0, 0, 0

µ + αi 1 1 2 1 2

µ + αi + βj + γij 1 2 2, 3 1, 1, 2 2, 3, 2, 3

µij 0 2 2, 3 2 2, 3

β0 + β1x1 + β2x2 + β3x1x2 1 0 1, 1, 2 0, 1, 0, 1

µ + αi + βx1i + βix1i 1 1 2 1, 1, 2 2, 0, 0, 2

Table 14-3: Regression Functions

Column 0 Column 1 Column 2 Column 3

Table 14-2: Data Matrix (Continued)
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Linear Dependence and the R Matrix

Linear dependence of the regressors frequently arises in regression models—
sometimes by design and sometimes by accident. The functions in this chapter are 
designed to handle linear dependence of the regressors; i.e., the n x p matrix X (the 
matrix of regressors) in the general linear model can have rank less than p. Often, the 
models are referred to as nonfull rank models.

As discussed in Searle (1971, Chapter 5), be careful to correctly use the results of the 
fitted nonfull rank regression model for estimation and hypothesis testing. In the 
nonfull rank case, not all linear combinations of the regression coefficients can be 
estimated. Those linear combinations that can be estimated are called “estimable 
functions.” If the functions are used to attempt to estimate linear combinations that 
cannot be estimated, error messages are issued. A good general discussion of 
estimable functions is given by Searle (1971, pp. 180–188).

The check used by functions in this chapter for linear dependence is sequential. The j-
th regressor is declared linearly dependent on the preceding j – 1 regressors if 1 – R2

j 

(1, 2, ..., j – 1) is less than or equal to keyword Tolerance. Here, Rj (1, 2, ..., j – 1) is the 
multiple correlation coefficient of the j-th regressor with the first j – 1 regressors. 
When a function declares the j-th regressor to be linearly dependent on the first j – 1, 
the j-th regression coefficient is set to zero. Essentially, this removes the j-th regressor 
from the model.

The reason a sequential check is used is that practitioners frequently include the 
preferred variables to remain in the model first. Also, the sequential check is based on 
many of the computations already performed as this does not degrade the overall 
efficiency of the functions. There is no perfect test for linear dependence when finite 
precision arithmetic is used. Keyword Tolerance allows you some control over the 
check for linear dependence. If a model is full rank, input Tolerance = 0.0. However, 
Tolerance should be input as approximately 100 times the machine precision. (See 
IMSL_MACHINE.)

Functions performing least squares are based on the QR decomposition of X or on a 
Cholesky factorization RTR of XTX. Maindonald (1984, Chapters 1–5) discusses these 
methods extensively. The R matrix used by the regression function is a p x p upper-
triangular matrix, i.e., all elements below the diagonal are zero. The signs of the 
diagonal elements of R are used as indicators of linearly dependent regressors and as 
indicators of parameter restrictions imposed by fitting a restricted model. The rows of 
R can be partitioned into three classes by the sign of the corresponding diagonal 
element:

1. A positive diagonal element means the row corresponds to data.
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2. A negative diagonal element means the row corresponds to a linearly 
independent restriction imposed on the regression parameters by AB = Z in a 
restricted model.

3. A zero diagonal element means a linear dependence of the regressors was 
declared. The regression coefficients in the corresponding row of:

 

are set to zero. This represents an arbitrary restriction that is imposed to obtain 
a solution for the regression coefficients. The elements of the corresponding 
row of R also are set to zero.

Nonlinear Regression Model

The nonlinear regression model is

yi = f(xi ; θ ) + ε i i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the 
dependent variable, the xi’s are the known vectors of values of the independent 
(explanatory) variables, f is a known function of an unknown regression parameter 
vector θ, and the εi’s are independently distributed normal errors each with mean zero 
and variance σ2.

“IMSL_NONLINREGRESS” on page 667 performs the least-squares fit to the data 
for this model.

Weighted Least Squares

Functions throughout this chapter generally allow weights to be assigned to the 
observations. Keyword Weights is used throughout to specify the weighting for each 
row of X.

Computations that relate to statistical inference—e.g., t tests, F tests, and confidence 
intervals—are based on the multiple regression model except that the variance of εi is 
assumed to equal σ2 times the reciprocal of the corresponding weight.

If a single row of the data matrix corresponds to ni observations, keyword 
Frequencies can be used to specify the frequency for each row of X. Degrees of 
freedom for error are affected by frequencies but are unaffected by weights.

Summary Statistics

“IMSL_MULTIREGRESS” on page 609 can be used to compute statistics related to 
a regression for each of the q dependent variables fitted. The summary statistics 
include the model analysis of variance table, sequential sum of squares and F-

B̂
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statistics, coefficient estimates, estimated standard errors, t-statistics, variance 
inflation factors, and estimated variance-covariance matrix of the estimated 
regression coefficients. “IMSL_POLYREGRESS” on page 651 includes most of the 
same functionality for polynomial regressions.

The summary statistics are computed under the model y = Xβ + ε, where y is the n x 1 
vector of responses, X is the n x p matrix of regressors with rank (X) = r, β is the p x 1 
vector of regression coefficients, and ε is the n x 1 vector of errors whose elements 
are independently normally distributed with mean zero and variance σ2/wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the 
weights), most of the computed summary statistics are output in the following 
keywords:

Anova_Table—One-dimensional array, usually of length 15. In IMSL_STEPWISE, 
Anova_Table is of length 13 because the last two elements of the array cannot be 
computed from the input. The array contains statistics related to the analysis of 
variance. The sources of variation examined are the regression, error, and total. The 
first 10 elements of Anova_Table and the notation frequently used for these is 
described in Table 14-4 (here, Aov replaces Anova_Table):

If the model has an intercept (default), the total sum of squares is the sum of squares 
of the deviations of yi from its (weighted) mean:

 

the so-called corrected total sum of squares denoted by the following: 

Source 
of

Variation

Degrees of
Freedom

Sum of
Squares

Mean
Square F

p-
value

Regression DFR = Aov (0) SSR = Aov (3) MSR = Aov (6) Aov (8) Aov (9)

Error DFE = Aov (1) SSE = Aov (4) s2 = Aov (7) 

Total DFT = Aov (2) SST = Aov (5) 

Table 14-4: Model Analysis of Variance

y

SST wi yi y–( )2

i 1=

n

∑=
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If the model does not have an intercept (No_Intercept), the total sum of squares is the 
sum of squares of yi—the so-called uncorrected total sum of squares denoted by the 
following: 

The error sum of squares is given as follows: 

The error degrees of freedom is defined by DFE = n – r.

The estimate of σ2 is given by s2 = SSE/DFE, which is the error mean square.

The computed F statistic for the null hypothesis, H0:β1 = β2 = ... = βk = 0, versus the 
alternative that at least one coefficient is nonzero is given by F = MSR/s2. The p-
value associated with the test is the probability of an F larger than that computed 
under the assumption of the model and the null hypothesis. A small p-value (less than 
0.05) is customarily used to indicate there is sufficient evidence from the data to 
reject the null hypothesis.

The remaining five elements in Anova_Table frequently are displayed together with 
the actual analysis of variance table. The quantities R-squared (R2 = 
Anova_Table(10)) and adjusted R-squared 
(R2

a = Anova_Table(11)) are expressed as a percentage and are defined as follows:  

The square root of s2 (s = Anova_Table(12)) is frequently referred to as the estimated 
standard deviation of the model error.

The overall mean of the responses:

 

is output in Anova_Table (13).

The coefficient of variation (CV = Anova_Table(14)) is expressed as a percentage and 
defined by:

 

SST wiyi
2

i 1=

n

∑=

SSE wi yi ŷi–( )2

i 1=

n

∑=

R
2

100 SSR/SST( ) 100 1 SSE/SST–( )= =

Ra
2

100 1 s
2

SST DFT⁄
-------------------------– 

 =

y

CV 100s/y=
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T_Tests—Two-dimensional matrix containing the regression coefficient vector

 

as one column and associated statistics (estimated standard error, t statistic and p-
value) in the remaining columns. 

Coef_Covariances—Estimated variance-covariance matrix of the estimated 
regression coefficients.

Tests for Lack-of-Fit

Tests for lack-of-fit are computed for the polynomial regression by 
“IMSL_POLYREGRESS” on page 651. Output keyword Ssq_Lof returns the lack-of-
fit F tests for each degree polynomial 1, 2, ..., k, that is fit to the data. These tests are 
used to indicate the degree of the polynomial required to fit the data well.

Diagnostics for Individual Cases

Diagnostics for individual cases (observations) are computed by two functions in the 
regression chapter: “IMSL_MULTIPREDICT” on page 624 for linear and nonlinear 
regressions and “IMSL_POLYPREDICT” on page 659 for polynomial regressions.

Statistics computed include predicted values, confidence intervals, and diagnostics 
for detecting outliers and cases that greatly influence the fitted regression.

The diagnostics are computed under the model y = Xβ + ε, where y is the n x 1 vector 
of responses, X is the n x p matrix of regressors with rank (X) = r, β is the p x 1 vector 
of regression coefficients, and ε is the n x 1 vector of errors whose elements are 
independently normally distributed with mean zero and variance σ2/wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the 
weights), the following five diagnostics are computed:

1. leverage

2. standardized residual

3. jackknife residual

4. Cook’s distance

5. DFFITS

The definitions of these terms are given in the discussion below.

β̂
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Let xi be a column vector containing the elements of the i-th row of X. A case can be 
unusual either because of xi or because of the response yi. The leverage hi is a 
measure of uniqueness of the xi. The leverage is defined by: 

where W = diag(w1, w2, ..., wn) and (XTWX)– denotes a generalized inverse of XTWX. 
The average value of the hi’s is r/n. Regression functions declare xi unusual if hi > 2r/
n. Hoaglin and Welsch (1978) call a data point highly influential (i.e., a leverage 
point) when this occurs.

Let ei denote the residual

 

for the i-th case. 

The estimated variance of ei is (1 – hi)s
2/wi, where s2 is the estimated standard 

deviation of the model error. The i-th standardized residual (also called the internally 
studentized residual) is by definition  

and ri follows an approximate standard normal distribution in large samples.

The i-th jackknife residual or deleted residual involves the difference between yi and 
its predicted value, based on the data set in which the i-th case is deleted. This 
difference equals ei/(1 – hi). The jackknife residual is obtained by standardizing this 
difference. The residual mean square for the regression in which the i-th case is 
deleted is as follows: 

The jackknife residual is defined as 

and ti follows a t distribution with n – r – 1 degrees of freedom. 

hi xi
T

X
T

WX( )
_
xi[ ] wi=

yi ŷi–

ri ei
wi

s
2

1 hi–( )
-----------------------=

si
2 n r–( )s

2
wiei

2
/ 1 hi–( )–

n r– 1–
-----------------------------------------------------------=
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Cook’s distance for the i-th case is a measure of how much an individual case affects 
the estimated regression coefficients. It is given as follows: 

Weisberg (1985) states that if Di exceeds the 50-th percentile of the  F(r, n – r) 
distribution, it should be considered large. (This value is about 1. This statistic does 
not have an F distribution.)

DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case, 
DFFITS is computed by the following formula: 

Hoaglin and Welsch (1978) suggest that DFFITS greater than:

 

is large.

Transformations

Transformations of the independent variables are sometimes useful in order to satisfy 
the regression model. The inclusion of squares and crossproducts of the variables (x1, 
x2, x2

1, x2
2, x1x2) often is needed. Logarithms of the independent variables also are 

used. (See Draper and Smith 1981, pp. 218–222; Box and Tidwell 1962; Atkinson 
1985, pp. 177–180; and Cook and Weisberg 1982, pp. 78–86.)

When the responses are described by a nonlinear function of the parameters, a 
transformation of the model equation often can be selected so that the transformed 
model is linear in the regression parameters. For example, by taking natural 
logarithms on both sides of the equation, the exponential model:

 

can be transformed to a model that satisfies the linear regression model provided the 
εi’s have a log-normal distribution (Draper and Smith 1981, pp. 222–225).

ti ei
wi

si
2

1 hi–( )
-----------------------=

Di
wihiei

2
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2

1 hi–( )2
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DFFITSi ei
wihi
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2

1 hi–( )2
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β0 β1x1+
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When the responses are nonnormal and their distribution is known, a transformation 
of the responses often can be selected so that the transformed responses closely 
satisfy the regression model assumptions. The square-root transformation for counts 
with a Poisson distribution and the arc-sine transformation for binomial proportions 
are common examples (Snedecor and Cochran 1967, pp. 325–330; Draper and Smith 
1981, pp. 237–239).

Alternatives to Least Squares

The method of least squares has desirable characteristics when the errors are 
normally distributed, e.g., a least-squares solution produces maximum likelihood 
estimates of the regression parameters. However, when errors are not normally 
distributed, least squares may yield poor estimators. The IMSL_LNORMREGRESS 
function offers three alternatives to least squares methodology, Least Absolute Value, 
Lp Norm, and Least Maximum Value.

The least absolute value (LAV, L1) criterion yields the maximum likelihood estimate 
when the errors follow a Laplace distribution. Keyword Lav (706) is often used when 
the errors have a heavy tailed distribution or when a fit is needed that is resistant to 
outliers. 

A more general approach, minimizing the Lp norm (p ≤ 1), is given by keyword Llp 
(705). Although the routine requires about 30 times the CPU time for the case p = 1 
than would the use of keyword Lav, the generality of Llp allows you to try several 
choices for p ≥ 1 by simply changing the input value of p in the calling program. The 
CPU time decreases as p gets larger. Generally, choices of p between 1 and 2 are of 
interest. However, the Lp norm solution for values of p larger than 2 can also be 
computed.

The minimax (LMV, , Chebyshev) criterion is used by setting keyword Lmv. Its 
estimates are very sensitive to outliers, however, the minimax estimators are quite 
efficient if the errors are uniformly distributed. 

Missing Values

NaN (Not a Number) is the missing value code used by the regression functions. Use 
IMSL_MACHINE to retrieve NaN. Any element of the data matrix that is missing 
must be set to NaN. In fitting regression models, any observation containing NaN for 
the independent, dependent, weight, or frequency variables is omitted from the 
computation of the regression parameters.

L∞
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Regression Routines

Multiple Linear Regression

IMSL_REGRESSORS—Generates regressors for a general linear model. 

IMSL_MULTIREGRESS—Fits a multiple linear regression model and optionally 
produces summary statistics for a regression model. 

IMSL_MULTIPREDICT—Computes predicted values, confidence intervals, and 
diagnostics. 

Variable Selection

IMSL_ALLBEST—All best regressions. 

IMSL_STEPWISE—Stepwise regression. 

Polynomial and Nonlinear Regression

IMSL_POLYREGRESS—Fits a polynomial regression model. 

IMSL_POLYPREDICT—Computes predicted values, confidence intervals, and 
diagnostics. 

IMSL_NONLINREGRESS—Fits a nonlinear regression model. 

Multivariate Linear Regression—Statistical Inference 
and Diagnostics

IMSL_HYPOTH_PARTIAL—Construction of a completely testable hypothesis.

IMSL_HYPOTH_SCPH—Sums of cross products for a multivariate hypothesis.

IMSL_HYPOTH_TEST—Tests for the multivariate linear hypothesis.

Polynomial and Nonlinear Regression

IMSL_NONLINOPT—Fit a nonlinear regression model using Powell's algorithm.

Alternatives to Least Squares Regression

IMSL_LNORMREGRESS—LAV, Lpnorm, and LMV criteria regression.
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IMSL_REGRESSORS

The IMSL_REGRESSORS function generates regressors for a general linear model.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_REGRESSORS(x, n_class, n_continuous 
[, CLASS_COLUMNS=array] [, /DOUBLE] [, DUMMY_METHOD=variable] 
[, INDICES_EFFECTS=array] [, ORDER=value] [, VAR_EFFECTS=array])

Return Value

A two-dimensional array containing the regressor variables generated from x.

Arguments

x

Two-dimensional array containing the data. The columns must be ordered such that 
the first n_class columns contain the class variables and the next n_continuous 
columns contain the continuous variables. (Exception: See keyword Class_Columns.)

n_class

Number of classification variables.

n_continuous

Number of continuous variables.

Keywords

CLASS_COLUMNS

One-dimensional array of length n_class containing the column numbers of x that are 
the classification variables. The remaining n_continuous variables are assumed to 
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correspond to the columns of x in the range 0, ..., n_class – 1 that are not listed in 
Class_Columns. Default: Class_Columns = [0, 1, ..., n_class – 1] 

DOUBLE

If present and nonzero, double precision is used.

DUMMY_METHOD

Dummy variable option. Indicator variables are defined for each class variable as 
described in the Discussion section. Dummy variables are then generated from the n 
indicator variables in one of the following three ways:

• (Default)—The n indicator variables are the dummy variables.

• 1—Dummies are the first n – 1 indicator variables.

• 2—The n – 1 dummies are defined in terms of the indicator variables so that 
for balanced data, the usual summation restrictions are imposed on the 
regression coefficients.

INDICES_EFFECTS

One-dimensional array of length Var_Effects (0) + Var_Effects (1) + ... Var_Effects 
(N_ELEMENTS (Var_Effects) – 1). The first Var_Effects(0) elements give the 
column numbers of x for each variable in the first effect. The next Var_Effects(1) 
elements give the column numbers for each variable in the second effect. The last 
Var_Effects (N_ELEMENTS (Var_Effects) – 1) elements give the column numbers 
for each variable in the last effect. Keywords Var_Effects and Indices_Effects must be 
used together.

ORDER

Order of the model. Model order can be specified as 1 or 2. Use keyword 
Indices_Effects to specify more complicated models. The keywords Var_Effects and 
Indices_Effects must be used together. Default: Order = 1

VAR_EFFECTS

One-dimensional array containing the number of variables associated with each 
effect in the model. The keywords Var_Effects and Indices_Effects must be used 
together.
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Discussion

The IMSL_REGRESSORS function generates regressors for a general linear model 
from a data matrix. The data matrix can contain classification variables as well as 
continuous variables. Regressors for effects composed solely of continuous variables 
are generated as powers and crossproducts. Consider a data matrix containing 
continuous variables as Columns 3 and 4. The effect indices (3, 3) generate a 
regressor whose i-th value is the square of the i-th value in Column 3. The effect 
indices (3, 4) generates a regressor whose i-th value is the product of the i-th value in 
Column 3 with the i-th value in Column 4.

Regressors for an effect (source of variation) composed of a single classification 
variable are generated using indicator variables. Let the classification variable A take 
on values a1, a2, ..., an. From this classification variable, IMSL_REGRESSORS 
creates n indicator variables. For k = 1, 2, ..., n: 

For each classification variable, another set of variables is created from the indicator 
variables. These new variables are called dummy variables. Dummy variables are 
generated from the indicator variables in one of three manners:

1. The dummies are the n indicator variables. (Default method)

2. The dummies are the first n – 1 indicator variables. (Dummy_Method = 1)

3. The n – 1 dummies are defined in terms of the indicator variables so that for 
balanced data, the usual summation restrictions are imposed on the regression 
coefficients. (Dummy_Method = 2)

In particular, for the default case, the dummy variables are 
Ak = Ik (k = 1, 2, ..., n). For Dummy_Method = 1, the dummy variables are Ak = Ik (k = 
1, 2, ..., n – 1). For Dummy_Method = 2, the dummy variables are Ak = Ik – In (k = 1, 
2, ..., n – 1). The regressors generated for an effect composed of a single-
classification variable are the associated dummy variables. 

Let mj be the number of dummies generated for the j-th classification variable. 
Suppose there are two classification variables A and B with dummies: 

 and  

The regressors generated for an effect composed of two classification variables A and 
B are:

Ik

1 if  A = ak

0 otherwise






=

A1 A2 ... Am
1

, , , B1 B2 ... Bm2
, , ,
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=  

 

More generally, the regressors generated for an effect composed of several 
classification variables and several continuous variables are given by the Kronecker 
products of variables, where the order of the variables is specified in Indices_Effects. 
Consider a data matrix containing classification variables in Columns 0 and 1 and 
continuous variables in Columns 2 and 3. Label these four columns A, B, X1, and X2. 
The regressors generated by the effect indices (0, 1, 2, 2, 3) are:

 

Remarks

Let the data matrix x = (A, B, X1), where A and B are classification variables and X1 is 
a continuous variable. The model containing the effects A, B, AB, X1, AX1, BX1, and 
ABX1 is specified as follows (use optional keyword Indices_Effects):

n_class = 2

n_continuous = 1

Var_Effects = [1, 1, 2, 1, 2, 2, 3]

Indices_Effects = [0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2]

For this model, suppose that variable A has two levels, A1 and A2, and that variable B 
has three levels, B1, B2, and B3. For each Dummy_Method option, the regressors in 
their order of appearance in IMSL_REGRESSORS are given below

• (Default)—A1, A2, B1, B2, B3, A1 B1, A1 B2, A1 B3, A2 B1, A2 B2, 
A2 B3, X1, A1 X1, A2 X1, B1 X1, B2 X1, B3 X1, A1 B1 X1, 
A1 B2 X1, A1 B3 X1, A2 B1 X1, A2 B2 X1, A2 B3 X1

• 1—A1, B1, B2, A1 B1, A1 B2, X1, A1 X1, B1 X1, B2 X1, —A1 B1 X1, A1 B2 X1 

• 2—A1 – A2, B1 – B3, B2 – B3, (A1 – A2) (B1 – B2), (A1 – A2) (B2 – B3), X1, (A1 – 
A2) X1, (B1 – B3) X1, (B2 – B3) X1, (A1 – A2) (B1 – B2) X1, (A1 – A2) (B2 – B3) 
X1

Within a group of regressors corresponding to an interaction effect, the indicator 
variables composing the regressors vary most rapidly for the last classification 
variable, next most rapidly for the next to last classification variable, etc.

By default, IMSL_REGRESSORS internally generates values for Var_Effects and 
Indices_Effects, which correspond to a first order model with 

A B⊗ A1 A2 ... Am1
, , ,( ) B1 B2 ... Bm2

, , ,( )⊗=

A1B1 A1B2 ... A1Bm2
A2B1 A2B2 ... A2Bm2

..., , , ,, , , ,(
Am1

B1 Am1
B2 ... Am1

Bm2
), , ,

A B X1X1X2⊗ ⊗
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NEF = n_continuous + n_class. The variables then are used to create the regressor 
variables. The effects are ordered such that the first effect corresponds to the first 
column of x, the second effect corresponds to the second column of x, etc. A second 
order model corresponding to the columns (variables) of x is generated if Order with 
Order = 2 is specified.

There are: 

effects, where NVAR = n_continuous + n_class. The first NVAR effects correspond 
to the columns of x, such that the first effect corresponds to the first column of x, the 
second effect corresponds to the second column of x, ..., the NVAR-th effect 
corresponds to the NVAR-th column of x (i.e., x (NVAR – 1)). The next n_continuous 
effects correspond to squares of the continuous variables. The last: 

effects correspond to the two-variable interactions.

• Let the data matrix x = (A, B, X1), where A and B are classification variables 
and X1 is a continuous variable. The effects generated and order of appearance 
is A, B, X1, X2

1, AB, AX1, BX1.

• Let the data matrix x = (A, X1, X2), where A is a classification variable and X1 
and X2 are continuous variables. The effects generated and order of appearance 
is A, X1, X2, X2

1, X2
2, AX1, AX2, X1X2.

• Let the data matrix x = (X1, A, X2) (see Class_Columns), where A is a 
classification variable and X1 and X2 are continuous variables. The effects 
generated and order of appearance is X1, A, X2, X2

1, X2
2, X1A, X1X2, AX2.

Higher-order and more complicated models can be specified using Indices_Effects. 

Examples

Example 1

In the following example, there are two classification variables, A and B, with two 
and three values, respectively. Regressors for a one-way model (the default model 
order) are generated using the ALL dummy method (the default dummy method). 
The five regressors generated are A1, A2, B1, B2, B3.

NEF n_class 2*n_continuous NVAR

2 
 
 

+ +=

NVAR

2 
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labels = ['A1', 'A2', 'B1', 'B2', 'B3'] 
; Define some labels for printing later. 
RM, x, 6, 2 
; Enter the data. 
row 0: 10  5 
row 1: 20 15 
row 2: 20 10 
row 3: 10 10 
row 4: 10 15 
row 5: 20  5 
reg = IMSL_REGRESSORS(x, 2, 0) 
; Call IMSL_REGRESSORS. 
PM, labels, reg, FORMAT = '(5a8, /, 6(5f8.1, /))' 
; Print the results. 

A1      A2      B1      B2      B3 
1.0     0.0     1.0     0.0     0.0 
0.0     1.0     0.0     0.0     1.0 
0.0     1.0     0.0     1.0     0.0 
1.0     0.0     0.0     1.0     0.0 
1.0     0.0     0.0     0.0     1.0 
0.0     1.0     1.0     0.0     0.0

Example 2

In this example, a two-way analysis of covariance model containing all the 
interaction terms is fit. First, IMSL_REGRESSORS is called to produce a matrix of 
regressors, reg, from the data x. The regressors, generated using Dummy_Method = 1, 
are the model whose mean function is:

µ + αi + βj + γ ij + δ xij + ζixij + η j xij + θ ijxij  i = 1, 2; j = 1, 2, 3

where α2 = β3 = γ21 = γ22 = γ23 = ζ2 = η3 = θ21 = θ22 = θ23 = 0.

labels = ['Alpha1', 'Beta1', 'Beta2', 'Gamma11', 'Gamma12', $
'Delta', 'Zeta1', 'Eta1', 'Eta2', 'Theta11', 'Theta12'] 

; Define some labels to use in printing the results. 
x = transpose([ [1.0, 1.0, 1.11], [1.0, 1.0, 2.22], $

[1.0, 1.0, 3.33], [1.0, 2.0, 1.11], [1.0, 2.0, 2.22], $
[1.0, 2.0, 3.33], [1.0, 3.0, 1.11], [1.0, 3.0, 2.22], $
[1.0, 3.0, 3.33], [2.0, 1.0, 1.11], [2.0, 1.0, 2.22], $
[2.0, 1.0, 3.33], [2.0, 2.0, 1.11], [2.0, 2.0, 2.22], $
[2.0, 2.0, 3.33], [2.0, 3.0, 1.11], [2.0, 3.0, 2.22], $
[2.0, 3.0, 3.33]])

Var_Effects = [1, 1, 2, 1, 2, 2, 3] 
Indices_Effects = [0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2] 
reg = IMSL_REGRESSORS(x, 2, 1, Dummy_Method = 1, $

Var_Effects = var_effects, Indices_Effects = indices_effects) 
; Call IMSL_REGRESSORS. 
PM, labels(0:5), reg(*, 0:5), FORMAT = '(6a9, /, 18(6f9.2, /))' 
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; Output the results. 
Alpha1  Beta1  Beta2 Gamma11 Gamma12 Delta
  1.0    1.0    0.0    1.0     0.0    1.1
 1.00   1.00   0.00   1.00    0.00   2.22
 1.00   1.00   0.00   1.00    0.00   3.33
 1.00   0.00   1.00   0.00    1.00   1.11
 1.00   0.00   1.00   0.00    1.00   2.22
 1.00   0.00   1.00   0.00    1.00   3.33
 1.00   0.00   0.00   0.00    0.00   1.11
 1.00   0.00   0.00   0.00    0.00   2.22
 1.00   0.00   0.00   0.00    0.00   3.33
 0.00   1.00   0.00   0.00    0.00   1.11
 0.00   1.00   0.00   0.00    0.00   2.22
 0.00   1.00   0.00   0.00    0.00   3.33
 0.00   0.00   1.00   0.00    0.00   1.11
 0.00   0.00   1.00   0.00    0.00   2.22
 0.00   0.00   1.00   0.00    0.00   3.33
 0.00   0.00   0.00   0.00    0.00   1.11
 0.00   0.00   0.00   0.00    0.00   2.22
 0.00   0.00   0.00   0.00    0.00   3.33

PM, labels(6:10), reg(*, 6:10), FORMAT = '(5a9, /, 18(5f9.2, /))' 
Zeta1    Eta1     Eta2   Theta11  Theta12
 1.1      1.1      0.0      1.1      0.0
2.22     2.22     0.00     2.22     0.00
3.33     3.33     0.00     3.33     0.00
1.11     0.00     1.11     0.00     1.11
2.22     0.00     2.22     0.00     2.22
3.33     0.00     3.33     0.00     3.33
1.11     0.00     0.00     0.00     0.00
2.22     0.00     0.00     0.00     0.00
3.33     0.00     0.00     0.00     0.00
0.00     1.11     0.00     0.00     0.00
0.00     2.22     0.00     0.00     0.00
0.00     3.33     0.00     0.00     0.00
0.00     0.00     1.11     0.00     0.00
0.00     0.00     2.22     0.00     0.00
0.00     0.00     3.33     0.00     0.00
0.00     0.00     0.00     0.00     0.00
0.00     0.00     0.00     0.00     0.00
0.00     0.00     0.00     0.00     0.00

Version History

6.4 Introduced
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IMSL_MULTIREGRESS

The IMSL_MULTIREGRESS function fits a multiple linear regression model using 
least squares and optionally compute summary statistics for the regression model.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_MULTIREGRESS(x, y [, ANOVA_TABLE=variable] 
[, COEF_COVARIANCES=variable] [, COEF_VIF=variable] [, /DOUBLE] 
[, FREQUENCIES=array] [, /NO_INTERCEPT] [, PREDICT_INFO=variable] 
[, RANK=variable] [, RESIDUAL=variable] [, T_TESTS=variable] 
[, TOLERANCE=value] [, WEIGHTS=array] [, XMEAN=variable])

Return Value

If keyword No_Intercept is not used, IMSL_MULTIREGRESS is an array of length 
N_ELEMENTS (x(*, 0)) containing a least-squares solution for the regression 
coefficients. The estimated intercept is the initial component of the array.

Arguments

x

Two-dimensional matrix containing the independent (explanatory) variables. The 
data value for the i-th observation of the j-th independent (explanatory) variable 
should be in element x(i, j).

y

Two-dimensional matrix containing of size N_ELEMENTS(x(*,0)) by n_dependent 
containing the dependent (response) variable(s). The i-th column of y contains the i-
th dependent variable.
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Keywords

ANOVA_TABLE

Named variable into which the array containing the analysis of variance table is 
stored. Each column of Anova_table corresponds to a dependent variable. The 
analysis of variance statistics are shown in Table 14-5: 

COEF_COVARIANCES

Named variable into which the m x m x n_dependent array containing estimated 
variances and covariances of the estimated regression coefficients is stored. Here, m 
is number of regression coefficients in the model. If No_Intercept is specified, m = 
N_ELEMENTS(x(0, *)); otherwise, m = (N_ELEMENTS(x(0, *)) + 1).

Element Analysis of Variance Statistic

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

Table 14-5: Analysis of Variance Statistics 
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COEF_VIF

Named variable into which a one-dimensional array of length NPAR containing the 
variance inflation factor, where NPAR is the number of parameters, is stored. The (i + 
INTCEP)-th element corresponds to the i-th independent variable, where i = 0, 1, 2, 
..., NPAR – 1, and INTCEP is equal to 1 if an intercept is in the model and 0 
otherwise. The square of the multiple correlation coefficient for the i-th regressor 
after all others is obtained from Coef_Vif by the following formula: 

If there is no intercept or there is an intercept and i = 0, the multiple correlation 
coefficient is not adjusted for the mean.

DOUBLE

If present and nonzero, double precision is used.

FREQUENCIES

One-dimensional array containing the frequency for each observation. Default: 
Frequencies(*) = 1

NO_INTERCEPT

If present and nonzero, the intercept term:

 

is omitted from the model. By default, the fitted value for observation i is:  

where k is the number of independent variables.

PREDICT_INFO

Named variable into which the one-dimensional byte array containing information 
needed by IMSL_MULTIPREDICT is stored. The data contained in this array is in an 
encrypted format and should not be altered before it is used in subsequent calls to 
IMSL_MULTIPREDICT.

RANK

Named variable into which the rank of the fitted model is stored.

1.0 1.0
Coef_Vif i( )
----------------------------–

β̂0

β̂0 β̂1x1 … β̂kxk+ + +
IDL Analyst Reference Guide IMSL_MULTIREGRESS



612 Chapter 14: Regression
RESIDUAL

Variable into which the array containing the residuals is stored.

T_TESTS

Named variable into which the NPAR (where NPAR is equal to the number of 
parameters in the model) by 4 array containing statistics relating to the regression 
coefficients is stored.

Each row corresponds to a coefficient in the model, where NPAR is the number of 
parameters in the model. Row i + INTCEP corresponds to the i-th independent 
variable, where INTCEP is equal to 1 if an intercept is in the model and 0 otherwise, 
and i = 0, 1, 2, ..., NPAR – 1. The statistics in the columns are as follows:

• 0—coefficient estimate

• 1—estimated standard error of the coefficient estimate

• 2—t-statistic for the test that the coefficient is 0

• 3—p-value for the two-sided t test

TOLERANCE

Tolerance used in determining linear dependence. For MULTIGRESS, Tolerance = 
100 x ε, where ε is machine precision (default).

WEIGHTS

One-dimensional array containing the weight for each observation. Default: 
Weights(*) = 1

XMEAN

Named variable into which the array containing the estimated means of the 
independent variables is stored.

Discussion

The IMSL_MULTIREGRESS function fits a multiple linear regression model with or 
without an intercept. 

By default, the multiple linear regression model is 

yi = β0 + β1xi1 + β2xi2 + ... + βkxik + εi     i = 0, 2, ..., n 
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where the observed values of the yi’s (input in y) are the responses or values of the 
dependent variable; the xi1’s, xi2’s, ..., xik’s (input in x) are the settings of the k 
independent variables; β0, β1, ..., βk are the regression coefficients whose estimated 
values are to be output by IMSL_MULTIREGRESS; and the εi’s are independently 
distributed normal errors, each with mean zero and variance σ2. Here, n = 
(N_ELEMENTS(x(*, 0))). Note that by default, β0 is included in the model.

The IMSL_MULTIREGRESS function computes estimates of the regression 
coefficients by minimizing the weighted sum of squares of the deviations of the 
observed response yi from the fitted response: 

for the n observations. This weighted minimum sum of squares (the error sum of 
squares) is output as one of the analysis of variance statistics if Anova_Table is 
specified and is computed as shown below: 

Another analysis of variance statistics is the total sum of squares. By default, the 
weighted total sum of squares is the weighted sum of squares of the deviations of yi 
from its mean:

 

the so-called corrected total sum of squares. This statistic is computed as follows: 

When No_Intercept is specified, the total weighted sum of squares is the sum of 
squares of yi, the so called uncorrected total weighted sum of squares. This is 
computed as follows: 

See Draper and Smith (1981) for a good general treatment of the multiple linear 
regression model, its analysis, and many examples.

In order to compute a least-squares solution, IMSL_MULTIREGRESS performs an 
orthogonal reduction of the matrix of regressors to upper-triangular form. The 
reduction is based on one pass through the rows of the augmented matrix (x, y) using 
fast Givens transformations (Golub and Van Loan 1983, pp. 156–162; Gentleman 

ŷi

SSE wi yi ŷi–( )2

i 1=

n

∑=

y

SST wi yi y–( )2

i 1=

n

∑=

SST wi yi
2

i 1=

n

∑=
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1974). This method has the advantage that it avoids the loss of accuracy that results 
from forming the crossproduct matrix used in the normal equations.

By default, the current means of the dependent and independent variables are used to 
internally center the data for improved accuracy. Let xj be a column vector containing 
the j-th row of data for the independent variables. Let:

 

represent the mean vector for the independent variables given the data for rows 0, 1, 
..., i. The current mean vector is defined to be: 

where the wj’s and the fj’s are the weights and frequencies. The i-th row of data has:

 

subtracted from it and is multiplied by: 

Although a crossproduct matrix is not computed, the validity of this centering 
operation can be seen from the formula below for the sum-of-squares and 
crossproducts matrix: 

An orthogonal reduction on the centered matrix is computed. When the final 
computations are performed, the intercept estimate and the first row and column of 
the estimated covariance matrix of the estimated coefficients are updated (if 
Coef_Covariances is specified) to reflect the statistics for the original (uncentered) 
data. This means that the estimate of the intercept is for the uncentered data.

As part of the final computations, MULTIGRESS checks for linearly dependent 
regressors. In particular, linear dependence of the regressors is declared if any of the 
following three conditions is satisfied:

• A regressor equals zero.

• Two or more regressors are constant. 

• The expression:

xi

xi

wj fjxj
j 1=

i

∑
wj fj

------------------------=

xi

wi fi

ai

ai 1–
----------

wi f i xi xn–( ) xi xn–( )T

i 1=

n

∑
ai

ai 1–
----------wi fi xi xi–( ) xi xi–( )T

i 2=

n

∑=
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is less than or equal to Tolerance. Here, Ri·1, 2, ..., i – 1 is the multiple correlation 
coefficient of the i-th independent variable with the first i – 1 independent 
variables. If no intercept is in the model, the “multiple correlation” coefficient 
is computed without adjusting for the mean.

On completion of the final computations, if the i-th regressor is declared to be 
linearly dependent upon the previous i – 1 regressors, then the i-th coefficient 
estimate and all elements in the i-th row and i-th column of the estimated variance-
covariance matrix of the estimated coefficients (if Coef_Covariances is specified) are 
set to zero. Finally, if a linear dependence is declared, an informational (error) 
message, code STAT_RANK_DEFICIENT, is issued indicating the model is not full 
rank.

The IMSL_MULTIREGRESS function also can be used to compute summary 
statistics from a fitted general linear model. The model is y = Xβ + ε, where y is the 
n x 1 vector of responses, X is the n x p matrix of regressors, β is the p x 1 vector of 
regression coefficients, and ε is the n x 1vector of errors whose elements are each 
independently distributed with mean zero and variance σ2. The 
IMSL_MULTIREGRESS function uses the results of this fit to compute summary 
statistics, including analysis of variance, sequential sum of squares, t tests, and an 
estimated variance-covariance matrix of the estimated regression coefficients.

Some generalizations of the general linear model are allowed. If the i-th element of ε 
has variance of: 

and the weights wi are used in the fit of the model, IMSL_MULTIREGRESS 
produces summary statistics from the weighted least-squares fit. More generally, if 
the variance-covariance matrix of ε is σ2V, IMSL_MULTIREGRESS can be used to 
produce summary statistics from the generalized least-squares fit. The 
IMSL_MULTIREGRESS function can be used to perform a generalized least-
squares fit by regressing y*on X* where y* = (T –1)Ty, X* = (T –1)TX and T satisfies 
TTT = V. 

The sequential sum of squares for the i-th regression parameter is given by:

 

The regression sum of squares is given by the sum of the sequential sum of squares. If 
an intercept is in the model, the regression sum of squares is adjusted for the mean, 
i.e.:

1 Ri 1 2 … i 1–, , ,⋅
2

–

σ2

wi

------

Rβ̂( )0
2
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is not included in the sum.

The estimate of σ2 is s2 (stored in Anova_Table(7) that is computed as 
SSE/DFE.

If R is nonsingular, the estimated variance-covariance matrix of:

 

(stored in Coef_Covariances) is computed by s2R 
–1(R –1)T.

If R is singular, corresponding to rank(X) < p, a generalized inverse is used. For a 
matrix G to be a gi (i = 1, 2, 3, or 4) inverse of a matrix A, G must satisfy conditions j 
(for j ≤ i) for the Moore-Penrose inverse but generally must fail conditions k (for k > 
i). The four conditions for G to be a Moore-Penrose inverse of A are as follows:

1.  AGA = A

2.  GAG = G

3. AG is symmetric 

4. GA is symmetric

In the case where R is singular, the method for obtaining Coef_Covariances follows 
the discussion of Maindonald (1984, pp. 101–103). Let Z be the diagonal matrix with 
diagonal elements defined by the following: 

Let G be the solution to RG = Z obtained by setting the i-th ({i:rii = 0}) row of G to 
zero. Keyword Coef_Covariances is set to s2GGT. (G is a g3 inverse of R, represented 
by:

 

the result  

is a symmetric g2 inverse of RTR = XTX. See Sallas and Lionti 1988.)

Note that keyword Coef_Covariances can be used only to get variances and 
covariances of estimable functions of the regression coefficients, i.e., nonestimable 
functions (linear combinations of the regression coefficients not in the space spanned 
by the nonzero rows of R) must not be used. See, for example, Maindonald (1984, pp. 
166–168) for a discussion of estimable functions.

Rβ̂( )0
2

β̂

zii
1 if rii 0≠

0 ifrii 0=






=

R
g3

R
g3R

g3T
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The estimated standard errors of the estimated regression coefficients (stored in 
Column 1 of T_Tests) are computed as square roots of the corresponding diagonal 
entries in Coef_Covariances.

For the case where an intercept is in the model, set:

 

equal to the matrix R with the first row and column deleted. Generally, the variance 
inflation factor (VIF) for the i-th regression coefficient is computed as the product of 
the i-th diagonal element of RTR and the i-th diagonal element of its computed 
inverse. If an intercept is in the model, the VIF for those coefficients not 
corresponding to the intercept uses the diagonal elements of:

 

(see Maindonald 1984, p. 40).

Remarks

When R is nonsingular and comes from an unrestricted regression fit, 
Coef_Covariances is the estimated variance-covariance matrix of the estimated 
regression coefficients and Coef_Covariances = (SSE/DFE) (RTR)–1. 

Otherwise, variances and covariances of estimable functions of the regression 
coefficients can be obtained using Coef_Covariances and Coef_Covariances = (SSE/
DFE) (GDGT). Here, D is the diagonal matrix with diagonal elements equal to zero if 
the corresponding rows of R are restrictions and with diagonal elements equal to 1 
otherwise. Also, G is a particular generalized inverse of R.

Examples

Example 1

A regression model:

yi = β 0 + β 1x i 1 + β 2x i 2 + β 3 x i 3 + ε i i = 1, 2, ..., 9

is fitted to data taken from Maindonald (1984, pp. 203–204).

RM, x, 9, 3
; Set up the data. 
 row 0:  7   5   6 
 row 1:  2  -1   6 
 row 2:  7   3   5 
 row 3: -3   1   4 
 row 4:  2  -1   0 
 row 5:  2   1   7 

R

R
T

R
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 row 6: -3  -1   3 
 row 7:  2   1   1 
 row 8:  2   1   4 
 y = [7, -5, 6, 5, 5, -2, 0, 8, 3] 
; Call IMSL_MULTIREGRESS to compute the coefficients. 
coefs = IMSL_MULTIREGRESS(x, y) 
; Output the results. 
PM, coefs, TITLE = 'Least-Squares Coefficients', $

FORMAT = '(f10.5)' 

Least-Squares Coefficients 
 7.73333 
 -0.20000 
 2.33333 
 -1.66667

Example 2: Weighted Least-squares Fit

A weighted least-squares fit is computed using the model

yi = β0 + β1x i 1 + β2x i 2 + εi i = 1, 2, ..., 4

and weights 1/i2 discussed by Maindonald (1984, pp. 67–68). 

In the example, Weights is specified. The minimum sum of squares for error in terms 
of the original untransformed regressors and responses for this weighted regression 
is: 

where wi = 1/i2, represented in the C code as array w.

First, a procedure is defined to output the results, including the analysis of variance 
statistics.

PRO print_results, Coefs, Anova_Table 
coef_labels = ['intercept', 'linear', 'quadratic'] 
PM, coef_labels, coefs, TITLE = $

'Least-Squares Polynomial Coefficients',$
FORMAT = '(3a20, /,3f20.4, // )' 

anova_labels = ['degrees of freedom for regression', $
'degrees of freedom for error', $
'total (corrected) degrees of freedom', $
'sum of squares for regression', $
'sum of squares for error', $
'total (corrected) sum of squares', $
'regression mean square', $
'error mean square', 'F-statistic', $

SSE wi yi ŷi–( )2

i 1=

4

∑=
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'p-value', 'R-squared (in percent)', $
'adjusted R-squared (in percent)', $
'est. standard deviation of model error', $
'overall mean of y', $
'coefficient of variation (in percent)'] 

PM, '* * * Analysis of Variance * * * ', FORMAT = '(a50, /)' 
FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), FORMAT = '(a40, f20.2)' 
END

RM, x, 4, 2
; Input the values for x. 
row 0: -2 0 
row 1: -1 2 
row 2:  2 5 
row 3:  7 3 

y = [-3.0, 1.0, 2.0, 6.0] 
; Define the dependent variables. 
weights = FLTARR(4)
FOR i = 0, 3 DO weights(i) = 1/((i + 1.0)^2) 
; Define the weights and print them. 
PM, weights 
1.00000 
0.250000 
0.111111 
0.0625000 
coefs = IMSL_MULTIREGRESS(x, y, WEIGHTS = weights, $

ANOVA_TABLE = anova_table) 
print_results, coefs, anova_table 
; Print results using the procedure defined above. 

Least-Squares Polynomial Coefficients 
 intercept              linear           quadratic 
 -1.4307              0.6581              0.7485 

 * * * Analysis of Variance * * * 
 degrees of freedom for regression 2.00
 degrees of freedom for error 1.00
 total (corrected) degrees of freedom 3.00
 sum of squares for regression 7.68
 sum of squares for error 1.01
 total (corrected) sum of squares 8.69
 regression mean square 3.84
 error mean square 1.01
 F-statistic 3.79
 p-value 0.34
 R-squared (in percent) 88.34
 adjusted R-squared (in percent) 65.03
est. standard deviation of model error  1.01
 overall mean of y -1.51
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 coefficient of variation (in percent) -66.55

Example 3: Plotting Results

This example uses IMSL_MULTIREGRESS to fit data with both simple linear 
regression and second order regression. The results, shown in Figure 14-1, are plotted 
along with confidence bands and residual plots.

PRO IMSL_MULTIREGRESS_ex 
!P.MULTI = [0, 2, 2] 
x = [1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0, 5.0, 5.0] 

y = [1.1, 0.1, -1.2, 0.3, 1.4, 2.6, 3.1, 4.2, 9.3, 9.6] 
z = FINDGEN(120)/20 
line = MAKE_ARRAY(120, VALUE = 0.0) 
; Perform a simple linear regression. 
Coefs = IMSL_MULTIREGRESS(x, y, PREDICT_INFO = predict_info) 
y_hat = IMSL_MULTIPREDICT(predict_info, x, $

RESIDUAL = residual, Y = y) 
y_hat = IMSL_MULTIPREDICT(predict_info, z, $

CI_PTW_NEW_SAMP = ci) 
PLOT, x, y, Title = 'Simple linear regression', PSYM = 4, $

XRANGE = [0.0, 6.0] 
; Plot the regression. 
y2 = coefs(0) + coefs(1) * z 
OPLOT, z, y2 
OPLOT, z, ci(0, *), LINESTYLE = 1 
OPLOT, z, ci(1, *), LINESTYLE = 1 
PLOT, x, residual, PSYM = 4, TITLE = $

'Residual plot for simple linear regression', $
XRANGE = [0.0, 6.0], YRANGE = [-6, 6] 

; Plot the residual. 
OPLOT, z, line 
x2 = [[x], [x * x]] 
; Compute the second-order regression. 
coefs = IMSL_MULTIREGRESS(x2, y, PREDICT_INFO = predict_info) 
y_hat = IMSL_MULTIPREDICT(predict_info, x2, $

RESIDUAL = residual, Y = y) 
y_hat = IMSL_MULTIPREDICT(predict_info, $

[[z], [z * z]], CI_PTW_NEW_SAMP = ci) 
PLOT, x, y, Title = '2nd order regression',$ 

PSYM = 4, XRANGE = [0.0, 6.0]
; Plot the second-order regression and the residual. 
y2 = coefs(0) + coefs(1) * z + coefs(2) * z * z 
OPLOT, z, y2 
OPLOT, z, ci(0, *), LINESTYLE = 1 
OPLOT, z, ci(1, *), LINESTYLE = 1 
PLOT, x2, residual, PSYM = 4, TITLE = $

'Residual plot for 2nd order regression', $
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XRANGE = [0.0, 6.0], YRANGE = [-6, 6] 
OPLOT, z, line 

END

Example 4: Two-variable, Second-degree Fit

In this example, IMSL_MULTIREGRESS is used to compute a two variable second-
degree fit to data. The results are shown in Figure 14-2.

PRO IMSL_MULTIREGRESS_ex
; Define the data. 
x1 = FLTARR(10, 5) 
x1(*, 0) = [8.5, 8.9, 10.6, 10.2, 9.8, $

10.8, 11.6, 12.0, 12.5, 10.9] 
x1(*, 1) = [2, 3, 3, 20, 22, 20, 31, 32, 31, 28] 
x1(*, 2) = x1(*, 0) * x1(*, 1) 
x1(*, 3) = x1(*, 0) * x1(*, 0) 
x1(*, 4) = x1(*, 1) * x1(*, 1) 
y = [30.9, 32.7, 36.7, 41.9, 40.9, 42.9, 46.3, 47.6, 47.2, 44.0] 
nxgrid = 30
nygrid = 30 

Figure 14-1: Plots of Fit
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; Setup vectors for surface plot. These will be (nxgrid x nygrid)
; elements each, evenly spaced over the range of the data
; in x1(*, 0)  and x1(*, 1). 
ax1 = min(x1(*, 0)) + (max(x1(*, 0)) - $

min(x1(*, 0))) * FINDGEN(nxgrid)/(nxgrid - 1) 
ax2 = MIN(x1(*, 1)) + (MAX(x1(*, 1)) - $

MIN(x1(*, 1))) * FINDGEN(nxgrid)/(nxgrid - 1) 
coefs = IMSL_MULTIREGRESS(x1, y, RESIDUAL = resid) 
; Compute regression coefficients. 
z = FLTARR(nxgrid, nygrid) 
; Create two-dimensional array of evaluations of the regression
; model at points in grid established by ax1 and ax2. 
FOR i = 0, nxgrid - 1 DO BEGIN 

FOR j = 0, nygrid-1 DO BEGIN 
z(i,j) = Coefs(0) $
+ Coefs(1) * ax1(i) + Coefs(2) * ax2(j) $
+ Coefs(3) * ax1(i) * ax2(j) $
+ Coefs(4) * ax1(i)^2 $
+ Coefs(5) * ax2(j)^2 

ENDFOR
ENDFOR
!P.CHARSIZE = 2
SURFACE, z, ax1, ax2, /SAVE, XTITLE = 'X1', YTITLE = 'X2' 
PLOTS, x1(*, 0), x1(*, 1), y, /T3D, PSYM = 4, SYMSIZE = 3 
XYOUTS, .3, .9, /NORMAL, 'Two-Variable Second-Degree Fit' 
; Plot the results. 
END
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Errors

Warning Errors

STAT_RANK_DEFICIENT—Model is not full rank. There is not a unique least-
squares solution. 

Version History

Figure 14-2: Two-variable, Second Degree Fit

6.4 Introduced
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IMSL_MULTIPREDICT

The IMSL_MULTIPREDICT function computes predicted values, confidence 
intervals, and diagnostics after fitting a regression model.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_MULTIPREDICT(predict_info, x [, CI_SCHEFFE=variable] 
[, CI_PTW_POP_MEAN=variable] [, CI_PTW_NEW_SAMP=variable] 
[, CONFIDENCE=value] [, COOKS_D=variable] [, DEL_RESIDUAL=variable] 
[, DFFITS=variable] [, /DOUBLE] [, LEVERAGE=variable] 
[, RESIDUAL=variable] [, STD_RESIDUAL=variable] [, WEIGHTS=array] 
[, Y=array])

Return Value

One-dimensional array of length N_ELEMENTS (x(*, 0)) containing the predicted 
values.

Arguments

predict_info

One-dimensional byte array containing information computed by 
IMSL_MULTIREGRESS and returned through keyword predict_info. The data 
contained in this array is in an encrypted format and should not be altered after it is 
returned by IMSL_MULTIREGRESS.

x

Two-dimensional array containing the combinations of independent variables in each 
row for which calculations are to be performed.
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Keywords

CI_SCHEFFE

Named variable into which the two-dimensional array of size 2 by N_ELEMENTS 
(x(*, 0)) containing the Scheffé confidence intervals corresponding to the rows of x is 
stored. Element Ci_Scheffe (0, i) contains the i-th lower confidence limit; Ci_Scheffe 
(1, i) contains the i-th upper confidence limit.

CI_PTW_POP_MEAN

Named variable into which the two-dimensional array of size 2 by N_ELEMENTS 
(x(*, 0)) containing the confidence intervals for two-sided interval estimates of the 
means, corresponding to the rows of x, is stored. Element Ci_Ptw_Pop_Mean (0, i) 
contains the i-th lower confidence limit; Ci_Ptw_Pop_Mean (1, i) contains the i-th 
upper confidence limit.

CI_PTW_NEW_SAMP

Named variable into which the two-dimensional array of size 2 by N_ELEMENTS 
(x(*, 0)) containing the confidence intervals for two-sided prediction intervals, 
corresponding to the rows of x, is stored. Element Ci_Ptw_New_Samp (0, i) contains 
the i-th lower confidence limit; Ci_Ptw_New_Samp (1, i) contains the i-th upper 
confidence limit. 

CONFIDENCE

Confidence level for both two-sided interval estimates on the mean and for two-sided 
prediction intervals, in percent. Keyword Confidence must be in the range [0.0, 
100.0). For one-sided intervals with confidence level, where 50.0 ≤ c < 100.0, set 
Confidence = 100.0 – 2.0 * (100.0 – c). Default: Confidence = 95.0

COOKS_D

Named variable into which the one-dimensional array of length N_ELEMENTS (x(*, 
0)) containing the Cook’s D statistics is stored.

Note
You must specify the Y keyword when using this keyword.
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DEL_RESIDUAL

Named variable into which the one-dimensional array of length N_ELEMENTS (x(*, 
0)) containing the deleted residuals is stored.

Note
You must specify the Y keyword when using this keyword.

DFFITS

Named variable into which the one-dimensional array of length N_ELEMENTS (x(*, 
0)) containing the DFFITS statistics is stored.

Note
You must specify the Y keyword when using this keyword.

DOUBLE

If present and nonzero, double precision is used.

LEVERAGE

Named variable into which the one-dimensional array of length N_ELEMENTS (x(*, 
0)) containing the leverages is stored.

RESIDUAL

Named variable into which the one-dimensional array of length N_ELEMENTS (x(*, 
0)) containing the residuals is stored.

Note
You must specify the Y keyword when using this keyword.

STD_RESIDUAL

Named variable into which the one-dimensional array of length N_ELEMENTS (x(*, 
0)) containing the standardized residuals is stored.

Note
You must specify the Y keyword when using this keyword.
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WEIGHTS

One-dimensional array containing the weight for each row of x. The computed 
prediction interval uses SSE/(DFE * Weights (1)) for the estimated variance of a 
future response. Default: Weights (*) = 1

Y

Array of length N_ELEMENTS (x(*, 0)) containing observed responses.

Discussion

The general linear model used by IMSL_MULTIPREDICT is:

y = Xβ + ε

where y is the n x 1 vector of responses, X is the n x p matrix of regressors, β is the p 
x 1 vector of regression coefficients, and ε is the n x 1 vector of errors whose 
elements are independently normally distributed with mean zero and the following 
variance:

 σ 2/wi 

From a general linear model fit using the wi’s as the weights, 
IMSL_MULTIPREDICT computes confidence intervals and statistics for the 
individual cases that constitute the data set. Let xi be a column vector containing 
elements of the i-th row of X. Let W = diag(w1, w2, ..., wn). The leverage is defined as 
hi = (xT

i (X
TWX)–) xiwi. Put D = diag(d1, d2, ..., dp) with dj = 1 if the j-th diagonal 

element of R is positive and zero otherwise. The leverage is computed as hi = 
(aTDa)wi , where a is a solution to RTa = xi. The estimated variance of:

 

is given by the following:

his
2/wi, where s2 = SSE/DFE

The computation of the remainder of the case statistics follow easily from their 
definitions. See the chapter introduction for definitions of the case diagnostics. 

Informational errors can occur if the input matrix X is not consistent with the 
information from the fit (contained in predict_info), or if excess rounding has 
occurred. The warning error STAT_NONESTIMABLE arises when X contains a row not 
in the space spanned by the rows of R. An examination of the model that was fitted 
and the X for which diagnostics are to be computed is required in order to ensure that 
only linear combinations of the regression coefficients that can be estimated from the 

ŷ xi
T

B̂=
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fitted model are specified in x. For further details, see the discussion of estimable 
functions given in Maindonald (1984, pp. 166–168) and Searle (1971, pp. 180–188).

Often predicted values and confidence intervals are desired for combinations of 
settings of the independent variables not used in computing the regression fit. This 
can be accomplished by defining a new data matrix. Since the information about the 
model fit is input in predict_info, it is not necessary to send in the data set used for the 
original calculation of the fit, i.e., only variable combinations for which predictions 
are desired need be entered in x. 

Examples

Example 1

This example calls IMSL_MULTIPREDICT to compute predicted values after 
calling IMSL_MULTIREGRESS. 

x = MAKE_ARRAY(13, 4) 
; Define the data set. 
x(0, *) = [7, 26, 6, 60] 
x(1, *) = [1, 29, 15, 52] 
x(2, *) = [11, 56, 8, 20] 
x(3, *) = [11, 31, 8, 47] 
x(4, *) = [7, 52, 6, 33] 
x(5, *) = [11, 55, 9, 22] 
x(6, *) = [3, 71, 17, 6] 
x(7, *) = [1, 31, 22, 44] 
x(8, *) = [2, 54, 18, 22] 
x(9, *) = [21, 47, 4, 26] 
x(10, *) = [1, 40, 23, 34] 
x(11, *) = [11, 66, 9, 12] 
x(12, *) = [10, 68, 8, 12] 
y = [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, $

102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4] 
coefs = IMSL_MULTIREGRESS(x, y, Predict_Info = predict_info) 
; Call IMSL_MULTIREGRESS to compute the fit. 
predicted = IMSL_MULTIPREDICT(predict_info, x) 
; Call IMSL_MULTIPREDICT to compute predicted values. 
PM, predicted, Title = 'Predicted values'
; Output the predicted values. 
Predicted values 

 78.4952 
 72.7888 
 105.971 
 89.3271 
 95.6492 
 105.275 
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 104.149 
 75.6750 
 91.7216 
 115.618 
 81.8090 
 112.327 
 111.694

Example 2

This example uses the same data set as the first example and also uses a number of 
keywords to retrieve additional information from IMSL_MULTIPREDICT. First, a 
procedure is defined to print the results.

PRO print_results, anova_table, t_tests, y, $
predicted, ci_scheffe, residual, dffits 
labels = ['df for among groups            ', $

'df for within groups           ', $
'total (corrected) df           ', $
'ss for among groups            ', $
'ss for within groups           ', $
'total (corrected) ss           ', $
'mean square among groups       ', $
'mean square within groups      ', $
'F-statistic                    ', $
'P-value                        ', $
'R-squared (in percent)         ', $
'adjusted R-squared (in percent)', $
'est. std of within group error ', $
'overall mean of y              ', $
'coef. of variation (in percent) '] 

PRINT, ' * * Analysis of Variance * *' 
; Print the analysis of variance table. 
PM, [[labels], [STRING(anova_table, FORMAT = '(f11.4)')]] 
PRINT 
PRINT, 'Coefficient s.e.    t      p-value' 
PM, t_tests, FORMAT = '(f7.2, 4x, 3f7.2)' 
PRINT 
PRINT, ' observed predicted   lower upper residual dffits' 
PM, [[y], [predicted], [transpose(ci_scheffe)], $

[residual], [dffits]], FORMAT = '(6f10.2)' 
END
x = MAKE_ARRAY(13, 4)
; Define the data set. 
x(0, *) = [7, 26, 6, 60] 
x(1, *) = [1, 29, 15, 52] 
x(2, *) = [11, 56, 8, 20] 
x(3, *) = [11, 31, 8, 47] 
x(4, *) = [7, 52, 6, 33] 
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x(5, *) = [11, 55, 9, 22] 
x(6, *) = [3, 71, 17, 6] 
x(7, *) = [1, 31, 22, 44] 
x(8, *) = [2, 54, 18, 22] 
x(9, *) = [21, 47, 4, 26] 
x(10, *) = [1, 40, 23, 34] 
x(11, *) = [11, 66, 9, 12] 
x(12, *) = [10, 68, 8, 12] 
y = [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, $

102.7, 72.5, 93.1, 115.9, 83.8,113.3, 109.4] 
coefs = IMSL_MULTIREGRESS(x, y, $

Anova_Table    = anova_table, $
T_Tests        = t_tests,      $
Predict_Info   = predict_info, $
Residual       = residual) 
; Call IMSL_MULTIREGRESS to compute the fit. 

predicted = IMSL_MULTIPREDICT(predict_info, x,  $
Ci_scheffe = ci_scheffe, $
Y          = y,          $
Dffits     = dffits) 

print_results, anova_table, t_tests, y, $
predicted, ci_scheffe, residual, dffits 

* * Analysis of Variance * * 
 df for among groups                  4.0000 
 df for within groups                 8.0000 
 total (corrected) df                12.0000 
 ss for among groups               2667.8997 
 ss for within groups                47.8637 
 total (corrected) ss              2715.7634 
 mean square among groups           666.9749 
 mean square within groups            5.9830 
 F-statistic                        111.4791 
 P-value                              0.0000 
 R-squared (in percent)              98.2376 
 adjusted R-squared (in percent)     97.3563 
 est. std of within group error       2.4460 
 overall mean of y                   95.4231 
 coef. of variation (in percent)      2.5633 

 Coefficient  s.e.    t     p-value 
62.41      70.07   0.89   0.40 
1.55       0.74   2.08   0.07 
0.51       0.72   0.70   0.50 
0.10       0.75   0.14   0.90 
-0.14       0.71  -0.20   0.84 

observed  predicted    lower    upper   residual  dffits
78.50     78.50     70.70     86.29      0.00      0.00
74.30     72.79     66.73     78.85      1.51      0.52
104.30    105.97     97.99    113.95     -1.67     -1.24
87.60     89.33     83.62     95.03     -1.73     -0.53
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95.90     95.65     89.37    101.93      0.25      0.09
109.20    105.27    101.57    108.98      3.93      0.76
102.70    104.15     97.79    110.51     -1.45     -0.55
72.50     75.67     68.96     82.39     -3.17     -1.64
93.10     91.72     86.02     97.42      1.38      0.42
115.90    115.62    106.83    124.41      0.28      0.30
83.80     81.81     74.96     88.66      1.99      0.93
113.30    112.33    106.94    117.71      0.97      0.26
109.40    111.69    105.91    117.48     -2.29     -0.76

Errors

Warning Errors

STAT_NONESTIMABLE—Within the preset tolerance, the linear combination of 
regression coefficients is nonestimable.

STAT_LEVERAGE_GT_1—Leverage (= #) much greater than 1.0 is computed. It is set 
to 1.0.

STAT_DEL_MSE_LT_0—Deleted residual mean square (= #) much less than zero is 
computed. It is set to zero.

Fatal Errors

STAT_NONNEG_WEIGHT_REQUEST_2—Weight for row # was #. Weights must be 
nonnegative.

Version History

6.4 Introduced
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IMSL_ALLBEST

The IMSL_ALLBEST procedure selects the best multiple linear regression models.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_ALLBEST, x, y [, ADJ_R_SQUARED=value] [, COEFS=variable] 
[, COV_INPUT=array] [, COV_NOBS=value] [, CRITERIONS=variable] 
[, /DOUBLE] [, FREQUENCIES=array] [, IDX_COEFS=variable] 
[, IDX_CRITERIONS=variable] [, IDX_VARS=variable] 
[, INDEP_VARS=variable] [, WEIGHTS=array] [, MALLOWS_CP=value] 
[, MAX_N_BEST=value] [, MAX_N_GOOD=value] [, MAX_SUBSET=value])

Arguments

x

Two-dimensional array containing the data for the candidate variables.

y

One-dimensional array of length N_ELEMENTS (x(*, 0)) containing the responses 
for the dependent variable.

Keywords

ADJ_R_SQUARED

The adjusted R2 criterion is used, where subset sizes 1, 2, ..., N_ELEMENTS (x(*, 0)) 
are examined. Keywords Max_Subset, Adj_R_Squared, and Mallows_Cp cannot be 
used together. 

COEFS

Named variable into which the two-dimensional array of size (Idx_Coefs (NTBEST)) 
x 5 containing statistics relating to the regression coefficients of the best models is 
stored. Each row corresponds to a coefficient for a particular regression. The 
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regressions are in order of increasing subset size. Within each subset size, the 
regressions are ordered so that the better regressions appear first. The statistic in the 
columns are as follows (inferences are conditional on the selected model):

• 0—variable number

• 1—coefficient estimate

• 2—estimated standard error of the estimate

• 3—t-statistic for the test that the coefficient is 0

• 4—p-value for the two-sided t test

Keywords Coefs and Idx_Coefs must be used together.

COV_INPUT

Two-dimensional square array of size (N_ELEMENTS (x(0, *)) + 1) by 
(N_ELEMENTS (x(0, *)) + 1) containing a variance-covariance or sum-of-squares 
and crossproducts matrix, in which the last column must correspond to the dependent 
variable. 

Array Cov_Input can be computed using IMSL_COVARIANCES. Parameters x and 
y, and keywords Frequencies and Weights are not accessed when this option is 
specified. Normally, IMSL_ALLBEST computes Cov_Input from the input data 
matrices x and y. However, there may be cases when you will want to calculate the 
covariance matrix and manipulate it before calling IMSL_ALLBEST. See the 
Discussion section for a discussion of such cases.

Note
Keywords Cov_Input and Cov_Nobs must be used together.

COV_NOBS

Number of observations associated with array Cov_Input. Keywords Cov_Input and 
Cov_Nobs must be used together.

Note
Keywords Cov_Input and Cov_Nobs must be used together.

CRITERIONS

Named variable into which the one-dimensional array of length max(Idx_Criterions 
(NSIZE – 1), N_ELEMENTS (x(0, *)) containing in its first Idx_Criterions (NSIZE – 
IDL Analyst Reference Guide IMSL_ALLBEST



634 Chapter 14: Regression
1) elements the criterion values for each subset considered, in increasing subset size 
order, is stored. Keywords Criterions and Idx_Criterions must be used together. 

DOUBLE

If present and nonzero, double precision is used.

FREQUENCIES

One-dimensional array of length N_ELEMENTS (x(*, 0)) containing the frequency 
for each row of x. Default: Frequencies (*) = 1

IDX_COEFS

Named variable into which the one-dimensional array of length NBEST + 1 
containing the locations of Coefficients the first row of each of the best regressions is 
stored. Here, NTBEST is the total number of best regression found and is 
Max_Subset * Max_N_Best if Max_Subset is specified, Max_N_Best if either 
Mallows_Cp or Adj_R_Squared is specified, and Max_N_Best * (N_ELEMENTS 
(x(0, *))) otherwise. For i = 0, 1, ..., NTBEST, rows Idx_Coefs (i), Idx_Coefs(i) + 1, 
..., Idx_Coefs (i + 1) – 1 of Coefs correspond to the (i + 1)-st regression. Keywords 
Coefs and Idx_Coefs must be used together.

IDX_CRITERIONS

Named variable into which the one-dimensional array of length NSIZE containing 
the locations in Criterions of the first element for each subset size is stored. NSIZE is 
calculated as follows: NSIZE = (Max_Subset + 1) if Max_Subset is set. NSIZE = 
(N_ELEMENTS (x(0, *)) + 1) otherwise. For i = 0, 1, ..., NSIZE – 2, element 
numbers Idx_Criterions(i), Idx_Criterions (i) + 1, ..., Idx_Criterions(i + 1) – 1 of 
Criterions correspond to the (i + 1)-st subset size. Keywords Criterions and 
Idx_Criterions must be used together.

IDX_VARS

Named variable into which the one-dimensional array of length NSIZE containing 
the locations in  Indep_Vars of the first element for each subset size. NSIZE is 
calculated as follows: NSIZE = (Max_Subset + 1) if Max_Subset is set. NSIZE = 
(N_ELEMENTS(x(0, *)) + 1) otherwise. For i = 0, 1, ..., NSIZE – 2, element 
numbers Idx_Vars(i), Idx_Vars (i) + 1, ..., Idx_Vars (i + 1) – 1) of Indep_Vars 
correspond to the (i + 1)-st subset size. Keywords Indep_Vars and Idx_Vars must be 
used together.
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INDEP_VARS

Named variable into which the one-dimensional array of length Idx_Vars (NSIZE – 
1) containing the variable numbers for each subset considered and in the same order 
as in Criterions is stored. Keywords Indep_Vars and Idx_Vars must be used together.

WEIGHTS

One-dimensional array of length N_ELEMENTS (x(*, 0)) containing the weight for 
each row of x. Default: Weights(*) = 1

MALLOWS_CP

Mallows Cp criterion is used, where subset sizes 1, 2, ..., N_ELEMENTS (x(*, 0)) are 
examined. Keywords Max_Subset, Adj_R_Squared, and Mallows_Cp cannot be used 
together. 

MAX_N_BEST

Number of best regressions to be found. If the R2 criterion is selected, the 
Max_N_Best best regressions for each subset size examined are found. If the adjusted 
R2 or Mallows Cp criterion is selected, the Max_N_Best overall regressions are found. 
Default: Max_N_Best = 1

MAX_N_GOOD

Maximum number of good regressions of each subset size to be saved in finding the 
best regressions. Keyword Max_N_Good must be greater than or equal to 
Max_N_Best. Normally, Max_N_Good should be less than or equal to 10. It need not 
ever be larger than the maximum number of subsets for any subset size. Computing 
time required is inversely related to Max_N_Good. Default: Max_N_Good = 10

MAX_SUBSET

The R2 criterion is used, where subset sizes 1, 2, ..., Max_Subset are examined. This 
option is the default with Max_Subset = N_ELEMENTS (x(0, *)). Keywords 
Max_Subset, Adj_R_Squared, and Mallows_Cp cannot be used together. 

Discussion

The IMSL_ALLBEST procedure finds the best subset regressions for a regression 
problem with

n_candidate = (N_ELEMENTS (x (0, *)))
IDL Analyst Reference Guide IMSL_ALLBEST



636 Chapter 14: Regression
independent variables. Typically, the intercept is forced into all models and is not a 
candidate variable. In this case, a sum-of-squares and crossproducts matrix for the 
independent and dependent variables corrected for the mean is computed internally. 
There may be cases when it is convenient for you to calculate the matrix; see the 
description of the Cov_Input optional parameter.

“Best” is defined, on option, by one of the following three criteria:

• R2 (in percent): 

• R2
a (adjusted R2 in percent): 

Note that maximizing the criterion is equivalent to minimizing the residual 
mean square: 

• Mallows’ Cp statistic: 

Here, n is equal to the sum of the frequencies (or N_ELEMENTS(x (*, 0)) if 
Frequencies is not specified) and SST is the total sum of squares. SSEp is the error 
sum of squares in a model containing p regression parameters including β0 (or p – 1 
of the n_candidate candidate variables). Variable is the s2

n_candidate error mean 
square from the model with all n_candidate variables in the model. Hocking (1972) 
and Draper and Smith (1981, pp. 296–302) discuss these criteria.

The IMSL_ALLBEST procedure is based on the algorithm of Furnival and Wilson 
(1974). This algorithm finds Max_N_Good candidate regressions for each possible 
subset size. These regressions are used to identify a set of best regressions. In large 
problems, many regressions are not computed. They may be rejected without 
computation based on results for other subsets; this yields an efficient technique for 
considering all possible regressions.

There are cases when you may wish to input the variance-covariance matrix rather 
than allow the IMSL_ALLBEST procedure to calculate it. This can be accomplished 
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using keyword Cov_Input. Three situations in which you may want to do this are as 
follows:

1. The intercept is not in the model. A raw (uncorrected) sum-of-squares and 
crossproducts matrix for the independent and dependent variables is required. 
Keyword Cov_Nobs must be set to 1 greater than the number of observations. 
Form ATA, where A = [A, Y], to compute the raw sum-of-squares and 
crossproducts matrix.

2. An intercept is to be a candidate variable. A raw (uncorrected) sum-of-squares 
and crossproducts matrix for the constant regressor (= 1.0), independent 
variables, and dependent variables is required for Cov_Input. In this case, 
Cov_Input contains one additional row and column corresponding to the 
constant regressor. This row/column contains the sum of squares and 
crossproducts of the constant regressor with the independent and dependent 
variables. The remaining elements in Cov_Input are the same as in the previous 
case. Keyword Cov_Nobs must be set to 1 greater than the number of 
observations.

3. There are m variables to be forced into the models. A sum-of-squares and 
crossproducts matrix adjusted for the m variables is required (calculated by 
regressing the candidate variables on the variables to be forced into the model). 
Keyword Cov_Nobs must be set to m less than the number of observations. 

Programming Notes

The IMSL_ALLBEST procedure saves considerable CPU time over explicitly 
computing all possible regressions. However, the procedure has some limitations that 
can cause unexpected results for users who are unaware of the limitations of the 
software.

1. For n_candidate + 1 > –log2(ε), where ε is machine precision, some results 
may be incorrect. This limitation arises because the possible models indicated 
(the model numbers 1, 2, ..., 2n_candidate ) are stored as floating-point values; 
for sufficiently large n_candidate, the model numbers cannot be stored exactly. 
On many computers, this means IMSL_ALLBEST (for n_candidate > 24; 
single precision) and IMSL_ALLBEST (for n_candidate > 49; double 
precision) can produce incorrect results.

2. The IMSL_ALLBEST procedure eliminates some subsets of candidate 
variables by obtaining lower bounds on the error sum of squares from fitting 
larger models. First, the full model containing all n_candidate is fit 
sequentially using a forward stepwise procedure in which one variable enters 
the model at a time, and criterion values and model numbers for all the 
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candidate variables that can enter at each step are stored. If linearly dependent 
variables are removed from the full model, error STAT_VARIABLES_DELETED 
is issued. If this error is issued, some submodels that contain variables 
removed from the full model because of linear dependency can be overlooked 
if they have not already been identified during the initial forward stepwise 
procedure. If error STAT_VARIABLES_DELETED is issued and you want the 
variables that were removed from the full model to be considered in smaller 
models, rerun the program with a set of linearly independent variables.

Example

This example uses a data set from Draper and Smith (1981, pp. 629-630). The 
IMSL_ALLBEST procedure is used to find the best regression for each subset size 
using the Mallow’s Cp statistic as the criterion. Note that when Mallow’s Cp statistic 
(or adjusted R2) is specified, the variable Max_N_Best indicates the total number of 
“best” regressions (rather than indicating the number of best regressions per subset 
size, as in the case of the R2 criterion). In this example, the three best regressions are 
found to be (1, 2), (1, 2, 4), and (1, 2, 3). 

PRO IMSL_ALLBEST_ex1
; Define the data set. 
x = transpose( [ [7., 26., 6., 60.], [1., 29., 15., 52.], $

[11., 56., 8., 20.], [11., 31., 8., 47.], $
[7., 52., 6., 33.], [11., 55., 9., 22.], $
[3., 71., 17., 6.], [1., 31., 22., 44.], $
[2., 54., 18., 22.], [21., 47., 4., 26.], $
[1., 40., 23., 34.], [11., 66., 9., 12.], $
[10., 68., 8., 12.]]) 

y = [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, $
93.1, 115.9, 83.8, 113.3, 109.4] 

Max_N_Best = 3 
IMSL_ALLBEST, x, y, Max_N_Best = max_n_best, /Mallows_Cp, $

Idx_Coefs = idx_coefs, $
Coefs = coefs 
PRINT, '          * * * Idx_Coefs and Coefs in raw form * * *' 
; First, the two important matrices, Idx_Coefs and Coefs, 
; are printed to display how they appear as output from 
; IMSL_ALLBEST. 
PRINT 
PM, idx_coefs, Title = 'Idx_Coefs:' 
PRINT 
PM, Coefs, Title = 'Coefs' 
PRINT 
ntbest = max_n_best 
; Next, describe how to break apart Coefs by regressions
; based on values of Idx_Coefs. Note: NTBEST is defined under
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; description of keyword Idx_Coefs. 
PRINT, '             * * * How Idx_Coefs describes Coefs * * *' 
PRINT 
FOR i = 0, ntbest - 1 DO $

PRINT, 'regression', i+1, 'begins at row', Idx_Coefs(i),$
' of Coefs.', FORMAT = '(a, i2, a, i2, a)' 

PRINT   
PRINT, '* * * Coefs separated by ', 'regressions * * *' 
; Next, Coefs is broken apart by regressions, using Idx_Coefs.
; Note: The final element of Idx_Coefs is not a row number but
; instead is equal to the total number of rows in Coefs. 
PRINT 
FOR i = 0, ntbest - 1 DO begin 

start = idx_coefs(i) 
stop = idx_coefs(i + 1) - 1 

FOR j = start, stop DO begin 
PRINT, coefs(j, *), FORMAT = '(5f9.4)' 

END 
PRINT 
END 
PRINT, '  * * * Best Regressions* * *' 
     ; Finally, regression labels, column labels, etc., are added. 

PRINT 
FOR i = 0, ntbest - 1 DO begin 

start = idx_coefs(i)
stop = idx_coefs(i + 1) - 1
count = stop - start + 1 
PRINT, 'Best Regression with', count, $

'variables(s) (Mallows CP)', FORMAT = '(a, i2, a)' 
PRINT, 'variable   coefficient std error    t  p-value' 

FOR j = start, stop DO $
PRINT, coefs(j, *), FORMAT = '(i5, 2x, 4f11.4)'
PRINT 

END 
END
* * * Idx_Coefs and Coefs in raw form * * * 
PM, Idx_Coefs 

0 
2 
5 
8 

PM, Coefs 
1.00000      1.46831     0.121301      12.1046  2.38419e-07 
2.00000     0.662251    0.0458547      14.4424      0.00000 
1.00000      1.45194     0.116998      12.4099  5.96046e-07 
2.00000     0.416112     0.185611      2.24185    0.0516866 
4.00000    -0.236538     0.173288     -1.36500     0.205401 
1.00000      1.69589     0.204582      8.28953  1.66893e-05 
2.00000     0.656915    0.0442343      14.8508  1.19209e-07 
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3.00000     0.250018     0.184711      1.35356     0.208889 
* * * How Idx_Coefs describes Coefs * * * 
regression 1 begins at row  0 of Coefs. 
regression 2 begins at row  2 of Coefs. 
regression 3 begins at row  5 of Coefs. 
* * * Coefs separated by regressions * * * 
1.0000   1.4683   0.1213  12.1046   0.0000
2.0000   0.6623   0.0459  14.4424   0.0000 
1.0000   1.4519   0.1170  12.4099   0.0000 
2.0000   0.4161   0.1856   2.2419   0.0517 
4.0000  -0.2365   0.1733  -1.3650   0.2054 
1.0000   1.6959   0.2046   8.2895   0.0000 
2.0000   0.6569   0.0442  14.8508   0.0000 
3.0000   0.2500   0.1847   1.3536   0.2089 
* * * Best Regressions* * * 
Best Regression with 2 variable(s)  (Mallows CP) 
variable coefficient std error    t       p-value

1       1.4683     0.1213    12.1046    0.0000 
2       0.6623     0.0459    14.4424    0.0000 

Best Regression with 3 variable(s)  (Mallows CP) 
variable coefficient std error    t       p-value

1       1.4519     0.1170    12.4099    0.0000 
2       0.4161     0.1856     2.2419    0.0517 
4      -0.2365     0.1733    -1.3650    0.2054 

Best Regression with 3 variable(s) Mallows CP) 
variable coefficient std error  t p-value
1       1.6959    0.2046 8.2895  0.0000
2       0.6569    0.0442   14.8508 0.0000
3  0.2500    0.1847    1.3536 0.2089

Errors

Warning Errors

STAT_VARIABLES_DELETED—At least one variable is deleted from the full model 
because the variance-covariance matrix Cov is singular.

Fatal Errors

STAT_NO_VARIABLES—No variables can enter any model.

Version History

6.4 Introduced
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IMSL_STEPWISE

The IMSL_STEPWISE procedure builds multiple linear regression models using 
forward, backward, or stepwise selection.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_STEPWISE, x, y [, /ALL_STEPS] [, ANOVA_TABLE=variable] 
[, /BACKWARD] [, COV_NOBS=value] [, COV_INPUT=array] 
[, COEF_T_TESTS=variable] [, COEF_VIF=variable] 
[, COV_SWEPT=variable] [, /DOUBLE] [, /FIRST_STEP] [, FORCE=value] 
[, /FORWARD] [, FREQUENCIES=array] [, HISTORY=variable] 
[, /INTER_STEP] [, /LAST_STEP] [, IEND=variable] [, LEVEL=array] 
[, N_STEPS=value] [, P_IN=value] [, P_OUT=value] 
[, /STEPWISE] [, SWEPT=value] [, /TOLERANCE] [, WEIGHTS=array])

Arguments

x

Two-dimensional array containing the data for the candidate variables.

y

Array of length N_ELEMENTS(x(*, 0)) containing the responses for the dependent 
variable.

Keywords

ALL_STEPS

This is the only invocation. Initialization, stepping, and wrap-up computations are 
performed.
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Note
One or none of these options — First_Step, Inter_Step, Last_Step, and All_Steps 
— can be specified. If none of these is specified, the action defaults to All_Steps.

ANOVA_TABLE

Named variable into which the one-dimensional array containing the analysis of 
variance table is stored. The analysis of variance statistics are as follows: 

• 0—degrees of freedom for regression

• 1—degrees of freedom for error

• 2—total degrees of freedom

• 3—sum of squares for regression

• 4—sum of squares for error

• 5—total sum of squares

• 6—regression mean square

• 7—error mean square

• 8—F-statistic

• 9—p-value

• 10—R2 (in percent)

• 11—adjusted R2 (in percent)

• 12—estimate of the standard deviation

BACKWARD

An attempt is made to remove a variable from the model. A variable is removed if its 
p-value exceeds P_Out. During initialization, all candidate independent variables 
enter the model.

Note
One or none of these options — Forward, Backward, Stepwise — can be 
specified. If none is specified, the action defaults to Backward.
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COV_NOBS

The number of observations associated with array Cov_Input. Keywords Cov_Input 
and Cov_Nobs must be used together.

Note
Keywords Cov_Input and Cov_Nobs must be used together.

COV_INPUT

Two-dimensional square array of size (N_ELEMENTS(x(0,*)) + 1) x 
(N_ELEMENTS(x(0,*)) + 1) containing a variance-covariance or sum-of-squares 
and crossproducts matrix, in which the last column must correspond to the dependent 
variable.

Array Cov_Input can be computed using IMSL_COVARIANCES. Parameters x and 
y, and keywords Frequencies and Weights are not accessed when this option is 
specified. Normally, IMSL_ALLBEST computes Cov_Input from the input data 
matrices x and y. However, there may be cases when you want to calculate the 
covariance matrix and manipulate it before calling IMSL_ALLBEST. See the 
Discussion section for a discussion of such cases. 

Note
Keywords Cov_Input and Cov_Nobs must be used together.

COEF_T_TESTS

Named variable into which the two-dimensional array containing statistics relating to 
the regression coefficient for the final model in this invocationing is stored. The rows 
correspond to the N_ELEMENTS(x(0, *)) in dependent variables. The rows are in the 
same order as the variables in x (or, if Cov_Input is specified, the rows are in the same 
order as the variables in Cov_Input). Each row corresponding to a variable not in the 
model contains statistics for a model which includes the variables of the final model 
and the variable corresponding to the row in question.

• 0—coefficient estimate

• 1—estimated standard error of the coefficient estimate

• 2—t-statistic for the test that the coefficient is zero

• 3—p-value for the two-sided t test
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COEF_VIF

Named variable into which the two-dimensional array containing variance inflation 
factors for the final model in this invocation is stored. The elements correspond to the 
N_ELEMENTS (x(0, *)) in dependent variables. The elements are in the same order 
as the variables in x (or, if Cov_Input is specified, the elements are in the same order 
as the variables in Cov_Input). Each element corresponding to a variable not in the 
model contains statistics for a model which includes the variables of the final model 
and the variables corresponding to the element in question.

The square of the multiple correlation coefficient for the i-th regressor after all others 
have been obtained from VIF = Coef_Vif(i) by the following formula:

1.0 – (1.0/VIF)

COV_SWEPT

Named variable into which the two-dimensional array of size N_ELEMENTS (x(0, 
*)) + 1) x (N_ELEMENTS (x(0, *)) + 1) that results after Cov_Swept has been swept 
on the columns corresponding to the variables in the model. The estimated variance-
covariance matrix of the estimated regression coefficients in the final model can be 
obtained by extracting the rows and columns of Cov_Swept corresponding to the 
independent variables in the final model and multiplying the elements of this matrix 
by Anova_Table(7). 

DOUBLE

If present and nonzero, double precision is used.

FIRST_STEP

This is the first invocation; additional calls will be made. Initialization and stepping is 
performed.

Note
One or none of these options — First_Step, Inter_Step, Last_Step, and All_Steps 
— can be specified. If none of these is specified, the action defaults to All_Steps.

FORCE

Scalar integer specifying how variables are forced into the model as independent 
variables. Variable with levels 1, 2, ..., Force are forced into the model as independent 
variables. See Level.
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FORWARD

An attempt is made to add a variable to the model. A variable is added if its p-value is 
less than P_In. During initialization, only the forced variables enter the model.

Note
One or none of these options — Forward, Backward, Stepwise — can be 
specified. If none is specified, the action defaults to Backward.

FREQUENCIES

One-dimensional array containing the frequency for each row of x. Default: 
Frequencies (*) = 1

HISTORY

Named variable into which the one-dimensional array of length N_ELEMENTS (x(0, 
*)) + 1 containing the recent history of the independent variables is stored. 

Element History(N_ELEMENTS (x(0, *))) usually corresponds to the dependent 
variable (see Level) as shown in Table 14-6.

INTER_STEP

This is an intermediate invocation. Stepping is performed.

Note
One or none of these options — First_Step, Inter_Step, Last_Step, and All_Steps 
— can be specified. If none of these is specified, the action defaults to All_Steps.

History (i) Status of i-th Variable

0.0 Variable has never been added to model.

0.5 Variable was added into the model during initialization.

k > 0.0 Variable was added to the model during the k-th step.

k < 0.0 Variable was deleted from model during the k-th step.

Table 14-6: History Variable
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LAST_STEP

This is the final invocation. Stepping and wrap-up computations are performed.

Note
One or none of these options — First_Step, Inter_Step, Last_Step, and All_Steps 
— can be specified. If none of these is specified, the action defaults to All_Steps.

IEND

Named variable into which an integer which indicates whether additional steps are 
possible is stored. 

• 0—Additional steps may be possible.

• 1—No additional steps are possible.

LEVEL

Array of length N_ELEMENTS(x(0, *)) + 1 containing levels of priority for variables 
entering and leaving the regression. Each variable is assigned a positive value that 
indicates its level of entry into the model. A variable can enter the model only after all 
variables with smaller nonzero levels of entry have entered. Similarly, a variable can 
only leave the model after all variables with higher levels of entry have left. Variables 
with the same level of entry compete for entry (deletion) at each step. Level(i) = 0 
means the i-th variable is never to enter the model. Level(i) = –1 means the i-th 
variable is the dependent variable. Level (N_ELEMENTS(x(0, *))) must correspond 
to the dependent variable, except when Cov_Input is specified. Default: 1, 1, ..., 1, –1, 
where –1 corresponds to Level (N_ELEMENTS(x(0, *))) 

N_STEPS

For nonnegative N_Steps, N_Steps steps are taken. If  N_Steps = –1, stepping 
continues until completion. Default: N_Steps = 1 

Note
Keyword N_Steps is not referenced if All_Steps is used.

P_IN

Largest p-value for variable entering the model. Variables with p-values less than 
P_In may enter the model. Default: P_In = 0.05
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P_OUT

Smallest p-value for removing variables with p-values greater than P_Out may leave 
the model. Keyword P_Out must be greater than or equal to P_In. A common choice 
for P_Out is 2*P_In. Default: P_Out = 0.10

STEPWISE

A backward step is attempted. If a variable is not removed, a forward step is 
attempted. This is a stepwise step. Only the forced variables enter the model during 
initialization.

Note
One or none of these options — Forward, Backward, Stepwise — can be 
specified. If none is specified, the action defaults to Backward.

SWEPT

Named variable into which the one-dimensional array of length (N_ELEMENTS(x(0, 
*)) + 1) with information to indicate the independent variables in the model is stored. 
Keyword Swept (N_ELEMENTS (x(0, *))) usually corresponds to the dependent 
variable (see Level).

• –1—Variable i is not in model.

• 1—Variable i is in model.

TOLERANCE

Tolerance used in determining linear dependence. Default: Tolerance = 100*ε, where 
ε is machine precision.

WEIGHTS

One-dimensional array containing the weight for each row of x. Default: Weights (*) 
= 1

Discussion

The IMSL_STEPWISE procedure builds a multiple linear regression model using 
forward, backward, or forward stepwise (with a backward glance) selection. The 
IMSL_STEPWISE procedure is designed so you can monitor, and perhaps change, 
the variables added (deleted) to (from) the model after each step. In this case, 
multiple calls to IMSL_STEPWISE (using keywords First_Step, Inter_Step, or 
IDL Analyst Reference Guide IMSL_STEPWISE



648 Chapter 14: Regression
Last_Step) are made. Alternatively, IMSL_STEPWISE can be invoked once (default, 
or specify keyword All_Steps) in order to perform the stepping until a final model is 
selected.

Levels of priority can be assigned to the candidate independent variables (use 
keyword Level). All variables with a priority level of 1 must enter the model before 
variables with a priority level of 2. Similarly, variables with a level of 2 must enter 
before variables with a level of 3, etc. Variables also can be forced into the model (see 
keyword Force). Note that specifying keyword Force without also specifying 
keyword Level results in all variables being forced into the model.

Typically, the intercept is forced into all models and is not a candidate variable. In 
this case, a sum-of-squares and crossproducts matrix for the independent and 
dependent variables corrected for the mean is used. Other possibilities are as follows:

• The intercept is not in the model. A raw (uncorrected) sum-of-squares and 
crossproducts matrix for the independent and dependent variables is required 
as input in Cov_Input. Keyword Cov_Nobs must be set to 1 greater than the 
number of observations.

• An intercept is to be a candidate variable. A raw (uncorrected) sum-of-squares 
and crossproducts matrix for the constant regressor (=1), independent and 
dependent variables are required for Cov_Input. In this case, Cov_Input 
contains one additional row and column corresponding to the constant 
regressor. This row/column contains the sum-of-squares and crossproducts of 
the constant regressor with the independent and dependent variables. The 
remaining elements in Cov_Input are the same as in the previous case. 
Keyword Cov_Nobs must be set to 1 greater than the number of observations.

The stepwise regression algorithm is due to Efroymson (1960). The 
IMSL_STEPWISE procedure uses sweeps of the covariance matrix (input using 
keyword Cov_Input, if specified, or generated internally by default) to move variables 
in and out of the model (Hemmerle 1967, Chapter 3). The SWEEP operator discussed 
in Goodnight (1979) is used. A description of the stepwise algorithm also is given by 
Kennedy and Gentle (1980, pp. 335–340). The advantage of stepwise model building 
over all possible regression (see “IMSL_ALLBEST” on page 632) is that it is less 
demanding computationally when the number of candidate independent variables is 
very large. However, there is no guarantee that the model selected will be the best 
model (highest R2) for any subset size of independent variables.

Example

This example uses a data set from Draper and Smith (1981, pp. 629-630). Backwards 
stepping is performed by default. First, a procedure to output the results is defined.
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PRO print_results, anova_table, t, s
labels = ['df for regression              ', $

'df for error                   ', $
'total df                       ', $
'ss for regression              ', $
'ss for error                   ', $
'total ss                       ', $
'mean square for regression     ', $
'mean square error              ', $
'F-statistic                    ', $
'p-value                        ', $
'R-squared (in percent)         ', $
'adjusted R-squared (in percent)']

PRINT 
PRINT, '       * * Analysis of Variance * *' 
; Print the table. 
FOR i = 0, 11 DO PRINT, labels(i), $

anova_table(i), FORMAT = '(a32,f8.2)' 
PRINT 
PRINT, '* * Inference on Coefficients * *' 
PRINT, '            Estimate    s.e.       t' + $

'        prob>t     swept' 
PRINT,'$(a, 4f10.4)','variable 1',t(0,*),s(0)
PRINT,'$(a, 4f10.4)','variable 2',t(1,*),s(1)
PRINT,'$(a, 4f10.4)','variable 3',t(2,*),s(2)
PRINT,'$(a, 4f10.4)','variable 4',t(3,*),s(3)

END 
x = MAKE_ARRAY(13, 4)
; Define the data. 
x(0, *) = [7., 26., 6., 60.] 
x(1, *) = [1., 29., 15., 52.] 
x(2, *) = [11., 56., 8., 20.] 
x(3, *) = [11., 31., 8., 47.] 
x(4, *) = [7., 52., 6., 33.] 
x(5, *) = [11., 55., 9., 22.] 
x(6, *) = [3., 71., 17., 6.] 
x(7, *) = [1., 31., 22., 44.] 
x(8, *) = [2., 54., 18., 22.] 
x(9, *) = [21., 47., 4., 26.] 
x(10, *) = [1., 40., 23., 34.] 
x(11, *) = [11., 66., 9., 12.] 
x(12, *) = [10., 68., 8., 12.] 
y = [78.5, 74.3, 104.3, 87.6, 95.9, $

109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4] 
IMSL_STEPWISE, x, y, Anova_Table = anova_table, $

Coef_T_Tests = t, swept = s
; Backward stepwise regression. 

print_results, anova_table, t, s
* * Analysis of Variance * * 
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 df for regression                  2.00 
df for error                  10.00 
total df                          12.00 
ss for regression               2657.86 
ss for error                      57.90 
total ss                        2715.76 
mean square for regression      1328.93 
mean square error                  5.79 
F-statistic                      229.50 
P-value                            0.00 
R-squared (in percent)            97.87 
adjusted R-squared (in percent)   97.44 
* * Inference on Coefficients * *

            Estimate    s.e.       t        prob>t     swept
variable 1    1.4683    0.1213   12.1046    0.0000        1.
variable 2    0.6623    0.0459   14.4423    0.0000        1.
variable 3    0.2500    0.1847    1.3536    0.2089       -1.
variable 4   -0.2365    0.1733   -1.3650    0.2054       -1.

Errors

Warning Errors

STAT_LINEAR_DEPENDENCE_1—Based on Tolerance = #, there are linear 
dependencies among the variables to be forced.

Fatal Errors

STAT_NO_VARIABLES_ENTERED—No variables entered the model. All elements of 
Anova_Table are set to NaN.

Version History

6.4 Introduced
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IMSL_POLYREGRESS

The IMSL_POLYREGRESS function performs a polynomial least-squares 
regression.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_POLYREGRESS(x, y, degree [, ANOVA_TABLE=variable] 
[, DF_PURE_ERROR=variable] [, /DOUBLE] [, PREDICT_INFO=variable] 
[, RESIDUAL=variable] [, SSQ_LOF=variable] [, SSQ_POLY=variable] 
[, SSQ_PURE_ERROR=variable] [, WEIGHT=array] [, XMEAN=variable] 
[, XVARIANCE=variable])

Return Value

An array of size degree + 1 containing the coefficients of the fitted polynomial.

Arguments

degree

Degree of the polynomial.

x

One-dimensional array containing the independent variable.

y

One-dimensional array containing the dependent variable.

Keywords

ANOVA_TABLE

Named variable into which the array containing the analysis of variance table is 
stored. The analysis of variance statistics are given as follows:
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• 0—degrees of freedom for the model

• 1—degrees of freedom for error

• 2—total (corrected) degrees of freedom

• 3—sum of squares for the model

• 4—sum of squares for error

• 5—total (corrected) sum of squares

• 6—model mean square

• 7—error mean square

• 8—overall F-statistic

• 9—p-value

• 10—R2 (in percent)

• 11—adjusted R2 (in percent)

• 12—estimate of the standard deviation

• 13—overall mean of y

• 14—coefficient of variation (in percent)

DF_PURE_ERROR

Named variable into which the degrees of freedom for pure error is stored.

DOUBLE

If present and nonzero, double precision is used.

PREDICT_INFO

Named variable into which the one-dimensional byte array containing information 
needed by IMSL_POLYPREDICT is stored. The data contained in this array is in an 
encrypted format and should not be altered before it is used in subsequent calls to 
IMSL_POLYPREDICT.

RESIDUAL

Named variable into which the array containing the residuals is stored.
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SSQ_LOF

Named variable into which the array containing the lack-of-fit statistics is stored.

Elements (i, *) correspond to x i+1, i = 0, ..., (degree – 1), and the contents of the array 
are described in Table 14-7.

SSQ_POLY

Named variable into which the array containing the sequential sum of squares and 
other statistics are stored.

Elements (i, *) correspond to xi+1, i = 0, ..., (degree – 1), and the contents of the array 
are described in Table 14-8.

SSQ_PURE_ERROR

Named variable into which the sum of squares for pure error is stored.

Element Description

 (i, 0) degrees of freedom

 (i, 1) lack-of-fit sum of squares

 (i, 2) F-statistic for testing lack-of-fit for a polynomial model of 
degree i

 (i, 3) p-value for the test

Table 14-7: Ssq_Lof Array Elements

Element Description

 (i, 0) degrees of freedom

 (i, 1) sum of squares

 (i, 2) F-statistic

 (i, 3) p-value

Table 14-8: Ssq_Poly Array Elements
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WEIGHT

Array containing the vector of weights for the observation. If this option is not 
specified, all observations have equal weights of 1.

XMEAN

Named variable into which the mean of x is stored.

XVARIANCE

Named variable into which the variance of x is stored. 

Discussion

The IMSL_POLYREGRESS function computes estimates of the regression 
coefficients in a polynomial (curvilinear) regression model. In addition to the 
computation of the fit, IMSL_POLYREGRESS computes some summary statistics. 
Sequential sum of squares attributable to each power of the independent variable 
(returned by using Ssq_Poly) are computed. These are useful in assessing the 
importance of the higher order powers in the fit. Draper and Smith (1981, pp. 101–
102) and Neter and Wasserman (1974, pp. 278–287) discuss the interpretation of the 
sequential sum of squares.

The statistic R2 is the percentage of the sum of squares of y about its mean explained 
by the polynomial curve. Specifically: 

where wi is the weight.

 

is the fitted y value at xi and

 

is the mean of y. This statistic is useful in assessing the overall fit of the curve to the 
data. R2 must be between 0% and 100%, inclusive. R2 = 100% indicates a perfect fit 
to the data.

Estimates of the regression coefficients in a polynomial model are computed using 
orthogonal polynomials as the regressor variables. This reparameterization of the 
polynomial model in terms of orthogonal polynomials has the advantage that the loss 
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wi ŷi y–( )2
∑

wi yi y–( )2
∑
----------------------------------100%=

ŷi
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of accuracy resulting from forming powers of the x-values is avoided. All results are 
returned to you for the original model (power form).

The IMSL_POLYREGRESS function is based on the algorithm of Forsythe (1957). 
A modification to Forsythe’s algorithm suggested by Shampine (1975) is used for 
computing the polynomial coefficients. A discussion of Forsythe’s algorithm and 
Shampine’s modification appears in Kennedy and Gentle (1980, pp. 342–347).

Examples

Example 1

A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pp. 
279–285). The data set contains the response variable y measuring coffee sales (in 
hundred gallons) and the number of self-service coffee dispensers. Responses for 
fourteen similar cafeterias are in the data set. The results are shown in Figure 14-3.

x = [0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7] 
y = [508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3, 758.9, $

787.6, 792.1, 841.4, 831.8, 854.7, 871.4] 
; Define the data vectors. 

coefs = IMSL_POLYREGRESS(x, y, 2) 
PM, Coefs, Title = 'Least-Squares Polynomial Coefficients' 
Least-Squares Polynomial Coefficients 

503.346 
78.9413 
-3.96949 

x2 = 9 * FINDGEN(100)/99 - 1 
PLOT, x2, coefs(0) + coefs(1) * x2 + coefs(2) * x2^2 
OPLOT, x, y, Psym = 1
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Example 2

This example is a continuation of the initial example. Here, a procedure is called and 
defined to output the coefficients and analysis of variance table.

PRO print_results, coefs, anova_table 
; The following procedure prints coefficients and the analysis of
; variance table. 
coef_labels = ['intercept', 'linear', 'quadratic'] 
PM, coef_labels, coefs, Title = $

'Least-Squares Polynomial Coefficients',$
FORMAT = '(3a20, /,3f20.4, //)' 

anova_labels = ['degrees of freedom for regression', $
'degrees of freedom for error', $
'total (corrected) degrees of freedom', $
'sum of squares for regression', $
'sum of squares for error', $
'total (corrected) sum of squares', $
'regression mean square', $
'error mean square', 'F-statistic', $
'p-value', 'R-squared (in percent)', $
'adjusted R-squared (in percent)', $
'est. standard deviation of model error', $

Figure 14-3: Least-Squares Regression Plot
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'overall mean of y', 'coefficient of variation (in percent)'] 
FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), FORMAT = '(a40, f20.2)' 
END 
x = [0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7] 
y = [508.1, 498.4, 568.2, 577.3, 651.7, $

657.0, 755.3, 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4] 
; Define the data vectors. 
Coefs = IMSL_POLYREGRESS(x, y, 2, Anova_Table = anova_table) 
; Call IMSL_POLYREGRESS with keyword Anova_Table. 
print_results, coefs, anova_table 
; Call the procedure defined above to output the results. 
Least-Squares Polynomial Coefficients 
intercept              linear           quadratic 
503.3459             78.9413             -3.9695 
* * * Analysis of Variance * * * 

degrees of freedom for regression  2.00
degrees of freedom for error  11.00 
total (corrected) degrees of freedom    13.00 
sum of squares for regression  225031.94 
sum of squares for error  710.55 
total (corrected) sum of squares  225742.48 
regression mean square           112515.97 
error mean square               64.60 
F-statistic             1741.86 
p-value                0.00 
R-squared (in percent)              99.69 
adjusted R-squared (in percent)  99.63 
est. standard deviation of model error  8.04 
overall mean of y              710.99 
coefficient of variation (in percent)    1.13

Errors

Warning Errors

STAT_CONSTANT_YVALUES—The y values are constant. A zero order polynomial is 
fit. High order coefficients are set to zero.

STAT_FEW_DISTINCT_XVALUES—There are too few distinct x values to fit the 
desired degree polynomial. High order coefficients are set to zero.

STAT_PERFECT_FIT—A perfect fit was obtained with a polynomial of degree less 
than degree. High order coefficients are set to zero.

Fatal Errors

STAT_NONNEG_WEIGHT_REQUEST_2—All weights must be nonnegative.
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STAT_ALL_OBSERVATIONS_MISSING—Each (x, y) point contains NaN. There are 
no valid data.

STAT_CONSTANT_XVALUES—The x values are constant.

Version History

6.4 Introduced
IMSL_POLYREGRESS IDL Analyst Reference Guide



Chapter 14: Regression 659
IMSL_POLYPREDICT

The IMSL_POLYPREDICT function computes predicted values, confidence 
intervals, and diagnostics after fitting a polynomial regression model.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_POLYPREDICT(predict_info, x 
[, CI_PTW_NEW_SAMP=variable] [, CI_PTW_POP_MEAN=variable] 
[, CI_SCHEFFE=variable] [, CONFIDENCE=value] [, COOKS_D=variable] 
[, DEL_RESIDUAL=variable] [, DFFITS=variable] [, /DOUBLE] 
[, LEVERAGE=variable] [, RESIDUAL=variable] 
[, STD_RESIDUAL=variable] [, WEIGHTS=array] [, Y=array])

Return Value

One-dimensional array containing the predicted values.

Arguments

predict_info

One-dimensional byte array containing information computed by 
IMSL_POLYREGRESS and returned through keyword Predict_Info. The data 
contained in this array is in an encrypted format and should not be altered after it is 
returned by IMSL_POLYREGRESS.

x

One-dimensional array containing the values of the independent variable for which 
calculations are to be performed.
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Keywords

CI_PTW_NEW_SAMP

Named variable into which the two-dimensional array of size 2 by N_ELEMENTS(x) 
containing the confidence intervals for two-sided prediction intervals, corresponding 
to the elements of x, is stored. Element Ci_Ptw_New_Samp(0, i) contains the i-th 
lower confidence limit, Ci_Ptw_New_Samp(1, i) contains the i-th upper confidence 
limit. 

CI_PTW_POP_MEAN

Named variable into which the two-dimensional array of size 2 by N_ELEMENTS(x) 
containing the confidence intervals for two-sided interval estimates of the means, 
corresponding to the elements of x, is stored. Element Ci_Ptw_Pop_Mean(0, i) 
contains the i-th lower confidence limit, Ci_Ptw_Pop_Mean (1, i) contains the i-th 
upper confidence limit.

CI_SCHEFFE

Named variable into which the two-dimensional array of size 2 by N_ELEMENTS(x) 
containing the Scheffé confidence intervals, corresponding to the rows of x, is stored. 
Element Ci_Scheffe (0, i) contains the  i-th lower confidence limit; Ci_Scheffe(1, i) 
contains the i-th upper confidence limit.

CONFIDENCE

Confidence level for both two-sided interval estimates on the mean and for two-sided 
prediction intervals, in percent. Keyword Confidence must be in the range (0.0, 
100.0). For one-sided intervals with confidence level, where 50.0 ≤ c < 100.0, set 
Confidence = 100.0 – 2.0 * (100.0 – c). Default: Confidence = 95.0

COOKS_D

Named variable into which the one-dimensional array of length N_ELEMENTS(x) 
containing the Cook’s D statistics is stored.

Note
You must specify Y when using this keyword
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DEL_RESIDUAL

Named variable into which the one-dimensional array of length N_ELEMENTS(x) 
containing the deleted residuals is stored.

Note
You must specify Y when using this keyword

DFFITS

Named variable into which the one-dimensional array of length N_ELEMENTS(x) 
containing the DFFITS statistics is stored.

Note
You must specify Y when using this keyword

DOUBLE

If present and nonzero, double precision is used.

LEVERAGE

Named variable into which the one-dimensional array of length N_ELEMENTS(x) 
containing the leverages is stored.

RESIDUAL

Named variable into which the one-dimensional array of length N_ELEMENTS(x) 
containing the residuals is stored.

Note
You must specify Y when using this keyword

STD_RESIDUAL

Named variable into which the one-dimensional array of length N_ELEMENTS(x) 
containing the standardized residuals is stored.

Note
You must specify Y when using this keyword
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WEIGHTS

One-dimensional array containing the weight for each element of x. The computed 
prediction interval uses SSE/(DFE * Weights (i)) for the estimated variance of a 
future response. Default: Weights (*) = 1

Y

Array of length N_ELEMENTS (x) containing the observed responses.

Discussion

The IMSL_POLYPREDICT function assumes a polynomial model 

yi = β 0 + β 1xi + ..., β kxk
i + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the response, the xi’s are the settings 
of the independent variable, the βj’s are the regression coefficients, and the εi’s are the 
errors that are independently distributed normal with mean zero and the following 
variance:

σ 2/wi 

Given the results of a polynomial regression, fitted using orthogonal polynomials and 
weights wi, IMSL_POLYPREDICT produces predicted values, residuals, confidence 
intervals, prediction intervals, and diagnostics for outliers and in influential cases.

Often, a predicted value and confidence interval are desired for a setting of the 
independent variable not used in computing the regression fit. This is accomplished 
by simply using a different x matrix than was used for the fit when calling 
IMSL_POLYPREDICT (IMSL_POLYREGRESS, 651). 

Results from IMSL_POLYREGRESS, which produces the fit using orthogonal 
polynomials, are used for input by the array predict_info. The fitted model from 
IMSL_POLYREGRESS is:

 

where the zi’s are settings of the independent variable x scaled to the interval [–2, 2] 
and the pj (z)’s are the orthogonal polynomials. The XTX matrix for this model is a 
diagonal matrix with elements dj. The case statistics are easily computed from this 
model and are equal to those from the original polynomial model with βj’s as the 
regression coefficients.

The leverage is computed as follows: 

The estimated variance of:

ŷi α̂0 p0 zi( ) α̂1 p1 zi( ) ... α̂k pk zi( )+ + +=
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is given by the following: 

The computation of the remainder of the case statistics follow easily from their 
definitions. See the chapter introduction for the definition of the case diagnostics.

Often, predicted values and confidence intervals are desired for combinations of 
settings of the independent variables not used in computing the regression fit. This 
can be accomplished by defining a new data matrix. Since the information about the 
model fit is input in predict_info, it is not necessary to send in the data set used for the 
original calculation of the fit, i.e., only variable combinations for which predictions 
are desired need be entered in x. 

Examples

Example 1

A polynomial model is fit to data using the “IMSL_POLYREGRESS” on page 651), 
then IMSL_POLYPREDICT is used to compute predicted values. The results are 
shown in Figure 14-4.

x = [0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7] 
y = [58, 48, 58, 57, 61, 67, 70, 74, 77, 72, 81, 85, 84, 81] 
; Define the sample data set. 
degree = 3 
Coefs = IMSL_POLYREGRESS(x, y, degree, $

Predict_Info = predict_info)
x2 = 8 * FINDGEN((100)/99)
; Call IMSL_POLYREGRESS using keyword Predict_Info. 
predicted = IMSL_POLYPREDICT(predict_info, x2) 
; Call IMSL_POLYPREDICT with Predict_Info. 
PLOT, x, y, Psym = 4
; Plot the results. 
OPLOT, x2, predicted
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2 zi( )
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k

∑=

ŷi
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Example 2

A polynomial model is fit to the data discussed by Neter and Wasserman (1974, pp. 
279-285). The data set contains the response variable y measuring coffee sales (in 
hundreds of gallons) and the number of self-service dispensers. Responses for 14 
similar cafeterias are in the data set. First, a procedure is defined to print the ANOVA 
table. The results are shown in Figure 14-5.

.RUN
PRO print_results, anova_table
; Define some labels for the anova table. 
labels = ['df for among groups     ', $

'df for within groups           ', $
'total (corrected) df           ', $
'ss for among groups            ', $
'ss for within groups           ', $
'total (corrected) ss           ', $
'mean square among groups       ', $
'mean square within groups      ', $
'F-statistic                    ', $
'P-value                        ', $

Figure 14-4: Original and Predicted Values Plot
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'R-squared (in percent)         ', $
'adjusted R-squared (in percent)', $
'est. std of within group error ', $
'overall mean of y              ', $
'coef. of variation (in percent)'] 

PRINT, '       * * Analysis of Variance * *' 
; Print the analysis of variance table. 
FOR i = 0, 13 DO PRINT, labels(i), $

anova_table(i), FORMAT = '(a32,f10.2)' 
END 

x = [0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7] 
y = [508.1, 498.4, 568.2, 577.3, 651.7, $

657.0, 755.3, 758.9, 787.6, 792.1, $
841.4, 831.8, 854.7, 871.4] 

degree = 2
coefs = IMSL_POLYREGRESS(x, y, degree, $

Anova_Table    = anova_table, predict_info   = predict_info)
; Call IMSL_POLYREGRESS to compute the fit.      
predicted = IMSL_POLYPREDICT(predict_info, x, $

Ci_Scheffe = ci_scheffe, Y = y, Dffits = dffits) 
; Call IMSL_POLYPREDICT. 
PLOT, x, ci_scheffe(1, *), Yrange = [450, 900], Linestyle = 2 
; Plot the results; confidence bands are dashed lines. 
OPLOT, x, ci_scheffe(0, *), Linestyle = 2 
OPLOT, x, y, Psym = 4 
x2 = 7 * FINDGEN(100)/99 
OPLOT, x2, IMSL_POLYPREDICT(predict_info, x2) 
print_results, anova_table 

; Print the ANOVA table. 
* * Analysis of Variance * * 

df for among groups                  2.00 
df for within groups                11.00 
total (corrected) df                13.00 
ss for among groups             225031.94 
ss for within groups               710.55 
total (corrected) ss            225742.48 
mean square among groups        112515.97 
mean square within groups           64.60 
F-statistic                       1741.86 
P-value                              0.00 
R-squared (in percent)              99.69 
adjusted R-squared (in percent)     99.63 
est. std of within group error       8.04 
overall mean of y                  710.99
coef. of variation (in percent) 1.13
IDL Analyst Reference Guide IMSL_POLYPREDICT



666 Chapter 14: Regression
Errors

Warning Errors

STAT_LEVERAGE_GT_1—Leverage (= #) much greater than 1 is computed. It is set 
to 1.0.

STAT_DEL_MSE_LT_0—Deleted residual mean square (= #) much less than zero is 
computed. It is set to zero.

Fatal Errors

STAT_NEG_WEIGHT—Keyword Weights(#) = #. Weights must be nonnegative.

Version History

Figure 14-5: Predicted Values with Confidence Bands Plot

6.4 Introduced
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IMSL_NONLINREGRESS

The IMSL_NONLINREGRESS function fits a nonlinear regression model.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NONLINREGRESS(fcn, n_parameters, x, y 
[, ABS_EPS_SSE=value] [, DF=variable] [, /DOUBLE] [, JACOBIAN=string] 
[, GRAD_EPS=value] [, ITMAX=value] [, MAX_JAC_EVALS=value] 
[, MAX_SSE_EVALS=value] [, MAX_STEP=value] [, N_DIGIT=value] 
[, PREDICTED=variable] [, R_MATRIX=variable] [, R_RANK=variable] 
[, RESIDUAL=variable] [, STEP_EPS=value] [, SSE=variable] 
[, SSE_REL_EPS=value] [, THETA_GUESS=array] [, THETA_SCALE=array] 
[, TOLERANCE=value] [, TRUST_REGION=value])

Return Value

One-dimensional array of length n_parameters containing solution:

 

for the nonlinear regression coefficients.

Arguments

fcn

Scalar string specifying the name of a user-supplied function to evaluate the function 
that defines the nonlinear regression problem. Function fcn accepts the following 
input parameters and returns a scalar float: 

• x—One-dimensional array containing the point at which point the function is 
evaluated.

• theta—One-dimensional array containing the current values of the regression 
coefficients. Function fcn returns a predicted value at the point x. In the 
following, f(xi; θ), or just fi, denotes the value of this function at the point xi, 
for a given value of θ. (Both xi and θ are arrays.)

θ̂
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n_parameters

Number of parameters to be estimated.

x

Two-dimensional array containing the matrix of independent (explanatory) variables.

y

One-dimensional array of length N_ELEMENTS (x(*, 0)) containing the dependent 
(response) variable.

Keywords

ABS_EPS_SSE

Absolute SSE function tolerance. Default: Abs_Eps_Sse = max(10 –20, ε2), max(10 –

40, ε2) in double, where ε is the machine precision

DF

Named variable into which the degrees of freedom is stored.

DOUBLE

If present and nonzero, double precision is used.

JACOBIAN

Scalar string specifying the name of a user-supplied function to compute the i-th row 
of the Jacobian. This function accepts the following parameters:

• X—One-dimensional array of length N_ELEMENTS (x(0, *)) containing the 
data values corresponding to the i-th row.

• Theta—One-dimensional array of length n_parameters containing the 
regression coefficients for which the Jacobian is evaluated. The return value of 
this function is an array of length n_parameters containing the computed 
n_parameters row of the Jacobian for observation i at Theta. Note that each 
derivative ∂f(xi)/¹∂θj should be returned in element 
(j – 1) of the returned array for j = 1, 2, ..., n parameters.
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GRAD_EPS

Scaled gradient tolerance. The j-th component of the scaled gradient at θ is calculated 
as: 

where , , and 

The value F(θ) is the vector of the residuals at the point θ. Default: 

 (  in double), 

where ε is the machine precision.

ITMAX

Maximum number of iterations. Default: Itmax = 100 

MAX_JAC_EVALS

Maximum number of Jacobian evaluations. Default: Max Jac Evals = 400

MAX_SSE_EVALS

Maximum number of SSE function evaluations. Default: Max Sse Evals = 400

MAX_STEP

Maximum allowable step size. Default: Max_Step = 1000 max(ε1, ε2), where ε1 = 
(tTθ0)1/2, ε2 = ||t||2 , t = Theta_Scale, and θ0 = Theta_Guess 

N_DIGIT

Number of good digits in the function. Default: machine dependent

PREDICTED

Named variable into which the one-dimensional array, containing the predicted 
values at the approximate solution, is stored.

gj *max θj 1 tj⁄,( )
1
2
--- F θ( )

2

2
-----------------------------------------------

g F θ( )∇= t Theta_Scale=

F θ( )
2

2
yi f xi θ;( )–( )2

i 1=

n

∑=

Grad_Eps ε= ε3
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R_MATRIX

Named variable into which the two-dimensional array of size n_parameters x 
n_parameters, containing the R matrix from a QR decomposition of the Jacobian, is 
stored.

R_RANK

Named variable into which the rank of the R matrix is stored. A rank of less than 
n_parameters may indicate the model is overparameterized.

RESIDUAL

Named variable into which the one-dimensional array, containing the residuals at the 
approximate solution, is stored.

STEP_EPS

Scaled step tolerance. The j-th component of the scaled step from points θ and θ′ is 
computed as: 

where t = Theta_Scale. Default: Step_Eps = ε2/ 3, where ε is machine precision

SSE

Named variable into which the residual sum of squares is stored.

SSE_REL_EPS

Relative SSE function tolerance. Default: Sse_Rel_Eps = max(10–10, ε2 / 3), max (10–

20, ε2 / 3) in double, where ε is the machine precision

THETA_GUESS

Array with n_parameters components containing an initial guess. Default: 
Theta_Guess(*) = 0

THETA_SCALE

One-dimensional array of length n_parameters containing the scaling array for θ. 
Keyword Theta_Scale is used mainly in scaling the gradient and the distance between 

θj θj
′

–

max θj 1 tj⁄,( )
------------------------------------
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two points. See keywords Grad_Eps and Step_Eps for more details. Default: 
Theta_Scale(*) = 1

TOLERANCE

False convergence tolerance. Default: Tolerance = 100 * ε, where ε is machine 
precision.

TRUST_REGION

Size of initial trust region radius. The default is based on the initial scaled Cauchy 
step.

Discussion

The IMSL_NONLINREGRESS function fits a nonlinear regression model using 
least squares. The nonlinear regression model is

yi = f(xi;θ) + εi i = 1, 2, ..., n 

where the observed values of the yi’s constitute the responses or values of the 
dependent variable, the known xi’s are the vectors of the values of the independent 
(explanatory) variables, θ is the vector of p regression parameters, and the εi’s are 
independently distributed normal errors with mean zero and variance σ2. For this 
model, a least-squares estimate of θ is also a maximum likelihood estimate of θ.

The residuals for the model are as follows:

ei(θ) = yi – f(xi ; θ)  i = 1, 2, ..., n

A value of θ that minimizes:

 

is a least-squares estimate of θ. IMSL_NONLINREGRESS is designed so that the 
values of the function f(xi ; θ) are computed one at a time by a user-supplied function.

The IMSL_NONLINREGRESS function is based on MINPACK routines LMDIF 
and LMDER by Moré et al. (1980) that use a modified Levenberg-Marquardt method 
to generate a sequence of approximations to a minimum point. Let:

 

be the current estimate of θ. A new estimate is given by:

 

where sc is a solution to the following:

Σi 1=
n

ei θ( )[ ]2

θ̂c

θ̂c sc+
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Here:

 

is the Jacobian evaluated at:

 

The algorithm uses a “trust region” approach with a step bound of δc. A solution is 
first obtained for µc = 0. If:

 

this update is accepted; otherwise, µc is set to a positive value and another solution is 
obtained. The method is discussed by Levenberg (1944), Marquardt (1963), and 
Dennis and Schnabel (1983, pp. 129–147, 218–338).

If a user-supplied function is specified in Jacobian, the Jacobian is computed 
analytically; otherwise, forward finite differences are used to estimate the Jacobian 
numerically. In the latter case, especially if single precision is used, the estimate of 
the Jacobian may be so poor that the algorithm terminates at a noncritical point. In 
such instances, you should either supply a Jacobian function, use the Double 
keyword, or do both.

Programming Notes

Nonlinear regression allows substantial flexibility over linear regression because you 
can specify the functional form of the model. This added flexibility can cause 
unexpected convergence problems for users who are unaware of the limitations of the 
software. Also, in many cases, there are possible remedies that may not be 
immediately obvious. The following is a list of possible convergence problems and 
some remedies. There is no one-to-one correspondence between the problems and the 
remedies. Remedies for some problems also may be relevant for other problems.

• A local minimum is found. Try a different starting value. Good starting values 
often can be obtained by fitting simpler models. For example, for a nonlinear 
function:

 

• good starting values can be obtained from the estimated linear regression 
coefficients:

 and  

• from a simple linear regression of ln y on x. The starting values for the 
nonlinear regression in this case would be:

J θ̂c( )
T

J θ̂c( ) µcI+( )sc J θ̂c( )
T

e θ̂c( )=

J θ̂c( )

θ̂c

sc 2 δc<

f x θ;( ) θ1eθ2x=

β̂0 β̂1
IMSL_NONLINREGRESS IDL Analyst Reference Guide



Chapter 14: Regression 673
 and  

• If an approximate linear model is not clear, then simplify the model by 
reducing the number of nonlinear regression parameters. For example, some 
nonlinear parameters for which good starting values are known could be set to 
these values in order to simplify the model for computing starting values for 
the remaining parameters.

• The estimate of θ is incorrectly returned as the same or very close to the initial 
estimate. This occurs often because of poor scaling of the problem, which 
might result in the residual sum of squares being either very large or very small 
relative to the precision of the computer. The keywords allow control of the 
scaling.

• The model is discontinuous as a function of θ. (The function f(x;θ) can be a 
discontinuous function of x.)

• Overflow occurs during the computations. Make sure the supplied functions do 
not overflow at some value of θ.

• The estimate of θ is going to infinity. A parameterization of the problem in 
terms of reciprocals may help.

• Some components of θ are outside known bounds. This can sometimes be 
handled by making a function that produces artificially large residuals outside 
of the bounds (even though this introduces a discontinuity in the model 
function).

Examples

Example 1

In this example (Draper and Smith 1981, p. 518), the following nonlinear model is fit:

 

.RUN 
FUNCTION fcn, x, theta 

RETURN, theta(0) + (0.49 - theta(0)) $
*EXP(theta(1)*(x(0) - 8)) 

END

x = [10, 20, 30, 40] 
y = [0.48, 0.42, 0.40, 0.39] 
n_parameters = 2 
theta_hat = IMSL_NONLINREGRESS('fcn', n_parameters, x, y)
PRINT, 'Estimated Coefficients:', theta_hat

θ1 eβˆ 0= θ2 β̂1=

Y α 0.49 α–( )e β X 8–( )– ε++=
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Example 2

Consider the nonlinear regression model and data set discussed by Neter et al. (1983, 
pp. 475–478):

 

There are two parameters and one independent variable. The data set considered 
consists of 15 observations. The results are shown in Figure 14-6.

.RUN
FUNCTION fcn, x, theta 

; Define function that defines nonlinear regression problem. 
RETURN, theta(0) * EXP(x(0) * theta(1)) 

END

.RUN
FUNCTION jac, x, theta

; Define the Jacobian function. 
fjac = theta
; The following assignment produces array of correct size to
; use as the return value of the Jacobian. 
fjac(0) = -exp(theta(1) * x(0)) 
fjac(1) = -theta(0) * x(0) * EXP(theta(1) * x(0))
RETURN, fjac 
; Compute the Jacobian. 

END

.RUN
PRO nlnreg_ex

; Define x and y. 
x = [2, 5, 7, 10, 14, 19, 26, 31, 34, 38, 45, 52, 53, 60, 65] 
y = [54, 50, 45, 37, 35, 25, 20, 16, 18, 13, 8, 11, 8, 4, 6] 
theta_hat = IMSL_NONLINREGRESS('fcn', 2, x, y, $

Theta_Guess = [60, -0.03], $
Grad_Eps = 0.001, Jacobian = 'jac') 

PLOT, x, y, Psym = 4, Title = 'Nonlinear Regression' 
; Plot original data. 
xtmp = 80 * FINDGEN(200)/199
OPLOT, xtmp, theta_hat(0) * EXP(xtmp * theta_hat(1)) 
; Plot regression. 

END

yi θ1eθ2xi εi+=
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Errors

Informational Errors

STAT_STEP_TOLERANCE—Scaled step tolerance satisfied. The current point may be 
an approximate local solution, but it is also possible that the algorithm is making very 
slow progress and is not near a solution or that Step_Eps is too big.

Warning Errors

STAT_LITTLE_FCN_CHANGE—Both actual and predicted relative reductions in the 
function are less than or equal to the relative function tolerance.

STAT_TOO_MANY_ITN—Maximum number of iterations exceeded.

STAT_TOO_MANY_FCN_EVAL—Maximum number of function evaluations exceeded.

STAT_TOO_MANY_JACOBIAN_EVAL—Maximum number of Jacobian evaluations 
exceeded.

Figure 14-6: Original Data and Nonlinear Regression Fit Plot
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STAT_UNBOUNDED—Five consecutive steps have been taken with the maximum step 
length.

STAT_FALSE_CONVERGENCE—Iterates appear to be converging to noncritical point.

Version History

6.4 Introduced
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IMSL_HYPOTH_PARTIAL

The IMSL_HYPOTH_PARTIAL function constructs an equivalent completely 
testable multivariate general linear hypothesis HβU = G from a partially testable 
hypothesis HpβU = Gp.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_HYPOTH_PARTIAL(info_v, hp [, /DOUBLE] 
[, G_MATRIX=variable] [, GP=array] [, H_MATRIX=variable] 
[, RANK_HP=variable])

Return Value

Number of rows in the completely testable hypothesis, nh. This value is also the 
degrees of freedom for the hypothesis. The value nh classifies the hypothesis HpβU = 
Gp as nontestable (nh = 0), partially testable (0 < nh < Rank_Hp) or completely 
testable (0 < nh = Rank_Hp), where Rank_Hp is the rank of Hp (see keyword 
Rank_Hp).

Arguments

hp

The Hp array of size nhp by n_coefficients with each row corresponding to a row in 
the hypothesis and containing the constants that specify a linear combination of the 
regression coefficients. Here, n_coefficients is the number of coefficients in the fitted 
regression model.

info_v

One-dimensional array of type BYTE containing information about the regression fit. 
See IMSL_MULTIREGRESS.
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Keywords

DOUBLE

If present and nonzero, double precision is used.

G_MATRIX

Named variable into which a one-dimensional array of length nu containing the G 
matrix is stored. The elements of G_Matrix contain the null hypothesis values for the 
completely testable hypothesis.

GP

Two-dimensional array of size nhp by nu containing the Gp matrix, the null 
hypothesis values. By default, each value of Gp is equal to 0.

H_MATRIX

Named variable into which a two-dimensional array of size nh by n_parameters 
containing the H matrix is stored. Each row of H_Matrix corresponds to a row in the 
completely testable hypothesis and contains the constants that specify an estimable 
linear combination of the regression coefficients.

RANK_HP

Named variable into which the rank of Hp is stored.

Discussion

Once a general linear model y = Xβ + ε is fitted, particular hypothesis tests are 
frequently of interest. If the matrix of regressors X is not full rank (as evidenced by 
the fact that some diagonal elements of the R matrix output from the fit are equal to 
zero), methods that use the results of the fitted model to compute the hypothesis sum 
of squares (see “IMSL_HYPOTH_SCPH” on page 683) require specification in the 
hypothesis of only linear combinations of the regression parameters that are 
estimable. A linear combination of regression parameters cTβ is estimable if there 
exists some vector a such that cT = aTX, i.e., cT is in the space spanned by the rows of 
X. For a further discussion of estimable functions, see Maindonald (1984, pp. 
1661168) and Searle (1971, pp. 1802188). The IMSL_HYPOTH_PARTIAL function 
is only useful in the case of non-full rank regression models, i.e., when the problem of 
estimability arises.
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Peixoto (1986) noted that the customary definition of testable hypothesis in the 
context of a general linear hypothesis test Hβ = g is overly restrictive. He extended 
the notion of a testable hypothesis (a hypothesis composed of estimable functions of 
the regression parameters) to include partially testable and completely testable 
hypothesis. A hypothesis Hβ = g is partially testable if the intersection of the row 
space H (denoted by ) and the row space of X ( ) is not essentially 
empty and is a proper subset of , i.e., . A 
hypothesis Hβ = g is completely testable if . 
Peixoto also demonstrated a method for converting a partially testable hypothesis to 
one that is completely testable so that the usual method for obtaining sums of squares 
for the hypothesis from the results of the fitted model can be used. The method 
replaces Hp in the partially testable hypothesis Hpβ = gp by a matrix H whose rows 
are a basis for the intersection of the row space of Hp and the row space of X. A 
corresponding conversion of the null hypothesis values from gp to g is also made. A 
sum of squares for the completely testable hypothesis can then be computed (see 
IMSL_HYPOTH_SCPH). The sum of squares that is computed for the hypothesis Hβ 
= g equals the difference in the error sums of squares from two fitted models—the 
restricted model with the partially testable hypothesis Hpβ = gp and the unrestricted 
model.

For the general case of the multivariate model Y = Xβ + ε with possible linear equality 
restrictions on the regression parameters, IMSL_HYPOTH_PARTIAL converts the 
partially testable hypothesis Hpβ = gp to a completely testable hypothesis HβU = G. 
For the case of the linear model with linear equality restrictions, the definitions of the 
estimable functions, nontestable hypothesis, partially testable hypothesis, and 
completely testable hypothesis are similar to those previously given for the 
unrestricted model with the exception that  is replaced by  where R is 
the upper triangular matrix based on the linear equality restrictions. The nonzero 
rows of R form a basis for the rowspace of the matrix (XT, AT)T. The rows of H form 
an orthonormal basis for the intersection of two subspaces—the subspace spanned by 
the rows of Hp and the subspace spanned by the rows of R. The algorithm used for 
computing the intersection of these two subspaces is based on an algorithm for 
computing angles between linear subspaces due to Björk and Golub (1973). (See also 
Golub and Van Loan 1983, pp. 429430). The method is closely related to a canonical 
correlation analysis discussed by Kennedy and Gentle (1980, pp. 561565). The 
algorithm is as follows:

1. Compute a QR factorization of: 

with column permutations so that 

ℜ H( ) ℜ X( )
ℜ H( ) 0{ } ℜ⊂ H( ) ℜ X( ) ℜ H( )⊂∩

0{ } ℜ⊂ H( ) ℜ H( ) ℜ X( )⊂∩

ℜ X( ) ℜ R( )

HP
T
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Here, P1 is the associated permutation matrix that is also an orthogonal matrix. 
Determine the rank of Hp as the number of nonzero diagonal elements of R1, 
for example n1. Partition Q1 = (Q11, Q12) so that Q11 is the first n1 column of 
Q1. Set Rank_Hp = n.

2. Compute a QR factorization of the transpose of the R matrix (input through 
info_v) with column permutations so that: 

Determine the rank of R from the number of nonzero diagonal elements of R, 
for example n2. Partition Q2 = (Q21, Q22) so that Q21 is the first n2 columns of 
Q2.

3. Form: 

4. Compute the singular values of A:

 

and the left singular vectors W of the singular value decomposition of A so 
that:

 

If σ1 < 1, then the dimension of the intersection of the two subspaces is 
s = 0. Otherwise, assume the dimension of the intersection to be s if σs = 1 > 
σs+1. Set nh = s.

5. Let W1 be the first s columns of W. Set H = (Q1W1)T.

6. Assume R11 to be a nhp by nhp matrix related to R1 as follows: If 
nhp < n_parameters, R11 equals the first nhp rows of R1. Otherwise, R11 
contains R1 in its first n_parameters rows and zeros in the remaining rows. 
Compute a solution Z to the linear system: 

If this linear system is declared inconsistent, an error message with error code 
equal to 2 is issued.

7. Partition 

so that Z1 is the first n1 rows of Z. Set: 

H Q R PP
T T= 1 1 1

R Q R PT T= 2 2 2

A Q QT= 11 21

σ1 σ2 … σmin n1 n2,( )≥ ≥ ≥

W
T

AV σ1 …σmin n1 n2,( ),( )=

R Z P GT T
p11 1=
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The degrees of freedom (nh) classify the hypothesis HpβU =Gp as nontestable 
(nh = 0), partially testable (0 < nh < Rank_Hp), or completely testable (0 < nh 
= Rank_Hp).

For further details concerning the algorithm, see Sallas and Lionti (1988).

Example

A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to data. 
The model is:

yii = µ + αi + εii..(i, j) = (1, 1) (2, 1) (2, 2)

The model is fitted using the “IMSL_MULTIREGRESS” on page 609. The partially 
testable hypothesis: 

is converted to a completely testable hypothesis.

nrows  =  3
n_indep  =  1
n_dep  =  1
n_param  =  3
n_class  =  1
n_cont  =  0
nhp  =  2
z  =  [1, 2, 2]
y  =  [17.3, 24.1, 26.3]
gp  =  [5, 3]
hp  =  TRANSPOSE([[0, 1, 0], [0, 0, 1]])
x  =  IMSL_REGRESSORS(z, n_class, n_cont)
size_x  =  SIZE(x)
nreg  =  size_x(2)
coefs  =  IMSL_MULTIREGRESS(x, y, Predict_Info = info_v)
% IMSL_MULTIREGRESS: Warning: STAT_RANK_DEFICIENT
The model is not full rank.  There is not a unique least 
squares solution. The rank of the matrix of regressors is 2.
nh  =  IMSL_HYPOTH_PARTIAL(info_v,  hp, Gp  =  gp, $

G_Matrix = g_matrix, H_Matrix = h_matrix, Rank_Hp = rank_hp)
IF (nh EQ 0) THEN PRINT, 'Nontestable Hypothesis' $
  ELSE IF (nh LT rank_hp) THEN $

Z
T

Z
T

1
Z

T

2
, 

 =

G W ZT= 1 1

H0 2 3
1 5: α

α
=
=

IDL Analyst Reference Guide IMSL_HYPOTH_PARTIAL



682 Chapter 14: Regression
PRINT,  'Partially Testable Hypothesis' $
  ELSE PRINT, 'Completely Testable Hypothesis'
Partially Testable Hypothesis
PM,  h_matrix,  title  =  'H Matrix'
H Matrix
      0.00000     0.707107    -0.707107
PM,  g_matrix,  title  =  'G'
G
      1.41421

Errors

Warning Errors

STAT_HYP_NOT_CONSISTENT—The hypothesis is inconsistent within the computed 
tolerance.

Version History

6.4 Introduced
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IMSL_HYPOTH_SCPH

The IMSL_HYPOTH_SCPH function computes the matrix of sums of squares and 
crossproducts for the multivariate general linear hypothesis HβU = G given the 
regression fit. 

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_HYPOTH_SCPH(info_v, h [, DFH=variable] [, /DOUBLE] 
[, G=array] [, U=array])

Return Value

Two-dimensional array, scph, containing the sums of squares and crossproducts 
attributable to the hypothesis.

Arguments

info_v

One-dimensional array of type BYTE containing information about the regression fit. 
See IMSL_MULTIREGRESS.

h

Two-dimensional array of size nh by n_coefficients with each row corresponding to a 
row in the hypothesis and containing the constants that specify a linear combination 
of the regression coefficients. Here, n_coefficients is the number of coefficients in the 
fitted regression model.

Keywords

DFH

Named variable into which the degrees of freedom for the sums of squares and 
crossproducts matrix is stored. This is equal to the rank of input matrix h.
IDL Analyst Reference Guide IMSL_HYPOTH_SCPH



684 Chapter 14: Regression
DOUBLE

If present and nonzero, double precision is used.

G

Two-dimensional array of size nh by nu containing the G matrix, the null hypothesis 
values. By default, each value of G is equal to 0.

U

Two-dimensional array of size n_dependent by nu containing the U matrix for the 
test HpβU = Gp where nu is the number of linear combinations of the dependent 
variables to be considered. The value nu must be greater than 0 and less than or equal 
to n_dependent. Default: nu = n_dependent and U is the identity matrix

Discussion

The IMSL_HYPOTH_SCPH function computes the matrix of sums of squares and 
crossproducts for the general linear hypothesis HβU = G for the multivariate general 
linear model Y = Xβ + ε.

The rows of H must be linear combinations of the rows of R, i.e., Hβ = G must be 
completely testable. If the hypothesis is not completely testable, the 
“IMSL_HYPOTH_PARTIAL” on page 677 can be used to construct an equivalent 
completely testable hypothesis.

Computations are based on an algorithm discussed by Kennedy and Gentle (1980, p. 
317) that is extended by Sallas and Lionti (1988) for multivariate non-full rank 
models with possible linear equality restrictions. The algorithm is as follows:

1. Form 

 

2. Find C as the solution of RTC = HT. If the equations are declared inconsistent 
within a computed tolerance, a warning error message is issued that the 
hypothesis is not completely testable.

3. For all rows of R corresponding to restrictions, i.e., containing negative 
diagonal elements from a restricted least-squares fit, zero out the 
corresponding rows of C, i.e., from DC.

W Hβ̂U G–=
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4. Decompose DC with Householder transformations and column pivoting for a 
square, upper triangular matrix T with diagonal elements of nonincreasing 
magnitude and permutation matrix P such that: 

where Q is an orthogonal matrix.

5. Determine the rank of T, say r. If t11 = 0, then r = 0. Otherwise, the rank of T is 
r if:

| trr | > | t11 | ε 1 | tr + 1, r + 1 | 

where ε = 10.0 * (machine epsilon).

Then, zero out all rows of T below r. Set the degrees of freedom for the 
hypothesis, Dfh, to r.

6. Find V as a solution to TTV = PTW. If the equations are inconsistent, a warning 
error message is issued that the hypothesis is inconsistent within a computed 
tolerance, i.e., the linear system:

Hβ U = G 

Ab = Z 

does not have a solution for β.

Form VTV, which is the required matrix of sum of squares and crossproducts, scph.

In general, the two warning errors described above are serious user errors that require 
you to correct the hypothesis before any meaningful sums of squares from this 
function can be computed. However, in some cases, You may know the hypothesis is 
consistent and completely testable, but the checks in IMSL_HYPOTH_SCPH are too 
tight. For this reason, IMSL_HYPOTH_SCPH continues with the calculations.

IMSL_HYPOTH_SCPH gives a matrix of sums of squares and crossproducts that 
could also be obtained from separate fittings of the two models:

 

 

 

and:

 

 

DCP Q T

0
=

Y
≠

Xβ≠ ε≠
 (1)+=

Aβ≠
Z

≠
=

Hβ≠
G=

Y
≠

Xβ≠ ε≠
 (2)+=

Aβ Z
≠

=
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where , , , and . The error sum of squares and 
crossproducts matrix for (1) minus that for (2) is the matrix sum of squares and 
crossproducts output in scph. Note that this approach avoids the question of 
testability. 

Example

The data for this example are from Maindonald (1984, pp. 203204). A multivariate 
regression model containing two dependent variables and three independent variables 
is fit using IMSL_MULTIREGRESS and the results stored in the structure info_v. 
The sum of squares and crossproducts matrix, scph, is then computed by calling 
IMSL_HYPOTH_SCPH for the test that the third independent variable is in the 
model (determined by the specification of h). The degrees of freedom for scph also is 
computed.

x  =  TRANSPOSE([[7.0, 5.0, 6.0], [2.0, -1.0, 6.0], $
[7.0, 3.0, 5.0], [-3.0, 1.0, 4.0], [2.0, -1.0, 0.0], $
[2.0, 1.0, 7.0], [-3.0, -1.0, 3.0], [2.0, 1.0, 1.0], $
[2.0, 1.0, 4.0]])

y  =  TRANSPOSE([[7.0, 1.0], [-5.0, 4.0], [6.0, 10.0], $
[5.0, 5.0],[5.0, -2.0], [-2.0, 4.0], [0.0, -6.0], $
[8.0, 2.0], [3.0, 0.0]])

h  =  FLTARR(1, 4)
h(*)  =  0
h(0,  3)  =  1.0
coefs  =  IMSL_MULTIREGRESS(x, y, Predict_Info = p)
scph  =  IMSL_HYPOTH_SCPH(p, h, Dfh = dfh)
PRINT, 'Degrees of Freedom Hypothesis =', dfh
Degrees of Freedom Hypothesis =      1.00000
PM, scph, Title = 'Sum of Squares and Crossproducts'
Sum of Squares and Crossproducts

      100.000     -40.0000
     -40.0000      16.0000

Errors

Warning Errors

STAT_HYP_NOT_TESTABLE—The hypothesis is not completely testable within the 
computed tolerance. Each row of “h” must be a linear combination of the rows of “r”.

STAT_HYP_NOT_CONSISTENT—The hypothesis is inconsistent within the computed 
tolerance.

Y
≠

YU= β≠ βU= ε≠ εU= Z
≠

ZU=
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Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_HYPOTH_SCPH



688 Chapter 14: Regression
IMSL_HYPOTH_TEST

The IMSL_HYPOTH_TEST function performs tests for a multivariate general linear 
hypothesis HβU = G given the hypothesis sums of squares and crossproducts matrix 
SH. 

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_HYPOTH_TEST(info_v, dfh, scph [, /DOUBLE] 
[, HOTELLING_TRACE=variable] [, PILLAI_TRACE=variable] 
[, ROY_MAX_ROOT=variable] [, U=array] [, WILK_LAMBDA=variable])

Return Value

The p-value corresponding to Wilks’ lambda test.

Arguments

dfh

Degrees of freedom for the sums of squares and crossproducts matrix. 

info_v

One-dimensional array of type BYTE containing information about the regression fit. 
See IMSL_MULTIREGRESS.

scph

Two-dimensional array of size nu by nu containing SH, the sums of squares and 
crossproducts attributable to the hypothesis.

Keywords

DOUBLE

If present and nonzero, double precision is used.
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HOTELLING_TRACE

Named variable into which the one-dimensional array containing the Hotelling’s 
trace and p-value is stored.

PILLAI_TRACE

Named variable into which the one-dimensional array containing the Pillai’s trace 
and p-value is stored.

ROY_MAX_ROOT

Named variable into which the one-dimensional array containing the Roy’s 
maximum root criterion and p-value is stored.

U

Two-dimensional array of size n_dependent by nu containing the U matrix for the test 
HpβU = Gp where nu is the number of linear combinations of the dependent variables 
to be considered. The value nu must be greater than 0 and less than or equal to 
n_dependent. Default: nu = n_dependent and U is the identity matrix

WILK_LAMBDA

Named variable into which the one-dimensional array containing the Wilk’s lamda 
and p-value is stored.

Discussion

IMSL_HYPOTH_TEST computes test statistics and p-values for the general linear 
hypothesis HβU = G for the multivariate general linear model.

The hypothesis sum of squares and crossproducts matrix input in scph is:

 

where C is a solution to RTC = H and where D is a diagonal matrix with diagonal 
elements: 

See the section Linear Dependence and the R Matrix.

Error sum of squares and crossproducts matrix for model Y = Xβ + ε is:

 

SH Hβ̂U G–( )
T

C
T

DC( )
-

Hβ̂U G–( )=

dii

1 if  rii 0>

0 otherwise



=

Y Xβ̂–( )
T

Y Xβ̂–( )
IDL Analyst Reference Guide IMSL_HYPOTH_TEST



690 Chapter 14: Regression
which is input in IMSL_MULTIREGRESS. The error sum of squares and 
crossproducts matrix for the hypothesis HβU = G computed by 
IMSL_HYPOTH_TEST is:

 

Let p equal the order of the matrices SE and SH, i.e.: 

Let q (stored in dfh) be the degrees of freedom for the hypothesis. Let v (input in 
info_v) be the degrees of freedom for error. The IMSL_HYPOTH_TEST function 
computed three test statistics based on eigenvalues λi (i = 1, 2, ... p) of the generalized 
eigenvalue problem SHx = λSEx. These test statistics are as follows: 

Wilk’s lambda: 

The associated p-value is based on an approximation discussed by Rao (1973, p. 
556). The statistic: 

has an approximate F distribution with pq and ms – pq/2 + 1 numerator and 
denominator degrees of freedom, respectively, where: 

and:

 

The F test is exact if min (p, q) ≤ 2 (Kshirsagar, 1972, Theorem 4, p. 2994300).

Roy’s maximum root:

c = max λ i over all i

SE U
T

Y Xβ̂–( )
T

Y Xβ̂–( )U=

p
NU if  NU 0>
NDEP otherwise




=

Λ
det SE( )

det SH SE+( )
-------------------------------- 1

1 λ i+
--------------

i 1=

p

∏= =

F ms pq
pq

s

s= − + −/ /

/
2 1 1 1

1
Λ

Λ

s

1 if p = 1 or q = 1

p
2
q

2
4–

p
2

q
2

5–+
-------------------------- otherwise







=

m υ p q 1–+( )
2

--------------------------–=
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where c is output as value = Roy_Max_Root(0). The p-value is based on the 
approximation: 

where s = max (p, q) has an approximate F distribution with s and υ + q − s 
numerator and denominator degrees of freedom, respectively. The F test is exact if s = 
1; the p-value is also exact. In general, the value output in p_value = 
Roy_Max_Root(1) is lower bound on the actual p-value.

Hotelling’s trace: 

U is output as value = Hotelling_Trace(0). The p-value is based on the approximation 
of McKeon (1974) that supersedes the approximation of Hughes and Saw (1972). 
McKeon’s approximation is also discussed by Seber (1984, p. 39). For: 

the p-value is based on the result that: 

has an approximate F distribution with pq and b degrees of freedom. The test is exact 
if min (p, q) = 1. For υ ≤ p + 1, the approximation is not valid, and p_value = 
Hotelling_Trace(1) is set to NaN.

These three test statistics are valid when SE is positive definite. A necessary condition 
for SE to be positive definite is υ ≥ p. If SE is not positive definite, a warning error 
message is issued, and both value and p_value are set to NaN.

F q s
s

c= + −υ

U tr HE
1–( ) λ i

i 1=

p

∑= =

b 4 pq 2+
υ q p– 1–+( ) υ 1–( )

υ p– 3–( ) υ p–( )
-----------------------------------------------------
-----------------------------------------------------+=

F b υ p– 1–( )
b 2–( )pq

-----------------------------=
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Because the requirement υ ≥ p can be a serious drawback, IMSL_HYPOTH_TEST 
computes a fourth test statistic based on eigenvalues θi (i = 1, 2, ..., p) of the 
generalized eigenvalue problem SHw = θ(SH + SE) w. This test statistic requires a less 
restrictive assumption—SH + SE is positive definite. A necessary condition for SH + 
SE to be positive definite is υ + q ≥ p. If SE is positive definite, 
IMSL_HYPOTH_TEST avoids the computation of the generalized eigenvalue 
problem from scratch. In this case, the eigenvalues θi are obtained from λi by: 

The fourth test statistic is as follows:

Pillai’s trace: 

V is output as value = Pillai_Trace(0). The p-value is based on an approximation 
discussed by Pillai (1985). The statistic: 

has an approximate F distribution with s(2m + s + 1) and s(2n + s + 1) numerator and 
denominator degrees of freedom, respectively, where:

s = min (p, q)

m = 1/2(|p - q| – 1)

n = 1/2(υ - p – 1)

The F test is exact if min (p, q) = 1.

Examples

Example 1

The data for this example are from Maindonald (1984, p. 20310204). A multivariate 
regression model containing two dependent variables and three independent variables 
is fit using IMSL_MULTIREGRESS and the results stored in info_v. The sum of 
squares and crossproducts matrix, scph, is then computed using HYPOYH_SCPH for 
the test that the third independent variable is in the model (determined by 
specification of h). Finally, IMSL_HYPOTH_TEST is used to compute the p-value 
for the test statistic (Wilk’s lambda).

θ λ
λi
i

i
=

+1

V tr SH SH SE+( ) 1–[ ] θ i
i 1=

p

∑= =

F n s
m s

V
s V

= + +
+ + −

2 1
2 1
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x  =  TRANSPOSE([[7.0, 5.0, 6.0], [2.0, -1.0, 6.0], $
[7.0, 3.0, 5.0], [-3.0, 1.0, 4.0], [2.0, -1.0, 0.0], $
[2.0, 1.0, 7.0], [-3.0, -1.0, 3.0], [2.0, 1.0, 1.0], $
[2.0, 1.0, 4.0]])

y  =  TRANSPOSE([[7.0, 1.0], [-5.0, 4.0], [6.0, 10.0], $
[5.0, 5.0], [5.0, -2.0], [-2.0, 4.0], [0.0, -6.0], $
[8.0, 2.0], [3.0, 0.0]])

h  =  FLTARR(1, 4)
h(*)  =  0
h(0, 3)  =  1.0
coefs  =  IMSL_MULTIREGRESS(x, y, Predict_Info = p)
scph  =  IMSL_HYPOTH_SCPH(p, h, Dfh = dfh)
pvalue = IMSL_HYPOTH_TEST(p, dfh, scph)
PM, pvalue, format  =  '(F10.6)', Title = 'P-value'
P-value

  0.000010

Example 2

This example is the same as the first example, but more statistics are computed. Also, 
the U matrix, U, is explicitly specified as the identity matrix (which is the same 
default configuration of U). 

x  =  TRANSPOSE([[7.0, 5.0, 6.0], [2.0, -1.0, 6.0], $
[7.0, 3.0, 5.0], [-3.0, 1.0, 4.0], [2.0, -1.0, 0.0], $
[2.0, 1.0, 7.0], [-3.0, -1.0, 3.0], [2.0, 1.0, 1.0], $
[2.0, 1.0, 4.0]])

y  =  TRANSPOSE([[7.0, 1.0], [-5.0, 4.0], [6.0, 10.0], $
[5.0, 5.0], [5.0, -2.0], [-2.0, 4.0], [0.0, -6.0], $
[8.0, 2.0], [3.0, 0.0]])

h  =  FLTARR(1, 4)
h(*)  =  0
h(0, 3)  =  1.0
u  =  [[1, 0], [0, 1]]
coefs  =  IMSL_MULTIREGRESS(x, y, Predict_Info = p)
scph  =  IMSL_HYPOTH_SCPH(p, h, Dfh = dfh)
pvalue  =  IMSL_HYPOTH_TEST(p, dfh, scph, U = u, $

Wilk_Lambda = wilk_lambda, Roy_Max_Root = roy_max_root, $ 
Hotelling_Trace = hotelling_trace, $
Pillai_Trace = pillai_trace)

PRINT, 'Wilk value = ', wilk_lambda(0), '  p-value =', $
wilk_lambda(1)

Wilk value = 0.00314861  p-value =  9.89437e-06  
PRINT, 'Roy value = ', roy_max_root(0), '  p-value =', $

roy_max_root(1)
Roy value = 316.601  p-value =  9.89437e-06
PRINT, 'Hotelling value = ', hotelling_trace(0), '  p-value =', $

hotelling_trace(1)
Hotelling value = 316.601  p-value =  9.89437e-06
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PRINT, 'Pillai value = ', pillai_trace(0), '  p-value =', $
pillai_trace(1)

Pillai value = 0.996851  p-value =  9.89437e-06

Errors

Warning Errors

STAT_SINGULAR_1—“u”*“scpe”*“u” is singular. Only Pillai’s trace can be 
computed. Other statistics are set to NaN.

Fatal Errors

STAT_NO_STAT_1—“scpe” + “scph” is singular. No tests can be computed.

STAT_NO_STAT_2—No statistics can be computed. Iterations for eigenvalues for 
the generalized eigenvalue problem “scph”*x = (lambda)*(“scph”+“scpe”)*x failed to 
converge.

STAT_NO_STAT_3—No statistics can be computed. Iterations for eigenvalues for 
the generalized eigenvalue problem “scph”*x = (lambda)*(“scph”+“u”*“scpe”*“u”)*x 
failed to converge.

STAT_SINGULAR_2—“u”*“scpe”*“u” + “scph” is singular. No tests can be 
computed.

STAT_SINGULAR_TRI_MATRIX—The input triangular matrix is singular. The 
index of the first zero diagonal element is equal to #.

Version History

6.4 Introduced
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IMSL_NONLINOPT

The IMSL_NONLINOPT function fits data to a nonlinear model (possibly with 
linear constraints) using the successive quadratic programming algorithm (applied to 
the sum of squared errors, SSE = Σ(yi − f(xi; θ))2) and either a finite difference 
gradient or a user-supplied gradient.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NONLINOPT(f, n_parameters, x, y [, A_MATRIX=array] 
[, ACC=value] [, ACTIVE_CONST=variable] [, B=array] [, /DOUBLE] 
[, FREQUENCIES=array] [, JACOBIAN=string] 
[, LAGRANGE_MULT=variable] [, MAX_SSE_EVALS=value] [, MEQ=value] 
[, NUM_ACTIVE=variable] [, PREDICTED=variable] [, RESIDUAL=variable] 
[, SSE=variable] [, STOP_INFO=variable] [, THETA_GUESS=array] 
[, WEIGHTS=array] [, XLB=array] [, XUB=array])

Return Value

One-dimensional array of length n_parameters containing solution:

 

for the nonlinear regression coefficients.

Arguments

f

Scalar string specifying a user-supplied function that defines the nonlinear regression 
problem at a given point. Function f has the following parameters:

• xi—One-dimensional array of length n_independent at which point the 
function is evaluated.

• theta—One-dimensional array of length n_parameters containing the current 
values of the regression coefficients.

θ̂
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Function f returns a predicted value at the point xi. In the following, 
f(xi; θ), or just fi, denotes the value of this function at the point xi, for a given 
value of θ. (Both xi and θ are arrays.).

n_parameters

Number of parameters to be estimated.

x

Two-dimensional array of size n_observations by n_independent containing the 
matrix of independent (explanatory) variables where n_observations is the number of 
observations and n_independent is the number of independent variables.

y

One-dimensional array of length n_observations containing the dependent (response) 
variable.

Keywords

A_MATRIX

Two-dimensional array of size n_constraints by n_parameters containing the equality 
constraint gradients in the first Meq rows, followed by the inequality constraint 
gradients. Here n_constraints is the total number of linear constraints (excluding 
simple bounds). A_Matrix and B must be used together. Default: There are no default 
linear constraints.

ACC

The nonnegative tolerance on the first order conditions at the calculated solution.

ACTIVE_CONST

Named variable into which a one-dimensional array of length Num_Active containing 
the indices of the final active constraints is stored.

B

One-dimensional array of length n_constraints containing the right-hand sides of the 
linear constraints. Keywords A_Matrix and B must be used together. Default: There 
are no default linear constraints.

A_Matrix and B are the linear constraints, specifically, the constraints on θ are:
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ai1 θ 1 + ... + aij θj = bi   

for i = 1, n_equality and j = 1, n_parameter, and:

ak1 θ 1 + ... + akj θj ≤ bk 

for k = n_equality + 1, n_constraints and j = 1, n_parameter.

DOUBLE

If present and nonzero, double precision is used.

FREQUENCIES

One-dimensional array of length n_observations containing the frequency for each 
observation. Default: Frequencies(*) = 1

JACOBIAN

Scalar string specifying a user-supplied function to compute the i-th row of the 
Jacobian. The function specified by Jacobian has the following parameters:

• Xi—One-dimensional array containing the n_independent data values 
corresponding to the i-th row. (Input)

• Theta—One-dimensional array of length n_parameters containing the 
regression coefficients for which the Jacobian is evaluated. (Input)

The return value of this function is a one-dimensional array containing the 
computed n_parameters row of the Jacobian for observation i at Theta. Note 
that each derivative f(xi)/θ should be returned in element  (j – 1) of the 
returned array for j = 1, 2, ..., n_parameters. Further note that in order to 
maintain consistency with the other nonlinear solver, 
IMSL_NONLINREGRESS, the Jacobian values must be specified as the 
negative of the calculated derivatives.

LAGRANGE_MULT

Named variable into which a one-dimensional array of length Num_Active containing 
the Lagrange multiplier estimates of the final active constraints is stored.

MAX_SSE_EVALS

The maximum number of SSE evaluations allowed. Default: Max_Sse_Eval = 400
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MEQ

Number of the A_Matrix constraints which are equality constraints; the remaining 
(n_constraints –Meq) constraints are inequality constraints. Default: Meq = 0.

NUM_ACTIVE

Named variable into which the final number of active constraints is stored.

PREDICTED

Named variable into which a one-dimensional array of length n_observations 
containing the predicted values at the approximate solution is stored. 

RESIDUAL

Named variable into which a one-dimensional array of length n_observations 
containing the residuals at the approximate solution is stored. 

SSE

Named variable into which the residual sum of squares is stored.

STOP_INFO

Named variable into which one of the following integer values to indicate the reason 
for leaving the routine is stored:

Stop_info Reason for leaving routine

1 θ is feasible, and the condition that depends on Acc is satisfied.

2 θ is feasible, and rounding errors are preventing further progress.

3 θ is feasible, but sse fails to decrease although a decrease is 
predicted by the current gradient vector.

4 The calculation cannot begin because A_Matrix contains fewer 
than n_constraints constraints or because the lower bound on a 
variable is greater than the upper bound.

Table 14-9: Stop_Info Integer Values
IMSL_NONLINOPT IDL Analyst Reference Guide



Chapter 14: Regression 699
THETA_GUESS

One-dimensional array with n_parameters components containing an initial guess. 
Default: Theta_Guess(*) = 0

WEIGHTS

One-dimensional array of length n_observations containing the weight for each 
observation. Default: Weights(*) = 1

XLB

One-dimensional array of length n_parameters containing the lower bounds on the 
parameters; choose a very large negative value if a component should be unbounded 
below or set Xlb(i) = Xub(i) to freeze the i-th variable. Default: All parameters are 
bounded below by –106.

XUB

One-dimensional array of length n_parameters containing the upper bounds on the 
parameters; choose a very large value if a component should be unbounded above or 
set Xlb(i) = Xub(i) to freeze the i-th variable. Default: All parameters are bounded 
above by 106.

5 The equality constraints are inconsistent. These constraints 
include any components of

 

that are frozen by setting Xlb(i) equal to Xub(i).

6 The equality constraints and the bound on the variables are found 
to be inconsistent.

7 There is no possible 1 that satisfies all of the constraints. 

8 Maximum number of sse evaluations (Max_Sse_Eval) is 
exceeded.

9 θ is determined by the equality constraints.

Stop_info Reason for leaving routine

Table 14-9: Stop_Info Integer Values

θ̂
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Discussion

The IMSL_NONLINOPT function is based on M.J.D. Powell’s TOLMIN, which 
solves linearly constrained optimization problems, i.e., problems of the form min 
f(q), , subject to:

A1θ = b1 

A ≤ b2 

θ I ≤ θ ≤ θu 

given the vectors b1, b2, θI, and θu and the matrices A1 and A2.

The algorithm starts by checking the equality constraints for inconsistency and 
redundancy. If the equality constraints are consistent, the method will revise θ0, the 
initial guess you provided, to satisfy:

A1 θ = b1 

Next, θ0 is adjusted to satisfy the simple bounds and inequality constraints. This is 
done by solving a sequence of quadratic programming subproblems to minimize the 
sum of the constraint or bound violations.

Now, for each iteration with a feasible θk, let Jk be the set of indices of inequality 
constraints that have small residuals. Here, the simple bounds are treated as 
inequality constraints. Let Ik be the set of indices of active constraints. The following 
quadratic programming problem:

 

subject to:

 

is solved to get (dk, λk) where aj is a row vector representing either a constraint in A1 
or A2 or a bound constraint on θ. In the latter case, the aj = ei for the bound constraint 
θi ≤ (θu)i and aj = ei for the constraint θi ≤ (θl)i. Here, ei is a vector with a 1 as the i-
th component, and zeroes elsewhere. λk are the Lagrange multipliers, and Bk is a 
positive definite approximation to the second derivative ∇ 2 f(θk).

After the search direction dk is obtained, a line search is performed to locate a better 
point. The new point θk+1 = θk + αkdk has to satisfy the conditions:

f (θ k + α kdk ) ≤ f (θ k) + 0.1α k (dk)T ∇ f (θ k)

and:

(dk)T∇  f (θ k + α kdk) ≥ 0.7 (dk)T∇  f (θ k)

θ ℜ∈

minf θk( ) d
T

f∇ θ k( ) 1
2
---d

Tβk
d+ +

ajd 0= j Ik∈

ajd  0≤ j Jk∈
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The main idea in forming the set Jk is that, if any of the inequality constraints restricts 
the step-length αk, then its index is not in Jk. Therefore, small steps are likely to be 
avoided.

Finally, the second derivative approximation, Bk, is updated by the BFGS formula, if 
the condition: 

(dk)T∇  f (θ k + α kdk) − ∇  f (θ k) > 0

holds. Let θk ← θk+1, and start another iteration.

The iteration repeats until the stopping criterion:

||∇  f (θ k) − Akλ k||2 ≤ τ 

is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell (1988, 
1989).

Since a finite-difference method is used to estimate the gradient, for some single 
precision calculations. An inaccurate estimate of the gradient may cause the 
algorithm to terminate at a noncritical point. In such cases, high precision arithmetic 
is recommended. Also, whenever the exact gradient can be easily provided, the 
gradient should be passed to IMSL_NONLINOPT using the optional keyword 
Jacobian.

Examples

Example 1

In this example, a data set is fitted to the nonlinear model function:

 

.RUN
FUNCTION fcn, x, theta

res  =  SIN(theta(0)*x(0))
RETURN, res

END

x = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
y = [0.05, 0.21, 0.67, 0.72, 0.98, 0.94, 1.00, 0.73, 0.44, $

0.36, 0.02]
n_parameters  =  1
theta_hat  =  IMSL_NONLINOPT('fcn', n_parameters, x, y)
% IMSL_NONLINOPT: Note: STAT_NOTE_3
 'theta' is feasible but the objective function fails to
decrease.  Using double precision may help.
PRINT, 'Theta Hat = ', theta_hat
Theta Hat =       3.16143

yi θ0xi( ) εi+sin=
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Example 2

Draper and Smith (1981, p. 475) state a problem due to Smith and Dubey. [H. Smith 
and S. D. Dubey (1964), “Some reliability problems in the chemical industry.” 
Industrial Quality Control, 21 (2), 1964, pp. 641470] A certain product must have 
50% available chlorine at the time of manufacture. When it reaches the customer 8 
weeks later, the level of available chlorine has dropped to 49%. It was known that the 
level should stabilize at about 30%. To predict how long the chemical would last at 
the customer site, samples were analyzed at different times. It was postulated that the 
following nonlinear model should fit the data:

 

Since the chlorine level will stabilize at about 30%, the initial guess for theta1 is 0.30. 
Using the last data point (x = 42, y = 0.39) and θ0 = 0.30 and the above nonlinear 
equation, an estimate for θ1 of 0.02 is obtained.

The constraints that θ0 ≥ 0 and θ1 ≥ 0 are also imposed. These are equivalent to 
requiring that the level of available chlorine always be positive and never increase 
with time.

The Jacobian of the nonlinear model equation is also used.

.RUN
FUNCTION fcn, x, theta

res = theta(0) + (0.49-theta(0))* exp(-theta(1)*(x(0) - 8.0))
RETURN, res

END

.RUN
FUNCTION jacobian, x, theta

fjac  =  theta
fjac(*)  =  0
fjac(0)  =  -1.0 + exp(-theta(1)*(x(0) - 8.0));
fjac(1)  =  (0.49 - theta(0))*(x(0) - 8.0) * $

exp(-theta(1)*(x(0) - 8.0));
RETURN, fjac

END

x  =  [8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0, $
12.0, 14.0, 14.0, 14.0, 16.0, 16.0, 16.0, 18.0, 18.0, $
20.0, 20.0, 20.0, 22.0, 22.0, 22.0, 24.0, 24.0, 24.0, $
26.0, 26.0, 26.0, 28.0, 28.0, 30.0, 30.0, 30.0, 32.0, $
32.0, 34.0, 36.0, 36.0, 38.0, 38.0, 40.0, 42.0]

y  =  [0.49, 0.49, 0.48, 0.47, 0.48, 0.47, 0.46, 0.46, 0.45, $
0.43, 0.45, 0.43, 0.43, 0.44, 0.43, 0.43, 0.46, 0.45, $
0.42, 0.42, 0.43, 0.41, 0.41, 0.40, 0.42, 0.40, 0.40, $
0.41, 0.40, 0.41, 0.41, 0.40, 0.40, 0.40, 0.38, 0.41, $

yi θ0 0.49 θ–( )e
θ– xj 8–( )

εi++=
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0.40, 0.40, 0.41, 0.38, 0.40, 0.40, 0.39, 0.39]
theta_guess  =  [0.3, 0.02]
xlb  =  [0.0, 0.0]
n_parameters  =  2
theta_hat  =  IMSL_NONLINOPT('fcn', n_parameters, x, y, $

Theta_Guess = theta_guess, Xlb = xlb, $
Jacobian = 'jacobian', Sse = sse)

PRINT, 'Theta Hat =', theta_hat

Theta Hat =     0.390143     0.101631

PRINT, 'Residual Sum of Squares =', sse

Residual Sum of Squares =   0.00500168

Errors

Fatal Errors

STAT_BAD_CONSTRAINTS_1—The equality constraints are inconsistent.

STAT_BAD_CONSTRAINTS_2—The equality constraints and the bounds on the 
variables are found to be inconsistent.

STAT_BAD_CONSTRAINTS_3—No vector “theta” satisfies all of the constraints. 
Specifically, the current active constraints prevent any change in “theta” that reduces 
the sum of constraint violations.

STAT_BAD_CONSTRAINTS_4—The variables are determined by the equality 
constraints.

STAT_TOO_MANY_ITERATIONS_1—Number of function evaluations exceeded 
“maxfcn” = #.

Version History

6.4 Introduced
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IMSL_LNORMREGRESS

The IMSL_LNORMREGRESS function fits a multiple linear regression model using 
criteria other than least squares. Namely, IMSL_LNORMREGRESS allows you to 
choose Least Absolute Value (L1), Least Lp norm (Lp), or Least Maximum Value 
(Minimax or Linfinity) method of multiple linear regression.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LNORMREGRESS(x, y [, DF=variable] [, /DOUBLE] 
[, EPS=value] [, FREQUENCIES=array] [, ITERS=variable] 
[, /LAV | /LLP | /LMV] [, NMISSING=variable] [, /NO_INTERCEPT] 
[, P=value] [, RANK=variable] [, R_MATRIX=variable] 
[, RESID_MAX=variable] [, RESID_NORM=variable] 
[, RESIDUALS=variable] [, SCALE=variable] [, SEA=variable] 
[, TOLERANCE=value] [, WEIGHTS=array])

Return Value

One-dimensional array of length n_independent + 1 containing a least absolute value 
solution for the regression coefficients. The estimated intercept is the initial 
component of the array, where the i-th component contains the regression coefficients 
for the i-th dependent variable. If the keyword No_Intercept is used then the (i-1)-st 
component contains the regression coefficients for the i-th dependent variable. 
IMSL_LNORMREGRESS returns the Lp norm or least maximum value solution for 
the regression coefficients when appropriately specified in the input keyword list.

Arguments

x

Two-dimensional array of size n_rows by n_independent containing the independent 
(explanatory) variables(s) where n_rows = N_ELEMENTS(x(*,0)) and 
n_independent is the number of independent (explanatory) variables. The i-th column 
of x contains the i-th independent variable.
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y

One-dimensional array of size n_rows containing the dependent (response) variable. 

Keywords

DF

Named variable into which the sum of the frequencies minus Rank is stored. In least 
squares fit (p=2) Df is called the degrees of freedom of error. Keyword Llp is required 
when using keyword Df.

DOUBLE

If present and nonzero, double precision is used.

EPS

Convergence criterion. If the maximum relative difference in residuals from the k-th 
to (k+1)-st iterations is less than Eps, convergence is declared. Keyword Llp is 
required when using keyword Eps. Default: Eps = 100 * (machine epsilon).

FREQUENCIES

One-dimensional array of size n_rows containing the frequencies for the independent 
(explanatory) variable. Keyword Llp is required when using keyword Frequencies.

ITERS

Named variable into which the number of iterations performed is stored.

LAV

By default (or if Lav is used) the function fits a multiple linear regression model using 
the least absolute values criterion. Keywords Lav, Llp, and Lmv can not be used 
together. 

LLP

If present and nonzero, IMSL_LNORMREGRESS fits a multiple linear regression 
model using the Lp norm criterion. Llp requires the keyword P, for P ≥ 1. Keywords 
Lav, Llp, and Lmv can not be used together. 
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LMV

If present and nonzero, IMSL_LNORMREGRESS fits a multiple linear regression 
model using the minimax criterion. Keywords Lav, Llp, and Lmv can not be used 
together. 

NMISSING

Named variable into which the number of rows of data containing NaN (not a 
number) for the dependent or independent variables is stored. If a row of data 
contains NaN for any of these variables, that row is excluded from the computations.

NO_INTERCEPT

If present and nonzero, the intercept term: 

is omitted from the model and the return value from regression is a one-dimensional 
array of length n_independent. By default the fitted value for observation i is:

 

where k = n_independent.

P

The p in the Lp norm criterion (see the Discussion section for details). P must be 
greater than or equal to one. P and Llp must be used together.

RANK

Named variable into which the rank of the fitted model is stored.

R_MATRIX

Named variable into which the two-dimensional array containing the upper triangular 
matrix of dimension (number of coefficients by number of coefficients) containing 
the R matrix from a QR decomposition of the matrix of regressors is stored. Keyword 
Llp is required when using keyword R_Matrix.

RESID_MAX

Named variable into which the magnitude of the largest residual is stored. Keyword 
Lmv is required when using keyword Resid_Max.

β̂0

β̂0 β̂1x1 ... β̂kxk+ + +
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RESID_NORM

Named variable into which the Lp norm of the residuals is stored. Keyword Llp is 
required when using keyword Resid_Norm.

RESIDUALS

Named variable into which the one-dimensional array (of length equal to the number 
of observations) containing the residuals is stored. Keyword Llp is required when 
using keyword Residuals.

SCALE

Named variable into which the square of the scale constant used in an Lp analysis is 
stored. An estimated asymptotic variance-covariance matrix of the regression 
coefficients is Scale * (RTR)-1. Keyword Llp is required when using keyword Scale.

SEA

Named variable into which the sum of the absolute value of the errors is stored. 
Keyword Lav is required when using keyword Sea.

TOLERANCE

Tolerance used in determining linear dependence. Keyword Llp is required when 
using keyword Tolerance. Default: Tolerance = 100 * (machine epsilon).

WEIGHTS

One-dimensional array of size n_rows containing the weights for the independent 
(explanatory) variable. Keyword Llp is required when using keyword Weights.

Discussion

Least Absolute Value Criterion

The IMSL_LNORMREGRESS function computes estimates of the regression 
coefficients in a multiple linear regression model. For keyword Lav (default), the 
criterion satisfied is the minimization of the sum of the absolute values of the 
deviations of the observed response yi from the fitted response:

 

for a set on n observations. Under this criterion, known as the L1 or LAV (least 
absolute value) criterion, the regression coefficient estimates minimize: 

ŷi
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The estimation problem can be posed as a linear programming problem. The special 
nature of the problem, however, allows for considerable gains in efficiency by the 
modification of the usual simplex algorithm for linear programming. These 
modifications are described in detail by Barrodale and Roberts (1973, 1974).

In many cases, the algorithm can be made faster by computing a least-squares 
solution prior to the use of keyword Lav. This is particularly useful when a least-
squares solution has already been computed. The procedure is as follows:

1. Fit the model using least squares and compute the residuals from this fit.

2. Fit the residuals from Step 1 on the regressor variables in the model using 
keyword Lav.

3. Add the two estimated regression coefficient vectors from Steps 1 and 2. The 
result is an L1 solution.

When multiple solutions exist for a given problem, option Lav may yield different 
estimates of the regression coefficients on different computers, however, the sum of 
the absolute values of the residuals should be the same (within rounding differences). 
The informational error indicating nonunique solutions may result from rounding 
accumulation. Conversely, because of rounding the error may fail to result even when 
the problem does have multiple solutions.

Lp Norm Criterion

Keyword Llp computes estimates of the regression coefficients in a multiple linear 
regression model y = Xβ + ε under the criterion of minimizing the Lp norm of the 
deviations for i = 0, ... , n - 1 of the observed response yi from the fitted response:

 

for a set on n observations and for p ≥ 1. For the case when keywords Weights and 
Frequencies are not supplied, the estimated regression coefficient vector:

  

(output in Result) minimizes the Lp norm: 

yi ŷi–
i 0=

n 1–

∑

ŷi

β̂

yi ŷi–
p

i 0=

n 1–

∑
 
 
 
 1p⁄
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Chapter 14: Regression 709
The choice p = 1 yields the maximum likelihood estimate for β when the errors have 
a Laplace distribution. The choice p = 2 is best for errors that are normally 
distributed. Sposito (1989, pages 36−40) discusses other reasonable alternatives for p 
based on the sample kurtosis of the errors. 

Weights are useful if errors in the model have known unequal variances:

 

In this case, the weights should be taken as: 

Frequencies are useful if there are repetitions of some observations in the data set. If a 
single row of data corresponds to ni observations, set the frequency fi = ni. In general, 
keyword Llp minimizes the Lp norm: 

The asymptotic variance-covariance matrix of the estimated regression coefficients is 
given by: 

where R is from the QR decomposition of the matrix of regressors (output in keyword 
R_Matrix) and where an estimate of λ2 is output in keyword Scale.

In the discussion that follows, we will first present the algorithm with frequencies and 
weights all taken to be one. Later, we will present the modifications to handle 
frequencies and weights different from one. 

Keyword Llp uses Newton’s method with a line search for p > 1.25 and, for 
p ≤ 1.25, uses a modification due to Ekblom (1973, 1987) in which a series of 
perturbed problems are solved in order to guarantee convergence and increase the 
convergence rate. The cutoff value of 1.25 as well as some of the other 
implementation details given in the remaining discussion were investigated by Sallas 
(1990) for their effect on CPU times. 

For the first iteration in each case, a least-squares solution for regression coefficients 
is computed with IMSL_MULTIREGRESS. If p = 2, the computations are finished. 
Otherwise, the residuals from the k-th iteration: 

σ i
2

wi 1 σ i
2⁄=

fi wi yi ŷi–( )
p

i 0=

n 1–

∑
 
 
 
 1p⁄

asy.var β̂( ) λ2
R

T
R( )

1–
=
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k( )

yi ŷi
k( )

–=
IDL Analyst Reference Guide IMSL_LNORMREGRESS



710 Chapter 14: Regression
are used to compute the gradient and Hessian for the Newton step for the 
(k + 1)-st iteration for minimizing the p-th power of the Lp norm. (The exponent 1/p 
in the Lp norm can be omitted during the iterations.) 

For subsequent iterations, we first discuss the p > 1.25 case. For p > 1.25, the gradient 
and Hessian at the (k + 1)-st iteration depend upon: 

and: 

In the case 1.25 < p < 2 and: 

and the Hessian are undefined; and we follow the recommendation of Merle and 
Spath (1974). Specifically, we modify the definition of: 

to the following: 

where τ equals 100 * machine epsilon times the square root of the residual mean 
square from the least-squares fit. 

Let V(k+1) be a diagonal matrix with diagonal entries:

 

and let z(k+1) be a vector with elements:

 

In order to compute the step on the (k + 1)-st iteration, the R from the QR 
decomposition of:

[V(k+1)]1/2X 

 is computed using fast Givens transformations. Let:

R(k+1) 

zi
k 1+( )

ei
k( ) p 1–

sign ei
k( )( )=

vi
k 1+( )

ei
k( ) p 2–

=

ei
k( )

0 vi
k 1+( )

,=

vi
k 1+( )

vi
k 1+( ) τp 2–

    if p < 2 and ei
k( ) τ<

ei
k( ) p 2–

otherwise    






=

vi
k 1+( )

zi
k 1+( )
IMSL_LNORMREGRESS IDL Analyst Reference Guide
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denote the upper triangular matrix from the QR decomposition. The linear system:

 [R(k+1)]TR(k+1)d(k+1) = XT z(k+1) 

is solved for:

d(k+1) 

where R(k+1) is from the QR decomposition of [V(k+1)]1/2X. The step taken on the (k + 
1)-st iteration is: 

The first attempted step on the (k + 1)-st iteration is with α(k+1) = 1. If all of the:

 

are nonzero, this is exactly the Newton step. See Kennedy and Gentle (1980, pages 
528−529) for further discussion.

If the first attempted step does not lead to a decrease of at least one-tenth of the 
predicted decrease in the p-th power of the Lp norm of the residuals, a backtracking 
linesearch procedure is used. The backtracking procedure uses a one-dimensional 
quadratic model to estimate the backtrack constant p. The value of p is constrained to 
be no less that 0.1. An approximate upper bound for p is 0.5. If after 10 successive 
backtrack attempts, α(k) = p1p2... p10 does not produce a step with a sufficient 
decrease, then IMSL_LNORMREGRESS issues a message with error code 5. For 
further details on the backtrack line-search procedure, see Dennis and Schnabel 
(1983, pages 126−127). 

Convergence is declared when the maximum relative change in the residuals from 
one iteration to the next is less than or equal to Eps. The relative change:

 

in the i-th residual from iteration k to iteration k + 1 is computed as follows: 

where s is the square root of the residual mean square from the least-squares fit on the 
first iteration.

For the case 1 ≤ p ≤ 1.25, we describe the modifications to the previous procedure 
that incorporate Ekblom’s (1973) results. A sequence of perturbed problems are 
solved with a successively smaller perturbation constant c. On the first iteration, the 
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712 Chapter 14: Regression
least-squares problem is solved. This corresponds to an infinite c. For the second 
problem, c is taken equal to s, the square root of the residual mean square from the 
least-squares fit. Then, for the (j + 1)-st problem, the value of c is computed from the 
previous value of c according to: 

Each problem is stated as: 

For each problem, the gradient and Hessian on the (k + 1)-st iteration depend upon: 

and: 

where: 

The linear system [R(k+1)]TR(k+1)d(k+1) = XTz(k+1) is solved for d(k+1) where R(k+1) is 
from the QR decomposition of [V(k+1)]1/2X. The step taken on the (k + 1)-st iteration 
is: 

where the first attempted step is with α(k+1) = 1. If necessary, the backtracking line-
search procedure discussed earlier is used.

Convergence for each problem is relaxed somewhat by using a convergence epsilon 
equal to max(Eps, 10–j) where j = 1, 2, 3, ... indexes the problems (j = 0 corresponds 
to the least-squares problem). 

After the convergence of a problem for a particular c, Ekblom’s (1987) extrapolation 
technique is used to compute the initial estimate of β for the new problem. Let R(k): 

and c be from the last iteration of the last problem. Let: 
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and let t be the vector with elements ti. The initial estimate of β for the new problem 
with perturbation constant 0.01c is: 

where ∆c = (0.01c - c) = -0.99c, and where d is the solution of the linear system 
[R(k)]TR(k)d = XTt.

Convergence of the sequence of problems is declared when the maximum relative 
difference in residuals from the solution of successive problems is less than Eps. 

The preceding discussion was limited to the case for which Weights(*) = 1 and 
Frequencies(*) = 1, i.e., the weights and frequencies are all taken equal to one. The 
necessary modifications to the preceding algorithm to handle weights and frequencies 
not all equal to one are as follows:

1. Replace: 

in the definitions of: 

and ti.

2. Replace: 

These replacements have the same effect as multiplying the i-th row of X and y by:

 

and repeating the row fi times except for the fact that the residuals returned by 
IMSL_LNORMREGRESS are in terms of the original y and X. 

ti
p 2–( )vi

k( )

ei
k( )( )

2
c

2
+

-----------------------------=

β̂
0( )

β̂
k( )

cd∆+=

ei
k( )

 by  wiei
k( )

zi
k 1+( )

vi
k 1+( )

, δi
k 1+( )

,

zi
k 1+( )

 by  fi wizi
k 1+( )

vi
k 1+( )

 by  fiwivi
k 1+( )

,  and , ti
k 1+( )

 by  fi witi
k 1+( )

wi
IDL Analyst Reference Guide IMSL_LNORMREGRESS



714 Chapter 14: Regression
Finally, R and an estimate of λ2 are computed. Actually, R is recomputed because on 
output it corresponds to the R from the initial QR decomposition for least squares. 
The formula for the estimate of λ2 depends on p. 

For p = 1, the estimator for λ2 is given by (McKean and Schrader 1987): 

with:  

where z0.975 is the 97.5 percentile of standard normal distribution, and:  

are ordered residuals where Rank zero residuals are excluded. Note that:  

For p = 2, the estimator of λ2 is the customary least-squares estimator given by: 

For 1 < p < 2 and for p > 2, the estimator for λ2 is given by (Gonin and Money 1989): 

with:  
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Least Minimum Value Criterion (minimax)

Keyword Lmv computes estimates of the regression coefficients in a multiple linear 
regression model. The criterion satisfied is the minimization of the maximum 
deviation of the observed response yi from the fitted response:

 

for a set on n observations. Under this criterion, known as the minimax or LMV (least 
maximum value) criterion, the regression coefficient estimates minimize: 

The estimation problem can be posed as a linear programming problem. A dual 
simplex algorithm is appropriate, however, the special nature of the problem allows 
for considerable gains in efficiency by modification of the dual simplex iterations so 
as to move more rapidly toward the optimal solution. The modifications are described 
in detail by Barrodale and Phillips (1975). 

When multiple solutions exist for a given problem, Lmv may yield different estimates 
of the regression coefficients on different computers, however, the largest residual in 
absolute value should have the same absolute value (within rounding differences). 
The informational error indicating nonunique solutions may result from rounding 
accumulation. Conversely, because of rounding, the error may fail to result even 
when the problem does have multiple solutions.

Examples

Example 1

A straight line fit to a data set is computed under the LAV criterion.

PRO print_results, coefs, rank, sea, iters, nmissing
PRINT, 'B =   ', coefs(0), coefs(1), $

FORMAT = '(A6, F5.2, 5X, F5.2)'
PRINT
PRINT, 'Rank of Regressors Matrix     = ', rank, $

mr

fi
i 0=
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∑ wi yi ŷi–( )
r

fi
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∑
------------------------------------------------=

ŷi

max
0  i  n 1–≤ ≤

yi ŷi–
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FORMAT = '(A32, I3)'
PRINT, 'Sum Absolute Value of Error   = ', sea, $

FORMAT = '(A32, F7.4)'
PRINT, 'Number of Iterations          = ', iters, $

FORMAT = '(A32, I3)'
PRINT, 'Number of Rows Missing        = ', nmissing, $

FORMAT = '(A32, I3)'
END

x  =  [1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0]
y  =  [1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0]
coefs  =  IMSL_LNORMREGRESS(x, y, Nmissing = nmissing, $

Rank = rank, Iters = iters, Sea = sea)
print_results, coefs, rank, sea, iters, nmissing
B =    0.50      0.50
Rank of Regressors Matrix     =   2
Sum Absolute Value of Error   =  6.0000
Number of Iterations          =   2
Number of Rows Missing        =   0

Example 2

Different straight line fits to a data set are computed under the criterion of minimizing 
the Lp norm by using p equal to 1, 1.5, 2.0 and 2.5.

.RUN
PRO print_results, coefs, residuals, p, resid_norm, rank, df, $

iters, nmissing, scale, rm
PRINT, 'Coefficients ', coefs, FORMAT = '(A13, 2F7.2)'
PRINT, 'Residuals ', residuals, FORMAT = '(A10, 8F6.2)'
PRINT
PRINT, 'p                                ', p, $

FORMAT = '(A33, F6.3)'
PRINT, 'Lp norm of the residuals         ', resid_norm, $ 

FORMAT = '(A33, F6.3)'
PRINT, 'Rank of the matrix of regressors ', rank, $

FORMAT = '(A33, I6)'
PRINT, 'Degrees of freedom error         ', df, $

FORMAT = '(A33, F6.3)'
PRINT, 'Number of iterations             ', iters, $

FORMAT = '(A33, I6)'
PRINT, 'Number of missing values         ', nmissing, $

FORMAT = '(A33, I6)'
PRINT, 'Square of the scale constant     ', scale, $

FORMAT = '(A33, F6.3)'
PRINT
PM, rm, FORMAT = '(2F8.3)', Title = '      R matrix'
PRINT
PRINT, '------------------------------------------------'
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PRINT
END

.RUN
x  =  [1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0]
y  =  [1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0]
eps  =  0.001
FOR i  =  0, 3 DO BEGIN 

p  =  1.0 + i*0.5
coefs  =  IMSL_LNORMREGRESS(x, y, /Llp, P = p, Eps = eps, $

Nmissing = nmissing, Rank = rank, $
Iters = iters, Scale = scale, $
Df = df, R_Matrix = rm, Residuals = residuals, $
Resid_Norm = resid_norm)

print_results, coefs, residuals, p, resid_norm, rank, df, $
iters, nmissing, scale, rm 

ENDFOR
END

Coefficients    0.50   0.50
Residuals  -0.00  2.50 -1.50  0.50 -0.50  0.50 -0.50  0.00
p                                 1.000
Lp norm of the residuals          6.002
Rank of the matrix of regressors      2
Degrees of freedom error          6.000
Number of iterations                  8
Number of missing values              0
Square of the scale constant      6.248
R matrix
   2.828   8.485
   0.000   3.464
------------------------------------------------
Coefficients    0.39   0.56
Residuals   0.06  2.39 -1.50  0.50 -0.55  0.45 -0.61 -0.16

p                                 1.500
Lp norm of the residuals          3.712
Rank of the matrix of regressors      2
Degrees of freedom error          6.000
Number of iterations                  6
Number of missing values              0
Square of the scale constant      1.059

      R matrix
   2.828   8.485
   0.000   3.464

------------------------------------------------
Coefficients   -0.12   0.75
Residuals   0.38  2.12 -1.38  0.62 -0.62  0.38 -0.88 -0.62
p                                 2.000
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Lp norm of the residuals          2.937
Rank of the matrix of regressors      2
Degrees of freedom error          6.000
Number of iterations                  1
Number of missing values              0
Square of the scale constant      1.438
R matrix
   2.828   8.485
   0.000   3.464

------------------------------------------------
Coefficients   -0.44   0.87
Residuals   0.57  1.96 -1.30  0.70 -0.67  0.33 -1.04 -0.91
p                                 2.500
Lp norm of the residuals          2.540
Rank of the matrix of regressors      2
Degrees of freedom error          6.000
Number of iterations                  4
Number of missing values              0
Square of the scale constant      0.789

R matrix
   2.828   8.485
   0.000   3.464

Example 3

A straight line fit to a data set is computed under the LMV criterion.

.RUN
PRO print_results, coefs, rank, rm, iters, nmissing

PRINT, 'B =   ', coefs(0), coefs(1), $
FORMAT = '(A6, F5.2, 5X, F5.2)'

PRINT
PRINT, 'Rank of Regressors Matrix       = ', rank, $

FORMAT = '(A34, I3)'
PRINT, 'Magnitude of Largest Residual   = ', rm, $

FORMAT = '(A34, F7.4)'
PRINT, 'Number of Iterations            = ', iters, $

FORMAT = '(A34, I3)'
PRINT, 'Number of Rows Missing          = ', nmissing, $

FORMAT = '(A34, I3)'
END
x  =  [0.0, 1.0, 2.0, 3.0, 4.0, 4.0, 5.0]
y  =  [0.0, 2.5, 2.5, 4.5, 4.5, 6.0, 5.0]
coefs  =  IMSL_LNORMREGRESS(x, y, /Lmv, Nmissing = nmissing, $

Rank = rank, Iters = iters, Resid_Max = rm)
print_results, coefs, rank, rm, iters, nmissing

B =    1.00      1.00
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Rank of Regressors Matrix       =   2
Magnitude of Largest Residual   =  1.0000
Number of Iterations            =   3
Number of Rows Missing          =   0

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_LNORMREGRESS
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Correlation and 
Covariance
This section contains the following topics:
Overview: Correlation and Covariance . . .  722 Correlation and Covariance Routines . . . .  723
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Overview: Correlation and Covariance

This chapter discusses measures of correlation for bivariate data. Topics covered 
include:

• The usual multivariate measures of correlation and covariance for continuous 
random variables (produced by IMSL_COVARIANCES). 

• Data grouped by some auxiliary variable (IMSL_POOLED_COV can be used 
to compute the pooled covariance matrix along with the means for each 
group). 

• Partial correlations or covariances computed using IMSL_PARTIAL_COV. 

• Use of the IMSL_ROBUST_COV function to compute robust M-estimates of 
the mean and covariance matrix from a matrix of observations.
Overview: Correlation and Covariance IDL Analyst Reference Guide
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Correlation and Covariance Routines

IMSL_COVARIANCES—Variance-covariance or correlation matrix.

IMSL_PARTIAL_COV—Partial correlations and covariances.

IMSL_POOLED_COV—Pooled covariance matrix.

IMSL_ROBUST_COV—Robust estimate of covariance matrix.
IDL Analyst Reference Guide Correlation and Covariance Routines
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IMSL_COVARIANCES

The IMSL_COVARIANCES function computes the sample variance-covariance or 
correlation matrix.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_COVARIANCES(x [, /DOUBLE] [, VAR_COVAR=value] 
[, CORRECTED_SSCP=value] [, CORRELATION=value] 
[, STDEV_CORRELATION=value] [, FREQUENCIES=array] 
[, INCIDENCE_MAT=variable] [, MISSING_VAL=value] [, MEANS=variable] 
[, NMISSING=variable] [, NOBS=variable] [, SUM_WEIGHTS=variable] 
[, WEIGHT=array])

Return Value

If no keywords are used, IMSL_COVARIANCES returns a two-dimensional matrix 
containing the sample variance-covariance matrix of the observations in which value 
in element (i, j) corresponds to the sample covariance between the i-th and j-th 
variable. 

Arguments

x

Two-dimensional matrix containing the data. The data value for the i-th observation 
of the j-th variable should be in x(i,j).

Keywords

DOUBLE

If present and nonzero, double precision is used.

VAR_COVAR

Variance-covariance matrix (default).
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Note
Exactly one of these keywords — VAR_COVAR, CORRECTED_SSCP, 
CORRELATION, STDEV_CORRELATION — is used to specify the type of 
matrix to be computed.

CORRECTED_SSCP

Corrected sum-of-squares and crossproducts matrix.

Note
Exactly one of these keywords — VAR_COVAR, CORRECTED_SSCP, 
CORRELATION, STDEV_CORRELATION — is used to specify the type of 
matrix to be computed.

CORRELATION

Correlation matrix.

Note
Exactly one of these keywords — VAR_COVAR, CORRECTED_SSCP, 
CORRELATION, STDEV_CORRELATION — is used to specify the type of 
matrix to be computed.

STDEV_CORRELATION

Correlation matrix, except for diagonal elements which are standard deviations.

Note
Exactly one of these keywords — VAR_COVAR, CORRECTED_SSCP, 
CORRELATION, STDEV_CORRELATION — is used to specify the type of 
matrix to be computed.

FREQUENCIES

Array containing the vector of frequencies for the observation. Default: all 
observations have a frequency of 1.

INCIDENCE_MAT

Named variable into which the incidence matrix is stored. If Missing_Val is 0, the 
number of valid observations is returned through this keyword; otherwise, the nvar x 
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nvar matrix, where nvar is the number of variables in x, contains the number of pairs 
of valid observations used in calculating the crossproducts for covariance.

MISSING_VAL

Scalar integer which defines the method used to exclude missing values in x from the 
computations, where NaN is interpreted as the missing value code. The methods are 
as follows:

• 0—The exclusion is listwise. (The entire row of x is excluded if any of the 
values of the row is equal to the missing value code.) 

• 1—Raw crossproducts are computed from all valid pairs and means, and 
variances are computed from all valid data on the individual variables. 
Corrected crossproducts, covariances, and correlations are computed using 
these quantities.

• 2—Raw crossproducts, means, and variances are computed as in the case of 
Missing_Val = 1. However, corrected crossproducts and covariances are 
computed only from the valid pairs of data. Correlations are computed using 
these covariances and the variances from all valid data.

• 3—Raw crossproducts, means, variances, and covariances are computed as in 
the case of Missing_Val = 2. Correlations are computed using these 
covariances, but the variances used are computed from the valid pairs of data.

MEANS

Named variable into which array containing the means of variables in x is stored. The 
i-th components of the array correspond to x(*, i).

NMISSING

Specifies a variable into which the total number of observations that contain any 
missing values (NaN) is stored. 

NOBS

Named variable into which the sum of the frequencies is stored. If Missing_Val is 0, 
observations with missing values are not included in Nobs; otherwise, all 
observations are included except for observations with missing values for the weight 
or the frequency.
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SUM_WEIGHTS

Specifies a variable into which the sum of the weights of all observations is stored. If 
keyword Missing_val is equal to 0, observations with missing values are not included 
in Sum_weights. Otherwise, all observations are included except for observations 
with missing values for the weight or the frequency. 

WEIGHT

Array containing the vector of weights for the observation. Default: all observations 
have equal weights of 1.

Discussion

The IMSL_COVARIANCES function computes estimates of correlations, 
covariances, or sum of squares and crossproducts for a data matrix x. The means, 
(corrected) sum of squares, and (corrected) sums of crossproducts are computed 
using the method of provisional means. 

Let:

 

denote the mean based on i observations for the k-th variable, fi and wi denote the 
frequency and weight of the i-th observation, respectively, and let cjki denote the sum 
of crossproducts (or sum of squares if j = k) based on i observations. Then, the 
method of provisional means finds new means and sums of crossproducts shown in 
the example below. 

The means and crossproducts are initialized as:

    

     

where p denotes the number of variables. Letting xk, i + 1 denote the k-th variable on 
observation i + 1, each new observation leads to the following updates for:

 

and cjki using update constant r i + 1: 

xki

xk0 0.0= k 0 … p 1–, ,=

cjk0 0.0= j k, 0 … p 1–, ,=

xki
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Syntax Notes

The IMSL_COVARIANCES function uses the following definition of a sample 
mean: 

where nr is the number of cases. The formula below defines the sample covariance, 
sjk, between variables j and k. 

The sample correlation between variables j and k, rjk, is defined below: 

Example

This example illustrates the use of IMSL_COVARIANCES for the first 50 
observations in the Fisher iris data (Fisher 1936). Note that the first variable is 
constant over the first 50 observations.

x = IMSL_STATDATA(3)
x = x(0:49, *) 
cov = IMSL_COVARIANCES(x)
; Call IMSL_COVARIANCES. 
PM, cov
; Output the results. 

ri 1+
fi 1+ wi 1+

fiwi
j 0=

i 1+

∑
-----------------------=

xk i 1+, xki xk i 1+, xki–( )ri 1++=

cjk i 1+, cjki fi 1+ wi 1+ xj i 1+, xji–( ) xk i 1+, xki–( ) 1 ri 1+–( )+=

xk

fiwixki
i 1=

nr

∑

fiwi
i 1=

nr

∑
---------------------------------=

sjk

fiwi xji xj–( ) xki xk–( )
i 1=

n

∑
fi

i 1=

n

∑( ) 1–
-----------------------------------------------------------------------=

rjk
sjk

sjjskk

-----------------=
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0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.124249 0.0992163 0.0163551 0.0103306
0.00000 0.0992163 0.143690 0.0116980 0.00929796
0.00000 0.0163551 0.0116980 0.0301592 0.00606939
0.00000 0.0103306 0.00929796 0.00606939 0.0111061

Errors

Warning Errors

STAT_CONSTANT_VARIABLE—Correlations are requested, but the observations on 
one or more variables are constant. The corresponding correlations are set to NaN.

Version History

6.4 Introduced
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IMSL_PARTIAL_COV

The IMSL_PARTIAL_COV function computes partial covariances or partial 
correlations from the covariance or correlation matrix.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_PARTIAL_COV(n_independent, n_dependent, x [, /DOUBLE] 
[, /CORR] [, /COV] [, DF=integer] [, INDICES=array] [, /PVALS=variable])

Return Value

Array of size n_dependent by n_dependent containing the partial covariances (the 
default) or partial correlations (set keyword Corr).

Arguments

n_dependent

Number of variables for which partial covariances/correlations are desired (the 
number of “dependent” variables).

n_independent

Number of “independent” variables to be used in the partial covariances/correlations. 
The partial covariances/correlations are the covariances/correlations between the 
dependent variables after removing the linear effect of the independent variables.

x

The n by n covariance or correlation matrix, where n = n_independent + 
n_dependent. The rows/columns must be ordered such that the first n_independent 
rows/columns contain the independent variables, and the last n_dependent rows/
columns contain the dependent variables. Array x must always be square symmetric. 
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Keywords

DOUBLE

If present and nonzero, double precision is used.

CORR

If present and nonzero, then partial correlations are calculated. Keywords Cov and 
Corr can not be used together.

COV

If present and nonzero, then partial covariances are calculated. (Default) Keywords 
Cov and Corr can not be used together.

DF

On input, an integer indicating the number of degrees of freedom associated with 
input array x. If the number of degrees of freedom in x varies from element to 
element, then a conservative choice for Df is the minimum degrees of freedom for all 
elements in x. 

Upon output, named variable into which the number of degrees of freedom in the test 
that the partial covariances/correlations are zero is stored. This value will usually be 
Df − n_independent, but will be greater than this value if the independent variables 
are computationally linearly related. Keywords Df and Pvals must be used together.

INDICES

An array containing values indicating the status of the variable as in Figure 15-1:

Default: The first n_independent elements of Indices are equal to 1, and the 
last n_dependent elements are equal to 0.

Indices(i) Variable is...

−1 not used in analysis

 0 dependent variable

1 independent variable

Table 15-1: Indices
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PVALS

Named variable into which an array of size n_dependent by n_dependent containing 
the p-values for testing the null hypothesis that the associated partial covariance/
correlation is zero is stored. It is assumed that the observations from which x was 
computed flows a multivariate normal distribution and that each element in x has Df 
degrees of freedom. Keywords Df and Pvals must be used together.

Discussion

The IMSL_PARTIAL_COV function computed partial covariances or partial 
correlations from an input covariance or correlation matrix. If the “independent” 
variables (the linear “effect” of the independent variables is removed in computing 
the partial covariances/correlations) are linearly related to one another, 
IMSL_PARTIAL_COV detects the linearity and eliminates one or more of the 
independent variables from the list of independent variables. The number of variables 
eliminated, if any, can be determined from keyword Df.

Given a covariance or correlation matrix Σ partitioned as: 

IMSL_PARTIAL_COV computed the partial covariances (of the standardized 
variables if Σ is a correlation matrix) as:

 

If partial correlations are desired, these are computed as: 

where diag denotes the matrix containing the diagonal of its argument along its 
diagonal with zeros off the diagonal. If Σ11 is singular, then as many variables as 
required are deleted from Σ11 (and Σ12) in order to eliminate the linear dependencies. 
The computations then proceed as above.

The p-value for a partial covariance tests the null hypothesis H0: σij|1 = 0, where σij|1 
is the (i, j) element in matrix Σ22|1. The p-value for a partial correlation tests the null 
hypothesis H0: ρij|1 = 0, where ρij|1 is the (i, j) element in matrix P22|1. The p-values 
are returned in Pvals. If the degrees of freedom for x, Df, is not known, the resulting 
p-values may be useful for comparison, but they should not be used as an 
approximation to the actual probabilities.

Σ11 Σ12

Σ21 Σ22

Σ22 1 Σ22 Σ21Σ11
1– Σ12–=

P22 1 diag Σ22 1( )[ ] 1 2⁄– Σ22 1 diag Σ22 1( )[ ] 1 2⁄–
=
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Examples

Example 1

The following example computes partial covariances, scaled from a nine-variable 
correlation matrix originally given by Emmett (1949). The first three rows and 
columns contain the independent variables and the final six rows and columns contain 
the dependent variables.

x  =  TRANSPOSE([ $
[6.300, 3.050, 1.933, 3.365, 1.317, 2.293, 2.586, 1.242, $
4.363], [3.050, 5.400, 2.170, 3.346, 1.473, 2.303, 2.274, $
0.750, 4.077], [1.933, 2.170, 3.800, 1.970, 0.798, 1.062, $
1.576, 0.487, 2.673], [3.365, 3.346, 1.970, 8.100, 2.983, $
4.828, 2.255, 0.925, 3.910], [1.317, 1.473, 0.798, 2.983, $
2.300, 2.209, 1.039, 0.258, 1.687], [2.293, 2.303, 1.062, $
4.828, 2.209, 4.600, 1.427, 0.768, 2.754], [2.586, 2.274, $
1.576, 2.255, 1.039, 1.427, 3.200, 0.785, 3.309], [1.242, $
0.750, 0.487, 0.925, 0.258, 0.768, 0.785, 1.300, 1.458], $
[4.363, 4.077, 2.673, 3.910, 1.687, 2.754, 3.309, 1.458, $
7.400]])

pcov  =  IMSL_PARTIAL_COV(3, 6, x)
PM, pcov, FORMAT = '(6F10.3)', Title = 'Partial Covariances'

Partial Covariances
0.000     0.000     0.000     0.000     0.000     0.000
0.000     0.000     0.000     0.000     0.000     0.000
0.000     0.000     0.000     0.000     0.000     0.000
0.000     0.000     0.000     5.495     1.895     3.084
0.000     0.000     0.000     1.895     1.841     1.476
0.000     0.000     0.000     3.084     1.476     3.403

Example 2

The following example computes partial correlations from a 9 variable correlation 
matrix originally given by Emmett (1949). The partial correlations between the 
remaining variables, after adjusting for variables 1, 3 and 9, are computed. 

x = TRANSPOSE([ $
[1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, $
0.639], [0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, $
0.283, 0.645], [0.395, 0.479, 1.0, 0.355, 0.27, 0.254, $
0.452, 0.219, 0.504], [0.471, 0.506, 0.355, 1.0, 0.691, $
0.791, 0.443, 0.285, 0.505], [0.346, 0.418, 0.27, 0.691, $
1.0, 0.679, 0.383, 0.149, 0.409], [0.426, 0.462, 0.254, $
0.791, 0.679, 1.0, 0.372, 0.314, 0.472], [0.576, 0.547, $
0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68], [0.434, $
0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47], $
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[0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0]])
df  =  30
indices  =  [1, 0, 1, 0, 0, 0, 0, 0, 1]
pcov  =  IMSL_PARTIAL_COV(3, 6, x, Indices = indices, Df = df, $

Pvals = pvals, /Corr)
PRINT, 'Degrees Of Freedom: ', df
PM, pcov, FORMAT = '(6F10.3)', Title = 'Partial Correlations'
PM, pvals, FORMAT = '(6F10.4)', Title = 'P values'

IDL Prints:

Degrees Of Freedom:           27
Partial Correlations

1.000     0.224     0.194     0.211     0.125    -0.061
0.224     1.000     0.605     0.720     0.092     0.025
0.194     0.605     1.000     0.598     0.123    -0.077
0.211     0.720     0.598     1.000     0.035     0.086
0.125     0.092     0.123     0.035     1.000     0.062
-0.061     0.025    -0.077     0.086     0.062     1.000

P values
0.0000    0.2525    0.3232    0.2801    0.5249    0.7576
0.2525    0.0000    0.0006    0.0000    0.6417    0.9000
0.3232    0.0006    0.0000    0.0007    0.5328    0.6982
0.2801    0.0000    0.0007    0.0000    0.8602    0.6650
0.5249    0.6417    0.5328    0.8602    0.0000    0.7532
0.7576    0.9000    0.6982    0.6650    0.7532    0.0000

Errors

Warning Errors

STAT_NO_HYP_TESTS—The input matrix “x” has # degrees of freedom, and the 
rank of the dependent variables is #. There are not enough degrees of freedom for 
hypothesis testing. The elements of “Pvals” are set to NaN (not a number).

Fatal Errors

STAT_INVALID_MATRIX_1—The input matrix “x” is incorrectly specified. A 
computed correlation is greater than 1 for variables # and #.

STAT_INVALID_PARTIAL—A computed partial correlation for variables 
# and # is greater than 1. The input matrix “x” is not positive semi-definite.
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Version History

6.4 Introduced
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IMSL_POOLED_COV

The IMSL_POOLED_COV function computes a pooled variance-covariance from 
the observations.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_POOLED_COV(x, ngroups [, /DOUBLE] [, GCOUNTS=variable] 
[, IDX_COLS=array] [, IDX_VARS=array] [, MEANS=variable] 
[, NMISSING=variable] [, SUM_WEIGHTS=variable] [, U=variable])

Return Value

Two-dimensional array containing the matrix of covariances.

Arguments

ngroups

Number of groups in the data.

x

Two-dimensional array containing the data. The first n_variables = 
(N_ELEMENTS(x(0,*)) – 1) columns correspond to the variables, and the last 
column must contain the group numbers.

Keywords

DOUBLE

If present and nonzero, double precision is used.

GCOUNTS

Named variable into which the array of length n_groups containing the number of 
observations in each group is stored.
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IDX_COLS

One-dimensional array containing the indices of the variables to be used in the 
analysis.

IDX_VARS

Three element array indicating the column numbers of x in which particular types of 
data are stored. Columns are numbered 0 ... N_ELEMENTS(Idx_Cols) − 1.

• Idx_Vars(0) contains the index for the column of x in which the group numbers 
are stored.

• Idx_Vars(1) and Idx_Vars(2) contain column numbers of x in which the 
frequencies and weights, respectively, are stored. Set Idx_Vars(1) = –1 if there 
will be no column for frequencies. Set Idx_Vars(2) = –1 if there will be no 
column for weights. Weights are rounded to the nearest integer. Negative 
weights are not allowed.

• Defaults: Idx_Cols = 0, 1, ..., n_variables – 1,

Idx_Vars(0) = n_variables,  

Idx_Vars(1) = −1, and

Idx_Vars(2) = −1

MEANS

Named variable into which the array of size n_groups by n_variables in which the i-
th row of Means contains the group i variable means is stored.

NMISSING

Named variable into which the number of rows of data containing missing values 
(NaN) for any of the variables used is stored. 

SUM_WEIGHTS

Named variable into which the array of length n_groups containing the sum of the 
weights times the frequencies in the groups is stored.

U

Named variable into which the array of size n_variables by n_variables containing 
the lower matrix U, the lower triangular for the pooled sample cross-products matrix 
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is stored. U is computed from the pooled sample covariance matrix, S (See the 
Discussion section), as S = UTU.

Discussion

The IMSL_POOLED_COV function computes the pooled variance-covariance 
matrix from a matrix of observations. The within-groups means are also computed. 
Listwise deletion of missing values is assumed so that all observations used are 
complete; in any row of x, if any element of the observation is missing, the row is not 
used. The IMSL_POOLED_COV function should be used whenever you suspect the 
data has been sampled from populations with different means but identical variance-
covariance matrices. If these assumptions cannot be made, a different variance-
covariance matrix should be estimated within each group.

If N_ELEMENTS(x(*,0)) ( 0, the group observation totals, Ti, for i = 1, ..., g, where g 
is the number of groups, are updated for the N_ELEMENTS(x(*,0)) observations in 
x. The group totals are computed as: 

where wij is the observation weight, xij is the j-th observation in the i-th group, and fij 
is the observation frequency.

Modified Givens rotations are used in computed the Cholesky decomposition of the 
pooled sums of squares and crossproducts matrix. (Golub and Van Loan 1983).

The group means and the pooled sample covariance matrix S are computed from the 
intermediate results. These quantities are defined by:  

Example

The following example computes a pooled variance-covariance matrix. The last 
column of the data set is the group indicator.

ngroups  =  2

T w f xi ij
j

ij ij= ∑

x T
w fi

i

i i
j

• =
∑

S
1

fij g–
ij
∑
--------------------- wijfij

i j,
∑ xij xi•–( ) xij xii•–( )T

=
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x  =  TRANSPOSE([[2.2, 5.6, 1], [3.4, 2.3, 1], [1.2, 7.8, 1], $
[3.2, 2.1, 2], [4.1, 1.6, 2], [3.7, 2.2, 2]])
cov  =  IMSL_POOLED_COV(x, ngroups)

PM, cov, FORMAT = '(2F10.3)', Title = 'Pooled Covariance Matrix'

Pooled Covariance Matrix
0.708    -1.575
-1.575     3.883

Errors

Warning Errors

STAT_OBSERVATION_IGNORED—In call #, row # of the matrix “x” has group 
number = #. The group number must be between 1 and #, the number of groups. This 
observation will be ignored.

Version History

6.4 Introduced
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IMSL_ROBUST_COV

The IMSL_ROBUST_COV function computes a robust estimate of a covariance 
matrix and mean vector.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ROBUST_COV(x, n_groups [, BETA=variable] 
[, COV_EST=array] [, /DOUBLE] [, GROUP_COUNTS=variable] [, /HUBER] 
[, IDX_COLS=array] [, IDX_VARS=array] [, /INIT_EST_MEAN] 
[, /INIT_EST_MEDIAN] [, ITMAX=value] [, MEAN_EST=array] 
[, MEANS=variable] [, MINIMAX_WEIGHTS=variable] 
[, NMISSING=variable] [, PERCENTAGE=value] [, /STAHEL] 
[, SUM_WEIGHTS=variable] [, TOLERANCE=value] [, U=variable])

Return Value

Two-dimensional array containing the matrix of covariances.

Arguments

n_groups

Number of groups in the data.

x

Two-dimensional array of size nrows by (n_variables + 1) containing the data where 
nrows = N_ELEMENTS(x(*,0)) and n_variables = (N_ELEMENTS(x(0,*)) – 1). 
The first n_variables columns correspond to the variables, and the last column must 
contain the group numbers.
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Keywords

BETA

Named variable into which the constant used to ensure that the estimated covariance 
matrix has unbiased expectation (for a given mean vector) for a multivariate normal 
density is stored.

COV_EST

Two-dimensional array of size n_variables by n_variables containing the estimate of 
the covariance matrix. Keywords Mean_Est and Cov_Est must be used together. 

DOUBLE

If present and nonzero, double precision is used.

GROUP_COUNTS

Named variable into which the one-dimensional array of length n_groups containing 
the number of observations in each group is stored.

HUBER

If present and nonzero, Huber’s conjugate-gradient algorithm is used. Keywords 
Stahel and Huber can not be used together.

IDX_COLS

One-dimensional array containing the indices of the variables to be used in the 
analysis.

IDX_VARS

Three element array indicating the column numbers of x in which particular types of 
data are stored. Columns are numbered 0 ... N_ELEMENTS(Idx_Cols) – 1.

• Idx_Vars(0) contains the index for the column of x in which the group numbers 
are stored.

• Idx_Vars(1) and Idx_Vars(2) contain column numbers of x in which the 
frequencies and weights, respectively, are stored. Set Idx_Vars(1) = –1 if there 
will be no column for frequencies. Set Idx_Vars(2) = –1 if there will be no 
column for weights. Weights are rounded to the nearest integer. Negative 
weights are not allowed.
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• Defaults: Idx_Cols = 0, 1, ..., n_variables – 1,

Idx_Vars(0) = n_variables,  

Idx_Vars(1) = −1, and

Idx_Vars(2) = −1

INIT_EST_MEAN

If present and nonzero, initial estimates are obtained as the usual estimate of a mean 
vector and of a covariance matrix. Keywords Init_Est_Mean, Init_Est_Median, and 
Mean_Est can not be used together.

INIT_EST_MEDIAN

If present and nonzero, initial estimates based upon the median and interquartile 
range must be used. Keywords Init_Est_Mean, Init_Est_Median, and Mean_Est can 
not be used together.

ITMAX

Maximum number of iterations. Default: Itmax = 30

MEAN_EST

Two-dimensional array of size n_groups by n_variables containing initial estimates 
for the mean. Keywords Mean_Est and Cov_Est must be used together. Keywords 
Init_Est_Mean, Init_Est_Median, and Mean_Est can not be used together.

MEANS

Named variable into which the array of size n_groups by n_variables is stored. The i-
th row of Means contains the group i variable means.

MINIMAX_WEIGHTS

Named variable into which the one-dimensional array containing the values for the 
parameters of the weighting function is stored. See the Discussion section for details.

NMISSING

Named variable into which the number of rows of data containing missing values 
(NaN) for any of the variables used is stored. 
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PERCENTAGE

Percentage of gross errors expected in the data. Keyword Percentage must be in the 
range 0.0 to 100.0 and contains the percentage of outliers expected in the data. If the 
percentage of gross errors expected in the data is not known, a reasonable strategy is 
to choose a value of Percentage that is such that larger values do not result in 
significant changes in the estimates. Default: Percentage = 5.0

STAHEL

If present and nonzero, the Stahel’s algorithm is used. Keywords Stahel and Huber 
cannot be used together.

SUM_WEIGHTS

Named variable into which the one-dimensional array of length n_groups containing 
the sum of the weights times the frequencies in the groups is stored.

TOLERANCE

Convergence criterion. When the maximum absolute change in a location or 
covariance estimate is less than Tolerance, convergence is assumed. Default: 
Tolerance = 10−4 

U

Named variable into which an array of size n_variables by n_variables containing the 
lower matrix U, the lower triangular for the robust sample cross-products matrix is 
stored. U is computed from the robust sample covariance matrix, S (See the 
Discussion section), as S = UTU.

Discussion

The IMSL_ROBUST_COV function computes robust M-estimates of the mean and 
covariance matrix from a matrix of observations. A pooled estimate of the covariance 
matrix is computed when multiple groups are present in the input data. M-estimate 
weights are obtained using the “minimax” weights of Huber (1981, pp. 231-235), 
with Percentage expected gross errors. Huber’s (1981) weighting equations are given 
by: 

User specified observation weights and frequencies may be given for each row in x. 
Listwise deletion of missing values is assumed so that all observations used are 
“complete”. 
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Let f (x;µi, Σ) denote the density of an observation p-vector x in population (group) i 
with mean vector µi, for i = 1, ..., τ. Let the covariance matrix Σ be such that Σ = RTR. 
If:

y = R-T (x - µi)

then: 

It is assumed that g(y) is a spherically symmetric density in p-dimensions.

In IMSL_ROBUST_COV, Σ and µi are estimated as the solutions:

 

of the estimation equations: 

and: 

where i indexes the τ groups, ni, is the number of observations in group i, fij is the 
frequency for the j-th observation in group i, wij is the observation weight specified in 
column Idx_Vars(2) of x, Ip is a p by p identity matrix, 
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w(r) and u(r) are the weighting functions, and where β is a constant computed by the 
program to make the expected weighted Mahalanobis distance (yTy) equal the 
expected Mahalanobis distance from a multivariate normal distribution (see Marazzi 
1985). The constant β is described more fully below.

The IMSL_ROBUST_COV function uses one of two algorithms for solving the 
estimation equations. The first algorithm is discussed in detail in Huber (1981) and is 
a variant of the conjugate gradient method. The second algorithm is due to Stahel 
(1981) and is discussed in detail by Marazzi (1985). In both algorithms, correction 
vectors Tki for the group i means and correction matrix Wk = Ip + Uk for the 
Cholesky factorization of S are found such that the updated mean vectors are given 
by: 

and the updated matrix R is given as: 

where k is the iteration number and: 

When all elements of Uk and Tki are less than ε = Tolerance, convergence is assumed.

Three methods for obtaining estimates are allowed. In the first method, the sample 
weighted estimate of Σ is computed. In the second method, estimates based upon the 
median and the interquartile range are used. Finally, in the last method, you input 
initial estimates. 

The IMSL_ROBUST_COV function computes estimates based on the “minimax” 
weights discussed above. The constant β is chosen such that E (u(r)r2) = ρβ where the 
expectation is with respect to a standard p-variate multivariate normal distribution. 
This yields estimates with the correct expectation for the multivariate normal 
distribution (for given mean vector). The expectation is computed via integration of 
estimated spline function. 200 knots are used on an equally spaced grid from 0.0 to 
the 99.999 percentile of:

 

distribution. An error estimate is computed based upon 100 of these knots. If the 
estimated relative error is greater than 0.0001, a warning message is issued. If β is not 
computed accurately (i.e., if warning message is issued), the computed estimates are 
still optimal, but the scale of the estimated covariance matrix may need to be 
multiplied by a constant in order for:
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to have the correct multivariate normal covariance expectation.

Examples

Example 1

The following example computes a robust variance-covariance matrix. The last 
column of the data set is the group indicator.

n_groups  =  2
x  =  TRANSPOSE([[2.2, 5.6, 1.0], [3.4, 2.3, 1.0], $

[1.2, 7.8, 1.0], [3.2, 2.1, 2.0], [4.1, 1.6, 2.0], $
[3.7, 2.2, 2.0]])

cov  =  IMSL_ROBUST_COV(x, n_groups)
PM, cov, Title ='Robust Covariance Matrix'

Robust Covariance Matrix
0.522022     -1.16027
-1.16027      2.86203

Example 2

The following example computes estimates of the pooled covariance matrix for the 
Fisher’s iris data. For comparison, the estimates are first computed via 
IMSL_POOLED_COV. The IMSL_ROBUST_COV function with  Percentage = 2.0 
is then used to compute the robust estimates. As can be seen from the output, the 
resulting estimates are quite similar.

Next, three observations are made into outliers, and again, estimates are computed 
using functions IMSL_POOLED_COV and IMSL_ROBUST_COV. When outliers 
are present, the estimates of IMSL_POOLED_COV are adversely affected, while the 
estimates produced by IMSL_ROBUST_COV are close to the estimates produced 
when no outliers are present.

n_groups  =  3
idxv  =  [1, 2, 3, 4]
idxc  =  [0, -1, -1]
percentage  =  2.0
x  =  IMSL_STATDATA(3)
p_cov  =  IMSL_POOLED_COV(x, n_groups, Idx_Vars = idxv, $

Idx_Cols = idxc)
PM, p_cov, Title = 'Pooled Cavariance with No Outliners'
r_cov  =  IMSL_ROBUST_COV(x, n_groups, Idx_Vars = idxv, $

Idx_Cols = idxc, Percentage = percentage)
PM, r_cov, Title = 'Robust Covariance with No Outliners'

Σ̂
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IDL Prints:

Pooled Cavariance with No Outliners
0.265008 0.0927211 0.167514 0.0384014
0.0927211 0.115388 0.0552436 0.0327102
0.167514 0.0552436 0.185188 0.0426653
0.0384014 0.0327102 0.0426653 0.0418816

Robust Covariance with No Outliners
0.247410 0.0872090 0.153530 0.0359695
0.0872090 0.107336 0.0538220 0.0321557
0.153530 0.0538220 0.170550 0.0411720
0.0359695 0.0321557 0.0411720 0.0401394

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_ROBUST_COV



748 Chapter 15: Correlation and Covariance
IMSL_ROBUST_COV IDL Analyst Reference Guide



Chapter 16

Analysis of Variance
This section describes functions for analysis of variance models and for multiple comparison 
methods for means. 
Overview: Analysis of Variance  . . . . . . . .  750 Analysis of Variance Routines . . . . . . . . .  751
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Overview: Analysis of Variance

The functions described in this chapter are for commonly-used experimental designs. 
Typically, responses are stored in the input vector y in a pattern that takes advantage 
of the balanced design structure. Consequently, the full set of model subscripts is not 
needed to identify each response. The functions assume the usual pattern, which 
requires that the last model subscript change most rapidly, followed by the model 
subscript next in line, and so forth, with the first subscript changing at the slowest 
rate. This pattern is referred to as lexicographical ordering.

The IMSL_ANOVA1 function allows missing responses if confidence interval 
information is not requested. NaN (Not a Number) is the missing value code used by 
these functions. Use IMSL_MACHINE to retrieve NaN. Any element of y that is 
missing must be set to NaN. Other functions described in this chapter do not allow 
missing responses because the functions generally deal with balanced designs.

As a diagnostic tool for determination of the validity of a model, functions in this 
chapter typically perform a test for lack of fit when n (n > 1) responses are available 
in each cell of the experimental design. Functions in Chapter 14, “Regression” are 
used for analysis of generalizations of the models treated in this chapter. In particular, 
Chapter 2: Regression, also provides functions for the general linear model.
Overview: Analysis of Variance IDL Analyst Reference Guide
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Analysis of Variance Routines

IMSL_ANOVA1—Analyzes a one-way classification model.

IMSL_ANOVAFACT—Analyzes a balanced factorial design with fixed effects. 

IMSL_MULTICOMP—Performs Student-Newman-Keuls multiple comparisons test.

IMSL_ANOVANESTED—Nested random model. 

IMSL_ANOVABALANCED—Balanced fixed, random, or mixed model. 
IDL Analyst Reference Guide Analysis of Variance Routines
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IMSL_ANOVA1

The IMSL_ANOVA1 function analyzes a one-way classification model. 

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ANOVA1(n, y [, ANOVA_TABLE=variable] 
[, BONFERRONI=variable] [, CONFIDENCE=value] [, /DOUBLE] 
[, DUNN_SIDAK=variable] [, GROUP_COUNTS=variable] 
[, GROUP_MEANS=variable] [, GROUP_STD_DEV=variable] 
[, ONE_AT_A_TIME=variable] [, SCHEFFE=variable] [, TUKEY=variable])

Return Value

The p-value for the F-statistic.

Arguments

n

One-dimensional array containing the number of responses for each group.

y

One-dimensional array of length:

 n(0) + n(1) + ...+ n(N_ELEMENTS(n) – 1) 

containing the responses for each group. 

Keywords

ANOVA_TABLE

Named variable into which the analysis of variance table is stored. The analysis of 
variance statistics are as follows:

• 0—degrees of freedom for the model
IMSL_ANOVA1 IDL Analyst Reference Guide
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• 1—degrees of freedom for error

• 2—total (corrected) degrees of freedom

• 3—sum of squares for the model

• 4—sum of squares for error

• 5—total (corrected) sum of squares

• 6—model mean square

• 7—error mean square

• 8—overall F-statistic

• 9—p-value

• 10—R2 (in percent)

• 11—Adjusted R2 (in percent)

• 12—estimate of the standard deviation

• 13—overall mean of y

• 14—coefficient of variation (in percent)

BONFERRONI

Named variable into which the array containing the statistics relating to the difference 
of means is stored. On return, the named variable contains an array of size:

 

where ngroups = N_ELEMENTS(n).

• 0—group number for the i-th mean

• 1—group number for the j-th mean

• 2—difference of means (i-th mean) − ( j-th mean)

• 3—lower confidence limit for the difference

• 4—upper confidence limit for the difference

The IMSL_ANOVA1 function computes confidence intervals on all pairwise 
differences of means using one of six methods: Tukey, Tukey-Kramer, Dunn-Sidák, 
Bonferroni, Scheffé, or Fisher’s LSD (One-at-a-Time). If Tukey is specified, Tukey 
confidence intervals are calculated if the group sizes are equal; otherwise, the Tukey-
Kramer confidence intervals are calculated.

ngroups
2 

  5×
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CONFIDENCE

Confidence level for the simultaneous interval estimation. If Tukey is specified, 
Confidence must be in the range [90.0, 99.0); otherwise, Confidence is in the range 
[0.0, 100.0). Default: Confidence = 95.0

DOUBLE

If present and nonzero, then double precision is used.

DUNN_SIDAK

Named variable into which the array containing the statistics relating to the difference 
of means is stored. On return, the named variable contains an array of size:

 

where ngroups = N_ELEMENTS(n).

• 0—group number for the i-th mean

• 1—group number for the j-th mean

• 2—difference of means (i-th mean) − ( j-th mean)

• 3—lower confidence limit for the difference

• 4—upper confidence limit for the difference

The IMSL_ANOVA1 function computes confidence intervals on all pairwise 
differences of means using one of six methods: Tukey, Tukey-Kramer, Dunn-Sidák, 
Bonferroni, Scheffé, or Fisher’s LSD (One-at-a-Time). If Tukey is specified, Tukey 
confidence intervals are calculated if the group sizes are equal; otherwise, the Tukey-
Kramer confidence intervals are calculated.

GROUP_COUNTS

Named variable into which the array containing the number of nonmissing 
observations for the groups is stored. 

GROUP_MEANS

Named variable into which the array containing the group means is stored. 

GROUP_STD_DEV

Named variable into which the array containing the group standard deviations is 
stored. 

ngroups
2 

  5×
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ONE_AT_A_TIME

Named variable into which the array containing the statistics relating to the difference 
of means is stored. On return, the named variable contains an array of size:

 

where ngroups = N_ELEMENTS(n).

• 0—group number for the i-th mean

• 1—group number for the j-th mean

• 2—difference of means (i-th mean) − ( j-th mean)

• 3—lower confidence limit for the difference

• 4—upper confidence limit for the difference

The IMSL_ANOVA1 function computes confidence intervals on all pairwise 
differences of means using one of six methods: Tukey, Tukey-Kramer, Dunn-Sidák, 
Bonferroni, Scheffé, or Fisher’s LSD (One-at-a-Time). If Tukey is specified, Tukey 
confidence intervals are calculated if the group sizes are equal; otherwise, the Tukey-
Kramer confidence intervals are calculated.

SCHEFFE

Named variable into which the array containing the statistics relating to the difference 
of means is stored. On return, the named variable contains an array of size:

 

where ngroups = N_ELEMENTS(n).

• 0—group number for the i-th mean

• 1—group number for the j-th mean

• 2—difference of means (i-th mean) − ( j-th mean)

• 3—lower confidence limit for the difference

• 4—upper confidence limit for the difference

The IMSL_ANOVA1 function computes confidence intervals on all pairwise 
differences of means using one of six methods: Tukey, Tukey-Kramer, Dunn-Sidák, 
Bonferroni, Scheffé, or Fisher’s LSD (One-at-a-Time). If Tukey is specified, Tukey 
confidence intervals are calculated if the group sizes are equal; otherwise, the Tukey-
Kramer confidence intervals are calculated.

ngroups
2 

  5×

ngroups
2 

  5×
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TUKEY

Named variable into which the array containing the statistics relating to the difference 
of means is stored. On return, the named variable contains an array of size:

 

where ngroups = N_ELEMENTS(n).

• 0—group number for the i-th mean

• 1—group number for the j-th mean

• 2—difference of means (i-th mean) − ( j-th mean)

• 3—lower confidence limit for the difference

• 4—upper confidence limit for the difference

The IMSL_ANOVA1 function computes confidence intervals on all pairwise 
differences of means using one of six methods: Tukey, Tukey-Kramer, Dunn-Sidák, 
Bonferroni, Scheffé, or Fisher’s LSD (One-at-a-Time). If Tukey is specified, Tukey 
confidence intervals are calculated if the group sizes are equal; otherwise, the Tukey-
Kramer confidence intervals are calculated.

Discussion

The IMSL_ANOVA1 function performs an analysis of variance of responses from a 
one-way classification design. The model is:

yij = µi + εij  i = 1, 2, ..., k;  j = 1, 2, ..., ni

where the observed value yij constitutes the j-th response in the i-th group, µi denotes 
the population mean for the i-th group, and the εij arguments are errors that are 
identically and independently distributed normal with mean 0 and variance σ2. The 
IMSL_ANOVA1 function requires the yij observed responses as input into a single 
vector y with responses in each group occupying contiguous locations. The analysis 
of variance table is computed along with the group sample means and standard 
deviations. A discussion of formulas and interpretations for the one-way analysis of 
variance problem appears in most statistics texts, e.g., Snedecor and Cochran (1967, 
Chapter 10).

The IMSL_ANOVA1 function computes simultaneous confidence intervals on all:

 

pairwise comparisons of k means µ1, µ2, ..., µk in the one-way analysis of variance 
model. Any of several methods can be chosen. A good review of these methods is 

ngroups
2 

  5×

k ′
k k 1–( )

2
--------------------=
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given by Stoline (1981). The methods also are discussed in many statistics texts, e.g., 
Kirk (1982, pp. 114–127).

Let s2 be the estimated variance of a single observation. Let ν be the degrees of 
freedom associated with s2. Let:

 

The methods are summarized as follows:

Tukey method: The Tukey method gives the narrowest simultaneous confidence 
intervals for all pairwise differences of means µi – µj in balanced 
(n1 = n2 = ... nk = n) one-way designs. The method is exact and uses the Studentized 
range distribution. The formula for the difference µi – µj is given by the following: 

where  is the (1 – α ) 100 percentage point of the Studentized range 
distribution with parameters k and ν.

Tukey-Kramer method: The Tukey-Kramer method is an approximate extension of 
the Tukey method for the unbalanced case. (The method simplifies to the Tukey 
method for the balanced case.) The method always produces confidence intervals 
narrower than the Dunn-Sidak and Bonferroni methods. Hayter (1984) proved that 
the method is conservative, i.e., the method guarantees a confidence coverage of at 
least (1 – α) 100. Hayter’s proof gave further support to earlier recommendations for 
its use (Stoline 1981). (Methods that are currently better are restricted to special cases 
and only offer improvement in severely unbalanced cases; see, for example, Spurrier 
and Isham 1985.) The formula for the difference µi – µj is given by the following: 

Dunn-Sidák method: The Dunn-Sidak method is a conservative method. The method 
gives wider intervals than the Tukey-Kramer method. (For large ν and small α and k, 
the difference is only slight.) The method is slightly better than the Bonferroni 
method and is based on an improved Bonferroni (multiplicative) inequality (Miller 
1980, pp. 101, 254–255). The method uses the t distribution (see IMSL_TCDF. The 
formula for the difference µi – µj is given by the following: 

α 1 Confidence
100.0
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n
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where tf;v is the 100f percentage point of the t distribution with ν degrees of freedom.

Bonferroni method: The Bonferroni method is a conservative method based on the 
Bonferroni (additive) inequality (Miller, p. 8). The method uses the t distribution. The 
formula for the difference µi – µj is given by the following: 

Scheffé method: The Scheffé method is an overly conservative method for 
simultaneous confidence intervals on pairwise difference of means. The method is 
applicable for simultaneous confidence intervals on all contrasts, i.e., all linear 
combinations: 

where the following is true: 

This method can be recommended here only if a large number of confidence intervals 
on contrasts, in addition to the pairwise differences of means, are to be constructed. 
The method uses the F distribution (see IMSL_FCDF. The formula for the difference 
µi – µj is given by the following: 

where:

 

is the (1 – α) 100 percentage point of the F distribution with k – 1 and ν degrees of 
freedom. 
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One-at-a-Time t method (Fisher’s LSD): The One-at-a-Time t method is appropriate 
for constructing a single confidence interval. The confidence percentage input is 
appropriate for one interval at a time. The method has been used widely in 
conjunction with the overall test of the null hypothesis µ1 = µ2 = ... = µk by the use of 
the F statistic. Fisher’s LSD (least significant difference) test is a two-stage test that 
proceeds to make pairwise comparisons of means only if the overall F test is 
significant. Milliken and Johnson (1984, p. 31) recommend LSD comparisons after a 
significant F only if the number of comparisons is small and the comparisons were 
planned prior to the analysis. If many unplanned comparisons are made, they 
recommend Scheffé’s method. If the F test is insignificant, a few planned 
comparisons for differences in means can still be performed by using either Tukey, 
Tukey-Kramer, Dunn-Sidak or Bonferroni methods. Because the F test is 
insignificant, Scheffé’s method does not yield any significant differences. The 
formula for the difference µi – µj is given by the following: 

Examples

Example 1

This example computes a one-way analysis of variance for data discussed by Searle 
(1971, Table 5.1, pp. 165–179). The responses are plant weights for six plants of 
three different types shown in Table 16-1—three normal, two off-types, and one 
aberrant.

n = [3,2,1] 
y = [101.0, 105.0, 94.0, 84.0, 88.0, 32.0] 
PRINT,'p-value = ', IMSL_ANOVA1(n, y)

p-value = 0.00276887

Normal Off-Type Aberrant

101 84 32

105 88

94

Table 16-1: Plant Types
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Example 2: Multiple Comparisons

Simultaneous confidence intervals are generated for the measurements of cold-
cranking power for five models of automobile batteries shown in Table 16-2. Nelson 
(1989, pp. 232–241) provided the data and approach.

The Tukey method is chosen for the analysis of pairwise comparisons, with a 
confidence level of 99 percent. The means and their confidence limits are output. 
First, a procedure to print out the results is defined.

.RUN
PRO print_results, anova_table, diff_means 

anova_labels = ['df for among groups', $
'df for within groups', 'total (corrected) df', $
'ss for among groups', 'ss for within groups', $
'total (corrected) ss', 'mean square among groups', $
'mean square within groups', 'F-statistic', $
'P-value', 'R-squared (in percent)', $
'adjusted R-squared (in percent)', $
'est. std of within group error', 'overall mean of y', $
'coef. of variation (in percent)'] 

PRINT, ' * *Analysis of Variance * *' 
FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), FORMAT = '(a40,f20.2)' 
PRINT
; Print the analysis of variance table. 
PRINT, ' * *Differences of Means * *' 
PRINT, 'groups', 'difference', 'lower limit', 'upper limit' 
PM, diff_means, FORMAT = '(2i3, x, f9.2, 4x, f9.2, 5x, f9.2)' 
; Print the differences of means. 

END

n = [4, 4, 4, 4, 4] 
y = [41, 43, 42, 46, 42, 43, 46, 38, 27, 26, 28, 27, $

48, 45, 51, 46, 28, 32, 37, 25] 
p_value = IMSL_ANOVA1(n, y, Confidence = 99.0, $

Model 1 Model 2 Model 3 Model 4 Model 5

41 42 27 48 28

43 43 26 45 32

42 46 28 51 37

46 38 27 46 25

Table 16-2: Cold-Cranking Power for Batteries
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Anova_Table = anova_table, Tukey = diff_means) 
; Call IMSL_ANOVA1. 
print_results, anova_table, diff_means

; Output the results. 

* *Analysis of Variance * * 
df for among groups 4.00 
df for within groups 15.00 
total (corrected) df 19.00 
ss for among groups 1242.20 
ss for within groups 150.75 
total (corrected) ss 1392.95 
mean square among groups 310.55 
mean square within groups 10.05 
F-statistic 30.90 
P-value 0.00 
R-squared (in percent) 89.18 
adjusted R-squared (in percent) 86.29 
est. std of within group error 3.17 
overall mean of y 38.05 
coef. of variation (in percent) 8.33 

* *Differences of Means * * 
groups   difference   lower limit   upper limit 
 1  2      0.75        -8.05          9.55 
 1  3     16.00         7.20         24.80 
 1  4     -4.50       -13.30          4.30 
 1  5     12.50         3.70         21.30 
 2  3     15.25         6.45         24.05 
 2  4     -5.25       -14.05          3.55 
 2  5     11.75         2.95         20.55 
 3  4    -20.50       -29.30        -11.70 
 3  5     -3.50       -12.30          5.30 
 4  5     17.00         8.20         25.80

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_ANOVA1



762 Chapter 16: Analysis of Variance
IMSL_ANOVAFACT

The IMSL_ANOVAFACT function analyzes a balanced factorial design with fixed 
effects.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ANOVAFACT(n_levels, y [, ANOVA_TABLE=variable] 
[, /DOUBLE] [, MEANS=variable] [, ORDER=value] [, /PURE_ERROR] 
[, /POOL_INTER] [, TEST_EFFECTS=variable])

Return Value

The p-value for the overall F-test.

Arguments

n_levels

One-dimensional array containing the number of levels for each of the factors and the 
number of replicates for each effect.

y

One-dimensional array of length:

n_levels (0) * n_levels (1) * ... * ((N_ELEMENTS (n_levels) – 1))

containing the responses. Parameter y must not contain NaN for any of its elements, 
i.e., missing values are not allowed.

Keywords

ANOVA_TABLE

Named variable into which an array of size 15 containing the analysis of variance 
table is stored. The analysis of variance statistics are given as follows:
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• 0—degrees of freedom for the model

• 1—degrees of freedom for error

• 2—total (corrected) degrees of freedom

• 3—sum of squares for the model

• 4—sum of squares for error

• 5—total (corrected) sum of squares

• 6—model mean square

• 7—error mean square

• 8—overall F-statistic

• 9—p-value

• 10—R2 (in percent)

• 11—adjusted R2 (in percent)

• 12—estimate of the standard deviation

• 13—overall mean of y

• 14—coefficient of variation (in percent)

DOUBLE

If present and nonzero, then double precision is used. 

MEANS

Named variable into which an array of length (n_levels(0) + 1) x (n_levels(1) + 1) x 
... ... x (n_levels(n–1) + 1) containing the subgroup means is stored. 

See keyword Test_Effects for a definition of n. If the factors are A, B, C, and 
replicates, the ordering of the means is grand mean, A means, B means, C means, AB 
means, AC means, BC means, and ABC means.

ORDER

Number of factors included in the highest-way interaction in the model. Order must 
be in the interval [1, N_ELEMENTS (n_levels) – 1]. For example, an Order of 1 
indicates that a main-effect model is analyzed, and an Order of 2 indicates that two-
way interactions are included in the model. Default: Order = 
N_ELEMENTS(n_levels) – 1)
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PURE_ERROR

If present and nonzero, Pure_Error (the default option) indicates all the main effect 
and the interaction effects involving the replicates, the last element in n_levels, are 
pooled together to create the error term. The Pool_Inter option indicates (Order + 1)-
way and higher-way interactions are pooled together to create the error. Keywords 
Pure_Error and Pool_Inter cannot be used together. 

POOL_INTER

If present and nonzero, Pure_Error (the default option) indicates all the main effect 
and the interaction effects involving the replicates, the last element in n_levels, are 
pooled together to create the error term. The Pool_Inter option indicates (Order + 1)-
way and higher-way interactions are pooled together to create the error. Keywords 
Pure_Error and Pool_Inter cannot be used together. 

TEST_EFFECTS

Named variable into which an array of size nef x 4 containing statistics relating to the 
sums of squares for the effects in the model is stored. Here: 

where n is given by N_ELEMENTS(n_levels) if Pool_Inter is specified; otherwise, 
N_ELEMENTS(n_levels) – 1. 

Suppose the factors are A, B, C, and error. With Order = 3, rows 0 through nef – 1 
correspond to A, B, C, AB, AC, BC, and ABC. The columns of Test_Effects are as 
follows:

• 0—degrees of freedom

• 1—sum of squares

• 2—F-statistic

• 3—p-value

Discussion

The IMSL_ANOVAFACT function performs an analysis for an n-way classification 
design with balanced data. For balanced data, there must be an equal number of 
responses in each cell of the n-way layout. The effects are assumed to be fixed 
effects. The model is an extension of the two-way model to include n factors. The 
interactions (two-way, three-way, up to n-way) can be included in the model, or some 

nef
n
1 
  n

2 
  ...

n

min(n, Order ) 
 + + +=
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of the higher-way interactions can be pooled into error. The keyword Order specifies 
the number of factors to be included in the highest-way interaction. For example, if 
three-way and higher-way interactions are to be pooled into error, set Order = 2. 

By default, Order = N_ELEMENTS (n_levels) – 1 with the last subscript being the 
replicates subscript. Keyword Pure_Error indicates there are repeated responses 
within the n-way cell; Pool_Inter indicates otherwise.

The IMSL_ANOVAFACT function requires the responses as input into a single 
vector y in lexicographical order, so that the response subscript associated with the 
first factor varies least rapidly, followed by the subscript associated with the second 
factor, and so forth. Hemmerle (1967, Chapter 5) discusses the computational 
method.

Examples

Example 1

A two-way analysis of variance is performed with balanced data discussed by 
Snedecor and Cochran (1967, Table 12.5.1, p. 347). The responses are the weight 
gains (in grams) of rats that were fed diets varying in the source (A) and level (B) of 
protein.

The model is:

 

for ; ;  

where 

for   

yijk µ α i βj γij εijk+ + + +=

i 0 1,= j 0 1 2, ,= k 0 1 … 9, , ,=

α i
i 0=

1

∑ 0 βj
j 0=

2

∑; 0 γij
i 0=

1

∑; 0= = =

j 0 1 2 and, ,=

γij
j 0=

2

∑ 0=
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for i = 0, 1. The first responses in each cell in the two-way layout are given in Table 
16-3:

n = [3, 2, 10] 
y = [73.0, 102.0, 118.0, 104.0,  81.0, $

107.0, 100.0,  87.0, 117.0, 111.0, $
90.0, 76.0, 90.0, 64.0, 86.0, $
51.0, 72.0, 90.0, 95.0, 78.0, $
98.0, 74.0, 56.0, 111.0, 95.0, $
88.0, 82.0, 77.0, 86.0, 92.0, $
107.0, 95.0, 97.0, 80.0, 98.0, $
74.0, 74.0, 67.0, 89.0, 58.0, $
94.0, 79.0, 96.0, 98.0, 102.0, $
102.0, 108.0, 91.0, 120.0, 105.0, $
49.0, 82.0, 73.0, 86.0, 81.0, $
97.0, 106.0, 70.0, 61.0, 82.0] 

p_value = IMSL_ANOVAFACT(n, y, Anova_Table = anova_table) 
PRINT, 'p-value = ', p_value

p-value =    0.00229943

Example 2: Two-way ANOVA 

In this example, the same model and data are fit as in the initial example, but 
keywords are used for a more complete analysis. First, a procedure to output the 
results is defined.

.RUN
PRO print_results, anova_table, test_effects, means 

anova_labels = ['df for among groups', $
'df for within groups', 'total (corrected) df', $
'ss for among groups', 'ss for within groups', $
'total (corrected) ss', 'mean square among groups', $

Protein 
Level 

(B)

Protein Source (A)

Beef Cereal Pork

High 73, 102, 118, 104, 81, 
107, 100, 87, 117, 
111

98, 74, 56, 111, 
95, 88, 82, 77, 86, 
92

94, 79, 96, 98, 102, 
102, 108, 91, 120, 
105

Low 90, 76, 90, 64, 86, 51, 
72, 90, 95, 78

107, 95, 97, 80, 
98, 74, 74, 67, 89, 
58

49, 82, 73, 86, 81, 97, 
106, 70, 61, 82

Table 16-3: Cell First Responses
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'mean square within groups', 'F-statistic', $
'P-value', 'R-squared (in percent)', $
'adjusted R-squared (in percent)', $
'est. std of within group error', 'overall mean of y', $
'coef. of variation (in percent)'] 

effects_labels = ['A  ', 'B  ', 'A*B'] 
means_labels = ['grand', 'A1', 'A2', $

'A3', 'B1', 'B2', 'A1*B1', 'A1*B2', $
'A2*B1', 'A2*B2', 'A3*B1', 'A3*B2'] 

PRINT, '       * *Analysis of Variance * *' 
FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), FORMAT = '(a40,f15.2)' 
PRINT 
; Print the analysis of variance table. 
PRINT, '     * * Variation Due to the Model * *' 
PRINT, 'Source    DF      SS      MS      P-value' 
FOR i = 0, 2 DO PM, effects_labels(i), test_effects(i, *) 
PRINT 
PRINT, ' * * Subgroup Means * *' 
FOR i = 0, 11 DO PM, means_labels(i), $

means(i), FORMAT = '(a5,f15.2)' 
END

n = [3, 2, 10] 
y = [73.0, 102.0, 118.0, 104.0, 81.0, $

107.0, 100.0, 87.0, 117.0, 111.0, $
90.0, 76.0, 90.0,  64.0, 86.0, $
51.0, 72.0, 90.0,  95.0,  78.0, $
98.0, 74.0, 56.0, 111.0, 95.0, $
88.0, 82.0, 77.0,  86.0,  92.0, $
107.0, 95.0, 97.0, 80.0, 98.0, $
74.0, 74.0, 67.0,  89.0,  58.0, $
94.0, 79.0, 96.0,  98.0, 102.0, $
102.0, 108.0, 91.0, 120.0, 105.0, $
49.0, 82.0, 73.0, 86.0, 81.0, $
97.0, 106.0, 70.0, 61.0, 82.0] 

p_value = IMSL_ANOVAFACT(n, y, Anova_Table = anova_table, $
Test_Effects = test_effects, Means = means) 

print_results, anova_table, test_effects, means

 * *Analysis of Variance * *
df for among groups 5.00
df for within groups 54.00
total (corrected) df 59.00
ss for among groups 4612.93
ss for within groups 11586.00
total (corrected) ss 16198.93
mean square among groups 922.59
mean square within groups 214.56
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F-statistic 4.30
P-value 0.00
R-squared (in percent) 28.48
adjusted R-squared (in percent) 21.85
est. std of within group error 14.65
overall mean of y 87.87
coef. of variation (in percent) 16.67

 * * Variation Due to the Model * * 
Source      DF      SS        MS       P-value
A      2.00000  266.533 0.621128  0.541132 
B       1.00000  3168.27  14.7667  0.000322342
A*B     2.00000  1178.13 2.74552   0.0731880

 * * Subgroup Means * * 
grand          87.87 
 A1         89.60 
 A2          84.90 
 A3          89.10 
 B1          95.13 
 B2         80.60 
A1*B1         100.00 
A1*B2          79.20 
A2*B1          85.90 
A2*B2          83.90 
A3*B1          99.50 
A3*B2          78.70

Example 3: Three-way ANOVA

This example performs a three-way analysis of variance using data discussed by John 
(1971, pp. 91–92). The responses are weights (in grams) of roots of carrots grown 
with varying amounts of applied nitrogen (A), potassium (B), and phosphorus (C). 
Each cell of the three-way layout has one response. Note that the ABC interactions 
sum of squares (186) is given incorrectly by John (1971, Table 5.2.) 

The three-way layout is given in Table 16-4:

A0 A1 A2

B0 B1 B2 B0 B1 B2 B0 B1 B2

C0 88.76 91.41 97.8
5

94.83 100.4
9

99.75 99.90 100.2
3

104.5
1

Table 16-4: Three-way Layout
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.RUN
PRO print_results, anova_table, test_effects, means 

anova_labels = ['df for among groups', $
'df for within groups', 'total (corrected) df', $
'ss for among groups', 'ss for within groups', $
'total (corrected) ss', 'mean square among groups', $
'mean square within groups', 'F-statistic', $
'P-value', 'R-squared (in percent)', $
'adjusted R-squared (in percent)', $
'est. std of within group error', $
'overall mean of y', 'coef. of variation (in percent)'] 

effects_labels = ['A  ', 'B  ', 'C  ', 'A*B', 'A*B', 'A*C'] 
PRINT, '       * *Analysis of Variance * *' 
FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), FORMAT = '(a40,f15.2)' 
PRINT 
PRINT, '     * * Variation Due to the Model * *' 
PRINT, 'Source      DF     SS       MS     P-value' 
FOR i = 0,5 DO PM, effects_labels(i), test_effects(i, *) 

END

n = [3, 3, 3] 
y = [88.76, 87.45, 86.01, 91.41, 98.27, 104.20, 97.85, $

95.85, 90.09, 94.83, 84.57, 81.06, 100.49, 97.20, $
120.80, 99.75, 112.30, 108.77, 99.90, 92.98, 94.72, $
100.23, 107.77, 118.39, 104.51, 110.94, 102.87] 

p_value = IMSL_ANOVAFACT(n, y, Anova_Table = anova_table, $
Test_Effects = test_effects, /Pool_Inter) 

print_results, anova_table, test_effects

 * *Analysis of Variance * * 
df for among groups 18.00
df for within groups 8.00
total (corrected) df 26.00
ss for among groups 2395.73
ss for within groups 185.78
total (corrected) ss 2581.51
mean square among groups 133.10

C1 87.45 98.27 95.8
5

84.57 97.20 112.30 92.98 107.7
7

110.9
4

C2 86.01 104.2
0

90.0
9

81.06 120.8
0

108.77 94.72 118.3
9

102.8
7

A0 A1 A2

Table 16-4: Three-way Layout
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mean square within groups 23.22
F-statistic 5.73
p-value 0.01
R-squared (in percent) 92.80
adjusted R-squared (in percent) 76.61
est. std of within group error  4.82
overall mean of y 98.96
coef. of variation (in percent) 4.87

 * * Variation Due to the Model * * 
Source   DF     SS      MS       p-value 
A 2.00000 488.368 10.5152 0.00576699
B 2.00000 1090.66 23.4832 0.000448704
C 2.00000 49.1484 1.05823 0.391063
A*B 4.00000 142.586 1.53502 0.280423
A*B 4.00000 32.3474 0.348241 0.838336
A*C 4.00000 592.624 6.37997 0.0131252

Version History

6.4 Introduced
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IMSL_MULTICOMP

The IMSL_MULTICOMP function performs Student-Newman-Keuls multiple-
comparisons test.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_MULTICOMP(means, df, std_error [, ALPHA=value] 
[, /DOUBLE])

Return Value

A one-dimensional array of length N_ELEMENTS(means) indicating the size of the 
groups of means declared to be equal. If the i-th element of the returned array is equal 
to j, then the i-th smallest mean and the next j – 1 larger means are declared equal. If 
the i-th element of the returned array is equal to 0, then no group of means starts with 
the i-th smallest mean.

Arguments

df

Degrees of freedom associated with std_error. 

means

One-dimensional array containing the means. 

std_error

Effective estimated standard error of a mean. In fixed effects models, std_error equals 
the estimated standard error of a mean. 

For example, in a one-way model: 
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where s2 is the estimate of σ2 and n is the number of responses in a sample mean. In 
models with random components, use: 

where sedif is the estimated standard error of the difference of two means.

Keywords

ALPHA

Significance level of test. Must be in the interval [0.01, 0.10]. Default: Alpha = 0.01

DOUBLE

If present and nonzero, then double precision is used. 

Discussion

The IMSL_MULTICOMP function performs a multiple-comparison analysis of 
means using the Student-Newman-Keuls method. The null hypothesis is equality of 
all possible ordered subsets of a set of means. This null hypothesis is tested using the 
Studentized range of each of the corresponding subsets of sample means. The method 
is discussed in many elementary statistics texts, e.g., Kirk (1982, pp. 123–125).

Example

A multiple-comparisons analysis is performed using data discussed by Kirk. The 
results show that there are three groups of means with three separate sets of values: 
(36.7, 40.3, 43.4), (40.3, 43.4, 47.2), and (43.4, 47.2, 48.7).

df = 45 
std_error = 1.6970563 
means = [36.7, 48.7, 43.4, 47.2, 40.3] 
equal_means = IMSL_MULTICOMP(means, df, std_error) 

std_error s2

n
----=

std_error sedif

2
----------=
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PM, equal_means, Title = 'Size of groups of means:' 

Size of groups of means: 
 3 
 3 
 3 
 0

Version History

6.4 Introduced
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IMSL_ANOVANESTED

The IMSL_ANOVANESTED function analyzes a completely nested random model 
with possibly unequal numbers in the subgroups.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ANOVANESTED(n_factors, eq_option, n_levels, y 
[, ANOVA_TABLE=variable] [, CONFIDENCE=value] [, /DOUBLE] 
[, EMS=array] [, VAR_COMP=variable] [, Y_MEANS=array])

Return Value

The p-value for the F-statistic.

Arguments

eq_option

Equal numbers option. 

• 0—Unequal numbers in the subgroups

• 1—Equal numbers in the subgroups

n_factors

Number of factors (number of subscripts) in the model, including error.

n_levels

One-dimensional array with the number of levels.
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If eq_option = 1, n_levels is of length n_factors and contains the number of levels for 
each of the factors. In this case, the additional variables listed in Table 16-5 are 
referred to in the description of IMSL_ANOVANESTED: 

If eq_option = 0, n_levels contains the number of levels of each factor at each level of 
the factor in which it is nested. In this case, the following additional variables are 
referred to in the description of IMSL_ANOVANESTED: 

• LNL—Length of n_levels.

• LNLNF—Length of the subvector of n_levels for the last factor.

• NOBS—Number of observations. NOBS equals the sum of the last LNLNF 
elements of n_levels. n_levels(n_factors-1).

For example, a random one-way model with two groups, five responses in the first 
group and ten in the second group, would have LNL = 3, LNLNF = 2, NOBS = 15, 
n_levels(0) = 2, n_levels(1) = 5, and n_levels(2) = 10.

y

One-dimensional array of length NOBS containing the responses.  

Variable Description

LNL n_levels(1) + 

 ... + n_levels(0) * n_levels(1) * 

 ... * n_levels(n_factors – 2)

LNLNF n_levels(0) * n_levels(1) * ...* 

n_levels(n_factors – 2)

NOBS The number of observations. NOBS equals 

n_levels(0) * n_levels(1) * ... *

n_levels(n_factors-1)

Table 16-5: Additional Variables
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Keywords

ANOVA_TABLE

Named variable which stores the size 15 array containing the analysis of variance 
table. Analysis of variance statistics are as follows:

• 0—Degrees of freedom for the model

• 1—Degrees of freedom for error

• 2—Total (corrected) degrees of freedom

• 3—Sum of squares for the model

• 4—Sum of squares for error

• 5—Total (corrected) sum of squares

• 6—Model mean square

• 7—Error mean square

• 8—Overall F-statistic

• 9—p-value

• 10—R2 (in percent)

• 11—Adjusted R2 (in percent)

• 12—Estimate of the standard deviation

• 13—Overall mean of y

• 14—Coefficient of variation (in percent)

CONFIDENCE

Confidence level for two-sided interval estimates on the variance components, in 
percent. Confidence percent confidence intervals are computed, hence, Confidence 
must be in the interval [0.0, 100.0). Confidence often will be 90.0, 95.0, or 99.0. For 
one-sided intervals with confidence level ONECL, ONECL in the interval [50.0, 
100.0), set Confidence = 100.0 – 2.0 * (100.0 - ONECL). Default: Confidence = 95.0

DOUBLE

If present and nonzero, then double precision is used.
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EMS

One-dimensional array of length n_factors  * ((n_factors + 1)/2) with expected mean 
square coefficients.

VAR_COMP

Named variable into which an array of size n_factors by 9 containing statistics 
relating to the particular variance components in the model is stored. Rows of 
Var_Comp correspond to the n_factors factors.  Columns of Var_Comp are as 
follows: 

• 1—Degrees of freedom

• 2—Sum of squares

• 3—Mean squares

• 4—F -statistic

• 5—p-value for F test

• 6—Variance component estimate

• 7—Percent of variance explained by variance component

• 8—Lower endpoint for confidence interval on the variance component

• 9—Upper endpoint for confidence interval on the variance component

If a test for error variance equal to zero cannot be performed, Var_Comp(n_factors, 4) 
and Var_Comp(n_factors, 5) are set to NaN.

Y_MEANS

One-dimensional array containing the subgroup means. 

eq_option Length of y means

0 1 + n_levels(0) + n_levels(1) + ... n_levels((LNL - LNLNF)-1) 

(See description of argument n_levels for definitions of LNL and 
LNLNF.)

1 1 + n_levels(0) + n_levels(0) * n_levels(1) + ... + n_levels(0)* 
n_levels(1) * ... * n_levels (n_factors – 2)

Table 16-6: eq_option for Y_Means
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If the factors are labeled A, B, C, and error, the ordering of the means is grand mean, 
A means, AB means, and then ABC means.

Discussion

The IMSL_ANOVANESTED function analyzes a nested random model with equal or 
unequal numbers in the subgroups. The analysis includes an analysis of variance 
table and computation of subgroup means and variance component estimates. 
Anderson and Bancroft (1952, pages 325−330) discuss the methodology. The 
analysis of variance method is used for estimating the variance components. This 
method solves a linear system in which the mean squares are set to the expected mean 
squares. A problem that Hocking (1985, pages 324−330) discusses is that this method 
can yield negative variance component estimates.  Hocking suggests a diagnostic 
procedure for locating the cause of a negative estimate. It may be necessary to 
reexamine the assumptions of the model.

Example

An analysis of a three-factor nested random model with equal numbers in the 
subgroups is performed using data discussed by Snedecor and Cochran (1967, Table 
10.16.1, pages 285−288). The responses are calcium concentrations (in percent, dry 
basis) as measured in the leaves of turnip greens. Four plants are taken at random, 
then three leaves are randomly selected from each plant. Finally, from each selected 
leaf two samples are taken to determine calcium concentration. The model is:

yijk = µ + αi + βij + eijk     i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2

where yijk is the calcium concentration for the k-th sample of the j-th leaf of the i-th 
plant, the αi’s are the plant effects and are taken to be independently distributed: 

the βij’s are leaf effects each independently distributed: 

N ( , )0 2σ

N ( , )0 2σβ
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and the εijk’s are errors each independently distributed N(0, σ2). The effects are all 
assumed to be independently distributed. The data is given in Table 16-7:

.RUN
PRO print_results, p, at, ems, y_means, var_comp 

anova_labels = ['degrees of freedom for model', $
'degrees of freedom for error', $
'total (corrected) degrees of freedom', $
'sum of squares for model', 'sum of squares for error', $
'total (corrected) sum of squares', 'model mean square', $
'error mean square', 'F-statistic', 'p-value', $
'R-squared (in percent)', $
'adjusted R-squared (in percent)', $
'est. standard deviation of within error', $
'overall mean of y', $
'coefficient of variation (in percent)']

ems_labels  = ['Effect A and Error', 'Effect A and Effect B', $
'Effect A and Effect A', 'Effect B and Error', $
'Effect B and Effect B', 'Error and Error'] 

components_labels  =  ['degrees of freedom for A', $
'sum of squares for A', 'mean square of A', $
'F-statistic for A', 'p-value for A', $
'Estimate of A', 'Percent Variation Explained by A', $
'95% Confidence Interval Lower Limit for A', $

Plant Leaf Samples

1 1

2

3

3.28

3.52

2.88

3.09

3.48

2.80

2 1

2

3

2.46

1.87

2.19

2.44

1.92

2.19

3 1

2

3

2.77

3.74

2.55

2.66

3.44

2.55

4 1

2

3

3.78

4.07

3.31

3.87

4.12

3.31

Table 16-7: Calcium Concentrations
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'95% Confidence Interval Upper Limit for A', $
'degrees of freedom for B', 'sum of squares for B', $
'mean square of B', 'F-statistic for B', 'p-value for B', $
'Estimate of B', 'Percent Variation Explained by B', $
'95% Confidence Interval Lower Limit for B', $
'95% Confidence Interval Upper Limit for B', $
'degrees of freedom for Error', $
'sum of squares for Error', 'mean square of Error', $
'F-statistic for Error', 'p-value for Error', $
'Estimate of Error', 'Percent Explained by Error', $
'95% Confidence Interval Lower Limit for Error', $
'95% Confidence Interval Upper Limit for Error']

means_labels = ['Grand mean', $
' A means 1', $
' A means 2', $
' A means 3', $
' A means 4', $
'AB means 1 1', $
'AB means 1 2', $
'AB means 1 3', $
'AB means 2 1', $
'AB means 2 2', $
'AB means 2 3', $
'AB means 3 1', $
'AB means 3 2', $
'AB means 3 3', $
'AB means 4 1', $
'AB means 4 2', $
'AB means 4 3']

PRINT, 'p value of F statistic =', p     
PRINT              
PRINT, '               * * * Analysis of Variance * * *'
FOR i  =  0, 14 DO $

PM, anova_labels(i), at(i), FORMAT = '(A40, F20.5)'                   
PRINT      
PRINT, '          * * * Expected Mean Square Coefficients * * *'             
FOR i  =  0, 5 DO $

PM, ems_labels(i), ems(i), FORMAT = '(A40, F20.2)'
PRINT
PRINT, '      * * Analysis of Variance / Variance Components * 

*'
k = 0
FOR i  =  0, 2 DO BEGIN

FOR j  =  0, 8 DO BEGIN
PM, components_labels(k), var_comp(i, j), $
FORMAT = '(A45, F20.5)' 
k = k + 1

ENDFOR
ENDFOR
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PRINT
PRINT, 'means', FORMAT = '(A20)'
FOR i  =  0, 16 DO $

PM, means_labels(i), y_means(i), FORMAT ='(A20, F20.2)'
END

y = [3.28, 3.09, 3.52, 3.48, 2.88, 2.80, 2.46, 2.44, 1.87, $
1.92, 2.19, 2.19, 2.77, 2.66, 3.74, 3.44, 2.55, 2.55, $
3.78, 3.87, 4.07, 4.12, 3.31, 3.31]

n_levels  =  [4, 3, 2]
p = IMSL_ANOVANESTED(3, 1, n_levels, y, Anova_Table = at, $

Ems=ems, Y_Means = y_means, Var_Comp = var_comp)
print_results, p, at, ems, y_means, var_comp

p value of F statistic =      0.00000
               * * * Analysis of Variance * * *
            degrees of freedom for model            11.00000
            degrees of freedom for error            12.00000
    total (corrected) degrees of freedom            23.00000
                sum of squares for model            10.19054
                sum of squares for error             0.07985
        total (corrected) sum of squares            10.27040
                       model mean square             0.92641
                       error mean square             0.00665
                             F-statistic           139.21599
                                 p-value             0.00000
                  R-squared (in percent)            99.22248
         adjusted R-squared (in percent)            98.50976
 est. standard deviation of within error             0.08158
                       overall mean of y             3.01208
   coefficient of variation (in percent)             2.70826
          * * * Expected Mean Square Coefficients * * *
                      Effect A and Error                1.00
                   Effect A and Effect B                2.00
                   Effect A and Effect A                6.00
                      Effect B and Error                1.00
                   Effect B and Effect B                2.00
                         Error and Error                1.00
         * * Analysis of Variance / Variance Components * *
                     degrees of freedom for A             3.00000
                         sum of squares for A             7.56034
                             mean square of A             2.52011
                            F-statistic for A             7.66516
                                p-value for A             0.00973
                                Estimate of A             0.36522
             Percent Variation Explained by A            68.53015
    95% Confidence Interval Lower Limit for A             0.03955
    95% Confidence Interval Upper Limit for A             5.78674
                     degrees of freedom for B             8.00000
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                         sum of squares for B             2.63020
                             mean square of B             0.32878
                            F-statistic for B            49.40642
                                p-value for B             0.00000
                                Estimate of B             0.16106
Percent Variation Explained by B 30.22121
95% Confidence Interval Lower Limit for B 0.06967
95% Confidence Interval Upper Limit for B 0.60042
degrees of freedom for Error 12.00000
sum of squares for Error 0.07985
mean square of Error 0.00665

F-statistic for Error NaN
p-value for Error NaN
Estimate of Error 0.00665

Percent Explained by Error 1.24864
95% Confidence Interval Lower Limit for Error 0.00342
95% Confidence Interval Upper Limit for Error 0.01813
               means
          Grand mean                3.01
           A means 1                3.17
           A means 2                2.18
           A means 3                2.95
           A means 4                3.74
        AB means 1 1                3.18
        AB means 1 2                3.50
        AB means 1 3                2.84
        AB means 2 1                2.45
        AB means 2 2                1.89
        AB means 2 3                2.19
        AB means 3 1                2.72
        AB means 3 2                3.59
        AB means 3 3                2.55
        AB means 4 1                3.82
        AB means 4 2                4.10
        AB means 4 3                3.31

Version History

6.4 Introduced
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IMSL_ANOVABALANCED

The IMSL_ANOVABALANCED function analyzes a balanced complete 
experimental design for a fixed, random, or mixed model.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ANOVABALANCED(n_levels, y, n_random, idx_rand_fct, 
n_fct_per_eff, idx_fct_per_eff [, ANOVA_TABLE=variable] 
[, CONFIDENCE=value] [, /DOUBLE] [, MODEL=value] 
[, VAR_COMP=variable] [, Y_MEANS=variable])

Return Value

The p-value for the F-statistic.

Arguments

idx_fct_per_eff

One-dimensional index array of length N_ELEMENTS(n_fct_per_effect). The first 
n_fct_per_eff(0) elements give the factor numbers in the first effect. The next 
n_fct_per_eff(1) elements give the factor numbers in the second effect. The last 
n_fct_per_eff(N_ELEMENTS(n_fct_per_eff)) elements give the factor numbers in 
the last effect. Main effects must appear before their interactions. In general, an effect 
E cannot appear after an effect F if all of the indices for E appear also in F.

idx_rand_fct

One-dimensional index array of length |n_random| containing either the factor 
numbers to be considered random (for n_random positive) or containing the effect 
numbers to be considered random (for n_random negative).  

n_fct_per_eff

One-dimensional array containing the number of factors associated with each effect 
in the model.
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n_levels

One-dimensional array containing the number of levels for each of the factors.

n_random

For positive n_random, |n_random| is the number of random factors. For negative 
n_random, |n_random| is the number of random effects (sources of variation).

y

One-dimensional array containing the responses. y must not contain NaN (not a 
number) for any of its elements, i.e., missing values are not allowed.

Keywords

ANOVA_TABLE

Named variable into which an array of size 15 containing the analysis of variance 
table is stored. The analysis of variance statistics are as follows:

• 0—Degrees of freedom for the model

• 1—Degrees of freedom for error

• 2—Total (corrected) degrees of freedom

• 3—Sum of squares for the model

• 4—Sum of squares for error

• 5—Total (corrected) sum of squares

• 6—Model mean square

• 7—Error mean square

• 8—Overall F-statistic

• 9—p-value

• 10—R2 (in percent)

• 11—adjusted R2 (in percent)

• 12—estimate of the standard deviation

• 13—overall mean of y

• 14—coefficient of variation (in percent)
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CONFIDENCE

Confidence level for two-sided interval estimates on variance components, in percent. 
Confidence  percent confidence intervals are computed, hence, Confidence must be in 
the interval [0.0, 100.0]. Confidence is often 90.0, 95.0, or 99.0. For one-sided 
intervals with confidence level α, α in the interval [50.0, 100.0], set Confidence = 
100.0 – 2.0 * (100.0 – α). Default: Confidence = 95.0

DOUBLE

If present and nonzero, then double precision is used.

MODEL

Model Option

• 0—Searle model (Default)

• 1—Scheffe model 

For Scheffe model, effects corresponding to interactions of fixed and random factors 
have their sum over the subscripts corresponding to fixed factors equal to zero. Also, 
the variance of a random interaction effect involving some fixed factors has a 
multiplier for the associated variance component that involves the number of levels in 
the fixed factors. The Searle model has no summation restrictions on the random 
interaction effects and has a multiplier of one for each variance component. 

VAR_COMP

Named variable into which an array of length N_ELEMENTS(n_fct_per_eff) + 1, by 
9 array containing statistics relating to the particular variance components or effects 
in the model and the error is stored. Rows of Var_Comp correspond to the rows of 
N_ELEMENTS(n_fct_per_eff) effects plus error. 

• 1—Degrees of freedom

• 2—Sum of squares

• 3—Mean squares

• 4—F -statistic

• 5—p-value for F test

• 6—Variance component estimate

• 7—Percent of variance of y explained by random effect

• 8—Lower endpoint for confidence interval on the variance component
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• 9—Upper endpoint for confidence interval on the variance component

Columns 6 through 9 contain NaN (not a number) if the effect is fixed, i.e., if there is 
no variance component to be estimated. If the variance component estimate is 
negative, columns 8 and 9 contain NaN.

Ems—Named variable into which a one-dimensional array of length 
((N_ELEMENTS(n_fct_per_eff) + 1)*(N_ELEMENTS(n_fct_per_eff) + 2))/2 
containing expected mean square coefficients is stored. Suppose the effects are A, B, 
and AB. The ordering of the coefficients in Ems is as follows:

Y_MEANS

Named variable into which a one-dimensional array of length (n_levels(0) + 1) * 
(n_levels (1) + 1) * ... * (n_levels (n-1) + 1) containing the subgroup means is stored. 
Suppose the factors are A, B, and C. The ordering of the means is grand mean, A 
means, B means, C means, AB means, AC means, BC means, and ABC means. 

Discussion

The IMSL_ANOVABALANCED function analyzes a balanced complete 
experimental design for a fixed, random, or mixed model. The analysis includes an 
analysis of variance table, and computation of subgroup means and variance 
component estimates. A choice of two parameterizations of the variance components 
for the model can be made. 

Scheffé (1959, pages 274−289) discusses the parameterization for Model = 1. For 
example, consider the following model equation with fixed factor A and random 
factor B:

yijk = µ + αi + bj + cij + eijk     i = 1, 2, ... , a; j = 1, 2, ... , b; k = 1, 2, ... , n

Error AB B A

A Ems(0) Ems(1) Ems(2) Ems(3) 

B Ems(4) Ems(5) Ems(6)

AB Ems(7) Ems(8)

Error Ems(9)
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The fixed effects αi’s are subject to the restriction: 

the bj’s are random effects identically and independently distributed: 

cij are interaction effects each distributed: 

and are subject to the restrictions: 

and the eijk’s are errors identically and independently distributed N(0, σ2). In general, 
interactions of fixed and random factors have sums over subscripts corresponding to 
fixed factors equal to zero. Also in general, the variance of a random interaction 
effect is the associated variance component times a product of ratios for each fixed 
factor in the random interaction term. Each ratio depends on the number of levels in 
the fixed factor. In the earlier example, the random interaction AB has the ratio (a – 
1)/a as a multiplier of: 

and:

 

In a three-way crossed classification model, an ABC interaction effect with A fixed, B 
random, and C fixed would have variance: 

Searle (1971, pages 400−401) discusses the parameterization for Model = 0. This 
parameterization does not have the summation restrictions on the effects 
corresponding to interactions of fixed and random factors. Also, the variance of each 
random interaction term is the associated variance component, i.e., without the 
multiplier. This parameterization is also used with unbalanced data, which is one 
reason for its popularity with balanced data also. In the earlier example:
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Searle (1971, pages 400−404) compares these two parameterizations. Hocking 
(1973) considers these different parameterizations and concludes they are equivalent 
because they yield the same variance-covariance structure for the responses. 
Differences in covariances for individual terms, differences in expected mean square 
coefficients and differences in F tests are just a consequence of the definition of the 
individual terms in the model and are not caused by any fundamental differences in 
the models. For the earlier two-way model, Hocking states that the relations between 
the two parameterizations of the variance components are: 

where:

 

are the variance components in the parameterization with Model = 0.

Computations for degrees of freedom and sums of squares are the same regardless of 
the Model option. IMSL_ANOVABALANCED first computes degrees of freedom 
and sum of squares for a full factorial design. Degrees of freedom for effects in the 
factorial design that are missing from the specified model are pooled into the model 
effect containing the fewest subscripts but still containing the factorial effect. If no 
such model effect exists, the factorial effect is pooled into error. If more than one such 
effect exists, a terminal error message is issued indicating a misspecified model.

The analysis of variance method is used for estimating the variance components. This 
method solves a linear system in which the mean squares are set to the expected mean 
squares. A problem that Hocking (1985, pages 324−330) discusses is that this method 
can yield a negative variance component estimate. Hocking suggests a diagnostic 
procedure for locating the cause of the negative estimate. It may be necessary to re-
examine the assumptions of the model.

The percentage of variation explained by each random effect is computed (output in 
Var_Comp element 7) as variance of the associated random effect divided by variance 
of y. The two parameterizations can lead to different values because of the different 
definitions of the individual terms in the model. For example, the percentage 
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associated with the AB interaction term in the earlier two-way mixed model is 
computed for Model = 1 using: 

while for the parameterization Model = 0, the percentage is computed using the 
formula: 

In each case, the variance components are replaced by their estimates (stored in 
Var_Comp element 6).

Confidence intervals on the variance components are computed using the method 
discussed by Graybill (1976, Theorem 15.3.5, page 624, and Note 4, page 620). 

Example

An analysis of a generalized randomized block design is performed using data 
discussed by Kirk (1982, Table 6.10-1, pages 293−297). The model is:

yijk = µ + αi + bj + cij + eijk     i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2

where yijk is the response for k-th experimental unit in block j with treatment i; the 
αi’s are the treatment effects and are subject to the restriction: 

the bj’s are block effects identically and independently distributed: 

cij are interaction effects each distributed: 

and are subject to the restrictions: 
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and the eijk’s are errors, identically and independently distributed N(0, σ2). The 
interaction effects are assumed to be distributed independently of the errors. The data 
is given in Table 16-8.

.RUN
PRO print_results, p, at, ems, y_means, var_comp

anova_labels  =  ['degrees of freedom for model', $
'degrees of freedom for error', $
'total (corrected) degrees of freedom', $
'sum of squares for model', 'sum of squares for error', $
'total (corrected) sum of squares', 'model mean square', $
'error mean square', 'F-statistic', 'p-value',$
'R-squared (in percent)', $
'adjusted R-squared (in percent)', $
'est. standard deviation of within error', $
'overall mean of y', $
'coefficient of variation (in percent)']

ems_labels  =  ['Effect A and Error', $
'Effect A and Effect AB', 'Effect A and Effect B', $
'Effect A and Effect A', 'Effect B and Error', $
'Effect B and Effect AB', 'Effect B and Effect B', $
'Effect AB and Error', 'Effect AB and Effect AB', $
'Error and Error']

components_labels  =  ['degrees of freedom for A', $
'sum of squares for A', 'mean square of A', $
'F-statistic for A', 'p-value for A', $
'Estimate of A', 'Percent Variation Explained by A', $
'95% Confidence Interval Lower Limit for A', $
'95% Confidence Interval Upper Limit for A', $
'degrees of freedom for B', 'sum of squares for B', $
'mean square of B', 'F-statistic for B', 'p-value for B', $
'Estimate of B', 'Percent Variation Explained by B', $
'95% Confidence Interval Lower Limit for B', $
'95% Confidence Interval Upper Limit for B', $

Treatment
Block

1 2 3 4

1 3, 6 3, 1 2, 2 3, 2

2 4, 5 4, 2 3, 4 3, 3

3 7, 8 7, 5 6, 5 6, 6

4 7, 8 9, 10 10, 9 8, 11

Table 16-8: Randomized Block Design
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'degrees of freedom for AB', 'sum of squares for AB', $
'mean square of AB', 'F-statistic for AB', $
'p-value for AB', 'Estimate of AB', $
'Percent Variation Explained by AB', $
'95% Confidence Interval Lower Limit for AB', $
'95% Confidence Interval Upper Limit for AB', $
'degrees of freedom for Error', $
'sum of squares for Error', 'mean square of Error', $
'F-statistic for Error', 'p-value for Error', $
'Estimate of Error', 'Percent Explained by Error', $
'95% Confidence Interval Lower Limit for Error', $
'95% Confidence Interval Upper Limit for Error']

means_labels = ['Grand mean', ' A means 1', ' A means 2', $
' A means 3', ' A means 4', ' B means 1', ' B means 2', $
' B means 3', ' B means 4', 'AB means 1 1', $
'AB means 1 2', 'AB means 1 3', 'AB means 1 4', $
'AB means 2 1', 'AB means 2 2', 'AB means 2 3', $
'AB means 2 4', 'AB means 3 1', 'AB means 3 2', $
'AB means 3 3', 'AB means 3 4', 'AB means 4 1', $
'AB means 4 2', 'AB means 4 3', 'AB means 4 4']

PRINT, 'p value of F statistic =', p     
PRINT              
PRINT, '               * * * Analysis of Variance * * *'
FOR i  =  0, 14 DO $

PM, anova_labels(i), at(i), FORMAT = '(A40, F20.5)'                   
PRINT      
PRINT, '          * * * Expected Mean Square Coefficients * * *'             
FOR i  =  0, 9 DO $

PM, ems_labels(i), ems(i), FORMAT = '(A40, F20.2)'
PRINT
PRINT, '       * * Analysis of Variance / Variance Components * 

*'
k = 0
FOR i  =  0, 3 DO BEGIN

FOR j  =  0, 8 DO BEGIN
PM, components_labels(k), var_comp(i, j), $
FORMAT = '(A45, F20.5)' 
k = k + 1

   ENDFOR
ENDFOR
PRINT
PRINT, 'means', FORMAT = '(A20)'
FOR i  =  0, 24 DO $
   PM, means_labels(i), y_means(i), FORMAT ='(A20, F20.2)'

END

y  =  [3.0, 6.0, 3.0, 1.0, 2.0, 2.0, 3.0, 2.0, 4.0, 5.0, 4.0, $
2.0, 3.0, 4.0, 3.0, 3.0, 7.0, 8.0, 7.0, 5.0, 6.0, 5.0, $
6.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0, 11.0]
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n_levels  =  [4, 4, 2]
indrf  =  [2, 3]
nfef  =  [1, 1, 2]
indef  =  [1, 2, 1, 2]
p  =  IMSL_ANOVABALANCED(n_levels, y, 2, indrf, nfef, indef, $

Anova_Table = at, Ems = ems, Y_Means = y_means, $
Var_Comp = var_comp)

print_results, p, at, ems, y_means, var_comp

p value of F statistic =  4.94719e-06

               * * * Analysis of Variance * * *
            degrees of freedom for model            15.00000
            degrees of freedom for error            16.00000
    total (corrected) degrees of freedom            31.00000
                sum of squares for model           216.50000
                sum of squares for error            19.00000
        total (corrected) sum of squares           235.50000
                       model mean square            14.43333
                       error mean square             1.18750
                             F-statistic            12.15439
                                 p-value             0.00000
                  R-squared (in percent)            91.93206
         adjusted R-squared (in percent)            84.36836
 est. standard deviation of within error             1.08972
                       overall mean of y             5.37500
   coefficient of variation (in percent)            20.27395

          * * * Expected Mean Square Coefficients * * *
                      Effect A and Error                1.00
                  Effect A and Effect AB                2.00
                   Effect A and Effect B                0.00
                   Effect A and Effect A                8.00
                      Effect B and Error                1.00
                  Effect B and Effect AB                2.00
                   Effect B and Effect B                8.00
                     Effect AB and Error                1.00
                 Effect AB and Effect AB                2.00
                         Error and Error                1.00

       * * Analysis of Variance / Variance Components * *
                     degrees of freedom for A             3.00000
                         sum of squares for A           194.50000
                             mean square of A            64.83334
                            F-statistic for A            32.87324
                                p-value for A             0.00004
                                Estimate of A                 NaN
             Percent Variation Explained by A                 NaN
    95% Confidence Interval Lower Limit for A                 NaN
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    95% Confidence Interval Upper Limit for A                 NaN
                     degrees of freedom for B             3.00000
                         sum of squares for B             4.25000
                             mean square of B             1.41667
                            F-statistic for B             0.71831
                                p-value for B             0.56566
                                Estimate of B            -0.06944
             Percent Variation Explained by B             0.00000
    95% Confidence Interval Lower Limit for B                 NaN
    95% Confidence Interval Upper Limit for B                 NaN
                    degrees of freedom for AB             9.00000
                        sum of squares for AB            17.75000
                            mean square of AB             1.97222
                           F-statistic for AB             1.66082
                               p-value for AB             0.18016
                               Estimate of AB             0.39236
            Percent Variation Explained by AB            24.83516
   95% Confidence Interval Lower Limit for AB             0.00000
   95% Confidence Interval Upper Limit for AB             2.75803
                 degrees of freedom for Error            16.00000
                     sum of squares for Error            19.00000
                         mean square of Error             1.18750
                        F-statistic for Error                 NaN
                            p-value for Error                 NaN
                            Estimate of Error             1.18750
                   Percent Explained by Error            75.16483
95% Confidence Interval Lower Limit for Error 0.65868
95% Confidence Interval Upper Limit for Error 

42.75057
               means
          Grand mean                5.38
           A means 1                2.75
           A means 2                3.50
           A means 3                6.25
           A means 4                9.00
           B means 1                6.00
           B means 2                5.12
           B means 3                5.12
           B means 4                5.25
        AB means 1 1                4.50
        AB means 1 2                2.00
        AB means 1 3                2.00
        AB means 1 4                2.50
        AB means 2 1                4.50
        AB means 2 2                3.00
        AB means 2 3                3.50
        AB means 2 4                3.00
        AB means 3 1                7.50
        AB means 3 2                6.00
IDL Analyst Reference Guide IMSL_ANOVABALANCED



794 Chapter 16: Analysis of Variance
        AB means 3 3                5.50
        AB means 3 4                6.00
        AB means 4 1                7.50
        AB means 4 2                9.50
        AB means 4 3                9.50
        AB means 4 4                9.50

; Add Outliners
x(0, 1)  =  100.0
x(3, 4)  =  100.0
x(99, 2)  =  -100.0
p_cov  =  IMSL_POOLED_COV(x, n_groups, Idx_Vars = idxv, $

Idx_Cols = idxc)
PM, p_cov, Title = 'Pooled Cavariance with Outliners'
r_cov  =  IMSL_ROBUST_COV(x, n_groups, Idx_Vars = idxv, $

Idx_Cols = idxc, Percentage = percentage)
PM, r_cov, Title = 'Robust Covariance with Outliners'

Pooled Cavariance with Outliners
60.4264     0.304244     0.127488     -1.55551
0.304244      70.5257     0.167135    -0.171791
0.127488     0.167135     0.185188    0.0684639
-1.55551    -0.171791    0.0684639      66.3798

Robust Covariance with Outliners
0.255521    0.0876029     0.155279    0.0359198
0.0876029     0.112674    0.0545391    0.0322426
0.155279    0.0545391     0.172263    0.0412149
0.0359198    0.0322426    0.0412149    0.0424182

Version History

6.4 Introduced
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Categorical and 
Discrete Data Analysis
This section contains the following topics:
Overview: Categorical and Discrete Data 
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . .  796

Categorical and Discrete Data Analysis 
Routines  . . . . . . . . . . . . . . . . . . . . . . . . . .  797
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Overview: Categorical and Discrete Data 
Analysis

Routine IMSL_CONTINGENCY computes many statistics of interest in a two-way 
table. Statistics computed by this routine includes the usual chi-squared statistics, 
measures of association, Kappa, and many others. Exact probabilities for two-way 
tables can be computed by IMSL_EXACT_ENUM , but this routine uses the total 
enumeration algorithm and, thus, often uses orders of magnitude more computer time 
than IMSL_EXACT_NETWORK which computes the same probabilities by use of 
the network algorithm (but can still be quite expensive).

The routine IMSL_CAT_GLM in the second section is concerned with generalized 
linear models (see McCullagh and Nelder 1983) in discrete data. This routine can be 
used to compute estimates and associated statistics in probit, logistic, minimum 
extreme value, Poisson, negative binomial (with known number of successes), and 
logarithmic models. Classification variables as well as weights, frequencies and 
additive constants may be used so that general linear models can be fit. Residuals, a 
measure of influence, the coefficient estimates, and other statistics are returned for 
each model fit. When infinite parameter estimates are required, extended maximum 
likelihood estimation may be used. Log-linear models can be fit in IMSL_CAT_GLM 
through the use of Poisson regression models. Results from Poisson regression 
models involving structural and sampling zeros will be identical to the results 
obtained from the log-linear model routines but will be fit by a quasi-Newton 
algorithm rather than through iterative proportional fitting.
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Categorical and Discrete Data Analysis 
Routines

Statistics in the Two-Way Contingency Table

IMSL_CONTINGENCY—Two-way contingency table analysis.

IMSL_EXACT_ENUM—Exact probabilities in a table; total enumeration. 

IMSL_EXACT_NETWORK—Exact probabilities in a table. 

Generalized Categorical Models

IMSL_CAT_GLM—Generalized linear models.
IDL Analyst Reference Guide Categorical and Discrete Data Analysis Routines
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IMSL_CONTINGENCY

The IMSL_CONTINGENCY function performs a chi-squared analysis of a two-way 
contingency table.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CONTINGENCY(table [, CHI_SQ_CONTRIB=variable] 
[, CHI_SQ_STATS=variable] [, CHI_SQ_TEST=variable] [, /DOUBLE] 
[, EXPECTED=variable] [, LRT=variable] [, TABLE_STATS=variable] )

Return Value

Pearson chi-squared p-value for independence of rows and columns.

Arguments

table

Two-dimensional array containing the observed counts in the contingency table.

Keywords

CHI_SQ_CONTRIB

Named variable into which a two-dimensional array of size (n_rows+1) by 
(n_columns+1) containing the contributions for each cell in the table is stored. The 
contributions to chi-squared for each cell in the table is in the first n_rows rows and 
n_columns columns. The last row and column contain the total contribution to chi-
squared for that row or column.

CHI_SQ_STATS

Named variable into which an array of length 5 containing chi-squared statistics 
associated with this contingency table is stored. The last three elements are based on 
Pearson’s chi-squared statistic (see Chi_Sq_Test). The chi-squared statistics are given 
as follows:
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• 0—exact mean

• 1—exact standard deviation

• 2—phi

• 3—contingency coefficient

• 4—Cramer’s V

CHI_SQ_TEST

Named variable into which the three-element array containing statistics associated 
with the chi-squared tests is stored. The first element contains the degrees of freedom 
for the chi-squared tests associated with the table, the second element contains the 
Pearson chi-squared test statistic, and the third element contains the probability of a 
larger Pearson chi-squared, p-value.

DOUBLE

If present and nonzero, double precision is used.

EXPECTED

Named variable into which the two-dimensional array of size (n_rows+1) by 
(n_columns+1) containing the expected values of each cell in the table is stored, 
where n_rows=(N_ELEMENTS(table(*,0)) and 
n_columns=(N_ELEMENTS(table(0,*)). The expected values are computed under 
the null hypothesis and stored in the first n_rows rows and n_columns columns. The 
marginal totals are in the last row and column.

LRT

Named variable into which the three-element array containing statistics associated 
with the likelihood ratio G-squared tests is stored. The first element contains the 
degrees of freedom for the chi-squared tests associated with the table, the second 
element contains the likelihood ratio G2 (chi-squared), and the third element contains 
the probability of a larger G2.

TABLE_STATS

Named variable into which a two-dimensional array of size 23 x 5 containing 
statistics associated with this table is stored. Each row corresponds to a statistic, as 
shown in Table 17-1.
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Row Statistic

0 Gamma

1 Kendall’s τb

2 Stuart’s τc

3 Somers’ D for rows (given columns)

4 Somers’ D for columns (given rows)

5 product moment correlation

6 Spearman rank correlation

7 Goodman and Kruskal τ for rows (given columns)

8 Goodman and Kruskal τ for columns (given rows)

9 uncertainty coefficient U (symmetric)

10 uncertainty Ur | c (rows)

11 uncertainty U c | r (columns)

12 optimal prediction λ (symmetric)

13 optimal prediction λ r  | c (rows)

14 optimal prediction λ c | r (columns)

15 optimal prediction λ r  | c (rows)

16 optimal prediction λ c | r   (columns)

17 test for linear trend in row probabilities if n_rows = 2. If n_rows is 
not 2, a test for linear trend in column probabilities if n_columns = 2.

18 Kruskal-Wallis test for no-row effect

19 Kruskal-Wallis test for no-column effect

20 kappa (square tables only)

Table 17-1: Row Statistics 
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If a statistic cannot be computed or if some value is not relevant for the computed 
statistic, the entry is NaN (Not a Number). The columns are as follows:

• 0—estimated statistic

• 1—standard error for any parameter value

• 2—standard error under the null hypothesis

• 3—t value for testing the null hypothesis

• 4—p-value of the test in column 3

In the McNemar tests, Column 0 contains the statistic, Column 1 contains the chi-
squared degrees of freedom, Column 3 contains the exact p-value (1 degree of 
freedom only), and Column 4 contains the chi-squared asymptotic p-value. The 
Kruskal-Wallis test is the same except no exact 
p-value is computed.

Discussion

The IMSL_CONTINGENCY function computes statistics associated with an r x c 
contingency table. The function computes the chi-squared test of independence, 
expected values, contributions to chi-squared, row and column marginal totals, some 
measures of association, correlation, prediction, uncertainty, the McNemar test for 
symmetry, a test for linear trend, the odds and the log odds ratio, and the kappa 
statistic (if the appropriate keywords are selected).

Notation

Let xij denote the observed cell frequency in the ij cell of the table and n denote the 
total count in the table. Let pij = pi·p·j denote the predicted cell probabilities under the 
null hypothesis of independence, where pi· and p·j are the row and column marginal 
relative frequencies. Next, compute the expected cell counts as eij = npij.

Also required in the following are auv and buv for u, where ν = 1, ..., n. Let (rs, cs) 
denote the row and column response of observation s. Then, auv = 1, 0, or –1, 

21 McNemar test of symmetry (square tables only)

22 McNemar one degree of freedom test of symmetry (square tables 
only)

Row Statistic

Table 17-1: Row Statistics  (Continued)
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depending on whether ru < rv , ru = rv , or ru > rv. The buv similarly defined in terms of 
the cs variables.

Chi-squared Statistic

For each cell in the table, the contribution to χ2 is given as (xij – eij)
2/eij. The Pearson 

chi-squared statistic (denoted χ2) is computed as the sum of the cell contributions to 
chi-squared. It has (r – 1) (c – 1)  degrees of freedom and tests the null hypothesis of 
independence, i.e., H0:pij = pi·p·j. The null hypothesis is rejected if the computed 
value of χ2 is too large.

The maximum likelihood equivalent of χ2, G2 is computed as follows: 

G2 is asymptotically equivalent to χ2 and tests the same hypothesis with the same 
degrees of freedom.

Measures Related to Chi-squared (Phi, Contingency 
Coefficient, and Cramer’s V)

There are three measures related to chi-squared that do not depend on sample size:

• phi,  

• contingency coefficient,  

• Cramer’s V,  

Since these statistics do not depend on sample size and are large when the hypothesis 
of independence is rejected, they can be thought of as measures of association and 
can be compared across tables with different sized samples. While both P and V have 
a range between 0.0 and 1.0, the upper bound of P is actually somewhat less than 1.0 
for any given table (see Kendall and Stuart 1979, p. 587). The significance of all three 
statistics is the same as that of the χ2 statistic, Chi_Sq_Test.

The distribution of the χ2 statistic in finite samples approximates a chi-squared 
distribution. To compute the exact mean and standard deviation of the χ2 statistic, 

G
2

2 xij ln xij npij⁄( )
i j,
∑–=

φ χ2
n⁄=

P χ2
n χ2

+( )⁄=

V χ2
n min r c,( )( )⁄=
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Haldane (1939) uses the multinomial distribution with fixed-table marginals. The 
exact mean and standard deviation generally differ little from the mean and standard 
deviation of the associated chi-squared distribution.

Standard Errors and p-values for Some Measures 
of Association

In Columns 1 through 4 of statistics, estimated standard errors and asymptotic p-
values are reported. Estimates of the standard errors are computed in two ways. The 
first estimate, in Column 1 of the array table_stats, is asymptotically valid for any 
value of the statistic. The second estimate, in Column 2 of the array, is only correct 
under the null hypothesis of no association. The z-scores in Column 3 of statistics are 
computed using this second estimate of the standard errors. The p-values in column 4 
are computed from this z-score. See Brown and Benedetti (1977) for a discussion and 
formulas for the standard errors in Column 2.

Measures of Association for Ranked Rows and Columns

The measures of association, φ, P, and V, do not require any ordering of the row and 
column categories. The IMSL_CONTINGENCY function also computes several 
measures of association for tables in which the row and column categories 
correspond to ranked observations. Two of these tests, the product moment 
correlation and the Spearman correlation, are correlation coefficients computed using 
assigned scores for the row and column categories. The cell indices are used for the 
product-moment correlation, while the average of the tied ranks of the row and 
column marginals is used for the Spearman rank correlation. Other scores are 
possible.

Gamma, Kendall’s τb, Stuart’s τc, and Somers’ D are measures of association that are 
computed like a correlation coefficient in the numerator. In all these measures, the 
numerator is computed as the “covariance” between the auv variables and buv 
variables defined above, i.e., as follows: 

Recall that auv and buv can take values –1, 0, or 1. Since the product auvbuv = 1 only if 
auv and buv are both 1 or both –1, it is easy to show that this “covariance” is twice the 
total number of agreements minus the number of disagreements, where a 
disagreement occurs when auvbuv = –1. 

Kendall’s τb is computed as the correlation between auv and buv variables (see 
Kendall and Stuart 1979, p. 593). In a rectangular table (r ≠ c), Kendall’s τb cannot be 
1.0 (if all marginal totals are positive). For this reason, Stuart suggested a 

auvbuv
v
∑

u
∑
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modification to the denominator of τ in which the denominator becomes the largest 
possible value of the “covariance.” This maximizing value is approximately n2m / (m 
– 1), where m = min(r, c). Stuart’s τc uses this approximate value in its denominator. 
For large n:

 

Gamma can be motivated in a slightly different manner. Because the “covariance” of 
the auv variables and the buv variables can be thought of as twice the number of 
agreements minus the disagreements, 2(A – D), where A is the number of agreements 
and D is the number of disagreements, Gamma is motivated as the probability of 
agreement minus the probability of disagreement, given that either agreement or 
disagreement occurred. This is shown as γ = (A – D)/(A + D). 

Two definitions of Somers’ D are possible, one for rows and a second for columns. 
Somers’ D for rows can be thought of as the regression coefficient for predicting auv 
from buv. Moreover, Somer’s D for rows is the probability of agreement minus the 
probability of disagreement, given that the column variable, buv, is not 0. Somers’ D 
for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found in 
Kendall and Stuart (1979, p. 592).

Measures of Prediction and Uncertainty

Optimal Prediction Coefficients: The measures in this section do not require any 
ordering of the row or column variables. They are based entirely upon probabilities. 
Most are discussed in Bishop et al. (1975, p. 385).

Consider predicting (or classifying) the column for a given row in the table. Under 
the null hypothesis of independence, choose the column with the highest column 
marginal probability for all rows. In this case, the probability of misclassification for 
any row is 1 minus this marginal probability. If independence is not assumed, then 
within each row, choose the column with the highest row-conditional probability. The 
probability of misclassification for the row becomes 1 minus this conditional 
probability.

Define the optimal prediction coefficient λc | r for predicting columns from rows as 
the proportion of the probability of misclassification that is eliminated because the 
random variables are not independent. It is estimated by: 

τc mτb m 1–( )⁄≈

λc r

1 p•m–( ) 1 pim
i
∑– 

 
 

–

1 p•m–
----------------------------------------------------------=
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where m is the index of the maximum estimated probability in the row (pim) or row 
margin (p·m). A similar coefficient is defined for predicting the rows from the 
columns. The symmetric version of the optimal prediction λ is obtained by summing 
the numerators and denominators of λr|c  and λc|r, then dividing. Standard errors for 
these coefficients are given in Bishop et al. (1975, p. 388).

A problem with the optimal prediction coefficients λ is that they vary with the 
marginal probabilities. One way to correct this is to use row-conditional probabilities. 
The optimal prediction λ* coefficients are defined as the corresponding λ coefficients 
in which first the row (or column) marginals are adjusted to the same number of 
observations. This yields: 

where i indexes the rows, j indexes the columns, and p j|i is the (estimated) probability 
of column j given row i. λ*

r|c is similarly defined.

Goodman and Kruskal τ: A second kind of prediction measure attempts to explain 
the proportion of the explained variation of the row (column) measure given the 
column (row) measure. Define the total variation in the rows as follows: 

Note that this is 1 / (2n) times the sums of squares of the auv variables.

With this definition of variation, the Goodman and Kruskal τ coefficient for rows is 
computed as the reduction of the total variation for rows accounted for by the 
columns, divided by the total variation for the rows. To compute the reduction in the 
total variation of the rows accounted for by the columns, note that the total variation 
for the rows within column j is defined as follows: 

The total variation for rows within columns is the sum of the qj variables. Consistent 
with the usual methods in the analysis of variance, the reduction in the total variation 
is given as the difference between the total variation for rows and the total variation 
for rows within the columns.

Goodman and Kruskal’s τ for columns is similarly defined. See Bishop et al. (1975, 
p. 391) for the standard errors.

λc r
*

maxj pj i maxj pj i
i
∑ 
 
 

–
i
∑

R maxj pj i
i
∑ 
 
 

–

------------------------------------------------------------------=

n 2⁄ xi•
2

i
∑ 
 
 

2( n )⁄–

qj x•j 2⁄ xij
2

i
∑ 
 
 

2( xi• )⁄–=
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Uncertainty Coefficients: The uncertainty coefficient for rows is the increase in the 
log-likelihood that is achieved by the most general model over the independence 
model, divided by the marginal log-likelihood for the rows. This is given by the 
following equation: 

The uncertainty coefficient for columns is similarly defined. The symmetric 
uncertainty coefficient contains the same numerator as Ur | c and Uc | r but averages 
the denominators of these two statistics. Standard errors for U are given in Brown 
(1983).

Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-
variance-type test that assumes the column variable is monotonically ordered. It tests 
the null hypothesis that no row populations are identical, using average ranks for the 
column variable. The Kruskal-Wallis statistic for columns is similarly defined. 
Conover (1980) discusses the Kruskal-Wallis test.

Test for Linear Trend: When there are two rows, it is possible to test for a linear 
trend in the row probabilities if it is assumed that the column variable is 
monotonically ordered. In this test, the probabilities for row 1 are predicted by the 
column index using weighted simple linear regression. This slope is given by: 

where: 

is the average column index. An asymptotic test that the slope is zero may then be 
obtained (in large samples) as the usual regression test of zero slope.

In two-column data, a similar test for a linear trend in the column probabilities is 
computed. This test assumes that the rows are monotonically ordered.

Kappa: Kappa is a measure of agreement computed on square tables only. In the 
kappa statistic, the rows and columns correspond to the responses of two judges. The 
judges agree along the diagonal and disagree off the diagonal. Let: 

U r c

xijlog xi•x•j nxij⁄( )
i j,
∑

xi•log xi• n⁄( )
i
∑

-----------------------------------------------------=

βˆ
x•j x1j x•j x1•– n⁄⁄( ) j j–( )

j
∑

x•j j j–( )
2

j
∑

-----------------------------------------------------------------------=

j x•j jn
j
∑=

p0 xii n⁄
i
∑=
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denote the probability that the two judges agree, and let 

denote the expected probability of agreement under the independence model. Kappa 
is then given by (p0 – pc)/(1 – pc).

McNemar Tests: The McNemar test is a test of symmetry in a square contingency 
table. In other words, it is a test of the null hypothesis H0:θij = θji . The multiple 
degrees-of-freedom version of the McNemar test with r(r – 1)/2 degrees of freedom 
is computed as follows: 

The single degree-of-freedom test assumes that the differences, xij – xji , are all in one 
direction. The single degree-of-freedom test is more powerful than the multiple 
degrees-of-freedom test when this is the case. The test statistic is given as follows: 

The exact probability can be computed by the binomial distribution.

Examples

Example 1

The following example, taken from Kendall and Stuart (1979), involves the distance 
vision in the right and left eyes. Output contains only the p-value.

table = [[821,116,72,43], [112,494,151,34], $
[85,145,583,106], [35,27,87,331]]

print, 'P-Value           ', IMSL_CONTINGENCY(table)

Example 2

The following example, which illustrates the use of Kappa and McNemar tests, uses 
the same distance vision data as the previous example. The available statistics are 
obtained using keywords. First, a procedure is defined to output the results.

pc eiin⁄
i
∑=

xij xji–( )2

xij xji+( )
-------------------------

i j<
∑

xij xji–( )
i j<
∑

 
 
 
  2

xij xji+( )
i j<
∑

------------------------------------------------
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.RUN
PRO print_results, chi_sq_test, lrt, expected, chi_sq_contrib, $

chi_sq_stats, table_stats
PRINT, 'Pearson Chi_Squared Statistics:'
PM, chi_sq_test(0), Title = 'Degrees of Freedom'
PM, chi_sq_test(1), Title = 'Chi-Squared'
PM, chi_sq_test(2), Title = 'P-Value'
PRINT
PRINT, 'Likelihood Ratio G-Squared ' + 'Statistics:'
PM, lrt(0), Title = 'Degrees of Freedom'
PM, lrt(1), Title = 'G-Squared'
PM, lrt(2), Title = 'P-Value'
PRINT
PM, expected, Title = 'Expected Values:'
PRINT
PM, chi_sq_contrib, Title = 'Contributions to Chi-squared:'
PRINT
PM, chi_sq_stats, Title = 'Chi-square Statistics:'
PRINT
PM, table_stats, Title = 'Table Statistics:'
END

table = [[821,116,72,43], [112,494,151,34], [85,145,583,106], $
[35,27,87,331]]

p_value = IMSL_CONTINGENCY(table, $
Chi_Sq_Test    = chi_sq_test, $
Lrt            = lrt, $
Expected       = expected, $
Chi_Sq_Contrib = chi_sq_contrib, $
Chi_Sq_Stats   = chi_sq_stats, $
Table_Stats    = table_stats)

print_results, chi_sq_test, lrt, expected, chi_sq_contrib, $
chi_sq_stats, table_stats

Pearson Chi_Squared Statistics:
Degrees of Freedom

  9.00000
Chi-Squared

 3304.37
P-Value

 0.00000
Likelihood Ratio G-Squared Statistics:
Degrees of Freedom

 9.00000
G-Squared

 2781.02
P-Value

 0.00000
Expected Values:
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 341.689  256.916  298.491  155.904 1053.00
 253.752  190.796  221.671  115.780  782.000
 289.771  217.879  253.136  132.215  893.000
 166.788  125.408  145.702  76.1012  514.000
 1052.00  791.000  919.000  480.000  3242.00

Contributions to Chi-squared:
 672.363  81.7416  152.696  93.7612  1000.56
 74.7802  481.835  26.5189  68.0768  651.211
 163.661  20.5287  429.849  15.4625  629.501
 91.8743  66.6263  10.8183  853.777  1023.10
 1002.68  650.732  619.882  1031.08  3304.37

Chi-square Statistics:
      9.00278
      4.24016
      1.00957
     0.710467
     0.582877

Table Statistics:
0.775704 0.0122983 0.0148632  52.1897  0.00000
0.642887 0.0122028 0.0123183  52.1897  0.00000
0.629265 0.0120573       NaN  52.1897  0.00000
0.641831 0.0122390 0.0122980  52.1897  0.00000
0.643945 0.0122152 0.0123385  52.1897  0.00000
0.692588 0.0127669 0.0172000  40.2669  0.00000
0.693882 0.0126566 0.0126942  54.6614  0.00000
0.341952 0.0122570 NaN  NaN  NaN
0.342993 0.0122165 NaN  NaN  NaN
0.317123 0.0110281 NaN  NaN  NaN
0.317811 0.0110453 NaN  NaN  NaN
0.316437 0.0110294 NaN  NaN  NaN
0.537337 0.0123718 NaN  NaN  NaN
0.537443 0.0125727 NaN  NaN  NaN
0.537232 0.0125851 NaN  NaN  NaN
0.550648 0.0135695 NaN  NaN  NaN
0.563587 0.0126838 NaN  NaN  NaN
     NaN NaN NaN  NaN  NaN
 1561.49 3.00000 NaN  NaN  0.00000
 1563.03 3.00000 NaN  NaN  0.00000
0.574419 0.0110873 0.0105673  54.3583  0.00000
 4.76249   6.00000       NaN      NaN 0.574617
0.948667   1.00000       NaN 0.345904 0.330059

Errors

Warning Errors

STAT_DF_GT_30—The degrees of freedom for Chi_Sq_Test are greater than 30. The 
exact mean, standard deviation, and the normal distribution function should be used.
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STAT_EXP_VALUES_TOO_SMALL—Some expected values are less than #. Some 
asymptotic p-values may not be good.

STAT_PERCENT_EXP_VALUES_LT_5—Twenty percent of the expected values are 
calculated less than 5.

Version History

6.4 Introduced
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IMSL_EXACT_ENUM

The IMSL_EXACT_ENUM function computes exact probabilities in a two-way 
contingency table using the total enumeration method.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_EXACT_ENUM(table [, /DOUBLE] [, ERROR_CHK=variable] 
[, P_VALUE=variable] [, PROB_TABLE=variable] )

Return Value

The p-value for independence of rows and columns. The p-value represents the 
probability of a more extreme table where “extreme” is taken in the Neyman-Pearson 
sense. The p-value is “two-sided”.

Arguments

table

Two-dimensional array containing the observed counts in the contingency table.

Keywords

DOUBLE

If present and nonzero, double precision is used.

ERROR_CHK

Named variable into which the sum of the probabilities of all tables with the same 
marginal totals is stored. Keyword Error_Chk should have a value of 1.0. Deviation 
from 1.0 indicates numerical error.
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P_VALUE

Named variable into which the p-value for independence of rows and columns is 
stored. The p-value represents the probability of a more extreme table where 
“extreme” is taken in the Neyman-Pearson sense. The p-value is “two-sided”.

The p-value is also returned in functional form (see Returned Value). 

A table is more extreme if its probability (for fixed marginals) is less than or equal to 
Prob_Table.

PROB_TABLE

Named variable into which the probability of the observed table occurring, given that 
the null hypothesis of independent rows and columns is true, is stored.

Discussion

The IMSL_EXACT_ENUM function computes exact probabilities for an r by c 
contingency table for fixed row and column marginals (a marginal is the number of 
counts in a row or column), where r = N_ELEMENTS(table(*,0)) and c = 
N_ELEMENTS(table(0,*)). Let fij denote the count in row i and column j of a table, 
and let fi• and f•j denote the row and column marginals. Under the hypothesis of 
independence, the (conditional) probability of the fixed marginals of the observed 
table is given by: 

where f•• is the total number of counts in the table. Pf  corresponds to output keyword 
Prob_Table.

A more extreme table X is defined in the probablistic sense as more extreme than the 
observed table if the conditional probability computed for table X (for the same 
marginal sums) is less than the conditional probability computed for the observed 
table. Note that this definition can be considered “two-sided” in the cell counts.

Because IMSL_EXACT_ENUM uses total enumeration in computing the probability 
of a more extreme table, the amount of computer time required increases very rapidly 
with the size of the table. Tables with a large total count f•• or a large value of r by c 
should not be analyzed using IMSL_EXACT_ENUM. In such cases, try using 
IMSL_EXACT_NETWORK.
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Example

In this example, the exact conditional probability for the 2 by 2 contingency table is 
computed as follows: 

table = [[8, 8], [12, 2]]
p = IMSL_EXACT_ENUM(table, P_Value=pv, Prob_Table=pt, 
Error_Chk=ec)
PRINT, 'p-value =', p
p-value = 0.0576712

Version History

6.4 Introduced

8 12

8 2
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IMSL_EXACT_NETWORK

The IMSL_EXACT_NETWORK function computes Fisher exact probabilities and a 
hybrid approximation of the Fisher exact method for a two-way contingency table 
using the network algorithm.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_EXACT_NETWORK(table [, APPROX_PARAMS=array] 
[, /DOUBLE] [, /NO_APPROX] [, P_VALUE=variable] 
[, PROB_TABLE=variable] [, WK_PARAMS=array])

Return Value

The p-value for independence of rows and columns. The p-value represents the 
probability of a more extreme table where “extreme” is taken in the Neyman-Pearson 
sense. The p-value is “two-sided”.

Arguments

table

Two-dimensional array containing the observed counts in the contingency table.

Keywords

APPROX_PARAMS

One-dimensional array of size 3. Approx_Params(0) is the expected value used in the 
hybrid approximation to Fisher’s exact test algorithm for deciding when to use 
asymptotic probabilities when computing path lengths. Approx_Params(1) is the 
percentage of remaining cells that must have estimated expected values greater than 
Approx_Params(0) before asymptotic probabilities can be used in computing path 
lengths.  Approx_Params(2) is the minimum cell estimated value allowed for 
asymptotic chi-squared probabilities to be used.
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Asymptotic probabilities are used in computing path lengths whenever 
Approx_Params(1) or more of the cells in the table have estimated expected values of 
Approx_Params(0) or more, with no cell having expected value less than 
Approx_Params(2). See the Discussion section for details.

Defaults: Approx_Params(0) = 5.0

 Approx_Params(1) = 80.0

 Approx_Params(2) = 1.0

Note
These defaults correspond to the “Cochran” condition.

DOUBLE

If present and nonzero, double precision is used.

NO_APPROX

If present and nonzero, the Fisher exact test is used and Approx_Param is ignored.

P_VALUE

Named variable into which the p-value for independence of rows and columns is 
stored. The p-value represents the probability of a more extreme table where 
“extreme” is in the Neyman-Pearson sense. The P_Value is “two-sided”. The p-value 
is also returned in functional form (see Returned Value). 

A table is more extreme if its probability (for fixed marginals) is less than or equal to 
Prob_Table.

PROB_TABLE

Named variable into which the probability of the observed table occurring given that 
the null hypothesis of independent rows and columns is true is stored.

WK_PARAMS

One-dimensional array of size 3. The network algorithm requires a large amount of 
workspace. Some of the workspace requirements are well-defined, while most of the 
workspace requirements can only be estimated. The estimate is based primarily on 
table size.

The IMSL_EXACT_ENUM function allocates a default amount of workspace 
suitable for small problems. If the algorithm determines that this initial allocation of 
IDL Analyst Reference Guide IMSL_EXACT_NETWORK
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workspace is inadequate, the memory is freed, a larger amount of memory allocated 
(twice as much as the previous allocation), and the network algorithm is re-started. 
The algorithm allows for up to Wk_Params(2) attempts to complete the algorithm.

Because each attempt requires computer time, it is suggested that Wk_Params(0) and 
Wk_Params(1) be set to some large numbers (like 1,000 and 30,000) if the problem to 
be solved is large. It is suggested that Wk_Params(1) be 30 times larger than 
Wk_Params(0). Although IMSL_EXACT_ENUM will eventually work its way up to 
a large enough memory allocation, it is quicker to allocate enough memory initially.

The known (well-defined) workspace requirements are as follows: Define f•• = ΣΣfij 
equal to the sum of all cell frequencies in the observed table, nt = f•• + 1, mx = max 
(n_rows, n_columns), mn = min (n_rows, n_columns), t1 = max (800 + 7mx, (5 + 
2mx) (n_rows + n_columns + 1) ), and t2 = max(400 + mx, + 1, n_rows + n_columns 
+ 1) where n_rows = N_ELEMENTS(table(*,0)) and n_columns = 
N_ELEMENTS(table(0,*)). 

The following amount of integer workspace is allocated: 3mx + 2mn + t1.

The following amount of real workspace is allocated: nt + t2.

The remainder of workspace that is required must be estimated and allocated based 
on Wk_Params(0) and Wk_Params(1). The amount of integer workspace allocated is 
6n (Wk_Params(0) + Wk_Params(1)). The amount of real workspace allocated is n 
(6*Wk_Params(0) + 2* Wk_Params(1)). Variable n is the index for the attempt, 1 < n 
≤ Wk_Params(2).

Defaults: Wk_Params(0) = 100

 Wk_Params(1) = 3000

 Wk_Params(2) = 10

Discussion

The IMSL_EXACT_NETWORK function computes Fisher exact probabilities or a 
hybrid algorithm approximation to Fisher exact probabilities for an r by c 
contingency table with fixed row and column marginals (a marginal is the number of 
counts in a row or column), where r = n_rows and c = n_columns. Let fij denote the 
count in row i and column j of a table, and let fi and f•j denote the row and column 
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marginals. Under the hypothesis of independence, the (conditional) probability of the 
fixed marginals of the observed table is given by: 

where f•• is the total number of counts in the table. Pf  corresponds to output keyword 
Prob_Table.

A “more extreme” table X is defined in the probablistic sense as more extreme than 
the observed table if the conditional probability computed for table X (for the same 
marginal sums) is less than the conditional probability computed for the observed 
table. Note that this definition can be considered “two-sided” in the cell counts.

Example

This example demonstrates various methods of computing chi-squared p-value with 
respect to accuracy. As seen in the output of this example, the Fisher exact probability 
and the usual asymptotic chi-squared probability (generated using 
IMSL_CONTINGENCY) can be different.

.RUN
PRO print_results, p, p2, p3, p4

PRINT, 'Asymptotic Chi-Squared p-value'
PRINT, 'p-value =', p
PRINT, 'Network Algorithm with Approximation'
PRINT, 'p-value =', p2
PRINT, 'Network Algorithm without Approximation'
PRINT, 'p-value =', p3
PRINT, 'Total Enumeration Method'
PRINT, 'p-value =', p4

END

table = TRANSPOSE([[20, 20, 0, 0, 0], [10, 10, 2, 2, 1], $
[20, 20, 0, 0, 0]])

p  = IMSL_CONTINGENCY(table)
p2 = IMSL_EXACT_NETWORK(table)
p3 = IMSL_EXACT_NETWORK(table, /NO_APPROX)
p4 = IMSL_EXACT_ENUM(table)
print_results, p, p2, p3, p4

Asymptotic Chi-Squared p-value
p-value =    0.0322604
Network Algorithm with Approximation
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p-value =    0.0601165
Network Algorithm without Approximation
p-value =    0.0598085
Total Enumeration Method
p-value =    0.0597294

Errors

Warning Errors

STAT_HASH_TABLE_ERROR_2—The value “ldkey” = # is too small. “ldkey” is 
calculated as Wk_Params(0)*pow(10, N_Attempts−1) ending this execution attempt.

STAT_HASH_TABLE_ERROR_3—The value “ldstp” = # is too small. “ldstp” is 
calculated as Wk_Params(1)*pow(10, N_Attempts−1) ending this execution attempt.

Fatal Errors

STAT_HASH_TABLE_ERROR_1—The hash table key cannot be computed because 
the largest key is larger than the largest representable integer. The algorithm cannot 
proceed.

Version History

6.4 Introduced
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IMSL_CAT_GLM

The IMSL_CAT_GLM function analyzes categorical data using logistic, Probit, 
Poisson, and other generalized linear models.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CAT_GLM(n_class, n_continuous, model, x 
[, CASE_ANALYSIS=variable] [, CLASS_VALS=variable] 
[, COVARIANCES=variable] [, COEF_STAT=variable] 
[, CRITERION=variable] [, /DOUBLE] [, EPS=value] [, IFIX=value] 
[, IFREQ=value] [, INDICIES_EFFECTS=array] [, INIT_EST=array] 
[, IPAR=value] [, ITMAX=value] [, LAST_STEP=variable] 
[, MAX_CLASS=value] [, MEANS=variable] [, N_CLASS_VALS=variable] 
[, /NO_INTERCEPT] [, OBS_STATUS=variable] [, VAR_EFFECTS=array])

Return Value

An integer value indicating the number of estimated coefficients in the model.

Arguments

model

Model used to analyze the data. The six models are listed in Table 17-2.

model Relationship* PDF of Response Variable

0 Exponential Poisson

1 Logistic Negative Binomial

2 Logistic Logarithmic

3 Logistic Binomial

Table 17-2: Six Models
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Note
The lower bound of the response variable is 1 for model = 3 and is 0 for all other 
models. See the Discussion section for more information about these models.

n_class

Number of classification variables.

n_continuous

Number of continuous variables.

x

Two-dimensional array of size n_observations by (n_class + n_continuous) + m 
containing data for the independent variables, dependent variable, and optional 
parameters, where n_observations is the number of observations.

The columns must be ordered such that the first n_class columns contain data for the 
class variables, the next n_continuous columns contain data for the continuous 
variables, and the next column contains the response variable. The final (and 
optional) m – 1 columns contain optional parameters, see keywords Ifreq, Ifix, and 
Ipar.

Keywords

CASE_ANALYSIS

Named variable into which a two-dimensional array of size n_observations by 5 
containing the case analysis is stored.

• 0—Predicted mean for the observation if model = 0. Otherwise, contains the 
probability of success on a single trial.

4 Probit Binomial

5 Log-log Binomial

* Relationship between the parameter, θ or λ, and a linear model of 
the explanatory variables, X β.

model Relationship* PDF of Response Variable

Table 17-2: Six Models
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• 1—The residual.

• 2—The estimated standard error of the residual.

• 3—The estimated influence of the observation.

• 4—The standardized residual.

Case statistics are computed for all observations except where missing values prevent 
their computation. 

CLASS_VALS

Named variable into which a one-dimensional array of length: 

containing the distinct values of the classification variables in ascending order is 
stored. The first N_Class_Vals(0) elements of Class_Vals contain the values for the 
first classification variables, the next N_Class_Vals(1) elements contain the values for 
the second classification variable, etc. 

COVARIANCES

Named variable into which a two-dimensional array of size n_coefficients by 
n_coefficients containing the estimated asymptotic covariance matrix of the 
coefficients is stored. For Itmax = 0, this is the Hessian computed at the initial 
parameter estimates.

COEF_STAT

Named variable into which a two-dimensional array of size n_coefficients by 4 
containing the parameter estimates and associated statistics is stored.

• 0—Coefficient Estimate.

• 1—Estimated standard deviation of the estimated coefficient.

• 2—Asymptotic normal score for testing that the coefficient is zero.

• 3—The p-value associated with the normal score in column 2.

CRITERION

Named variable into which the optimized criterion is stored. The criterion to be 
maximized is a constant plus the log-likelihood.

N_Class_Vals i( )
i 0=

n_class 1–

∑
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DOUBLE

If present and nonzero, double precision is used.

EPS

Convergence criterion. Convergence is assumed when maximum relative change in 
any coefficient estimate is less than Eps from one iteration to the next or when the 
relative change in the log-likelihood, criterion, from one iteration to the next is less 
than Eps/100.0. Default: Eps = 0.001

IFIX

Column number Ifix in x containing a fixed parameter for each observation that is 
added to the linear response prior to computing the model parameter. The ‘fixed’ 
parameter allows one to test hypothesis about the parameters via the log-likelihoods.

IFREQ

Column number Ifreq in x containing the frequency of response for each observation.

INDICIES_EFFECTS

One-dimensional index array of length Var_Effects(0) + Var_Effects(1) + ... + 
Var_Effects(n_effects - 1). The first Var_Effects(0) elements give the column numbers 
of x for each variable in the first effect. The next Var_Effects(1) elements give the 
column numbers for each variable in the second effect. The last Var_Effects(n_effects 
- 1) elements give the column numbers for each variable in the last effect. Keywords 
Indicies_Effects and Var_Effects must be used together.

INIT_EST

One-dimensional array of length n_coef_input containing initial estimates of 
parameters (n_coef_input can be completed by IMSL_REGRESSORS). By default, 
unweighted linear regression is used to obtain initial estimates.

IPAR

Column number Ipar in x containing the value of the known distribution parameter 
for each observation, where x(i, Ipar) is the known distribution parameter associated 
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with the i-th observation. The meaning of the distributional parameter depends upon 
model as shown in Table 17-3:

Default: When model ≠ 2, each observation is assumed to have a parameter 
value of 1. When model = 2, this parameter is not referenced.

ITMAX

Maximum number of iterations. Use Itmax = 0 to compute Hessian, stored in 
Covariances, and the Newton step, stored in Last_Step, at the initial estimates (The 
initial estimates must be input. Use keyword Init_Est). Default: Itmax = 30

LAST_STEP

Named variable into which an one-dimensional array of length n_coefficients 
containing the last parameter updates (excluding step halvings) is stored. For Itmax = 
0, Last_Step contains the inverse of the Hessian times the gradient vector, all 
computed at the initial parameter estimates.

MAX_CLASS

An upper bound on the sum of the number of distinct values taken on by each 
classification variable. Default: Max_Class = n_observations by n_class

MEANS

Named variable into which an one-dimensional array containing the means of the 
design variables is stored. The array is of length n_coefficients if keyword 
No_Intercept is used, and n_coefficients − 1 otherwise.

model Parameter Meaning of parameter (i)(Ipar)

0 E ln (E) is a fixed intercept to be included in the linear 
predictor (i.e., the offset).

1 S Number of successes required for the negative 
binomial distribution.

2 – Not used for this model.

3-5 N Number of trials required for the binomial 
distribution.

Table 17-3: Distributional Parameters
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N_CLASS_VALS

Named variable into which an one-dimensional array of length n_class containing the 
number of values taken by each classification variable is stored; the i-th classification 
variable has N_Class_Vals(i) distinct values.

NO_INTERCEPT

If present and nonzero, there is no intercept in the model. By default, the intercept is 
automatically included in the model.

OBS_STATUS

Named variable into which an one-dimensional array of length n_observations 
indicating which observations are included in the extended likelihood is stored.

• 0—Observation i is in the likelihood

• 1—Observation i cannot be in the likelihood because it contains at least one 
missing value in x.

• 2—Observation i is not in the likelihood. Its estimated parameter is infinite.

Remarks

1. Dummy variables are generated for the classification variables as follows: An 
ascending list of all distinct values of each classification variable is obtained 
and stored in Class_Vals. Dummy variables are then generated for each but the 
last of these distinct values. Each dummy variable is zero unless the 
classification variable equals the list value corresponding to the dummy 
variable, in which case the dummy variable is one. See input keyword 
Dummy_Method = 1 in routine IMSL_REGRESSORS (Chapter 2, 
Regression).

2.  The “product” of a classification variable with a covariate yields dummy 
variables equal to the product of the covariate with each of the dummy 
variables associated with the classification variable.

3. The “product” of two classification variables yields dummy variables in the 
usual manner. Each dummy variable associated with the first classification 
variable multiplies each dummy variable associated with the second 
classification variable. The resulting dummy variables are such that the index 
of the second classification variable varies fastest.
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VAR_EFFECTS

One-dimensional array of length n_effects containing the number of variables 
associated with each effect in the model, where n_effects is the number of effects 
(source of variation) in the model. Keywords Var_Effects and Indicies_Effects must 
be used together.

Discussion

The IMSL_CAT_GLM function uses iteratively re-weighted least squares to compute 
(extended) maximum likelihood estimates in some generalized linear models 
involving categorized data. One of several models, including the probit, logistic, 
Poisson, logarithmic, and negative binomial models, may be fit.

Note that each row vector in the data matrix can represent a single observation; or, 
through the use of keyword Ifreq, each row can represent several observations. Also 
note that classification variables and their products are easily incorporated into the 
models via the usual regression-type specifications. The models available in 
IMSL_CAT_GLM are listed in Table 17-4.

Model PDF of the Response 
Variable

Parameterization

0 f (y) = (λy exp (−λ) ) / y! λ = N x exp (ω + η)

1

  

2

  

3

  

Table 17-4: IMSL_CAT_GLM Models 
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Here, Φ denotes the cumulative normal distribution, N and S are known distribution 
parameters specified for each observation via the keyword Ipar, and ω is an optional 
fixed parameter of the linear response, γi, specified for each observation. (If keyword 
Ifix is not used, then ω is taken to be 0.) Since the log-log model (model = 5) 
probabilities are not symmetric with respect to 0.5, quantitatively, as well as 
qualitatively, different models result when the definitions of “success” and “failure” 
are interchanged in this distribution. In this model and all other models involving θ, θ 
is taken to be the probability of a “success”.

Computational Details

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

2. Estimates of the means of the “independent” or design variables are computed. 
The frequency or the observation in all but binomial distribution models is 
taken from vector frequencies. In binomial distribution models, the frequency 
is taken as the product of n = parameter (i) and frequencies (i). Means are 
computed as: 

4

 

θ = Φ (ω + η)

5

 

θ = 1 − exp (−exp (ω + η) )

Model PDF of the Response 
Variable Parameterization

Table 17-4: IMSL_CAT_GLM Models  (Continued)
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3. By default, unless keyword Init_Est is used, initial estimates of the coefficients 
are obtained (based upon the observation intervals) as multiple regression 
estimates relating transformed observation probabilities to the observation 
design vector. For example, in the binomial distribution models, θ may be 
estimated as:

 

and, when model = 3, the linear relationship is given by:

 

while if model = 4, Φ−1 (θ) = Xβ. When computing initial estimates, standard 
modifications are made to prevent illegal operations such as division by zero. 
Regression estimates are obtained at this point, as well as later, by use of 
IMSL_MULTIREGRESS (Chapter 2, Regression).

4. Newton-Raphson iteration for the maximum likelihood estimates is 
implemented via iteratively re-weighted least squares. Let:

 

denote the log of the probability of the i-th observation for coefficients β. In the 
least-squares model, the weight of the i-th observation is taken as the absolute 
value of the second derivative of: 

with respect to: 

(times the frequency of the observation), and the dependent variable is taken as 
the first derivative Ψ with respect to γi, divided by the square root of the weight 
times the frequency. The Newton step is given by: 

where all derivatives are evaluated at the current estimate of γ and 
βn+1 = β – ∆β. This step is computed as the estimated regression coefficients in 
the least-squares model. Step halving is used when necessary to ensure a 
decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any coefficient 
update from one iteration to the next is less than Eps or when the relative 
change in the log-likelihood from one iteration to the next is less than Eps/100. 
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Convergence is also assumed after Itmax iterations or when step halving leads 
to a step size of less than 0.0001 with no increase in the log-likelihood.

6. Residuals are computed according to methods discussed by Pregibon (1981). 
Let li (γi) denote the log-likelihood of the i-th observation evaluated at γi. Then, 
the standardized residual is computed as: 

where:

 

is the value of γi when evaluated at the optimal:

 

The denominator of this expression is used as the “standard error of the 
residual” while the numerator is “raw” residual. Following Cook and Weisberg 
(1982), the influence of the i-th observation is assumed to be:

 

This is a one-step approximation to the change in estimates when the i-th 
observation is deleted. Here, the partial derivatives are with respect to β.

Programming Notes

1. Indicator (dummy) variables are created for the classification variables using 
IMSL_REGRESSORS (Chapter 2, Regression) using keyword 
Dummy_Method = 1.

2. To enhance precision, “centering” of covariates is performed if the model has 
an intercept and n_observations − Nmissing > 1. In doing so, the sample means 
of the design variables are subracted from each observation prior to its 
inclusion in the model. On convergence, the intercept, its variance, and its 
covariance with the remaining estimates are transformed to the uncentered 
estimate values.

3. Two methods for specifying a binomial distribution model are possible. In the 
first method, Ifreq contains the frequency of the observation while x(i, irt-1) is 
0 or 1 depending upon whether the observation is a success or failure. In this 
case, x(i, n_class +  n_ continuous) is always 1. The model is treated as 
repeated Bernoulli trials, and interval observations are not possible. A second 

ri
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method for specifying binomial models is to use to represent the number of 
successes in parameter (i) trials. In this case, frequencies will usually be 1.

Example

This example is from Prentice (1976) and involves mortality of beetles after five 
hours exposure to eight different concentrations of carbon disulphide. The table 
below lists the number of beetles exposed (N) to each concentration level of carbon 
disulphide (x, given as log dosage) and the number of deaths which result (y). The 
data is shown in Table 17-5:

The number of deaths at each concentration level are fitted as a binomial response 
using logit (model = 3), probit (model = 4), and log-log (model = 5) models. Note that 
the log-log model yields a smaller absolute log likelihood (14.81) than the logit 
model (18.78) or the probit model (18.23). This is to be expected since the response 
curve of the log-log model has an asymmetric appearance, but both the logit and 
probit models are symmetric about θ = 0.5.

.RUN
PRO print_results, cs, means, ca, crit, ls, cov

PRINT, ' Coefficient Satistics'
PRINT, '                  Standard   Asymptotic   ', $

'Asymptotic'
PRINT, '  Coefficient        Error  Z-statistic      ', $

'P-value'
PM, cs, FORMAT = '(4F13.2)' 

Log Dosage Number of Beetles 
Exposed Number of Deaths

1.690 59 6

1.724 60 13

1.755 62 18

1.784 56 28

1.811 63 52

1.836 59 53

1.861 62 61

1.883 60 60

Table 17-5: Beetle Mortality
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PRINT
PRINT, 'Covariate Means = ', means, FORMAT = '(A18, F6.3)'
PRINT
PRINT, '                           Case Analysis'
PRINT, '                            Residual            ', $

'Standardized'
PRINT, '   Predicted    Residual  Std. Error    Leverage', $

'    Residual'
PM, ca, FORMAT = '(5F12.3)'
PRINT
PRINT, 'Log-Likelihood = ', crit, FORMAT = '(A18, F9.5)' 
PRINT
PRINT, '         Last Step'
PRINT, ls
PRINT
PRINT, 'Asymptotic Coefficient Covariance'
PM, cov, FORMAT = '(2F12.4)'

END

model  =  3
nobs  =  8
x  =  ([[1.690, 1.724, 1.755, 1.784, 1.811, 1.836, 1.861, 1.883],$

[6, 13, 18, 28, 52, 53, 61, 60], $
[59, 60, 62, 56, 63, 59, 62, 60]])

ncoef  =  IMSL_CAT_GLM(0, 1,  model,  x, Ipar = 2, Eps = 1.0e-3, $
Coef_Stat = cs, Covariances = cov, $
Criterion = crit, Means = means, $
Case_Analysis = ca, Last_Step = ls, Obs_Status = os)

print_results, cs, means, ca, crit, ls, cov

              Coefficient Satistics
                  Standard   Asymptotic   Asymptotic
  Coefficient        Error  Z-statistic      P-value
       -60.76         5.21       -11.66         0.00
        34.30         2.92        11.76         0.00

Covariate Means =  1.793

                           Case Analysis
                            Residual            Standardized
   Predicted    Residual  Std. Error    Leverage    Residual
       0.058       2.593       1.792       0.267       1.448
       0.164       3.139       2.871       0.347       1.093
       0.363      -4.498       3.786       0.311      -1.188
       0.606      -5.952       3.656       0.232      -1.628
       0.795       1.890       3.202       0.269       0.590
       0.902      -0.195       2.288       0.238      -0.085
       0.956       1.743       1.619       0.198       1.077
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       0.979       1.278       1.119       0.138       1.143

 Log-Likelihood = -18.77818

         Last Step
 -3.67824e-08  1.04413e-05

Asymptotic Coefficient Covariance
     27.1368    -15.1243
    -15.1243      8.5052

Errors

Warning Errors

STAT_TOO_MANY_HALVINGS—Too many step halvings. Convergence is assumed.

STAT_TOO_MANY_ITERATIONS—Too many iterations. Convergence is assumed.

Fatal Errors

STAT_TOO_FEW_COEF—Init_Est is used and “n_coef_input” = #. The model 
specified requires # coefficients.

STAT_MAX_CLASS_TOO_SMALL—The number of distinct values of the classification 
variables exceeds “Max_Class” = #.

STAT_INVALID_DATA_8—“N_Class_Values(#)” = #. The number of distinct values 
for each classification variable must be greater than one.

STAT_NMAX_EXCEEDED—The number of observations to be deleted has exceeded 
“lp_max” = #. Rerun with a different model or increase the workspace.

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_CAT_GLM
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Chapter 18

Nonparametric 
Statistics
This section contains the following topics:
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . .  834 Nonparametric Statistics Routines . . . . . .  835
IDL Analyst Reference Guide 833



834 Chapter 18: Nonparametric Statistics
Overview

This chapter contains nonparametric statistics routines. Much about nonparametric 
statistics is also included in other chapters. Topics that can be found in other chapters 
are:

• Nonparametric measures of location and scale (Chapter 13, “Basic Statistics”)

• Nonparametric measures in a contingency table (Chapter 17, “Categorical and 
Discrete Data Analysis”)

• Measures of correlation in a contingency table (Chapter 15, “Correlation and 
Covariance”)

• Tests of goodness of fit and randomness (Chapter 19, “Goodness of Fit”)

Missing Values

Most routines in this chapter automatically handle missing values (NaN — not a 
number).

Tied Observations

Many of the routines described in this chapter contain a keyword FUZZ in the input. 
Observations that are within FUZZ of each other in absolute value are said to be tied. 
Moreover, in some routines, an observation within FUZZ of some value is said to be 
equal to that value. In the “IMSL_WILCOXON” on page 839, for example, such 
observations are eliminated from the analysis. If FUZZ = 0.0, observations must be 
identically equal before they are considered to be tied. Other positive values of FUZZ 
allow for numerical imprecision or roundoff error.
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Nonparametric Statistics Routines

One Sample Tests—Nonparametric Statistics

IMSL_SIGNTEST—Sign test. 

IMSL_WILCOXON—Wilcoxon rank sum test.

IMSL_NCTRENDS—Noehter’s test for cyclical trend. 

IMSL_CSTRENDS—Cox and Stuarts’ sign test for trends in location and dispersion. 

IMSL_TIE_STATS—Tie statistics. 

Two or More Samples Tests—Nonparametric 
Statistics

IMSL_KW_TEST—Kruskal-Wallis test. 

IMSL_FRIEDMANS_TEST—Friedman’s test. 

IMSL_COCHRANQ—Cochran's Q test. 

IMSL_KTRENDS—K-sample trends test. 
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IMSL_SIGNTEST

The IMSL_SIGNTEST function performs a sign test.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SIGNTEST(x [, /DOUBLE] [, N_POS_DEV=value] 
[, N_ZERO_DEV=value] [, PERCENTAGE=value] [, PERCENTILE=value] )

Return Value

Binomial probability of N_Pos_Dev or more positive differences in 
N_ELEMENTS(x) – N_Zero_Dev trials. Call this value probability. If no option is 
chosen, the null hypothesis is that the median equals 0.0.

Arguments

x

One-dimensional array containing the input data.

Keywords

DOUBLE

If present and nonzero, double precision is used.

N_POS_DEV

Number of positive differences x(j – 1) – Percentile, for 
j = 1, 2, ..., N_ELEMENTS(x).

N_ZERO_DEV

Number of zero differences (ties) x(j – 1) – Percentile, for 
j = 1, 2, ..., N_ELEMENTS(x).
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PERCENTAGE

Scalar value in the range (0,1). Keyword Percentage is the 100 x Percentage 
percentile of the population. Default: Percentage = 0.5

PERCENTILE

Hypothesized percentile of the population from which x was drawn. Default: 
Percentile = 0.0

Discussion

The IMSL_SIGNTEST function tests hypotheses about the proportion p of a 
population that lies below a value q, where p corresponds to keyword Percentage and 
q corresponds to keyword Percentile. In continuous distributions, this can be a test 
that q is the 100 p-th percentile of the population from which x was obtained. To carry 
out testing, IMSL_SIGNTEST tallies the number of values above q in N_Pos_Dev. 
The binomial probability of N_Pos_Dev or more values above q is then computed 
using the proportion p and the sample size N_ELEMENTS (x) (adjusted for the 
missing observations and ties).

Hypothesis testing is performed as follows for the usual null and alternative 
hypotheses: 

• H0: Pr(X ≤ q) ≥ p (the p-th quantile is at least q) 
H1: Pr(X < q) < p 
Reject H0 if probability is less than or equal to the significance level.

• H0: Pr(X ≤ q) ≤ p (the p-th quantile is at least q) 
H1: Pr(X < q) > p 
Reject H0 if probability is greater than or equal to 1 minus the significance 
level.

• H0: Pr(X = q) = p (the p-th quantile is q) 
H1: Pr((X < q) < p or Pr((X < q) > p 
Reject H0 if probability is less than or equal to half the significance level or 
greater than or equal to 1 minus half the significance level.

The assumptions are as follows:

1. The Xi’s form a random sample; i.e., they are independent and identically 
distributed.

2. Measurement scale is at least ordinal; i.e., an ordering less than, greater than, 
and equal to exists in the observations.
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Many uses for the sign test are possible with various values of p and q. For example, 
to perform a matched sample test that the difference of the medians of Y and Z is 0.0, 
let p = 0.5, q = 0.0, and Xi = Yi – Zi in matched observations Y and Z. To test that the 
median difference is c, let q = c.

Examples

Example 1

This example tests the hypothesis that at least 50 percent of a population is negative. 
Because 0.18 < 0.95, the null hypothesis at the 5-percent level of significance is not 
rejected.

x =[92, 139, -6, 10, 81, -11, 45, -25, -4, $
22, 2, 41, 13, 8, 33, 45, -33, -45, -12]

PRINT, 'Probability = ', IMSL_SIGNTEST(x)

Probability =      0.179642

Example 2

This example tests the null hypothesis that at least 75 percent of a population is 
negative. Because 0.923 < 0.95, the null hypothesis at the 5-percent level of 
significance is rejected.

x =[92, 139, -6, 10, 81, -11, 45, -25, -4, $
22, 2, 41, 13, 8, 33, 45, -33, -45, -12]

probability = IMSL_SIGNTEST(x, Percentage = 0.75, $
Percentile = 0, N_Pos_Dev  = np, N_Zero_Dev = nz)

PM, probability, Title = 'Probability'
PM, np, Title = 'Number of Positive Deviations'
PM, nz, Title = 'Number of Ties'

Probability
 0.922543

Number of Positive Deviations
 12

Number of Ties
 0

Version History

6.4 Introduced
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IMSL_WILCOXON

The IMSL_WILCOXON function performs a Wilcoxon rank sum test or a Wilcoxon 
signed rank test.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_WILCOXON( x1 [ , x2 ] [, /DOUBLE] [, FUZZ=value] 
[, STATS=variable] )

Return Value

If a Wilcoxon rank sum test is performed, returns the two-sided 
p-value for the Wilcoxon rank sum statistic that is computed with average ranks used 
in the case of ties. 

If a Wilcoxon signed rank test is performed, returns an array of length two containing 
the following values: 

• The asymptotic probability of not exceeding the standardized (to an asymptotic 
variance of 1.0) minimum of (W+, W–) using method 1 under the null 
hypothesis that the distribution is symmetric about 0.0.

• And, the asymptotic probability of not exceeding the standardized (to an 
asymptotic variance of 1.0) minimum of (W+, W–) using method 2 under the 
null hypothesis that the distribution is symmetric about 0.0.

Arguments

x1

One-dimensional array containing the first sample.

x2

(Optional) One-dimensional array containing the second sample.
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Keywords

DOUBLE

If present and nonzero, double precision is used.

FUZZ

Nonnegative constant used to determine ties in computing ranks in the combined 
samples. A tie is declared when two observations in the combined sample are within 
Fuzz of each other. Default: Fuzz = 100 x ε x max { |xi 1|, |xj 2|}, where ε is machine 
precision for a Wilcoxon rank sum test, and Fuzz = 0.0 for a Wilcoxon signed rank 
test. 

STATS

Named variable into which one-dimensional array of length 10 containing the 
statistics shown in Table 18-1 and Table 18-2 is stored. If a Wilcoxon rank sum test is 
performed: 

Row Statistics

0 Wilcoxon W statistic (the sum of the ranks of the x observations) 
adjusted for ties in such a manner that W is as small as possible

1 2 x E (W) – W, where E (W)is the expected value of W

2 probability of obtaining a statistic less than or equal to 
min {W, 2 x E (W) – W}

3 W statistic adjusted for ties in such a manner that W is as large as 
possible

4 2 x E (W) – W, where E (W) is the expected value of W, adjusted 
for ties in such a manner that W is as large as possible

5 probability of obtaining a statistic less than or equal to 
min {W, 2 x E (W) – W}, adjusted for ties in such a manner that 
W is as large as possible

6 W statistic with average ranks used in case of ties

7 estimated standard error of Stats (6) under the null hypothesis of 
no difference

Table 18-1: Stats Values for Wilcoxon Rank Sum Test
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If a Wilcoxon signed rank test is performed: 

8 standard normal score associated with Stats (6)

9 two-sided p-value associated with Stats (6)

Row Statistics

0 The positive rank sum, W+, using method 1.

1 The absolute value of the negative rank sum, W–, using method 
1.

2 The standardized (to anasymptotic variance of 1.0) minimum of 
(W+, W–) using method 1.

3 The asymptotic probability of not exceeding stats(2) under the 
null hypothesis that the distribution is symmetric about 0.0. 

4 The positive rank sum, W+, using method 2. 

5 The absolute value of the negative rank sum, W–, using method 
2. 

6 The standardized (to an asymptotic variance of 1.0) minimum of 
(W+, W–) using method 2. 

7 The asymptotic probability of not exceeding stats(6) under the 
null hypothesis that the distribution is symmetric about 0.0. 

8 The number of zero observations. 

9 The total number of observations that are tied, and that are not 
within fuzz of zero. 

Table 18-2: Stats Values for Wilcoxon Signed Rank Test

Row Statistics

Table 18-1: Stats Values for Wilcoxon Rank Sum Test (Continued)
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Discussion

If Two Positional Arguments Are Supplied

The IMSL_WILCOXON function performs the Wilcoxon rank sum test for identical 
population distribution functions. The Wilcoxon test is a linear transformation of the 
Mann-Whitney U test. If the difference between the two populations can be attributed 
solely to a difference in location, then the Wilcoxon test becomes a test of equality of 
the population means (or medians) and is the nonparametric equivalent of the two-
sample t-test. The IMSL_WILCOXON function obtains ranks in the combined 
sample after first eliminating missing values from the data. The rank sum statistic is 
then computed as the sum of the ranks in the x1 sample.

Three methods for handling ties are used. (A tie is counted when two observations are 
within Fuzz of each other.) Method 1 uses the largest possible rank for tied 
observations in the smallest sample, while Method 2 uses the smallest possible rank 
for these observations. Thus, the range of possible rank sums is obtained. Method 3 
for handling tied observations between samples uses the average rank of the tied 
observations. Asymptotic standard normal scores are computed for the W score 
(based on a variance that has been adjusted for ties) when average ranks are used (see 
Conover 1980, p. 217). The probability associated with the two-sided alternative is 
then computed.

Hypothesis Tests

In each of the tests listed in Table 18-3, the first line gives the hypothesis (and its 
alternative) under the assumptions 1 to 3 below, while the second line gives the 
hypothesis when assumption 4 is also true. The rejection region is the same for both 
hypotheses and is given in terms of Method 3 for handling ties. Another output 
statistic should be used, (Stats(0) or Stats (3)), if another method for handling ties is 
desired. 

Test Null Hypothesis Alternative 
Hypothesis

Action

1 H0 : Pr(x1 < x2) = 
0.5

H1 : Pr(x1 < x2) ≠ 
0.5 

Reject if Stats (9) is less 
than the significance level 
of the test. Alternatively, 
reject the null hypothesis if 
Stats (6) is too large or too 
small.

H0 : E(x1) = E(x2) (H1 : E(x1) ≠ E(x2)) 

Table 18-3: Hypothesis Tests
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Assumptions

1. x1 and x2 contain random samples from their respective populations.

2. All observations are mutually independent.

3. The measurement scale is at least ordinal (i.e., an ordering less than, greater 
than, or equal to exists among the observations).

4. If f(x) and g(y) are the distribution functions of x and y, then g(y) = f(x + c) for 
some constant c (i.e., the distribution of y is, at worst, a translation of the 
distribution of x).

Tables of critical values of the W statistic are given in the references for small 
samples.

If One Positional Argument is Supplied 

The IMSL_WILCOXON function performs a Wilcoxon signed rank test of symmetry 
about zero. In one sample, this test can be viewed as a test that the population median 
is zero. In matched samples, a test that the medians of the two populations are equal 
can be computed by first computing difference scores. These difference scores would 
then be used as input to IMSL_WILCOXON. A general reference for the methods 
used is Conover (1980). 

Routine IMSL_WILCOXON computes statistics for two methods for handling zero 
and tied observations. In the first method, observations within Fuzz of zero are not 
counted, and the average rank of tied observations is used. (Observations within Fuzz 
of each other are said to be tied.) In the second method, observations within Fuzz of 

2 H0 : Pr(x1 < x2) ≤ 
0.5 

H1 : Pr(x1 < x2) > 
0.5

Reject if Stats (6) is too 
small.

H0 : E(x1) ≥ E(x2) H1 : E(x1) < E(x2)

3
H0 : Pr(x1 < x2) ≥ 
0.5

H0 : E(x1) ≤ E(x2)

H1 : Pr(x1 < x2) < 
0.5

H1 : E(x1) > E(x2)

Reject if Stats (6) is too 
large.

Test Null Hypothesis Alternative 
Hypothesis Action

Table 18-3: Hypothesis Tests (Continued)
IDL Analyst Reference Guide IMSL_WILCOXON



844 Chapter 18: Nonparametric Statistics
zero are randomly assigned a positive or negative sign, and the ranks of tied 
observations are randomly permuted. 

The W+ and W– statistics are computed as the sums of the ranks of the positive 
observations and the sum of the ranks of the negative observations, respectively. 
Asymptotic probabilities are computed using standard methods (see, e.g., Conover 
1980, page 282). 

Hypothesis Tests 

The W+ and W– statistics may be used to test the following hypotheses about the 
median, M. In deciding whether to reject the null hypothesis, use the bracketed 
statistic if method 2 for handling ties is preferred. Possible null hypotheses and 
alternatives are given as follows:

• H0 : M ≤ 0 
H1 : M > 0

• Reject if stats(0) [or stats(4)] is too large. 

• H0 : M ≥ 0 
H1 : M < 0

• Reject if stats(1) [or stats(5)] is too large. 

• H0 : M = 0 
H1 : M ≠ 0

• Reject if stats(2) [or stats(6)] is too small. Alternatively, if an asymptotic test is 
desired, reject if 2*stats(3) [or 2*stats(7)] is less than the significance level. 

Tabled values of the test statistic can be found in the references. If possible, tabled 
values should be used. If the number of nonzero observations is too large, then the 
asymptotic probabilities computed by IMSL_WILCOXON can be used. 

Assumptions 

The assumptions required for the hypothesis tests are as follows:

1. The distribution of each Xi is symmetric.

2. The Xi are mutually independent. 

3. All Xi’s have the same median. 

4. An ordering of the observations exists (i.e., X1 > X2 and X2 > X3 implies that 
X1 > X3). 

If other assumptions are made, related hypotheses that are more (or less) restrictive 
can be tested. 
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Examples

Example 1

The following example is taken from Conover (1980, p. 224). It involves the mixing 
time of two mixing machines using a total of 10 batches of a certain kind of batter, 
five batches for each machine. The null hypothesis is not rejected at the 5-percent 
level of significance. The warning error is always printed when one or more ties are 
detected.

x1 = [7.3, 6.9, 7.2, 7.8, 7.2]
x2 = [7.4, 6.8, 6.9, 6.7, 7.1]
p = IMSL_WILCOXON(x1, x2, Stats = stats)
PRINT, 'p-Value = ', p

p-Value =      0.141238

Example 2

The following example uses the same data as the previous example. Now, all the 
statistics are output in the array Stats. First, a procedure is defined to output the 
results.

.RUN
PRO print_results, stats

PRINT, 'Wilcoxon W Statistic .....', stats(0)
PRINT, '2*E(W) - W ...............', stats(1)
PRINT, 'P-Value .....................', stats(2)
PRINT, 'Adjusted Wilcoxon Statistic..', stats(3)

PRINT, 'Adjusted 2*E(W) - W .........', stats(4)
PRINT, 'Adjusted P-Value ............', stats(5)
PRINT, 'W Statistics for Averaged Ranks ..', stats(6)
PRINT, 'Std Error of W (Averaged Ranks) ..', stats(7)
PRINT, 'Std Normal Score of W (Averaged Ranks)..', stats(8)
PRINT, 'Two-Sided P-Value of W (Averaged Ranks) ..', stats(9)

END

x1 = [7.3, 6.9, 7.2, 7.8, 7.2]
x2 = [7.4, 6.8, 6.9, 6.7, 7.1]
p = IMSL_WILCOXON(x1, x2, Stats = stats)
print_results, stats

Wilcoxon W Statistic .................... 34.0000
2*E(W) - W .............................. 21.0000
P-Value ................................ 0.110072
Adjusted Wilcoxon Statistic ............. 35.0000
Adjusted 2*E(W) - W ..................... 20.0000
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Adjusted P-Value ...................... 0.0745036
W Statistics for Averaged Ranks ......... 34.5000
Std Error of W (Averaged Ranks) ......... 4.75803
Std Normal Score of W (Averaged Ranks)... 1.47120
Two-Sided P-Value of W (Averaged Ranks). 0.141238

Example 3

This example illustrates the application of the Wilcoxon signed rank test to a test on a 
difference of two matched samples (matched pairs) {X1 = 223, 216, 211, 212, 209, 
205, 201; and X2 = 208, 205, 202, 207, 206, 204, 203}. A test that the median 
difference is 10.0 (rather than 0.0) is performed by subtracting 10.0 from each of the 
differences prior to calling IMSL_WILCOXON. As can be seen from the output, the 
null hypothesis is rejected. The warning error will always be printed when the 
number of observations is 50 or less unless printing is turned off for warning errors. 

.RUN
PRO output_results, stats 

PRINT, 'Statistic Method 1 Method2' 
PRINT, 'W+ ...................', stats(0), stats(4) 
PRINT, 'W- ...................', stats(1), stats(5) 
PRINT, 'Standardized Minimum...', stats(2), stats(6) 
PRINT, 'p-value ...............', stats(3), stats(7) 
PRINT
PRINT, 'Number of zeros .......', stats(8)
PRINT, 'Number of ties ........', stats(9)

END

x = [-25.0, -21.0, -19.0, -15.0, -13.0, -11.0, -8.0]
p = IMSL_WILCOXON(x, Fuzz = 0.0001, Stats = stats)
OUTPUT_RESULTS, stats

Statistic Method 1 Method 2
W+ .....................0.00000 0.00000
W- .....................28.0000 28.0000
Standardized Minimum ... -2.36643 -2.36643
p-value ................ 0.00898023 0.00898024

Number of zeros .........0.00000
Number of ties ..........0.00000

Errors

Warning Errors

STAT_AT_LEAST_ONE_TIE—At least one tie is detected between the samples.
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Fatal Errors

STAT_ALL_X_Y_MISSING—Each element of x1 and/or x2 is a missing NaN (Not a 
Number) value.

Version History

6.4 Introduced
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IMSL_NCTRENDS

The IMSL_NCTRENDS function performs the Noether test for cyclical trend.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

result = IMSL_NCTRENDS(x [, /DOUBLE] [, FUZZ=value] 
[, NMISSING=variable] [, NSTAT=variable])

Return Value

One-dimensional array of length 3 containing the probabilities of Nstat(1) or more, 
Nstat(2) or more, or Nstat(3) or more monotonic sequences. If Nstat(0) is less than 1, 
Result(0) is set to NaN (not a number).

Arguments

x

One-dimensional array containing the data in chronological order.

Keywords

DOUBLE

If present and nonzero, double precision is used.

FUZZ

Nonnegative constant used to determine ties in computing ranks in the combined 
samples. A tie is declared when two observations in the combined sample are within 
Fuzz of each other. Default: Fuzz = 0.0.

NMISSING

Named variable into which the number of missing values in x is stored.
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NSTAT

Named variable into which the one-dimensional array of length 6 containing the 
statistics below is stored:

• Nstat (0)—The number of consecutive sequences of length three used to detect 
cyclical trend when tying middle elements are eliminated from the sequence, 
and the next consecutive observation is used.

• Nstat (1)—The number of monotonic sequences of length three in the set 
defined by Nstat(0).

• Nstat (2)—The number of nonmonotonic sequences where tied threesomes are 
counted as nonmonotonic.

• Nstat (3)—he number of monotonic sequences where tied threesomes are 
counted as monotonic.

• Nstat (4)—The number of middle observations eliminated because they were 
tied in forming the Nstat(0) sequences.

• Nstat (5)—The number of tied sequences found in forming the Nstat(2) and 
Nstat(3) sequences. A sequence is called a tied sequence if the middle element 
is tied with either of the two other elements.

Discussion

Routine IMSL_NCTRENDS performs the Noether test for cyclical trend (Noether 
1956) for a sequence of measurements. In this test, the observations are first divided 
into sets of three consecutive observations. Each set is then inspected, and if the set is 
monotonically increasing or decreasing, the count variable is made incremental. 

The count variables, Nstat(1), Nstat(2), and Nstat(3), differ in the manner in which 
ties are handled. A tie can occur in a set (of size three) only if the middle element is 
tied with either of the two ending elements. Tied ending elements are not considered. 
In Nstat(1), tied middle observations are eliminated, and a new set of size 3 is 
obtained by using the next observation in the sample. In Nstat(2), the original set of 
size three is used, and tied middle observations are counted as nonmonotonic. In 
Nstat(3), tied middle observations are counted as monotonic. 

The probabilities of occurrence of the counts are obtained from the binomial 
distribution with p = 1/3, where p is the probability that a random sample of size three 
from a continuous distribution is monotonic. The binomial sample size is, of course, 
the number of sequences of size three found (adjusted for ties).

Hypothesis test:
IDL Analyst Reference Guide IMSL_NCTRENDS



850 Chapter 18: Nonparametric Statistics
H0 : q = Pr(Xi > Xi - 1 > Xi - 2) + Pr(Xi < Xi - 1 < Xi - 2 ) ≤ 1/3  H1: q > 1/3 

Reject if Result(0) (or Result(1) or Result(2) depending on the method used for 
handling ties) is less than the significance level of the test.

Assumption: The observations are independent and are from a continuous 
distribution.

Example

A test for cyclical trend in a sequence of 1000 randomly generated observations is 
performed. Because of the sample used, there are no ties and all three test statistics 
yield the same result.

IMSL_RANDOMOPT, set  =  123457
x  =  IMSL_RANDOM(1000, /Uniform)
pval  =  IMSL_NCTRENDS(x, Nstat = nstat)
PM, pval
PM, nstat

0.697881
0.697881
0.697881

333
107
107
107
0
0

Version History

6.4 Introduced
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IMSL_CSTRENDS

The IMSL_CSTRENDS function performs the Cox and Stuart sign test for trends in 
location and dispersion.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CSTRENDS(x [, /DOUBLE] [, DISPERSION=array] 
[, FUZZ=value] [, NMISSING=variable] [, NSTAT=variable])

Return Value

One-dimensional array of length 8 containing the probabilities. 

The first four elements of Result are computed from two groups of observations. 

• 0—Probability of  Nstat(0) + Nstat(2) or more negative signs (ties are 
considered negative).

• 1—Probability of obtaining  Nstat(1) or more positive signs (ties are 
considered negative).

• 2—Probability of  Nstat(0) + Nstat(2) or more negative signs (ties are 
considered positive).

• 3 —Probability of obtaining Nstat(1) or more positive signs (ties are 
considered positive).

The last four elements of Result are computed from three groups of observations.

• 4—Probability of  Nstat(0) + Nstat(2) or more negative signs (ties are 
considered negative).

• 5—Probability of obtaining  Nstat(1) or more positive signs (ties are 
considered negative).

• 6—Probability of  Nstat(0) + Nstat(2) or more negative signs (ties are 
considered positive).

• 7—Probability of obtaining  Nstat(1) or more positive signs (ties are 
considered positive).
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Arguments

x

One-dimensional array containing the data in chronological order.

Keywords

DOUBLE

If present and nonzero, double precision is used.

DISPERSION

A one-dimensional array of length 2. If Dispersion is set, the Cox and Stuart tests for 
trends in dispersion are computed. Otherwise, as default, the Cox and Stuart tests for 
trends in location are computed. 
k = Dispersion(0) is the number of consecutive x elements to be used to measure 
dispersion. If ids = Dispersion(1) is zero, the range is used as a measure of dispersion. 
Otherwise, the centered sum of squares is used. 

FUZZ

A nonnegative constant used to determine when elements in x are tied. If |x(i) – x(j)| is 
less than or equal to Fuzz, x(i) and x(j) are said to be tied. Fuzz must be nonnegative. 
Default: Fuzz = 0.0.

NMISSING

Named variable into which the number of missing values in x is stored.

NSTAT

Named variable into which the one-dimensional array of length 8 containing the 
statistics below is stored: 

• 0—Number of negative differences (two groups)

• 1—Number of positive differences (two groups)

• 2—Number of zero differences (two groups)

• 3—Number of differences used to calculate Result(0) through Result(3) 
(two groups).

• 4—Number of negative differences (three groups)
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• 5—Number of positive differences (three groups)

• 6—Number of zero differences (three groups)

• 7—Number of differences used to calculate Result(4) through Result(7) (three 
groups).

Discussion

The IMSL_CSTRENDS function tests for trends in dispersion or location in a 
sequence of random variables depending upon the usage of Dispersion.  A derivative 
of the sign test is used (see Cox and Stuart 1955).

Location Test

For the location test (Default) with two groups, the observations are first divided into 
two groups with the middle observation thrown out if there are an odd number of 
observations. Each observation in group one is then compared with the observation in 
group two that has the same lexicographical order. A count is made of the number of 
times a group-one observation is less than (Nstat(0)), greater than (Nstat(1)), or equal 
to (Nstat(2)), its counterpart in group two. Two observations are counted as equal if 
they are within Fuzz of one another.

In the three-group test, the observations are divided into three groups, with the center 
group losing observations if the division is not exact. The first and third groups are 
then compared as in the two-group case, and the counts are stored in Nstat(4) through 
Nstat(6).

Probabilities in Result are computed using the binomial distribution with sample size 
equal to the number of observations in the first group (Nstat(3) or Nstat(7)), and 
binomial probability p = 0.5.

Dispersion Test

The dispersion tests (when keyword Dispersion is set) proceed exactly as with the 
tests for location, but using one of two derived dispersion measures. The input value k 
= Dispersion(0) is used to define N_ELEMENTS(x)/k groups of consecutive 
observations starting with observation 1. The first k observations define the first 
group, the next k observations define the second group, etc., with the last observations 
omitted if N_ELEMENTS(x) is not evenly divisible by k. A dispersion score is then 
computed for each group as either the range (ids = 0), or a multiple of the variance 
(ids ≠ 0) of the observations in the group. The dispersion scores form a derived 
sample. The tests proceed on the derived sample as above.
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Ties

Ties are defined as occurring when a group one observation is within Fuzz of its last 
group counterpart. Ties imply that the probability distribution of x is not strictly 
continuous, which means that Pr(x1 > x2) ≠ 0.5 under the null hypothesis of no trend 
(and the assumption of independent identically distributed observations). When ties 
are present, the computed binomial probabilities are not exact, and the hypothesis 
tests will be conservative.

Hypothesis tests

In the following, i indexes an observation from group 1, while j indexes the 
corresponding observation in group 2 (two groups) or group 3 (three groups).

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5 
H1 : Pr(Xi > Xj) < Pr(Xi < Xj) 
Hypothesis of upward trend. Reject if Result(2) (or Result(6))is less than the 
significance level.

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5 
H1 : Pr(Xi > Xj) > Pr(Xi < Xj)
Hypothesis of downward trend. Reject if Result(1) (or Result(5)) is less than 
the significance level.

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5 
H1 : Pr(Xi > Xj) ≠ Pr(Xi < Xj) 
Two tailed test. Reject if 2 max(Result(1), Result(2)) (or 2 max(Result(5), 
Result(6)) is less than the significance level.

Assumptions

1. The observations are a random sample; i.e., the observations are independently 
and identically distributed.

2. The distribution is continuous.

Example

This example illustrates both the location and dispersion tests. The data, which are 
taken from Bradley (1968), page 176, give the closing price of AT&T on the New 
York stock exchange for 36 days in 1965. Tests for trends in location (Default), and 
for trends in dispersion (Dispersion) are performed. Trends in location are found.

x  =  [9.5, 9.875, 9.25, 9.5, 9.375, 9.0, 8.75, 8.625, 8.0, $
8.25, 8.25, 8.375, 8.125, 7.875, 7.5, 7.875, 7.875, $
7.75,7.75, 7.75, 8.0, 7.5,7.5, 7.125, 7.25, 7.25, 7.125, $
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6.75,6.5, 7.0, 7.0, 6.75, 6.625, 6.625,7.125, 7.75]
k  =  2
ids  =  0
pstat = IMSL_CSTRENDS(x, Nstat = nstat)
PM, nstat, Title = '         NSTAT'
PM, pstat, Title = '      PSTAT'
pstat = IMSL_CSTRENDS(x, Nstat = nstat, Dispersion = [k, ids])
PM, nstat, Title = '         NSTAT'
PM, pstat, Title = '      PSTAT'

         NSTAT
           0
          17
           1
          18
           0
          12
           0
          12

      PSTAT
     0.999996
  7.24792e-05
      1.00000
  3.81470e-06
      1.00000
  0.000244141
      1.00000
  0.000244141

         NSTAT
           4
           3
           2
           9
           4
           2
           0
           6

      PSTAT
     0.253906
     0.910156
     0.746094
     0.500000
     0.343750
     0.890625
     0.343750
     0.890625
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Version History

6.4 Introduced
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IMSL_TIE_STATS

The IMSL_TIE_STATS function computes tie statistics for a sample of observations.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_TIE_STATS(x [, /DOUBLE] [, FUZZ=value] )

Return Value

One-dimensional array of length 4 containing the tie statistics. 

where tj is the number of ties in the j-th group (rank) of ties, and τ is the number of tie 
groups in the sample.

Arguments

x

One-dimensional array containing the observations. x must be ordered monotonically 
increasing with all missing values removed.

result 0( ) tj tj 1–( )[ ] 2⁄
j 1=

τ

∑=

result 1( ) tj tj 1–( )[ ] tj 1+( )( )12⁄
j 1=

τ
∑=

result 2( ) tj tj 1–( ) 2tj 5+( )
j 1=

τ
∑=

result 3( ) tj tj 1–( ) tj 2–( )
j 1=

τ

∑=
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Keywords

DOUBLE

If present and nonzero, double precision is used.

FUZZ

Nonnegative constant used to determine ties. Observations i and j are tied if the 
successive differences x(k + 1) – x(k) between observations i and j, inclusive, are all 
less than Fuzz. Default:  Fuzz = 0.0

Discussion

The IMSL_TIE_STATS function computes tie statistics for a monotonically 
increasing sample of observations. “Tie statistics” are statistics that may be used to 
correct a continuous distribution theory nonparametric test for tied observations in 
the data. Observations i and j are tied if the successive differences x(k + 1) – x(k), 
inclusive, are all less than Fuzz. Note that if each of the monotonically increasing 
observations is equal to its predecessor plus a constant, if that constant is less than 
Fuzz, then all observations are contained in one tie group. For example, if Fuzz = 
0.11, then the following observations are all in one tie group.

0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00

Example

We want to compute tie statistics for a sample of length 7.

fuzz  =  0.001
x  =  [1.0, 1.0001, 1.0002, 2.0, 3.0, 3.0, 4.0]
tstat  =  IMSL_TIE_STATS(x, FUZZ = fuzz)
PRINT, tstat

4.00000      2.50000      84.0000      6.00000

Version History

6.4 Introduced
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IMSL_KW_TEST

The IMSL_KW_TEST function performs a Kruskal-Wallis test1 for identical 
population medians.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_KW_TEST(n, y [, /DOUBLE] [, FUZZ=value] )

Return Value

One-dimensional array of length 4 containing the Kruskal-Wallis statistics. 

• 0—Kruskal-Wallis H statistic.

• 1—Asymptotic probability of a larger H under the null hypothesis of identical 
population medians.

• 2—H corrected for ties.

• 3—Asymptotic probability of a larger H (corrected for ties) under the null 
hypothesis of identical populations

Arguments

n

One-dimensional array containing the number of responses for each of the groups.

y

One-dimensional array of length N_ELEMENTS(n) that contains the responses for 
each of the groups.  y must be sorted by group, with the n(0) observations in group 1 
coming first, the n(1) observations in group two coming second, and so on.
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Keywords

DOUBLE

If present and nonzero, double precision is used.

FUZZ

Nonnegative constant used to determine ties in y.  If (after sorting) 

|y(i) – y(i + 1)| is less than or equal to Fuzz, then a tie is counted. Default: Fuzz = 0.0

Discussion

The IMSL_KW_TEST function generalizes the Wilcoxon two-sample test computed 
by “IMSL_WILCOXON” on page 839 to more than two populations. It computes a 
test statistic for testing that the population distribution functions in each of K 
populations are identical. Under appropriate assumptions, this is a nonparametric 
analogue of the one-way analysis of variance. Since more than two samples are 
involved, the alternative is taken as the analogue of the usual analysis of variance 
alternative, namely that the populations are not identical.

The calculations proceed as follows: All observations are ranked regardless of the 
population to which they belong. Average ranks are used for tied observations 
(observations within Fuzz of each other). Missing observations (observations equal to 
NaN, not a number) are not included in the ranking. Let Ri denote the sum of the 
ranks in the i-th population. The test statistic H is defined as: 

where N is the total of the sample sizes, ni is the number of observations in the i-th 
sample, and S2 is computed as the (bias corrected) sample variance of the Ri. 

The null hypothesis is rejected when Result(3) (or Result(1)) is less than the 
significance level of the test. If the null hypothesis is rejected, then the procedures 
given in Conover (1980, page 231) may be used for multiple comparisons. The 
IMSL_KW_TEST function computes asymptotic probabilities using the chi-squared 
distribution when the number of groups is 6 or greater, and a Beta approximation (see 
Wallace 1959) when the number of groups is 5 or less. Tables yielding exact 
probabilities in small samples may be obtained from Owen (1962).

H
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2

----- R
2
i

ni
------- N N 1+( )2

4
-------------------------–

 
 
 

i 1=

K

∑=
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Example

The following example is taken from Conover (1980, page 231). The data represents 
the yields per acre of four different methods for raising corn. Since H = 25.5, the four 
methods are clearly different. The warning error is always printed when the Beta 
approximation is used, unless printing for warning errors is turned off. 

y = [83.0, 91.0, 94.0, 89.0, 89.0, 96.0, 91.0, 92.0, 90.0, $
91.0, 90.0, 81.0, 83.0, 84.0, 83.0, 88.0, 91.0, 89.0, $
84.0, 101.0, 100.0, 91.0, 93.0, 96.0, 95.0, 94.0, 78.0, $
82.0, 81.0, 77.0, 79.0, 81.0, 80.0, 81.0]

n  =  [9, 10, 7, 8]
fuzz  =  0.001
rlabel  =  ['H (no ties)      =', $

'Prob (no ties)   =', $
'H (ties)         =', $
'Prob (ties)      =']

s = IMSL_KW_TEST(n, y, Fuzz = fuzz)
FOR i  =  0, 3 DO PM, rlabel(i), s(i), FORMAT = '(A18, F6.2)'

H (no ties)      = 25.46
Prob (no ties)   =  0.00
H (ties)         = 25.63
Prob (ties)      =  0.00

Version History

6.4 Introduced
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IMSL_FRIEDMANS_TEST

The IMSL_FRIEDMANS_TEST function performs Friedman’s test for a randomized 
complete block design.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FRIEDMANS_TEST(y [, ALPHA=value] [, DIFF=variable] 
[, /DOUBLE] [, FUZZ=value] [, STATS=variable] [, SUM_RANK=variable])

Return Value

The Chi-squared approximation of the asymptotic p-value for Friedman’s two-sided 
test statistic. 

Arguments

y

Two-dimensional array containing the observations. The first row of y contain the 
observations on treatments 1, 2, ..., N_ELEMENTS(y(0, *)) in the first block. The 
second row of y contain the observations in the second block, etc., and so on.

Keywords

ALPHA

Critical level for multiple comparisons. Alpha should be between 0 and 1 exclusive. 
Default: Alpha = 0.05.

DIFF

Named variable into which the minimum absolute difference in two elements of 
Sum_Rank to infer at the Alpha level of significance that the medians of the 
corresponding treatments are different is stored.
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DOUBLE

If present and nonzero, double precision is used.

FUZZ

Nonnegative constant used to determine ties. In the ordered observations, if |y(i) –y(i 
+ 1)| is less than or equal to Fuzz, then y(i) and y(i + 1) are said to be tied. Default: 
Fuzz = 0.0.

STATS

Named variable into which the one-dimensional array of length 6 containing the 
Friedman statistics below is stored. Probabilities reported are computed under the 
appropriate null hypothesis.

• 0—Friedman two-sided test statistic.

• 1—Approximate F value for Stats(0).

• 2—Page test statistic for testing the ordered alternative that the median of 
treatment i is less than or equal to the median of treatment i + 1, with strict 
inequality holding for some i.

• 3—Asymptotic p-value for Stats(0). Chi-squared approximation.

• 4—Asymptotic p-value for Stats(1). F approximation.

• 5—Asymptotic p-value for Stats(2). Normal approximation.

SUM_RANK

Named variable into which a one-dimensional array of length N_ELEMENTS(x(0, 
*)) containing the sum of the ranks of each treatment is stored.

Discussion

The IMSL_FRIEDMANS_TEST function may be used to test the hypothesis of 
equality of treatment effects within each block in a randomized block design. No 
missing values are allowed. Ties are handled by using the average ranks. The test 
statistic is the nonparametric analogue of an analysis of variance F test statistic. 
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The test proceeds by first ranking the observations within each block. Let A denote 
the sum of the squared ranks, i.e., let: 

where Rank(Yij) is the rank of the i-th observation within the j-th block, b is the 
number of blocks, and k is the number of treatments. Let: 

where: 

The Friedman test statistic (Stats(0)) is given by: 

that, under the null hypothesis, has an approximate chi-squared distribution with k – 1 
degrees of freedom. The asymptotic probability of obtaining a larger chi-squared 
random variable is returned in Stats(3). 

If the F distribution is used in place of the chi-squared distribution, then the usual one 
way analysis of variance F-statistic computed on the ranks is used. This statistic, 
reported in Stats(1), is given by: 

and asymptotically follows an F distribution with (k – 1) and (b –1)(k – 1) degrees of 
freedom under the null hypothesis. Stats(4) is the asymptotic probability of obtaining 
a larger F random variable. (If A = B, Stats(0) and Stats(1) are set to machine infinity, 
and the significance levels are reported as k!/(k!)b, unless this computation would 
cause underflow, in which case the significance levels are reported as zero.) Iman and 
Davenport (1980) discuss the relative advantages of the chi-squared and F 
approximations. In general, the F approximation is considered best. 

The Friedman T statistic is related both to the Kendall coefficient of concordance and 
to the Spearman rank correlation coefficient. See Conover (1980) for a discussion of 
the relationships. 

A Rank Yij( )2

j 1=

b

∑
i 1=

k

∑=

B
b

Ri
i

k
=

=
∑

1 2

1

Ri Rank Yij( )
j 1=

b

∑=

T k 1–( ) bB b
2
k k 1+( )2

– 4⁄( )
A bk k 1+( )2

– 4⁄
-----------------------------------------------------------------------=

F b 1–( )T
b k 1–( ) T–
-----------------------------=
IMSL_FRIEDMANS_TEST IDL Analyst Reference Guide



Chapter 18: Nonparametric Statistics 865
If, at the α = Alpha level of significance, the Friedman test results in rejection of the 
null hypothesis, then an asymptotic test that treatments i and j are different is given 
by: reject H0 if |Ri − Rj| > D, where:

where t has (b – 1)(k – 1) degrees of freedom. Page’s statistic (Stats(2)) is used to test 
the same null hypothesis as the Friedman test but is sensitive to a monotonic 
increasing alternative. The Page test statistic is given by 

It is largest (and thus most likely to reject) when the Ri are monotonically increasing.

Assumptions

The assumptions in the Friedman test are as follows:

1. The k-vectors of responses within each of the b blocks are mutually 
independent (i.e., the results within one block have no effect on the results 
within another block).

2. Within each block, the observations may be ranked.

The hypothesis tested is that each ranking of random variables within each block is 
equally likely. The alternative is that at least one treatment tends to have larger values 
than one or more of the other treatments. The Friedman test is a test for the equality 
of treatment means or medians.

Example

The following example is taken from Bradley (1968), page 127, and tests the 
hypothesis that 4 drugs have the same effects upon a person’s visual acuity. Five 
subjects were used.

y = TRANSPOSE([[0.39, 0.55, 0.33, 0.41], $
[0.21, 0.28, 0.19, 0.16], [0.73, 0.69, 0.64, 0.62], $
[0.41, 0.57, 0.28, 0.35], [0.65, 0.57, 0.53, 0.60]])

fuzz = 0.001
p = IMSL_FRIEDMANS_TEST(y, Fuzz = fuzz, Diff = diff, $

Sum_Rank = sr, Stats = stat)
PM, stat, Title = 'STATS'
PM, diff, Title = 'DIFF'
PM, sr, Title = 'Sum_Rank'

STATS

D t1 α 2⁄– 2b A B–( ) b 1–( )k 1–( )⁄=

Q jRi
i

k
=

=
∑

1
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      8.28000
      4.92857
      111.000
    0.0405658
    0.0185906
     0.984954

DIFF
      6.65638

Sum_Rank
      16.0000
      17.0000
      7.00000
      10.0000

The Friedman null hypothesis is rejected at the α = 0.05 while the Page null 
hypothesis is not. (A Page test with a monotonic decreasing alternative would be 
rejected, however.) Using Sum_Rank and Diff, one can conclude that treatment 3 is 
different from treatments 1 and 2, and that treatment 4 is different from treatment 2, 
all at the α= 0.05 level of significance.

Version History

6.4 Introduced
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IMSL_COCHRANQ

The IMSL_COCHRANQ function performs a Cochran Q test for related 
observations.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_COCHRANQ(x [, /DOUBLE] [, Q=variable])

Return Value

The p-value for the Cochran Q statistic.

Arguments

X

Two-dimensional array containing the matrix of dichotomized data.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Q

Named variable into which the Cochran’s Q statistic is stored.

Discussion

The IMSL_COCHRANQ function computes the Cochran Q test statistic that may be 
used to determine whether or not M matched sets of responses differ significantly 
among themselves. The data may be thought of as arising out of a randomized block 
design in which the outcome variable must be success or failure, coded as 1.0 and 0.0, 
respectively. Within each block, a multivariate vector of 1’s of 0’s is observed. The 
IDL Analyst Reference Guide IMSL_COCHRANQ
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hypothesis is that the probability of success within a block does not depend upon the 
treatment.

Assumptions

1. The blocks are a random sample from the population of all possible blocks.

2. The outcome of each treatment is dichotomous.

Hypothesis

The hypothesis being tested may be stated in at least two ways.

1. H0 : All treatments have the same effect.
H1 : The treatments do not all have the same effect.

2. Let pij denote the probability of outcome 1.0 in block i, treatment j.
H0:pi1 = pi2 = ... = pic for each i.
H1:pij ≠ pik for some i, and some j ≠ k.
where c (equal to N_ELEMENTS(x(0, *))) is the number of treatments.

The null hypothesis is rejected if Cochrans’s Q statistic is too large.

Remarks

1. The input data must consist of zeros and ones only. For example, let 
n_variables = N_ELEMENTS(x(0, *)) and n_observations = 
N_ELEMENTS(x(*, 0)), then the data may be pass-fail information on 
n_variables questions asked of n_observations people or the test responses of 
n_observations individuals to n_variables different conditions.

2. The resulting statistic is distributed approximately as chi-squared with 
n_variables − 1 degrees of freedom if n_observations is not too small. 
n_observations greater than or equal to 5 x n_variables is a conservative 
recommendation.

Example

The following example is taken from Siegal (1956, p. 164). It measures the responses 
of 18 women to 3 types of interviews.

x = TRANSPOSE([[0.0, 0.0, 0.0], [1.0, 1.0, 0.0], $
[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], $
[1.0, 0.0, 0.0], [1.0, 1.0, 0.0], $
[1.0, 1.0, 0.0], [0.0, 1.0, 0.0], $
[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], $
[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], $
IMSL_COCHRANQ IDL Analyst Reference Guide



Chapter 18: Nonparametric Statistics 869
[1.0, 1.0, 0.0], [1.0, 1.0, 0.0], $
[1.0, 1.0, 0.0], [1.0, 1.0, 1.0], $
[1.0, 1.0, 0.0], [1.0, 1.0, 0.0]])

pq  =  IMSL_COCHRANQ(x)
PRINT, 'pq =', pq

pq =  0.000240266

Errors

Warning Errors

STAT_ALL_0_OR_1—“x” consists of either all ones or all zeros. “q” is set to NaN 
(not a number). “Result” is set to 1.0.

Fatal Errors

STAT_INVALID_X_VALUES—“x(#, #)” = #. “x” must consist of zeros and ones 
only.

Version History

6.4 Introduced
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IMSL_KTRENDS

The IMSL_KTRENDS function performs a k-sample trends test against ordered 
alternatives.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_KTRENDS(n, y [, /DOUBLE] )

Return Value

One-dimensional array of length 17 containing the test results. 

• 0—Test statistic (ties are randomized).

• 1—Conservative test statistic with ties counted in favor of the null hypothesis.

• 2—p-value associated with Result(0).

• 3—p-value associated with Result(1).

• 4—Continuity corrected Result(2).

• 5—Continuity corrected Result(3).

• 6—Expected mean of the statistic.

• 7—Expected kurtosis of the statistic. (The expected skewness is zero.)

• 8—Total sample size.

• 9—Coefficient of rank correlation based upon Result(0).

• 10—Coefficient of rank correlation based upon Result(1).

• 11—Total number of ties between samples.

• 12—The t-statistic associated with Result(2).

• 13—The t-statistic associated with Result(3).

• 14—The t-statistic associated with Result(4).

• 15—The t-statistic associated with Result(5).
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• 16—Degrees of freedom for each t-statistic.

Arguments

n

One-dimensional array containing the number of responses for each of the groups.

y

One-dimensional array that contains the responses for each of the groups. y must be 
sorted by group, with the n(0) observations in group 1 coming first, the n(1) 
observations in group two coming second, and so on.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The IMSL_KTRENDS function performs a k-sample trends test against ordered 
alternatives. The alternative to the null hypothesis of equality is that F1(X) < F2(X) < 
... Fk(X), where F1, F2, etc., are cumulative distribution functions, and the operator < 
implies that the less than relationship holds for all values of x. While the trends test 
used in IMSL_KTRENDS requires that the background populations be continuous, 
ties occurring within a sample have no effect on the test statistic or associated 
probabilities. Ties between samples are important, however. Two methods for 
handling ties between samples are used. These are:

1. Ties are randomly split (Result(0)).

2. Ties are counted in a manner that is unfavorable to the alternative hypothesis 
(Result(1)).

Computational Procedure

Consider the matrices: 

M
km

m
km

ij
( )

2 if  Xki Xmj<

0 otherwise   
 = =
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where Xki is the i-th observation in the k-th population, Xmj is the j-th observation in 
the m-th population, and each matrix Mkm is nk by nm where ni = n(i). Let Skm denote 
the sum of all elements in Mkm. Then, Result(1) is computed as the sum over all 
elements in Skm, minus the expected value of this sum (computed as: 

when there are no ties and the distributions in all populations are equal). In Result(0), 
ties are broken randomly, and the element in the summation is taken as 2.0 or 0.0 
depending upon the result of breaking the tie. 

Result(2) and Result(3) are computed using the t distribution. The probabilities 
reported are asymptotic approximations based upon the t statistics in Result(12) and 
Result(13), which are computed as in Jonckheere (1954, page 141). 

Similarly, Result(4) and Result(5) give the probabilities for Result(14) and Result(15), 
the continuity corrected versions of Result(2) and Result(3). The degrees of freedom 
for each t statistic (Result(16)) are computed so as to make the t distribution selected 
as close as possible to the actual distribution of the statistic (see Jonckheere 1954, 
page 141). 

Result(6), the variance of the test statistic Result(0), and Result(7), the kurtosis of the 
test statistic, are computed as in Jonckheere (1954, page 138). The coefficients of 
rank correlation in Result(8) and Result(9) reduce to the Kendall τ statistic when there 
are just two groups. 

Exact probabilities in small samples can be obtained from tables in Jonckheere 
(1954). Note, however, that the t approximation appears to be a good one.

Assumptions

1. The Xmi for each sample are independently and identically distributed 
according to a single continuous distribution.

2. The samples are independent.

Hypothesis tests

H0 : F1(X) ≥ F2(X) ≥ ... ≥ Fk(X) 
H1 : F1(X) < F2(X) < ... < Fk(X) 
Reject if Result(2) (or Result(3), or Result(4) or Result(5), depending upon the 
method used) is too large. 

n nk mk m<∑
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Example

The following example is taken from Jonckheere (1954, page 135). It involves four 
observations in four independent samples.

y  =  [19.0, 20.0, 60.0, 130.0, 21.0, 61.0, 80.0, 129.0, $
40.0, 99.0, 100.0, 149.0, 49.0, 110.0, 151.0, 160.0] 

n  =  [4,  4,  4,  4]
rlabel  =  ['stat(0) - Test Statistic (random) .............', $

'stat(1) - Test Statistic (null hypothesis) ....', $
'stat(2) - p-value for stat(0) .................', $
'stat(3) - p-value for stat(1) .................', $
'stat(4) - Continuity corrected for stat(2) ....', $
'stat(5) - Continuity corrected for stat(3) ....', $
'stat(6) - Expected mean .......................', $
'stat(7) - Expected kurtosis ...................', $
'stat(8) - Total sample size ...................', $
'stat(9) - Rank corr. coef. based on stat(0) ...', $
'stat(10)- Rank corr. coef. based on stat(1) ...', $
'stat(11)- Total number of ties ................', $
'stat(12)- t-statistic associated w/stat(2) ....', $
'stat(13)- t-statistic associated w/stat(3) ....', $
'stat(14)- t-statistic associated w/stat(4) ....', $
'stat(15)- t-statistic associated w/stat(5) ....', $
'stat(16)- Degrees of freedom ..................']

s  =  IMSL_KTRENDS(n, y)
FOR i  =  0, 16 DO PM, rlabel(i), s(i), FORMAT = '(A45, F10.5)'

stat(0) - Test Statistic (random) ...........  46.00000
stat(1) - Test Statistic (null hypothesis) ..  46.00000
stat(2) - p-value for stat(0) ...............   0.01483
stat(3) - p-value for stat(1) ...............   0.01483
stat(4) - Continuity corrected for stat(2) ..   0.01683
stat(5) - Continuity corrected for stat(3) ..   0.01683
stat(6) - Expected mean ..................... 458.66666
stat(7) - Expected kurtosis .................  -0.15365
stat(8) - Total sample size .................  16.00000
stat(9) - Rank corr. coef. based on stat(0) .   0.47917
stat(10)- Rank corr. coef. based on stat(1) .   0.47917
stat(11)- Total number of ties ..............   0.00000
stat(12)- t-statistic associated w/stat(2) ..   2.26435
stat(13)- t-statistic associated w/stat(3) ..   2.26435
stat(14)- t-statistic associated w/stat(4) ..   2.20838
stat(15)- t-statistic associated w/stat(5) ..   2.20838
stat(16)- Degrees of freedom ................  36.04963
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Version History

6.4 Introduced
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Goodness of Fit
This section contains the following topics:
Overview: Goodness of Fit  . . . . . . . . . . . .  876 Goodness of Fit Routines . . . . . . . . . . . . .  877
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Overview: Goodness of Fit

The routines in this chapter are used to test for goodness of fit and randomness. The 
goodness-of-fit tests are described in Conover (1980). There are two goodness-of-fit 
tests for general distributions, a Kolmogorov-Smirnov test and a chi-squared test. You 
will supply the hypothesized cumulative distribution function for these two tests. 
There are three routines that can be used to test specifically for the normal or 
exponential distributions.

The tests for randomness are often used to evaluate the adequacy of pseudorandom 
number generators. These tests are discussed in Knuth (1981).

The Kolmogorov-Smirnov routines in this chapter compute exact probabilities in 
small to moderate sample sizes. The chi-squared goodness-of-fit test may be used 
with discrete as well as continuous distributions.

The Kolmogorov-Smirnov and chi-squared goodness-of-fit test routines allow for 
missing values (NaN, not a number) in the input data. The routines that test for 
randomness do not allow for missing values.
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Goodness of Fit Routines

General Goodness of Fit Tests

IMSL_CHISQTEST—Chi-squared goodness of fit test.

IMSL_NORMALITY—Shapiro-Wilk W test for normality. 

IMSL_KOLMOGOROV1—One-sample continuos data Kolmogorov-Smirnov. 

IMSL_KOLMOGOROV2—Two-sample continuos data Kolmogorov-Smirnov. 

IMSL_MVAR_NORMALITY—Mardia’s test for multivariate normality. 

Tests for Randomness

IMSL_RANDOMNESS_TEST—Runs test, Paris-serial test, d2 test or triplets tests.
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IMSL_CHISQTEST

The IMSL_CHISQTEST function performs a chi-squared goodness-of-fit test.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CHISQTEST(f, n_categories, x [, CELL_COUNTS=variable] 
[, CELL_EXPECTED=variable] [, CELL_CHISQ=variable] 
[, CHI_SQUARED=variable] [, CUTPOINTS=variable] [, DF=variable] 
[, /DOUBLE] [, /EQUAL_CUTPOINTS] [, FREQUENCIES=variable] 
[, LOWER_BOUND=value] [, N_PARAMS_ESTIMATED=value] 
[, UPPER_BOUND=value] [, USED_CUTPOINTS=variable])

Return Value

The p-value for the goodness-of-fit chi-squared statistic.

Arguments

f

Scalar string specifying a user-supplied function. Function f accepts one scalar 
parameter and returns the hypothesized, cumulative distribution function at that point.

n_categories

Number of cells into which the observations are to be tallied.

x

One-dimensional array containing the vector of data elements for this test.
IMSL_CHISQTEST IDL Analyst Reference Guide



Chapter 19: Goodness of Fit 879
Keywords

CELL_COUNTS

Named variable into which the cell counts are stored. The cell counts are the observed 
frequencies in each of the n_categories cells.

CELL_EXPECTED

Named variable into which the cell expected values are stored. The expected value of 
a cell is the expected count in the cell given that the hypothesized distribution is 
correct.

CELL_CHISQ

Named variable into which an array of length n_categories containing the cell 
contributions to chi-squared are stored.

CHI_SQUARED

Named variable into which the chi-squared test statistic is stored.

CUTPOINTS

Specifies the named variable containing user-defined cutpoints to be used by 
IMSL_CHISQTEST. Keywords Cutpoints and Equal_Cutpoints cannot be used 
together. 

DF

Named variable into which the degrees of freedom for the chi-squared goodness-of-
fit test are stored.

DOUBLE

If present and nonzero, double precision is used.

EQUAL_CUTPOINTS

If present and nonzero, equal probability cutpoints are used. Keywords 
Equal_Cutpoints and Cutpoints cannot be used together. 
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FREQUENCIES

Named variable into which the array containing the vector frequencies for the 
observations stored in x is stored.

LOWER_BOUND

Lower bound of the range of the distribution. If Lower Bound = Upper Bound, a 
range on the whole real line is used (the default). If the lower and upper endpoints are 
different, points outside of the range of these bounds are ignored. Distributions 
conditional on a range can be specified when Lower_Bound and Upper_Bound are 
used. If Lower_Bound is specified, then Upper_Bound also must be specified. By 
convention, Lower_Bound is excluded from the first interval, but Upper_Bound is 
included in the last interval.

N_PARAMS_ESTIMATED

Number of parameters estimated in computing the cumulative distribution function.

UPPER_BOUND

Upper bound of the range of the distribution. If Lower Bound = Upper Bound, a 
range on the whole real line is used (the default). If the lower and upper endpoints are 
different, points outside of the range of these bounds are ignored. Distributions 
conditional on a range can be specified when Lower_Bound and Upper_Bound are 
used. If Upper_Bound is specified, then Lower_Bound also must be specified. By 
convention, Lower_Bound is excluded from the first interval, but Upper_Bound is 
included in the last interval.

USED_CUTPOINTS

Specifies the named variable into which the cutpoints to be used by 
IMSL_CHISQTEST are stored.

Discussion

The IMSL_CHISQTEST function performs a chi-squared goodness-of-fit test that a 
random sample of observations is distributed according to a specified theoretical 
cumulative distribution. The theoretical distribution, which may be continuous, 
discrete, or a mixture of discrete and continuous distributions, is specified by defined 
function f. Because you are allowed to give a range for the observations, a test that is 
conditional upon the specified range is performed.
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Parameter n_categories gives the number of intervals into which the observations are 
to be divided. By default, equi-probable intervals are computed by 
IMSL_CHISQTEST, but intervals that are not equi-probable can be specified 
(through the use of keyword Cutpoints).

Regardless of the method used to obtain the cutpoints, the intervals are such that the 
lower endpoint is not included in the interval, while the upper endpoint is always 
included. If the cumulative distribution function has discrete elements, then user-
provided cutpoints should always be used since IMSL_CHISQTEST cannot 
determine the discrete elements in discrete distributions.

By default, the lower and upper endpoints of the first and last intervals are –infinity 
and +infinity. The endpoints can be specified by using the keywords Lower_Bound 
and Upper_Bound.

A tally of counts is maintained for the observations in x as follows:

• If the cutpoints are specified, the tally is made in the interval to which xi 
belongs using the endpoints specified.

• If the cutpoints are determined by IMSL_CHISQTEST, then the cumulative 
probability at xi, F(xi), is computed by the function f.

The tally for xi is made in interval number:

 

where m = n categories  and:

 

is the function that takes the greatest integer that is no larger than the parameter of the 
function. Thus, if the computer time required to calculate the cumulative distribution 
function is large, user-specified cutpoints may be preferred in order to reduce the total 
computing time.

If the expected count in any cell is less than 1, then a rule of thumb is that the chi-
squared approximation may be suspect. A warning message to this effect is issued in 
this case, as well as when an expected value is less than 5.

Programming Notes 

You must supply a function f with calling sequence F(y) that returns the value of the 
cumulative distribution function at any point y in the (optionally) specified range.

Many of the cumulative distribution functions in this reference manual can be used 
for f. It is, however, necessary to write a user-defined IDL Analyst function that calls 
the CDF, and then pass the name of this user-defined function for f.

mF xi( ) 1+

⋅
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Example

This example illustrates the use of IMSL_CHISQTEST on a randomly generated 
sample from the normal distribution. One-thousand randomly generated observations 
are tallied into 10 equi-probable intervals. In this example, the null hypothesis is not 
rejected.

.RUN
; Define the hypothesized, cumulative distribution function.
FUNCTION user_cdf, k

RETURN, IMSL_NORMALCDF(k)
END

IMSL_RANDOMOPT, Set = 123457
x = IMSL_RANDOM(1000, /Normal)
; Generate normal deviates.
p_value = IMSL_CHISQTEST('user_cdf', 10, x)
; Perform chi-squared test.
PM, p_value

; Output the results.
0.154603

Errors

Warning Errors

STAT_EXPECTED_VAL_LESS_THAN_1—An expected value is less than 1.

STAT_EXPECTED_VAL_LESS_THAN_5—An expected value is less than 5.

Fatal Errors

STAT_ALL_OBSERVATIONS_MISSING—All observations contain missing values.

STAT_INCORRECT_CDF_1—Function f is not a cumulative distribution function. The 
value at the lower bound must be nonnegative, and the value at the upper bound must 
not be greater than 1.

STAT_INCORRECT_CDF_2—Function f is not a cumulative distribution function. The 
probability of the range of the distribution is not positive.

STAT_INCORRECT_CDF_3—Function f is not a cumulative distribution function. Its 
evaluation at an element in x is inconsistent with either the evaluation at the lower or 
upper bound.
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STAT_INCORRECT_CDF_4—Function f is not a cumulative distribution function. Its 
evaluation at a cutpoint is inconsistent with either the evaluation at the lower or upper 
bound.

STAT_INCORRECT_CDF_5—An error has occurred when inverting the cumulative 
distribution function. This function must be continuous and defined over the whole 
real line.

Version History

6.4 Introduced
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IMSL_NORMALITY

The IMSL_NORMALITY function performs a test for normality.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NORMALITY(x [, CHISQ=variable] [, DF=variable] [, /DOUBLE] 
[, LILLIEFORS=variable] [, NCAT=value] [, SHAPIRO_WILK=variable] )

Return Value

The p-value for the Shapiro-Wilk W test or the Lilliefors test for normality. The 
Shapiro-Wilk test is the default. If the Lilliefors test is used, probabilities less than 
0.01 are reported as 0.01, and probabilities greater than 0.10 for the normal 
distribution are reported as 0.5; otherwise, an approximate probability is computed.

Arguments

x

One-dimensional array containing the observations.

Keywords

CHISQ

Specifies a variable into which the chi-square statistic is stored. Keywords Ncat, Df, 
and Chisq must be used together and indicate that the chi-squared goodness-of-fit test 
is to be performed.

DF

Specifies a variable into which the degrees of freedom for the test are 
stored.Keywords Ncat, Df and Chisq must be used together and indicate that the chi-
squared goodness-of-fit test is to be performed.
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DOUBLE

If present and nonzero, double precision is used.

LILLIEFORS

Named variable into which the maximum absolute difference between the empirical 
and the theoretical distributions is stored. If Lilliefors is present, then Lilliefors test is 
performed.

NCAT

An integer specifying number of cells into which the observations are to be tallied. 
Keywords Ncat, Df, and Chisq must be used together and indicate that the chi-
squared goodness-of-fit test is to be performed.

SHAPIRO_WILK

Named variable into which the Shapiro-Wilk W statistic is stored. If Shapiro_Wilk is 
present, then the Shapiro-Wilk W test is performed. Default: Shapiro-Wilk W test is 
performed

Discussion

Three methods are provided for testing normality: the Chi-Squared test, the Shapiro-
Wilk W test, and the Lilliefors test.

Chi-Squared Test

This function computes the chi-squared statistic, its p-value, and the degrees of 
freedom of the test. Keyword Ncat finds the number of intervals into which the 
observations are to be divided. The intervals are equi-probable except for the first and 
last interval which are infinite in length. If more flexibility is desired for the 
specification of intervals, the same test can be performed with a call to 
IMSL_CHISQTEST using the optional arguments described for that function.

Shapiro-Wilk W Test

D’Agostino and Stevens (1986, p. 406) refer to the Shapiro-Wilk W test as the best 
omnibus tests of normality. The function is based on the approximations and code 
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given by Royston (1982a, b, c). It can be used in samples as large as 2,000 or as small 
as 3. In the Shapiro and Wilk test, W is given by: 

where x(i) is the i-th smallest order statistic and:

 

is the sample mean. Royston (1982) gives approximations and tabled values that can 
be used to compute the coefficients ai, i = 1, ..., n, and obtains the significance level 
of the W statistic.

Lilliefors Test

This function computes Lilliefors test and its p-values for a normal distribution in 
which both the mean and variance are estimated. The one-sample, two-sided 
Kolmogorov-Smirnov statistic D is first computed. The p-values are then computed 
using an analytic approximation given by Dallal and Wilkinson (1986). Because 
Dallal and Wilkinson give approximations in the range (0.01, 0.10) if the computed 
probability of a greater D is less than 0.01, a note is issued and the p-value is set to 
0.50. Note that because parameters are estimated, p-values in Lilliefors test are not 
the same as in the Kolmogorov-Smirnov Test.

Observations should not be tied. If tied observations are found, an informational 
message is printed. A general reference for the Lilliefors test is Conover (1980). The 
original reference for the test for normality is Lilliefors (1967).

Examples

Example 1

The following example is taken from Conover (1980, pp. 195, 364). The data consists 
of 50 two-digit numbers taken from a telephone book. The W test fails to reject the 
null hypothesis of normality at the .05 level of significance.

x = [23, 36, 54, 61, 73, 23, 37, 54, 61, 73, $
24, 40, 56, 62, 74, 27, 42, 57, 63, 75, $
29, 43, 57, 64, 77, 31, 43, 58, 65, 81, $
32, 44, 58, 66, 87, 33, 45, 58, 68, 89, $
33, 48, 58, 68, 93, 35, 48, 59, 70, 97]

p = IMSL_NORMALITY(x)
PRINT, 'P-Value = ', p

P-Value =      0.230858

W aix i( )∑ 
 
  2

xi x–( )2
∑ 

 
 

⁄=

x
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Example 2

The following example uses the same data as the previous example. Here, the 
Shapiro-Wilk W statistic is output.

p = IMSL_NORMALITY(x, SHAPIRO_WILK = sw)
PRINT, 'p-Value                  = ', p
PRINT, 'Shapiro Wilk W Statistic = ', sw

p-Value                  =      0.230858
Shapiro Wilk W Statistic =      0.964217

Errors

Warning Errors

STAT_ALL_OBS_TIED—All observations in x are tied.

Fatal Errors

STAT_NEED_AT_LEAST_5—All but # elements of x are missing. At least five 
nonmissing observations are necessary to continue.

STAT_NEG_IN_EXPONENTIAL—In testing the exponential distribution, an invalid 
element in x is found (x[ ] = #). Negative values are not possible in exponential 
distributions.

STAT_NO_VARIATION_INPUT—There is no variation in the input data. All 
nonmissing observations are tied.

Version History

6.4 Introduced
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IMSL_KOLMOGOROV1

The IMSL_KOLMOGOROV1 function performs a Kolmogorov-Smirnov one-
sample test for continuous distributions.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_KOLMOGOROV1(f, x [, DIFFERENCES=variable] [, /DOUBLE] 
[, NMISSING=variable])

Return Value

One-dimensional array of length 3 containing  Z, p1, and p2 .

Arguments

f

Scalar string specifying a user-supplied function to compute the cumulative 
distribution function (CDF) at a given value. Parameter f  accepts the following 
parameter and returns the computed function value at this point:

• y—Point at which the function is to be evaluated.

• x—One-dimensional array containing the observations.

Keywords

DIFFERENCES

Named variable into which an array containing Dn , Dn
+, Dn

- is stored.

DOUBLE

If present and nonzero, double precision is used.
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NMISSING

Named variable into which the number of missing values is stored.

Discussion

The IMSL_KOLMOGOROV1 function performs a Kolmogorov-Smirnov goodness-
of-fit test in one sample. The hypotheses tested follow: 

where F is the cumulative distribution function (CDF) of the random variable, and the 
theoretical CDF, F* , is specified via the supplied function f. Let n = 
N_ELEMENTS(x) − Nmissing. The test statistics for both one-sided alternatives: 

and: 

and the two-sided (Dn = Differences(0)) alternative are computed as well as an 
asymptotic z-score (Result(0)) and p-values associated with the one-sided (Result(1)) 
and two-sided (Result(2)) hypotheses. For n > 80, asymptotic p-values are used (see 
Gibbons 1971). For n ≤ 80, exact one-sided p-values are computed according to a 
method given by Conover (1980, page 350). An approximate two-sided test p-value is 
obtained as twice the one-sided p-value. The approximation is very close for one-
sided p-values less than 0.10 and becomes very bad as the one-sided p-values get 
larger.

Programming Notes

1. The theoretical CDF is assumed to be continuous. If the CDF is not 
continuous, the statistics:

 

will not be computed correctly.

2. Estimation of parameters in the theoretical CDF from the sample data will tend 
to make the p-values associated with the test statistics too liberal. The 
empirical CDF will tend to be closer to the theoretical CDF than it should be.
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3. No attempt is made to check that all points in the sample are in the support of 
the theoretical CDF. If all sample points are not in the support of the CDF, the 
null hypothesis must be rejected.

Example

In this example, a random sample of size 100 is generated via routine 
IMSL_RANDOM for the uniform (0, 1) distribution. We want to test the null 
hypothesis that the CDF is the standard normal distribution with a mean of 0.5 and a 
variance equal to the uniform (0, 1) variance (1/12).

.RUN
FUNCTION l_Cdf,  x

mean  =  0.5
std  =  0.2886751
z  =  (x - mean)/std
val  =  IMSL_NORMALCDF(z)
RETURN, val

END

IMSL_RANDOMOPT, set  =  123457
x  =  IMSL_RANDOM(100, /UNIFORM)
stats  =  IMSL_KOLMOGOROV1('l_cdf', x, DIFFERENCES = d, $

NMISSING = nm)
PRINT, 'D  =', d(0)
PRINT, 'D+ =', d(1)
PRINT, 'D- =', d(2)
PRINT, 'Z  =', stats(0)
PRINT, 'Prob greater D one sided =', stats(1)

D  =     0.147083
D+ =    0.0809559
D- =     0.147083
Z  =      1.47083
Prob greater D one sided =    0.0132111

Version History

6.4 Introduced
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IMSL_KOLMOGOROV2

The IMSL_KOLMOGOROV2 function performs a Kolmogorov-Smirnov two-
sample test.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = KOLMORGOROV2(x, y [, DIFFERENCES=variable] [, /DOUBLE] 
[, NMISSINGX=variable] [, NMISSINGY=variable] )

Return Value

One-dimensional array of length 3 containing  Z, p1, and p2 .

Arguments

x

One-dimensional array containing the observations from sample one.

y

One-dimensional array containing the observations from sample two.

Keywords

DIFFERENCES

Named variable into which a one-dimensional array containing Dn , Dn
+, Dn

- is 
stored.

DOUBLE

If present and nonzero, double precision is used.

NMISSINGX

Named variable into which the number of missing values in the x sample is stored.
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NMISSINGY

Named variable into which the number of missing values in the y sample is stored.

Discussion

The IMSL_KOLMOGOROV2 function computes Kolmogorov-Smirnov two-sample 
test statistics for testing that two continuous cumulative distribution functions 
(CDF’s) are identical based upon two random samples. One- or two-sided alternatives 
are allowed. If n_observations_x = N_ELEMENTS(x) and n_observations_y = 
N_ELEMENTS(y), then the exact p-values are computed for the two-sided test when 
n_observations_x * n_observations_y is less than 104. 

Let Fn(x) denote the empirical CDF in the X sample, let Gm(y) denote the empirical 
CDF in the Y sample, where n = n_observations_x  − Nmissingx and m = 
n_observations_y − Nmissingy, and let the corresponding population distribution 
functions be denoted by F(x) and G(y), respectively. Then, the hypotheses tested by 
IMSL_KOLMOGOROV2 are as follows: 

The test statistics are given as follows: 

Asymptotically, the distribution of the statistic

 

(returned in Result (0)) converges to a distribution given by Smirnov (1939). 

Exact probabilities for the two-sided test are computed when m * n is less than or 
equal to 104, according to an algorithm given by Kim and Jennrich (1973;). When m 
* n is greater than 104, the very good approximations given by Kim and Jennrich are 
used to obtain the two-sided p-values. The one-sided probability is taken as one half 
the two-sided probability. This is a very good approximation when the p-value is 
small (say, less than 0.10) and not very good for large p-values.
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Example

The following example illustrates the IMSL_KOLMOGOROV2 routine with two 
randomly generated samples from a uniform(0,1) distribution. Since the two 
theoretical distributions are identical, we would not expect to reject the null 
hypothesis.

IMSL_RANDOMOPT, set  =  123457
x  =  IMSL_RANDOM(100, /Uniform)
y  =  IMSL_RANDOM(60, /Uniform)
stats  =  IMSL_KOLMOGOROV2(x, y, DIFFERENCES = d, $

NMISSINGX = nmx, NMISSINGY = nmy)
PRINT, 'D  =', d(0)
PRINT, 'D+ =', d(1)
PRINT, 'D- =', d(2)
PRINT, 'Z  =', stats(0)
PRINT, 'Prob greater D one sided =', stats(1)
PRINT, 'Prob greater D two sided =', stats(2)
PRINT, 'Missing X =', nmx
PRINT, 'Missing Y =', nmy

D  =     0.180000
D+ =     0.180000
D- =    0.0100001
Z  =      1.10227
Prob greater D one sided =    0.0720105
Prob greater D two sided =     0.144021
Missing X =           0
Missing Y =           0

Version History

6.4 Introduced
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IMSL_MVAR_NORMALITY

The IMSL_MVAR_NORMALITY function computes Mardia’s multivariate 
measures of skewness and kurtosis and tests for multivariate normality.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_MVAR_NORMALITY(x [, /DOUBLE] [, FREQUENCIES=array] 
[, MEANS=variable] [, NMISSING=variable] [, R_MATRIX=variable] 
[, SUM_FREQS=variable] [, SUM_WEIGHTS=variable] [, WEIGHTS=array])

Return Value

One-dimensional array of size 13 containing output statistics as shown in Table 19-1.

I result ( I )

0 estimated skewness

1 expected skewness assuming a multivariate normal distribution

2 asymptotic chi-squared statistic assuming a multivariate normal 
distribution

3 probability of a greater chi-squared

4 Mardia and Foster's standard normal score for skewness

5 estimated kurtosis

6 expected kurtosis assuming a multivariate normal distribution

7 asymptotic standard error of the estimated kurtosis

8 standard normal score obtained from Result(5) through Result(7)

9 p-value corresponding to Result(8)

10 Mardia and Foster's standard normal score for kurtosis

Table 19-1: Output Statistics
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Arguments

x

2D array containing data in which N_ELEMENTS(x(*,0)) is the number of 
observations (numbers of rows of data) in x and N_ELEMENTS(x(0,*)) is the 
dimensionality of the multivariate space for which the skewness and kurtosis are to be 
computed (number of variables in x).

Keywords

DOUBLE

If present and nonzero, double precision is used.

FREQUENCIES

One-dimensional array containing the frequencies. Frequencies must be an integer 
value. Default assumes all Frequencies equal one.

MEANS

Named variable into which a one-dimensional array of length N_ELEMENTS(x(0,*)) 
containing the sample means is stored.

NMISSING

Named variable into which the number of rows of data in x containing any missing 
values (NaN) is stored.

R_MATRIX

Named variable into which an upper triangular array containing the Cholesky RTR 
factorization of the covariance matrix is stored.

11 Mardia's SW statistic based upon Result(4) and Result(10)

12 p-value for Result(11)

I result ( I )

Table 19-1: Output Statistics (Continued)
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SUM_FREQS

Named variable into which the sum of the frequencies of all observations used in the 
computations is stored.

SUM_WEIGHTS

Named variable into which the sum of the weights times the frequencies for all 
observations used in the computations is stored.

WEIGHTS

One-dimensional array containing the weights. Weights must be non-negative. 
Default assumes all Weights equal one.

Discussion

The IMSL_MVAR_NORMALITY function computes Mardia’s (1970) measures b1,p 
and b2,p of multivariate skewness and kurtosis, respectfully, for 
p = N_ELEMENTS(x(0,*)). These measures are then used in computing tests for 
multivariate normality. Three test statistics, one based upon b1,p alone, one based 
upon b2,p alone, and an omnibus test statistic formed by combining normal scores 
obtained from b1,p and b2,p are computed. On the order of np3, operations are 
required in computing b1,p when the method of Isogai (1983) is used, where n = 
N_ELEMENTS(x(*,0)). On the order of np2, operations are required in computing 
b2,p. 

Let:

 

where: 

fi is the frequency of the i-th observation, and wi is the weight for this observation. 
(Weights wi are defined such that xi is distributed according to a multivariate normal, 
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N(µ, Σ/wi) distribution, where Σ is the covariance matrix.) Mardia’s multivariate 
skewness statistic is defined as: 

while Mardia’s kurtosis is given as: 

Both measures are invariant under the affine (matrix) transformation AX + D, and 
reduce to univariate measures when p = N_ELEMENTS(x(0,*)) = 1. Using formulas 
given in Mardia and Foster (1983), the approximate expected value, asymptotic 
standard error, and asymptotic p-value for b2,p, and the approximate expected value, 
an asymptotic chi-squared statistic, and p-value for the b1,p statistic are computed. 
These statistics are all computed under the null hypothesis of a multivariate normal 
distribution. In addition, standard normal scores W1(b1,p) and W2(b2,p) (different from 
but similar to the asymptotic normal and chi-squared statistics above) are computed. 
These scores are combined into an asymptotic chi-squared statistic with two degrees 
of freedom: 

This chi-squared statistic may be used to test for multivariate normality. A 
p-value for the chi-squared statistic is also computed.

Example

In the following example, 150 observations from a 5 dimensional standard normal 
distribution are generated via routine IMSL_RANDOM (Chapter 12, Random 
Number Generation). The skewness and kurtosis statistics are then computed for 
these observations.

m  =  150
n  =  5
IMSL_RANDOMOPT, set  =  123457
x  =  FLTARR(n, m)
x(*)  =  IMSL_RANDOM(m*n, /Normal)
x  =  TRANSPOSE(x)
stats  =  IMSL_MVAR_NORMALITY(x, Sum_Weights = sw, Sum_Freq = sf, $

Means = means, R_Matrix = r_mat)
PRINT, 'Sum of Frequencies =', sf, FORMAT = '(A25, I4)'
PRINT, 'Sum of the weights =', sw, FORMAT = '(A25, F8.3)'
FOR i  =  0, 12 DO PM, i, stats(i), FORMAT = '(I5, F10.2)'
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Sum of Frequencies = 150
Sum of the weights = 150.000
0      0.73
    1      1.36
    2     18.62
    3      0.99
    4     -2.37
    5     32.67
    6     34.54
    7      1.27
    8     -1.48
    9      0.14
   10      1.62
   11      8.24
   12      0.02

Version History

6.4 Introduced
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IMSL_RANDOMNESS_TEST

The IMSL_RANDOMNESS_TEST function performs a test for randomness.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RANDOMNESS_TEST(x, n_run [, COVARIANCES=variable] 
[, DCUBE_COUNTS=variable] [, /DOUBLE] 
[, DSQUARE_COUNTS=variable] [, EXPECT=variable] 
[, PAIRS_COUNTS=variable] [, PAIRS_LAG=value] 
[, RUNS_COUNTS=variable] [, RUNS_EXPECT=variable])

Return Value

The probability of a larger chi-squared statistic for testing the null hypothesis of a 
uniform distribution.

Arguments

n_run

Length of longest run for which tabulation is desired. For keywords Pairs_Counts, 
Dsquare_Counts, and Dcube_Counts, n_run  stands for the number of equiprobable 
cells into which the statistics are to be tabulated.

x

One-dimensional array containing the data.

Keywords

COVARIANCES

Named variable into which an array of size N_ELEMENTS(x) by N_ELEMENTS(x) 
containing the variances and covariances of the counts is stored. Keywords 
Runs_Counts and Covariances must be used together.
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Exactly one of the options listed in Table 19-2 is used to specify which test is to be 
performed.

DCUBE_COUNTS

Named variable into which an array of length n_run by n_run by n_run containing 
the tabulations for the triplets test is stored. Keywords Runs_Counts, Pairs_Counts, 
Dsquare_Counts, and Dcube_Counts can not be used together.

Chisq—Named variable into which the Chi-squared statistic for testing the null 
hypothesis of a uniform distribution is stored.

Df—Named variable into which the degrees of freedom for chi-squared is stored.

Exactly one of the options listed in Table 19-3 is used to specify which test is to be 
performed.

DOUBLE

If present and nonzero, double precision is used.

Keyword Test to be Performed

Runs_Counts with Covariances Runs Test

Pairs_Counts with Pairs_Lag Pairs Test

Dsquare_Counts d2 Test

Dcube_Counts Triplets Test

Table 19-2: Output Keywords

Keyword Test to be Performed

Runs_Counts with Covariances Runs Test

Pairs_Counts with Pairs_Lag Pairs Test

Dsquare_Counts d2 Test

Dcube_Counts Triplets Test

Table 19-3: Output Keywords
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DSQUARE_COUNTS

Named variable into which an array of length n_run containing the tabulations for the 
d2 test is stored. Keywords Dsquare_Counts, Runs_Counts, Pairs_Counts, and 
Dcube_Counts can not be used together

Exactly one of the options listed in Table 19-4 is used to specify which test is to be 
performed.

EXPECT

Named variable into which the expected number of counts for each cell is stored.  

Note
This keyword is optional only if one of the keywords  Pairs_Counts, 
Dsquare_Counts, or Dcube_Count is used. Keywords Runs_Counts and Expect can 
not be used together.

PAIRS_COUNTS

Named variable into which an array of size n_run by n_run containing the count of 
the number of pairs in each cell is stored.  The lag to be used in computing the pairs 
statistic is stored in Pairs_Lag. Pairs (X(i), X(i + Pairs_Lag)) for i = 0, ..., N – 
Pairs_Lag – 1 are tabulated, where N is the total sample size. Keywords 
Pairs_Counts and Pairs_Lag must be used together. Keywords Pairs_Counts, 
Runs_Counts, Dsquare_Counts, and Dcube_Counts can not be used together. 

Keyword Test to be Performed

Runs_Counts with Covariances Runs Test

Pairs_Counts with Pairs_Lag Pairs Test

Dsquare_Counts d2 Test

Dcube_Counts Triplets Test

Table 19-4: Output Keywords
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Exactly one of the options listed in Table 19-5 is used to specify which test is to be 
performed.

PAIRS_LAG

The lag to be used in computing the pairs statistic. Keywords Pairs_Lag and 
Pairs_Counts must be used together. 

RUNS_COUNTS

Named variable into which an array of size N_ELEMENTS(x) containing the counts 
of the number of runs up each length is stored. The Runs Test is the default test, 
however, to return the counts and covariances, the Runs_Counts keyword must be 
used. Keywords Runs_Counts and Covariances must be used together. Keywords 
Runs_Counts, Pairs_Counts, Dsquare_Counts, and Dcube_Counts can not be used 
together.

Exactly one of the options listed in Table 19-6 is used to specify which test is to be 
performed.

Keyword Test to be Performed

Runs_Counts with Covariances Runs Test

Pairs_Counts with Pairs_Lag Pairs Test

Dsquare_Counts d2 Test

Dcube_Counts Triplets Test

Table 19-5: Output Keywords

Keyword Test to be Performed

Runs_Counts with Covariances Runs Test

Pairs_Counts with Pairs_Lag Pairs Test

Dsquare_Counts d2 Test

Dcube_Counts Triplets Test

Table 19-6: Output Keywords
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RUNS_EXPECT

Named variable into which an array of length n_run containing the expected number 
of runs of each length is expected is stored. 

Note
This keyword is optional if Runs_Counts is used. 

Discussion 

Runs Up Test

The IMSL_RANDOMNESS_TEST function performs one of four different tests for 
randomness. Input keyword Runs_Counts computes statistics for the runs up test. 
Runs tests are used to test for cyclical trend in sequences of random numbers. If the 
runs down test is desired, each observation should first be multiplied by –1 to change 
its sign, and Runs_Counts used with the modified vector of observations. 

Runs_Counts first tallies the number of runs up (increasing sequences) of each 
desired length. For i = 1, ..., r – 1, where r = n_run, Runs_Counts(i) contains the 
number of runs of length i. Runs_Counts(n_run) contains the number of runs of 
length n_run or greater. As an example of how runs are counted, the sequence (1, 2, 
3, 1) contains 1 run up of length 3, and one run up of length 1.

After tallying the number of runs up of each length, Runs_Counts computes the 
expected values and the covariances of the counts according to methods given by 
Knuth (1981, pages 65(67). Let R denote a vector of length n_run containing the 
number of runs of each length so that the i-th element of R, ri, contains the count of 
the runs of length i. Let ΣR denote the covariance matrix of R under the null 
hypothesis of randomness, and let µR denote the vector of expected values for R 
under this null hypothesis, then an approximate chi-squared statistic with n_run 
degrees of freedom is given as: 

In general, the larger the value of each element of µR, the better the chi-squared 
approximation.

Pairs Test

Pairs_Counts computes the pairs test (or the Good’s serial test) on a hypothesized 
sequence of uniform (0,1) pseudorandom numbers. The test proceeds as follows. 

χ µ µ2 1= − ∑ −−( ) ( )R RR
T

R R
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Subsequent pairs (X(i), X(i + Pairs_Lag)) are tallied into a k x k matrix, where k = 
n_run. In this tally, element (j, m) of the matrix is incremented, where: 

where l = Pairs_Lag, and the notation  represents the greatest integer function, 
 is the greatest integer less than or equal to Y, where Y is a real number. If l = 1, 

then i = 1, 3, 5, ..., n – 1. If l > 1, then i = 1, 2, 3, ..., n – l, where n is the total number 
of pseudorandom numbers input on the current usage of Pairs_Counts (i.e., n = 
N_ELEMENTS(x)). 

Given the tally matrix in Pairs_Counts, chi-squared is computed as: 

where e = Σoij/k
2, and oij is the observed count in cell (i, j) (oij = Pairs_Counts (i, j)). 

Because pair statistics for the trailing observations are not tallied on any call, You 
should use Pairs_Counts with N_ELEMENTS(x) as large as possible. For Pairs_Lag 
< 20 and  N_ELEMENTS(x) = 2000, little power is lost.

d2 Test

Dsquare_Counts computes the d2 test for succeeding quadruples of hypothesized 
pseudorandom uniform (0, 1) deviates. The d2 test is performed as follows. Let X1, 
X2, X3, and X4 denote four pseudorandom uniform deviates, and consider:

D2 = (X3 – X1)2 + (X4 – X2)2 

The probability distribution of D2 is given as: 

when D2 ≤1, where π denotes the value of pi. If D2 > 1, this probability is given as:

See Gruenberger and Mark (1951) for a derivation of this distribution. 
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For each succeeding set of 4 pseudorandom uniform numbers input in x, d2 and the 
cumulative probability of d2 (Pr(D2 ≤ d2)) are computed. The resulting probability is 
tallied into one of k = n_run equally spaced intervals. 

Let n denote the number of sets of four random numbers input (n = the total number 
of observations/4). Then, under the null hypothesis that the numbers input are random 
uniform (0, 1) numbers, the expected value for each element in Dsquare_Counts is e 
= n/k. An approximate chi-squared statistic is computed as: 

where oi = Dsquare_Counts(i) is the observed count. Thus, χ2 has k – 1 degrees of 
freedom, and the null hypothesis of pseudorandom uniform (0, 1) deviates is rejected 
if χ2 is too large. As n increases, the chi-squared approximation becomes better. A 
useful generalization is that e > 5 yields a good chi-squared approximation.

Triplets Test

Dcube_Counts computes the triplets test on a sequence of hypothesized 
pseudorandom uniform(0, 1) deviates. The triplets test is computed as follows: Each 
set of three successive deviates, X1, X2, and X3, is tallied into one of m3 equal sized 
cubes, where m = n_run. Let i = [mX1] + 1, j = [mX2] + 1, and k = [mX3] +  1. For the 
triplet (X1, X2, X3), Dcube_Counts(i, j, k) is incremented. 

Under the null hypothesis of pseudorandom uniform(0, 1) deviates, the m3 cells are 
equally probable and each has expected value e = n/m3, where n is the number of 
triplets tallied. An approximate chi-squared statistic is computed as: 

where oijk = Dcube_Counts(i, j, k). 

The computed chi-squared has m3– 1 degrees of freedom, and the null hypothesis of 
pseudorandom uniform (0, 1) deviates is rejected if χ2 is too large.

Examples

Example 1

The following example illustrates the use of the runs test on 104 pseudo-random 
uniform deviates. In the example, 2000 deviates are generated for each use of 
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Runs_Counts. Since the probability of a larger chi-squared statistic is 0.1872, there is 
no strong evidence to support rejection of this null hypothesis of randomness.

.RUN
PRO print_results, n_run, num, rc, re, cov, chisq, df, p

PRINT, '          runs_count'
PRINT, num + 1, FORMAT = '(6I5)'
PRINT, rc, FORMAT = '(6I5)'
PRINT
PRINT, '                runs_expect'
PRINT, num + 1, FORMAT = '(6I7)'
PRINT, re, FORMAT = '(6F7.1)'
PRINT
PRINT, '                          covariances'
PRINT, num + 1, FORMAT = '(7X, 6I8)'
FOR i  =  0, n_run - 1 DO $

PRINT, num(i) + 1, cov(i, *), FORMAT = '(I8, 6F8.1)'
PRINT
PRINT, 'chisq  =', chisq
PRINT, 'df     =', df
PRINT, 'pvalue =', p

END

nran  =  10000
n_run  =  6
num  =  INDGEN(n_run)
IMSL_RANDOMOPT, set  =  123457
x  =  IMSL_RANDOM(nran, /Uniform)
p  =  IMSL_RANDOMNESS_TEST(x, n_run, Runs_Counts = rc, $

Covariances = cov, Chisq = chisq, Df = df, Runs_Expect = re)
print_results, n_run, num, rc,re,cov,chisq, df, p

          runs_count
    1    2    3    4    5    6
 1709 2046  953  260   55    4

                runs_expect
      1      2      3      4      5      6
 1667.3 2083.4  916.5  263.8   57.5   11.9

                          covariances
              1       2       3       4       5       6
       1  1278.2  -194.6  -148.9   -71.6   -22.9    -6.7
       2  -194.6  1410.1  -490.6  -197.2   -55.2   -14.4
       3  -148.9  -490.6   601.4  -117.4   -31.2    -7.8
       4   -71.6  -197.2  -117.4   222.1   -10.8    -2.6
       5   -22.9   -55.2   -31.2   -10.8    54.8    -0.6
       6    -6.7   -14.4    -7.8    -2.6    -0.6    11.7
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chisq  =      8.76515
df     =      6.00000
pvalue =     0.187223

Example 2

The following example illustrates the calculations of the Pairs_Counts statistics when 
a random sample of size 104 is used and the Pairs_Lag is 1. The results are not 
significant.

.RUN
PRO print_results, n_run, num, pc, expect, chisq, df, p

PRINT, '                        pairs_count'
PRINT, num + 1, FORMAT = '(5X, 10I5)'
FOR i  =  0, n_run - 1 DO $

PRINT, num(i) + 1, pc(i, *), FORMAT = '(I5, 10I5)'
PRINT
PRINT, 'expect  =', expect
PRINT, 'chisq   =', chisq
PRINT, 'df      =', df
PRINT, 'pvalue  =', p

END

nran  =  10000
n_run  =  10
num  =  INDGEN(n_run)
lag  =  5
IMSL_RANDOMOPT, set  =  123467
x  =  IMSL_RANDOM(nran, /Uniform)
p  =  IMSL_RANDOMNESS_TEST(x, n_run, Pairs_Counts = pc, $

Pairs_Lag = lag, Chisq = chisq, $
Df = df, Expect = expect)

print_results, n_run, num, pc, expect, chisq, df, p

                        pairs_count
         1    2    3    4    5    6    7    8    9   10
    1  112   82   95  118  103  103  113   84   90   74
    2  104  106  109  108  101   98  102   92  109   88
    3   88  111   86  106  112   79  103  105  106  101
    4   91  110  108   92   88  108  113   93  105  114
    5  104  105  103  104  101   94   96   87   93  104
    6   98  104  103  104   79   89   92  104   92  100
    7  103   91   97  101  116   83  118  118  106   99
    8  105  105  111   91   93   82  100  104  110   89
    9   92  102   82  101   94  128  102  110  125   98
   10   79   99  103   98  104  101   93   93   98  105

expect  =      99.9500
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chisq   =      104.860
df      =      99.0000
pvalue  =     0.324242

Example 3

In the following example, 2000 observations generated using the routine 
IMSL_RANDOM are input to Dsquare_Counts in one call.  In the example, the null 
hypothesis of a uniform distribution is not rejected.

.RUN
PRO print_results, n_run, num, dc, expect, chisq, df, p

PRINT, '          dsquare_counts'
PRINT, num + 1, FORMAT = '(6I5)'
PRINT, dc, FORMAT = '(6I5)'
PRINT
PRINT, 'expect  =', expect
PRINT, 'chisq   =', chisq
PRINT, 'df      =', df
PRINT, 'pvalue  =', p

END

nran  =  2000
n_run  =  6
num  =  INDGEN(n_run)
IMSL_RANDOMOPT, set  =  123457
x  =  IMSL_RANDOM(nran, /Uniform)
p  =  IMSL_RANDOMNESS_TEST(x, n_run, Chisq = chisq, Df = df, $

Expect = expect, Dsquare_Counts = dc)
print_results, n_run, num, dc, expect, chisq, df, p

          dsquare_counts
    1    2    3    4    5    6
   87   84   78   76   92   83

expect  =      83.3333
chisq   =      2.05600
df      =      5.00000
pvalue  =     0.841343

Example 4

In the following example, 2001 deviates generated by the routine IMSL_RANDOM 
are input to Dcube_Counts, and tabulated in 27 equally sized cubes. In the example, 
the null hypothesis is not rejected.

.RUN
PRO print_results, n_run, num, dc, expect, chisq, df, p

FOR j  =  0, n_run - 1 DO BEGIN
IMSL_RANDOMNESS_TEST IDL Analyst Reference Guide
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PRINT, ' dcube_counts'
PRINT, num + 1, FORMAT = '(5X, 3I5)'

FOR i  =  0, n_run - 1 DO $
PRINT, num(i) + 1, dc(j, i, *), FORMAT = '(I5, 3I5)'

      PRINT
ENDFOR
PRINT, 'expect =', expect
PRINT, 'chisq  =', chisq
PRINT, 'df     =', df
PRINT, 'pvalue =', p

END

nran  =  2001
n_run  =  3
num  =  INDGEN(n_run)
IMSL_RANDOMOPT, set  =  123457
x  =  IMSL_RANDOM(nran, /Uniform)
p  =  IMSL_RANDOMNESS_TEST(x, n_run, Chisq = chisq, Df = df, $

Expect = expect, Dcube_Counts = dc)
print_results, n_run, num, dc, expect, chisq, df, p

       dcube_counts
         1    2    3
    1   26   27   24
    2   20   17   32
    3   30   18   21

       dcube_counts
         1    2    3
    1   20   16   26
    2   22   22   27
    3   30   24   26

       dcube_counts
         1    2    3
    1   28   30   22
    2   23   24   22
    3   33   30   27

expect =      24.7037
chisq  =      21.7631
df     =      26.0000
pvalue =     0.701585
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Version History

6.4 Introduced
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Time Series and 
Forecasting
This section contains the following topics:
Overview: Time Series and Forecasting  . .  912 Time Series and Forecasting Routines . . .  914
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Overview: Time Series and Forecasting

The routines in this chapter assume the time series does not contain any missing 
observations. If missing values are present, they should be set to the special floating-
point value Not a Number (NaN), and the routine will return an appropriate error 
message. To enable fitting of the model, the missing values must be replaced by 
appropriate estimates. 

General Methodology

A major component of the model identification step concerns determining if a given 
time series is stationary. The sample correlation functions computed by routines 
“IMSL_AUTOCORRELATION” on page 942, and “IMSL_PARTIAL_AC” on 
page 947 may be used to diagnose the presence of non-stationarity in the data, as well 
as to indicate the type of transformation1 require to induce stationarity. The family of 
power transformations provided by routine “IMSL_BOXCOXTRANS” on page 937 
coupled with the ability to difference the transformed data using routine 
“IMSL_DIFFERENCE” on page 931 affords a convenient method of transforming a 
wide class of nonstationary time series to stationarity.

The “raw” data, transformed data, and sample correlation functions also provide 
insight into the nature of the underlying model. Typically, this information is 
displayed in graphical form via time series plots, plots of the lagged data, and various 
correlation function plots. 

The observed time series may also be compared with time series generated from 
various theoretical models to help identify possible candidates for model fitting. The 
routine IMSL_RANDOM_ARMA may be used to generate a time series according to 
a specified autoregressive moving average model. 

Time Domain Methodology

Once the data are transformed to stationarity, a tentative model in the time domain is 
often proposed and parameter estimation1, diagnostic checking and forecasting are 
performed.

ARIMA Model (Autoregressive Integrated Moving 
Average) 

A small, yet comprehensive, class of stationary time-series models consists of the 
nonseasonal IMSL_ARMA processes defined by:
Overview: Time Series and Forecasting IDL Analyst Reference Guide
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where Z = {..., −2, −1, 0, 1, 2, ...} denotes the set of integers, B is the backward shift 
operator defined by BkWt = Wt−k, µ is the mean of Wt, and the following equations 
are true:

φ(B) = 1 − φ1B − φ2B2 − ... − φpBp, p ≥ 0

θ(B) = 1 − θ1B − θ2B2 − ... − θqBq, q ≥ 0

The model is of order (p, q) and is referred to as an IMSL_ARMA (p, q) model.

An equivalent version of the IMSL_ARMA (p, q) model is given by:

 

where θ0 is an overall constant defined by the following: 

See Box and Jenkins (1976, pp. 92−93) for a discussion of the meaning and 
usefulness of the overall constant.

If the “raw” data, {Zt}, are homogeneous and nonstationary, then differencing using 
the “IMSL_DIFFERENCE” on page 931 induces stationarity, and the model is called 
ARIMA (AutoRegressive Integrated Moving Average). Parameter estimation is 
performed on the stationary time series Wt, = ∇ dZt , where ∇ d = (1 − B)d is the 
backward difference operator with period 1 and order d, d > 0.

Typically, the method of moments includes keyword Moments in a call to the 
“IMSL_ARMA” on page 915 for preliminary parameter estimates. These estimates 
can be used as initial values into the least-squares procedure by including keyword 
Lsq  in a call to function ARMA. Other initial estimates provided can be used. The 
least-squares procedure can be used to compute conditional or unconditional least-
squares estimates of the parameters, depending on the choice of the backcasting 
length. 

φ B( ) Wt µ–( ) θ B( )At,= t Z∈

φ B( )Wt θ0 θ+ B( )At,= t Z∈

θ0 µ 1 φi
i 1=

p

∑–
 
 
 
 

=
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Time Series and Forecasting Routines

IMSL_ARMA Models

IMSL_ARMA—Computes least-squares or method-of-moments estimates of 
parameters and optionally computes forecasts and their associated probability limits.

IMSL_DIFFERENCE—Performs differencing on a time series.

IMSL_BOXCOXTRANS—Perform a Box-Cox transformation. 

IMSL_AUTOCORRELATION—Sample autocorrelation function. 

IMSL_PARTIAL_AC—Sample partial autocorrelation function. 

IMSL_LACK_OF_FIT—Lack-of-fit test based on the corrleation function. 

IMSL_GARCH—Compute estimates of the parameters of a GARCH(p,q) model. 

IMSL_KALMAN—Performs Kalman filtering and evaluates the likelihood function 
for the statespace model.
Time Series and Forecasting Routines IDL Analyst Reference Guide
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IMSL_ARMA

The IMSL_ARMA function computes method-of-moments or least-squares estimates 
of parameters for a nonseasonal IMSL_ARMA model.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_ARMA(z, p, q [, AR_LAGS=array] [, AUTOCOV=variable] 
[, BACKWARD_ORIGIN=value] [, CONFIDENCE=value] [, CONSTANT]
[, /DOUBLE] [, ERR_REL=value] [, FORECAST=variable] 
[, INIT_EST_AR=array] [, INIT_EST_MA=array] [, ITMAX=value] [, /LSQ] 
[, LGTH_BACKCAST=value] [, MA_LAGS=array] [, MEAN_EST=value] 
[, /MOMENTS] [, N_PREDICT=value] [, /NO_CONSTANT] 
[, PARAM_EST_COV=variable] [, RESIDUAL=variable] 
[, SS_RESIDUAL=variable] [, TOL_BACKCAST=value] 
[, TOL_CONVERGENCE=value])

Return Value

An array of length 1 + p + q with the estimated constant, AR, and MA parameters. If 
No_Constant is specified, the 0-th element of this array is 0.0.

Arguments

p

Number of autoregressive parameters.

q

Number of moving average parameters.

z

One-dimensional array containing the observations. 
IDL Analyst Reference Guide IMSL_ARMA
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Keywords

AR_LAGS

One-dimensional array of length p containing the order of the nonzero autoregressive 
parameters. The elements of Ar_Lags must be greater than or equal to 1. Default: 
Ar_Lags = [1, 2, ..., p]

AUTOCOV

Named variable into which an array of length p + q + 2 containing the variance and 
autocovariances of the time series z is stored. Keyword Autocov(0) contains the 
variance of the series z. Keyword Autocov(k) contains the autocovariance of lag k, 
where k = 1, ..., p + q + 1. 

BACKWARD_ORIGIN

Maximum backward origin. Keyword Backward_Origin must be greater than or 
equal to zero and less than or equal to N_ELEMENTS(z) – (max(maxar, maxma)), 
where maxar = max(Ar_Lags) and maxma = max(Ma_Lags). 

Forecasts at origins N_ELEMENTS(z) – Backward_Origin through 
N_ELEMENTS(z) are generated. Default: Backward_Origin = 0

CONFIDENCE

Value in the exclusive interval (0, 100) used to specify the confidence level of the 
forecasts. Typical choices for Confidence are 90.0, 95.0, and 99.0. Default: 
Confidence = 95.0

CONSTANT

If present and nonzero, the time series is centered about its mean. Keywords 
No_Constant and Constant cannot be used together. 

DOUBLE

If present and nonzero, double precision is used.

ERR_REL

Stopping criterion for use in the nonlinear equation solver used in both the method-
of-moments and least-squares algorithms. Default: Err_Rel = 100 x ε, where ε is 
machine precision
IMSL_ARMA IDL Analyst Reference Guide
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FORECAST

Named variable into which an array of length N_Predict x (Backward_Origin + 3) 
containing the forecasts up to N_Predict steps ahead and the information necessary to 
obtain confidence intervals is stored. Keywords Forecast and N_Predict must be used 
together.

INIT_EST_AR

Array of length p containing preliminary estimates of the autoregressive parameters, 
internally. Keywords Init_Est_Ar and Init_Est_Ma must be used together and are 
only applicable if Lsq is also present and nonzero.

INIT_EST_MA

Array of length q containing preliminary estimates of the moving average parameters. 
Keywords Init_Est_Ar and Init_Est_Ma must be used together and are only 
applicable if Lsq is also present and nonzero.

The following keywords are used to forecast up to N_Predict steps ahead and the 
information necessary to obtain confidence intervals:

ITMAX

Maximum number of iterations allowed in the nonlinear equation solver used in both 
the method-of-moments and least-squares algorithms. Default: Itmax = 200

LSQ

If present and nonzero, the autoregressive and moving average parameters are 
estimated by a least-squares procedure. Keywords Moments and Lsq cannot be used 
together. 

LGTH_BACKCAST

Specifies the maximum length of backcasting. Must be greater than or equal to zero. 
Keywords Lgth_Backcast and Tol_Backcast must be used together. Default: 
Lgth_Backcast = 10

MA_LAGS

One-dimensional array of length q containing the order of the nonzero moving 
average parameters. The elements of Ma_Lags must be greater than or equal to 1. 
Default: Ma_Lags = [1, 2, ..., q]
IDL Analyst Reference Guide IMSL_ARMA
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MEAN_EST

Initial estimate of the mean of the time series z. 

Default:  

MOMENTS

If present and nonzero, the autoregressive and moving average parameters are 
estimated by a method-of-moments procedure. Keywords Moments and Lsq cannot 
be used together. (Default)

N_PREDICT

Maximum lead time for forecasts. Keyword N_Predict must be greater than zero. 
Keywords Forecast and N_Predict must be used together.

NO_CONSTANT

If present and nonzero, the time series is not centered about its mean. Keywords 
No_Constant and Constant cannot be used together. 

PARAM_EST_COV

Named variable into which an array, containing the covariance matrix of the final 
parameter estimates, is stored. The array is of size np x np, where np = p + q + 1 if z 
is centered about its mean and np = p + q if z is not centered. The ordering of 
variables in Param_Est_Cov is Mean_Est, Ar_lags, and Ma_lags.

RESIDUAL

Named variable into which an array of length N_ELEMENTS(z) – (max(Ar_Lags)) + 
Lgth_Backcast containing the residuals (including backcasts) at the final parameter 
estimate point in the first N_ELEMENTS(z) – (max(Ar_Lags)) + nb, where nb is the 
number of values backcast is stored.

SS_RESIDUAL

Named variable into which the sum of squares of the random error is stored.

Mean_Est zt /n
t 1=

n

∑=
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TOL_BACKCAST

Specifies the tolerance level used to determine convergence of the backcast 
algorithm. Typically, Tol_Backcast is set to a fraction of an estimate of the standard 
deviation of the time series. Keywords Lgth_Backcast and Tol_Backcast must be used 
together. Default: Tol_Backcast = 0.01 x standard deviation of l

TOL_CONVERGENCE

Tolerance level used to determine convergence of the nonlinear least-squares 
algorithm. Keyword Tol_Convergence represents the minimum relative decrease in 
sum of squares between two iterations required to determine convergence. Hence, 
Tol_Convergence must be greater than or equal to zero. Default: max {10–10, ε2 / 3} 
for single precision, 
max {10–20, ε2 / 3} for double precision, where ε is machine precision.

Discussion

The IMSL_ARMA function computes estimates of parameters for a nonseasonal 
IMSL_ARMA model given a sample of observations, {Zt}, for t = 1, 2, ..., n, where 
n = N_ELEMENTS(z). You may choose either method of moments or least squares. 
The default is method of moments.

Choose the method-of-moments algorithm with the keyword Moments. The least-
squares algorithm is used if Lsq is specified. If you wish to use the least-squares 
algorithm, the preliminary estimates are the method-of-moments estimates by 
default; otherwise, you can input initial estimates by specifying keywords 
Init_Est_Ar and Init_Est_Ma. Table 20-1 lists the appropriate keywords for both the 
method-of-moments and least-squares algorithm:

Method of 
Moments

only
Least Squares only

Both Method of 
Moments and 
Least Squares

Moments Lsq Err_Rel

Constant (or No_Constant) Itmax

Ar_Lags Mean_Estimate

Ma_Lags Autocov

Table 20-1: Method-of-Moments and Least-Squares Keywords
IDL Analyst Reference Guide IMSL_ARMA
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Method-of-moments Estimation

Suppose the time series {Zt } is generated by an IMSL_ARMA(p, q) model of the 
form: 

for  

Let  

be the estimate of the mean µ of the time series {Zt}, where:

 

equals the following: 

Lgth_Backcast Forecast

Tol_Backcast N_Predict

Tol_Convergence Confidence

Init_Est_Ar Backward_Origin

Init_Est_Ma

Residual

Param_Est_Cov

Ss_Residual

Method of 
Moments

only
Least Squares only

Both Method of 
Moments and 
Least Squares

Table 20-1: Method-of-Moments and Least-Squares Keywords (Continued)

φ B( )Zt θ0 θ B( )At+=

t 0 1 2 ...,±,±,{ }∈

µ̂ Mean_Est=

µ̂

µ̂

µ for µ known

Zt
t 1=

n

∑
n

--------------- for µ unknown











=
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The autocovariance function is estimated by: 

for k = 0, 1, ..., K, where K = p + q + 1. Note that:

 

is an estimate of the sample variance.

Given the sample autocovariances, the function computes the method-of-moments 
estimates of the autoregressive parameters using the extended Yule-Walker equations 
as follows: 

 

where:  

The overall constant θ0 is estimated by the following: 

The moving average parameters are estimated based on a system of nonlinear 
equations given K = p + q + 1 autocovariances, σ(k) for k = 1, ..., K, and p 
autoregressive parameters φi for i = 1, ..., p.

Let Z't = φ(B)Zt. The autocovariances of the derived moving average process Z't = 
θ(B)At are estimated by the following relation: 

σ̂ k( ) 1
n
--- Zt µ̂–( ) Zt k+ µ̂–( )

t 1=

n k–

∑=

σ̂ 0( )

Σ̂φ̂ σ̂=
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T

=
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ˆ
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∑
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The iterative procedure for determining the moving average parameters is based on 
the relation: 

where σ(k) denotes the autocovariance function of the original Zt process.

Let τ = (τ0, τ1, ..., τq)T, f = (f0, f1, ..., fq)T, and T be a (q + 1) x (q + 1)  matrix, where τj 
, fj , and T are as follows: 

and:  

Then, the value of τ at the (i + 1)-th iteration is determined by:

τ i + 1 = τ i – (T i)–1 f i 

The estimation procedure begins with the initial value: 

and terminates at iteration i when either |f i| is less than Err_Rel or i equals Itmax. The 
moving average parameter estimates are obtained from the final estimate of τ by 
setting:

 

for j = 1, ..., q. The random error variance is estimated by the following: 

See Box and Jenkins (1976, pp. 498–500) for a description of a function that 
performs similar computations.

σ k( )
1 θ1

2
... θq

2
+ + +( )σA

2
for k = 0

θk– θ1θk 1+ ... θq k– θq+ + +( )σA
2

for k 1≥






=

τ j

σA for j = 0

θj τ0⁄– for j = 1, ..., q






=

fj τ iτ i j+ σ̂′ j( )–
i 0=
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Least-squares Estimation

Suppose the time series {Zt } is generated by a nonseasonal IMSL_ARMA model of 
the form:

 

where B is the backward-shift operator, µ is the mean of Zt , and:  

with p autoregressive and q moving average parameters. Without loss of generality, 
the following is assumed:  

so that the nonseasonal IMSL_ARMA model is of order (p', q'), where:

 and  

Note that the usual hierarchial model assumes the following:

 

 

Consider the sum-of-squares function: 

where:

 

σ̂A
2

σ̂ 0( ) φ̂iσ̂ i( )
i 1=

p

∑– for q = 0
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2
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and T = Lgth_Backcast is the length of backcasting from the beginning of the series. 
The random errors {At } are assumed to be independent and identical distributed N(0, 
σA

2) random variables. Hence, the log-likelihood function is given by: 

where f (µ, φ, θ) is a function of µ, φ, and θ.

For T = 0, the log-likelihood function is conditional on the past values of both Zt and 
At required to initialize the model. The method of selecting these initial values usually 
introduces transient bias into the model (Box and Jenkins 1976, pp. 210–211). For T 
= infinity, this dependency vanishes, and the estimation problem concerns 
maximization of the unconditional log-likelihood function. Box and Jenkins (1976, p. 
213) argue that:

 dominates  

The parameter estimates that minimize the sum-of-squares function are called least-
squares estimates. For large n, the unconditional least-squares estimates are 
approximately equal to the maximum likelihood-estimates.

In practice, a finite value of T enables sufficient approximation of the unconditional 
sum-of-squares function. The values of [At] needed to compute the unconditional 
sum of squares are computed iteratively with initial values of Zt obtained by 
backcasting. The residuals (including backcasts), estimate of random error variance, 
and covariance matrix of the final parameter estimates also are computed. ARIMA 
parameters can be computed using the “IMSL_DIFFERENCE” on page 931, together 
with IMSL_ARMA.

Forecasting Option

The Box-Jenkins forecasts and their associated confidence intervals for a nonseasonal 
IMSL_ARMA model are computed given a sample of n = N_ELEMENTS(z) {Zt} for 
t = 1, 2, ..., n.

Suppose the time series {Zt} is generated by a nonseasonal IMSL_ARMA model of 
the form:

φ (B) Zt = θ0 + θ (B) At 

for  

where B is the backward-shift operator, θ0 is the constant, and:  

l µ φ θ σA, , ,( ) f µ φ θ, ,( ) n ln σA( )–
ST µ φ θ, ,( )

2σA
2

--------------------------–=

S∞ µ φ θ, ,( ) 2σA
2( )⁄ l µ φ θ σA

2, , ,( )

t  0 1± 2± … , , ,{ }∈

φ B( ) 1 φ1B
lφ 1( )

– φ2Blφ 2( )– ...– φpBlφ p( )–=
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with p autoregressive and q moving average parameters. Without loss of generality, 
the following is assumed:   

so that the nonseasonal IMSL_ARMA model is of order (p', q'), where:

 and  

Note that the usual hierarchal model assumes the following:  

The Box-Jenkins forecast at origin t for lead time l of Zt + l is defined in terms of the 
difference equation:  

where the following is true:  

The 100(1 – α)-percent confidence interval for Zt + l is given by: 

θ B( ) 1 θ1B
lθ 1( )

– θ2Blθ 2( )– ...– θqBlθ q( )–=

1   lφ 1( )   lφ 2( )   ...   lφ p( )≤ ≤≤≤

1   lθ 1( )   lθ 2( )   ...   lθ q( )≤ ≤≤≤

p ′ lθ p( )= q ′ lθ q( )=

lφ i )( i= , 1   i  p≤ ≤

lθ j( ) j= , 1   j  q≤ ≤

Z
ˆ

t l( ) θ0 φ1 Zt l lφ 1( )–+[ ] ... φp Zt l lφ p( )–+[ ] At l+[ ] ...–+ + + +=

θ1 At l lθ 1( )–+[ ] At l+[ ]– θ1 At l lθ 1( )–+[ ]– ...– θq At l lθ q( )–+[ ]–

Zt k+[ ] Zt k+ for k = 0 1 2 ...,–,–,

Z
ˆ

t k( ) for k = 1, 2, ...





=

At k+[ ] Zt k+ Z
ˆ

t k 1–+ 1( ) for  – k = 0 1 2 ...,–,–,

0  for k = 1, 2, ...





=
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where  

is the 100 (1 – α / 2)-percentile of the standard normal distribution, σA is the standard 
deviation of the random error, and ψj is defined as follows: 

In this equation, φi = 0 for i > p and θj = 0 for j > q. Note that the forecasts are 
computed for lead times l = 1, 2, ..., L at origins t = (n – b), (n – b + 1), ..., n, where L 
= N_Predict and b = Backward_Origin.

The Box-Jenkins forecasts minimize the mean-square error:

 

Also, the forecasts are easily updated according to the following equation: 

 

This approach and others are discussed in Chapter 5 of Box and Jenkins (1976).

Examples

Example 1

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number 
of sunspots observed each year from 1749 through 1924. The data set for this 
example consists of the number of sunspots observed from 1770 through 1869 and is 
shown in Figure 20-1. The method-of-moments estimates:

,  and  

for the IMSL_ARMA(2,1) model are:

 

where Zt is “raw” data and the errors At are independently and identical normally 
distributed with mean zero and variance σ2

A.

temp = IMSL_STATDATA(2)
; Get the Wolfer Sunspot Data.
z = TEMP(21:120, 1)
; Use only 100 observations, 1770-1869.
years = FINDGEN(100) + 1770
PLOT, years, z, XStyle = 1, Psym   = -6, $

Title  = 'Wolfer Sunspot Data', XTitle = 'Year', $

z 1 α 2⁄–( )

ψj

1 for j 0=

φiψj i–
θj–

i 1=

j

∑ for j 0>









=

E Zt l+ Ẑt l( )–[ ]2

Ẑt 1+ l( ) Ẑt l 1+( ) ψlAt 1++=

θ̂0 φ̂1 φ̂2, θ̂1

Zt θ0 φ1Zt 1– φ2Zt 2– θ1At 1– At+–+ +=
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YTitle = 'Number of Sunspots'
; Plot the data.
p = 2
q = 1
parameters = IMSL_ARMA(z, p, q)
; Perform time-series analysis.
PRINT, 'AR estimates:', parameters(1), parameters(2)
PRINT, 'MA estimate :', parameters(3)

AR estimates: 1.24426 -0.575149
MA estimate : -0.124094

Example 2

The data for this example are the same as that for the initial example. Preliminary 
method-of-moments estimates are computed by default, and the method of least 
squares is used to find the final estimates.

temp = IMSL_STATDATA(2)
; Get the Wolfer Sunspot Data.

Figure 20-1: Wolfer Sunspot Data Plot
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z = TEMP(21:120, 1)
; Use only 100 observations, 1770-1869.
parameters = IMSL_ARMA(z, 2, 1, /Lsq, Tol_Convergence = .125) 
; Perform time-series analysis using method of moments. The
; warning error can be ignored in this case.
PRINT, 'AR estimates:', parameters(1), parameters(2)
PRINT, 'MA estimate :', parameters(3)

AR estimates: 1.39257 -0.732948
MA estimate : -0.137512

Example 3

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number 
of sunspots observed each year from 1749 through 1924. The data set for this 
example consists of the number of sunspots observed from 1770 through 1869. 
IMSL_ARMA computes forecasts and 95-percent confidence limits for the forecasts 
for an IMSL_ARMA(2, 1) model fit using IMSL_ARMA with the 
method-of-moments option. With Backward_Origin = 3, columns zero through three 
of Forecast provide forecasts given the data through 1866, 1867, 1868, and 1869. 
Column five gives the deviations from the forecast for computing confidence limits, 
and column six gives the psi weights, which can be used to update forecasts when 
more data is available. For example, the forecast for the 102-nd observation (year 
1871) given the data through the 100-th observation (year 1869) is 77.21; 95-percent 
confidence limits are given by:

 

After observation 101 (Z101 for year 1870) is available, the forecast can be updated by 
using: 

 

with the psi weight (ψ1 = 1.37) and the one-step-ahead forecast error for observation 
101 (Z101 – 83.72) to give the following:

77.21 + 1.37 x (Z101 – 83.72)

Since this updated forecast is one step ahead, the 95-percent confidence limits are 
now given by the forecast:

 

First, define a procedure to output the results:

.RUN
PRO print_results, parameters, forecast

PRINT, 'Method-of-moments initial estimates:'
PRINT, 'AR estimates:', parameters(1), parameters(2)

77.21 56.30+−

Ẑt 1+ l( ) Ẑt l+1( ) ψl Zt 1+ Ẑt 1( )–[ ]+=

33.22+−
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PRINT, 'MA estimate :', parameters(3)
PRINT
lead_time = INDGEN(12) + 1
forecast = [[lead_time], [forecast]]
PRINT, 'Forecasts from ...'
PRINT, 'lead time', ' 1866', ' 1867', $

' 1868', ' 1869', ' Deviat.', ' Psi'
PM, forecast, FORMAT = '(i6, 3x, 6f9.4)'

END

temp = IMSL_STATDATA(2)
; Get the Wolfer Sunspot Data.
z = TEMP(21:120, 1)
; Use only 100 observations, 1770-1869.
parameters = IMSL_ARMA(z, 2, 1, Itmax = 0, Err_Rel = 0.0, $

Forecast = forecast, N_Predict = 12, Backward_Origin = 3)
; Perform time-series analysis using method-of-moments.
print_results, parameters, forecast
years = INDGEN(100) + 1770
PLOT, years, z, $

Psym   = -6, Symsize = .5, XStyle = 1, XRange = [1770, 1885], $
YRange = [-50, 175], Title  = 'Wolfer Sunspot Data', $
XTitle = 'Year', YTitle = 'Number of Sunspots'

; Plot the data along with the forecasted values with confidence
; intervals.
OPLOT, INDGEN(10) + 1870, forecast(*, 3), Psym   = 4, Symsize = .5
ERRPLOT, indgen(10) + 1870, forecast(*, 3) - forecast(*, 4), $

forecast(*, 3) + forecast(*, 4), Width  = .005

Method-of-moments initial estimates:
AR estimates:      1.24426    -0.575149
MA estimate :    -0.124094

Forecasts from ...
lead time  1866     1867     1868     1869     Deviat.   Psi
 1    18.2833  16.6151  55.1893  83.7196  33.2179  1.3684
  2     28.9182  32.0189  62.7606  77.2092  56.2980   1.1274
  3     41.0101  45.8275  61.8922  63.4608  67.6168   0.6158
  4     49.9387  54.1496  56.4571  50.0987  70.6432   0.1178
  5     54.0937  56.5623  50.1939  41.3803  70.7515  -0.2076
  6     54.1282  54.7780  45.5268  38.2174  71.0869  -0.3261
  7     51.7815  51.1701  43.3221  39.2965  71.9074  -0.2863
  8     48.8417  47.7072  43.2631  42.4582  72.5337  -0.1687
  9     46.5335  45.4736  44.4577  45.7715  72.7498  -0.0452
 10     45.3524  44.6861  45.9781  48.0758  72.7653   0.0407
 11     45.2103  44.9909  47.1827  49.0371  72.7779   0.0767
 12     45.7128  45.8230  47.8072  48.9080  72.8225   0.0720

The plot of the forecasts and the confidence limits from year 1869 are shown in 
Figure 20-2.
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Version History

Figure 20-2: Sunspot Data with Predicted Values and Confidence Bands

6.4 Introduced
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IMSL_DIFFERENCE

The IMSL_DIFFERENCE function differences a seasonal or nonseasonal time 
series.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_DIFFERENCE(z, periods [, /DOUBLE] [, /EXCLUDE_FIRST] 
[, /FIRST_TO_NAN] [, NUM_LOST=variable] [, ORDERS=array] )

Return Value

One-dimensional array of length N_ELEMENTS (z) containing the differenced 
series.

Arguments

z

One-dimensional array containing the time series.

periods

One-dimensional array containing the periods at which z is to be differenced.

Keywords

DOUBLE

If present and nonzero, double precision is used.

EXCLUDE_FIRST

If Exclude_First is present and nonzero, the first Num_Lost observations are excluded 
from the solution due to differencing. The differenced series is of length 
N_ELEMENTS(periods) – Num_Lost. If First_To_Nan is specified, the first 
IDL Analyst Reference Guide IMSL_DIFFERENCE
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Num_Lost observations are set to NaN (Not a Number). This is the default if neither 
Exclude_First nor First_To_Nan is specified. Default: First_To_Nan

FIRST_TO_NAN

If Exclude_First is present and nonzero, the first Num_Lost observations are excluded 
from the solution due to differencing. The differenced series is of length 
N_ELEMENTS(periods) – Num_Lost. If First_To_Nan is specified, the first 
Num_Lost observations are set to NaN (Not a Number). This is the default if neither 
Exclude_First nor First_To_Nan is specified. Default: First_To_Nan

NUM_LOST

Named variable into which the number of observations “lost” because of differencing 
the time series z is stored.

ORDERS

One-dimensional array of length N_ELEMENTS(periods) containing the order of 
each difference given in periods. The elements of Orders must be greater than or 
equal to 0. Default: all the elements equal 1

Discussion

The IMSL_DIFFERENCE function performs m = N_ELEMENTS(periods) 
successive backward differences of period si = periods(i – 1)  and di = Orders(i – 1) 
for i = 1, ..., m on the n = N_ELEMENTS(x) observations {Zt} for t = 1, 2, ..., n. 
Consider the backward shift operator B given by:

BkZt = Zt – k

for all k. Then, the backward difference operator with period s is defined by the 
following:

 

Note that BsZt and ∆sZt are defined only for t = (s + 1), ..., n. Repeated differencing 
with period s is simply: 

where d ≥ 0 is the order of differencing. Note that ∆d
s Zt is defined only for 

t = (sd + 1), ..., n.

∆sZt 1 B
s

–( )Zt Zt Zt s––= = for s 0≥
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The general difference formula used in IMSL_DIFFERENCE is given by: 

where nL represents the number of observations “lost” because of differencing and 
NaN represents the missing value code. See IMSL_MACHINE to retrieve missing 
values. Note that: 

A homogeneous, stationary time series can be arrived at by appropriately differencing 
a homogeneous, nonstationary time series (Box and Jenkins 1976, p. 85). Preliminary 
application of an appropriate transformation followed by differencing of a series 
enables model identification and parameter estimation in the class of homogeneous 
stationary IMSL_ARMA. 

Examples

Example 1

Consider the Airline Data (Box and Jenkins 1976, p. 531) consisting of the monthly 
total number of international airline passengers from January 1949 through 
December 1960. The entire data, after taking a natural logarithm, are shown in Figure 
20-3. The plot shows a linear trend and a seasonal pattern with a period of 12 months. 
This suggests that the data needs a nonseasonal difference operator, ∆1, and a 
seasonal difference operator, ∆12, to make the series stationary. The 
IMSL_DIFFERENCE function is used to compute:

Wt = ∆1∆12Zt = (Zt – Zt – 12) – (Zt – 1 – Zt – 13) 

for t = 14, 15, ..., 24.

ztemp = ALOG(IMSL_STATDATA(4))
; Get the data set.
PLOT, INDGEN(144), ztemp, Psym = -6, Symsize = .5, $

YStyle = 1, Title  = 'Complete Airline Data', $
XTitle = 'Month (beginning 1949)', $
YTitle = '!8ln!3(thousands of Passengers)' 

; Plot the complete data set.
z = ztemp(0:23)
periods = [1, 12]
difference = IMSL_DIFFERENCE(z, periods)

Wt

NaN for t = 1, ...,nL

∆ s1

d1∆s2

d2 ... ∆sm

dmZt for t = nL 1, ..., n+






=

nL sj dj
j
∑=
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; Call IMSL_DIFFERENCE.
matrix = [[INDGEN(24)], [z], [difference]]
; Create a matrix of the data to make the output easier.
PM, matrix, FORMAT = '(i4, x, 2f7.1)', $

Title = '   I    z(i)   difference(i)'

; Output the results.
I z(i) difference(i)

   0     4.7    NaN
   1     4.8    NaN
   2     4.9    NaN
   3     4.9    NaN
   4     4.8    NaN
   5     4.9    NaN
   6     5.0    NaN
   7     5.0    NaN
   8     4.9    NaN
   9     4.8    NaN
  10     4.6    NaN
  11     4.8    NaN
  12     4.7    NaN
  13     4.8    0.0
  14     4.9    0.0
  15     4.9   -0.0
  16     4.8   -0.0
  17     5.0    0.1
  18     5.1    0.0
  19     5.1    0.0
  20     5.1    0.0
  21     4.9   -0.0
  22     4.7   -0.0
  23     4.9    0.1
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Example 2

The data for this example is the same as that for the initial example. The first 
Num_Lost observations are excluded from W due to differencing, and Num_Lost also 
is output.

ztemp = ALOG(IMSL_STATDATA(4))
z = ztemp(0:23)
periods = [1, 12]
diff = IMSL_DIFFERENCE(z, periods, $

/EXCLUDE_FIRST, NUM_LOST = num_lost)
num_valid = N_ELEMENTS(z) - num_lost
; Use Num_Lost to compute the number of rows in the result
; that have valid values.
matrix = [[INDGEN(num_valid)], [z(0:num_valid-1)], $

[DIFF(0:num_valid-1)]]
; Put the data in one matrix to make printing easier.
PM, matrix, FORMAT = '(i4, x, 2f7.1)', $

TITLE = '   i    z(i)   IMSL_DIFFERENCE(i)'

Figure 20-3: Complete Airline Data Plot
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i z(i) IMSL_DIFFERENCE(i)
   0     4.7    0.0
   1     4.8    0.0
   2     4.9   -0.0
   3     4.9   -0.0
   4     4.8    0.1
   5     4.9    0.0
   6     5.0    0.0
   7     5.0    0.0
   8     4.9   -0.0
   9     4.8   -0.0
  10     4.6    0.1

Errors

Fatal Errors

STAT_PERIODS_LT_ZERO—Parameter periods (#) = #. All elements of Periods 
must be greater than zero.

STAT_ORDER_NEGATIVE—Parameter order (#) = #. All elements of order must be 
nonnegative.

STAT_Z_CONTAINS_NAN—Parameter z (#) = NaN; z cannot contain missing values. 
Other elements of z may be equal to NaN.

Version History

6.4 Introduced
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IMSL_BOXCOXTRANS

The IMSL_BOXCOXTRANS function performs a forward or an inverse Box-Cox 
(power) transformation.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

 Result = IMSL_BOXCOXTRANS(z, power [, /DOUBLE] [, /INVERSE] 
[, S=parameter] )

Return Value

One-dimensional array containing the transformed data.

Arguments

power

Exponent parameter in the Box-Cox (power) transformation.

z

One-dimensional array containing the observations.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

If present and nonzero, the inverse transform is performed.

S

Shift parameter in the Box-Cox (power) transformation. Parameter shift must satisfy 
the relation min (z(i)) + S > 0. Default: S = 0.0.
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Discussion

The IMSL_BOXCOXTRANS function performs a forward or an inverse Box-Cox 
(power) transformation of n = N_ELEMENTS(z) observations {Zt} for t = 0, 1, ..., n–
1.

The forward transformation is useful in the analysis of linear models or models with 
non-normal errors or non-constant variance (Draper and Smith 1981, p. 222). In the 
time series setting, application of the appropriate transformation and subsequent 
differencing of a series can enable model identification and parameter estimation in 
the class of homogeneous stationary autoregressive-moving average models. The 
inverse transformation can later be applied to certain results of the analysis, such as 
forecasts and prediction limits of forecasts, in order to express the results in the scale 
of the original data. A brief note concerning the choice of transformations in the time 
series models is given in Box and Jenkins (1976, p. 328).

The class of power transformations discussed by Box and Cox (1964) is defined by: 

where Zt + ξ > 0 for all t. Since: 

the family of power transformations is continuous.

Let λ = power and ξ = S; then, the computational formula used by 
IMSL_BOXCOXTRANS is given by: 

where Zt + ξ > 0 for all t. The computational and Box-Cox formulas differ only in the 
scale and origin of the transformed data. Consequently, the general analysis of the 
data is unaffected (Draper and Smith 1981, p. 225).

Xt

Zt ξ+( )λ
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The inverse transformation is computed by: 

where {Zt} now represents the result computed by IMSL_BOXCOXTRANS for a 
forward transformation of the original data using parameters λ and ξ.

Examples

Example 1

The following example performs a Box-Cox transformation with power = 2.0 on 10 
data points.

power  =  2.0
z  =  [1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0]
; Transform Data using Box Cox Transform
x  =  IMSL_BOXCOXTRANS(z, power)
PM, x, Title = 'Transformed Data'

Transformed Data
1.00000
4.00000
9.00000
16.0000
25.0000
30.2500
42.2500
56.2500
64.0000
100.000

Example 2

This example extends the first example—an inverse transformation is applied to the 
transformed data to return to the original data values.

power = 2.0
z  =  [1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0]
x  =  IMSL_BOXCOXTRANS(z, power)
PM,  x, Title = 'Transformed Data'

Transformed Data
1.00000
4.00000
9.00000

Xt

Zt
1 λ⁄ ξ– λ 0≠

Zt( )exp ξ– λ 0=



=
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16.0000
25.0000
30.2500
42.2500
56.2500
64.0000
100.000

; Perform an Inverse Transform on the Transformed Data
y = IMSL_BOXCOXTRANS(x, power, /inverse)
PM, y, Title = 'Inverse Transformed Data'

Inverse Transformed Data
1.00000
2.00000
3.00000
4.00000
5.00000
5.50000
6.50000
7.50000
8.00000
10.0000

Errors

Fatal Errors

STAT_ILLEGAL_SHIFT—S = # and the smallest element of z is z(#) = #. S plus 
z(#) = #. S + z(I) must be greater than 0 for i = 1, ..., N_ELEMENTS(z). 
N_ELEMENTS(z) = #.

STAT_BCTR_CONTAINS_NAN—One or more elements of z is equal to NaN (Not a 
number). No missing values are allowed. The smallest index of an element of z that is 
equal to NaN is #.

STAT_BCTR_F_UNDERFLOW—Forward transform. power = #. S = #. The 
minimum element of z is z(#) = #. (z(#)+ S) ^ power will underflow.

STAT_BCTR_F_OVERFLOW—Forward transformation. power = #. S = #. The 
maximum element of z is z(#) = #. (z(#) + S) ^ power will overflow.

STAT_BCTR_I_UNDERFLOW—Inverse transformation. power = #. The minimum 
element of z is z(#) = #. exp(z(#)) will underflow.

STAT_BCTR_I_OVERFLOW—Inverse transformation. power = #. The maximum 
element of z(#) = #. exp(z(#)) will overflow.
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STAT_BCTR_I_ABS_UNDERFLOW—Inverse transformation. power = #. The 
element of z with the smallest absolute value is z(#) = #. z(#) ^ (1/power) will 
underflow.

STAT_BCTR_I_ABS_OVERFLOW—Inverse transformation. power = #. The 
element of z with the largest absolute value is z(#) = #. z(#) ^ (1/ power) will 
overflow.

Version History

6.4 Introduced
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IMSL_AUTOCORRELATION

The IMSL_AUTOCORRELATION function computes the sample autocorrelation 
function of a stationary time series.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_AUTOCORRELATION(x, lagmax [, ACV=variable] [ /DOUBLE] 
[, SE_OPTION=value] [, SEAC=variable] [, XMEAN_IN=value] 
[, XMEAN_OUT=variable])

Return Value

One-dimensional array of length lagmax + 1 containing the auto-correlations of the 
time series x. The 0-th element of this array is 1. The k-th element of this array 
contains the autocorrelation of lag k where k = 1, ..., lagmax.

Arguments

lagmax

Scalar integer containing the maximum lag of autocovariance, auto-correlations, and 
standard errors of auto-correlations to be computed. lagmax must be greater than or 
equal to 1 and less than N_ELEMENTS(x).

x

One-dimensional array containing the time series. N_ELEMENTS(x) must be greater 
than or equal to 2.

Keywords

ACV

Named variable into which an array of length lagmax + 1 containing the variance and 
auto-covariances of the time series x is stored. The 0-th element of this array is the 
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variance of the time series x. The k-th element contains the autocovariance of lag k 
where k = 1, ..., lagmax.

DOUBLE

If present and nonzero, double precision is used.

SE_OPTION

Method of computation for standard errors of the auto-correlations. Keywords 
Se_Option and Seac must be used together.

• 1—Compute the standard errors of autocorrelation using Barlett’s formula.

• 2—Compute the standard errors of autocorrelation using Moran’s formula.

SEAC

Named variable into which an array of length lagmax containing the standard errors 
of the auto-correlations of the time series x is stored. Keywords Seac and Se_Option 
must be used together. 

XMEAN_IN

The estimate of the mean of the time series x.

XMEAN_OUT

Named variable into which the estimate of the mean of the time series x is stored.

Discussion

The IMSL_AUTOCORRELATION function estimates the autocorrelation function 
of a stationary time series given a sample of  n  = N_ELEMENTS(x) observations 
{Xt} for t = 1, 2, ..., n.

Let:

 

be the estimate of the mean µ of the time series {Xt} where: 

µ x_mean=

µ̂
µ,      µ known

1
n
--- Xt

t 1=

n

∑ µ unknown






=
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The autocovariance function σ(k) is estimated by: 

where K = lagmax.  Note that: 

is an estimate of the sample variance. The autocorrelation function ρ(k) is estimated 
by: 

Note that: 

by definition.

The standard errors of the sample auto-correlations may be optionally computed 
according to the keyword Se_Option for the output keyword Seac. One method 
(Bartlett 1946) is based on a general asymptotic expression for the variance of the 
sample autocorrelation coefficient of a stationary time series with independent, 
identically distributed normal errors. The theoretical formula is: 

where: 

assumes µ is unknown. For computational purposes, the auto-correlations ρ(k) are 
replaced by their estimates:  

for |k| ≤ K, and the limits of summation are bounded because of the assumption that 
ρ(k) = 0 for all k such that |k| > K.

A second method (Moran 1947) utilizes an exact formula for the variance of the 
sample autocorrelation coefficient of a random process with independent, identically 
distributed normal errors. The theoretical formula is: 

σ̂ k( ) 1
n
--- Xt µ̂–( )

t 1=

n k–

∑ Xt k+ µ̂–( ) k = 0, 1, ..., K,=

σ̂ 0( )

ρ̂ k( ) σ̂ k( )
σ̂ 0( )
-----------          k  = 0, 1, ..., K,=

ρ̂ 0( ) 1≡

var ρ̂ k( ){ } 1
n
--- ρ2

i( ) ρ+ i k–( )ρ i k+( ) 4ρ i( )ρ k( )ρ i k–( ) 2ρ2
i( )ρ2

k( )+–[ ]
i ∞–=

∞
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ρ̂ k( )
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where µ is assumed to be equal to zero. Note that this formula does not depend on the 
autocorrelation function.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set for this 
example consists of the number of sunspots observed from 1770 through 1869. The 
IMSL_AUTOCORRELATION function computes the estimated auto-covariances, 
estimated auto-correlations, and estimated standard errors of the auto-correlations.

.RUN
PRO print_results, xm, acv, result, seac

PRINT, 'Mean =', xm
PRINT, 'Variance =', acv(0)
PRINT, '      Lag       ACV          AC         SEAC'
PRINT, '       0', acv(0), result(0)
FOR j  =  1, 20 DO $

PRINT, j, acv(j), result(j), seac(j - 1)
END

lagmax = 20
data = IMSL_STATDATA(2)
x = data(21:120,1)
result = IMSL_AUTOCORRELATION(x, lagmax, ACV = acv, $

SE_OPTION = 1, SEAC = seac, XMEAN_OUT = xm)
print_results, xm, acv, result, seac

Mean =      46.9760
Variance =      1382.91

Lag       ACV          AC         SEAC
0      1382.91      1.00000
1      1115.03     0.806293    0.0347834
2      592.004     0.428087    0.0962420
3      95.2974    0.0689109     0.156783
4     -235.952    -0.170620     0.205767
5     -370.011    -0.267560     0.230956
6     -294.255    -0.212780     0.228995
7     -60.4423   -0.0437067     0.208622
8      227.633     0.164604     0.178476
9      458.381     0.331462     0.145727
10      567.841     0.410613     0.134406
11      546.122     0.394908     0.150676
12      398.937     0.288477     0.174348
13      197.757     0.143001     0.190619
14      26.8911    0.0194453     0.195490
15     -77.2807   -0.0558828     0.195893
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16     -143.733    -0.103935     0.196285
17     -202.048    -0.146104     0.196021
18     -245.372    -0.177432     0.198716
19     -230.816    -0.166906     0.205359
20     -142.879    -0.103318     0.209387

Version History

6.4 Introduced
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IMSL_PARTIAL_AC

The IMSL_PARTIAL_AC function computes the sample partial autocorrelation 
function of a stationary time series.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_PARTIAL_AC(cf [, /DOUBLE])

Return Value

One-dimensional array containing the partial auto-correlations of the time series x.

Arguments

cf

One-dimensional array containing the auto-correlations of the time series x.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

IMSL_PARTIAL_AC estimates the partial auto-correlations of a stationary time 
series given the K = (N_ELEMENTS(cf) – 1) sample auto-correlations:

 

for k = 0, 1, ..., K. Consider the AR(k) process defined by:

 

where φkj denotes the j-th coefficient in the process. The set of estimates: 

 

ρ̂ k( )

Xt φk1Xt 1– φk2Xt 2– ... φkkXt k– At+ + + +=

φ̂kk{ }
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for k = 1, ..., K is the sample partial autocorrelation function. The autoregressive 
parameters:

 

for j = 1, ..., k are approximated by Yule-Walker estimates for successive AR(k) 
models where k = 1, ..., K. Based on the sample Yule-Walker equations: 

a recursive relationship for k = 1, ..., K was developed by Durbin (1960). The 
equations are given by:  

and: 

This procedure is sensitive to rounding error and should not be used if the parameters 
are near the non-stationary boundary. A possible alternative would be to estimate 
{φkk} for successive AR(k) models using least or maximum likelihood. Based on the 
hypothesis that the true process is AR(p), Box and Jenkins (1976, page 65) note:  

See Box and Jenkins (1976, pages 82–84) for more information concerning the 
partial autocorrelation function.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set for this 
example consists of the number of sunspots observed from 1770 through 1869. 

φ̂kj{ }

ρ̂ j( ) φ̂k1ρ̂ j 1–( ) φ̂k2ρ̂ j 2–( ) ... φ̂kkρ̂ j k–( )+ + += j 1 2 ..., , ,= k

φ̂kk

ρ̂ 1( )                        k 1=

ρ̂ k( ) φ̂k 1  j,– ρ̂ k j–( )
j 1=

k 1–

∑–

1 φ̂k 1  j,– ρ̂ j( )
j 1=

k 1–

∑–

--------------------------------------------------------------- k 2 ..., K,=











=

φ̂kj

φ̂k 1  j,– φ̂kkφ̂k 1  k j–,–– j 1 2 ..., , ,= k 1=

φ̂kk     j k=



=

var φ̂kk{ } 1
n
---= k p 1+≥
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Routine IMSL_PARTIAL_AC is used to compute the estimated partial auto-
correlations.

data  =  IMSL_STATDATA(2)
x  =  data(21:120,1)
result  =  IMSL_AUTOCORRELATION(x, 20)
partial  =  IMSL_PARTIAL_AC(result)
PRINT, 'LAG      PACF'
FOR i  =  0, 19 DO PM, i + 1, partial(i), FORMAT = '(I2, F11.3)'

LAG      PACF
 1      0.806
 2     -0.635
 3      0.078
 4     -0.059
 5     -0.001
 6      0.172
 7      0.109
 8      0.110
 9      0.079
10      0.079
11      0.069
12     -0.038
13      0.081
14      0.033
15     -0.035
16     -0.131
17     -0.155
18     -0.119
19     -0.016
20     -0.004

Version History

6.4 Introduced
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IMSL_LACK_OF_FIT

The IMSL_LACK_OF_FIT function performs lack-of-fit test for a univariate time 
series or transfer function given the appropriate correlation function.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_LACK_OF_FIT(nobs, cf, npfree [, /DOUBLE] [, LAGMIN=value])

Return Value

One-dimensional array of length 2 with the test statistic, Q, and its 
p-value, p. Under the null hypothesis, Q has an approximate chi-squared distribution 
with lagmax - Lagmin + 1 – npfree degrees of freedom.

Arguments

cf

One-dimensional array containing the correlation function.

nobs

Number of observations of the stationary time series.

npfree

Number of free parameters in the formulation of the time series model.  npfree must 
be greater than or equal to zero and less than lagmax where lagmax = 
(N_ELEMENTS(cf) – 1). Woodfield (1990) recommends npfree = p + q.

Keywords

DOUBLE

If present and nonzero, double precision is used.
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LAGMIN

Minimum lag of the correlation function.  Lagmin corresponds to the lower bound of 
summation in the lack of fit test statistic. Default: Lagmin = 1.

Discussion

Routine IMSL_LACK_OF_FIT may be used to diagnose lack of fit in both 
IMSL_ARMA and transfer function models. Table 20-2 shows typical arguments for 
these situations:

The IMSL_LACK_OF_FIT function performs a portmanteau lack of fit test for a 
time series or transfer function containing n observations given the appropriate 
sample correlation function:

 

for k = L, L + 1, …, K where L = Lagmin and K = lagmax. 

The basic form of the test statistic Q is: 

with L = 1 if:

 

is an autocorrelation function. Given that the model is adequate, Q has a chi-squared 
distribution with K − L + 1 – m degrees of freedom where m = npfree is the number of 
parameters estimated in the model. If the mean of the time series is estimated, 
Woodfield (1990) recommends not including this in the count of the parameters 
estimated in the model. Thus, for an IMSL_ARMA(p, q) model set npfree = p + q 

Model LAGMIN LAGMAX NPFREE

IMSL_ARMA 
(p, q)

1
 

p + q

Transfer 
function

0
 

r + s

Table 20-2: Max, Min, and Free Arguments

NOBS

NOBS

ρ̂ k( )

Q n n 2+( ) n k–( ) 1– ρ̂ k( )
k L=

K

∑=

ρ̂ k( )
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regardless of whether the mean is estimated or not. The original derivation for time 
series models is due to Box and Pierce (1970) with the above modified version 
discussed by Ljung and Box (1978). The extension of the test to transfer function 
models is discussed by Box and Jenkins (1976, pages 394–395).

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set for this 
example consists of the number of sunspots observed from 1770 through 1869. An 
IMSL_ARMA(2,1) with nonzero mean is fitted using the “IMSL_ARMA” on 
page 915. The auto-correlations of the residuals are estimated using the 
“IMSL_AUTOCORRELATION” on page 942. A portmanteau lack of fit test is 
computed using 10 lags with IMSL_LACK_OF_FIT. 

The warning message from IMSL_ARMA in the output can be ignored. (See the 
example for routine IMSL_ARMA for a full explanation of the warning message.)

p  =  2
q  =  1
tc  =  0.125
lagmax  =  10
npfree  =  4
; Get sunspot data for 1770 through 1869, store it in x()
data  =  IMSL_STATDATA(2)
x  =  data(21:120,1)
; Get residuals for IMSL_ARMA(2, 1) for autocorrelation/lack 
; of fit
params = IMSL_ARMA(x, p, q, /Lsq, TOL_CONVERGENCE = tc, $

RESIDUAL = r)

; Get autocorrelations from residuals for lack of fit test
; NOTE:   number of observations is equal to number of residuals
corrs  =  IMSL_AUTOCORRELATION(r, lagmax)
; Get lack of fit test statistic and p-value
; NOTE: number of observations is equal to original number of data
result  =  IMSL_LACK_OF_FIT(N_ELEMENTS(x), corrs, npfree)
; Print parameter estimates, test statistic, and p_value
; NOTE:   Test Statistic Q follows a Chi-squated dist.
PRINT, 'Lack of Fit Statistic (Q) =', result(0), $

FORMAT = '(A28, F8.3)'
PRINT, 'P-value (PVALUE) =', result(1), FORMAT = '(A28, F8.4)'

Lack of Fit Statistic (Q) =  14.572
P-value (PVALUE) =  0.9761
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Version History

6.4 Introduced
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IMSL_GARCH

The IMSL_GARCH function computes estimates of the parameters of a 
IMSL_GARCH(p,q) model.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_GARCH(p, q, y, xguess [, AIC=variable] [, /DOUBLE] 
[, LOG_LIKELIHOOD=variable] [, MAX_SIGMA=value] [, VAR=variable] )

Return Value

One-dimensional array of length p + q + 1 containing the estimated values of sigma 
squared, the AR parameters, and the MA parameters.

Arguments

p

Number of autoregressive (AR) parameters.

q

Number of moving average (MA) parameters.

xguess

One-dimensional array of length p + q + 1 containing the initial values for the 
parameter array x.

y

One-dimensional array containing the observed time series data.
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Keywords

AIC

Named variable into which the value of Akaike Information Criterion evaluated at the 
estimated parameter array x is stored.

DOUBLE

If present and nonzero, double precision is used.

LOG_LIKELIHOOD

Named variable into which the value of Log-likelihood function evaluated at the 
estimated parameter array x is stored.

MAX_SIGMA

Value of the upperbound on the first element (sigma) of the array of returned 
estimated coefficients. Default: Max_Sigma = 10.

VAR

Named variable into which an array of size (p + q + 1) by (p + q + 1) containing the 
variance-covariance matrix is stored.

Discussion

The Generalized Autoregressive Conditional Heteroskedastic (IMSL_GARCH) 
model is defined as: 

where zt’s are independent and identically distributed standard normal random 
variables: 

The above model is denoted as IMSL_GARCH(p,q).  The p is the autoregressive lag 
and the q is the moving average lag. When βi = 0, i = 1,2,…,p, the above model 
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reduces to ARCH(q) which was proposed by Engle (1982). The non-negativity 
conditions on the parameters implied a nonnegative variance and the condition on the 
sum of the βi’s and α i’s is required for wide sense stationarity.

In the empirical analysis of observed data, IMSL_GARCH(1,1) or 
IMSL_GARCH(1,2) models have often found to appropriately account for 
conditional heteroskedasticity (Palm 1996). This finding is similar to linear time 
series analysis based on IMSL_ARMA models. 

It is important to notice that for the above models positive and negative past values 
have a symmetric impact on the conditional variance. In practice, many series may 
have strong asymmetric influence on the conditional variance. To take into account 
this phenomena, Nelson (1991) put forward Exponential IMSL_GARCH 
(EGARCH). Lai (1998) proposed and studied some properties of a general class of 
models that extended linear relationship of the conditional variance in ARCH and 
IMSL_GARCH into nonlinear fashion. 

The maximal likelihood method is used in estimating the parameters in 
IMSL_GARCH(p,q). The log-likelihood of the model for the observed series {Yt} 
with length m is: 

In the model, if q = 0, the model IMSL_GARCH is singular such that the estimated 
Hessian matrix H is singular.

The initial values of the parameter array x entered in array xguess must satisfy certain 
constraints. The first element of xguess refers to sigma and must be greater than zero 
and less than Max_Sigma.  The remaining p + q initial values must each be greater 
than or equal to zero but less than one.

To guarantee stationarity in model fitting: 

is checked internally. The initial values should be selected from the values between 
zero and one. The Aic is computed by:

      2 * log (L) + 2 * (p+q+1) 

where log(L) is the value of the log-likelihood function at the estimated parameters.
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In fitting the optimal model, the subroutine IMSL_MINCONGEN as well as its 
associated subroutines are modified to find the maximal likelihood estimates of the 
parameters in the model. Statistical inferences can be performed outside the routine 
IMSL_GARCH based on the output of the log-likelihood function (Log_Liklihood), 
the Akaike Information Criterion (Aic), and the variance-covariance matrix (Var).

Example

The data for this example are generated to follow a IMSL_GARCH(p,q) process by 
using a random number generation function SGARCH. The data set is analyzed and 
estimates of sigma, the AR parameters, and the MA parameters are returned. The 
values of the Log-likelihood function and the Akaike Information Criterion are 
returned from the output keywords Log_Likelihood and Aic respectively.

.RUN
FUNCTION SGARCH, p, q, m, x

z  =  FLTARR(m + 1000)
y0  =  FLTARR(m + 1000)
sigma  =  FLTARR(m + 1000)
z  =  IMSL_RANDOM(m + 1000, /Normal)
l  =  ((p  >  q)  >  1)
y0(0:l - 1)  =  z(0:l - 1)*x(0)
; Compute the Initial Value Of Sigma
s3  =  0.0
IF ((p  >  q) GE 1) THEN s3  =  TOTAL(x(1:p + q))
   sigma(0:l - 1)  =  x(0)/(1.0 - s3)
FOR i  =  l,  (m + 1000 - 1) DO BEGIN

s1  =  0.0
s2  =  0.0

IF (q GE 1) THEN BEGIN
FOR j  =  0,  q - 1  DO s1  =  s1 + x(j + 1) * $

(y0(i - j - 1)^2)
END
IF (p GE 1) THEN BEGIN

FOR j  =  0,  p - 1  DO s2  =  s2 + x(q + 1 + j) $
* sigma(i - j - 1)

END
sigma(i)  =  x(0) + s1 + s2
y0(i)  =  z(i)*SQRT(sigma(i))

END
; Discard the first 1000 Simulated Observations
RETURN,   y0(1000:*)
; End of function

END

IMSL_RANDOMOPT, Set  =  182198625
p  =  2
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q  =  1
m  =  1000
x  =  [1.3, 0.2, 0.3, 0.4]
xguess  =  [1.0, 0.1, 0.2, 0.3]
y  =  SGARCH(p, q, m, x)
result  =  IMSL_GARCH(p, q, y, xguess, LOG_LIKELIHOOD = a, $

AIC = aic)
PRINT, 'Sigma estimate is', result(0)
PRINT, 'AR(1) estimate is', result(1)
PRINT, 'AR(2) estimate is', result(2)
PRINT, 'MA(1) estimate is', result(3)
PRINT, 'Log-likelihood function value is', a
PRINT, 'Akaike Information Criterion value is', aic

Sigma estimate is      1.27742
AR(1) estimate is     0.230132
AR(2) estimate is     0.375924
MA(1) estimate is     0.312843
Log-likelihood function value is     -2707.53
Akaike Information Criterion value is      5423.06

Version History

6.4 Introduced
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IMSL_KALMAN

The IMSL_KALMAN procedure performs Kalman filtering and evaluates the 
likelihood function for the state-space model.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_KALMAN, b, covb, n, ss, alndet [, COVV=array] [, Q_MATRIX=array] 
[, R=array] [, T_MATRIX=array] [, TOLERANCE=value] [, V=array] 
[, Y=array] 

Arguments

alndet

Named variable containing the natural log of the product of the nonzero eigenvalues 
of P where P * σ2 is the variance-covariance matrix of the observations. Although 
alndet is computed, IMSL_KALMAN avoids the explicit computation of P. alndet 
must be initialized to zero before the first call to  IMSL_KALMAN. In the usual case 
when P is non-singular, alndet is the natural log of the determinant of P.

b

One dimensional array of containing the estimated state vector. The input is the 
estimated state vector at time k given the observations through time k – 1. The output 
is the estimated state vector at time k + 1 given the observations through time k. On 
the first call to IMSL_KALMAN, the input b must be the prior mean of the state 
vector at time.

covb

Two dimensional array of size N_ELEMENTS(b)  by N_ELEMENTS(b) such that 
covb* σ2 is the mean squared error matrix for b. Before the first call to 
IMSL_KALMAN, covb* σ2 must equal the variance-covariance matrix of the state 
vector.
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n

Named variable containing the rank of the variance-covariance matrix for all the 
observations. n must be initialized to zero before the first call to 
IMSL_KALMAN. In the usual case when the variance-covariance matrix is non-
singular, n equals the sum of the N_ELEMENTS(Y) from the invocations to 
IMSL_KALMAN. See the keyword section below for the definition of Y.

ss

Named variable containing the generalized sum of squares. ss must be initialized to 
zero before the first call to IMSL_KALMAN. The estimate of σ2 is given by:

 

Keywords

COVV

Two dimensional array if size N_ELEMENTS(Y) by N_ELEMENTS(Y) containing a 
matrix such that Covv * σ2 is the variance-covariance matrix of v.

Q_MATRIX

Two dimensional array if size N_ELEMENTS(b) by N_ELEMENTS(b) matrix such 
that Q_matrix * σ2 is the variance-covariance matrix of the error vector in the state 
equation. Default: There is no error term in the state equation

R

Two dimensional array if size N_ELEMENTS(Y) by N_ELEMENTS(Y) containing 
the matrix such that R * σ2 is the variance-covariance matrix of errors in the 
observation equation. Keywords Y, Z and R indicate an update step and must be used 
together.

T_MATRIX

Two dimensional array if size N_ELEMENTS(b) by N_ELEMENTS(b)  containing 
the transition matrix in the state equation. Default: T_matrix = identity matrix

TOLERANCE

Tolerance used in determining linear dependence. Default: Tolerance = 100*eps  
where eps is machine precision.

ss
n
-----
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V

One dimensional array of length N_ELEMENTS(Y) containing the one-step-ahead 
prediction error.

Y

One dimensional array containing the observations. Keywords Y, Z and R indicate an 
update step and must be used together

Discussion

Routine IMSL_KALMAN is based on a recursive algorithm given by Kalman (1960), 
which has come to be known as the Kalman filter. The underlying model is known as 
the state-space model. The model is specified stage by stage where the stages 
generally correspond to time points at which the observations become available. The 
routine IMSL_KALMAN avoids many of the computations and storage requirements 
that would be necessary if one were to process all the data at the end of each stage in 
order to estimate the state vector. This is accomplished by using previous 
computations and retaining in storage only those items essential for processing of 
future observations.

The notation used here follows that of Sallas and Harville (1981). Let yk (input in 
keyword Y) be the nk × 1 vector of observations that become available at time k. The 
subscript k is used here rather than t, which is more customary in time series, to 
emphasize that the model is expressed in stages k = 1, 2, ... and that these stages need 
not correspond to equally spaced time points. In fact, they need not correspond to 
time points of any kind. The observation equation for the state-space model is:

yk = Zkbk + ek   k = 1, 2, ... 

Here, Zk is an nk × q known matrix and bk is the q × 1 state vector. The state vector bk 
is allowed to change with time in accordance with the state equation:

bk+1 = Tk+1 bk + wk+1     k = 1, 2, ... 

starting with b1 = µ1 + w1.

The change in the state vector from time k to k + 1 is explained in part by the 
transition matrix Tk+1 (the identity matrix by default, or optionally input using 
keyword T_matrix), which is assumed known. It is assumed that the q-dimensional 
wks (k = 1, 2, ... K) are independently distributed multivariate normal with mean 
vector 0 and variance-covariance matrix σ2Qk, that the nk-dimensional eks (k = 1, 2, 
... K) are independently distributed multivariate normal with mean vector 0 and 
variance-covariance matrix σ2Rk, and that the wks and eks are independent of each 
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other. Here, µ1 is the mean of b1 and is assumed known, σ2 is an unknown positive 
scalar. Qk+1 (input in Q) and Rk (input in keyword R) are assumed known.

Denote the estimator of the realization of the state vector bk given the observations y1, 
y2, …, yj by:

 

By definition, the mean squared error matrix for:

 

is:

 

At the time of the k-th invocation, we have:

 

and:

 

which were computed from the (k-1)-st invocation, input in b and covb, respectively. 
During the k-th invocation, routine IMSL_KALMAN computes the filtered estimate:

 

along with Ck|k. These quantities are given by the update equations: 

where:

 

and where: 

 

Here, vk (stored in v) is the one-step-ahead prediction error, and σ2Hk is the variance-
covariance matrix for vk. Hk is stored in covv. The “start-up values” needed on the 
first invocation of IMSL_KALMAN are:

 

and C1|0 = Q1 input via b and covb, respectively. Computations for the k-th invocation 
are completed by IMSL_KALMAN computing the one-step-ahead estimate:
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along with Ck+1|k given by the prediction equations: 

If both the filtered estimates and one-step-ahead estimates are needed at each time 
point, IMSL_KALMAN can be invoked twice for each time point—first without 
T_matrix and Q_matrix to produce:

 

and Ck|k, and second without keywords Y, Z, and R to produce:

 

and Ck+1|k (Without T_matrix and Q_matrix, prediction equations are skipped. 
Without keywords Y, Z, and R, update equations are skipped.).

Often, one desires the estimate of the state vector more than one-step-ahead, i.e., an 
estimate of:

 

is needed where k > j + 1. At time j, IMSL_KALMAN is invoked with keywords Y, Z, 
and R  to compute:

 

Subsequent invocations of IMSL_KALMAN without Y, Z, and R can compute:

 

Computations for:

 

and Ck|j assume the variance-covariance matrices of the errors in the observation 
equation and state equation are known up to an unknown positive scalar multiplier, 
σ2. The maximum likelihood estimate of σ2 based on the observations y1, y2, …, ym, 
is given by:

 

where: 
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N and SS are the input/output arguments n and ss.

If σ2 is known, the Rks and Qks can be input as the variance-covariance matrices 
exactly. The earlier discussion is then simplified by letting σ2 = 1. 

In practice, the matrices Tk, Qk, and Rk are generally not completely known. They 
may be known functions of an unknown parameter vector θ. In this case, 
IMSL_KALMAN can be used in conjunction with an optimization program (see 
IMSL_FMINV) to obtain a maximum likelihood estimate of θ. The natural logarithm 
of the likelihood function for y1, y2, ..., ym differs by no more than an additive 
constant from:

 

(Harvey 1981, page 14, equation 2.21). 

Here: 

(stored in alndet) is the natural logarithm of the determinant of V where σ2V is the 
variance-covariance matrix of the observations. 

Minimization of -2L(θ, σ2; y1, y2, ..., ym) over all θ and σ2 produces maximum 
likelihood estimates. Equivalently, minimization of -2Lc(θ; y1, y2, ..., ym) where: 

produces maximum likelihood estimates:

 

The minimization of -2Lc(θ; y1, y2, ..., ym) instead of -2L(θ, σ2; y1, y2, ..., ym), reduces 
the dimension of the minimization problem by one. The two optimization problems 
are equivalent since:

 

minimizes -2L(θ, σ2; y1, y2, ..., ym) for all θ, consequently: 
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can be substituted for σ2 in L(θ, σ2; y1, y2, …, ym) to give a function that differs by no 
more than an additive constant from Lc(θ; y1, y2, ..., ym). 

The earlier discussion assumed Hk to be non-singular. If Hk is singular, a modification 
for singular distributions described by Rao (1973, pages 527–528) is used. The 
changes in the preceding discussion are as follows:

1. Replace

 

by a generalized inverse.

2. Replace det(Hk) by the product of the nonzero eigenvalues of Hk. 

3. Replace N by: 

Maximum likelihood estimation of parameters in the Kalman filter is discussed by 
Sallas and Harville (1988) and Harvey (1981, pages 111–113).

Example

Routine IMSL_KALMAN is used to compute the filtered estimates and one-step-
ahead estimates for a scalar problem discussed by Harvey (1981, pages 116–117). 
The observation equation and state equation are given by: 

where the eks are identically and independently distributed normal with mean 0 and 
variance σ2, the wks are identically and independently distributed normal with mean 0 
and variance 4σ2, and b1 is distributed normal with mean 4 and variance 16σ2. Two 
invocations of IMSL_KALMAN are needed for each time point in order to compute 
the filtered estimate and the one-step-ahead estimate. The first invocation does not 
use the keywords T_matrix and Q_matrix so that the prediction equations are skipped 
in the computations. The update equations are skipped in the computations in the 
second invocation.

This example also computes the one-step-ahead prediction errors. Harvey (1981, 
page 117) contains a misprint for the value v4 that he gives as 1.197. The correct 
value of v4 = 1.003 is computed by IMSL_KALMAN.

Note that this example is in the form of an IDL Analyst procedure, with the output 
following the procedure.
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.RUN
PRO EX_KALMAN

z = 1
r = 1
q = 4
t = 1

b = 4
covb = 16

ydata = [4.4, 4, 3.5, 4.6]

n = 0
ss = 0
alndet = 0
FORMAT = '(2I4, 2F8.3, I4, 4F8.3)'
PRINT, '   k   j     b      covb   n    ss     alndet    v      

covv'
FOR i = 0, 3 DO BEGIN

y = ydata(i)
; Update
IMSL_KALMAN, b, covb, n, ss, alndet, Y = y, Z = Z, R = r, $

v = v, covv = covv
PRINT, i, i, b, covb, n, ss, alndet, v, covv, $

FORMAT = format

; Predict
IMSL_KALMAN, b, covb, n, ss, alndet, t_matrix = t, q = q
PRINT, i+1, i, b, covb, n, ss, alndet, v, covv, $

FORMAT = format
END

END

Output
k   j     b      covb n    ss alndet    v covv
0   0   4.376   0.941   1   0.009   2.833   0.400  17.000
1   0   4.376   4.941   1   0.009   2.833   0.400  17.000
1   1   4.063   0.832   2   0.033   4.615  -0.376   5.941
2   1   4.063   4.832   2   0.033   4.615  -0.376   5.941
2   2   3.597   0.829   3   0.088   6.378  -0.563   5.832
3   2   3.597   4.829   3   0.088   6.378  -0.563   5.832
3   3   4.428   0.828   4   0.260   8.141   1.003   5.829
4   3   4.428   4.828   4   0.260   8.141   1.003   5.829
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Version History

6.4 Introduced
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Multivariate Analysis
This section contains the following topics:
Overview: Multivariate Analysis . . . . . . . .  970 Multivariate Analysis Routines  . . . . . . . .  972
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Overview: Multivariate Analysis

This section describes cluster analysis, principal components, and factor analysis.

Cluster Analysis

The IMSL_K_MEANS function performs a K-means cluster analysis. Basic K-means 
clustering attempts to find a clustering that minimizes the within-cluster sums-of-
squares. In this method of clustering the data, matrix X is grouped so that each 
observation (row in X) is assigned to one of a fixed number, K, of clusters. The sum of 
the squared difference of each observation about its assigned cluster’s mean is used as 
the criterion for assignment. In the basic algorithm, observations are transferred from 
one cluster or another when doing so decreases the within-cluster sums-of-squared 
differences. When no transfer occurs in a pass through the entire data set, the 
algorithm stops. The IMSL_K_MEANS function is one implementation of the basic 
algorithm.

The usual course of events in K-means cluster analysis is to use IMSL_K_MEANS to 
obtain the optimal clustering. The clustering is then evaluated by functions described 
in Chapter 13, “Basic Statistics”, and other chapters in this manual. Often, K-means 
clustering with more than one value of K is performed, and the value of K that best 
fits the data is used.

Clustering can be performed either on observations or variables. The discussion of 
IMSL_K_MEANS assumes the clustering is to be performed on the observations, 
which correspond to the rows of the input data matrix. If variables, rather than 
observations, are to be clustered, the data matrix should first be transposed. In the 
documentation for IMSL_K_MEANS, the words “observation” and “variable” can be 
interchanged.

Principal Components

The idea in principal components is to find a small number of linear combinations of 
the original variables that maximize the variance accounted for in the original data. 
This amounts to an eigensystem analysis of the covariance (or correlation) matrix. In 
addition to the eigensystem analysis, IMSL_PRINC_COMP computes standard 
errors for the eigenvalues. Correlations of the original variables with the principal 
component scores also are computed.
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Factor Analysis

Factor analysis and principal component analysis, while different in assumptions, 
often serve the same purpose. Unlike principal components in which linear 
combinations yielding the highest possible variances are obtained, factor analysis 
generally obtains linear combinations of the observed variables according to a model 
relating the observed variable to hypothesized underlying factors, plus a random error 
term called the unique error or uniqueness. In factor analysis, the unique errors 
associated with each variable are usually assumed to be independent of the factors. 
Additionally, in the common factor model, the unique errors are assumed to be 
mutually independent. The factor analysis model is expressed in the following 
equation:

x – µ = Λf + e 

where x is the p vector of observed values, µ is the p vector of variable means, Λ is 
the p x k matrix of factor loadings, f is the k vector of hypothesized underlying 
random factors, e is the p vector of hypothesized unique random errors, p is the 
number of variables in the observed variables, and k is the number of factors.

Because much of the computation in factor analysis was originally done by hand or 
was expensive on early computers, quick (but “dirty”) algorithms that made the 
calculations possible were developed. One result is the many factor extraction 
methods available today. Generally speaking, in the exploratory or model-building 
phase of a factor analysis, a method of factor extraction that is not computationally 
intensive (such as principal components, principal factor, or image analysis) is used. 
If desired, a computationally intensive method is then used to obtain the final factors.
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Multivariate Analysis Routines

• IMSL_K_MEANS—Performs a K-means (centroid) cluster analysis.

• IMSL_PRINC_COMP—Computes principal components.

• IMSL_FACTOR_ANALYSIS—Extracts factor-loading estimates. 

• IMSL_DISCR_ANALYSIS—Perform discriminant function analysis. 
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IMSL_K_MEANS

The IMSL_K_MEANS function performs a K-means (centroid) cluster analysis.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_K_MEANS(x, seeds [, COUNTS_CLUSTER=variable] 
[, /DOUBLE] [, FREQUENCIES=array] [, ITMAX=value] 
[, MEANS_CLUSTER=variable] [, SSQ_CLUSTER=variable] 
[, VAR_COLUMNS=array] [, WEIGHTS=array] )

Return Value

The cluster membership for each observation is returned.

Arguments

seeds

Two-dimensional array containing the cluster seeds, i.e., estimates for the cluster 
centers. The seed value for the j-th variable of the i-th seed should be in seeds (i, j).

x

Two-dimensional array containing observations to be clustered. The data value for the 
i-th observation of the j-th variable should be in x(i, j) .

Keywords

COUNTS_CLUSTER

Named variable into which an array containing the number of observations in each 
cluster is stored.

DOUBLE

If present and nonzero, double precision is used.
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FREQUENCIES

One-dimensional array containing the frequency of each observation of matrix x. 
Default: Frequencies(*) = 1

ITMAX

Maximum number of iterations. Default: Itmax = 30

MEANS_CLUSTER

Named variable into which a two-dimensional array containing the cluster means is 
stored.

SSQ_CLUSTER

Named variable into which a one-dimensional array containing the within sum-of-
squares for each cluster is stored.

VAR_COLUMNS

One-dimensional array containing the columns of x to be used in computing the 
metric. Columns are numbered 0, 1, 2, ..., N_ELEMENTS(x(0, *)). Default: 
Vars_Columns(*) = 0, 1, 2, ..., N_ELEMENTS(x(0, *)) – 1

WEIGHTS

One-dimensional array containing the weight of each observation of matrix x. 
Default: Weights(*) = 1

Discussion

The IMSL_K_MEANS function is an implementation of Algorithm AS 136 by 
Hartigan and Wong (1979). This function computes K-means (centroid) Euclidean 
metric clusters for an input matrix starting with initial estimates of the K-cluster 
means. The IMSL_K_MEANS function allows for missing values coded as NaN 
(Not a Number) and for weights and frequencies.

Let p = N_ELEMENTS(x (0, *)) be the number of variables to be used in computing 
the Euclidean distance between observations. The idea in K-means cluster analysis is 
to find a clustering (or grouping) of the observations so as to minimize the total 
within-cluster sums-of-squares. In this case, the total sums-of-squares within each 
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cluster is computed as the sum of the centered sum-of-squares over all non-missing 
values of each variable. That is: 

where νim denotes the row index of the m-th observation in the i-th cluster in the 
matrix X; ni is the number of rows of X assigned to group i; f denotes the frequency of 
the observation; w denotes its weight; δ is 0 if the j-th variable on observation νim is 
missing, otherwise δ is 1; and: 

is the average of the non-missing observations for variable j in group i. This method 
sequentially processes each observation and reassigns it to another cluster if doing so 
results in a decrease of the total within-cluster sums-of-squares. See 
Hartigan and Wong (1979) or Hartigan (1975) for details.

Example

This example performs K-means cluster analysis on Fisher’s iris data, which is 
obtained by IMSL_STATDATA. The initial cluster seed for each iris type is an 
observation known to be in the iris type.

seeds = MAKE_ARRAY(3,4)
x = IMSL_STATDATA(3)
seeds(0, *) = x(0, 1:4)
seeds(1, *) = x(50, 1:4)
seeds(2, *) = x(100, 1:4)
; Use Columns 1, 2, 3, and 4 of data matrix x, only.
cluster_group = IMSL_K_MEANS(x(*, 1:4), seeds, $

Means_Cluster = means_cluster, Ssq_Cluster= ssq_cluster, $
Counts_Cluster = counts_cluster)

FORMAT = '(a, 10i4)'
FOR i = 0, 140, 10 DO BEGIN &$

PRINT, 'observation: ',i + INDGEN(10)+1, $
FORMAT = format &$
PRINT, 'cluster: ', cluster_group(i:i+9), $
FORMAT = format &$
PRINT &$

END
; Print cluster membership in groups of 10.

observation: 1   2   3   4   5   6   7   8   9  10
cluster    : 1   1   1   1   1   1   1   1   1   1

observation: 11  12  13  14  15  16  17  18  19  20

φ fν im
wνim

δνim j, xν im j, xij–( )2

m 1=

ni

∑
j 1=

p

∑
i 1=

K

∑=

xij
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cluster    : 1   1   1   1   1   1   1   1   1   1
observation: 21  22  23  24  25  26  27  28  29  30

cluster    : 1   1   1   1   1   1   1   1   1   1
observation: 31  32  33  34  35  36  37  38  39  40

cluster    : 1   1   1   1   1   1   1   1   1   1
observation: 41  42  43  44  45  46  47  48  49  50

cluster    : 1   1   1   1   1   1   1   1   1   1
observation: 51  52  53  54  55  56  57  58  59  60

cluster    : 2   2   3   2   2   2   2   2   2   2
observation: 61  62  63  64  65  66  67  68  69  70

cluster    : 2   2   2   2   2   2   2   2   2   2
observation: 71  72  73  74  75  76  77  78  79  80

cluster    : 2   2   2   2   2   2   2   3   2   2
observation: 81  82  83  84  85  86  87  88  89  90

cluster    : 2   2   2   2   2   2   2   2   2   2
observation: 91  92  93  94  95  96  97  98  99 100

cluster    : 2   2   2   2   2   2   2   2   2   2
observation: 101 102 103 104 105 106 107 108 109 110

cluster    : 3   2   3   3   3   3   2   3   3   3
observation: 111 112 113 114 115 116 117 118 119 120

cluster    : 3   3   3   2   2   3   3   3   3   2
observation: 121 122 123 124 125 126 127  128 129 130

cluster    : 3   2   3   2   3   3   2   2   3   3
observation: 131 132 133 134 135 136 137 138 139 140

cluster    : 3   3   3   2   3   3   3   3   2   3
observation: 141 142 143 144 145 146 147 148 149 150

cluster    : 3   3   2   3   3   3   2   3   3   2

PM, [[INDGEN(3) + 1],[means_cluster]], Title = 'Cluster Means:',$
FORMAT = '(i3, 5x, 4f8.4)'

Cluster Means:
1       5.0060  3.4280  1.4620  0.2460
2       5.9016  2.7484  4.3935  1.4339
3       6.8500  3.0737  5.7421  2.0711

PM, [[INDGEN(3) + 1],[ssq_cluster]], $
Title = 'Cluster Sums of Squares:', FORMAT = '(i3, 5x, f8.4)'

Cluster Sums of Squares:
1      15.1510
2      39.8210 
3      23.8795

PM, [[INDGEN(3) + 1],[counts_cluster]], Title = $
'Number of Observations per Cluster:'

Number of Observations per Cluster:
1          50
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2          62
3          38

Errors

Warning Errors

STAT_NO_CONVERGENCE—Convergence did not occur.

Version History

6.4 Introduced
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978 Chapter 21: Multivariate Analysis
IMSL_PRINC_COMP

The IMSL_PRINC_COMP function computes principal components.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_PRINC_COMP(covariances [, /COV_MATRIX] 
[, /CORR_MATRIX] [, CORRELATIONS=variable] 
[, CUM_PERCENT=variable] [, DF=variable] [, /DOUBLE] 
[, EIGENVECTORS=variable] [, STDEV=variable] )

Return Value

One-dimensional array containing the eigenvalues of covariances ordered from 
largest to smallest.

Arguments

covariances

Two-dimensional square matrix containing the covariance or correlation matrix.

Keywords

COV_MATRIX

If present and nonzero, treats the input matrix covariances as a covariance matrix. 
Keywords Cov_Matrix and Corr_Matrix cannot be used together. Default: 
Cov_Matrix = 1 

CORR_MATRIX

If present and nonzero, treats the input matrix covariances as a correlation matrix. 
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CORRELATIONS

Named variable into which the one-dimensional array of length containing the 
correlations of the principal components (the columns) with the observed/
standardized variables (the rows) is stored. If Cov_Matrix is present and nonzero, the 
correlations are with the observed variables; otherwise, the correlations are with the 
standardized variables (to a variance of 1.0). In the principal component model for 
factor analysis, matrix Correlations is the matrix of unrotated factor loadings.

CUM_PERCENT

Named variable into which the one-dimensional array containing the cumulative 
percent of the total variances explained by each principal component is stored.

DF

Named variable into which the number of degrees of freedom in covariances is 
stored. Keywords Df and Stdev must be used together.

DOUBLE

If present and nonzero, double precision is used.

EIGENVECTORS

Named variable into which the two-dimensional array containing the eigenvectors of 
covariances, stored columnwise, is stored. Each vector is normalized to have 
Euclidean length equal to the value 1. Also, the sign of each vector is set so that the 
largest component in magnitude (the first of the largest if ties exist) is made positive.

STDEV

Named variable into which the one-dimensional array containing the estimated 
asymptotic standard errors of the eigenvalues is stored. Keywords Df and Stdev must 
be used together.

Discussion

The IMSL_PRINC_COMP function finds the principal components of a set of 
variables from a sample covariance or correlation matrix. The characteristic roots, 
characteristic vectors, standard errors for the characteristic roots, and the correlations 
of the principal component scores with the original variables are computed. Principal 
components obtained from correlation matrices are the same as principal components 
obtained from standardized variables (to unit variance).
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The principal component scores are the elements of the vector y = ΓTx, where Γ is the 
matrix whose columns are the characteristic vectors (eigenvectors) of the sample 
covariance (or correlation) matrix and x is the vector of observed (or standardized) 
random variables. The variances of the principal component scores are the 
characteristic roots (eigenvalues) of the covariance (correlation) matrix.

Asymptotic variances for the characteristic roots were first obtained by Girschick 
(1939) and are given more recently by Kendall et al. (1983, p. 331). These variances 
are computed either for covariance matrices or for correlation matrices.

The correlations of the principal components with the observed (or standardized) 
variables are given in the matrix correlations. When the principal components are 
obtained from a correlation matrix, Correlations is the same as the matrix of 
unrotated factor loadings obtained for the principal components model for factor 
analysis.

Examples

Example 1

In this example, principal components are computed for a nine-variable covariance 
matrix.

covariances = $
[[1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639], $
[0.523, 1.0,  0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645], $
[0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504], $
[0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505], $
[0.346, 0.418, 0.27,  0.691, 1.0, 0.679, 0.383, 0.149, 0.409], $
[0.426, 0.462, 0.254, 0.791, 0.679, 1.0,  0.372, 0.314, 0.472], $
[0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,  0.385, 0.68], $
[0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47], $
[0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0]]
values = IMSL_PRINC_COMP(covariances)
PM, values, Title = 'Eigenvalues:'

Eigenvalues:
4.67692
1.26397
0.844450
0.555027
0.447076
0.429125
0.310241
0.277006
0.196197
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Example 2

In this example, principal components are computed for a nine-variable correlation 
matrix. This example uses the same data as the first example. 

values = IMSL_PRINC_COMP(covariances, /CORR_MATRIX, $
EIGENVECTORS = ev, $
STDEV = stdev, $
DF = 100, $
CUM_PERCENT = cp, $
CORRELATIONS = a)

PM, [[values],[ev]], TITLE = 'Eigenvalue Eigenvector:', $
FORMAT = '(f7.2, 2x, 9f7.2)'

Eigenvalue  Eigenvector:
4.68  0.35 -0.24  0.14 -0.33 -0.11  0.80  0.17 -0.12 -0.05
1.26  0.35 -0.11 -0.28 -0.22  0.77 -0.20  0.14 -0.30 -0.01
0.84  0.28 -0.27 -0.56  0.69 -0.15  0.15  0.01 -0.04 -0.10
0.56  0.37  0.40  0.04  0.12  0.00  0.12 -0.40 -0.12  0.71
0.45  0.31  0.50 -0.07 -0.02 -0.28 -0.18  0.73  0.01  0.00
0.43  0.35  0.46  0.18  0.11  0.12  0.07 -0.37  0.09 -0.68
0.31  0.35 -0.27 -0.07 -0.35 -0.52 -0.44 -0.29 -0.34 -0.11
0.28  0.24 -0.32  0.74  0.43  0.09 -0.20  0.19 -0.16  0.05
0.20  0.38 -0.25 -0.01 -0.15  0.05 -0.15 -0.03  0.85  0.12

PM, a, Title = 'Matrix A:', FORMAT = '(9f7.2)'

Matrix A:
0.75  -0.26   0.13  -0.25  -0.07   0.52   0.10  -0.07  -0.02
0.76  -0.12  -0.26  -0.16   0.51  -0.13   0.08  -0.16  -0.00
0.60  -0.30  -0.51   0.52  -0.10   0.10   0.01  -0.02  -0.04
0.79   0.45   0.04   0.09   0.00   0.08  -0.22  -0.06   0.31
0.68   0.56  -0.07  -0.02  -0.19  -0.12   0.41   0.00   0.00
0.75   0.51   0.17   0.08   0.08   0.05  -0.21   0.05  -0.30
0.75  -0.31  -0.07  -0.26  -0.35  -0.29  -0.16  -0.18  -0.05
0.52  -0.36   0.68   0.32   0.06  -0.13   0.10  -0.09   0.02
0.83  -0.28  -0.01  -0.11   0.03  -0.10  -0.01   0.45   0.05

PM, [[values], [stdev], [cp]], Title = 'Eigenvalue  STD    PCT', $
FORMAT = '(3(3x,F5.2))'

Eigenvalue  STD    PCT
4.68     0.65   0.52
1.26     0.18   0.66
0.84     0.10   0.75
0.56     0.09   0.82
0.45     0.09   0.87
0.43     0.09   0.91
0.31     0.09   0.95
IDL Analyst Reference Guide IMSL_PRINC_COMP



982 Chapter 21: Multivariate Analysis
0.28     0.10   0.98
0.20     0.11   1.00

Errors

Warning Errors

STAT_100_DF—Because the number of degrees of freedom in Covariances and Df is 
less than or equal to zero, 100 degrees of freedom will be used.

STAT_COV_NOT_NONNEG_DEF—Keyword Eigenvectors(#) = #. One or more 
eigenvalues much less than zero are computed. The matrix Covariances is not 
nonnegative definite. In order to continue computations of Eigenvectors and 
Correlations, these eigenvalues are treated as zero.

STAT_FAILED_TO_CONVERGE—Iteration for the eigenvalue failed to converge in 
100 iterations before deflating.

Version History

6.4 Introduced
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IMSL_FACTOR_ANALYSIS

The IMSL_FACTOR_ANALYSIS function extracts initial factor-loading estimates in 
factor analysis.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FACTOR_ANALYSIS(covariances, n_factors [, ALPHA=value] 
[, CHI_SQ_TEST=variable] [, /DOUBLE] [, EIGENVALUES=variable] 
[, EPS=value] [, F_MIN=variable] [, /GEN_LSQ] [, /IMAGE] 
[, ITERS=variable] [, ITMAX=value] [, LAST_STEP=variable] 
[, MAX_LIKELIHOOD=value] [, MAX_STEPS=value] 
[, /PRINC_COMP] [, /PRINC_FACTOR] [, SWITCH_EPS=value] 
[, TUCKER_COEF=variable] [, UNIQUE_VAR_IN=array] 
[, UNIQUE_VAR_OUT=array] [, /UNWGT_LSQ])

Return Value

A two-dimensional array containing the matrix of factor loadings.

Arguments

covariances

Two-dimensional array containing the variance-covariance or correlation matrix.

n_factors

Number of factors in the model.

Keywords

ALPHA

The number of degrees of freedom in covariances. Using Alpha forces the alpha-
factor analysis (common factor model) method to be used to obtain the estimates.
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Note
Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, Gen_Lsq, 
Image, and Alpha cannot be used together.

CHI_SQ_TEST

Named variable into which a one-dimensional array of length 3, containing the chi-
squared test statistics, is stored. The contents of the array are, in order, the number of 
degrees of freedom in chi-squared, the chi-squared test statistic for testing that 
n_factors common factors are adequate for the data, and the probability of a greater 
chi-squared statistic.

DOUBLE

If present and nonzero, double precision is used. 

EIGENVALUES

Named variable into which a one-dimensional array of length 
N_ELEMENTS(covariances(0, *)) containing the eigenvalues of the matrix from 
which the factors were extracted is stored.

EPS

Convergence criterion used to terminate the iterations. For the unweighted least 
squares, generalized least squares, or maximum likelihood methods, convergence is 
assumed when the relative change in the criterion is less than Eps. For alpha-factor 
analysis, convergence is assumed when the maximum change (relative to the 
variance) of a uniqueness is less than Eps. Default: Eps = 0.0001

F_MIN

Named variable into which the value of the function minimum is stored.

GEN_LSQ

If present and nonzero, the generalized least-squares (common factor model) method 
is used to obtain the estimates.

Note
Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, Gen_Lsq, 
Image, and Alpha cannot be used together.
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IMAGE

If present and nonzero, the image-factor analysis (common factor model) method is 
used to obtain the estimates.

Note
Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, Gen_Lsq, 
Image, and Alpha cannot be used together.

ITERS

Named variable into which the number of iterations is stored.

ITMAX

Maximum number of iterations in the iterative procedure. Default: Itmax = 60

LAST_STEP

Named variable into which an array of length N_ELEMENTS(covariances(0, *)) 
containing the updates of the unique variance estimates when convergence was 
reached (or the iterations terminated) is stored. 

MAX_LIKELIHOOD

The number of degrees of freedom in covariances. Using Max_Likelihood forces the 
maximum likelihood (common factor) model to be used to obtain the estimates. 

Note
Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, Gen_Lsq, 
Image, and Alpha cannot be used together.

MAX_STEPS

Maximum number of step halvings allowed during any one iteration. Default: 
Max_Steps = 10 

PRINC_COMP

If present and nonzero, the principal component (principal component model) is used 
to obtain the estimates.
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Note
Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, Gen_Lsq, 
Image, and Alpha cannot be used together.

PRINC_FACTOR

If present and nonzero, the principal factor (common factor model) is used to obtain 
the estimates.

Note
Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, Gen_Lsq, 
Image, and Alpha cannot be used together.

SWITCH_EPS

Convergence criterion used to switch to exact second derivatives. When the largest 
relative change in the unique standard deviation vector is less than Switch_Eps, exact 
second derivative vectors are used. The value of Switch_Eps is not used with the 
principal component, principal factor, image-factor analysis, or alpha-factor analysis 
methods. Default: Switch_Eps = 0.1

TUCKER_COEF

Named variable into which the Tucker reliability coefficient is stored.

UNIQUE_VAR_IN

One-dimensional array of length N_ELEMENTS(covariances(0, *))  containing the 
initial estimates of the unique variances. Default: initial estimates are taken as the 
constant 1 – n_factors/2 * N_ELEMENTS(covariances(0, *)) divided by the 
diagonal elements of the inverse of covariances

UNIQUE_VAR_OUT

One-dimensional array of length N_ELEMENTS(covariances(0, *)) containing the 
estimated unique variances.

UNWGT_LSQ

If present and nonzero, the unweighted least-squares (common factor model) method 
is used to obtain the estimates. This option is the default.
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Note
Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq, Gen_Lsq, 
Image, and Alpha cannot be used together.

Discussion

Function S computes unrotated factor loadings in exploratory factor-analysis models. 
Models available in IMSL_FACTOR_ANALYSIS are the principal component 
model for factor analysis and the common factor model with additions to the common 
factor model in alpha-factor analysis and image analysis. Methods of estimation 
include principal components, principal factor, image analysis, unweighted least 
squares, generalized least squares, and maximum likelihood.

In the factor-analysis model used for factor extraction, the basic model is given as Σ = 
ΛΛT + Ψ, where Σ is the p x p population covariance matrix, Λ is the p x k matrix of 
factor loadings relating the factors f to the observed variables x, and Ψ is the p x p 
matrix of covariances of the unique errors e. Here, p = 
N_ELEMENTS(covariances(0, *)) and k = n_factors. The relationship between the 
factors, the unique errors, and the observed variables is given as x = Λf + e, where in 
addition, the expected values of e, f, and x are assumed to be zero. (The sample means 
can be subtracted from x if the expected value of x is not zero.) It also is assumed that 
each factor has unit variance, that the factors are independent of each other, and that 
the factors and the unique errors are mutually independent. In the common factor 
model, the elements of unique errors e also are assumed to be independent of one 
another so that the matrix Ψ is diagonal. This is not the case in the principal 
component model in which the errors may be correlated.

Further differences between the various methods concern the criterion that is 
optimized and the amount of computer effort required to obtain estimates. Generally 
speaking, the least-squares and maximum likelihood methods, which use iterative 
algorithms, require the most computer time with the principal factor, principal 
component and the image methods requiring much less time since the algorithms in 
these methods are not iterative. The algorithm in alpha-factor analysis is also 
iterative, but the estimates in this method generally require somewhat less computer 
effort than the least squares and maximum likelihood estimates. In all methods, one 
eigensystem analysis is required on each iteration.

Principal Component and Principal Factor Methods

Both the principal component and principal factor methods compute the factor-
loading estimates as: 
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where Γ and the diagonal matrix ∆ are the eigenvectors and eigenvalues of a matrix. 
In the principal component model, the eigensystem analysis is performed on the 
sample covariance (correlation) matrix S, while in the principal factor model, the 
matrix (S + Ψ) is used. If the unique error variances Ψ are not known in the principal 
factor mode, then IMSL_FACTOR_ANALYSIS obtains estimates for them. 

The basic idea in the principal component method is to find factors that maximize the 
variance in the original data that is explained by the factors. Because this method 
allows the unique errors to be correlated, some factor analysts insist that the principal 
component method is not a factor analytic method. Usually, however, the estimates 
obtained by the principal component model and factor analysis model are quite 
similar.

It should be noted that both the principal component and principal factor methods 
give different results when the correlation matrix is used in place of the covariance 
matrix. In fact, any rescaling of the sample covariance matrix can lead to different 
estimates with either of these methods. A further difficulty with the principal factor 
method is the problem of estimating the unique error variances. Theoretically, these 
variances must be known in advance and must be passed to 
IMSL_FACTOR_ANALYSIS using the keyword Unique_Var_In. In practice, the 
estimates of these parameters are produced by IMSL_FACTOR_ANALYSIS when 
Unique_Var_In is not specified. In either case, the resulting adjusted covariance 
(correlation) matrix:

 

may not yield the n_factors positive eigenvalues required for n_factors factors to be 
obtained. If this occurs, you must either lower the number of factors to be estimated 
or give new unique error variance values.

Least-squares and Maximum Likelihood Methods

Unlike the previous two methods, the algorithm used to compute estimates in this 
section is iterative (see Jöreskog 1977). As with the principal factor model, you can 
either initialize the unique error variances or allow IMSL_FACTOR_ANALYSIS to 
compute initial estimates. Unlike the principal factor method, 
IMSL_FACTOR_ANALYSIS optimizes the criterion function with respect to both Ψ 
and Γ. (In the principal factor method, Ψ is assumed to be known. Given Ψ, estimates 
for Λ may be obtained.)

The major difference between the methods discussed in this section is in the criterion 
function that is optimized. Let S denote the sample covariance (correlation) matrix, 

Γ
ˆ
∆
ˆ 1 2⁄–

S Ψ̂–
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and let Σ denote the covariance matrix that is to be estimated by the factor model. In 
the unweighted least-squares method, also called the iterated principal factor method 
or the minres method (see Harman 1976, p. 177), the function minimized is the sum-
of-squared differences between S and Σ. This is written as:

Φul = 0.5 (trace(S – Σ)2 ) 

Generalized least-squares and maximum-likelihood estimates are asymptotically 
equivalent methods. Maximum-likelihood estimates maximize the (normal theory) 
likelihood:

{φml = trace(Σ –1S) – log( | Σ –1S |)} 

while generalized least squares optimizes the function:

Φgs = trace(Σ S –1 – I)2 

In all three methods, a two-stage optimization procedure is used. This proceeds by 
first solving the likelihood equations for Λ in terms of Ψ and substituting the solution 
into the likelihood. This gives a criterion φ( Ψ, Λ(Ψ) ), which is optimized with 
respect to Ψ. In the second stage, the estimates:

 

are obtained from the estimates for Ψ. 

The generalized least-squares and maximum-likelihood methods allow for the 
computation of a statistic (Chi_Sq_Test) for testing that n_factors common factors are 
adequate to fit the model. This is a chi-squared test that all remaining parameters 
associated with additional factors are zero. If the probability of a larger chi-squared is 
so small that the null hypothesis is rejected, then additional factors are needed 
(although these factors may not be of any practical importance). Failure to reject does 
not legitimize the model. The statistic Chi_Sq_Test is a likelihood ratio statistic in 
maximum likelihood estimation. As such, it asymptotically follows a chi-squared 
distribution with degrees of freedom given by Df.

The Tucker and Lewis reliability coefficient, ρ, is returned by Tucker_Coef when the 
maximum likelihood or generalized least-squares methods are used. This coefficient 
is an estimate of the ratio of explained variation to the total variation in the data. It is 
computed as follows:    

Λ̂

ρ
mMo mMk–

mMo 1–
-------------------------------=

M0
ln S( )–

p p 1–( ) 2⁄
---------------------------=
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where:

• | S | is the determinant of covariances

• p = N_ELEMENTS(covariances(0, *))

• k = N_ELEMENTS(covariances(0, *)) 

• φ is the optimized criterion; and d = Df 

Image Analysis

The term image analysis is used here to denote the noniterative image method of 
Kaiser (1963), rather than the image analysis discussed by Harman (1976, p. 226). 
The image method (as well as the alpha-factor analysis method) begins with the 
notion that only a finite number from an infinite number of possible variables have 
been measured. The image-factor pattern is calculated under the assumption that the 
ratio of the number of factors to the number of observed variables is near zero, so that 
a very good estimate for the unique error variances (for standardized variables) is 
given as 1 minus the squared multiple correlation of the variable under consideration 
with all variables in the covariance matrix.

First, the matrix D2 = (diag(S–1))–1 is computed, where the operator “diag” results in 
a matrix consisting of the diagonal elements of its argument and S is the sample 
covariance (correlation) matrix. Then, the eigenvalues Λ and eigenvectors Γ of the 
matrix D –1SD–1 are computed. Finally, the unrotated image-factor pattern is 
computed as DΓ [ ( Λ – I )2 Λ–1 ]1/2.

Alpha-factor Analysis

The alpha-factor analysis method of Kaiser and Caffrey (1965) finds factor-loading 
estimates to maximize the correlation between the factors and the complete universe 
of variables of interest. The basic idea in this method is that only a finite number of 
variables out of a much larger set of possible variables is observed. The population 

m d 2p 5+
6

---------------– 2k
6

------–=

Mk
φ

p k–( )2
p– k–( ) 2⁄

-------------------------------------------------=
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factors are linearly related to this larger set, while the observed factors are linearly 
related to the observed variables. Let f denote the factors obtainable from a finite set 
of observed random variables, and let ξ denote the factors obtainable from the 
universe of observable variables. Then, the alpha method attempts to find factor-
loading estimates so as to maximize the correlation between f and ξ. In order to 
obtain these estimates, the iterative algorithm of Kaiser and Caffrey (1965) is used.

Comments

1. IMSL_FACTOR_ANALYSIS makes no attempt to solve for n_factors. In 
general, if n_factors is not known in advance, several different values of 
n_factors should be used and the most reasonable value kept in the final 
solution.

2. Iterative methods are generally thought to be superior from a theoretical point 
of view, but in practice, often lead to solutions that differ little from the 
noniterative methods. For this reason, it is usually suggested that a noniterative 
method be used in the initial stages of the factor analysis and that the iterative 
methods be used when issues such as the number of factors have been 
resolved.

3. Initial estimates for the unique variances can be input. If the iterative methods 
fail for these values, new initial estimates should be tried. These can be 
obtained by use of another factoring method. (Use the final estimates from the 
new method as the initial estimates in the old method.)

Examples

Example 1

In this example, factor analysis is performed for a nine-variable matrix using the 
default method of unweighted least squares.

covariances = $
[[1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639], $
[0.523, 1.0,  0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645], $
[0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504], $
[0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505], $
[0.346, 0.418, 0.27,  0.691, 1.0, 0.679, 0.383, 0.149, 0.409], $
[0.426, 0.462, 0.254, 0.791, 0.679, 1.0,  0.372, 0.314, 0.472], $
[0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,  0.385, 0.68], $
[0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47], $
[0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0]]
n_factors = 3
a = IMSL_FACTOR_ANALYSIS(covariances, n_factors)
PM, a, Title = 'Unrotated Loadings:'
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Unrotated Loadings:
0.701801    -0.231594 0.0795559
0.719964    -0.137227  -0.208225
0.535122    -0.214389  -0.22709
0.790669     0.405017   0.00704257
0.653203     0.422066  -0.104563
0.753915     0.484247  0.160720
0.712674    -0.281911  -0.0700779
0.483540    -0.262720   0.461992
0.819210    -0.313728  -0.0198735

Example 2

The following data were originally analyzed by Emmett (1949). There are 211 
observations on nine variables. Following Lawley and Maxwell (1971), three factors 
are obtained by the method of maximum likelihood. This example uses the same data 
as the first example.

n_factors = 3
a = IMSL_FACTOR_ANALYSIS(covariances, n_factors, $
Max_Likelihood=210, Switch_Eps=0.01, $
Eps=0.000001, Itmax=30, Max_Steps=10)
PM, a, Title = 'Unrotated Loadings:'

Unrotated Loadings:
0.664210    -0.320874    0.0735207
0.688833    -0.247138    -0.193280
0.492616    -0.302161    -0.222433
0.837198     0.292427   -0.0353954
0.705002     0.314794    -0.152784
0.818701     0.376672     0.104524
0.661494    -0.396031   -0.0777453
0.457925    -0.295526     0.491347
0.765668    -0.427427   -0.0116992

Errors

Warning Errors

STAT_VARIANCES_INPUT_IGNORED—When using the keyword Princ_Comp, the 
unique variances are assumed to be zero. Input for Unique_Var_In is ignored.

STAT_TOO_MANY_ITERATIONS—Too many iterations. Convergence is assumed.

STAT_NO_DEG_FREEDOM—No degrees of freedom for the significance testing.

STAT_TOO_MANY_HALVINGS—Too many step halvings. Convergence is assumed. 
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Fatal Errors

STAT_HESSIAN_NOT_POS_DEF—Approximate Hessian is not semidefinite on 
iteration #. The computations cannot proceed. Try using different initial estimates.

STAT_FACTOR_EVAL_NOT_POS—Variable Eigenvalues(#) = #. An eigenvalue 
corresponding to a factor is negative or zero. Either use different initial estimates for 
Unique_Var_In or reduce the number of factors.

STAT_COV_NOT_POS_DEF—Parameter covariances is not positive semidefinite. The 
computations cannot proceed.

STAT_COV_IS_SINGULAR—Matrix covariances is singular. The computations 
cannot continue because variable # is linearly related to the remaining variables.

STAT_COV_EVAL_ERROR—An error occurred in calculating the eigenvalues of the 
adjusted (inverse) covariance matrix. Check covariances.

STAT_ALPHA_FACTOR_EVAL_NEG—In alpha-factor analysis on iteration #, 
eigenvalue # is #. As all eigenvalues corresponding to the factors must be positive, 
either the number of factors must be reduced or new initial estimates for 
Unique_Var_In must be given.

Version History

6.4 Introduced
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IMSL_DISCR_ANALYSIS

The IMSL_DISCR_ANALYSIS procedure performs a linear or a quadratic 
discriminant function analysis among several known groups.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_DISCR_ANALYSIS, x, n_groups [, CLASS_MEMBER=variable] 
[, CLASS_TABLE=variable] [, COEFFICIENTS=variable] 
[, COVARIANCES=variable] [, /DOUBLE] [, GROUP_COUNTS=variable] 
[, IDX_COLS=array] [, IDX_VARS=array] [, METHOD=value] [, /
PRIOR_EQUAL] [, PRIOR_INPUT=array] [, PRIOR_OUTPUT=variable] [, /
PRIOR_PROP] [, MAHALANOBIS=variable] [, MEANS=variable] 
[, NMISSING=variable] [, PROB=variable] [, STATS=variable]

Arguments

n_groups

Number of groups in the data.

x

Two-dimensional array of size n_rows by n_variables + 1 containing the data where 
n_rows = N_ELEMENTS(x(*,0)), the number of rows to be processed and 
n_variables = number of variables to be used in the discrimination. The first 
n_variables columns correspond to the variables, and the last column contains the 
group numbers. The groups must be numbered 1, 2, ..., n_groups.

Keywords

CLASS_MEMBER

Named variable into which an one-dimensional integer array of length n_rows 
containing the group to which the observation was classified is stored.
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If an observation has an invalid group number, frequency, or weight when the 
leaving-out-one method has been specified, then the observation is not classified and 
the corresponding elements of Class_Member (and Prob, see Prob below) are set to 
zero.

CLASS_TABLE

Named variable into which a two-dimensional array of size n_groups by n_groups 
containing the classification table is stored. Each observation that is classified and has 
a group number 1.0, 2.0, ..., n_groups is entered into the table. The rows of the table 
correspond to the known group membership. The columns refer to the group to which 
the observation was classified. 

COEFFICIENTS

Named variable into which a two-dimensional array of size n_groups by (n_variables 
+ 1) containing the linear discriminant coefficients is stored. The first column of 
Coefficients contains the constant term, and the remaining columns contain the 
variable coefficients. Row i – 1 of Coefficients corresponds to group i, for i = 1, 2, ..., 
n_variables + 1. Array Coefficients are always computed as the linear discriminant 
function coefficients even when quadratic discrimination is specified.

COVARIANCES

Named variable into which a three-dimensional array of size g by n_variables by 
n_variables containing covariance results is stored. The within-group covariance 
matrices (Method 1, 2, 4, and 5 only) is the first g-1 matrices, and the pooled 
covariance matrix is the g-th matrix.

DOUBLE

If present and nonzero, double precision is used.

GROUP_COUNTS

Named variable into which an one-dimensional integer array of length n_groups 
containing the number of observations in each group is stored.

IDX_COLS

One-dimensional array containing the indices of the variables to be used in the 
analysis.
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IDX_VARS

Three element array indicating the column numbers of x in which particular types of 
data are stored. Columns are numbered 0 ... N_ELEMENTS(Idx_Cols) − 1.

Idx_Vars(0) contains the index for the column of x in which the group numbers are 
stored.

Idx_Vars(1) and Idx_Vars(2) contain the column numbers of x in which the 
frequencies and weights, respectively, are stored. Set Idx_Vars(1) = −1 if there will be 
no column for frequencies. Set Idx_Vars(2) = −1 if there will be no column for 
weights. Weights are rounded to the nearest integer. Negative weights are not 
allowed.

Defaults: Idx_Cols = 0, 1, ..., n_variables – 1,

               Idx_Vars(0) =   n_variables,  

               Idx_Vars(1) = −1, and

               Idx_Vars(2) = −1

METHOD

Method of discrimination. The method chosen determines whether linear or quadratic 
discrimination is used, whether the group covariance matrices are computed (the 
pooled covariance matrix is always computed), and whether the leaving-out-one or 
the reclassification method is used to classify each observation. The Method values 
are shown in Table 21-1.

Method discrimination
method

covariances
computed

classification
method

1 linear pooled, group reclassification

2 quadratic pooled, group reclassification

3 linear pooled reclassification

4 linear pooled, group leaving-out-one

5 quadratic pooled, group leaving-out-one

6 linear pooled leaving-out-one

Table 21-1: Method Values
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In the leaving-out-one method of classification, the posterior probabilities are 
adjusted so as to eliminate the effect of the observation from the sample statistics 
prior to its classification. In the classification method, the effect of the observation is 
not eliminated from the classification function. Default: Method = 1

PRIOR_EQUAL

By default, (or if Prior_Equal is used), equal prior probabilities are calculated as 1.0/
n_groups. Keywords Prior_Equal, Prior_Prop, and Prior_Input must not be used 
together.

PRIOR_INPUT

If present, an array of length n_groups containing the prior probabilities for each 
group, such that the sum of all prior probabilities is equal to 1.0. Keywords 
Prior_Input, Prior_Equal, and Prior_Prop must not be used together.

PRIOR_OUTPUT

Named variable into which an one-dimensional array of length n_groups containing 
the most recently calculated or input prior probabilities is stored.

PRIOR_PROP

If present, prior probabilities are calculated to be proportional to the sample size in 
each group. Keywords Prior_Prop, Prior_Equal, and Prior_Input must not be used 
together.

MAHALANOBIS

Named variable into which a two-dimensional array of size n_groups by n_groups 
containing the Mahalanobis distances: 

between the group means is stored.

For linear discrimination, the Mahalanobis distance is computed using the pooled 
covariance matrix. Otherwise, the Mahalanobis distance: 

between group means i and j is computed using the within covariance matrix for 
group i in place of the pooled covariance matrix.

Dij
2

Dij
2
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MEANS

Named variable into which a two-dimensional array of size 
n_groups by n_variables containing the variable means is stored. The i-th row of 
means contains the group i variable means.

NMISSING

Named variable into which the number of rows of data encountered containing 
missing values (NaN) for the classification, group, weight, and/or frequency variables 
is stored. If a row of data contains a missing value (NaN) for any of these variables, 
that row is excluded from the computations.

PROB

Named variable into which a two-dimensional array of size n_rows by n_groups 
containing the posterior probabilities for each observation is stored. 

STATS

Named variable into which an one-dimensional array of length 4 + 2 * (n_groups + 1) 
containing various statistics of interest is stored. The first element of Stats is the sum 
of the degrees of freedom for the within-covariance matrices. The second, third, and 
fourth elements of Stats correspond to the chi-squared statistic, its degrees of 
freedom, and the probability of a greater chi-squared, respectively, of a test of the 
homogeneity of the within-covariance matrices (not computed if Method is equal to 3 
or 6). The fifth through 5 + n_groups elements of Stats contain the log of the 
determinants of each group’s covariance matrix (not computed if Method is equal to 3 
or 6) and of the pooled covariance matrix (element 4 + n_groups). Finally, the last 
n_groups + 1 elements of Stats contain the sum of the weights within each group, and 
in the last position, the sum of the weights in all groups.

Comments

1. Common choices for the Bayesian prior probabilities are given by:
Prior_Input(i)  =  1.0/n_groups   (equal priors)
Prior_Input(i)  =  Group_Count/n_rows   (proportional priors)
Prior_Input(i)  =  Past history or subjective judgment.
In all cases, the priors should sum to 1.0.

Discussion

IMSL_DISCR_ANALYSIS performs discriminant function analysis using either 
linear or quadratic discrimination. The output includes a measure of distance between 
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the groups, a table summarizing the classification results, a matrix containing the 
posterior probabilities of group membership for each observation, and the within-
sample means and covariance matrices. Linear discriminant function coefficients are 
also computed.

Covariance matrices are defined as follows: Let Ni denote the sum of frequencies of 
observations in group i and Mi denote the number of observations in group i. Then, if 
Si denotes the within-group i covariance matrix: 

Where wj is the weight of the j-th observation in group i, fj is the frequency, xj is the j-
th observation column vector (in group i), and:

 

denotes the mean vector of the observations in group i. The mean vectors are 
computed as: 

Given the means and the covariance matrices, the linear discriminant function for 
group i is computed as: 

where ln (pi) is the natural log of the prior probability for the i-th group, x is the 
observation to be classified, and Sp denoted the pooled covariance matrix.

Let S denote either the pooled covariance matrix of one of the within-group 
covariance matrices Si. (S will be the pooled covariance matrix in linear 
discrimination, and Si otherwise.) The Mahalanobis distance between group i and 
group j is computed as: 

Finally, the asymptotic chi-squared test for the equality of covariance matrices is 
computed as follows (Morrison 1976, p. 252): 
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where ni is the number of degrees of freedom in the i-th sample covariance matrix, k 
is the number of groups, and: 

where p is the number of variables.

The estimated posterior probability of each observation x belonging to group is 
computed using the prior probabilities and the sample mean vectors and estimated 
covariance matrices under a multivariate normal assumption. Under quadratic 
discrimination, the within-group covariance matrices are used to compute the 
estimated posterior probabilities. The estimated posterior probability of an 
observation x belonging to group i is:  

where: 

For the leaving-out-one method of classification (Method equal to 4, 5 or 6), the 
sample mean vector and sample covariance matrices in the formula for: 

are adjusted so as to remove the observation x from their computation. For linear 
discrimination (Method equal to 1, 2, 4, or 6), the linear discriminant function 
coefficients are actually used to compute the same posterior probabilities.

Using the posterior probabilities, each observation in x is classified into a group; the 
result is tabulated in the array Class_Table and saved in the array Class_Member.  
Array Class_Table is not altered at this stage if x(i)(Idx_Vars(0)) contains a group 
number that is out of range. If the reclassification method is specified, then all 
observations with no missing values in the n_variables classification variables are 
classified. When the leaving-out-one method is used, observations with invalid group 
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numbers, weights, frequencies, or classification variables are not classified. 
Regardless of the frequency, a 1 is added (or subtracted) from Class_Table for each 
row of x that is classified and contains a valid group number.

When Method > 3, adjustment is made to the posterior probabilities to remove the 
effect of the observation in the classification rule. In this adjustment, each 
observation is presumed to have a weight of x(i)(Idx_Vars(2)) if Idx_Vars(2) > −1 
(and a weight of 1.0 if Idx_Vars(2) = −1), and a frequency of 1.0. See Lachenbruch 
(1975, p. 36) for the required adjustment.

The covariance matrices are computed from their LU factorizations.

Example

The following example uses liner discrimination with equal prior probabilities on 
Fisher’s (1936) iris data.

.RUN
PRO print_results, counts, table, d2, prior_out, coef, means, $

cov, stats, nrmiss
num  =  INDGEN(3)
PRINT, '      Counts'
PRINT, num + 1, FORMAT = '(3I5)'
PRINT, counts, FORMAT = '(3I5)'
PRINT
PRINT, '        Table'
PRINT, num + 1, FORMAT = '(2X, 3I5)'
FOR i  =  0, 2 DO $

PRINT, num(i) + 1, table(i, *), FORMAT = '(I2, 3I5)'
PRINT
PRINT, '           D2'
PRINT, num + 1, FORMAT = '(3I7)'
FOR i  =  0, 2 DO $

PRINT, num(i) + 1, d2(i, *), FORMAT = '(I2, 3F7.1)'
PRINT
PRINT, '          Prior OUT'
PRINT, num + 1, FORMAT = '(3I10)'
PRINT, prior_out, FORMAT = '(3F10.4)'
PRINT
num  =  INDGEN(5)
PRINT, '                         Coef'
PRINT, num + 1, FORMAT = '(1X, 5I10)
FOR i  =  0, 2 DO $

PRINT, num(i) + 1, coef(i, *), FORMAT = '(I2, 5F10.1)'
PRINT
num  =  INDGEN(4)
PRINT, '                  Means'
PRINT, num + 1, FORMAT = '(4I10)'
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FOR i  =  0, 2 DO $
PRINT, num(i) + 1, means(i, *), FORMAT = '(I2, 4F10.3)'

PRINT
PRINT, '             Covariance'
PRINT, num + 1, FORMAT = '(4I10)'
FOR i  =  0, 3 DO $

PRINT, num(i) + 1, cov(0, *, i), FORMAT = '(I2, 4F10.4)'
PRINT
num  =  INDGEN(12)
PRINT, '           Stats'
FOR i  =  0, 11 DO $

PRINT, num(i) + 1, stats(i)
PRINT
PRINT, 'nrmiss = ', nrmiss

END

idxv  =  [1, 2, 3, 4]
idxc  =  [0, -1, -1]
n_groups  =  3
method  =  3
; Retrieve the Fisher Iris Data Set
x  =  IMSL_STATDATA(3)
IMSL_DISCR_ANALYSIS, x, n_groups, Idx_Vars = idxv, $

Idx_cols = idxc, Method = method, /Prior_Equal, $
Prior_Output = prior_out, Group_Counts = counts, $
Means = means, Covariances = cov, $
Coefficients = coef, Class_Member = cm, $
Class_Table = table, Prob = prob, $
Mahalanobis = d2, Stats = stats, Nmissing = nrmiss

print_results, counts, table, d2, prior_out, coef, means, $
cov, stats, nrmiss

Counts
1    2    3
50   50   50

Table
1    2    3

1   50    0    0
2    0   48    2
3    0    1   49

D2
1      2      3

1 0.0   89.9  179.4
2 89.9    0.0   17.2
3 179.4   17.2    0.0
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Prior OUT
1         2         3

0.3333    0.3333    0.3333
Coef

1         2         3         4         5
1     -86.3      23.5      23.6     -16.4     -17.4
2     -72.9      15.7       7.1       5.2       6.4
3    -104.4      12.4       3.7      12.8      21.1

Means
1         2         3         4

1     5.006     3.428     1.462     0.246
2     5.936     2.770     4.260     1.326
3     6.588     2.974     5.552     2.026

Covariance
1         2         3         4

1    0.2650    0.0927    0.1675    0.0384
2    0.0927    0.1154    0.0552    0.0327
3    0.1675    0.0552    0.1852    0.0427
4    0.0384    0.0327    0.0427    0.0419

Stats
1      147.000
2          NaN
3          NaN
4          NaN
5          NaN
6          NaN
7          NaN
8     -9.95854
9      50.0000
10      50.0000
11      50.0000
12      150.000

nrmiss =            0

Errors

Warning Errors

STAT_BAD_OBS_1—In call #, row # of the data matrix, “x”, has group number = #. 
The group number must be an integer between 1.0 and “n_groups” = #, inclusively. 
This observation will be ignored.

STAT_BAD_OBS_2—The leaving-out-one method is specified but this observation 
does not have a valid group number (Its group number is #.). This observation (row #) 
is ignored.
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STAT_BAD_OBS_3—The leaving-out-one method is specified but this observation 
does not have a valid weight or it does not have a valid frequency. This observation 
(row #) is ignored.

STAT_COV_SINGULAR_3—The group # covariance matrix is singular. “Stats(1)” 
cannot be computed. “Stats(1)” and “Stats(3)” are set to the missing value code 
(NaN).

Fatal Errors

STAT_COV_SINGULAR_1—The variance-covariance matrix for population 
number # is singular. The computations cannot continue.

STAT_COV_SINGULAR_2—The pooled variance-covariance matrix is singular. 
The computations cannot continue.

STAT_COV_SINGULAR_4—A variance-covariance matrix is singular. The index of 
the first zero element is equal to #.

Version History

6.4 Introduced
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Survival Analysis
This section contains the following topics:
Overview: Survival Analysis . . . . . . . . . .  1006 Survival Analysis Routines  . . . . . . . . . .  1007
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Overview: Survival Analysis

The routine described in this chapter has primary application in the areas of reliability 
and life testing, but they may find application in any situation in which time is a 
variable of interest. Kalbfleisch and Prentice (1980), Elandt-Johnson and Johnson 
(1980), Lee (1980), Gross and Clark (1975), Lawless (1982), and Chiang (1968) are 
references for discussing the models and methods used here. 
IMSL_SURVIVAL_GLM fits any of several generalized linear models, and 
computes estimates of survival probabilities based on the same models.
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Survival Analysis Routines

• IMSL_SURVIVAL_GLM—Analyzes survival data using a generalized linear 
model and estimates using various parametric modes. 
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IMSL_SURVIVAL_GLM

The IMSL_SURVIVAL_GLM function analyzes censored survival data using a 
generalized linear model and estimates survival probabilities and hazard rates for the 
various parametric models.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_SURVIVAL_GLM(n_class, n_continuous, model, x 
[, /CASE_ANALYSIS=variable] [, CLASS_VALS=variable] 
[, COEF_STAT=variable] [, COVARIANCES=variable] 
[, CRITERION=variable] [, /DOUBLE] [, EPS=value] [, EST_DELTA=value] 
[, EST_NOBS=value] [, EST_NPT=value] [, EST_PROB=variable] 
[, EST_TIME=value] [, EST_XBETA=variable] [, ICEN=value] [, IFIX=value] 
[, IFREQ=value] [, ILT=value] [, INDICIES_EFFECTS=array] 
[, INIT_EST=array] [, IRT=value] [, ITERATIONS=variable] [, ITMAX=value] 
[, LAST_STEP=variable] [, LP_MAX=value] [, MAX_CLASS=value] 
[, MEANS=variable] [, N_CLASS_VALS=variable] [, NMISSING=variable] 
[, /NO_INTERCEPT] [, OBS_STATUS=variable] [, VAR_EFFECTS=array])

Return Value

An integer value indicating n_coefficients, where n_coefficients is the number of 
estimated coefficients in the model.

Arguments

model

Specifies the model used to analyze the data.

• 0—Exponential

• 1—Linear hazard

• 2—Log-normal

• 3—Normal
IMSL_SURVIVAL_GLM IDL Analyst Reference Guide



Chapter 22: Survival Analysis 1009
• 4—Log-logistic

• 5—Logistic

• 6—Log least extreme value

• 7—Least extreme value

• 8—Log extreme value

• 9—Extreme value

• 10—Weibull

See the Discussion section for more information about these models.

n_class

Number of classification variables.

n_continuous

Number of continuous variables.

x

Two-dimensional array of size n_observations by ((n_class + n_continuous) + m) 
containing data for the independent variables, dependent variable, and optional 
parameters where n_observations is the number of observations and the optional 
parameters correspond to keywords Icen, Ilt, Irt, Ifreq, and Ifix.

The columns must be ordered such that the first n_class columns contain data for the 
class variables, the next n_continuous columns contain data for the continuous 
variables, and the next column contains the response variable. The final (and 
optional) m − 1 columns contain optional parameters. 

Keywords

CASE_ANALYSIS

Named variable into which a two-dimensional array of size n_observations by 5 
containing the case analysis below is stored:

• 0—Estimated predicted value.

• 1—Estimated influence or leverage.

• 2—Estimated residual.
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• 3—Estimated cumulative hazard.

• 4—Non-censored observation: Estimated density at the observation failure 
time and covariate values. Censored observations: The corresponding 
estimated probability.

CLASS_VALS

Named variable into which one-dimensional array of length: 

containing the distinct values of the classification variables in ascending order is 
stored. The first N_Class_Vals(0) elements of Class_Vals contain the values for the 
first classification variables, the next N_Class_Vals(1) elements contain the values for 
the second classification variable, etc.

COEF_STAT

Named variable into which a two-dimensional array of size n_coefficients by 4 
containing the parameter estimates and associated statistics is stored:

• 0—Coefficient estimate.

• 1—Estimated standard deviation of the estimated coefficient.

• 2—Asymptotic normal score for testing that the coefficient is zero.

• 3—The p-value associated with the normal score in Column 2.

When present in the model, the first coefficient in Coef_Stat is the estimate of the 
“nuisance” parameter, and the remaining coefficients are estimates of the parameters 
associated with the “linear” model, beginning with the intercept, if present. Nuisance 
parameters are as follows:

• 0—No nuisance parameter

• 1—Coefficient of the quadratic term, term in time, θ 

• 2–9—Scale parameter, σ 

• 10—Scale parameter, θ 

COVARIANCES

Named variable into which a two-dimensional array of size n_coefficients by 
n_coefficients containing the estimated asymptotic covariance matrix of the 

 
i 0=

n_class 1–

∑ N_Class_Vals i( )
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coefficients is stored. For Itmax = 0, this is the Hessian computed at the initial 
parameter estimates.

CRITERION

Named variable into which the optimized criterion is stored. The criterion to be 
maximized is a constant plus the log-likelihood.

DOUBLE

If present and nonzero, double precision is used.

EPS

Convergence criterion. Convergence is assumed when maximum relative change in 
any coefficient estimate is less than Eps from one iteration to the next or when the 
relative change in the log-likelihood, criterion, from one iteration to the next is less 
than Eps/100.0. Default: Eps = 0.001

EST_DELTA

Increment between time points on the time grid. Keywords Est_Delta, Est_Nobs, 
Est_Time, Est_Npt, and Est_Prob must be used together.

EST_NOBS

Number of observations for which estimates are to be calculated. Est_Nobs must be 
positive. Keywords Est_Nobs, Est_Time, Est_Npt, Est_Delta, and Est_Prob must be 
used together.

EST_NPT

Number of points on the time grid for which survival probabilities are desired. 
Est_Npt must be positive. Keywords Est_Npt, Est_Nobs, Est_Time, Est_Delta, and 
Est_Prob must be used together.

EST_PROB

Named variable into which a two-dimensional array of size Est_Npt by 
(2*n_observations + 1) containing the estimated survival probabilities for the 
covariate groups specified in x is stored. Column 0 contains the survival time. 
Columns 1 and 2 contain the estimated survival probabilities and hazard rates, 
respectively, for the covariates in the first row of x. In general, the survival and hazard 
row i of x is contained in columns 2i – 1 and 2i, respectively, for i = 1, 2, ..., Est_Npt. 
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Keywords Est_Prob, Est_Nobs, Est_Time, Est_Npt, and Est_Delta must be used 
together. 

EST_TIME

Beginning of the time grid for which estimates are desired. Survival probabilities and 
hazard rates are computed for each covariate vector over the grid of time points 
Est_Time + i*Est_Delta for i = 0, 1, ..., Est_Npt −1. Keywords Est_Time, Est_Nobs, 
Est_Npt, Est_Delta, and Est_Prob must be used together.

EST_XBETA

Named variable into which an one-dimensional array of length n_observations 
containing the estimated linear response:

 

for each row of x is stored. To use keyword Est_Xbeta, you must also use keywords 
Est_Nobs, Est_Time, Est_Npt, Est_Delta, and Est_Prob.

ICEN

The column in x containing the censoring code for each observation. Possible values 
are shown in Table 22-1.

IFIX

Column number in x containing a fixed parameter for each observation that is added 
to the linear response prior to computing the model parameter. The “fixed” parameter 
allows one to test hypothesis about the parameters via the log-likelihoods. 

x (I, Icen) Censoring type

0 Exact failure at x (i, Irt)

1 Right Censored. The response is greater than x (i, Irt) 

2 Left Censored. The response is less than or equal to x (i, Irt) 

3 Interval Censored. The response is greater than x (i, Irt), but less 
than or equal to x (i, Irt).

Table 22-1: Icen Values

w xβ̂+
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IFREQ

The column number of x containing the frequency of response for each observation.

ILT

The column number of x containing the upper endpoint of the failure interval for 
interval- and left-censored observations. 

INDICIES_EFFECTS

One-dimensional index array of length Var_Effects(0) + Var_Effects(1) + ... + 
Var_Effects(n_effects − 1). The first Var_Effects(0) elements give the column 
numbers of x for each variable in the first effect. The next Var_Effects(1) elements 
give the column numbers for each variable in the second effect. The last 
Var_Effects(n_effects − 1) elements give the column numbers for each variable in the 
last effect. Keywords Indicies_Effects and Var_Effects must be used together.

INIT_EST

One-dimensional array containing the initial estimates of the parameters (which 
requires that you know the number of coefficients in the model prior to the use of 
IMSL_SURVIVAL_GLM). See output keyword Coef_Stat for a description of the 
“nuisance” parameter, which is the first element of array Init_Est. By default, un-
weighted linear regression is used to obtain initial estimates.

IRT

The column number of x containing the lower endpoint of the failure interval for 
interval- and right-censored observations.
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ITERATIONS

Named variable into which a two-dimensional array of size, n by 5 containing 
information about each iteration of the analysis is stored, where n is equal to the 
number of iterations. This is shown in Table 22-2.

ITMAX

Maximum number of iterations. Use Itmax = 0 to compute the Hessian, stored in 
Covariances, and the Newton step, stored in Last_Step, at the initial estimates (The 
initial estimates must be input. Use keyword Init_Est). See Example 3. Default: Itmax 
= 30

LAST_STEP

Named variable into which an one-dimensional array of length n_coefficients 
containing the last parameter updates (excluding step halvings) is stored. Keyword 
Last_Step is computed as the inverse of the matrix of second partial derivatives times 
the vector of first partial derivatives of the log-likelihood. When Itmax = 0, the 
derivatives are computed at the initial estimates.

LP_MAX

Remove a right- or left-censored observation from the log-likelihood whenever the 
probability of the observation exceeds 0.995. At convergence, use linear 
programming to check that all removed observations actually have infinite linear 
response:

 

Column Statistic

0 Method of iteration
Q-N Step = 0
N-R Step = 1

1 Iteration number

2 Step size

3 Maximum scaled coefficient update

4 Log-likelihood

Table 22-2: Column Information

ziβ̂
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Obs_Status(i) is set to 2 if the linear response is infinite (See keyword Obs_Status). If 
not all removed observations have infinite linear response, recompute the estimates 
based upon the observations with finite:

 

Keyword Lp_Max is the maximum number of observations that can be handled in the 
linear programming. Setting Lp_Max = n_observations is always sufficient. By 
default, the function iterates without checking for infinite estimates. Default: No 
infinity checking; Lp_Max = 0

MAX_CLASS

An upper bound on the sum of the number of distinct values taken on by each 
classification variable. Internal workspace usage can be significantly reduced with an 
appropriate choice of Max_Class. Default: Max_Class = n_observations * n_class

MEANS

Named variable into which an one-dimensional array containing the means of the 
design variables is stored. The array is of length n_coefficients – k if keyword 
No_Intercept is used, and of length n_coefficients – k – 1 otherwise. Here, k is equal 
to 0 if model = 0, and equal to 1 otherwise.

N_CLASS_VALS

Named variable into which an one-dimensional array of length n_class containing the 
number of values taken by each classification variable is stored; the i-th classification 
variable has N_Class_Vals(i). 

NMISSING

Named variable into which the number of rows of data that contain missing values in 
one or more of the following vectors or columns of x is stored: Icen, Ilt, Irt, Ifreq, Ifix, 
or Indicies_Effects.

NO_INTERCEPT

If present and nonzero, there is no intercept in the model.  By default, the intercept is 
automatically included in the model.

OBS_STATUS

Named variable into which an one-dimensional array of length n_observations 
indicating which observations are included in the extended likelihood is stored.

ziβ̂
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• 0—Observation i is in the likelihood

• 1—Observation i cannot be in the likelihood because it contains at least one 
missing value in x. 

• 2—Observation i is not in the likelihood. Its estimated parameter is infinite.

VAR_EFFECTS

One-dimensional array of length n_effects containing the number of variables 
associated with each effect in the model, where n_effects is the number of effects 
(sources of variation) in the model. Keywords Var_Effects and Indicies_Effects must 
be used together. 

Comments

1. Dummy variables are generated for the classification variables as follows: An 
ascending list of all distinct values of each classification variable is obtained 
and stored in Class_Vals. Dummy variables are then generated for each but the 
last of these distinct values. Each dummy variable is zero unless the 
classification variable equals the list value corresponding to the dummy 
variable, in which case the dummy variable is one. See keyword 
Dummy_Method in the “IMSL_REGRESSORS” on page 602.

2. The “product” of a classification variable with a covariate yields dummy 
variables equal to the product of the covariate with each of the dummy 
variables associated with the classification variable.

3. The “product” of two classification variables yields dummy variables in the 
usual manner. Each dummy variable associated with the first classification 
variable multiplies each dummy variable associated with the second 
classification variable. The resulting dummy variables are such that the index 
of the second classification variable varies fastest.

Discussion

The IMSL_SURVIVAL_GLM function computes the maximum likelihood estimates 
of parameters and associated statistics in generalized linear models commonly found 
in survival (reliability) analysis. Although the terminology used will be from the 
survival area, the methods discussed have applications in many areas of data analysis, 
including reliability analysis and event history analysis. These methods can be used 
anywhere a random variable from one of the discussed distributions is parameterized 
via one of the models available in IMSL_SURVIVAL_GLM. Thus, while it is not 
advisable to do so, standard multiple linear regression can be performed by routine 
IMSL_SURVIVAL_GLM. Estimates for any of 10 standard models can be computed. 
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Exact, left-censored, right-censored, or interval-censored observations are allowed 
(note that left censoring is the same as interval censoring with the left endpoint equal 
to the left endpoint of the support of the distribution).

Let η = xTβ be the linear parameterization, where x is a design vector obtained by 
IMSL_SURVIVAL_GLM via IMSL_REGRESSORS from a row of x, and β is a 
vector of parameters associated with the linear model. Let T denote the random 
response variable and S(t) denote the probability that T > t. All models considered 
also allow a fixed parameter wi for observation i (input in column Ifix of x). Use of 
this parameter is discussed below. There also may be nuisance parameters θ > 0, or σ 
> 0 to be estimated (along with β) in the various models. Let Φ denote the cumulative 
normal distribution. The survival models available in IMSL_SURVIVAL_GLM are 
listed in Table 22-3.

model Name S(t)

0 Exponential exp [− t exp (w i + η)]

1 Linear hazard  

2 Log-normal  

3 Normal  

4 Log-logistic  

Table 22-3: Available Survival Models 
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1018 Chapter 22: Survival Analysis
Note that the log-least-extreme-value model is a re-parameterization of the Weibull 
model. Moreover, models 0, 1, 2, 4, 6, 8, and 10 require that T > 0, while all of the 
remaining models allow any value for T, –∞ < T < ∞.

Each row vector in the data matrix can represent a single observation; or, through the 
use of vector frequencies, each row can represent several observations. Also note that 

5 Logistic  

6 Log least extreme value  

7 Least extreme value  

8 Log extreme value  

9 Extreme value  

10 Weibull  

model Name S(t)

Table 22-3: Available Survival Models  (Continued)
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Chapter 22: Survival Analysis 1019
classification variables and their products are easily incorporated into the models via 
the usual regression-type specifications.

The constant parameter Wi is input in x and may be used for a number of purposes. 
For example, if the parameter in an exponential model is known to depend upon the 
size of the area tested, volume of a radioactive mass, or population density, and so on, 
then a multiplicative factor of the exponential parameter λ= exp (xβ) may be known 
beforehand. This factor can be input in Wi (Wi is the log of the factor).

An alternate use of Wi is as follows: It may be that λ = exp (x1β1 + x2β2), where β2 is 
known. Letting Wi = x2β2, estimates for β1 can be obtained via 
IMSL_SURVIVAL_GLM with the known fixed values for β2. Standard methods can 
then be used to test hypothesis about β1 via computed log-likelihoods.

Computational Details

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

• Estimates of the means of the “independent” or design variables are 
computed. Means are computed as: 

2. If initial estimates are not provided (see keyword Init_Est), they are calculated 
as follows:

Models 2-10:

A. Kaplan-Meier estimates of the survival probability: 

at the upper limit of each failure interval are obtained. (Because upper 
limits are used, interval- and left-censored data are assumed to be exact 
failures at the upper endpoint of the failure interval.) The Kaplan-Meier 
estimate is computed under the assumption that all failure distributions are 
identical (i.e., all β’s but the intercept, if present, are assumed to be zero). 

B. If there is an intercept in the model, a simple linear regression is perform 
predicting: 

x
f x
f
i i

i
= ∑

∑

Ŝ t( )

S
1–

Ŝ t( )( ) wi– α φ t'+=
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1020 Chapter 22: Survival Analysis
where t' is computed at the upper endpoint of each failure interval, t' = t in 
models 3, 5, 7, and 9, and t' = ln (t) in models 2, 4, 6, 8, and 10, and wi is 
the fixed constant, if present. 

If there is no intercept in the model, then α is fixed at zero, and the model:  

is fit instead. In this model, the coefficients β are used in place of the 
location estimate α above. Here: 

is estimated from the simple linear regression with α = 0.

C. If the intercept is in the model, then in log-location-scale models (models 
1-8): 

and the initial estimate of the intercept is assumed to be: 

In the Weibull model: 

and the intercept is assumed to be: 

Initial estimates of all parameters β, other than the intercept, are assumed 
to be zero.

If there is no intercept in the model, the scale parameter is estimated as 
above, and the estimates: 

from Step 2 are used as initial estimates for the β’s.

Models 0 and 1:

For the exponential models (model = 0 or 1), the “average total time on” 
test statistic is used to obtain an estimate for the intercept. Specifically, let 
Tt denote the total number of failures divided by the total time on test. The 
initial estimates for the intercept is then ln(Tt). Initial estimates for the 
remaining parameters β are assumed to be zero, and if model = 1, the 

S
1–

Ŝ t( )( ) φ ˆ t'– wi– x
Tβ=

φ̂

σ̂ φ̂=

α̂

θ̂ 1 φ̂⁄=

α̂

β̂
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initial estimate for the linear hazard parameter θ is assumed to be a small 
positive number. When the intercept is not in the model, the initial estimate 
for the parameter θ is assumed to be a small positive number, and initial 
estimates of the parameters β are computed via multiple linear regression 
as in Part A.

3. A quasi-Newton algorithm is used in the initial iterations based on a Hessian 
estimate: 

where l'iα j is the partial derivative of the i-th term in the log-likelihood with 
respect to the parameter αj, and aj denotes one of the parameters to be 
estimated.

When the relative change in the log-likelihood from one iteration to the next is 
0.1 or less, exact second partial derivatives are used for the Hessian so the 
Newton-Rapheson iteration is used.

If the initial step size results in an increase in the log-likelihood, the full step is 
used. If the log-likelihood decreases for the initial step size, the step size is 
halved, and a check for an increase in the log-likelihood performed. Step-
halving is performed (as a simple line search) until an increase in the log-
likelihood is detected, or until the step size becomes very small (the initial step 
size is 1.0).

4. Convergence is assumed when the maximum relative change in any coefficient 
update from one iteration to the next is less than Eps or when the relative 
change in the log-likelihood from one iteration to the next is less than Eps/100. 
Convergence is also assumed after Itmax iterations or when step halving leads 
to a very small step size with no increase in the log-likelihood.

5. If requested (see keyword Lp_Max), the methods of Clarkson and Jennrich 
(1988) are used to check for the existence of infinite estimates in: 

As an example of a situation in which infinite estimates can occur, suppose that 
observation j is right-censored with tj > 15 in a normal distribution model in 
which the mean is: 

Ĥκ jκ l l'iα jiα l
i
∑=

η i xi
Tβ=

µj xj
Tβ η j= =
IDL Analyst Reference Guide IMSL_SURVIVAL_GLM



1022 Chapter 22: Survival Analysis
where xj is the observation design vector. If the design vector xj for parameter 
βm is such that xjm = 1 and xim = 0 for all i ≠ j, then the optimal estimate of βm 
occurs at: 

leading to an infinite estimate of both βm and ηj. In IMSL_SURVIVAL_GLM, 
such estimates can be “computed.”

In all models fit by IMSL_SURVIVAL_GLM, infinite estimates can only 
occur when the optimal estimated probability associated with the left- or right-
censored observation is 1. If infinity checking is on, left- or right-censored 
observations that have estimated probability greater than 0.995 at some point 
during the iterations are excluded from the log-likelihood, and the iterations 
proceed with a log-likelihood based on the remaining observations. This 
allows convergence of the algorithm when the maximum relative change in the 
estimated coefficients is small and also allows for a more precise determination 
of observations with infinite: 

At convergence, linear programming is used to ensure that the eliminated 
observations have infinite ηi. If some (or all) of the removed observations 
should not have been removed (because their estimated ηi’s must be finite), 
then the iterations are restarted with a log-likelihood based upon the finite ηi 
observations. See Clarkson and Jennrich (1988) for more details.

By default, or when not using keyword Lp_Max (see keyword Lp_Max), no 
observations are eliminated during the iterations. In this case, the infinite 
estimates occur, some (or all) of the coefficient estimates: 

will become large, and it is likely that the Hessian will become (numerically) 
singular prior to convergence.

6. The case statistics are computed as follows: Let Ii (θi) denote the log-
likelihood of the i-th observation evaluated at θi, let I'i denote the vector of 
derivatives of Ii with respect to all parameters,  denote the derivative of Ii 
with respect to η = xTβ, H denote the Hessian, and E denote expectation. Then 
the columns of Case_Analysis are:

A. Predicted values are computed as E (T/x) according to standard formulas. 
If model is 4 or 8, and if s ≥ 1, then the expected values cannot be 
computed because they are infinite.

β̂m ∞=

η i xi
Tβ=

β̂

I'η i,
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B. Following Cook and Weisberg (1982), the influence (or leverage) of the i-
th observation is assumed to be: 

This quantity is a one-step approximation of the change in the estimates 
when the i-th observation is deleted (ignoring the nuisance parameters).

C. The “residual” is computed as .

D. The cumulative hazard is computed at the observation covariate values 
and, for interval observations, the upper endpoint of the failure interval. 
The cumulative hazard also can be used as a “residual” estimate. If the 
model is correct, the cumulative hazards should follow a standard 
exponential distribution. See Cox and Oakes (1984).

The IMSL_SURVIVAL_GLM function computes estimates of survival probabilities 
and hazard rates for the parametric survival/reliability models when using the Est_* 
keywords.

Let η = xTβ be the linear parameterization, where x is the design vector 
corresponding to a row of x (IMSL_SURVIVAL_GLM generates the design vector 
using IMSL_REGRESSORS), and β is a vector of parameters associated with the 
linear model. Let T denote the random response variable and S(t) denote the 
probability that T > t. All models considered also allow a fixed parameter w (input in 
column Ifix of x). Use of the keyword is discussed in above. There also may be 
nuisance parameters θ > 0 or σ > 0. Let λ(t) denote the hazard rate at time t. Then λ(t) 
and S(t) are related at: 

Models 0, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case assume λ(s) = 0 for s 
< 0), while the remaining models allow arbitrary values for T, −∞ < T < ∞. The 
computations proceed in IMSL_SURVIVAL_GLM when using the keywords Est_* 
as follows:

1. The input arguments are checked for consistency and validity.

2. For each row of x, the explanatory variables are generated from the 
classification and variables and the covariates using IMSL_REGRESSORS 
with keyword Dummy_Method.

3. For each point requested in the time grid, the survival probabilities and hazard 
rates are computed.

I'i( )T
H

1–
I'i

I'η i,

S t( ) λ s( ) sd
∞–

t

∫ 
 exp=
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1024 Chapter 22: Survival Analysis
Programming Notes

Indicator (dummy) variables are created for the classification variables using 
IMSL_REGRESSORS (Chapter 3, Regression) using keyword Dummy_Method.

Examples

The following four examples all use the array x, defined as follows:

x1 = [[1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0] , $
[1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0] , $
[1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0] , $
[1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0] , $
[1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0] , $
[1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0] , $
[1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0] , $
[2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0] , $
[2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0] , $
[2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0]] ; , $

x2 = [[2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0] , $
[2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0] , $
[2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0] , $
[2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0] , $
[3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0] , $
[3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0] , $
[4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0] , $
[4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0] , $
[4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0] , $
[4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0]] ;, $

x3 = [[4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0] , $
[1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0] , $
[1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0] , $
[1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0] , $
[1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0] , $
[1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0] , $
[1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0] , $
[1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0] , $
[2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0] , $
[2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0]]; , $

x4 = [[2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0] , $
[2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0] , $
[3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0] , $
[3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0] , $
[3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0] , $
[4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0] , $
[4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0] , $
[4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0] , $
[4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0] , $
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Chapter 22: Survival Analysis 1025
[4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0]]
x = [[x1], [x2], [x3], [x4]]
x = TRANSPOSE(x)

Example 1

This example is taken from Lawless (1982, p. 287) and involves the mortality of 
patients suffering from lung cancer. An exponential distribution is fit for the model:

η = µ + α i + γ k + β 6 x3 + β 7x4 + β 8x5 

where αi is associated with a classification variable with four levels, and γk is 
associated with a classification variable with two levels. Note that because the 
computations are performed in single precision, there will be some small variation in 
the estimated coefficients across different machine environments.

.RUN
PRO print_results, cs

PRINT, '                     Coefficient Satistics'
PRINT, '    Coefficient      s.e            z             p'
PM, cs, FORMAT = '(4F14.4)'

END

n_class  =  2
n_continuous  =  3
model  =  0
icen  =  6
irt  =  5 
lp_max  =  40
n_coef  =  IMSL_SURVIVAL_GLM(n_class, n_continuous, model, x, $

ICEN = icen, IRT = irt, LP_MAX = lp_max, COEF_STAT = cs)
print_results, cs

Coefficient Satistics
Coefficient       s.e             z             p

-1.1027        1.3091       -0.8423        0.3998
-0.3626        0.4446       -0.8156        0.4149
0.1271        0.4863        0.2613        0.7939
0.8690        0.5861        1.4825        0.1385
0.2697        0.3882        0.6948        0.4873
-0.5400        0.1081       -4.9946        0.0000
-0.0090        0.0197       -0.4594        0.6460
-0.0034        0.0117       -0.2912        0.7710 

Example 2

This example uses the same array x defined in Example 1, but more optional 
arguments are demonstrated.
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.RUN
PRO print_results, cs, iter, crit, nmiss

PRINT, '                     Coefficient Satistics'
PRINT, '    Coefficient      s.e            z             p'
PM, cs, FORMAT = '(4F14.4)'
PRINT
PRINT, '                    Iteration Information'
PRINT, 'Method  Iteration   Step Size    Coef Update  ', $

'Log-Likelihood'
PM, iter, FORMAT = '(I3, I10, 2F14.4, F14.1)'
PRINT
PRINT, 'Log-Likelihood =', crit
PRINT
PRINT, 'Number of Missing Value = ', nmiss, $

FORMAT = '(A26, I3)'
END

n_class  =  2
n_continuous  =  3
model  =  0
icen  =  6
irt  =  5 
lp_max  =  40
n_coef  =  IMSL_SURVIVAL_GLM(n_class, n_continuous, model, x, $

ICEN = icen, IRT = irt, LP_MAX = lp_max, $
N_CLASS_VALS = ncv, CLASS_VALS = cv, $
COEF_STAT = cs, CRITERION = crit, $
MEANS = means, CASE_ANALYSIS = ca, $
ITERATIONS = iter, OBS_STATUS = os, NMISSING = nmiss)

print_results, cs, iter, crit, nmiss

Coefficient Satistics
Coefficient       s.e             z             p
-1.1027        1.3091       -0.8423        0.3998
-0.3626        0.4446       -0.8156        0.4149
0.1271        0.4863        0.2613        0.7939
0.8690        0.5861        1.4825        0.1385
0.2697        0.3882        0.6948        0.4873
-0.5400        0.1081       -4.9946        0.0000
-0.0090        0.0197       -0.4594        0.6460
-0.0034        0.0117       -0.2912        0.7710
Iteration Information

Method  Iteration   Step Size    Coef Update  Log-Likelihood
0         0           NaN           NaN        -224.0
0         1        1.0000        0.9839        -213.4
1         2        1.0000        3.6034        -207.3
1         3        1.0000       10.1238        -204.3
1         4        1.0000        0.1430        -204.1
1         5        1.0000        0.0117        -204.1
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Log-Likelihood =     -204.139
Number of Missing Value =   0

Example 3

In this example, the same data and model as example 1 are used, but Itmax is set to 
zero iterations with model coefficients restricted such that  µ = −1.25, β6 = −0.6, 
and the remaining six coefficients are equal to zero. A chi-squared statistic, with 8 
degrees of freedom for testing the coefficients is specified as above (versus the 
alternative that it is not as specified), can be computed, based on the output, as: 

 

where:

 

is output in Covariances. The resulting test statistic, χ2 = 6.107, based upon no 
iterations is comparable to likelihood ratio test that can be computed from the log-
likelihood output in this example (−206.683) and the log-likelihood output in 
Example 2 (-204.139).

.RUN
PRO print_results, cs, means, cov, crit, ls

PRINT, '                     Coefficient Satistics'
PRINT, '     Coefficient       s.e             z          p'
PM, cs, FORMAT = '(4F14.4)'
PRINT
PRINT, '                      Covariate Means'
PRINT, means, FORMAT = '(7F8.2)'
PRINT
PRINT, '                          Hessian'
PM, cov, FORMAT = '(8F8.4)'
PRINT
PRINT, 'Log-Likelihood =', crit
PRINT
PRINT, '                        Newton_Raphson Step'
PRINT, ls, FORMAT = '(8F8.4)'

END

n_class  =  2
n_continuous  =  3
model  =  0
icen  =  6
irt  =  5 
lp_max  =  40
itmax  =  0
init_est  =  [-1.25, 0.0, 0.0, 0.0, 0.0, -0.6, 0.0, 0.0]
n_coef  =  IMSL_SURVIVAL_GLM(n_class, n_continuous, model, x, $

χ2
g

TΣ̂ 1–
g=

Σ̂
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ICEN = icen, IRT = irt, ITMAX = itmax, $
LP_MAX = lp_max, INIT_EST = init_est, $
COEF_STAT = cs, CRITERION = crit, $
COVARIANCES = cov, MEANS = means, LAST_STEP = ls)

print_results, cs, means, cov, crit, ls

                     Coefficient Satistics
Coefficient       s.e             z             p
-1.2500        1.3773       -0.9076        0.3643
0.0000        0.4288        0.0000        1.0000
0.0000        0.5299        0.0000        1.0000
0.0000        0.7748        0.0000        1.0000
0.0000        0.4051        0.0000        1.0000
-0.6000        0.1118       -5.3652        0.0000
0.0000        0.0215        0.0000        1.0000
0.0000        0.0109        0.0000        1.0000

                      Covariate Means
    0.35    0.28    0.12    0.53    5.65   56.58   15.65

                          Hessian
  1.8969 -0.0906 -0.1641 -0.1681  0.0778 -0.0818 -0.0235 -0.0012
 -0.0906  0.1839  0.0996  0.1191  0.0358 -0.0005 -0.0008  0.0006
 -0.1641  0.0996  0.2808  0.1264 -0.0226  0.0104  0.0005 -0.0021
 -0.1681  0.1191  0.1264  0.6003  0.0460  0.0193 -0.0016  0.0007
  0.0778  0.0358 -0.0226  0.0460  0.1641  0.0060 -0.0040  0.0017
 -0.0818 -0.0005  0.0104  0.0193  0.0060  0.0125  0.0000  0.0003
 -0.0235 -0.0008  0.0005 -0.0016 -0.0040  0.0000  0.0005 -0.0001
 -0.0012  0.0006 -0.0021  0.0007  0.0017  0.0003 -0.0001  0.0001

Log-Likelihood =     -206.683

                        Newton_Raphson Step
  0.1706 -0.3365  0.1333  1.2967  0.2985  0.0625 -0.0112 -0.0026

Example 4

This example is a continuation of the first example above. Keywords Est_* are used 
in IMSL_SURVIVAL_GLM to compute the parameter estimates. The example is 
taken from Lawless (1982, p. 287) and involves the mortality of patients suffering 
from lung cancer.

.RUN
PRO print_results, ep

PRINT, '             Survival and Hazard Estimates'
PRINT, '  Time       S1          H1         S2          H2'
PM, ep, FORMAT = '(F7.2, F10.4, F13.6, F10.4, F13.6)'

END
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n_class  =  2
n_continuous  =  3
model  =  0
icen  =  6
irt   =   5 
lp_max  =  40
time  =  10.0
npt  =  10
delta  =  20.0
n_coef  =  IMSL_SURVIVAL_GLM(n_class, n_continuous, model, x, $

ICEN=icen, IRT=irt, LP_MAX=lp_max, N_CLASS_VALS=nvc, $
CLASS_VALS=cv, COEF_STAT=cs, CRITERION=crit, MEANS=means, $
CASE_ANALYSIS=ca, OBS_STATUS=os, ITERATIONS=iter, $
EST_NOBS=2, EST_TIME=time, EST_NPT=npt, $
EST_DELTA=delta, EST_PROB=ep, EST_XBETA=xb)

print_results, ep

             Survival and Hazard Estimates
  Time       S1          H1         S2          H2
  10.00    0.9626     0.003807    0.9370     0.006503
  30.00    0.8921     0.003807    0.8228     0.006503
  50.00    0.8267     0.003807    0.7224     0.006503
  70.00    0.7661     0.003807    0.6343     0.006503
  90.00    0.7099     0.003807    0.5570     0.006503
 110.00    0.6579     0.003807    0.4890     0.006503
 130.00    0.6096     0.003807    0.4294     0.006503
 150.00    0.5649     0.003807    0.3770     0.006503
 170.00    0.5235     0.003807    0.3310     0.006503
 190.00    0.4852     0.003807    0.2907     0.006503

Errors

Warning Errors

STAT_CONVERGENCE_ASSUMED_1—Too many step halvings. Convergence is 
assumed.

STAT_CONVERGENCE_ASSUMED_2—Too many step iterations. Convergence is 
assumed.

STAT_NO_PREDICTED_1—“estimates(0)” > 1.0. The expected value for the log 
logistic distribution (“model” = 4) does not exist. Predicted values will not be 
calculated.

STAT_NO_PREDICTED_2—“estimates(0)” > 1.0. The expected value for the log 
extreme value distribution(“model” = 8) does not exist. Predicted values will not be 
calculated.
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STAT_NEG_EIGENVALUE—The Hessian has at least one negative eigenvalue. An 
upper bound on the absolute value of the minimum eigenvalue is # corresponding to 
variable index #.

STAT_INVALID_FAILURE_TIME_4—“x(#)(“Ilt”= #)” = # and “x(#)
(“Irt”= #)” = #. The censoring interval has length 0.0. The censoring code for this 
observation is being set to 0.0.

Fatal Error

STAT_MAX_CLASS_TOO_SMALL—The number of distinct values of the 
classification variables exceeds “Max_Class” = #.

STAT_TOO_FEW_COEF—Init_Est is specified, and “Init_Est” = #. The model 
specified requires # coefficients.

STAT_TOO_FEW_VALID_OBS—“n_observations” = # and “Nmissing” = #. 
“n_observations”(”Nmissing” must be greater than or equal to 2 in order to estimate 
the coefficients.

STAT_SVGLM_1—For the exponential model (“model” = 0) with “n_effects” = # 
and no intercept, “n_coef” has been determined to equal 0. With no coefficients in the 
model, processing cannot continue.

STAT_INCREASE_LP_MAX—Too many observations are to be deleted from the 
model. Either use a different model or increase the workspace.

STAT_INVALID_DATA_8—“Class_Vals(#)” = #. The number of distinct values for 
each classification variable must be greater than one.

Version History

6.4 Introduced
IMSL_SURVIVAL_GLM IDL Analyst Reference Guide
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Probability Distribution 
Functions and Inverses 
This section contains the following topics:
Overview: Probability Distribution Functions 
and Inverses . . . . . . . . . . . . . . . . . . . . . . .  1032

Probability Distribution Functions and Inverses 
Routines  . . . . . . . . . . . . . . . . . . . . . . . . .  1033
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Overview: Probability Distribution Functions 
and Inverses

This chapter describes probability distribution functions and inverses included in IDL 
Analyst. See “Probability Distribution Functions and Inverses Routines” on 
page 1033 for a list of the included routines.
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Probability Distribution Functions and 
Inverses Routines

IMSL_NORMALCDF—Normal (Gaussian) distribution function. 

IMSL_BINORMALCDF—Bivariate normal distribution. 

IMSL_CHISQCDF—Chi-squared distribution function. 

IMSL_FCDF—F distribution function. 

IMSL_TCDF—Student’s t distribution function. 

IMSL_GAMMACDF—Gamma distribution function. 

IMSL_BETACDF—Beta distribution function. 

IMSL_BINOMIALCDF—Binomial distribution function. 

IMSL_BINOMIALPDF—Binomial probability function.

IMSL_HYPERGEOCDF—Hypergeometric distribution function. 

IMSL_POISSONCDF—Poisson distribution function. 
IDL Analyst Reference Guide Probability Distribution Functions and Inverses Routines
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IMSL_NORMALCDF

The IMSL_NORMALCDF function evaluates the standard normal (Gaussian) 
distribution function. Using a keyword, the inverse of the standard normal (Gaussian) 
distribution can be evaluated.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NORMALCDF(x [, /DOUBLE] [, /INVERSE])

Return Value

The probability that a normal random variable takes a value less than or equal to x.

Arguments

x

Expression for which the normal distribution function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

If present and nonzero, evaluates the inverse of the standard normal (Gaussian) 
distribution function. If Inverse is specified, then argument x represents the 
probability for which the inverse of the normal distribution function is to be 
evaluated. In this case, x must be in the open interval (0.0, 1.0).
IMSL_NORMALCDF IDL Analyst Reference Guide
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Discussion 

The IMSL_NORMALCDF function evaluates the distribution function, Φ, of a 
standard normal (Gaussian) random variable; that is: 

The value of the distribution function at the point x is the probability that the random 
variable takes a value less than or equal to x.

The standard normal distribution (for which IMSL_NORMALCDF is the distribution 
function) has mean of zero and variance of 1. The probability that a normal random 
variable with mean µ and variance σ2 is less than y is given by IMSL_NORMALCDF 
evaluated at (y – µ)/σ.

The function Φ(x) is evaluated by use of the complementary error function, 
IMSL_ERFC. The relationship follows below:

 

If the keyword Inverse is specified, the IMSL_NORMALCDF function evaluates the 
inverse of the distribution function, Φ, of a standard normal (Gaussian) random 
variable; that is:

IMSL_NORMALCDF (x, /Inverse) = Φ–1 (x) 

where: 

The value of the distribution function at the point x is the probability that the random 
variable takes a value less than or equal to x. The standard normal distribution has a 
mean of zero and a variance of 1.

The IMSL_NORMALCDF function is evaluated by use of minimax rational-function 
approximations for the inverse of the error function. General descriptions of these 
approximations are given in Hart et al. (1968) and Strecok (1968). The rational 
functions used in IMSL_NORMALCDF are described by Kinnucan and Kuki (1968).
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2π
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Example

Suppose X is a normal random variable with mean 100 and variance 225. This 
example finds the probability that X is less than 90 and the probability that X is 
between 105 and 110.

x1 = (90-100)/15.
p = IMSL_NORMALCDF(x1)
PM, p, Title = 'The probability that X is less than 90 is:'
The probability that X is less than 90 is: 0.252493
x1 = (105 - 100)/15.
x2 = (110 - 100)/15.
p = IMSL_NORMALCDF(x2) - IMSL_NORMALCDF(x1)
PM, p, Title = 'The probability that X is between 105 and ', $

'110 is:'

The probability that X is between 105 and 110 is: 0.116949

Version History

6.4 Introduced
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IMSL_BINORMALCDF

The IMSL_BINORMALCDF function evaluates the bivariate normal distribution 
function.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BINORMALCDF(x, y, rho [, /DOUBLE])

Return Value

The probability that a bivariate normal random variable with correlation rho takes a 
value less than or equal to x and less than or equal to y.

Arguments

rho

Correlation coefficient.

x

The x-coordinate of the point for which the bivariate normal distribution function is to 
be evaluated.

y

The y-coordinate of the point for which the bivariate normal distribution function is to 
be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_BINORMALCDF
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Discussion

The IMSL_BINORMALCDF function evaluates the distribution function F of a 
bivariate normal distribution with means of zero, variances of 1, and correlation of 
rho; that is, ρ = rho and |ρ| < 1. 

To determine the probability that U ≤ u0 and V ≤ v0, where (U, V) is a bivariate 
normal random variable with mean µ = (µU, µV) and the following variance-
covariance matrix: 

transform (U, V)T to a vector with zero means and unit variances. The input to 
IMSL_BINORMALCDF would be as follows:, , 

and  

The IMSL_BINORMALCDF function uses the method of Owen (1962, 1965). For 
|ρ| = 1, the distribution function is computed based on the univariate statistic 
Z = min(x, y) and on the normal distribution IMSL_NORMALCDF.

F x y,( ) 1

2π 1 ρ2–
-------------------------- exp u2 2ρuv– v2+

2 1 ρ2–( )
------------------------------------– 
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∑
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2 σUV
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2

=

X
u0 µU–( )
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σV
-----------------------=

ρ
σUV

σUσV( )
-------------------=
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Example

Suppose (x, y) is a bivariate normal random variable with mean (0, 0) and the 
following variance-covariance matrix:  

This example finds the probability that x is less than –2.0 and y is less than 0.0.

x = -2 
y = 0
rho = .9
; Define x, y, and rho.
p = IMSL_BINORMALCDF(x, y, rho)
; Call IMSL_BINORMALCDF and output the results.
PM, 'P((x < -2.0) and (y < 0.0)) = ', p, FORMAT = '(a29, f8.4)'

P((x < -2.0) and (y < 0.0)) = 0.0228

Version History

6.4 Introduced

1.0 0.9

0.9 1.0
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IMSL_CHISQCDF

The IMSL_CHISQCDF function evaluates the chi-squared distribution or non-central 
chi-squared distribution. Using a keyword the inverse of these distributions can be 
computed.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CHISQCDF(chisq, df [, delta] [, /DOUBLE] [, /INVERSE] )

Return Value

The probability that a chi-squared random variable takes a value less than or equal to 
chisq.

Arguments

chisq

Expression for which the chi-squared distribution function is to be evaluated. If the 
keyword INVERSE is specified, the probability for which the inverse of the non-
central, chi-squared distribution function is to be evaluated, the parameter chisq must 
be in the open interval (0.0, 1.0). 

delta

(Optional) The non-centrality parameter. delta must be nonnegative, and delta + df 
must be less than or equal to 200,000.

df

Number of degrees of freedom of the chi-squared distribution. Argument df must be 
greater than or equal to 0.5. 
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Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

If present and nonzero, evaluates the inverse of the chi-squared distribution function. 
If inverse is specified, then argument chisq represents the probability for which the 
inverse of the chi-squared distribution function is to be evaluated. Parameter chisq 
must be in the open interval (0.0, 1.0).

Discussion 

If Two Input Arguments Are Used 

The IMSL_CHISQCDF function evaluates the distribution function, F, of a chi-
squared random variable with ν = df. Then:  

where Γ(·) is the gamma function. The value of the distribution function at the point x 
is the probability that the random variable takes a value less than or equal to x.

For ν > 65, IMSL_CHISQCDF uses the Wilson-Hilferty approximation (Abramowitz 
and Stegun 1964, Equation 26.4.17) to the normal distribution, and 
IMSL_NORMALCDF function is used to evaluate the normal distribution function.

For ν ≤ 65, IMSL_CHISQCDF uses series expansions to evaluate the distribution 
function. If x < max(ν / 2, 26), IMSL_CHISQCDF uses the series 6.5.29 in 
Abramowitz and Stegun (1964); otherwise, it uses the asymptotic expansion 6.5.32 in 
Abramowitz and Stegun.

If Inverse is specified, the IMSL_CHISQCDF function evaluates the inverse 
distribution function of a chi-squared random variable with ν = df and with 
probability p. That is, it determines x, such that: 

where Γ(·) is the gamma function. The probability that the random variable takes a 
value less than or equal to x is p.
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For ν < 40, IMSL_CHISQCDF uses bisection (if ν ≤ 2 or p > 0.98) or regula falsi to 
find the expression for which the chi-squared distribution function is equal to p. 

For 40 ≤ ν < 100, a modified Wilson-Hilferty approximation (Abramowitz and 
Stegun 1964, Equation 26.4.18) to the normal distribution is used. The 
IMSL_NORMALCDF function is used to evaluate the inverse of the normal 
distribution function. For ν ≥ 100, the ordinary Wilson-Hilferty approximation 
(Abramowitz and Stegun 1964, Equation 26.4.17) is used. 

If Three Input Arguments Are Used 

The IMSL_CHISQCDF function evaluates the distribution function of a non-central 
chi-squared random variable with df degrees of freedom and non-centrality parameter 
delta, that is, with v = df, λ = delta, and x = chisq: 

where Γ(·) is the gamma function. This is a series of central chi-squared distribution 
functions with Poisson weights. The value of the distribution function at the point x is 
the probability that the random variable takes a value less than or equal to x. 

The non-central chi-squared random variable can be defined by the distribution 
function above, or alternatively and equivalently, as the sum of squares of 
independent normal random variables. If Yi have independent normal distributions 
with means µi and variances equal to one and: 

then X has a non-central chi-squared distribution with n degrees of freedom and non-
centrality parameter equal to: 
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With a non-centrality parameter of zero, the non-central chi-squared distribution is 
the same as the chi-squared distribution. 

The IMSL_CHISQCDF function determines the point at which the Poisson weight is 
greatest, and then sums forward and backward from that point, terminating when the 
additional terms are sufficiently small or when a maximum of 1000 terms have been 
accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun (1964) is 
used to speed the evaluation of the central chi-squared distribution functions.

If Inverse is specified, IMSL_CHISQCDF evaluates the inverse distribution function 
of a non-central chi-squared random variable with df degrees of freedom and non-
centrality parameter delta; that is, with P = chisq, v = df, and λ = delta, it 
determines c0 (= IMSL_CHISQCDF(chisq, df, delta)), such that: 

where Γ(·) is the gamma function. The probability that the random variable takes a 
value less than or equal to c0 is P.

Example

Suppose X is a chi-squared random variable with two degrees of freedom. This 
example finds the probability that X is less than 0.15 and the probability that X is 
greater than 3.0.

df = 2
chisq = .15
p = IMSL_CHISQCDF(chisq, df)
PM, p, Title = 'The probability that chi-squared with 2 df ' + $

'is less than .15 is:' 

The probability that chi-squared with 2 df is less than .15 is:
0.0722565

df = 2
chisq = 3
p = 1 - IMSL_CHISQCDF(chisq, df)
PM, p, Title = 'The probability that chi-squared ' + $

'with 2 df is greater than 3 is:'

The probability that chi-squared with 2 df is greater than 3 is:
0.223130
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Errors

Informational Errors

STAT_ARG_LESS_THAN_ZERO—Input parameter, chisq, is less than zero.

STAT_UNABLE_TO_BRACKET_VALUE—Bounds that enclose p could not be found. 
An approximation for IMSL_CHISQCDF is returned.

STAT_CHI_2_INV_CDF_CONVERGENCE—Value of the inverse chi-squared could not 
be found within a specified number of iterations. An approximation for 
IMSL_CHISQCDF is returned.

Alert Errors

STAT_NORMAL_UNDERFLOW—Using the normal distribution for large degrees of 
freedom, underflow would have occurred.

Version History

6.4 Introduced
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IMSL_FCDF

The IMSL_FCDF function evaluates the F distribution function. Using a keyword, 
the inverse of the F distribution function can be evaluated.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FCDF(f, dfnum, dfden [, /DOUBLE] [, /INVERSE] )

Return Value

The probability that an F random variable takes a value less than or equal to the input 
point f.

Arguments

dfden

Denominator degrees of freedom. Parameter dfden must be positive.

dfnum

Numerator degrees of freedom. Parameter dfnum must be positive.

f

Expression for which the F distribution function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INVERSE

If present and nonzero, evaluates the inverse of the F distribution function. If inverse 
is specified, argument f represents the probability for which the inverse of the F 
IDL Analyst Reference Guide IMSL_FCDF
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distribution function is to be evaluated. In this case, f must be in the open interval 
(0.0, 1.0).

Discussion

The IMSL_FCDF function evaluates the distribution function of a Snedecor’s F 
random variable with dfnum and dfden. The function is evaluated by making a 
transformation to a beta random variable and then evaluating the incomplete beta 
function. If X is an F variate with ν1 and ν2 degrees of freedom and Y = (ν1X)/(ν2 + 
ν1X), then Y is a beta variate with parameters p = ν1/2 and q = ν2/2. The IMSL_FCDF 
function also uses a relationship between F random variables that is expressed as 
follows: FF(f, ν1, ν2) = 1 – FF(1/f, ν2, ν1), where FF is the distribution function for an 
F random variable.

If Inverse is specified, the IMSL_FCDF function evaluates the inverse distribution 
function of a Snedecor’s F random variable with ν1 = dfnum numerator degrees of 
freedom and ν2 = dfden  denominator degrees of freedom. The function is evaluated 
by making a transformation to a beta random variable and then evaluating the inverse 
of an incomplete beta function. 

Example

This example finds the probability that an F random variable with one numerator and 
one denominator degree of freedom is greater than 648.

f = 648
p = 1 - IMSL_FCDF(f, 1, 1)
PM, p, Title = 'The probability that an F(1,1) ' + $

'variate is greater than 648 is:'

The probability that an F(1,1) variate is greater than 648 is:
0.0249959

Errors

Fatal Errors

STAT_F_INVERSE_OVERFLOW— IMSL_FCDF is set to machine infinity since 
overflow would occur upon modifying the inverse value for the F distribution with 
the result obtained from the inverse beta distribution.
IMSL_FCDF IDL Analyst Reference Guide
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Version History

6.4 Introduced
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IMSL_TCDF

The IMSL_TCDF function evaluates the Student’s t distribution or non-central 
Student’s t distribution. Using a keyword the inverse of these distributions can be 
computed.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_TCDF(chisq, df[, delta] [, /DOUBLE] [, /INVERSE])

Return Value

The probability that a Student’s t random variable takes a value less than or equal to 
the input t.

Arguments

delta

(Optional) The non-centrality parameter.

df

Degrees of freedom. Argument df must be greater than or equal to 1.0.

t

Argument for which the Student’s t distribution function is to be evaluated. If Inverse 
is specified, argument t represents the probability for which the inverse of the 
Student’s t distribution function is to be evaluated. In this case, t must be in the open 
interval (0.0, 1.0).

Keywords

DOUBLE

If present and nonzero, double precision is used.
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INVERSE

If present and nonzero, evaluates the inverse of the Student’s t distribution function. If 
Inverse is specified, argument t represents the probability for which the inverse of the 
Student’s t distribution function is to be evaluated. In this case, t must be in the open 
interval (0.0, 1.0).

Discussion

If Two Input Arguments Are Used

The IMSL_TCDF function evaluates the distribution function of a Student’s t random 
variable with ν = df degrees of freedom. If t2 ≥ ν, the relationship of a t to an F 
random variable (and subsequently, to a beta random variable) is exploited, and 
percentage points from a beta distribution are used. Otherwise, the method described 
by Hill (1970) is used. If ν is not an integer or if ν is greater than 19, a Cornish-Fisher 
expansion is used to evaluate the distribution function. If ν is less than 20 and |t| is 
less than 2.0, a trigonometric series (see Abramowitz and Stegun 1964, Equations 
26.7.3 and 26.7.4, with some rearrangement) is used. For the remaining cases, a 
series given by Hill (1970) that converges well for large values of t is used.

If keyword Inverse is specified, the IMSL_TCDF function evaluates the inverse 
distribution function of a Student’s t random variable with ν = df degrees of freedom. 
If ν equals 1 or 2, the inverse can be obtained in closed form. If ν is between 1 and 2, 
the relationship of a t to a beta random variable is exploited, and the inverse of the 
beta distribution is used to evaluate the inverse. Otherwise, the algorithm of Hill 
(1970) is used. For small values of ν greater than 2, Hill’s algorithm inverts an 
integrated expansion in 1 / (1 + t2 / ν) of the t density. For larger values, an asymptotic 
inverse Cornish-Fisher type expansion about normal deviates is used.

If Three Input Arguments Are Used 

The IMSL_TCDF function evaluates the distribution function F of a non-central t 
random variable with df degrees of freedom and non-centrality parameter delta; that 
is, with v = df, δ = delta , and t0 = t: 

where Γ(·) is the gamma function. The value of the distribution function at the point 
t0 is the probability that the random variable takes a value less than or equal to t0.
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The non-central t random variable can be defined by the distribution function above, 
or alternatively and equivalently, as the ratio of a normal random variable and an 
independent chi-squared random variable. If w has a normal distribution with mean δ 
and variance equal to one, u has an independent chi-squared distribution with v 
degrees of freedom, and: 

then x has a non-central t distribution with degrees of freedom and non-centrality 
parameter δ.

The distribution function of the non-central t can also be expressed as a double 
integral involving a normal density function (see, for example, Owen 1962, page 
108). The function TNDF uses the method of Owen (1962, 1965), which uses 
repeated integration by parts on that alternate expression for the distribution function.

If Inverse is specified IMSL_TCDF evaluates the inverse distribution function of a 
non-central t random variable with df degrees of freedom and non-centrality 
parameter delta; that is, with P = t, v = df, and δ = delta, it determines t0 (= 
IMSL_TCDF(t, df, delta )), such that: 

where Γ(·) is the gamma function. The probability that the random variable takes a 
value less than or equal to t0 is P.

Example

This example finds the probability that a t random variable with six degrees of 
freedom is greater in absolute value than 2.447. Argument t is symmetric about zero.

p = 2 * IMSL_TCDF(-2.447, 6)
PM, 'Pr(|t(6)| > 2.447) = ', p, FORMAT = '(a21, f7.4)'

Pr(|t(6)| > 2.447) =  0.0500

Errors

Informational Errors

STAT_OVERFLOW— IMSL_TCDF is set to machine infinity since overflow would 
occur upon modifying the inverse value for the F distribution with the result obtained 
from the inverse beta distribution.
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Version History
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IMSL_GAMMACDF

The IMSL_GAMMACDF function evaluates the gamma distribution function.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_GAMMACDF(x, a [, /DOUBLE] )

Return Value

The probability that a gamma random variable takes a value less than or equal to x.

Arguments

a

Shape parameter of the gamma distribution. This parameter must be positive.

x

Argument for which the gamma distribution function is to be evaluated.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The IMSL_GAMMACDF function evaluates the distribution function, F, of a gamma 
random variable with shape parameter a; that is: 
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where Γ(·) is the gamma function. (The gamma function is the integral from 0 to 
infinity of the same integrand as above.) The value of the distribution function at the 
point x is the probability that the random variable takes a value less than or equal to x.

The gamma distribution is often defined as a two-parameter distribution with a scale 
parameter b (which must be positive) or even as a three-parameter distribution in 
which the third parameter c is a location parameter. In the most general case, the 
probability density function over (c, infinity) is as follows:  

If T is such a random variable with parameters a, b, and c, the probability that T ≤ t0 
can be obtained from IMSL_GAMMACDF by setting x = (t0 – c ) / b.

If x is less than a or if x is less than or equal to 1.0, IMSL_GAMMACDF uses a series 
expansion; otherwise, a continued fraction expansion is used. (See Abramowitz and 
Stegun, 1964.)

Example

Let X be a gamma random variable with a shape parameter of 4. (In this case, it has an 
Erlang distribution, since the shape parameter is an integer.) This example finds the 
probability that X is less than 0.5 and the probability that X is between 0.5 and 1.0.

a = 4
x = .5
p = IMSL_GAMMACDF(x, a)
PM, p, Title = 'The probability that X is less ' + $

'than .5 is:'

The probability that X is less than .5 is: 0.00175162

x = 1
p = IMSL_GAMMACDF(x, a) - p
PM, p, Title = 'The probability that X is between .5 and 1 is:'

The probability that X is between .5 and 1 is: 0.0172365

Errors

Informational Errors

STAT_LESS_THAN_ZERO—Input argument, x, is less than zero.

f t( )
1

b
aΓ a( )

---------------e
t c–( ) b⁄–

x c–( )a 1–
=
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Fatal Errors

STAT_X_AND_A_TOO_LARGE—Function overflows because x and a are too large.

Version History

6.4 Introduced
IMSL_GAMMACDF IDL Analyst Reference Guide
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IMSL_BETACDF

The IMSL_BETACDF function evaluates the beta probability distribution function.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BETACDF(x, pin, qin [, /DOUBLE] [, /INVERSE])

Return Value

The probability that a beta random variable takes on a value less than or equal to x.

Arguments

pin

First beta distribution parameter. Parameter pin must be positive.

qin

Second beta distribution parameter. Parameter qin must be positive.

x

Argument for which the beta probability distribution function is to be evaluated. If 
Inverse is specified, argument x represents the probability for which the inverse of the 
Beta distribution function is to be evaluated. In this case, x must be in the open 
interval (0.0, 1.0).

Keywords

DOUBLE

If present and nonzero, double precision is used.
IDL Analyst Reference Guide IMSL_BETACDF
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INVERSE

If present and nonzero, evaluates the inverse of the Beta distribution function. If 
Inverse is specified, argument x represents the probability for which the inverse of the 
Beta distribution function is to be evaluated. In this case, x must be in the open 
interval (0.0, 1.0).

Discussion

The IMSL_BETACDF function evaluates the distribution function of a beta random 
variable with parameters pin and qin. This function is sometimes called the 
incomplete beta ratio and is denoted by Ix(p, q), where p = pin and q = qin. It is given 
by: 

where Γ(·) is the gamma function. The value of the distribution function by Ix(p, q) is 
the probability that the random variable takes a value less than or equal to x.

The integral in the expression above is called the incomplete beta function and is 
denoted by βx(p, q). The constant in the expression is the reciprocal of the beta 
function (the incomplete function evaluated at 1) and is denoted by βx(p, q).

If the keyword Inverse is specified, the IMSL_BETACDF function evaluates the 
inverse distribution function of a beta random variable with parameters pin and qin. 
With P = x, p = pin and q = qin, it returns x such that: 

where Γ(·) is the gamma function. The probability that the random variable takes a 
value less than or equal to x is P.

The BETCDF function uses the method of Bosten and Battiste (1974).

Example

Suppose X is a beta random variable with parameters 12 and 12 (X has a symmetric 
distribution). This example finds the probability that X is less than 0.6 and the 
probability that X is between 0.5 and 0.6. (Since X is a symmetric beta random 
variable, the probability that it is less than 0.5 is 0.5.)

p = IMSL_BETACDF(.6, 12, 12)
; Call IMSL_BETACDF to compute first probability and output 
results.

Ix p q,( ) Γ p )Γ q )((
Γ p q )+(

------------------------- t
0

x
∫

p 1–
1 t )–( q 1–

dt=

P
Γ p )Γ q )((
Γ p q )+(

------------------------- t
0

x
∫

p 1–
1 t )–( q 1–

dt=
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PM, p, Title = 'The probability that X is less than ' + $
'0.6 is:', FORMAT= '(f8.4)' 

The probability that X is less than 0.6 is: 0.8364

p = p - IMSL_BETACDF(.5, 12, 12)
; Call IMSL_BETACDF and use the previously computed 
; probability to determine the next probability.
PM, p, FORMAT = '(f8.4)', title = 'The  probability that X ' + $

'is between 0.5 and 0.6 is:'

The probability that X is between 0.5 and 0.6 is: 0.3364

Version History

6.4 Introduced
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IMSL_BINOMIALCDF

The IMSL_BINOMIALCDF function evaluates the binomial distribution function.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BINOMIALCDF(k, n, p [, /DOUBLE])

Return Value

The probability that k or fewer successes occur in n independent Bernoulli trials, each 
of which has a probability p of success.

Arguments

k

Argument for which the binomial distribution function is to be evaluated.

n

Number of Bernoulli trials.

p

Probability of success on each trial.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The IMSL_BINOMIALCDF function evaluates the distribution function of a 
binomial random variable with parameters n and p by summing probabilities of the 
IMSL_BINOMIALCDF IDL Analyst Reference Guide
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random variable taking on the specific values in its range. These probabilities are 
computed by the following recursive relationship:  

To avoid the possibility of underflow, the probabilities are computed forward from 0 
if k is not greater than n times p; otherwise, they are computed backward from n. The 
smallest positive machine number, ε, is used as the starting value for summing the 
probabilities, which are rescaled by (1 – p)nε if forward computation is performed 
and by pnε if backward computation is done.

For the special case of p = 0, IMSL_BINOMIALCDF is set to 1; for the case p = 1, 
IMSL_BINOMIALCDF is set to 1 if k = n and is set to zero otherwise.

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. This example finds 
the probability that X is less than or equal to 3. 

p = IMSL_BINOMIALCDF(3, 5, .95)
PM, 'Pr(x < 3) = ', p, FORMAT = '(a12, f7.4)'

Pr(x < 3) =  0.0226

Errors

Informational Errors

STAT_LESS_THAN_ZERO—Input parameter, k, is less than zero.

STAT_GREATER_THAN_N—Input parameter, k, is greater than the number of 
Bernoulli trials, n. 

Version History

6.4 Introduced

Pr X j=( ) n 1 j–+( )p
j 1 p–( )

----------------------------Pr X j 1–=( )=
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IMSL_BINOMIALPDF

The IMSL_BINOMIALPDF function evaluates the binomial probability function. 

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BINOMIALPDF (k, n, p)

Return Value

The probability that a binomial random variable takes a value equal to k.

Arguments

k

Argument for which the binomial probability function is to be evaluated.

n

Number of Bernoulli trials.

p

Probability of success on each trial.

Discussion

The IMSL_BINOMIALPDFfunction evaluates the probability that a binomial 
random variable with parameters n and p takes on the value k. It does this by 
computing probabilities of the random variable taking on the values in its range less 
than (or the values greater than) k. These probabilities are computed by the recursive 
relationship:

Pr X j=( ) n 1 j–+( )
j 1 p–( )

------------------------Pr X j 1–=( )=
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To avoid the possibility of underflow, the probabilities are computed forward from 0, 
if k is not greater than n times p, and are computed backward from n, otherwise. The 
smallest positive machine number, ε, is used as the starting value for computing the 
probabilities, which are rescaled by (1 - p)nε if forward computation is performed and 
by pnε if backward computation is done.

For the special case of p = 0, IMSL_BINOMIALPDF returns  0 if k is greater than 0 
and to 1 otherwise; and for the case p = 1, IMSL_BINOMIALPDF returns 0 if k is 
less than n and to 1 otherwise.

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, we 
find the probability that X is equal to 3. 

PRINT, IMSL_BINOMIALPDF(3, 5, .95)
0.0214344

Version History

6.4 Introduced
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IMSL_HYPERGEOCDF

The IMSL_HYPERGEOCDF function evaluates the hypergeometric distribution 
function.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_HYPERGEOCDF(k, n, m, l [, /DOUBLE] )

Return Value

The probability that k or fewer defectives occur in a sample of size n drawn from a lot 
of size l that contains m defectives.

Arguments

k

Parameter for which the hypergeometric distribution function is to be evaluated.

l

Lot size. Parameter l must be greater than or equal to n and m.

m

Number of defectives in the lot.

n

Sample size. Argument n must be greater than or equal to k.

Keywords

DOUBLE

If present and nonzero, double precision is used.
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Discussion

The IMSL_HYPERGEOCDF function evaluates the distribution function of a 
hypergeometric random variable with parameters n, l, and m. The hypergeometric 
random variable X can be thought of as the number of items of a given type in a 
random sample of size n that is drawn without replacement from a population of size 
l containing m items of this type. 

The probability function is: 

where i = max(0, n – l + m). 

If k is greater than or equal to i and less than or equal to min(n, m), 
IMSL_BINOMIALCDF sums the terms in this expression for j going from i up to k; 
otherwise, 0 or 1 is returned, as appropriate. To avoid rounding in the accumulation, 
IMSL_BINOMIALCDF performs the summation differently, depending on whether 
or not k is greater than the mode of the distribution, which is the greatest integer in (m 
+ 1) (n + 1)/(l + 2).

Example

Suppose X is a hypergeometric random variable with n = 100, l = 1000, and
m = 70. In this example, the distribution function is evaluated at 7.

p = IMSL_HYPERGEOCDF(7, 100, 70, 1000)
PM, 'Pr(x <= 7) = ', p, FORMAT = '(a13,f7.4)'

Pr(x <= 7) =  0.5995

Errors

Informational Errors

STAT_LESS_THAN_ZERO—Input parameter, k, is less than zero.

STAT_K_GREATER_THAN_N—Input parameter, k, is greater than the sample size.

Fatal Errors

STAT_LOT_SIZE_TOO_SMALL—Lot size must be greater than or equal to n and m.

Pr x j=( )

m
j 

  l m–
n j– 

 

l
n 
 

----------------------------= for j i i 1 … min n m,( ), ,+,=
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Version History

6.4 Introduced
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IMSL_POISSONCDF

The IMSL_POISSONCDF function evaluates the Poisson distribution function.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_POISSONCDF(k, theta [, /DOUBLE] )

Return Value

The probability that a Poisson random variable takes a value less than or equal to k.

Arguments

k

Parameter for which the Poisson distribution function is to be evaluated.

theta

Mean of the Poisson distribution. Parameter theta must be positive.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The IMSL_POISSONCDF function evaluates the distribution function of a Poisson 
random variable with parameter theta. The mean of the Poisson random variable, 
theta, must be positive. 

The probability function (with θ = theta) is as follows:

  f x( ) e
θ– θx( ) x!⁄= for x 0 1 2 …, , ,=
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The individual terms are calculated from the tails of the distribution to the mode of 
the distribution and summed. The IMSL_POISSONCDF function uses the recursive 
relationship:

,       

with .

Example

Suppose X is a Poisson random variable with θ = 10. This example evaluates the 
probability that X ≤ 7.

p = IMSL_POISSONCDF(7, 10)
PM, 'Pr(x <= 7) = ', p, FORMAT = '(a13,f7.4)'

Pr(x <= 7) =  0.2202

Errors

Informational Errors

STAT_LESS_THAN_ZERO— Input parameter, k, is less than zero.

Version History

6.4 Introduced

f x 1+( ) f x( ) θ x 1+( )⁄( )= for x 0 1 2 … k 1–, , , ,=

f 0( ) e
θ–

=
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Overview: Random Number Generation

This chapter describes random number generation functions used for applications in 
Monte Carlo or simulation studies. Before using random number generators, the 
generator must be initialized by selecting a seed or starting value. You can do this by 
using IMSL_RANDOMOPT. If you do not select a seed, one is generated using the 
system clock. A seed needs to be selected only once in a program, unless two or more 
separate streams of random numbers are maintained. Utility functions in this chapter 
can be used to select the form of the basic generator to restart simulations and to 
maintain separate simulation streams.

In the following sections, the terms random numbers, random deviates, deviates, and 
variates are used interchangeably. The phrase pseudorandom is sometimes used to 
emphasize that the numbers generated are really not random since they result from a 
deterministic process. The usefulness of pseudorandom numbers is derived from the 
similarity, in a statistical sense, of samples of the pseudorandom numbers to samples 
of observations from the specified distributions. In short, while the pseudorandom 
numbers are deterministic and repeatable, they simulate the realizations of 
independent and identically distributed random variables.

Basic Uniform Generator

The default action of the IMSL_RANDOM function is the generation of uniform 
(0,1) numbers. This function is portable in that, given the same seed, it produces the 
same sequence in all computer/compiler environments.

The random number generators in this chapter use either a multiplicative congruential 
method or a generalized feedback shift register (GFSR) method. The selection of the 
type of generator is made by calling the “IMSL_RANDOMOPT” on page 1073. If no 
selection is made explicitly, a multiplicative generator (with multiplier 16807) is 
used. Whatever distribution is being simulated, uniform (0, 1) numbers are first 
generated and then transformed if necessary. These routines are portable in the sense 
that, given the same seed and for a given type of generator, they produce the same 
sequence in all computer/compiler environments. There are many other issues that 
must be considered in developing programs for the methods described below (see 
Gentle 1981 and 1990).

Multiplicative Congruential Generators

The form of the multiplicative congruential generators is:

xi ≡ cxi-1mod (231 - 1) 
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Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive root 
modulo 231 - 1 (which is a prime), then the generator will have a maximal period of 
231 - 2. There are several other considerations, however. See Knuth (1981) for a good 
general discussion. The possible values for c in the generators are 16807, 397204094, 
and 950706376. The selection is made by IMSL_RANDOMOPT. The choice of 
16807 will result in the fastest execution time, but other evidence suggests that the 
performance of 950706376 is best among these three choices (Fishman and Moore 
1982). If no selection is made explicitly, the functions use the multiplier 16807, 
which has been in use for some time (Lewis et al. 1969).

Shuffled Generators

You also can select a shuffled version of these generators using 
IMSL_RANDOMOPT. The shuffled generators use a scheme due to Learmonth and 
Lewis (1973). In this scheme, a table is filled with the first 128 uniform (0,1) numbers 
resulting from the simple multiplicative congruential generator. Then, for each xi 
from the simple generator, the low-order bits of xi are used to select a random integer, 
j, from 1 to 128. The j-th entry in the table is then delivered as the random number; 
and xi, after being scaled into the unit interval, is inserted into the j-th position in the 
table. This scheme is similar to that of Bays and Durham (1976), and their analysis is 
applicable to this scheme as well.

Generalized Feedback Shift Register Generator

The GFSR generator uses the recursion Xt = Xt-1563 ⊕  Xt-96. This generator, which is 
different from earlier GFSR generators, was proposed by Fushimi (1990), who 
discusses the theory behind the generator and reports on several empirical tests of it. 
Background discussions on this type of generator can be found in Kennedy and 
Gentle (1980), pages 150-162.

Setting Seed

The seed of the generator can be set and retrieved using IMSL_RANDOMOPT. Prior 
to invoking any generator in this section, you can call IMSL_RANDOMOPT to 
initialize the seed, which is an integer variable with a value between 1 and 
2147483647. If it is not initialized by IMSL_RANDOMOPT, a random seed is 
obtained from the system clock. Once it is initialized, the seed need not be set again.

If you want to restart a simulation, IMSL_RANDOMOPT can be used to obtain the 
final seed value of one run to be used as the starting value in a subsequent run. Also, 
if two simultaneous random number streams are desired in one run, 
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IMSL_RANDOMOPT can be used before and after the invocations of the generators 
in each stream.

If a shuffled generator or the GFSR generator is used, in addition to resetting the 
seed, you must also reset some values in a table. For the shuffled generators, this is 
done using the routine IMSL_RANDOM_TABLE. The tables for the shuffled 
generators are separate for single and double precision; so, if precisions are mixed in 
a program, it is necessary to manage each precision separately for the shuffled 
generators.

Distributions Other than Uniform

The nonuniform generators use a variety of transformation procedures. All of the 
transformations used are exact (mathematically). The most straightforward 
transformation is the inverse CDF technique, but it is often less efficient than others 
involving acceptance/rejection and mixtures. See Kennedy and Gentle (1980) for 
discussion of these and other techniques.

Many of the nonuniform generators in this chapter use different algorithms 
depending on the values of the parameters of the distributions. This is particularly 
true of the generators for discrete distributions. Schmeiser (1983) gives an overview 
of techniques for generating deviates from discrete distributions.

Although, as noted above, the uniform generators yield the same sequences on 
different computers, because of rounding, the nonuniform generators that use 
acceptance/rejection may occasionally produce different sequences on different 
computer/compiler environments.

Although the generators for nonuniform distributions use fast algorithms, if a very 
large number of deviates from a fixed distribution are to be generated, it might be 
worthwhile to consider a table sampling method, as implemented in the routines 
IMSL_RAND_GEN_CONT and IMSL_RAND_GEN_DISCR.

Additional Notes on Syntax

The generators for continuous distributions are available in both single and double 
precision versions. This is merely for your convenience; the double precision 
versions should not be considered more “accurate,” except possibly for the 
multivariate distributions.
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Random Number Generation Routines

Random Numbers

IMSL_RANDOMOPT—Retrieves uniform (0, 1) multiplicative, congruential 
pseudorandom-number generator.

IMSL_RANDOM_TABLE—Sets or retrieves the current table used in either the 
shuffled or GFSR random number generator.

IMSL_RANDOM—Generates pseudorandom numbers. 

IMSL_RANDOM_NPP—Generates pseudorandom numbers from a nonhomo-
geneous Poisson proces.

IMSL_RANDOM_ORDER—Generates pseudorandom order statistics from a 
uniform (0, 1) distribution, or optionally from a standard normal distribution.

IMSL_RAND_TABLE_2WAY—Generates a pseudorandom two-way table.

IMSL_RAND_ORTH_MAT—Generates a pseudorandom orthogonal matrix or a 
correlation matrix.

IMSL_RANDOM_SAMPLE—Generates a simple pseudorandom sample from a 
finite population.

IMSL_RAND_FROM_DATA—Generates pseudorandom numbers from a 
multivariate distribution determined from a given sample.

IMSL_CONT_TABLE—Sets up table to generate pseudorandom numbers from a 
general continuous distribution.

IMSL_RAND_GEN_CONT—Generates pseudorandom numbers from a general 
continuous distribution.

IMSL_DISCR_TABLE—Sets up table to generate pseudorandom numbers from a 
general discrete distribution.

IMSL_RAND_GEN_DISCR—Generates pseudorandom numbers from a general 
discrete distribution using an alias method or optionally a table lookup method.

Stochastic Processes

IMSL_RANDOM_ARMA—Generate pseudorandom IMSL_ARMA process 
numbers. 
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Low-discrepancy Sequences

IMSL_FAURE_INIT—Initializes the structure used for computing a shuffled Faure 
sequence. 

IMSL_FAURE_NEXT_PT—Generates a shuffled Faure sequence. 
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IMSL_RANDOMOPT

The IMSL_RANDOMOPT procedure uses keywords to set or retrieve the random 
number seed or to select the form of the IMSL random number generator.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_RANDOMOPT ([, CURRENT_OPTION=variable] [, GEN_OPTION=value] 
[, GET=variable] [, SET=value] [, SUBSTREAM_SEED=value])

Arguments

The IMSL_RANDOMOPT procedure does not have any positional Input Parameters. 
Keywords are required for specific actions to be taken.

Keywords

CURRENT_OPTION

Named variable into which the value of the current random-number generator option 
is stored.

GEN_OPTION

Indicator of the generator. The random-number generator is a multiplicative, 
congruential generator with modulus 231 – 1. Keyword Gen_Option is used to choose 
the multiplier and to determine whether or not shuffling is done.

• 1—multiplier 16807 used (default)

• 2—multiplier 16807 used with shuffling

• 3—multiplier 397204094 used

• 4—multiplier 397204094 used with shuffling

• 5—multiplier 950706376 used

• 6—multiplier 950706376 used with shuffling
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• 7—GFSR, with the recursion Xt = Xt-1563 ⊕  Xt-96 is used

GET

Named variable into which the value of the current random-number seed is stored.

SET

Seed of the random-number generator. The seed must be in the range 
(0, 2147483646). If the seed is zero, a value is computed using the system clock; 
hence, the results of programs using the IDL Analyst random-number generators are 
different at various times.

SUBSTREAM_SEED

If present and nonzero, then a seed for the congruential generators that do not do 
shuffling that will generate random numbers beginning 100,000 numbers farther 
along will be returned in keyword Get. If keyword Substream_seed is set, then 
keyword Get is required.

Discussion 

The IMSL_RANDOMOPT procedure is designed to allow a user to set certain key 
elements of the random-number generator functions.

The uniform pseudorandom-number generators use a multiplicative congruential 
method, or a generalized feedback shift register. The choice of generator is 
determined by keyword Gen_Option. The chapter introduction and the description of 
IMSL_RANDOM may provide some guidance in the choice of the form of the 
generator. If no selection is made explicitly, the generators use the multiplier 16807 
without shuffling. This form of the generator has been in use for some time 
(Lewis et al. 1969).

Keyword Set is used to initialize the seed used in the IDL Analyst random-number 
generators. See the chapter introduction for details of the various generator options. 
The seed can be reinitialized to a clock-dependent value by calling 
IMSL_RANDOMOPT with Set set to zero.

A common use of keyword Set is in conjunction with the keyword Get to restart a 
simulation. Keyword Get retrieves the current value of the “seed” used in the random-
number generators. 

If keyword Substream_seed is set, IMSL_RANDOMOP determines another seed, 
such that if one of the IMSL multiplicative congruential generators, using no 
shuffling, went through 100,000 generations starting with Substream_seed, the next 
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number in that sequence would be the first number in the sequence that begins with 
the returned seed.

Note that Substream_seed works only when a multiplicative congruential generator 
without shuffling is used. This means that either the routine IMSL_RANDOMOPT 
has not been called at all or that it has been last called with Gen_Option having a 
value of 1, 3, or 5.

For many IMSL generators for nonuniform distributions that do not use the inverse 
CDF method, the distance between sequences generated starting with 
Substream_seed and starting with returned seed may be less than 100,000. This is 
because nonuniform generators that use other techniques may require more than one 
uniform deviate for each output deviate.

The reason that one may want two seeds that generate sequences a known distance 
apart is for blocking Monte Carlo experiments or for running parallel streams.

Examples

Example 1

This example illustrates the statements required to restart a simulation using the 
keywords Get and Set. The example shows that restarting the sequence of random 
numbers at the value of the last seed generated is the same as generating the random 
numbers all at once.

seed = 123457
nrandom = 5
IMSL_RANDOMOPT, Set = seed
; Set the seed using the keyword Set.
r1 = IMSL_RANDOM(nrandom)
PM, r1, Title = 'First Group of Random Numbers'

First Group of Random Numbers
0.966220
0.260711
0.766262
0.569337
0.844829

IMSL_RANDOMOPT, Get = seed
; Get the current value of the seed using the keyword Get.
IMSL_RANDOMOPT, Set = seed
; Set the seed. 
r2 = IMSL_RANDOM(nrandom)
PM, r2, Title = 'Second Group of Random Numbers'
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Second Group of Random Numbers
0.0442665
0.987184
0.601350
0.896375
0.380854

IMSL_RANDOMOPT, Set = 123457
; Reset the seed to the original seed.
r3 = IMSL_RANDOM(2 * nrandom)
PM, r3, Title = 'Both Groups of Random Numbers'

Both Groups of Random Numbers
 0.966220
 0.260711
 0.766262
 0.569337
 0.844829
 0.0442665
 0.987184
 0.601350
 0.896375
 0.380854

Example 2

In this example, IMSL_RANDOMOPT is used to determine seeds for 4 separate 
streams, each 200,000 numbers apart, for a multiplicative congruential generator 
without shuffling. (Since IMSL_RANDOMOPT is not invoked to select a generator, 
the multiplier is 16807.) Since the streams are 200,000 numbers apart, each seed 
requires two invocations of IMSL_RANDOMOPT with keyword Substream_seed.  
All of the streams are non-overlapping, since the period of the underlying generator is 
2,147,483,646.

IMSL_RANDOMOPT, GEN_OPTION = 1
is1 = 123457;
IMSL_RANDOMOPT, GET = itmp, SUBSTREAM_SEED = is1
IMSL_RANDOMOPT, GET = is2, SUBSTREAM_SEED = itmp
IMSL_RANDOMOPT, GET = itmp, SUBSTREAM_SEED = is2
IMSL_RANDOMOPT, GET = is3, SUBSTREAM_SEED = itmp
IMSL_RANDOMOPT, GET = itmp, SUBSTREAM_SEED = is3
IMSL_RANDOMOPT, GET = is4, SUBSTREAM_SEED = itmp
PRINT, is1, is2, is3, is4

123457  2016130173    85016329   979156171
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Version History

6.4 Introduced
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IMSL_RANDOM_TABLE

The IMSL_RANDOM_TABLE procedure sets or retrieves the current table used in 
either the shuffled or GFSR random number generator.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_RANDOM_TABLE, table [, /DOUBLE] [, /GET | /SET] [, /GFSR]

Arguments

table

One dimensional array used in the generators. For the shuffled generators table is 
length 128. For the GFSR generator table is length 1565. The argument table is input 
if the keyword Set is used, and output if the keyword Get is used.

Keywords

DOUBLE

If present and nonzero, double precision is used. This keyword is active only when 
the shuffled table is being set or retrieved. 

GET

If present and nonzero, then the specified table is being retieved.

GFSR

If present and nonzero, then the specified GFSR table is being set or retrieved.

SET

If present and nonzero, then the specified table is being set.
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Discussion

The values in table are initialized by the IMSL random number generators. The 
values are all positive except if you wish to reinitialize the array, in which case the 
first element of the array is input as a nonpositive value. (Usually, one should avoid 
reinitializing these arrays, but it might be necessary sometimes in restarting a 
simulation.) If the first element of table is set to a nonpositive value on the call to 
IMSL_RANDOM_TABLE with the keyword Set, on the next invocation of a routine 
to generate random numbers, the appropriate table will be reinitialized.

For more details on the shuffled and GFSR generators see the “Overview: Random 
Number Generation” on page 1068.

Example

In this example, three separate simulation streams are used, each with a different 
form of the generator. Each stream is stopped and restarted. (Although this example is 
obviously an artificial one, there may be reasons for maintaining separate streams and 
stopping and restarting them because of the nature of the usage of the random 
numbers coming from the separate streams.)

nr = 5                          
iseed1 = 123457                 
iseed2 = 123457                 
iseed7 = 123457                 

; Begin first stream, iopt = 1 (by default) 
IMSL_RANDOMOPT,  Set = iseed1
r = IMSL_RANDOM(nr)
IMSL_RANDOMOPT,  Get = iseed1
PM, r, TITLE = 'First stream output'

First stream output
0.966220
0.260711
0.766262
0.569337
0.844829

PRINT, 'output seed ', iseed1

output seed   1814256879

; Begin second stream, iopt = 2 
IMSL_RANDOMOPT,  gen_opt = 2
IMSL_RANDOMOPT,  Set = iseed2
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r = IMSL_RANDOM(nr)
IMSL_RANDOMOPT,  Get = iseed2
IMSL_RANDOM_TABLE, table, /Get
PM, r, TITLE = 'Second stream output'

Second stream output
0.709518
0.186145
0.479442
0.603839
0.379015

PRINT, 'output seed ', iseed2

output seed   1965912801

; Begin third stream, iopt = 7 
IMSL_RANDOMOPT,  gen_opt = 7
IMSL_RANDOMOPT,  Set = iseed7
r = IMSL_RANDOM(nr)
IMSL_RANDOMOPT,  Get = iseed7
IMSL_RANDOM_TABLE, itable, /Get, /GFSR
PM, r, TITLE = 'Third stream output'

Third stream output
0.391352
0.0262676
0.762180
0.0280987
0.899731

PRINT, 'output seed ', iseed7

output seed   1932158269

; Reinitialize seed and resume first stream 
IMSL_RANDOMOPT,  gen_opt = 1
IMSL_RANDOMOPT,  Set = iseed1
r = IMSL_RANDOM(nr)
IMSL_RANDOMOPT,  Get = iseed1
PM, r, TITLE = 'First stream output'

First stream output
0.0442665
0.987184
0.601350
0.896375
0.380854
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PRINT, 'output seed ', iseed1

output seed    817878095

; Reinitialize seed & table for shuffling & resume second stream 
IMSL_RANDOMOPT,  gen_opt = 2
IMSL_RANDOMOPT,  Set = iseed2
IMSL_RANDOM_TABLE, table, /Set
r = IMSL_RANDOM(nr)
IMSL_RANDOMOPT,  Get = iseed2
PM, r, TITLE = 'Second stream output'

Second stream output
0.255690
0.478770
0.225802
0.345467
0.581051

PRINT, 'output seed ', iseed2

output seed   2108806573

; Reinitialize seed and table for GFSR and resume third stream.
IMSL_RANDOMOPT,  GEN_OPT = 7
IMSL_RANDOMOPT,  SET = iseed7
IMSL_RANDOM_TABLE, itable, /SET, /GFSR
r = IMSL_RANDOM(nr)
IMSL_RANDOMOPT,  GET = iseed7
PM, r, TITLE = 'Third stream output'

Third stream output
0.751854
0.508370
0.906986
0.0910035
0.691663

PRINT, 'output seed ', iseed7

output seed   1485334679

Version History

6.4 Introduced
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IMSL_RANDOM

The IMSL_RANDOM function generates pseudorandom numbers. The default 
distribution is a uniform (0, 1) distribution, but many different distributions can be 
specified through the use of keywords.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RANDOM(n [, /BETA] [, /BINOMIAL] [, /CAUCHY] 
[, COVARIANCES=value] [, /CHI_SQUARED] [, /DISCRETE_UNIF] 
[, /DOUBLE] [, /EXPONENTIAL] [, /GAMMA] [, /GEOMETRIC] 
[, /HYPERGEOMETRIC] [, /LOGARITHMIC] [, /LOGNORMAL]
[, /MIX_EXPONENTIAL] [, /MULTINOMIAL] [, /MVAR_NORMAL] 
[, /NEG_BINOMIAL] [, /NORMAL] [, PARAMETERS=value] 
[, /PERMUTATION] [, /POISSON] [, PROBABILITIES=array] 
[, /SAMPLE_INDICES] [, /SPHERE] [, /STABLE] [, /STUDENT_T] 
[, /TRIANGULAR] [, /UNIFORM] [, /VON_MISES] [, /WEIBULL])

Generally, it is best to first identify the desired distribution from the “Discussion” 
section, then refer to the “Input Keywords” section for specific usage instructions.

Return Value

A one-dimensional array of length n containing the random numbers. If one of the 
keywords Sphere, Multinomial, or Mvar_Normal are used, then a two-dimensional 
array is returned.

Arguments

n

Number of random numbers to generate. 
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Keywords

BETA

If present and nonzero, the random numbers are generated from a beta distribution. 
Requires the Parameters keyword to specify the parameters (p, q) for the distribution. 
The parameters p and q must be positive.

BINOMIAL

If present and nonzero, random numbers are generated from a binomial distribution. 
Requires Parameters keyword to specify the parameters (p, n) for the distribution. 
The parameter n is the number of Bernoulli trials, and it must be greater than zero. 
The parameter p represents the probability of success on each trial, and it must be 
between 0.0 and 1.0.

CAUCHY

If present and nonzero, the random numbers are generated from a Cauchy 
distribution.

COVARIANCES

Two-dimensional, square matrix containing the variance-covariance matrix. The two-
dimensional array returned by IMSL_RANDOM is of the following size:

n by N_ELEMENTS(Covariances(*, 0)) 

Keywords Mvar_Normal and Covariances must be specified to return numbers from 
a multivariate normal distribution.

CHI_SQUARED

If present and nonzero, the random numbers are generated from a chi-squared 
distribution. Requires the Parameters keyword to specify the parameter Df for the 
distribution. The parameter Df is the number of degrees of freedom for the 
distribution, and it must be positive.

DISCRETE_UNIF

If present and nonzero, the random numbers are generated from a discrete uniform 
distribution. Requires the Parameters keyword to specify the parameter k for the 
distribution. This generates integers in the range from 1 to k (inclusive) with equal 
probability. The parameter k must be positive.
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DOUBLE

If present and nonzero, double precision is used.

EXPONENTIAL

If present and nonzero, the random numbers are generated from a standard 
exponential distribution.

GAMMA

If present and nonzero, the random numbers are generated from a standard Gamma 
distribution. Requires the Parameters keyword to specify the parameter a for the 
distribution. The parameter a is the shape parameter of the distribution, and it must be 
positive n.

GEOMETRIC

If present and nonzero, the random numbers are generated from a geometric 
distribution. Requires the Parameters keyword to specify the parameter P for the 
distribution. The parameter P must be positive and less than 1.0.

HYPERGEOMETRIC

If present and nonzero, the random numbers are generated from a hypergeometric 
distribution. Requires the Parameters keyword to specify the parameters (M, N, L) for 
the distribution. The parameter N represents the number of items in the sample, M is 
the number of special items in the population, and L is the total number of items in 
the population. The parameters N and M must be greater than zero, and L must be 
greater than both N and M.

LOGARITHMIC

If present and nonzero, the random numbers are generated from a logarithmic 
distribution. Requires the Parameters keyword to specify the parameter a for the 
distribution. The parameter a must be greater than zero.

LOGNORMAL

If present and nonzero, the random numbers are generated from a lognormal 
distribution. Requires the Parameters keyword to specify the parameters (µ, σ) for 
the distribution. The parameter µ is the mean of the distribution, while σ represents 
the standard deviation.
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MIX_EXPONENTIAL

If present and nonzero, the random numbers are generated from a mixture of two 
exponential distributions. Requires the Parameters keyword to specify the parameters 
(θ1, θ2, p) for the distribution. The parameters θ1 and θ2 are the means for the two 
distributions; both must be positive, and θ1 must be greater than θ2. The parameter p 
is the relative probability of the θ1 distribution, and it must be non-negative and less 
than or equal to θ1/( θ1 – θ2).

NEG_BINOMIAL

If present and nonzero, the random numbers are generated from a negative binomial 
distribution. Requires the Parameters keyword to specify the parameters (r, p) for the 
distribution. The parameter r must be greater than zero. If r is an integer, the 
generated deviates can be thought of as the number of failures in a sequence of 
Bernoulli trials before r successes occur. The parameter p is the probability of success 
on each trial. It must be greater than the machine epsilon, and less than 1.0.

MULTINOMIAL

If present and nonzero, the random numbers are generated from a multinomial 
distribution. Requires the Parameters keyword to specify the parameter (ntrials) for 
the distribution, and the keyword Probabilities to specify the array containing the 
probabilities of the possible outcomes. The value if ntrials is the multinomial 
parameter indicating the number of independent trials.

MVAR_NORMAL

If present and nonzero, the random numbers are generated from a multivariate normal 
distribution. Keywords Mvar_Normal and Covariances must be specified to return 
numbers from a multivariate normal distribution.

NORMAL

If present and nonzero, the random numbers are generated from a standard normal 
distribution using an inverse CDF method. 

PARAMETERS

Specifies parameters for the distribution used by IMSL_RANDOM to generate 
numbers. Some distributions require this keyword to execute successfully. The type 
and range of these parameters depends upon which distribution is specified. See the 
keyword for the desired distribution or the Discussion section for more details.
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Note
The keywords A, Pin, Qin, and Theta are still supported, but are now deprecated. 
Please use the Parameters keyword instead.

PERMUTATION

If present and nonzero, then generate a pseudorandom permutation. 

POISSON

If present and nonzero, the random numbers are generated from a Poisson 
distribution. Requires the Parameters keyword to specify the parameter θ for the 
distribution. The parameter θ represents the mean of the distribution, and it must be 
positive.

PROBABILITIES

Specifies the array containing the probabilities of the possible outcomes. The 
elements of P must be positive and must sum to 1.0.

Keywords Multinomial and Probabilities must be specified to return numbers from a 
Multinomial distribution.

SAMPLE_INDICES

If present and nonzero, generate a simple pseudorandom sample of indices. Requires 
the Parameters keyword to specify the parameter npop, the number of items in the 
population.

SPHERE

If present and nonzero, the random numbers are generated on a unit circle or K-
dimensional sphere. Requires the Parameters keyword to specify the parameter k, the 
dimension of the circle (k = 2) or of the sphere.

STABLE

If present and nonzero, the random numbers are generated from a stable distribution. 
Requires the Parameters keyword to specify the parameters A and bprime for the 
stable distribution. A is the characteristic exponent of the stable distribution. A must 
be positive and less than or equal to 2. bprime is related to the usual skewness 
parameter b of the stable distribution.
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STUDENT_T

If present and nonzero, the random numbers are generated from a Student’s t 
distribution. Requires the Parameters keyword to specify the parameter Df for the 
distribution. The Df parameter is the number of degrees of freedom for the 
distribution, and it must be positive.

TRIANGULAR

If present and nonzero, the random numbers are generated from a triangular 
distribution.

UNIFORM

If present and nonzero, the random numbers are generated from a uniform (0, 1) 
distribution. The default action of this returns random numbers from a uniform (0, 1) 
distribution.

VON_MISES

If present and nonzero, the random numbers are generated from a von Mises 
distribution. Requires the Parameters keyword to specify the parameter c for the 
function. The parameter c must be greater than one-half the machine epsilon.

WEIBULL

If present and nonzero, the random numbers are generated from a Weibull 
distribution. Requires the Parameters keyword to specify the parameters (a, b) for the 
distribution. The parameter a is the shape parameter, and it is required. The parameter 
b is the scale parameter, and is optional (Default: b = 1.0).

Discussion

The IMSL_RANDOM function is designed to return random numbers from any of a 
number of different distributions. The determination of which distribution to generate 
the random numbers from is based on the presence of a keyword or groups of 
keywords. If IMSL_RANDOM is called without any keywords, then random 
numbers from a uniform (0, 1) distribution are returned.

Uniform (0,1) Distribution

The default action of IMSL_RANDOM generates pseudorandom numbers from a 
uniform (0, 1) distribution using a multiplicative, congruential method. The form of 
the generator follows:
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xi ≡ cxi - 1mod (231 – 1) 

Each xi is then scaled into the unit interval (0, 1). The possible values for c in the 
generators are 16807, 397204094, and 950706376. The selection is made by using 
the IMSL_RANDOMOPT procedure with the Gen_Option keyword. The choice of 
16807 results in the fastest execution time. If no selection is made explicitly, the 
functions use the multiplier 16807. See the “IMSL_RANDOMOPT” on page 1073 
for further discussion of generator options.

The IMSL_RANDOMOPT procedure called with the Set keyword is used to 
initialize the seed of the random-number generator.

You can select a shuffled version of these generators. In this scheme, a table is filled 
with the first 128 uniform (0, 1) numbers resulting from the simple multiplicative 
congruential generator. Then, for each xi from the simple generator, the low-order bits 
of xi are used to select a random integer, j, from 1 to 128. The j-th entry in the table is 
then delivered as the random number, and xi, after being scaled into the unit interval, 
is inserted into the j-th position in the table.

The values returned are positive and less than 1.0. Some values returned may be 
smaller than the smallest relative spacing; however, it may be the case that some 
value, for example r(i), is such that 1.0 – r(i) = 1.0.

Deviates from the distribution with uniform density over the interval (a, b) can be 
obtained by scaling the output. See “Example 3: Beta Distribution” on page 1099 for 
more details.

Normal Distribution

Calling IMSL_RANDOM with keyword Normal generates pseudorandom numbers 
from a standard normal (Gaussian) distribution using an inverse CDF technique. In 
this method, a uniform (0,1) random deviate is generated. Then, the inverse of the 
normal distribution function is evaluated at that point using the 
IMSL_NORMALCDF function with keyword Inverse.

If the Parameters keyword is specified in addition to Normal, IMSL_RANDOM 
generates pseudorandom numbers using an acceptance/rejection technique due to 
Kinderman and Ramage (1976). In this method, the normal density is represented as 
a mixture of densities over which a variety of acceptance/rejection methods due to 
Marsaglia (1964), Marsaglia and Bray (1964), and Marsaglia et al. (1964) are 
applied. This method is faster than the inverse CDF technique.

Deviates from the normal distribution with mean specific mean and standard 
deviation can be obtained by scaling the output from IMSL_RANDOM. See 
“Example 3: Beta Distribution” on page 1099 for more details. 
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Exponential Distribution

Calling IMSL_RANDOM with keyword Exponential generates pseudorandom 
numbers from a standard exponential distribution. The probability density function is 
f(x) = e–x, for x > 0. The IMSL_RANDOM function uses an antithetic inverse CDF 
technique. In other words, a uniform random deviate U is generated, and the inverse 
of the exponential cumulative distribution function is evaluated at 1.0 – U to yield the 
exponential deviate.

Poisson Distribution

Calling IMSL_RANDOM with keywords Poisson and Parameters = θ generates 
pseudorandom numbers from a Poisson distribution with positive mean θ. The 
probability function follows:

, for  

If θ is less than 15, IMSL_RANDOM uses an inverse CDF method; otherwise, the 
PTPE method of Schmeiser and Kachitvichyanukul (1981) is used. (See also 
Schmeiser 1983.) The PTPE method uses a composition of four regions, a triangle, a 
parallelogram, and two negative exponentials. In each region except the triangle, 
acceptance/rejection is used. The execution time of the method is essentially 
insensitive to the mean of the Poisson.

Gamma Distribution

Calling IMSL_RANDOM with keywords Gamma and Parameters = a generates 
pseudorandom numbers from a Gamma distribution with shape parameter a and unit 
scale parameter. The probability density function follows:

 

Various computational algorithms are used depending on the value of the shape 
parameter a. For the special case of a = 0.5, squared and halved normal deviates are 
used; for the special case of a = 1.0, exponential deviates are generated. Otherwise, if 
a is less than 1.0, an acceptance-rejection method due to Ahrens, described in Ahrens 
and Dieter (1974), is used. If a is greater than 1.0, a 10-region rejection procedure 
developed by Schmeiser and Lal (1980) is used.

The Erlang distribution is a standard Gamma distribution with the shape parameter 
having a value equal to a positive integer; hence, IMSL_RANDOM generates 
pseudorandom deviates from an Erlang distribution with no modifications required.

f x( ) e
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f x( )
1

Γ a( )
----------x

a 1–
e

x–
= for x 0≥
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Beta Distribution

Calling IMSL_RANDOM with keywords Beta, and Parameters=[p,q] generates 
pseudorandom numbers from a beta distribution. With p and q both positive, the 
probability density function is:

 

where Γ(·) is the Gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases of p 
= 1 or q = 1, in which the inverse CDF method is used, all the methods use 
acceptance/rejection. If p and q are both less than 1, the method of Jöhnk (1964) is 
used. If either p or q is less than 1 and the other is greater than 1, the method of 
Atkinson (1979) is used. If both p and q are greater than 1, algorithm BB of Cheng 
(1978), which requires very little setup time, is used if x is less than 4, and algorithm 
B4PE of Schmeiser and Babu (1980) is used if x is 4 or greater. Note that for p and q 
both greater than 1, calling IMSL_RANDOM to generate random numbers from a 
beta distribution a loop getting less than four variates on each call yields the same set 
of deviates as executing one call and getting all deviates at once.

The values returned are less than 1.0 and greater than ε, where ε is the smallest 
positive number such that 1.0 – ε is less than 1.0.

Multivariate Normal Distribution

Calling IMSL_RANDOM with keywords Mvar_Normal and Covariances generates 
pseudorandom numbers from a multivariate normal distribution with mean vector 
consisting of all zeros and variance-covariance matrix defined using keyword 
Covariances. First, the Cholesky factor of the variance-covariance matrix is 
computed. Then, independent random normal deviates with mean zero and variance 1 
are generated, and the matrix containing these deviates is postmultiplied by the 
Cholesky factor. Because the Cholesky factorization is performed in each invocation, 
it is best to generate as many random vectors as needed at once.

Deviates from a multivariate normal distribution with means other than zero can be 
generated by using IMSL_RANDOM with keywords Mvar_Normal and 
Covariances, then adding the vectors of means to each row of the result.

Binomial Distribution

Calling IMSL_RANDOM with keywords Binomial, Parameters= [p, n] generates 
pseudorandom numbers from a binomial distribution with parameters n and p. 
Parameters n and p must be positive, and p must less than 1. The probability function 
(where n = Binom_n and p = Binom_p) is:

f x( )
Γ p q+( )
Γ p( )Γ q( )
---------------------x
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1 x–( )q 1–
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for x = 0, 1, 2, ..., n.

The algorithm used depends on the values of n and p. If n * p < 10 or p is less than 
machine epsilon, the inverse CDF technique is used; otherwise, the BTPE algorithm 
of Kachitvichyanukul and Schmeiser (see Kachitvichyanukul 1982) is used. This is 
an acceptance /rejection method using a composition of four regions. (TPE=Triangle, 
Parallelogram, Exponential, left and right.)

Cauchy Distribution

Calling IMSL_RANDOM with the keyword Cauchy generates pseudorandom 
numbers from a Cauchy distribution. The probability density function is: 

where T is the median and T − S is the first quartile. This function first generates 
standard Cauchy random numbers (T = 0 and S = 1) using the technique described 
below, and then scales the values using T and S. 

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform (0, 1) 
deviate, u, as tan [π (u − 0.5)]. Rather than evaluating a tangent directly, however, 
IMSL_RANDOM generates two uniform (−1, 1) deviates, x1 and x2. These values 
can be thought of as sine and cosine values. If:

 

is less than or equal to 1, then x1/x2 is delivered as the unscaled Cauchy deviate; 
otherwise, x1 and x2 are rejected and two new uniform (−1, 1) deviates are generated. 
This method is also equivalent to taking the ration of two independent normal 
deviates.

Chi-squared Distribution

Calling IMSL_RANDOM with keywords Chi_squared and Parameters=Df generates 
pseudorandom numbers from a chi-squared distribution with Df degrees of freedom. 
If Df is an even integer less than 17, the chi-squared deviate r is generated as: 

where n = Df /2 and the ui are independent random deviates from a uniform (0, 1) 
distribution. If Df is an odd integer less than 17, the chi-squared deviate is generated 
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in the same way, except the square of a normal deviate is added to the expression 
above. If Df is greater than 16 or is not an integer, and if it is not too large to cause 
overflow in the gamma random number generator, the chi-squared deviate is 
generated as a special case of a gamma deviate.

Mixed Exponential Distribution

Calling IMSL_RANDOM with keywords Mix_Exponential, and Parameters = 
[θ1, θ2] generates pseudorandom numbers from a mixture of two exponential 
distributions. The probability density function is: 

for x > 0.

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parameter p is 
interpretable as a probability; and IMSL_RANDOM with probability p generates an 
exponential deviate with mean θ1, and with probability 1 – p generates an exponential 
with mean θ2. When p is greater than 1, but less than θ1/(θ1 – θ2), then either an 
exponential deviate with mean θ1 or the sum of two exponentials with means θ1 and 
θ2 is generated. The probabilities are q = p – (p – 1) (θ1/θ2) and 1 – q, respectively, 
for the single exponential and the sum of the two exponentials.

Geometric Distribution

Calling IMSL_RANDOM with keywords Geometric and Parameters = P generates 
pseudorandom numbers from a geometric distribution. The parameter P is the 
probability of getting a success on any trial. A geometric deviate can be interpreted as 
the number of trials until the first success (including the trial in which the first 
success is obtained). The probability function is:

f(x) = P(1 − P)x–1 

for x = 1, 2, ... and 0 < P < 1.

The geometric distribution as defined above has mean 1/P.

The i-th geometric deviate is generated as the smallest integer not less than (log (Ui))/
(log (1 – P)), where the Ui are independent uniform(0, 1) random numbers (see Knuth 
1981).

The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 – P)/P. Such 
deviates can be obtained by subtracting 1 from each element of the returned vector of 
random deviates.
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Hypergeometric Distribution

Calling IMSL_RANDOM with keywords Hypergeometric, and Parameter=[M, N, 
L,] generates pseudorandom numbers from a hypergeometric distribution with 
parameters N, M, and L. The hypergeometric random variable X can be thought of as 
the number of items of a given type in a random sample of size N that is drawn 
without replacement from a population of size L containing M items of this type. The 
probability function is: 

for x = max (0, N − L + M), 1, 2, ..., min (N, M)

If the hypergeometric probability function with parameters N, M, and L evaluated at 
N − L + M (or at 0 if this is negative) is greater than the machine, and less than 1.0 
minus the machine epsilon, then IMSL_RANDOM uses the inverse CDF technique. 
The routine recursively computes the hypergeometric probabilities, starting at x = 
max (0, N − L + M) and using the ratio:

(see Fishman 1978, p. 475).

If the hypergeometric probability function is too small or too close to 1.0, then 
IMSL_RANDOM generates integer deviates uniformly in the interval  [1, L − i] for i 
= 0, 1, ..., and at the i-th step, if the generated deviate is less than or equal to the 
number of special items remaining in the lot, the occurrence of one special item is 
tallied and the number of remaining special items is decreased by one. This process 
continues until the sample size of the number of special items in the lot is reached, 
whichever comes first. This method can be much slower than the inverse CDF 
technique. The timing depends on N. If N is more than half of L (which in practical 
examples is rarely the case), You may wish to modify the problem, replacing N by L − 
N, and to consider the generated deviates to be the number of special items not 
included in the sample.

Logarithmic Distribution

Calling IMSL_RANDOM with keywords Logarithmic and Parameter=a generates 
pseudorandom numbers from a logarithmic distribution. The probability function is: 

f x( )
M
x 

  L M–
N x– 

 

L
N 
 

-------------------------------=

f X = x + 1( )
f X = x( )

------------------------------

f x( ) a
x

x 1 a–( )ln
-------------------------=
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for x = 1, 2, 3, ..., and 0 < a < 1

The methods used are described by Kemp (1981) and depend on the value of a. If a is 
less than 0.95, Kemp’s algorithm LS, which is a “chop-down” variant of an inverse 
CDF technique, is used. Otherwise, Kemp’s algorithm LK, which gives special 
treatment to the highly probable values of 1 and 2 is used.

Lognormal Distribution

Calling IMSL_RANDOM with keywords Lognormal, and Parameter = [µ, σ] 
generates pseudorandom numbers from a lognormal distribution. The scale parameter 
σ in the underlying normal distribution must be positive. The method is to generate 
normal deviates with mean µ and standard deviation Σ and then to exponentiate the 
normal deviates.

The probability density function for the lognormal distribution is: 

for x > 0. The mean and variance of the lognormal distribution are exp (µ + σ2/2) and 
exp (2µ + 2σ2) − exp (2µ + σ2), respectively.

Negative Binomial

Calling IMSL_RANDOM with keywords Neg_binomial and Parameters=[r, p] 
generates pseudorandom numbers from a negative binomial distribution. The 
parameters r and p must be positive and p must be less than 1. The probability 
function is:

 

for x = 0, 1, 2, ...

If r is an integer, the distribution is often called the Pascal distribution and can be 
thought of as modeling the length of a sequence of Bernoulli trials until r successes 
are obtained, where p is the probability of getting a success on any trial. In this form, 
the random variable takes values r, r + 1, r + 2, ... and can be obtained from the 
negative binomial random variable defined above by adding r to the negative 
binomial variable defined by adding r to the negative binomial variable. This latter 

f x( ) 1

σx 2π
------------------exp 1

2σ2
---------– x µ–ln( )2

=

f x( ) r x 1–+
x 

  1 p–( )r
p

x
=
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form is also equivalent to the sum of r geometric random variables defined as taking 
values 1, 2, 3, ...

If rp/(1 – p) is less than 100 and (1 – p)r is greater than the machine epsilon, 
IMSL_RANDOM uses the inverse CDF technique; otherwise, for each negative 
binomial deviate, IMSL_RANDOM generates a gamma (r, p/(1 – p)) deviate Y and 
then generates a Poisson deviate with parameter Y.

Discrete Uniform Distribution

Calling IMSL_RANDOM with keywords Discrete_unif and Parameters = k 
generates pseudorandom numbers from a uniform discrete distribution over the 
integers 1, 2, ..., k. A random integer is generated by multiplying k by a uniform (0, 1) 
random number, adding 1.0, and truncating the result to an integer. This, of course, is 
equivalent to sampling with replacement from a finite population of size k.

Student’s t Distribution

Calling IMSL_RANDOM with keywords Students_t and Parameters=Df generates 
pseudorandom numbers from a Student’s t distribution with Df degrees of freedom, 
using a method suggested by Kinderman et al. (1977). The method (“TMX” in the 
reference) involves a representation of the t density as the sum of a triangular density 
over (−2, 2) and the difference of this and the t density. The mixing probabilities 
depend on the degrees of freedom of the t distribution. If the triangular density is 
chosen, the variate is generated as the sum of two uniforms; otherwise, an 
acceptance/rejection method is used to generate the difference density.

Triangular Distribution 

Calling IMSL_RANDOM with the keyword Triangular generates pseudorandom 
numbers from a triangular distribution over the unit interval. The probability density 
function is f (x) = 4x, for 0 ≤ x ≤ 0.5, and f (x) = 4 (1 – x), for 0.5 < x ≤ 1. An inverse 
CDF technique is used.

von Mises Distribution

Calling IMSL_RANDOM with keywords Von_mises and Parameters = c generates 
pseudorandom numbers from a von Mises distribution where c must be positive. The 
probability density function is:

 

for −π < x < π, where I0 (c) is the modified Bessel function of the first kind of order 0. 
The probability density is equal to 0 outside the interval (−π, π).

f x( ) 1
2πI0 c( )
-------------------exp c x( )cos[ ]=
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The algorithm is an acceptance/rejection method using a wrapped Cauchy 
distribution as the majorizing distribution. It is due to Nest and Fisher (1979).

Weibull Distribution

Calling IMSL_RANDOM with keywords Weibull and Parameters=[a,b] generates 
pseudorandom numbers from a Weibull distribution with shape parameter a and scale 
parameter b. The probability density function is:

 

for x3  0, a > 0, and b > 0. The value of b is optional; if it is not specified, it is set to 
1.0.

The IMSL_RANDOM function uses an antithetic inverse CDF technique to generate 
a Weibull variate; that is, a uniform random deviate U is generated and the inverse of 
the Weibull cumulative distribution function is evaluated at 1.0 − U to yield the 
Weibull deviate.

Note that the Rayleigh distribution with probability density function: 

for x ≥ 0 is the same as a Weibull distribution with shape parameter a equal to 2 and 
scale parameter b equal to:

 

Stable Distribution

Calling IMSL_RANDOM with keywords Stable and Parameters = [α, β'] generates 
pseudorandom numbers from a stable distribution with parameters α ' and β'. α is the 
usual characteristic exponent parameter α, and β' is related to the usual skewness 
parameter β of the stable distribution. With restrictions 0 < α ≤ 2 and –1 ≤ β ≤ 1, the 
characteristic function of the distribution is:

ϕ(t) = exp[-|t|a exp(-π iβ (1 - |1 - α|)sign(t)/2)] for α ≠ 1

and

ϕ(t) = exp[-|t|(1 + 2iβ ln|t|)sign(t)/π)] for α = 1 

When β = 0, the distribution is symmetric. In this case, if α = 2, the distribution is 
normal with mean 0 and variance 2; and if α = 1, the distribution is Cauchy.

The parameterization using β' and the algorithm used here are due to Chambers, 
Mallows, and Stuck (1976). The relationship between β' and the standard β is:

f x( ) abx
a 1–

exp bx
a

–( )=

r x( ) 1

α2
------xe

x2 2α2( )⁄( )–
=

2α
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β' = -tan(π (1 - α )/2) tan(-π β (1 - |1 - α|)/2) for α ≠ 1 

and:

β' = β for α = 1 

The algorithm involves formation of the ratio of a uniform and an exponential 
random variate.

Multinomial Distribution

Calling IMSL_RANDOM with keywords Multinomial, Probabilites, and 
Parameters = ntrials generates pseudorandom numbers from a K-variate multinomial 
distribution with parameters n and p. k=N_ELEMENTS(Probabilities) and ntrials 
must be positive. Each element of Probabilites must be positive and the elements 
must sum to 1. The probability function (with n = n, k = k, and pi = Probabilities(i)) 
is: 

for xi ≥ 0 and:

 

The deviate in each row of r is produced by generation of the binomial deviate x0 
with parameters n and pi and then by successive generations of the conditional 
binomial deviates xj given x0, x1, ..., xj-2 with parameters n - x0 - x1 - ... - xj-2 and pj /(1 
- p0 - p1 - ... - pj-2).

Random Points on a K-dimensional Sphere

Calling IMSL_RANDOM with the keywords Sphere and Parameters = k generates 
pseudorandom coordinates of points that lie on a unit circle or a unit sphere in K-
dimensional space. For points on a circle (k = 2), pairs of uniform (–1, 1) points are 
generated and accepted only if they fall within the unit circle (the sum of their squares 
is less than 1), in which case they are scaled so as to lie on the circle.

For spheres in three or four dimensions, the algorithms of Marsaglia (1972) are used. 
For three dimensions, two independent uniform (–1, 1) deviates U1 and U2 are 
generated and accepted only if the sum of their squares S1 is less than 1. Then, the 
coordinates:

are formed. For four dimensions, U1, U2, and S1 are produced as described above. 
Similarly, U3, U4, and S2 are formed. The coordinates are then:

f x1 x2  ... xk,,,( ) n!
x1! x2!  ... xk!,,,
----------------------------------p1

x1 p2
x2  ... pk

xk,,,=

x ni
i

k

=

−

∑ =
0

1

Z1 2U1 1 S1– , Z2 2U2 1 S1– , and Z3 1 2S1–= = =
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and:

 

For spheres in higher dimensions, K independent normal deviates are generated and 
scaled so as to lie on the unit sphere in the manner suggested by Muller (1959).

Random Permutation

Calling IMSL_RANDOM with the keyword Permutation generates a pseudorandom 
permutation of the integers from 1 to n. It begins by filling a vector of length n with 
the consecutive integers 1 to n. Then, with M initially equal to n, a random index J 
between 1 and M (inclusive) is generated. The element of the vector with the index M 
and the element with index J swap places in the vector. M is then decremented by 1 
and the process repeated until M = 1.

Sample Indices

Calling IMSL_RANDOM with the keywords Sample_indices and Parameters = npop 
generates the indices of a pseudorandom sample,without replacement, of size n 
numbers from a population of size npop. If n is greater than npop/2, the integers from 
1 to npop are selected sequentially with a probability conditional on the number 
selected and the number remaining to be considered. If, when the i-th population 
index is considered, j items have been included in the sample, then the index i is 
included with probability (n - j)/(npop + 1 - i).

If n is not greater than npop/2, a O(n) algorithm due to Ahrens and Dieter (1985) is 
used. Of the methods discussed by Ahrens and Dieter, the one called SG* is used. It 
involves a preliminary selection of q indices using a geometric distribution for the 
distances between each index and the next one. If the preliminary sample size q is 
less than n, a new preliminary sample is chosen, and this is continued until a 
preliminary sample greater in size than n is chosen. This preliminary sample is then 
thinned using the same kind of sampling as described above for the case in which the 
sample size is greater than half of the population size. This routine does not store the 
preliminary sample indices, but rather restores the state of the generator used in 
selecting the sample initially, and then passes through once again, making the final 
selection as the preliminary sample indices are being generated.

Z1 U1 Z2, U2 Z3, U3 1 S1–( ) S2⁄= = =

Z4 U4 1 S1–( ) S2⁄=
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Examples

Example 1

In this example, IMSL_RANDOM is used to generate five pseudorandom, uniform 
numbers. Since RANDOMOPT is not called, the generator used is a simple 
multiplicative congruential one with a multiplier of 16807.

IMSL_RANDOMOPT, Set = 123457
; Set the random seed.
r  = IMSL_RANDOM(5) 
; Call IMSL_RANDOM to compute the random numbers.
PM, r

The results are something like:

0.966220
0.260711
0.766262
0.569337
0.844829 

Example 2: Poisson Distribution

In this example, random numbers from a Poisson distribution are computed.

IMSL_RANDOMOPT, Set = 123457
r = IMSL_RANDOM(5, /POISSON, PARAMETERS = 0.5)
; Call IMSL_RANDOM with keywords Poisson and Parameters.
PM, r

Example 3: Beta Distribution

In this example, random numbers are computed from a Beta distribution.

IMSL_RANDOMOPT, set = 123457
r = IMSL_RANDOM(5, /Beta, Parameter = [3,2])
; Call IMSL_RANDOM with keywords Beta, Pin, and Qin.
PM, r

Example 4: Scaling the Results of IMSL_RANDOM

This example computes deviates with uniform density over the interval (10, 20) and 
deviates from the normal distribution with a mean of 10 and a standard deviation of 2.

IMSL_RANDOMOPT, Set = 123457
; Set the random number seed.
a = 10
; Define the lowerbound.
b = 20
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; Define the upperbound.
r  = a + (b - a) * IMSL_RANDOM(5)
; Call IMSL_RANDOM to compute the deviates on (0,1) and scale the
; results to (a,b).
PM, r

The results are something like:

19.6622
12.6071
17.6626
15.6934
18.4483

; Define a standard deviation.
stdev = 2
; Define a mean.
mean =  10
; Call IMSL_RANDOM to compute the deviates normal deviates 
; and scale the results using the specified mean and standard
; deviation.
r = IMSL_RANDOM(6, /Normal) * stdev + mean
PM, r

The results are something like:

6.59363
14.4635
10.5137
12.5223
9.39352
5.71021

Example 5: Multivariate Normal Distribution

In this example, IMSL_RANDOM generates five pseudorandom normal vectors of 
length 2 with variance covariance matrix equal to the following: 

IMSL_RANDOMOPT, SET = 123457
; Set the random number seed.
cov = [[.5,.375],[.375, .5]]
; Define the covariance matrix.
PM, IMSL_RANDOM(5, /MVAR_NORMAL, COVARIANCES = cov)

The results are something like:

0.500 0.375
0.375 0.500
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1.45068      1.24634
0.765975  -0.0429410
0.0583781 -0.669214
0.903489     0.462826
-0.866886    -0.933426

Version History

6.4 Introduced
IDL Analyst Reference Guide IMSL_RANDOM
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IMSL_RANDOM_NPP

The IMSL_RANDOM_NPP function generates pseudorandom numbers from a 
nonhomogeneous Poisson process.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

result = IMSL_RANDOM_NPP(tbegin, tend, ftheta, theta_min, theta_max, neub 
[, /DOUBLE])

Return Value

A one dimensional array containing the times to events. If the length of the result is 
less that neub, the time tend is reached before neub events are realized

Arguments

neub

Upper bound on the number of events to be generated. In order to be reasonably sure 
that the full process through time tend is generated, calculate neub as neub = X + 10.0 
* SQRT(X), where X = theta_max * (tend - tbegin). 

ftheta

Scalar string specifying a user-supplied function to provide the value of the rate of the 
process as a function of time. This function accepts one argument and must be 
defined over the interval from tbegin to tend and must be nonnegative in that interval. 

tbegin

Lower endpoint of the time interval of the process. tbegin must be nonnegative. 
Usually, tbegin = 0.

tend

Upper endpoint of the time interval of the process. tend must be greater than tbegin.
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theta_max

Maximum value of the rate function ftheta in the interval (tbegin, tend). If the actual 
maximum is unknown, set theta_max to a known upper bound of the maximum. The 
efficiency of IMSL_RANDOM_NPP is less the greater theta_max exceeds the true 
maximum.

theta_min

Minimum value of the rate function ftheta() in the interval (tbegin, tend). If the actual 
minimum is unknown, set theta_min = 0.0.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

Routine IMSL_RANDOM_NPP simulates a one-dimensional nonhomogeneous 
Poisson process with rate function theta in a fixed interval (tend - tbegin).

Let λ(t) be the rate function and t0 = tbegin and t1 = tend. Routine 
IMSL_RANDOM_NPP uses a method of thinning a nonhomogeneous Poisson 
process {N*(t), t ≥ t0} with rate function λ*(t) ≥ λ(t) in (t0, t1), where the number of 
events, N*, in the interval (t0, t1) has a Poisson distribution with parameter: 

The function: 

is called the integrated rate function.In IMSL_RANDOM_NPP, λ*(t) is taken to be a 
constant λ*(= theta_max) so that at time ti, the time of the next event ti + 1 is obtained 
by generating and cumulating exponential random numbers:

 

with parameter λ*, until for the first time:
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where the uj,i are independent uniform random numbers between 0 and 1. This 
process is continued until the specified number of events, neub, is realized or until the 
time, tend, is exceeded. This method is due to Lewis and Shedler (1979), who also 
review other methods. The most straightforward (and most efficient) method is by 
inverting the integrated rate function, but often this is not possible.

If theta_max is actually greater than the maximum of λ(t) in (t0, t1), the routine will 
work, but less efficiently. Also, if λ(t) varies greatly within the interval, the efficiency 
is reduced. In that case, it may be desirable to divide the time interval into 
subintervals within which the rate function is less variable. This is possible because 
the process is without memory.

If no time horizon arises naturally, tend must be set large enough to allow for the 
required number of events to be realized. Care must be taken, however, that ftheta is 
defined over the entire interval.

After simulating a given number of events, the next event can be generated by setting 
tbegin to the time of the last event (the sum of the elements in the result) and calling 
IMSL_RANDOM_NPP again. Cox and Lewis (1966) discuss modeling applications 
of nonhomogeneous Poisson processes.

Example

In this example, IMSL_RANDOM_NPP is used to generate the first five events in the 
time 0 to 20 (if that many events are realized) in a nonhomogeneous process with rate 
function:

λ (t) = 0.6342 e0.001427t 

for 0 < t ≤ 20.

Since this is a monotonically increasing function of t, the minimum is at t = 0 and is 
0.6342, and the maximum is at t = 20 and is 0.6342 e0.02854 = 0.652561.

.RUN
FUNCTION ftheta_npp, t
RETURN, .6342*exp(.001427*t)

END

randomopt, set=123457
neub = 5
tmax = .652561
tmin = .6342
tbegin=0
tend=20
r = IMSL_RANDOM_NPP(tbegin, tend, 'ftheta_npp', tmin, tmax, neub)
PM, r
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0.0526598
0.407979
0.258399
0.0197666
0.167641

Version History

6.4 Introduced
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IMSL_RANDOM_ORDER

The IMSL_RANDOM_ORDER function generates pseudorandom order statistics 
from a uniform (0, 1) distribution, or optionally from a standard normal distribution.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

result = IMSL_RANDOM_ORDER(ifirst, ilast, n [, /DOUBLE] [, /NORMAL] 
[, /UNIFORM])

Return Value

An array of length ilast + 1 - ifirst containing the random order statistics in ascending 
order.

The first element is the ifirst order statistic in a random sample of size n from the 
uniform (0, 1) distribution.

Arguments

ifirst

First order statistic to generate.

ilast

Last order statistic to generate. ilast must be greater than or equal to ifirst. The full set 
of order statistics from ifirst to ilast is generated. If only one order statistic is desired, 
set ilast = ifirst. 

n

Size of the sample from which the order statistics arise.
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Keywords

DOUBLE

If present and nonzero, double precision is used.

NORMAL

If present and nonzero, generate pseudorandom order statistics from a standard 
normal distribution.

UNIFORM

If present and nonzero, generate pseudorandom order statistics from a uniform (0, 1) 
distribution. (Default)

Discussion

Routine IMSL_RANDOM_ORDER generates the ifirst through the ilast order 
statistics from a pseudorandom sample of size n from a uniform (0, 1) distribution. 
Depending on the values of ifirst and ilast, different methods of generation are used 
to achieve greater efficiency. If ifirst = 1 and ilast = n, that is, if the full set of order 
statistics are desired, the spacings between successive order statistics are generated as 
ratios of exponential variates. If the full set is not desired, a beta variate is generated 
for one of the order statistics, and the others are generated as extreme order statistics 
from conditional uniform distributions. Extreme order statistics from a uniform 
distribution can be obtained by raising a uniform deviate to an appropriate power.

Each call to IMSL_RANDOM_ORDER yields an independent event. This means, for 
example, that if on one call the fourth order statistic is requested and on a second call 
the third order statistic is requested, the “fourth” may be smaller than the “third”. If 
both the third and fourth order statistics from a given sample are desired, they should 
be obtained from a single call to IMSL_RANDOM_ORDER (by specifying ifirst less 
than or equal to 3 and ilast greater than or equal to 4).

If the keyword Normal is present and nonzero, then IMSL_RANDOM_ORDER 
generates the ifirst through the ilast order statistics from a pseudorandom sample of 
size n, from a normal (0, 1) distribution

Example

In this example, IMSL_RANDOM_ORDER is used to generate the fifteenth through 
the nineteenth order statistics from a sample of size twenty.
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r  =  IMSL_RANDOM_ORDER(15, 19, 20)
pm, r

Version History

6.4 Introduced
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IMSL_RAND_TABLE_2WAY

The IMSL_RAND_TABLE_2WAY function generates a pseudorandom two-way 
table.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

result = IMSL_RAND_TABLE_2WAY (row_totals, col_totals)

Return Value

A N_ELEMENTS(row_totals) by N_ELEMENTS(col_totals) random matrix with 
the given row and column totals.

Arguments

col_totals

One dimensional array containing the column totals. (Input) The elements of 
row_totals and col_totals must be nonnegative and must sum to the same quantity.

row_totals

One dimensional array containing the row totals.

Discussion

Routine IMSL_RAND_TABLE_2WAY generates pseudorandom entries for a two-
way contingency table with fixed row and column totals. The method depends on the 
size of the table and the total number of entries in the table. If the total number of 
entries is less than twice the product of the number of rows and columns, the method 
described by Boyette (1979) and by Agresti, Wackerly, and Boyette (1979) is used. In 
this method, a work vector is filled with row indices so that the number of times each 
index appears equals the given row total. This vector is then randomly permuted and 
used to increment the entries in each row so that the given row total is attained.
IDL Analyst Reference Guide IMSL_RAND_TABLE_2WAY



1110 Chapter 24: Random Number Generation
For tables with larger numbers of entries, the method of Patefield (1981) is used. This 
method can be considerably faster in these cases. The method depends on the 
conditional probability distribution of individual elements, given the entries in the 
previous rows. The probabilities for the individual elements are computed starting 
from their conditional means.

Example

In this example, IMSL_RAND_TABLE_2WAY is used to generate a two by three 
table with row totals 3 and 5, and column totals 2, 4, and 2.

r  =  IMSL_RAND_TABLE_2WAY([3, 5], [2, 4, 2]) 
PM, r

2           1           0
0           3           2

Version History

6.4 Introduced
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IMSL_RAND_ORTH_MAT

The IMSL_RAND_ORTH_MAT function generates a pseudorandom orthogonal 
matrix or a correlation matrix.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RAND_ORTH_MAT(n [, A_MATRIX=array] [, /DOUBLE] 
[, EIGENVALUES=array] )

Return Value

A two-dimensional array containing the n by n random correlation matrix.

Arguments

n

The order of the matrix to be generated.

Keywords

A_MATRIX

Two-dimensional array containing n by n random orthogonal matrix. A random 
correlation matrix is generated using orthogonal matrix input in A_Matrix. 
Eigenvalues must also be supplied if A_Matrix is used.

DOUBLE

If present and nonzero, double precision is used.

EIGENVALUES

One-dimensional array of length n containing the eigenvalues of the correlation 
matrix to be generated. The elements of Eigenvalues must be positive, they must sum 
to n, and they cannot all be equal.
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Discussion

IMSL_RAND_ORTH_MAT generates a pseudorandom orthogonal matrix from the 
invariant Haar measure. For each column, a random vector from a uniform 
distribution on a hypersphere is selected and then is projected onto the orthogonal 
complement of the columns already formed. The method is described by Heiberger 
(1978). (See also Tanner and Thisted 1982.)

If Eigenvalues is used, a correlation matrix is formed by applying a sequence of 
planar rotations to matrix ATDA, where D = diag(Eigenvalues(0), ..., Eigenvalues(n-
1)), so as to yield ones along the diagonal. The planar rotations are applied in such an 
order that in the two by two matrix that determines the rotation, one diagonal element 
is less than 1.0 and one is greater than 1.0. This method is discussed by Bendel and 
Mickey (1978) and by Lin and Bendel (1985).

The distribution of the correlation matrices produced by this method is not known. 
See Bendel and Mickey (1978) and Johnson and Welch (1980).

For larger matrices, rounding can become severe; and the double precision results 
may differ significantly from single precision results.

Example

In this example, IMSL_RAND_ORTH_MAT is used to generate a 4 by 4 
pseudorandom correlation matrix with eigenvalues in the ratio 1:2:3:4. 

IMSL_RANDOMOPT, set = 123457
a = IMSL_RAND_ORTH_MAT(4)
ev = .4d0*[1.0d0, 2.0d0, 3.0d0, 4.0d0]
cor = IMSL_RAND_ORTH_MAT(4, EIGENVALUES = ev, A_MATRIX= a)
PM, cor

1.00000    -0.235786    -0.325795    -0.110139
-0.235786      1.00000     0.190564   -0.0172391
-0.325795     0.190564      1.00000    -0.435339
-0.110139   -0.0172391    -0.435339      1.00000

Version History

6.4 Introduced
IMSL_RAND_ORTH_MAT IDL Analyst Reference Guide
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IMSL_RANDOM_SAMPLE

The IMSL_RANDOM_SAMPLE function generates a simple pseudorandom sample 
from a finite population.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RANDOM_SAMPLE(nsamp, population [, /ADDITIONAL_CALL] 
[, /DOUBLE] [, /FIRST_CALL] [, INDEX=array] [, NPOP=value] 
[, SAMPLE=array] )

Return Value

nsamp by nvar array containing the sample, where nvar is the number of columns in 
the argument population.

Arguments

nsamp

The sample size desired.

population

A one or two dimensional array containing the population to be sampled. If either of 
the keywords First_Call or Additional_Call are specified, then population contains a 
different part of the population on each invocation, otherwise population contains the 
entire population.

Keywords

ADDITIONAL_CALL

If present and nonzero, then this is an additional invocation of 
IMSL_RANDOM_SAMPLE, and updating for the subpopulation in population is 
performed. Keywords Index, Npop, and Sample are required if Additional_Call is set. 
It is not necessary to know the number of items in the population in advance. Npop is 
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used to cumulate the population size and should not be changed between calls to 
IMSL_RANDOM_SAMPLE. See Example 2.

DOUBLE

If present and nonzero, double precision is used.

FIRST_CALL

If present and nonzero, then this is the first invocation with this data; additional calls 
to IMSL_RANDOM_SAMPLE may be made to add to the population. Additional 
calls should be made using the keyword Additional_Call.  Keywords Index and Npop 
are required if First_Call is set. See Example 2.

INDEX

A one-dimensional array of length nsamp containing the indices of the sample in the 
population. Output if keyword First_Call is used. Input/Output if keyword 
Additional_Call is used.

NPOP

The number of items in the population. Output if keyword First_Call is used. Input/
Output if keyword Additional_Call is used.

SAMPLE

An array of size nsamp by nvar containing the sample. Initially, the result of calling 
IMSL_RANDOM_SAMPLE with keyword First_Call is used for Sample. 

Discussion

Routine IMSL_RANDOM_SAMPLE generates a pseudorandom sample from a 
given population, without replacement, using an algorithm due to McLeod and 
Bellhouse (1983).

The first nsamp items in the population are included in the sample. Then, for each 
successive item from the population, a random item in the sample is replaced by that 
item from the population with probability equal to the sample size divided by the 
number of population items that have been encountered at that time.
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Examples

Example 1

In this example, IMSL_RANDOM_SAMPLE is used to generate a sample of size 5 
from a population stored in the matrix population. 

IMSL_RANDOMOPT, Set = 123457
pop = IMSL_STATDATA(2)
samp = IMSL_RANDOM_SAMPLE(5, pop) 
PM, samp

1764.00      36.4000
1828.00      62.5000
1923.00      5.80000
1773.00      34.8000
1769.00      106.100

Example 2

Routine IMSL_RANDOM_SAMPLE is now used to generate a sample of size 5 
from the same population as in the example above except the data are input to 
IMSL_RANDOM_SAMPLE one observation at a time. This is the way 
IMSL_RANDOM_SAMPLE may be used to sample from a file on disk or tape. 
Notice that the number of records need not be known in advance.

IMSL_RANDOMOPT, SET = 123457
pop = IMSL_STATDATA(2)
samp = IMSL_RANDOM_SAMPLE(5, pop(0, *), /FIRST_CALL, INDEX = ii, $

NPOP=np)
FOR i=1,175 DO samp = IMSL_RANDOM_SAMPLE(5, pop(i, *), $

/ADDITIONAL_CALL, INDEX = ii, NPOP = np, SAMPLE =  samp)
PM, samp

1764.00      36.4000
1828.00      62.5000
1923.00      5.80000
1773.00      34.8000
1769.00      106.100

Version History

6.4 Introduced
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IMSL_RAND_FROM_DATA

The IMSL_RAND_FROM_DATA function generates pseudorandom numbers from a 
multivariate distribution determined from a given sample.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RAND_FROM_DATA(n_random, x, nn [, /DOUBLE])

Return Value

n x ndim matrix containing the random multivariate vectors in its rows. 

Arguments

n_random

Number of random multivariate vectors to generate.

nn

Number of nearest neighbors of the randomly selected point in x that are used to form 
the output point in the result.

x

Two dimensional array of size nsamp by ndim containing the given sample.

Keywords

DOUBLE

If present and nonzero, double precision is used.
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Discussion

Given a sample of size nsamp of observations of a k-variate random variable, 
IMSL_RAND_FROM_DATA generates a pseudorandom sample with approximately 
the same moments as the given sample. The sample obtained is the same as if 
sampling from a Gaussian kernel estimate of the sample density. (See Thompson 
1989.) Routine IMSL_RAND_FROM_DATA uses methods described by Taylor and 
Thompson (1986).

Assume that the (vector-valued) observations xi are in the rows of x. An observation, 
xj, is chosen randomly; its nearest m (= nn) neighbors:  

are determined; and the mean:  

of those nearest neighbors is calculated. Next, a random sample u1, u2, ..., um is 
generated from a uniform distribution with lower bound: 

and upper bound: 

The random variate delivered is: 

The process is then repeated until n such simulated variates are generated and stored 
in the rows of the result.

Example

In this example, IMSL_RAND_FROM_DATA is used to generate 5 pseudorandom 
vectors of length 4 using the initial and final systolic pressure and the initial and final 
diastolic pressure from Data Set A in Afifi and Azen (1979) as the fixed sample from 
the population to be modeled. (Values of these four variables are in the seventh, tenth, 
twenty-first, and twenty-fourth columns of data set number nine in routine 
IMSL_STATDATA, see Chapter 25, “Math and Statistics Utilities” of this manual).
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 x j
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m
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---------------------–
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---------------------+
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IMSL_RANDOMOPT, Set = 123457
r = IMSL_STATDATA(9)
x = FLTARR(113, 4)
x(*, 0) = r(*,6)
x(*, 1) = r(*,9)
x(*, 2) = r(*,20)
x(*, 3) = r(*,23) 
r  =  IMSL_RAND_FROM_DATA(5, x, 5)
PM, r

162.767      90.5057      153.717      104.877
153.353      78.3180      176.664      85.2155
93.6958      48.1675      153.549      71.3688
101.751      54.1855      113.121      56.2916
91.7403      58.7684      48.4368      28.0994

Version History

6.4 Introduced
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IMSL_CONT_TABLE

The IMSL_CONT_TABLE procedure sets up table to generate pseudorandom 
numbers from a general continuous distribution.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_CONT_TABLE, ( f, iopt, ndata, table [, /DOUBLE] )

Arguments

f

A scalar string specifying a user-supplied function to compute the cumulative 
distribution function. The argument to the function is the point at which the 
distribution function is to be evaluated.

iopt

Indicator of the extent to which table is initialized prior to calling 
IMSL_CONT_TABLE. 

• 0—IMSL_CONT_TABLE fills the last four columns of table. Input the points 
at which the CDF is to be evaluated in the first column of table. These must be 
in ascending order.

• 1—IMSL_CONT_TABLE fills the last three columns of table. The supplied 
function f is not used and may be a dummy function; instead, the cumulative 
distribution function is specified in the first two columns of table. The 
abscissas (in the first column) must be in ascending order and the function 
must be strictly monotonically increasing.

ndata

Number of points at which the CDF is evaluated for interpolation. ndata must be 
greater than or equal to 4. 
IDL Analyst Reference Guide IMSL_CONT_TABLE



1120 Chapter 24: Random Number Generation
table

ndata by 5 table to be used for interpolation of the cumulative distribution function. 
The first column of table contains abscissas of the cumulative distribution function in 
ascending order, the second column contains the values of the CDF (which must be 
strictly increasing), and the remaining columns contain values used in interpolation. 
The first row of table corresponds to the left limit of the support of the distribution 
and the last row corresponds to the right limit of the support; that is, table (0, 1) = 0.0 
and table(ndata – 1, 1) = 1.0.

Keywords

DOUBLE

If present and nonzero, double precision is used. 

Discussion

IMSL_CONT_TABLE sets up a table that “IMSL_RAND_GEN_CONT” on 
page 1121 can use to generate pseudorandom deviates from a continuous distribution. 
The distribution is specified by its cumulative distribution function, which can be 
supplied either in tabular form in table or by a function f. See the documentation for 
the routine RAND_GEN_CONT for a description of the method.

Example

For an example of using IMSL_CONT_TABLE see the example for 
IMSL_RAND_GEN_CONT.

Version History

6.4 Introduced
IMSL_CONT_TABLE IDL Analyst Reference Guide



Chapter 24: Random Number Generation 1121
IMSL_RAND_GEN_CONT

The IMSL_RAND_GEN_CONT function generates pseudorandom numbers from a 
general continuous distribution.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result =  IMSL_RAND_GEN_CONT(n, table [, /DOUBLE])

Return Value

An array of length n containing the random deviates.

Arguments

n

Number of random numbers to generate.

table

A two-dimensional array setup using IMSL_CONT_TABLE to be used for 
interpolation of the cumulative distribution function. The first column of table 
contains abscissas of the cumulative distribution function in ascending order, the 
second column contains the values of the CDF (which must be strictly increasing 
beginning with 0.0 and ending at 1.0) and the remaining columns contain values used 
in interpolation. 

Keywords

DOUBLE

If present and nonzero, double precision is used. 
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Discussion

Routine IMSL_RAND_GEN_CONT generates pseudorandom numbers from a 
continuous distribution using the inverse CDF technique, by interpolation of points of 
the distribution function given in table, which is set up by “IMSL_CONT_TABLE” 
on page 1119. A strictly monotone increasing distribution function is assumed. The 
interpolation is by an algorithm attributable to Akima (1970), using piecewise cubics. 
The use of this technique for generation of random numbers is due to Guerra, Tapia, 
and Thompson (1976), who give a description of the algorithm and accuracy 
comparisons between this method and linear interpolation. The relative errors using 
the Akima interpolation are generally considered very good.

Example

In this example, IMSL_RAND_GEN_CONT is used to set up a table for generation 
of beta pseudorandom deviates. The CDF for this distribution is computed by the 
routine IMSL_BETACDF. The table contains 100 points at which the CDF is 
evaluated and that are used for interpolation. Notice that two warnings are issued 
during the computations for this example.

.RUN
FUNCTION cdf, x

return, IMSL_BETACDF(x, 3., 2.)
END

iopt = 0
ndata = 100;
table = FLTARR(100, 5)
x = 0.0;
table(*,0) = FINDGEN(100)/100.
IMSL_CONT_TABLE, 'cdf', iopt, ndata, table
IMSL_RANDOMOPT, Set = 123457

r = IMSL_RAND_GEN_CONT(5, table) 
PM, r

0.92079391
0.46412855
0.76678398
0.65357975
0.81706959
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Version History

6.4 Introduced
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IMSL_DISCR_TABLE

The IMSL_DISCR_TABLE function sets up table to generate pseudorandom 
numbers from a general discrete distribution.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_DISCR_TABLE(prf, del, nndx, imin, nmass [, CUM_PROBS=array] 
[, /DOUBLE])

Return Value

Array, cumpr, of length nmass + nndx containing in the first nmass positions, the 
cumulative probabilities and in some of the remaining positions, indexes to speed 
access to the probabilities.

Arguments

del

Maximum absolute error allowed in computing the cumulative probability. 
Probabilities smaller than del are ignored; hence, del should be a small positive 
number. If del is too small, however, cumpr (nmass – 1) must be exactly 1.0 since that 
value is compared to 1.0 – del.

imin

Scalar containing the smallest value the random deviate can assume. By default, prf is 
evaluated at imin. If this value is less than del, imin is incremented by 1 and again prf 
is evaluated at imin. This process is continued until prf(imin) ≥ del. imin is output as 
this value and result(0) is output as prf(imin).

nmass

Scalar containing the number of mass points in the distribution.   Input, if keyword 
Cum_probs is used; otherwise, output. By default, nmass is the smallest integer such 
that prf(imin + nmass – 1) > 1.0 – del. nmass does include the points iminin + j for 
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which prf(iminin + j) < del, for j = 0, 1, ..., iminout – iminin, where iminin denotes the 
input value of imin and iminout denotes its output value.

nndx

The number of elements of cumpr available to be used as indexes. nndx must be 
greater than or equal to 1. In general, the larger nndx is, to within sixty or seventy 
percent of nmass, the more efficient the generation of random numbers using 
IMSL_RAND_GEN_DISCR will be.

prf

A scalar string specifying a user-supplied function to compute the probability 
associated with each mass point of the distribution The argument to the function is 
the point at which the probability function is to be evaluated. The argument to the 
function can range from imin to the value at which the cumulative probability is 
greater than or equal to 1.0 - del.

Keywords

CUM_PROBS

One dimensional array of length nmass containing the cumulative probabilities to be 
used in computing the index portion of the result. If the keyword Cum_Probs is used, 
prf is not used and may be a dummy function.

DOUBLE

If present and nonzero, double precision is used.

Discussion

IMSL_DISCR_TABLE sets up a table that “IMSL_RAND_GEN_CONT” on 
page 1121 uses to generate pseudorandom deviates from a discrete distribution. The 
distribution can be specified either by its probability function prf or by a vector of 
values of the cumulative probability function. Note that prf is not the cumulative 
probability distribution function. If the cumulative probabilities are already available 
in Cum_Probs, the only reason to call IMSL_DISCR_TABLE is to form an index 
vector in the upper portion of the result so as to speed up the generation of random 
deviates by the routine RAND_GEN_CONT.
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Examples

Example 1

In this example, IMSL_DISCR_TABLE is used to set up a table to generate 
pseudorandom variates from the discrete distribution:

Pr(X = 1) = 0.05

Pr(X = 2) = 0.45

Pr(X = 3) = 0.31

Pr(X = 4) = 0.04

Pr(X = 5) = 0.15

In this example, we input the cumulative probabilities directly using keyword 
Cum_Probs and request 3 indexes to be computed (nndx = 4). Since the number of 
mass points is so small, the indexes would not have much effect on the speed of the 
generation of the random variates.

.RUN
FUNCTION prf, x

RETURN, 0
END

cum_probs = [.05, .5, .81, .85, 1]
cumpr = IMSL_DISCR_TABLE('PRF', 0.00001, 4, 1, 5, $

CUM_PROBS = cum_probs)
PM, cumpr

0.0500000
0.500000
0.810000
0.850000
1.00000
3.00000
1.00000
2.00000
5.00000

Example 2

IMSL_DISCR_TABLE is sets up a table to generate binomial variates with 
parameters 20 and 0.5. IMSL_BINOMIALPDF is used to compute the probabilities.

.RUN
FUNCTION prf, ix
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RETURN,  IMSL_BINOMIALPDF(ix, 20, 0.5)
END

cumpr = IMSL_DISCR_TABLE('PRF', 0.00001, 12, 0, 21)
PM, cumpr

1.90735e-05
0.000200272
0.00128746
0.00590802
0.0206938
0.0576583
0.131587
0.251722
0.411901
0.588099
0.748278
0.868413
0.942342
0.979306
0.994092
0.998713
0.999800
0.999981
1.00000
11.0000
1.00000
7.00000
8.00000
9.00000
9.00000
10.0000
11.0000
11.0000
12.0000
13.0000
19.0000

Version History

6.4 Introduced
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IMSL_RAND_GEN_DISCR

The IMSL_RAND_GEN_DISCR function generates pseudorandom numbers from a 
general discrete distribution using an alias method or optionally a table lookup 
method.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RAND_GEN_DISCR(n, imin, nmass, probs [, /DOUBLE] 
[, /TABLE] )

Return Value

Integer array of length n containing the random discrete deviates.

Arguments

imin

Smallest value the random deviate can assume. This is the value corresponding to the 
probability in probs(0).

nmass

Number of mass points in the discrete distribution.

n

Number of random numbers to generate.

probs

Array of length nmass containing probabilities associated with the individual mass 
points. The elements of probs must be nonnegative and must sum to 1.0. 

If the keyword Table is used, then probs is a vector of length at least nmass + 1 
containing in the first nmass positions the cumulative probabilities and, possibly, 
indexes to speed access to the probabilities. “IMSL_DISCR_TABLE” on page 1124 
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can be used to initialize probs properly. If no elements of probs are used as indexes, 
probs (nmass) is 0.0 on input. The value in probs(0) is the probability of imin. The 
value in probs (nmass – 1) must be exactly 1.0 (since this is the CDF at the upper 
range of the distribution.)

Keywords

DOUBLE

If present and nonzero, double precision is used. 

TABLE

If present and nonzero, generate pseudorandom numbers from a general discrete 
distribution using a table lookup method. If this keyword is used, then probs is a 
vector of length at least nmass + 1 containing in the first nmass positions the 
cumulative probabilities and, possibly, indexes to speed access to the probabilities. 
“IMSL_DISCR_TABLE” on page 1124 can be used to initialize probs properly.

Discussion

IMSL_RAND_GEN_DISCR generates pseudorandom numbers from a discrete 
distribution with probability function given in the vector probs; that is:

Pr(X = i) = pj 

for i = imin, imin + 1, ..., imin + nm – 1 

where:

j = i – imin + 1, pj = probs(j), imin = imin, and nm = nmass

The algorithm is the alias method, due to Walker (1974), with modifications 
suggested by Kronmal and Peterson (1979). 

If the keyword Table is used, IMSL_RAND_GEN_DISCR generates pseudorandom 
deviates from a discrete distribution, using the table probs, which contains the 
cumulative probabilities of the distribution and, possibly, indexes to speed the search 
of the table. “IMSL_DISCR_TABLE” on page 1124 can be used to set up the table 
probs. IMSL_RAND_GEN_DISCR uses the inverse CDF method to generate the 
variates.
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Examples

Example 1

In this example, IMSL_RAND_GEN_DISCR is used to generate five pseudorandom 
variates from the discrete distribution:

Pr(X = 1) = 0.05

Pr(X = 2) = 0.45

Pr(X = 3) = 0.31

Pr(X = 4) = 0.04

Pr(X = 5) = 0.15

probs = [0.05, 0.45, 0.31, 0.04, 0.15]
n = 5
imin = 1
nmass = 5
IMSL_RANDOMOPT, Set_seed = 123457
r = IMSL_RAND_GEN_DISCR(n, imin, nmass, probs)
PM, r

3
2
2
3
5

Example 2

In this example, the “IMSL_DISCR_TABLE” on page 1124 is used to set up a table 
and then IMSL_RAND_GEN_DISCR is used to generate five pseudorandom variates 
from the binomial distribution with parameters 20 and 0.5.

.RUN
FUNCTION prf, ix

RETURN,  IMSL_BINOMIALPDF(ix, 20, .5)
END

imin = 0
nmass = 21
IMSL_RANDOMOPT, Set_seed = 123457
cumpr = IMSL_DISCR_TABLE('prf', 0.00001, 12, imin, nmass)
r = IMSL_RAND_GEN_DISCR(n, imin, nmass, cumpr, /TABLE) 
PM, r
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14
9
12
10
12

Version History

6.4 Introduced
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IMSL_RANDOM_ARMA

The IMSL_RANDOM_ARMA function generates a time series from a specific 
IMSL_ARMA model.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_RANDOM_ARMA(n, nparams [, /ACCEPT_REJECT] 
[, AR_LAGS=array] [, CONST=value] [, /DOUBLE] [, INPUT_NOISE=array] 
[, MA_LAGS=array] [, OUTPUT_NOISE=variable] [, /VAR_NOISE] 
[, W_INIT=array])

Result = IMSL_RANDOM_ARMA(n, nparams, ar [, /ACCEPT_REJECT] 
[, AR_LAGS=array] [, CONST=value] [, /DOUBLE] [, INPUT_NOISE=array] 
[, MA_LAGS=array] [, OUTPUT_NOISE=variable] [, /VAR_NOISE] 
[, W_INIT=array])

Result = IMSL_RANDOM_ARMA(n, nparams, ma [, /ACCEPT_REJECT] 
[, AR_LAGS=array] [, CONST=value] [, /DOUBLE] [, INPUT_NOISE=array] 
[, MA_LAGS=array] [, OUTPUT_NOISE=variable] [, /VAR_NOISE] 
[, W_INIT=array])

Result = IMSL_RANDOM_ARMA(n, nparams, ar, ma [, /ACCEPT_REJECT] 
[, AR_LAGS=array] [, CONST=value] [, /DOUBLE] [, INPUT_NOISE=array] 
[, MA_LAGS=array] [, OUTPUT_NOISE=variable] [, /VAR_NOISE] 
[, W_INIT=array])

Return Value

One-dimensional array of length n containing the generated time series.

Arguments

n

Number of observations to be generated. Parameter n must be greater than or equal to 
one.
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nparams

One-dimensional array containing the parameters p and q consecutively. nparams(0) 
= p, where p is the number of autoregressive parameters. Parameter p must be greater 
than or equal to zero. nparams(1) = q, where q is the number of moving average 
parameters. Parameter q must be greater than or equal to zero.

ar

One-dimensional array of length p containing the autoregressive parameters.

ma

One-dimensional array of length q containing the moving average parameters.

Keywords

ACCEPT_REJECT

If present and nonzero, the random noises will be generated from a normal 
distribution using an acceptance/rejection method. If keyword Accept_Reject is not 
used, the random noises will be generated using an inverse normal CDF method. This 
argument will be ignored if keyword Input_Noise is used.

AR_LAGS

One-dimensional array of length p containing the order of the nonzero autoregressive 
parameters. Default: Ar_Lags = [1, 2, ..., p]

CONST

Overall constant. See the Discussion section. Default:  Const = 0

DOUBLE

If present and nonzero, double precision is used.

INPUT_NOISE

One-dimensional array of length n + max (Ar_Lags(i)) containing the random noises. 
Keywords Input_Noise and Var_Noise can not be used together. Keywords 
Input_Noise and Output_Noise cannot be used together.
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MA_LAGS

One-dimensional array of length q containing the order of the nonzero moving 
average parameters. Default: Ma_Lags = [1, 2, ..., q]

OUTPUT_NOISE

Named variable into which a one-dimensional array of length n + max (Ma_Lags(i)) 
containing the random noises is stored.

VAR_NOISE

If present (and Input_Noise is not used), noise at is generated from a normal 
distribution with mean 0 and variance Var_Noise. Var_Noise and Input_Noise cannot 
be used together. Default: Var_Noise = 1.0

W_INIT

One-dimensional array of length max (Ar_Lags(i)) containing the initial values of the 
time series. Default: W_Init(*) = Const/(1 – ar(0) – ar(1) – ... – ar(p − 1))

Discussion

The IMSL_RANDOM_ARMA function simulates an IMSL_ARMA(p, q) process, 
{Wt}, for t = 1, 2, ..., n. The model is:  

Let µ be the mean of the time series {Wt}. The overall constant θ0 (Const) is: 

Time series whose innovations have a nonnormal distribution may be simulated by 
providing the appropriate innovations in Input_Noise and start values in W_Init.

The time series is generated according to the following model:

φ θ θ( ) ( )B W B A t Zt t= + ∈0

φ B( ) 1 φ1B– φ2B
2

– …– φpB
p

–=

θ B( ) 1 θ1B– θ2B
2

– …– θqB
q

–=

θ0

µ p 0=

µ 1 φi
i 1=

p

∑–
 
 
 
 

p 0>









=

IMSL_RANDOM_ARMA IDL Analyst Reference Guide



Chapter 24: Random Number Generation 1135
X(i) = Const + ar(0) * X(i – Ar_Lags(0)) + ... + ar(p – 1) * X(i – Ar_Lags(p – 
1)) +

A(I) – ma(0) * A(i – Ma_Lags(0)) – ... – ma(q – 1) * A(i – Ma_Lags(q – 1))

where the constant is related to the mean of the series:

 

as follows:

 

and where:

X(t) = W(t),t = 0, 1, ..., n − 1

and:

W(t) = W_Init(t + p),t = –p, –p + 1, ..., −2,−1

and A is either Input_Noise (if Input_Noise is used) or Output_Noise (otherwise).

Examples

Example 1

In this example, IMSL_RANDOM_ARMA is used to generate a time series of length 
five, using an IMSL_ARMA model with three autoregressive parameters and two 
moving average parameters. The start values are 0.1000, 0.0500, and 0.0375.

IMSL_RANDOMOPT, SET = 123457
n  =  5
nparams  =  [3, 2]
ar  =  [0.5, 0.25, 0.125]
ma  =  [-0.5, -0.25]
r  =  IMSL_RANDOM_ARMA(n, nparams, ar, ma)
PM, r, FORMAT = '(5F10.3)',$

TITLE = '                   IMSL_ARMA random deviates'

                 IMSL_ARMA random deviates
0.637     0.317    -0.366    -2.122    -1.407

Example 2

In this example, a time series of length 5 is generated using an IMSL_ARMA model 
with 4 autoregressive parameters and 2 moving average parameters. The start values 
are 0.1, 0.05 and 0.0375.

IMSL_RANDOMOPT, SET = 123457

W

Const W 1 ar 0( )– … – ar q 1–( )–( )+( )⋅=
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n  =  5
nparams  =  [3, 2]
ar  =  [0.5, 0.25, 0.125]
ma  =  [-0.5, -0.25]
wi  =  [0.1, 0.05, 0.0375]
theta0  =  1
avar  =  0.1
r  =  IMSL_RANDOM_ARMA(n, nparams, ar, ma, /ACCEPT_REJECT, $

W_INIT = wi, CONST = theta0, VAR_NOISE = avar)
PM, r, FORMAT = '(5F10.3)', $

TITLE = '                 IMSL_ARMA random deviates:'

                 IMSL_ARMA random deviates:
1.467     1.788     2.459     3.330     3.941

Errors

Warning Errors

STAT_RNARM_NEG_VAR—VAR(a) = “Var_Noise” = #, VAR(a) must be greater 
than 0. The absolute value of # is used for VAR(a).

Version History

6.4 Introduced
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IMSL_FAURE_INIT

The IMSL_FAURE_INIT function initializes the structure used for computing a 
shuffled Faure sequence.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FAURE_INIT(ndim [, BASE=value] [, SKIP=value] )

Return Value

A structure that contains information about the sequence.

Arguments

ndim

The dimension of the hyper-rectangle.

Keywords

BASE

The base of the Faure sequence. Default: The smallest prime greater than or equal to 
ndim.

SKIP

The number of points to be skipped at the beginning of the Faure sequence. Default:

where:

and B is the largest representable integer.

base
m 2 1–( )⁄

m Blog  baselog⁄=
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Discussion

Discrepancy measures the deviation from uniformity of a point set. The discrepancy 
of the point set:

is: 

where the supremum is over all subsets of [0, 1]d of the form:

λ is the Lebesque measure, and: 

is the number of the xj contained in E.

The sequence x1, x2, …, of points [0,1]d is a low-discrepancy sequence if there exists 
a constant c(d), depending only on d, such that: 

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The lowest 
bound for the discrepancy is obtained for the smallest prime b≥d, so the keyword 
Base defaults to the smallest prime greater than or equal to the dimension. The 
generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion: 

where ai (n) are integers: 

The j-th coordinate of xn is: 

The generator matrix for the series:

x1 … xn, 0 1,[ ] d
d 1,≥,∈,

Dn
d( )

sup
E

A E n;( )
n

------------------ λE–=

E 0 t1 ) … 0 td ) 0 tj 1 1 j d,≤ ≤,≤ ≤, ,[××,[=

( );A En

Dn
d( )

c d( ) nlog( )d

n
------------------≤

n ai n( )b
i

i 0=

∞
∑=

0 ai n( ) b<≤
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is defined to be:

 

and:

 

is an element of the Pascal matrix: 

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence 
itself. It can be shown that this shuffling preserves the low-discrepancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive 
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized Faure 
sequence.

Example

In this example, five points in the Faure sequence are computed. The points are in the 
three-dimensional unit cube.

Note that IMSL_FAURE_INIT is used to create a structure that holds the state of the 
sequence. Each call to IMSL_FAURE_NEXT_PT returns the next point in the 
sequence and updates the state structure.

state = IMSL_FAURE_INIT(3)
p = IMSL_FAURE_NEXT_PT(5, state)
PM, p

0.333689     0.492659    0.0640654
0.667022     0.825992     0.397399
0.778133     0.270436     0.175177
0.111467     0.603770     0.508510
0.444800     0.937103     0.841843

xn
j( )

ckd
j( )

ad n( )b
k– 1–

1 j d≤ ≤,
d 0=

∞

∑
k 0=

∞

∑=

ckd
j( )

ckd
j( )

j
d k–

ckd=

ckd

ckd

d!
c! d c–( )!
----------------------- k d≤

0 k d>





=
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Version History

6.4 Introduced
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IMSL_FAURE_NEXT_PT

The IMSL_FAURE_NEXT_PT function computes a shuffled Faure sequence.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_FAURE_NEXT_PT(npts, state [, /DOUBLE] [, SKIP=value])

Return Value

An array of size npts by state.dim containing the npts next points in the shuffled 
Faure sequence.

Arguments

npts

The number of points to generate in the hyper-rectangle.

state

State structure created by a call to IMSL_FAURE_INIT.

Keywords

DOUBLE

If present and nonzero, double precision is used.

SKIP

The current point in the sequence. The sequence can be restarted by initializing a new 
sequence using this value for Skip, and using the same dimension for ndim.

Discussion

Discrepancy measures the deviation from uniformity of a point set.
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The discrepancy of the point set:

is: 

where the supremum is over all subsets of [0, 1]d of the form:

λ is the Lebesque measure, and:

is the number of the xj contained in E. 

The sequence x1, x2, ... of points [0,1]d is a low-discrepancy sequence if there exists a 
constant c(d), depending only on d, such that: 

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The lowest 
bound for the discrepancy is obtained for the smallest prime b≥d, so the keyword 
Base defaults to the smallest prime greater than or equal to the dimension. The 
generalized Faure sequence x1, x2, ..., is computed as follows:

Write the positive integer n in its b-ary expansion: 

where ai (n) are integers: 

The j-th coordinate of xn is: 

x1 … xn 0 1,[ ] d
d 1,≥,∈, ,

Dn
d( )

sup
E

A E n;( )
n

------------------ λE–=

E 0 t1 ) … 0 td ) 0 tj 1 1 j d,≤ ≤,≤ ≤, ,[××,[=

A E n;( )

Dn
d( )

c d( ) nlog( )d

n
------------------≤

n ai n( )b
i

i 0=

∞
∑=

0 ai n( ) b<≤

xn
j( )

ckd
j( )

ad n( )b
k– 1–

1 j d≤ ≤,
d 0=

∞

∑
k 0=

∞

∑=
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The generator matrix for the series: 

is defined to be: 

and: 

is an element of the Pascal matrix: 

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence 
itself. It can be shown that this shuffling preserves the low-discrepancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive 
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized Faure 
sequence.

Example

In this example, five points in the Faure sequence are computed. The points are in the 
three-dimensional unit cube.

Note that IMSL_FAURE_INIT is used to create a structure that holds the state of the 
sequence. Each call to IMSL_FAURE_NEXT_PT returns the next point in the 
sequence and updates the state structure. 

state = IMSL_FAURE_INIT(3)
p = IMSL_FAURE_NEXT_PT(5, state)
PM, p

0.333689     0.492659    0.0640654
0.667022     0.825992     0.397399
0.778133     0.270436     0.175177
0.111467     0.603770     0.508510
0.444800     0.937103     0.841843

ckd
j( )

ckd
j( )

j
d k–

ckd=

ckd

ckd

d!
c! d c–( )!
----------------------- k d≤

0 k d>





=
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Version History

6.4 Introduced
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Overview: Math and Statistics Utilities

This chapter describes general utility routines related to the IMSL library’s 
mathematics and statistics routines. See “Math and Statistics Utilities Routines” on 
page 1147 for a list of the included routines.
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Math and Statistics Utilities Routines

Dates

IMSL_DAYSTODATE—Days since epoch to date.

IMSL_DATETODAYS—Date to days since epoch.

Constants and Data Sets

IMSL_CONSTANT—Natural and mathematical constants.

IMSL_MACHINE—Machine constants.

IMSL_STATDATA—Commonly analyzed data sets.

Binomial Coefficient

IMSL_BINOMIALCOEF—Evaluates the binomial coefficient.

Geometry

IMSL_NORM—Vector norms.

Matrix Norm

IMSL_MATRIX_NORM—Real coordinate matrix.

Matrix Entry and Display

PM—Formatted output of arrays using the standard linear algebraic convention: 
“row” refers to the first index of the array and “column” refers to the second.

RM—Formatted input of arrays using the standard linear algebraic convention: “row” 
refers to the first index of the array and “column” refers to the second.
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IMSL_DAYSTODATE

The IMSL_DAYSTODATE procedure gives the date corresponding to the number of 
days since January 1, 1900.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

IMSL_DAYSTODATE, days, day[, month[, year]]

Arguments

days

Number of days since January 1, 1900.

day

On return, this named variable is assigned the day of the date specified by days.

month

If present, on return, this named variable is assigned the month of the date specified 
by days.

year

If present, on return, this named variable is assigned the year of the date specified by 
days. The year 1950 corresponds to the year 1950 A.D., and the year 50 corresponds 
to year 50 A.D.

Discussion

The IMSL_DAYSTODATE procedure computes the date corresponding to the 
number of days since January 1, 1900. For a negative input value of days, the date 
computed is prior to January 1, 1900. This procedure is the inverse of the IDL 
Analyst IMSL_DATETODAYS function.
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The Gregorian calendar’s first day after October 4, 1502, which became October 15, 
1582. Prior to that, the Julian calendar was in use.

Example

The following example uses IMSL_DAYSTODATE to compute the date for the 100th 
day of 1986. This is accomplished by first using IMSL_DATETODAYS to get the 
“day number” for December 31, 1985.

d0 = IMSL_DATETODAYS(31, 12, 1985)
IMSL_DAYSTODATE, d0 + 100, d, m, y
PM, d, m, y, TITLE = 'Day 100 of 1986 is (day-month-year)', $

FORMAT = '(20x, i3, i4, i7)'

Day 100 of 1986 is (day-month-year)
                     10   4   1986

Version History

6.4 Introduced
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IMSL_DATETODAYS

The IMSL_DATETODAYS function computes the number of days from January 1, 
1900, to the given date.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_DATETODAYS([day[, month[, year]]])

Return Value

Number of days from January 1, 1900, to the given date. If negative, it indicates the 
number of days prior to January 1, 1900.

Arguments

day

Day of the input date.

month

Month of the input date.

year

Year of the input date. The year 1950 corresponds to the year 1950 A.D., and the year 
50 corresponds to year 50 A.D.

Discussion

The IMSL_DATETODAYS function returns the number of days from January 1, 
1900, to the given date and returns negative values for days prior to January 1, 1900. 
A negative year can be used to specify B.C. Input dates in year 0 and for October 5, 
1582, through October 14, 1582, inclusive, do not exist; consequently, in these cases, 
IMSL_DATETODAYS issues an error.
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The Gregorian calendar starts the first day after October 4, 1582, which became 
October 15, 1582. Prior to that, the Julian calendar was in use. 

Example

The following example uses IMSL_DATETODAYS to compute the number of days 
from January 15, 1986, to February 28, 1986.

d0 = IMSL_DATETODAYS(15, 1, 1986)
d1 = IMSL_DATETODAYS(28, 2, 1986)
PM, d1 - d0, TITLE = 'Number of days from 1/15/86 to 2/28/86'

Number of days from 1/15/86 to 2/28/86
          44

Version History

6.4 Introduced
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IMSL_CONSTANT

The IMSL_CONSTANT function returns the value of various mathematical and 
physical constants.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_CONSTANT(name[, units] [, /DOUBLE])

Return Value

By default, returns the desired constant. If no value can be computed, NaN (Not a 
Number) is returned.

Arguments

name

Scalar string specifying the name of the desired constant. The case of the characters is 
not relevant when specifying name, i.e., character strings “PI”, “Pi”, “pI”, and “pi” 
are equivalent. Spaces and underscores are allowed and ignored.

units

Scalar string specifying the units of the desired constant. If empty, then Systeme 
International d’Unites (SI) units are assumed. The case of the characters is not 
relevant when specifying units, i.e., character strings “METER”, “Meter”, and 
“meter” are equivalent. Parameter units has the form “U1*U2*...*Um/V1/.../Vn,” 
where Ui and Vi are the names of basic units or the names of basic units raised to a 
power. Basic units must be separated by * or /. Powers are indicated by ^, as in “m^2” 
for m2. Examples are “METER*KILOGRAM/SECOND”, “M*KG/S”, “METER”, 
or “M/KG^2”. 
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Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The names allowed are listed in Table 25-1. Values marked with (mp) are exact (to 
machine precision). The references in the right-hand column are indicated by code 
numbers: (1) for Cohen and Taylor (1986), (2) for Liepman (1964), and (3) for 
precomputed mathematical constants. The supported units are listed in Table 25-2.

Name Description Value Ref.

amu atomic mass unit 1.6605655 x 10–27 kg 1

ATM standard atm. pressure 1.01325 x 105 N/m2 (mp) 2

AU astronomical unit 1.496 x 1011 m

Avogadro Avogadro’s number, N 6.022045 x 1023 1/mole 1

Boltzman Boltzman’s constant, k 1.380662 x 10–23 J / K 1

C speed of light, c 2.997924580 x 108 m/s 1

Catalan Catalan’s constant 0.915965... (mp) 3

E base of natural logs, e 2.718... (mp) 3

ElectronCharge electron charge, e 1.6021892 x 10–19 C 1

ElectronMass electron mass, me 9.109534 x 10–31 kg 1

ElectronVolt electron volt, ev 1.6021892 x 10–19 J 1

Euler Euler’s constant, γ 0.577... (mp) 3

Faraday Faraday constant, F 9.648456 x 104 C/mole 1

FineStructure fine structure, α 7.2973506 x 10–3 1

Gamma Euler’s constant, γ  0.577... (mp) 3

Gas gas constant, R0 8.31441 J/mole/K 1

Table 25-1: Constant Names
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The units allowed are as follows:

Gravity gravitational constant, G 6.6720 x 10–11 N m2 / 
kg2

1

Hbar Planck’s constant / 2π 1.0545887 x 10–34 J s 1

PerfectGasVolum
e

std. vol. ideal gas 2.241383 x 10–2 m3 / 
mole

1

Pi Pi, π  3.141... (mp) 3

Planck Planck’s constant, h 6.626176 x 10–34 J s 1

ProtonMass proton mass, Mp 1.6726485 x 10–27 kg 1

Rydberg Rydberg’s constant, 
Rinfinity

1.097373177 x 107 /m 1

Speedlight speed of light, c 2.997924580 x 108 m/s 1

StandardGravity standard g 9.80665 m/s2 (mp) 2

StandardPressure standard atm. pressure 1.01325 x 105 N/m2 (mp) 2

StefanBoltzman Stefan-Boltzman, σ 5.67032 x 10–8 W/K4 /
m2

1

WaterTriple triple point of water 2.7316 x 102 K 2

Unit Description

time day, hour = hr, min = minute, s = sec = second, year

frequency Hertz = Hz

mass AMU, g = gram, lb = pound, ounce = oz, slug

distance Angstrom, AU, feet = foot, in = inch, 
m = meter = metre, micron, mile, mill, parsec, yard

Table 25-2: Supported Units

Name Description Value Ref.

Table 25-1: Constant Names (Continued)
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area acre

volume l = liter = litre

force dyne, N = Newton

energy BTU, Erg, J = Joule

work W = watt

pressure ATM = atmosphere, bar

temperature degC = Celsius, degF = Fahrenheit, degK = Kelvin

viscosity poise, stoke

charge Abcoulomb, C = Coulomb, statcoulomb

current A = ampere, abampere, statampere

voltage Abvolt, V = volt

magnetic 
induction

T = Tesla, Wb = Weber

other units l, farad, mole, Gauss, Henry, Maxwell, Ohm

Unit Description

Table 25-2: Supported Units (Continued)
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The metric prefixes listed in Table 25-3 can be used with the previous units. The one- 
or two-letter prefixes can only be used with one-letter unit abbreviations.

There is no one-letter unit abbreviation for myria or mega since m means milli.

Examples

Example 1

In this example, Euler’s constant γ is obtained and printed. Euler’s constant is defined 
to be as follows: 

Prefix Definition Value

a atto 10–18

f femto 10–15 

p pico 10–12 

n nano 10–9 

u micro 10–6 

m milli 10–3 

c centi 10–2

d deci 10–1

dk deca 102 

k kilo 103 

myria 104 

mega 106 

g giga 109

t tera 1012 

Table 25-3: Supported Prefixes

γ 1
k
--- lnn–

k 1=

n 1–

∑n ∞→
lim=
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PM, IMSL_CONSTANT('gamma')

0.577216

Example 2

In this example, the speed of light is obtained using several different units.

c1 = IMSL_CONSTANT('SpeedLight', 'meter/second')
c2 = IMSL_CONSTANT('SpeedLight', 'mile/second')
c3 = IMSL_CONSTANT('SpeedLight', 'cm/ns')
PM, 'speed of light = ', c1, c2, c3, $

Title ='             meters/second   ' + $
'miles/second     cm/ns'

meters/second   miles/second     cm/ns
speed of light =  2.99792e+008      186282.      29.9792

Errors

Warning Errors

MATH_MASS_TO_FORCE—Conversion of units-of-mass to units-of-force required for 
consistency.

Version History

6.4 Introduced
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IMSL_MACHINE

The IMSL_MACHINE function returns information describing the computer’s 
arithmetic.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_MACHINE( [, /DOUBLE] [, /FLOAT] )

Return Value

The information describing the computer’s arithmetic is returned in a structure.

Keywords

DOUBLE

If present and nonzero, a structure containing the information describing the single-
precision, floating-point arithmetic is returned.

FLOAT

If present and nonzero, a structure containing the information describing the single-
precision, floating-point arithmetic is returned.

Discussion

The IMSL_MACHINE function returns information describing the computer’s 
arithmetic. This can be used to make programs machine independent. The 
information returned by IMSL_MACHINE is in the form of a structure. A different 
structure is used for each type: integer, float, and double. Depending on how 
IMSL_MACHINE is called, a different structure is returned. 

The default action of IMSL_MACHINE is to return the structure IMACHINE which 
contains integer information on the computer’s arithmetic. By using either the 
keywords Float or Double, information about the floating- or double-precision 
arithmetic is returned in structures FMACHINE or DMACHINE. 
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The contents of the these structures are described below.

Integer Information: IMACHINE

Assume that integers are represented in M-digit, base A form as: 

where σ is the sign and 0 ≤ xk < A for k = 0, ..., M. Then, Table 25-4 describes the 
tags:

Assume that floating-point numbers are in N-digit, base B form as: 

where σ is the sign and 0 ≤ xk < B for k = 1, ..., N for and Emin ≤ E ≤ Emax. Then, 
Table 25-5 describes the tags:

Tag Definition

BITS_PER_CHAR C, bits per character

INTEGER_BASE A, the base

INTEGER_DIGITS Ms, the number of base-A digits in a short int

MAX_INTEGER , the largest short int

LONG_DIGITS Ml, the number of base-A digits in a long int

MAX_LONG , the largest long int

Table 25-4: Integer Tags

Tag Definition

FLOAT_BASE B, the base

FLOAT_DIGITS Nf, the number of base-B digits in float

FLOAT_MIN_EXP , the smallest float exponent

FLOAT_MAX_EXP , the largest float exponent

Table 25-5: Floating Point Tags

σ xkA
k

k 0=

M

∑

AMs 1–

AMl 1–

σB
E

xkB
k–

k 1=

N

∑

Eminf

Emaxf
IDL Analyst Reference Guide IMSL_MACHINE



1160 Chapter 25: Math and Statistics Utilities
Floating- and Double-precision Information: FMACHINE and 
DMACHINE

Information concerning the floating- or double-precision arithmetic of the computer 
is contained in the structures FMACHINE and DMACHINE. These structures are 
returned into named variables by calling IMSL_MACHINE with the keywords Float 
for FMACHINE and Double for DMACHINE.

Assume that float numbers are represented in Nf- digit, base B form as: 

where σ is the sign, 0 ≤ xk < B for k = 1, 2, ..., Nf and

 

Note that if we make the assignment imach = IMSL_MACHINE( ), then B = 
imach.FLOAT_BASE, Nf = imach.FLOAT_DIGITS,

 

and:

 

The ANSI/IEEE 754-1985 standard for binary arithmetic uses NaN (Not a Number) 
as the result of various otherwise illegal operations, such as computing 0/0. If the 
assignment amach = IMSL_MACHINE(/Float) is made, then on computers that do 
not support NaN, a value larger than amach. MAX_POS is returned in amach.NAN. 
On computers that do not have a special representation for infinity, amach.POS_INF 
contains the same value as amach.MAX_POS.

DOUBLE_DIGETS Nd, the number of base-B digits in double

DOUBLE_MIN_EXP , the largest long int

DOUBLE_MAX_EXP , the number of base-B digits in double

Tag Definition

Table 25-5: Floating Point Tags (Continued)
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The structure IMACHINE is defined by Table 25-6:

The structure DMACHINE contains machine constants that define the computer’s 
double arithmetic. Note that for double, if the assignment imach = 
IMSL_MACHINE( ) is made, then:

B = imach.FLOAT_BASE, Nf = imach.DOUBLE_DIGITS

 

and:

 

Missing values in IDL Analyst procedures and functions are often indicated by NaN. 
There is no missing-value indicator for integers. Users ususally have to convert from 
their missing value indicators to NaN.

Example

In this example, all values returned by IMSL_MACHINE are printed on a machine 
with IEEE (Institute for Electrical and Electronics Engineering) arithmetic.

i = IMSL_MACHINE()
f = IMSL_MACHINE(/FLOAT)
d = IMSL_MACHINE(/DOUBLE)
; Call HELP with the keyword STRUCTURE set to view the contents 
; of the structures.

Tag Definition

MIN_POS BEminf –1, the smallest positive number

MAX_POS BEmaxf(1 – B –Nf ), the largest number

MIN_REL_SPACE B – Nf, the smallest relative spacing

MAX_REL_SPACE B1– Nf, the largest relative spacing

LOG10_BASE log10(B)

NAN NaN

POS_INF positive machine infinity

NEG_INF negative machine infinity

Table 25-6: Floating or Double Precision Tags

Eminf
imach.DOUBLE_MIN_EXP=

Emaxf
imach.DOUBLE_MAX_EXP=
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HELP, i, f, d, /STRUCTURE

** Structure IMACHINE, 13 tags, length=52:
 BITS_PER_CHAR LONG             8
 INTEGER_BASE LONG             2
 INTEGER_DIGITS LONG             15
 MAX_INTEGER LONG         32767
 LONG_DIGITS LONG            31
 MAX_LONGLONG    2147483647
 FLOAT_BASE LONG             2
 FLOAT_DIGITS LONG            24
 FLOAT_MIN_EXP LONG           -125
 FLOAT_MAX_EXP LONG           128
 DOUBLE_DIGITS LONG            53
 DOUBLE_MIN_EXP LONG         -1021
 DOUBLE_MAX_EXP LONG           1024

** Structure FMACHINE, 8 tags, length=32:
 MIN_POS FLOAT   1.17549e-38
 MAX_POS FLOAT    3.40282e+38
 MIN_REL_SPACE FLOAT   5.96046e-08
 MAX_REL_SPACE FLOAT    1.19209e-07
 LOG_10 FLOAT       0.301030
 NAN FLOAT            NaN
 POS_INF FLOAT           Inf
 NEG_INF FLOAT          -Inf

** Structure DMACHINE, 8 tags, length=64:
 MIN_POS DOUBLE 2.2250739e-308
 MAX_POS DOUBLE 1.7976931e+308
 MIN_REL_SPACE DOUBLE 1.1102230e-16
 MAX_REL_SPACE DOUBLE 2.2204460e-16
 LOG_10 DOUBLE     0.30102998
 NAN DOUBLE            NaN
 POS_INF DOUBLE      Infinity
 NEG_INF DOUBLE      -Infinity

Version History

6.4 Introduced
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IMSL_STATDATA

The IMSL_STATDATA function retrieves commonly analyzed data sets.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_STATDATA(choice)

Return Value

An array containing the desired data set is returned.

Arguments

choice

Data set indicator. See Table 25-7 for a list of values for choice.

choice Number
of Rows

Number of 
Columns Description of Data Set

1 16 7 Longley

2 176 2 Wolfer sunspot

3 150 5 Fisher iris

4 144 1 Box and Jenkins 

Series G

5 13 5 Draper and Smith 

Appendix B

6 197 1 Box and Jenkins 

Series A

Table 25-7: choice Values
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Keyword

DOUBLE

If present and nonzero, double precision is used.

Discussion 

The IMSL_STATDATA function retrieves a standard data set frequently cited in 
statistics text books or in this manual. Table 25-8 gives the references for each data 
set:

7 296 2 Box and Jenkins 

Series J

8 100 4 Robinson Multichannel 

Time Series

9 113 34 Afifi and Azen 

Data Set A

choice References

1 Longley (1967)

2 Anderson (1971, p. 660)

3 Fisher (1936); Mardia et al. (1979, Table 1.2.2)

4 Box and Jenkins (1976, p. 531)

5 Draper and Smith (1981, pp. 629–630)

6 Box and Jenkins (1976, p. 525)

7 Box and Jenkins (1976, pp. 532–533)

Table 25-8: Standard Data Set References

choice Number
of Rows

Number of 
Columns Description of Data Set

Table 25-7: choice Values (Continued)
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Example

In this example, IMSL_STATDATA is used to copy the Draper and Smith (1981, 
Appendix B) data set into X.

x = IMSL_STATDATA(5)
PM, x

7.00000      26.0000      6.00000      60.0000      78.5000
1.00000      29.0000      15.0000      52.0000      74.3000
11.0000      56.0000      8.00000      20.0000      104.300
11.0000      31.0000      8.00000      47.0000      87.6000
7.00000      52.0000      6.00000      33.0000      95.9000
11.0000      55.0000      9.00000      22.0000      109.200
3.00000      71.0000      17.0000      6.00000      102.700
1.00000      31.0000      22.0000      44.0000      72.5000
2.00000      54.0000      18.0000      22.0000      93.1000
21.0000      47.0000      4.00000      26.0000      115.900
1.00000      40.0000      23.0000      34.0000      83.8000
11.0000      66.0000      9.00000      12.0000      113.300
10.0000      68.0000      8.00000      12.0000      109.400

Version History

8 Robinson (1967, p. 204)

9 Afifi and Azen (1979, pp. 16–22)

6.4 Introduced

choice References

Table 25-8: Standard Data Set References (Continued)
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IMSL_BINOMIALCOEF

The IMSL_BINOMIALCOEF function evaluates the binomial coefficient.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_BINOMIALCOEF(n, m [, /DOUBLE])

Return Value

The binomial coefficient:

 

is returned.

Arguments

m

Second parameter of the binomial coefficient. Parameter m must be nonnegative.

n

First parameter of the binomial coefficient. Parameter n must be nonnegative.

Keywords

DOUBLE

If present and nonzero, double precision is used.

Discussion

The binomial function is defined to be: 

n
m 
 

n
m 
  n!

m! n m–( )!
---------------------------=
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with n ≥ m ≥ 0. Also, n must not be so large that the function overflows.

Example

In this example:

 

is computed and printed.

n  =  9
m  =  5
ans  =  IMSL_BINOMIALCOEF(n, m)
PRINT,  'binomial coefficient =', ans

binomial coefficient =      126.000

Version History

6.4 Introduced

9
5 
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IMSL_NORM

The IMSL_NORM function computes various norms of a vector or the difference of 
two vectors.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

Result = IMSL_NORM(x[, y] [, INDEX_MAX=variable] [, INF=value] 
[, ONE=value] )

Return Value

The requested norm of the input vector. If the norm cannot be computed, NaN is 
returned.

Arguments

x

Vector for which the norm is to be computed.

y

If present, IMSL_NORM computes the norm of (x – y).

Keywords

INDEX_MAX

Named variable into which the index of the element of x with the maximum modulus 
is stored. If Index_Max is used, then the keyword Inf also must be used. If the 
parameter y is specified, then the index of (x – y) with the maximum modulus is 
stored.

INF

If present and nonzero, computes the infinity norm max|xi|.
IMSL_NORM IDL Analyst Reference Guide



Chapter 25: Math and Statistics Utilities 1169
ONE

If present and nonzero, computes the 1-norm  

Discussion

By default, IMSL_NORM computes the Euclidean norm as follows: 

If the keyword One is set, then the 1-norm: 

is returned. If the keyword Inf is set, the infinity norm max|xi| is returned. In the case 
of the infinity norm, the index of the element with maximum modulus also is 
returned.

If the parameter y is specified, the computations of the norms described above are 
performed on (x – y).

Examples

Example 1

In this example, the Euclidean norm of an input vector is computed.

x = [ 1.0, 3.0, -2.0, 4.0 ]
n = IMSL_NORM(x)
PM, n, Title = 'Euclidean norm of x:' 

Euclidean norm of x:
      5.47723

Example 2

This example computes max | xi – yi | and prints the norm and index.

x = [1.0, 3.0, -2.0, 4.0]

xi
i 0=

n 1–

∑

xi
2

i 0=

n 1–

∑
 
 
 
 
 

1
2
---

xi
i 0=

n 1–

∑
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y = [4.0, 2.0, -1.0, -5.0]
n = IMSL_NORM(x, y, /Inf, Index_Max = imax)
PM, n, Title = 'Infinity norm of (x-y):'
PM, imax, Title = 'Element of (x-y) with maximum modulus:'

Infinity norm of (x-y):
      9.00000
Element of (x-y) with maximum modulus:
           3

Version History

6.4 Introduced
IMSL_NORM IDL Analyst Reference Guide



Chapter 25: Math and Statistics Utilities 1171
IMSL_MATRIX_NORM

The IMSL_MATRIX_NORM function computes various norms of a rectangular 
matrix, a matrix stored in band format, and a matrix stored in coordinate format.

Note
This routine requires an IDL Analyst license. For more information, contact your 
ITT Visual Information Solutions sales or technical support representative.

Syntax

To compute various norms of a rectangular matrix:

Result = IMSL_MATRIX_NORM(a [, /DOUBLE] [, INF_NORM=value] 
[, ONE_NORM=value] [, SYMMETRIC=value])

To compute various norms of a matrix stored in band format:

Result = IMSL_MATRIX_NORM(n, nlca, nuca, a [, /DOUBLE] 
[, INF_NORM=value] [, ONE_NORM=value] [, SYMMETRIC=value])

To compute various norms of a matrix stored in coordinate format:

Result = IMSL_MATRIX_NORM(nrows, ncols, a [, /DOUBLE] 
[, INF_NORM=value] [, ONE_NORM=value] [, SYMMETRIC=value])

Return Value

The requested norm of the input matrix, by default, the Frobenius norm. If the norm 
cannot be computed, NaN is returned.

Arguments

a

Matrix for which the norm will be computed.

n

The order of matrix A.

ncols

The number of columns in matrix A.
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nlca

Number of lower codiagonals of A.

nrows

The number of rows in matrix A.

nuca

Number of upper codiagonals of A.

Keywords

DOUBLE

If present and nonzero, double precision is used.

INF_NORM

If present and nonzero, IMSL_MATRIX_NORM computes the infinity norm of 
matrix A.

ONE_NORM

If present and nonzero, IMSL_MATRIX_NORM computes the one norm of matrix 
A.

SYMMETRIC

If present and nonzero, matrix A is stored in symmetric storage mode. Keyword 
Symmetric can not be used with a rectangular matrix.

Discussion

By default, IMSL_MATRIX_NORM computes the Frobenius norm: 

If the keyword One_Norm is used, the one norm 

is returned. If the keyword Inf_Norm is used, the infinity norm 

A 2 A
2

ijj 0=
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1
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=
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is returned.

Examples

Example 1

Compute the Frobenius norm, infinity norm, and one norm of matrix A.

a  =  TRANSPOSE([[1.0, 2.0, -2.0, 3.0], $
[-2.0, 1.0, 3.0, 0.0], [0.0, 3.0, 1.0, -7.0], $
[5.0, -2.0, 7.0, 6.0], [4.0, 3.0, 4.0, 0.0]])

frobenius_norm  =  IMSL_MATRIX_NORM(a)
inf_norm  =  IMSL_MATRIX_NORM(a, /INF_NORM)
one_norm  =  IMSL_MATRIX_NORM(a, /ONE_NORM)
PRINT, 'Frobenius norm = ', frobenius_norm
PRINT, 'Infinity norm  = ', inf_norm
PRINT, 'One norm       = ', one_norm

Frobenius norm =       15.6844
Infinity norm  =       20.0000
One norm       =       17.0000

Example 2

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is 
stored in band storage mode.

nlca  =  1
nuca  =  1
n  =  4
a  =  [0.0, 2.0, 3.0, -1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 3.0, 4.0, 0.0]
frobenius_norm  =  IMSL_MATRIX_NORM(n, nlca, nuca, a)
inf_norm  =  IMSL_MATRIX_NORM(n, nlca, nuca, a, /INF_NORM)
one_norm  =  IMSL_MATRIX_NORM(n, nlca, nuca, a, /ONE_NORM)
PRINT, 'Frobenius norm = ', frobenius_norm
PRINT, 'Infinity norm  = ', inf_norm
PRINT, 'One norm       = ', one_norm

Frobenius norm =       6.55744
Infinity norm  =       5.00000
One norm       =       8.00000

A A
j n

ij
i

m

1 0 1 0

1
= ∑
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−
max
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i m
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Example 3

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is 
stored in symmetric band storage mode.

nlca  =  2
nuca  =  2
n  =  6
a  =  [0.0, 0.0, 7.0, 3.0, 1.0, 4.0, $

0.0, 5.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 4.0, 6.0, 3.0, 1.0]
frobenius_norm  =  IMSL_MATRIX_NORM(n, nlca, nuca, a, /SYMMETRIC)
inf_norm  =  IMSL_MATRIX_NORM(n, nlca, nuca, a, /INF_NORM, $

/SYMMETRIC)
one_norm  =  IMSL_MATRIX_NORM(n, nlca, nuca, a, /ONE_NORM, $

/SYMMETRIC)
PRINT, 'Frobenius norm = ', frobenius_norm
PRINT, 'Infinity norm  = ', inf_norm
PRINT, 'One norm       = ', one_norm

Frobenius norm =       16.9411
Infinity norm  =       16.0000
One norm       =       16.0000

Example 4

Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A is 
stored in coordinate format.

nrows  =  6
ncols  =  6
a  =  REPLICATE(imsl_f_sp_elem, 15)
a(*).row  =  [0, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5]
a(*).col  =  [0, 1, 2, 3, 2, 0, 3, 4, 0, 3, 4, 5, 0, 1, 5]
a(*).val  =  [10.0, 10.0, -3.0, -1.0, 15.0, $

-2.0, 10.0, -1.0, -1.0, -5.0, 1.0, -3.0, -1.0, -2.0, 6.0]
frobenius_norm  =  IMSL_MATRIX_NORM(nrows, ncols, a)
inf_norm  =  IMSL_MATRIX_NORM(nrows, ncols, a, /INF_NORM)
one_norm  =  IMSL_MATRIX_NORM(nrows, ncols, a, /ONE_NORM)
PRINT, 'Frobenius norm = ', frobenius_norm
PRINT, 'Infinity norm  = ', inf_norm
PRINT, 'One norm       = ', one_norm

Frobenius norm =       24.8395
Infinity norm  =       15.0000
One norm       =       18.0000
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Example 5

Compute the Frobenius norm, infinity norm and one norm of matrix A. Matrix A is 
stored in symmetric coordinate format.

nrows  =  6
ncols  =  6
a  =  REPLICATE(imsl_f_sp_elem, 9)
a(*).row  =  [0, 0, 0, 1, 1, 2, 2, 4, 4]
a(*).col  =  [0, 2, 5, 3, 4, 2, 5, 4, 5]
a(*).val  =  [10.0, -1.0, 5.0, 2.0, 3.0, 3.0, 4.0, -1.0, 4.0]
frobenius_norm  =  IMSL_MATRIX_NORM(nrows, ncols, a, /SYMMETRIC)
inf_norm  =  IMSL_MATRIX_NORM(nrows, ncols, a, /INF_NORM, $

/SYMMETRIC)
one_norm  =  IMSL_MATRIX_NORM(nrows, ncols, a, /ONE_NORM, $

/SYMMETRIC)
PRINT, 'Frobenius norm = ', frobenius_norm
PRINT, 'Infinity norm  = ', inf_norm
PRINT, 'One norm       = ', one_norm

Frobenius norm =       15.8745
Infinity norm  =       16.0000
One norm       =       16.0000

Version History

6.4 Introduced
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PM

The PM procedure performs formatted output of arrays using the standard linear 
algebraic convention: “row” refers to the first index of the array and “column” refers 
to the second. By contrast, other IDL routines (such as PRINT) perform formatted 
output of arrays using the standard image processing convention: “column” refers to 
the first index of the array and “row” refers to the second.

The PM procedure is used extensively in the examples in the IDL Analyst Reference 
Guide. For multidimensional arrays, the syntax

PM, array

is equivalent to

PRINT, TRANSPOSE(array)

Syntax

PM, Array0 [, ... , Array19]

Arguments

Arrayn

The arrays to be displayed. The PM routine can display up to 20 arrays.

Keywords

None.

Example

; Define an array arr
arr = [[1.0, 3.0], [0.0, 4.0], [2.0, 1.0]]
; Print using PM and PRINT
PM, arr & PRINT & PRINT, arr

IDL prints:

1.00000 0.000000 2.00000
3.00000 4.00000 1.00000

1.00000 3.00000
0.000000 4.00000
2.00000 1.00000
PM IDL Analyst Reference Guide



Chapter 25: Math and Statistics Utilities 1177
Version History

6.4 Introduced
IDL Analyst Reference Guide PM



1178 Chapter 25: Math and Statistics Utilities
RM

The RM procedure performs formatted input of arrays using the standard linear 
algebraic convention: “row” refers to the first index of the array and “column” refers 
to the second. By contrast, simply defining an array at the IDL command line creates 
an array the standard image processing convention: “column” refers to the first index 
of the array and “row” refers to the second.

The RM procedure is used extensively in the examples in the IDL Analyst Reference 
Guide. For multidimensional arrays, defining an array interactively using RM is 
equivalent to defining the same array using normal IDL syntax and then transposing 
the array.

Syntax

RM, Array, Rows, Columns

Arguments

Array

A named variable that will contain the array.

Rows

An integer specifying the number of rows in the array.

Columns

An integer specifying the number of columns in the array.

Note
If the user enters more data than will fit in the specified number of columns, the 
extra data is discarded.

Keywords

None
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Example

Define a 3 row by 2 column array:

RM, arr, 3, 2

IDL prompts for input;

row 0: 1,4
row 1: 6,3
row 2: 9,9

Display the array using PM:

PM, arr

IDL Prints:

1.00000 4.00000
6.00000 3.00000
9.00000 9.00000

Display the array using PRINT:

PRINT, arr

IDL Prints:

1.00000 6.00000 9.00000
4.00000 3.00000 9.00000

Version History

6.4 Introduced
IDL Analyst Reference Guide RM
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computer, 1158
mathematical and physical, 1152

constants and date sets
IMSL_MACHINE, 1158

constraints, 248
contants and date sets

IMSL_CONSTANT, 1152
contingency coefficient, 799, 802, 900, 900, 

901, 902, 902
contingency tables, 811

two-way, 798
continuous variables, 602
convolution, discrete of 1D arrays, 390
Cook’s D statistics, 625, 660
Cooley-Tukey algorithm, 374
coordinate format, 1171
copyrights, 2
Cornish-Fisher expansion, 1049
correlation and covariance

IMSL_COVARIANCES, 724
IMSL_PARTIAL_COV, 730
IMSL_POOLED_COV, 736
IMSL_ROBUST_COV, 740

correlation coefficient
multiple, 611

correlation matrix, 724, 725, 1111, 1116
correlation, descrete of 1D arrays, 395
correlations, 724, 730
cosine Fresnel integrals, 523
Coulomb, 1155
counts, 547, 572
covariances, 724

sample, 980
Cox and Stuart sign test, 851
Cramer’s V, 802
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cross-validation, 255
cubic spline interpolation

IMSL_CSINTERP, 200
IMSL_CSSHAPE, 205

cubic splines, 193, 200
approximations

smooth, 254
interpolation

endpoint conditions, 200
shape-preserving, 205

smoothing, 195, 195
current, 1155
curvilinear regression, 654

D
data sets, statistical

retrieving, 1163
dates

epoch to date, 1148
IMSL_DATETODAYS, 1150
IMSL_DAYSTODATE, 1148
number of days, 1150

deca, 1156
deci, 1156
degrees of freedom

for error, 610, 642, 652
for the model, 610, 642, 652
total corrected, 610, 642, 652

Delaunay triangulation, 263
derivatives, 326
DFFITS statistics, 597, 626, 661
diagnostics, 624, 659
differential equations

IMSL_ODE, 333
IMSL_PDE_MOL, 351
IMSL_POISSON2D, 366

differential equations, ordinary (IMSL_ODE)
general, 329
mildly stiff, 337
Rossler system, 343

Runge-Kutta method, 338
differentiation

IMSL_FCN_DERIV, 326
discrete Fourier cosine transformation, 377, 

377
discrete uniform distribution, 1095
distance, 1154
distribution functions

beta probability, 1055
binomial distribution, 1058
binomial probability, 1060
chi-squared, noncentral, 1040
F distribution, 1045
gamma distribution, 1052
hypergeometric, 1062
normal

bivariate, 1037
Gaussian, 1034

inverse, 1034
inverse, 1034

Poisson, 1065
Student’s t, 1048

dummy variables, 603
Dunn-Sidák method, 757
dyne, 1155

E
eigenexpansion, 178
eigensystem analysis, 970

IMSL_EIG, 178
IMSL_EIGSYMGEN, 183
IMSL_GENEIG, 186

eigenvalues, 186
eigenvalues and eigenvectors

accuracy, 174
error analysis, 174
general, 178
generalized, reformulating, 175
symmetric positive definite, 183

eigenvectors, 186
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electron charge, 1153
electron mass, 1153
electron volt, 1153
elliptic integrals, 511, 515, 517

IMSL_ELE, 513
IMSL_ELK, 511
IMSL_ELRC, 521
IMSL_ELRD, 517
IMSL_ELRF, 515
IMSL_ELRJ, 519

endpoint conditions, 200
energy, 1155
equality/inequality constraints, 458
Equation, 400
Erg, 1155
Erlang distribution, 1053
error function

real, 477
complementary, 480

error functions
IMSL_BETA, 484
IMSL_BETAI, 489
IMSL_ERF, 477
IMSL_ERFC, 480
IMSL_LNBETA, 487

errors
alert, 18
fatal, 18

Euler’s constant, 1153
excess, coefficient of, 546, 549
exponential distribution, 1089
exponential mix distribution, 1092
exponential order statistics, 584
exponential scores, 579

F
F test statistic, 559, 562
factor analysis, 971, 983
factorial design, balanced, 762
factorization

Cholesky, 95
LU, 87
SVD, 106

factor-loading estimates, 983
Fahrenheit, 1155
farad, 1155
Faraday constant, 1153
fast Fourier transforms, 374

complex
one-dimensional, 380

continuous vs. discrete, 374
real

one-dimensional, 411, 411, 411
fatal errors, 18
Faure, 1138, 1142
Faure sequence, 1137, 1141, 1141

faure_next_point, 1141
femto, 1156
FFT. See  fast Fourier transforms
fine structure, 1153
finite differences, forward, 672
first-order IMSL_ODEs, 330
Fisher’s LSD, 759
fixed points, 323
force, 1155
forecasts

IMSL_GARCH, 954
forward finite differences, 672
forward selection, 641
Fourier sine and cosine transforms, 303
frequencies

resolvable, 380
resolving dominant, 384

frequency, 1154
frequency tables

multiway, 572
one-way, 565

frequency tabulation, 575
Fresnel integrals

IMSL_FRESNEL_COSINE, 523
IMSL_FRESNEL_SINE, 525
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Friedmanís test, 862
F-statistic, 610

G
gamma distribution, 1089
gamma function

real
incomplete, 495
logarithmic, 491

gamma functions, 493
IMSL_GAMMAI, 495
IMSL_LNGAMMA, 491

gamma statistic, 800
gas constant, 1153
Gauss, 1155
Gauss Legendre quadrature, 3-point, 324
Gauss quadature

IMSL_INTFCN, 322
Gauss quadrature, 282, 322

10-point, 286
Gauss-Kronrod rules, 307

21-point, 286
7/15, 301

Gauss-Lobatto quadrature, 322
points and weights, 323

Gauss-Radau quadrature, 322
points, 323

Gauss-Seidel method, 241
Gear’s method, 333
general discrete distribution, 319, 1060, 1106, 

1109, 1113, 1119, 1121, 1124, 1128, 1128, 
1129

general distributions, 876
general goodness-of-fit tests

IMSL_CHISQTEST, 878
IMSL_KOLMOGOROV2, 891
IMSL_KOLMOGROV1, 888
IMSL_MVAR_NORMALITY, 894
IMSL_NORMALITY, 884

general linear models, 590, 602

Generalized Autoregressive Conditional Het-
eroskedastic, 954

generalized categorical models
IMSL_CAT_GLM, 819

generalized eigensystem problems
IMSL_EIGSYMGEN, 183
IMSL_GENEIG, 186

generalized feedback shift register method, 
1068

generalized inverses, 106
generalized linear models, 796
generators

basic uniform, 1068, 1068
shuffled, 1069

geometric distribution, 1092
geometry

IMSL_NORM, 1168
vector norms, 1168

GFSR, 1074
GFSR generator, 1069
GFSR method, 1068
giga, 1156
Givens transformations, 613
globally adaptive scheme, 286
Goodman and Kruskal t, 805

for columns, 800
for rows, 800

goodness-of-fit
IMSL_CHISQTEST, 878
IMSL_KOLMOGOROV2, 891
IMSL_KOLMOGROV1, 888
IMSL_MVAR_NORMALITY, 894
IMSL_NORMALITY, 884
IMSL_RANDOMNESS_TEST, 899

goodness-of-fit tests, 876
gravitational constant, 1154
Gray code, 1139, 1143
Gregorian calendar, 1151
gridded data, 216
G-squared test, 799
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H
Hardy multiquadratic, 268
Henry, 1155
Hertz, 1154
hypergeometric distribution, 1093
hyper-rectangle, 315, 319

I
ideal gas, standard volume, 1154
IDL

copyrights, 2
trademarks, 2

IEEE arithmetic, 1161
ill-conditoning, 68
image analysis method, 987, 990
IMSL_AIRY_AI function, 527
IMSL_AIRY_BI function, 529
IMSL_ALLBEST procedure, 632
IMSL_ANOVA1 function, 752
IMSL_ANOVABALANCED function, 783
IMSL_ANOVAFACT function, 762
IMSL_ANOVANESTED function, 774
IMSL_ARMA

least-squares procedure, 917
method-of-moments procedure, 917
stationary, 933

IMSL_ARMA function, 915
IMSL_ARMA models

IMSL_ARMA, 915
IMSL_AUTOCORRELATION, 942
IMSL_BOXCOXTRANS, 937
IMSL_DIFFERENCE, 931
IMSL_GARCH, 954
IMSL_KALMAN, 959
IMSL_LACK_OF_FIT, 950
IMSL_PARTIAL_AC, 947

IMSL_AUTOCORRELATION function, 942
IMSL_BESSI function, 498
IMSL_BESSI_EXP function, 507

IMSL_BESSJ function, 500
IMSL_BESSK function, 503
IMSL_BESSK_EXP function, 509
IMSL_BESSY function, 505
IMSL_BETA function, 484
IMSL_BETACDF function, 1055
IMSL_BETAI function, 489
IMSL_BINOMIALCDF function, 1058
IMSL_BINOMIALCOEF function, 1166
IMSL_BINOMIALPDF function, 1060
IMSL_BINORMALCDF function, 1037
IMSL_BOXCOXTRANS function, 937
IMSL_BSINTERP function, 210
IMSL_BSKNOTS function, 219
IMSL_BSLSQ function, 238
IMSL_CAT_GLM function, 819
IMSL_CHFAC procedure, 95
IMSL_CHISQCDF function, 1040
IMSL_CHISQTEST function, 878
IMSL_CHNNDFAC procedure, 114
IMSL_CHNNDSOL function, 110
IMSL_CHSOL function, 91
IMSL_COCHRANQ function, 867
IMSL_CONLSQ function, 248
IMSL_CONSTANT function, 1152
IMSL_CONSTRAINED_NLP, 465
IMSL_CONSTRAINED_NLP function, 465
IMSL_CONT_TABLE procedure, 1119
IMSL_CONTINGENCY function, 798
IMSL_CONVOL1D function, 390
IMSL_CORR1D function, 395
IMSL_COVARIANCES function, 724
IMSL_CSINTERP function, 200
IMSL_CSSHAPE function, 205
IMSL_CSSMOOTH function, 254
IMSL_CSTRENDS function, 851
IMSL_DATETODAYS function, 1150
IMSL_DAYSTODATE procedure, 1148
IMSL_DIFFERENCE function, 931
IMSL_DISCR_ANALYSIS procedure, 994
IMSL_DISCR_TABLE function, 1124
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IMSL_EIG function, 178
IMSL_EIGSYMGEN function, 183
IMSL_ELE function, 513
IMSL_ELK function, 511
IMSL_ELRC function, 521
IMSL_ELRD function, 517
IMSL_ELRF function, 515
IMSL_ELRJ function, 519
IMSL_ERF function, 477
IMSL_ERFC function, 480
IMSL_EXACT_ENUM function, 811
IMSL_EXACT_NETWORK function, 814
IMSL_FACTOR_ANALYSIS function, 983
IMSL_FAURE_INIT function, 1137
IMSL_FAURE_NEXT_PT function, 1141
IMSL_FCDF function, 1045
IMSL_FCN_DERIV function, 326
IMSL_FCNLSQ function, 234
IMSL_FFTCOMP function, 377
IMSL_FFTINIT function, 387
IMSL_FMIMSL_INV, 433
IMSL_FMIMSL_INV function, 433
IMSL_FMIN function, 425
IMSL_FREQTABLE function, 565
IMSL_FRESNEL_COSINE function, 523
IMSL_FRESNEL_SINE function, 525
IMSL_FRIEDMANS_TEST function, 862
IMSL_GAMMA_ADV function, 493
IMSL_GAMMACDF function, 1052
IMSL_GAMMAI function, 495
IMSL_GARCH function, 954
IMSL_GENEIG procedure, 186
IMSL_GQUAD procedure, 322
IMSL_HYPERGEOCDF function, 1062
IMSL_HYPOTH_PARTIAL function, 677
IMSL_HYPOTH_SCPH function, 683
IMSL_HYPOTH_TEST function, 688
IMSL_INTFCN function, 284

algebraic-logarithmic singularities, 294
Cauchy principle value, 306
fourier sine and cosine transforms, 303

Gauss-Kronrod rules, 288
infinite or semi-infinite interval, 297
sine and cosine factors, 300
singular points given, 291
smooth functions using nonadaptive rule, 309
two-dimensional iterated integrals, 312

IMSL_INTFCN_QMC function, 319
IMSL_INTFCNHYPER function, 315
IMSL_INV function, 79
IMSL_K_MEANS function, 973
IMSL_KALMAN procedure, 959
IMSL_KELVIN_BEI0 function, 534
IMSL_KELVIN_BER0 function, 532
IMSL_KELVIN_KEI0 function, 538
IMSL_KOLMOGOROV1 function, 888
IMSL_KOLMOGOROV2 function, 891
IMSL_KTRENDS function, 870
IMSL_KW_TEST function, 859
IMSL_LACK_OF_FIT function, 950
IMSL_LAPLACE_INV function, 398
IMSL_LIMSL_NORMREGRESS function, 

704
IMSL_LINLSQ function, 118
IMSL_LINPROG, 449
IMSL_LINPROG function, 449
IMSL_LNBETA function, 487
IMSL_LNGAMMA function, 491
IMSL_LUFAC procedure, 87
IMSL_LUSOL function, 81
IMSL_MACHINE function, 1158
IMSL_MATRIX_NORM function, 1171
IMSL_MINCONGEN function, 458
IMSL_MULTICOMP function, 771
IMSL_MULTIPREDICT function, 624
IMSL_MULTIREGRESS function, 609
IMSL_MVAR_NORMALITY function, 894
IMSL_NCTRENDS function, 848
IMSL_NONLINOPT function, 695
IMSL_NONLINREGRESS function, 667
IMSL_NORM function, 1168
IMSL_NORM1SAMP function, 552
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IMSL_NORM2SAMP function, 557
IMSL_NORMALCDF function, 1034
IMSL_NORMALITY function, 884
IMSL_ODE function, 333
IMSL_ODE. See  differential equations
IMSL_PARTIAL_AC function, 947
IMSL_PARTIAL_COV function, 730
IMSL_PDE_MOL function, 351
IMSL_POISSON2D function, 366
IMSL_POISSONCDF function, 1065
IMSL_POLYPREDICT function, 659
IMSL_POLYREGRESS function, 651
IMSL_POOLED_COV function, 736
IMSL_PRINC_COMP function, 978
IMSL_QRFAC procedure, 102
IMSL_QRSOL function, 98
IMSL_QUADPROG function, 454
IMSL_RADBE function, 277
IMSL_RADBF function, 266
IMSL_RAND_FROM_DATA function, 1116
IMSL_RAND_GEN_CONT function, 1121
IMSL_RAND_GEN_DISCR function, 1128
IMSL_RAND_ORTH_MAT function, 1111
IMSL_RAND_TABLE_2WAY function, 1109
IMSL_RANDOM function, 1082
IMSL_RANDOM_ARMA function, 1132
IMSL_RANDOM_NPP function, 1102
IMSL_RANDOM_ORDER function, 1106
IMSL_RANDOM_SAMPLE function, 1113
IMSL_RANDOM_TABLE procedure, 1078
IMSL_RANDOMNESS_TEST function, 899
IMSL_RANDOMOPT procedure, 1073
IMSL_RANKS function, 579
IMSL_REGRESSORS function, 602
IMSL_ROBUST_COV function, 740
IMSL_SCAT2DINTERP function, 262
IMSL_SIGNTEST function, 836
IMSL_SIMPLESTAT function, 546
IMSL_SMOOTHDATA1D function, 258
IMSL_SORTDATA function, 572
IMSL_SP_BDFAC procedure, 140

IMSL_SP_BDPDFAC function, 156
IMSL_SP_BDPDSOL function, 153
IMSL_SP_BDSOL function, 136
IMSL_SP_CG function, 164
IMSL_SP_GMRES function, 160
IMSL_SP_LUFAC function, 129
IMSL_SP_LUSOL function, 123
IMSL_SP_MVMUL function, 168
IMSL_SP_PDFAC function, 149
IMSL_SP_PDSOL function, 144
IMSL_SPINTEG function, 230
IMSL_SPVALUE function, 224
IMSL_STATDATA function, 1163
IMSL_STEPWISE procedure, 641
IMSL_SURVIVAL_GLM function, 1008
IMSL_SVDCOMP function, 106
IMSL_TCDF function, 1048
IMSL_TIE_STATS function, 857
IMSL_WILCOXON function, 839
IMSL_ZEROFCN function, 413
IMSL_ZEROPOLY function, 410
IMSL_ZEROSYS function, 418
incomplete gamma function, 495
indicator variables, 603
inferences about the mean, 560
initial value problem (IVP), 329, 333

nonstiff, 329
stiff, 329

integrals
n-dimensional iterated, 316
two-dimensional iterated, 312, 313

integration, 319
arbitrary dimension quadrature, 27, 283
Gauss quadrature, 282, 322
multivariate

general, 281
hyper-rectangle, 315
two-dimensional, 312, 313

spline, one or two-dimensional, 230
univariate / bivariate

Cauchy principle, 306, 307
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Gauss-Kronrod rules, 288, 289
general, 280
infinite or semi-infinite interval, 297, 298
nonadaptive rule, 309, 310
sine or cosine factor, 300, 301
sine or cosine transform, 303, 304
smooth function, 309, 310
with algebraic-logarithmic singularities, 

294, 295
with singularity points, 291, 292

interpolation
cubic spline

endpoint conditions, 200
shape preserving, 205

scattered data, 195
radial-basis fit, 277
radial-basis functions, 266

user-supplied, 272
smooth bivariate, 262
three-dimensional fit, 273

spline
knot sequence, 219
one-dimensional, 215
two-dimensional, 213

interpolation and approximation
IMSL_BSINTERP, 210
IMSL_BSKNOTS, 219
IMSL_BSLSQ, 238
IMSL_CONLSQ, 248
IMSL_CSINTERP, 200
IMSL_CSSHAPE, 205
IMSL_CSSMOOTH, 254
IMSL_FCNLSQ, 234
IMSL_RADBE, 277
IMSL_RADBF, 266
IMSL_SCAT2DINTERP, 262
IMSL_SMOOTHDATA1D, 258
IMSL_SPINTEG, 230
IMSL_SPVALUE, 224

inverse

complementary error function, 480
error function, 477
g3, 616
generalized, 616
Moore-Penrose, 616

inverse matrix, 79
IVP. See  initial value problem

J
Jacobian matrix, 442, 668
Jenkins-Traub three-stage algorithm, 410
Joule, 1155
Julian calendar, 1149, 1151

K
Kalman filtering, 959
Kappa analysis, 796
kappa statistic, 800, 806
Kelvin, 1155
Kelvin functions

IMSL_KELVIN_BEI0, 534
IMSL_KELVIN_BER0, 532
IMSL_KELVIN_KEI0, 538
IMSL_KELVIN_KER0, 536

KELVIN_KERO function, 536
Kendall’s tb, 800
key sort, 574
kilo, 1156
K-means analysis, 973
knot sequence, 212
knots, 212, 219
Kolmogorov one-sample test, 888
Kolmogorov two-sample test, 891
Kruskal-Wallis test, 800, 806
k-sample trends test, 870
kurtosis, 546, 549
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L
lack-of-fit statistics, 653
lack-of-fit tests, 597
Least Absolute Value, 600
Least Maximum Value, 600
Least Squares

Alternatives
Least Absolute Value, 600
Least Maximum Value, 600
Lp Norm, 600

least squares approximation and smoothing
IMSL_BSLSQ, 238
IMSL_CONLSQ, 248
IMSL_CSSMOOTH, 254
IMSL_FCNLSQ, 234
IMSL_SMOOTHDATA1D, 258

least-squares fit, 26, 195, 199, 258, 609, 783, 
848, 851, 857, 862, 888, 891

B-spline
one-dimensional, 240
two-dimensional, 242

spline
constrained, 248
one- or two-dimensional, 238

user-supplied function, 234
weighted, 618

least-squares method, 988
generalized, 987
unweighted, 987
weighted, 594

least-squares solution, 67
Lebesque measure, 1138, 1142
legalities, 2
Levenberg-Marquardt algorithm, modified, 

441, 672
leverages, 597, 626
Lilliefors test, 884, 885
linear constraints, 118, 251
linear dependence, 593
linear eigensystem problems

IMSL_EIG, 178

linear equations with full matrices
IMSL_CHFAC, 95
IMSL_CHSOL, 91
IMSL_LUFAC, 87
IMSL_LUSOL, 81

linear least squares with full matrices
IMSL_CHNNDFAC, 114
IMSL_CHNNDSOL, 110
IMSL_LINLSQ, 118
IMSL_QRFAC, 102
IMSL_QRSOL, 98
IMSL_SVDCOMP, 106

linear least-squares problem, 118
linear programming problems, 449
linear regression

multiple, 588
simple, 588

linear system solution
general, 66, 66, 81
Hermitian positive definite, 93
matrix factorization, 66
multiple right-hand sides, 67, 84
symmetric nonnegative definite, 110
symmetric positive definite, 91

linear systems
IMSL_CHFAC, 95
IMSL_CHNNDFAC, 114
IMSL_CHNNDSOL, 110
IMSL_CHSOL, 91
IMSL_INV, 79
IMSL_LINLSQ, 118
IMSL_LUFAC, 87
IMSL_LUSOL, 81
IMSL_QRFAC, 102
IMSL_QRSOL, 98
IMSL_SP_BDFAC, 140
IMSL_SP_BDPDFAC, 156
IMSL_SP_BDPDSOL, 153
IMSL_SP_BDSOL, 136
IMSL_SP_CG, 164
IMSL_SP_GMRES, 160
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IMSL_SP_LUFAC, 129
IMSL_SP_LUSOL, 123
IMSL_SP_MVMUL, 168
IMSL_SP_PDFAC, 149
IMSL_SP_PDSOL, 144
IMSL_SVDCOMP, 106

linear trend test, 806
linearly constrained minimization, 449

IMSL_QUADPROG, 454
linearly dependent regressors, 614
logarithm, gamma function, 491
logarithm, real beta function, 487
logarithmic distribution, 1093
lognormal distribution

random numbers
lognormal distribution, 1094

low-discrepancy, 1139, 1143
low-discrepancy sequences

IMSL_FAURE_INIT, 1137
IMSL_FAURE_NEXT_PT, 1141

Lp Norm, 600
LU factorization, 87

M
MAD. See  median absolute deviation
magnetic induction, 1155
Mallows Cp criterion, 635
Mann-Whitney U test, 842
mass, 1154
mathematical constants, 1152
matrices, sparse. See  sparse matrices
matrix

notation, 68
matrix factorization, 66
matrix inversion

IMSL_INV, 79
linear system solution, 66

matrix norm
IMSL_MATRIX_NORM, 1171

maximum, 546, 549

maximum likelihood estimates, 964
maximum likelihood method, 987, 988
Maxwell, 1155
McNemar test, 801, 807
mean, 546, 549, 552, 610, 642, 652

exact, 799, 900, 900, 901, 902, 902
for two normal populations, 557
inferences about, 560
lower confidence limit, 547
normal population, 552
return value, 554
upper confidence limit, 547

mean square
error, 610, 642, 652
model, 610, 642, 652

measures of
association, 803
prediction, 804
uncertainty, 804

measures of association, 796
median, 550
median absolute deviation, 550
mega, 1156
method of provisional means, 727
micro, 1156
micron, 1154
mill, 1154
milli, 1156
minimization, 421, 458, 465

linearly constrained, 422
quadratic programming, 454
simplex algorithm, 449

nonlinearly constrained, 423
unconstrained, 422

nonlinear least squares, 441
quasi-Newton method, 433, 436
univariate, 425

minimum, 546, 549
missing values, 17, 600
models

general linear, 602
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multiple linear regression, 609, 632
nonlinear regression, 594, 667
polynomial, 589
polynomial regression, 659
regression, 624

modified Bessel function, 498
mole, 1155
Moore-Penrose inverses, 112, 116, 616
Müller’s method, 413
multiple linear regression

IMSL_MULTIPREDICT, 624
IMSL_REGRESSORS, 602
MULTIGRESS, 609

multiple linear regression models, 588, 602, 
609, 632, 641, 783, 848, 851, 857, 862, 
888, 891

multiple right-hand sides, 67
multiple-comparisons test

Student-Newman-Keuls, 771
multiplicative congruential generator, 1068
multiplicative generator, 1068
multivariate analysis

cluster analysis, 973
factor analysis, 983
IMSL_DISCR_ANALYSIS, 994
IMSL_FACTOR_ANALYSIS, 983
IMSL_K_MEANS, 973
IMSL_PRINC_COMP, 978
principal components, 978

multivariate distribution, 1116
multivariate linear regression - statistical infer-

ence and diagnostics
IMSL_HYPOTH_PARTIAL, 677
IMSL_HYPOTH_SCPH, 683
IMSL_HYPOTH_TEST, 688

multivariate normal distribution, 1085, 1090, 
1100

multivariate quadrature, 281
multiway frequency table, 572
myria, 1156

N
NaN (Not a Number), 17, 600
natural logs, base, 1153
n-dimensional iterated integrals, 316
negative binomial, 1094
Newton’s Method, 205, 419
NIMSL_LINLSQ function, 441
nino, 1156
Noether test, 848
noncentral chi-squared distribution function, 

1040
nonlinear equations

IMSL_ZEROFCN, 413
IMSL_ZEROPOLY, 410
IMSL_ZEROSYS, 418

nonlinear least-squares problems, 441
nonlinear programming problem, 465
nonlinear regression models, 594, 667
nonlinearly constrained minimization, 465

IMSL_MINCONGEN, 458
nonparametric statistics

IMSL_COCHRANQ_TEST, 867
IMSL_CSTRENDS, 851
IMSL_FRIEDSMANS_TEST, 862
IMSL_KTRENDS, 870
IMSL_KW_TEST, 859
IMSL_NCTRENDS, 848
IMSL_SIGNTEST, 836
IMSL_TIE_STATS, 857
IMSL_WILCOXON, 839

nonstiff IVPs, 329
nonuniform generators, 1070
normal distribution, 1088
normal populations

mean, 552
variances, 552

normal scores, 579
normality test, 884
not-a-knot condition, 200, 215, 226
numerical ranking, 579
Nyquest phenomenon, 380
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O
observations, number of, 547
Ohm, 1155
one sample tests - nonparametric statistics

IMSL_CSTRENDS, 851
IMSL_NCTRENDS, 848
IMSL_SIGNTEST, 836
IMSL_TIE_STATS, 857
IMSL_WILCOXON, 839

One-at-a-Time t method, 759
one-way classification model, 752
one-way frequency table, 565
optimal prediction, 800, 800
optimization

IMSL_CONSTRAINED_NLP, 465
IMSL_FMIMSL_INV, 433
IMSL_FMIN, 425
IMSL_LINPROG, 449
IMSL_MINCONGEN, 458
IMSL_QUADPROG, 454
NIMSL_LINLSQ, 441

ordinary differential equation. See  differential 
equations

over-determined system, 67
overflow, 17

P
parsec, 1154
partial correlations, 730
partial covariances, 730
partial differential equations, 331
partial pivoting, 82
Paterson rules, nested, 310
periodic interpolant, 201
phi, 799, 802, 900, 900, 901, 902, 902
physical constants, 1152
Pi, 1154
pico, 1156
piecewise polynomials, 192, 195, 231

Planck’s constant, 1154
PM procedure, 1176
poise, 1155
Poisson distribution, 1089, 1099
polynomial and nonlinear regression

IMSL_NONLINOPT, 695
IMSL_NONLINREGRESS, 667
IMSL_POLYPREDICT, 659
IMSL_POLYREGRESS, 651

polynomial models, 589
polynomial regression models, 659
pooled variances, 559
Powell hybrid algorithm, 418
predicted values, 624, 659, 659, 669
prediction coefficient, 804
pressure, 1155
principal components, 978
principal components method, 987, 987
principal factor method, 987, 987
probability distribution functions and inverses

IMSL_BETACDF, 1055
IMSL_BINOMIALCDF, 1058
IMSL_BINOMIALPDF, 1060
IMSL_BINORMALCDF, 1037
IMSL_CHISQCDF, 1040
IMSL_FCDF, 1045
IMSL_GAMMACDF, 1052
IMSL_HYPERGEOCDF, 1062
IMSL_NORMALCDF, 1034
IMSL_POISSONCDF, 1065
IMSL_TCDF, 1048

product moment correlation, 800
proton mass, 1154
provisional means, method of, 727
pseudorandom number generators, 876
pseudorandom numbers, 1102, 1116, 1119, 

1121, 1124, 1128, 1129
pseudorandom order statistics, 1106, 1107, 

1107
pseudorandom orthogonal matrix, 1111
pseudorandom sample, 1113
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p-values, 610, 642, 652, 803

Q
QP. See  quadratic programming
QR factorization

linear least squares, 98
real matrix, 102

quadature
IMSL_FCN_DERIV, 326
IMSL_GQUAD, 322
IMSL_INTFCN, 284
IMSL_INTFCN_QMC, 319
IMSL_INTFCNHYPER, 315

quadratic programming
convex problems, 423, 455
dual algorithm, 423, 455
linearly constrained, 454

quadrature points and weights, 322
quasi-Monte Carlo, 319
quasi-Newton method, 436

R
R matrix, 593, 616, 670
R2 criterion, 610, 635, 642, 652

adjusted, 610, 632, 642, 652
radial-basis fit, 266
radial-basis functions, 195
random number generation

IMSL_CONT_TABLE, 1119
IMSL_DISCR_TABLE, 1124
IMSL_FAURE_INIT, 1137
IMSL_FAURE_NEXT_PT, 1141
IMSL_RAND_FROM_DATA, 1116
IMSL_RAND_GEN_CONT, 1121
IMSL_RAND_GEN_DISCR, 1128
IMSL_RAND_ORTH_MAT, 1111
IMSL_RAND_TABLE_2WAY, 1109
IMSL_RANDOM, 1082

IMSL_RANDOM_ARMA, 1132
IMSL_RANDOM_NPP, 1102
IMSL_RANDOM_ORDER, 1106
IMSL_RANDOM_SAMPLE, 1113
IMSL_RANDOM_TABLE, 1078
IMSL_RANDOMPT, 1073

random numbers, 1068
beta distribution, 1090, 1099
binomial distribution, 1090
cauchy distribution, 1091
chi-squared distribution, 1091
control the seed, 1073
discrete uniform distribution, 1095
exponential distribution, 1089
exponential mix distribution, 1092
gamma distribution, 1089
generate pseudorandom numbers, 1082
geometric distribution, 1092
hypergeometric distribution, 1093
IMSL_CONT_TABLE, 1119
IMSL_DISCR_TABLE, 1124
IMSL_RAND_FROM_DATA, 1116
IMSL_RAND_GEN_CONT, 1121
IMSL_RAND_GEN_DISCR, 1128
IMSL_RAND_ORTH_MAT, 1111
IMSL_RAND_TABLE_2WAY, 1109
IMSL_RANDOM, 1082
IMSL_RANDOM_NPP, 1102
IMSL_RANDOM_ORDER, 1106
IMSL_RANDOM_SAMPLE, 1113
IMSL_RANDOM_TABLE, 1078
IMSL_RANDOMPT, 1073
logarithmic distribution, 1093
multivariate normal distribution, 1085, 1090, 

1100
negative binomial, 1094
normal distribution, 1088
Poisson distribution, 1089, 1099
select the form, 1073
Student’s t distribution, 1095
triangular distribution, 1095
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von Mises distribution, 1095
Weibull distribution, 1096

randomness test, 899
range, 546, 549
ranks, 106, 579
real beta function, 484
real complementary error function, 480
real error function, 477
real incomplete beta function, 489
rectangular matrix, 1171
regression

all best, 632
curvilinear, 651
general linear model, 602
IMSL_ALLBEST, 632
IMSL_HYPOTH_PARTIAL, 677
IMSL_HYPOTH_SCPH, 683
IMSL_HYPOTH_TEST, 688
IMSL_LIMSL_NORMREGRESS, 704
IMSL_MULTIPREDICT, 624
IMSL_NONLINOPT, 695
IMSL_NONLINREGRESS, 667
IMSL_POLYPREDICT, 659
IMSL_POLYREGRESS, 651
IMSL_REGRESSORS, 602
IMSL_STEPWISE, 641
MULTIGRESS, 609
multiple linear, 609
nonlinear, 667
polynomial least-squares, 651
simple linear, 588
stepwise, 641

regression coefficients, 612, 632, 644, 667
regression models, 588, 624
regression simple linear, 609
regressors, 602
residuals, 626, 661, 670

deleted, 597, 626, 661
jackknife, 597
standardized, 597, 626, 661

resolvable frequencies, 380

RM procedure, 1178
root of a system, 408
root of a system of equations

IMSL_ZEROSYS, 418
Runge-Kutta-Verner method

fifth-order, 330, 333
sixth-order, 330, 333

Rydberg’s constant, 1154

S
sample covariance, 980
Satterthwaite’s procedure, 562
Savage scores, 581
scaling results of IMSL_RANDOM, 1099
scattered data

approximation, 195
interpolation, 195

scattered data interpolation
IMSL_RADBE, 277
IMSL_RADBF, 266
IMSL_SCAT2DINTERP, 262

Scheffé confidence intervals, 625
Scheffé method, 758
shape-preserving cubic splines, 205
Shapiro-Wilk W test, 884, 885
shuffled generators, 1069
shuffling, 1073
sign test, 836
simple summary statistics

IMSL_NORM1SAMP, 552
IMSL_NORM2SAMP, 557
IMSL_SIMPLESTAT, 546

simplex algorithm, 449
sine Fresnel integrals, 525
single value decomposition (SVD), 67, 106
singularity, 68
skewness, coefficient of, 546, 549
slug, 1154
smooth data

cubic spline interpolant, 259
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error detection, 258
smoothed data, 258
smoothing parameter, 254
smoothing spline, 255
Snedecor’s F random variable, 1046
Somers’ D

for columns, 800
for rows, 800

sorting, 572, 575
key, 574

sparse matrices
band storage format, 73
Cholesky factorization of symmetric positive 

definite, 156
compressed sparse column format, 76
conjugate gradient method, 164
direct methods, 69
general band system linear equation solution, 

136
IMSL_SP_BDFAC, 140
IMSL_SP_BDPDFAC, 156
IMSL_SP_BDPDSOL, 153
IMSL_SP_BDSOL, 136
IMSL_SP_CG, 164
IMSL_SP_GMRES, 160
IMSL_SP_LUFAC, 129
IMSL_SP_LUSOL, 123
IMSL_SP_MVMUL, 168
IMSL_SP_PDFAC, 149
IMSL_SP_PDSOL, 144
introduction, 69
iterative methods, 70
linear equation solution, 123
LU factorization of, 129
LU factorization of band storage matrix, 140
matrix storage modes, 70
matrix-vector product of sparse matrix and 

dense vector, 168
positive definite system, 149
restarted generalized minimum residual 

method, 160

sparse coordinate storage format, 70
storage formats, choosing, 75
symmetric positive definite system, 153
symmetric positive definite system solution, 

144
utilities, 70

Spearman rank correlation, 800
special functions, 473

IMSL_AIRY_AI, 527
IMSL_AIRY_BI, 529
IMSL_BESSI, 498
IMSL_BESSI_EXP, 507
IMSL_BESSJ, 500
IMSL_BESSK, 503
IMSL_BESSK_EXP, 509
IMSL_BESSY, 505
IMSL_BETA, 484
IMSL_BETAI, 489
IMSL_ELE, 513
IMSL_ELK, 511
IMSL_ELRC, 521
IMSL_ELRD, 517
IMSL_ELRF, 515
IMSL_ELRJ, 519
IMSL_ERF, 477
IMSL_ERFC, 480
IMSL_FRESNEL_COSINE, 523
IMSL_FRESNEL_SINE, 525
IMSL_GAMMAI, 495
IMSL_KELVIN_BEI0, 534
IMSL_KELVIN_BER0, 532
IMSL_KELVIN_KEI0, 538
IMSL_KELVIN_KER0, 536
IMSL_LNBETA, 487
IMSL_LNGAMMA, 491

speed of light, 1153
splines, 193

approximation
smooth cubic, 254

cubic, 193
evaluation, 224
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integration
one- or two-dimensional, 230

interpolation
knot-sequence, 219
one-dimensional, 215
two-dimensional, 213

least squares
constrained, 248
one- or two-dimensional, 238

smoothing, 255
structures for, 195
subspace, 239
tensor-product, 194, 211

standard atmospheric pressure, 1153
standard deviation, 546, 553, 554, 559, 610, 

642, 652
exact, 799, 900, 900, 901, 902, 902

standard errors, 803
standard errors, for characteristic roots, 979
standard gravity, 1154
standard volume ideal gas, 1154
statampere, 1155
statcoulomb, 1155
state vector, 959
statespace model, 959
stationary IMSL_ARMA, 933
statistics in the two-way contingency table

IMSL_CONTINGENCY, 798
IMSL_EXACT_ENUM, 811
IMSL_EXACT_NETWORK, 814

Stefan-Boltzman, 1154
stepwise selection, 641
stiff IVPs, 329
stochastic processes

IMSL_RANDOM_ARMA, 1132
stoke, 1155
Stuart’s tc, 800
Student’s t distribution, 1095
Student’s t distribution function, 1048
Student-Newman-Keuls multiple-comparisons 

test, 771

subspace, 234
sum of squares

for error, 610, 642, 652
for the model, 610, 642, 652
sequential, 615, 653
total corrected, 610, 642, 652

summary statistics, 594, 609
sum-of-squares and crossproducts matrix, 725
sums-of-squares

within-cluster, 974
survival analysis

IMSL_SURVIVAL_GLM, 1008
symmetric positive definite system, 91

T
t test statistic, 554, 560, 561
tabular data, 281
tabulate, sort, and rank

IMSL_FREQTABLE, 565
IMSL_RANKS, 579
IMSL_SORTDATA, 572

temperature, 1155
tensor-product splines, 194, 211
tera, 1156
Tesla, 1155
test for linear trend, 806
test for normality, 884
tests for randomness, 876

IMSL_RANDOMNESS_TEST, 899
tie statistics, 857
time, 1154
time constraints, 330
time series

autoregressive parameters, 915
backward differences, 932
Box-Jenkins forecasts, 924
difference, 931
moving average parameters, 915

time series and forecasting
IMSL_ARMA, 915
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IMSL_AUTOCORRELATION, 942
IMSL_BOXCOXTRANS, 937
IMSL_DIFFERENCE, 931
IMSL_GARCH, 954
IMSL_KALMAN, 959
IMSL_LACK_OF_FIT, 950
IMSL_PARTIAL_AC, 947

trademarks, 2
transformations, 599
transforms

IMSL_CONVOL1D, 390
IMSL_CORR1D, 395
IMSL_FFTCOMP, 377
IMSL_FFTINIT, 387
IMSL_LAPLACE_INV, 398

triangular distribution, 1095
triple point of water, 1154
trust region, 672
Tucker reliability coefficient, 986
Tukey method, 757
Tukey normal scores, 583
Tukey-Kramer method, 757
two or more samples tests - nonparametric sta-

tistics
IMSL_COCHRANQ_TEST, 867
IMSL_FRIEDMANS_TEST, 862
IMSL_KTRENDS, 870
IMSL_KW_TEST, 859

two-dimensional iterated integrals, 312, 313

U
uncertainty

coefficients, 800, 806
measures of, 804

unconstrained minimization, 433
IMSL_FMIN, 425
NIMSL_LINLSQ, 441

unit circle, 1086
univariate and bivariate quadature

IMSL_INTFCN, 284

univariate quadrature, 27, 283
univariate statistics, 546, 819, 1008, 1008
utilities

IMSL_CONSTANT, 1152
IMSL_DATETODAYS, 1150
IMSL_DAYSTODATE, 1148
IMSL_MACHINE, 1158
IMSL_MATRIX_NORM, 1171
IMSL_NORM, 1168

utility functions, 1145

V
Van der Waerden normal scores, 583
variable selection, 589, 632, 641

IMSL_ALLBEST, 632
IMSL_STEPWISE, 641

variables
classification, 602
continuous, 602
dummy, 603
indicator, 603

variance-covariance matrix, 724, 1083
variances, 546, 549, 552, 724

asymptotic, 980
for two normal populations, 557
inferences about, 562
inflation factor, 611
lower confidence limit, 547
normal population, 552
upper confidence limit, 547

variation, coefficient of, 546, 550, 610, 642, 
652

vector norms, 1168
1-norm, 1169, 1169
Euclidean, 1169
infinity, 1169

viscosity, 1155
volt, 1155
voltage, 1155
volume, 1155
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von Mises distribution, 1095

W
water, triple point, 1154
watt, 1155
Weber, 1155
Weibull distribution, 1096
weighted least-squares fit, 594, 615, 618
Wilcoxon rank sum test, 839
Wilson-Hilferty approximation, 1041
work, 1155

Z
zeroes of a polynomial

IMSL_ZEROPOLY, 410
zeros of a function, 408

IMSL_ZEROFCN, 413
Muller’s method, 413

zeros of a polynomial, 408
Jenkins-Traub three-stage algorithm, 410

zeros of a system, 418
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