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tral analysis" means des
ribing a time-varying signal by its power spe
trum, otherwiseknown as its Fourier spe
trum or its frequen
y spe
trum. It should be obvious that su
h spe
traare essential for astronomers: for example, spe
tra tell us not only about pulsar periods, but alsoabout 
hemi
al 
omposition in stars and Doppler velo
ities. But the des
ription of signals in termsof spe
tra or Fourier 
omponents has importan
e in many �elds, and this be
omes obvious on justa little re
e
tion. A prime example: a bridge is subje
t to shaking by earthquakes; if its naturalresonan
e frequen
y is 
lose to the frequen
y of ground movement, you've got trouble!Spe
tral analysis is an integral part of some of our labs. We will sample signals at regularintervals with our 
omputers, a pro
ess known as \dis
rete sampling", and our 
omputers will
hange the voltages to digital numbers, a pro
ess known as \digitization". We'll then do a dis
reteFourier transform to 
al
ulate the power spe
trum. There are some intri
a
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{ 3 {11 SOME FINAL POINTS 2611.1 What's This Business About Negative Frequen
ies? . . . . . . . . . . . . . . . . . . . 2611.2 For Real Inputs, How Do These Negative Frequen
ies Enter the Power Cal
ulation? 2711.3 A Detail on Normalization and \Going Ba
k and Forth" . . . . . . . . . . . . . . . . 271. THE INTEGRAL FOURIER TRANSFORM: TIME $ FREQUENCY1.1. Classi
al Fourier transformsWe use the Fourier transform (FT) to 
onvert a time-varying voltage E(t) from the time tothe frequen
y domain E(�), and vi
e versa. The formally 
orre
t equations areE(�) = Z 1�1E(t)e[2�i℄�tdt (1a)and, to go the other way, E(t) = Z 1�1E(�)e�[2�i℄�td� (1b)In our 
ase, we are going to modify this a bit so that we don't run into in�nities. We willwrite. . . E(�) = limT!1 12T Z +T�T E(t)e[2�i℄�tdt : (2)We are often interested in the power spe
trum. Power goes as amplitude squared, so the powerspe
trum P (�) / E(�)2. A small 
ompli
ation: E(�) 
an be 
omplex, but the power spe
trum isjust watts per Hz and must be real. We take 
are of this by de�ningP (�) = E(�)� [E(�)℄� ; (3)where the supers
ripted [E(�)℄� means the 
omplex 
onjugate. This multipli
ation is the equivalentof \dete
tion".



{ 4 {2. EFFECTS OF T BEING FINITE: INTEGRAL TRANSFORMSThere's a fundamental fa
t of the real world: we don't live forever, and even if we did TAC'swouldn't allow us in�nite teles
ope time for our pre
ious proje
ts, so we never 
an allow T ! 1.This frustrates the old politi
ians who want absolute 
ontrol over everything, forever. Less seriouslyin some 
ir
les|and more in others|it has two major rami�
ations for Fourier transform devotees:1. It limits the frequen
y resolution.2. It produ
es \spe
tral leakage": The result at a given frequen
y in the Fourier transformspe
trum is 
ontaminated by those at all other frequen
ies in the spe
trum!We treat these two rami�
ations in the following subse
tions.2.1. Spe
tral ResolutionEquations 1 and 2 are �ne as they stand, but when we sample a signal T is �nite. Thislimits our spe
tral resolution. To understand this, 
onsider the analyti
 solution of equation 2 fora mono
hromati
 
osine wave of frequen
y �s, that is E(t) = 
os(2��st). For T ! 1, E(�) = 0ex
ept for � = �s; this is 
ommonly expressed by the term \Dira
 delta fun
tion". But moregenerally, we have as the analyti
 solutionE(�) = sin(2�(� � �s)T )2�(� � �s)T : (4)It is simpler to write Æ� = (� � �s) and writeE(�) = sin(2�Æ�T )2�Æ�T : (5)P (�) = �sin(2�Æ�T )2�Æ�T �2 : (6)and we see that this is just the famous sinxx type behavior. This quantitatively expresses the degra-dation in frequen
y resolution when you sample for a �nite time; roughly, the spe
tral resolutionis the width of this fun
tion, whi
h is �� � 1T .In opti
al and IR astronomy, the need for high spe
tral resolution leads to the requirement oflong time delays, whi
h in turn means long path lengths. For grating and prism spe
trometers, this
an be a
hieved only by using physi
ally large devi
es. For a Fabry-Perot, the long path is a
hievedby multiple re
e
tions. In terms of the 
onventional de�nition of resolving power, ��� � �size .There's no way around this!
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tral LeakageNot only is the in�nitesimally-narrow delta fun
tion repla
ed by a fun
tion of width � 12Tbut also the fun
tion sinxx has \sidelobes": it spreads power out over a huge range of frequen
ies,albeit|after squaring, anyway|at a low level. The spread-out power gets weaker as you move awayfrom the signal, that is as Æ� in
reases|but it doesn't de
rease monotoni
ally. Rather, the sidelobesmean that there the spread-out power goes to zero periodi
ally for Æ� = 12T . In 
olloquial terms,the power of the mono
hromati
 sine wave \leaks" away in the power spe
trum to all frequen
ies.Not surprisingly, this is 
alled \spe
tral leakage". It's 
overed in NM 
hapter 13.4.You 
an redu
e spe
tral leakage by using a \window fun
tion" W (t) that is not \square".What on Earth does this mean? In equation 2, when you use a �nite T you are integrating over a\window" of total length 2T , as follows:E(�) = 12T Z +T�T W (t)E(t)e[2�i℄�tdt : (7)In equation 2, the window fun
tion W (t) is unity; when we let W (t) = 1 for the time window oflength 2T , then this is 
alled a \square window fun
tion". A square window fun
tion produ
es\sharp edges" in the sense that the fun
tion E(t) has its full amplitude for all t within the windowand then 
uts o� pre
ipitously at the ends of the window. It's this sudden 
uto�|the sharpedge|that produ
es spe
tral leakage.We 
an redu
e spe
tral leakage by making W (t) a fun
tion that produ
es a gradual 
uto� soas to eliminate the sharp edge. We make W (t) a fun
tion that gradually falls to zero at the windowedges �T and T . As one possible example among many, 
onsider the Hanning weighting fun
tion,whi
h is 
ommonly used in radio astronomy:W (t) = 12 �1 + 
os �tT � : (8)This drasti
ally redu
es the sidelobes. This 
omes at a pri
e, though: the spe
tral resolution getsworse|by about a fa
tor of two. The reason is that the window fun
tion W (t) goes to zero at theends of the time window 2T , whi
h e�e
tively makes the window shorter. Note: We also use theterm \weighting fun
tion" for W (t).3. DISCRETELY SAMPLED SIGNALSWhen I was a teenager we had vinyl re
ords. They 
ontained 
ontinuously-sampled signalsthat were dire
tly imprinted on the vinyl. Today we fo
us on CD's. These 
ontain dis
retely-sampled signals that are digitized and written on to the little silver disk. The fa
t that CD's
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ontain dis
retely sampled data means that the signal is known only for 
ertain spe
i�
 times. Inparti
ular, the signal is not sampled between these times. Does this mean that CD's don't soundas good as the vinyl re
ords?Regarding the 
al
ulation of our power spe
trum with a FT, you'd think that the repla
ementof an integral by a sum would be straightforward, with no subtleties. But this isn't the 
ase. Thereare subtleties, and they are 
ru
ial. Understanding them, and dealing with them properly, makesyour CD's sound just as good as vinyl. So read on: we'll �rst provide a qualitative introdu
tionand then go into details.3.1. Dis
retely-Sampled Signals: The Nyquist Criterion.When your CD musi
 is re
orded, or in astronomy when we observe a pulsar or sample anin
oming signal to determine the spe
trum, we sample the in
oming signal sequentially in time, atregular intervals 
alled the sampling interval �t = tsmpl. Equivalently, we are sampling at a regularrate 
alled the sampling frequen
y �smpl = 1tsmpl .In dis
rete sampling, we �rst require that the signal be limited in bandwidth. That is, thehighest frequen
y in its spe
trum must be limited to an upper 
uto�, whi
h we 
all the bandwidthB; thus, the frequen
ies in the signal extend from 0 to B Hz. Then we must sample the signalperiodi
ally at a fast enough rate|spe
i�
ally, we require (�smpl � 2B Hz). This is the \Nyquist
riterion". If the Nyquist 
riterion is violated, we have the problem of aliasing, whi
h means thatsignals with frequen
ies � > B appear as lower frequen
ies. Remember those movies showing 
arsand the wheels that seem to rotate ba
kwards? That's a real-world example of aliasing: the movieframes dis
retely sample the s
ene at too slow a rate to faithfully reprodu
e the wheel's rotation.You 
an understand aliasing by looking at Figure 1.To put it another way: When we sample at rate �smpl, the maximum signal frequen
y that 
anbe faithfully reprodu
ed is �smpl2 . This is 
alled the Nyquist frequen
y and here we denote this byfN = �smpl2 . Clearly, the signal's bandwidth B must satisfy B � fN . All this is 
alled the samplingtheorem.How rapidly must musi
 be sampled for re
ording on a CD? The human ear responds tosomething like 20 kHz. To prevent aliasing, we need to sample at twi
e this, at about 40 kHz.3.2. A Popular MISCONCEPTION!!!Somebody, sometime, will probably tell you that aliasing has to do with dis
rete Fouriertransforms. Tell them to go jump in the lake. It has to do with the sampling rate. Period. Aliasingo

urs if you don't sample fast enough, and a�e
ts your results whether or not you are dealingwith Fourier transforms. If you don't believe me, just look again at Figure 1. And remember what
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Fig. 1.| Aliasing at its worst. The sample interval is tsmpl = 0:01 s, so the sample frequen
y is�smpl = 100 Hz. The Nyquist frequen
y is fN = 50 Hz. The stars are the datapoints. The twosignals shown are at frequen
ies 37.5 and 62.5, i.e. fN � 12:5 Hz. Whi
h signal do the datapointsrepresent?happens to rotating wheels in movies.4. DISCRETE SAMPLING AND THE FOURIER TRANSFORMWe use the Fourier transform to 
onvert from the time to the frequen
y domain, and vi
e versa.For 
ontinuously-sampled signals we use the Fourier integral, equation 2. For dis
retely-sampledsignals we have to repla
e this by a summation. This is the dis
rete Fourier transform, or DFT.4.1. The maximum re
overable bandwidth: the Nyquist frequen
yOK, we've sampled our signal at regular intervals tsmpl, meaning that the sampling frequen
yis �smpl = 1tsmpl and fN = �smpl2 . If we do this for time 2T then we obtain 2J = 2Ttsmpl independentpoints. From these we wish to 
ompute the spe
trum.If we want to digitally 
ompute the Fourier transform, then the �rst thing we must realize thatthe original 2J 
hannels provide only J spe
tral points! This seems like a loss of information, butit's not: the spe
trum is 
omplex, so those J 
omplex numbers 
ontain 2J independent numbers.With sample frequen
y �smpl we obtain the spe
trum for the range of frequen
ies 0! �smpl2 or0! fN ; this is known as the bandwidth, denoted by B. With J independent points, the separation(and the frequen
y resolution) is �� = �smpl2J . Fortunately, �smpl2J = 12Jtsmpl = 12T ; this 
on�rms our
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ussion in x2.1 about frequen
y resolution.But more importantly for the present dis
ussion, when sampling at rate �smpl you 
annotre
over a spe
trum wider in bandwidth than fN = �smpl2 .Amazingly, a dis
retly sampled time series o

urs where you'd least expe
t it: in a 
ommon,garden-variety opti
al analog devi
e, namely the 
lassi
al opti
al grating spe
trometer. The in
om-ing light strikes the grating at angle � away from the normal and for the �rst order re
e
tion leavesat the same angle. Thus the di�eren
e in time delay from one groove to the next is 2s 
os �
 , where sis the groove separation. You don't have any information for time di�eren
es between these values.So this is exa
tly equivalent to tsmpl, so the maximum fra
tional bandwidth is fNf = 14 s� 
os � . Toattain a substantial fra
tional bandwidth, e.g. fNf > 1=2 say, we require the spa
ing s < �=2 
os �.Moreover, to avoid aliasing it's absolutely ne
essary to insert a �lter in front of the grating to limitthe input bandwidth.4.2. Summary: The Two Fundamental Parameters in Dis
rete Sampling andFourier TransformsThe above two parameters are the fundamental ones.(1) To prevent aliasing, we must satisfy the sampling theorem: the total signal bandwidth Bmust be small enough , so B � fN , or B � �smpl2 .1 Usually you need to limit the bandwidth witha �lter.(2) In the Fourier-transformed power spe
trum, the spe
tral resolution is the re
ipro
al of thetotal time over whi
h the FT is 
omputed: �� = 1Ttot .5. THE DISCRETE FOURIER TRANSFORM AND DISCRETE SAMPLINGWith the DFT, we have to repla
e the Fourier integral in equation 2 by a summation. Let's dothis with a one-to-one 
orresponden
e of the terms. First we rewrite equation 2 to make it easierfor a dire
t 
omparison: E(�) = 12T Z +T�T E(t)e[2�i℄�tdt : (9)In our dis
retely-sampled 
ase we 
an repla
e t by jtsmpl, de�ned for j = �J ! J ; � by k�smpl2J ;1For 
omplex input, whi
h 
an o

ur in radio astronomy and some other appli
ations, the fa
tor of 2 doesn'tapply.
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al
ulate E(k�smpl2J ) for k = �J ! J , so the summation looks like. . .E(k�smpl2J ) = 12Jtsmpl J�1Xj=�JE(jtsmpl)e[2�i℄�smpltsmpl jk2J tsmpl : (10)Here we've taken dt = �t = tsmpl�j = tsmpl (i.e., �j = 1). The produ
t tsmpl�smpl = 1, so we 
ansimplify our notation by eliminating these variables, repla
ing k�smpl2J by the mu
h simpler k, andrepla
ing jtsmpl by just j and writing. . .E(k) = 12J J�1Xj=�J E(j)e[�i℄ kjJ : (11)5.1. IMPORTANT DETAIL Regarding Limits of Summation and Periodi
itiesAre you paying attention? If so, you should be asking why the upper limit in equation 11 onthe sum is J � 1 instead of J .One reason is that a sum from �J ! J has (2J + 1) samples. But we have only 2J samples.So we 
an't possibly sum from �J ! J .This doesn't matter at all. To begin with, look at equation 11 
arefully: you 
an verify foryourself that the trig portion|that is, the e[�i℄ kjJ term|is periodi
 in both j and k, with period2J . That is, you 
an use either k or (k + 2J)|you'll get the same answer. Same with j.2 Andone other thing: the dis
rete Fourier transform makes the impli
it, intrinsi
, 
ompletely irrevo
ableassumption that the input signal E(j) is also periodi
 with period 2J . Thus the entire quantitybeing summed is periodi
 with period 2J . This means, also, that the result of the summation,namely E(k), is also periodi
 with period 2J . The intrinsi
, irrevo
able assumption that E(j) isperiodi
 means that we only need to know 2J values of E(j); the j = (2J +1) value is equal to thej = 0 value.Now, everybody knows3 that when we repla
e an integral by a digital summation we regardea
h sample as 
entered on a bin of width unity � �t. However, the samples at the end, withj = �J and j = J , must have bins of width 12 � �t, so we're supposed to in
lude both E(�J)and E(J) in the sum, ea
h with a weight of 12 . But be
ause of the 2J periodi
ity, we 
an insteadin
lude just one and use a weight of unity.2With the quali�
ation that k is an integer, i.e. that you are 
al
ulating the result only for integral multiples of�smpl2J . We dis
uss this in more detail below.3If you don't believe me, go look at your elementary 
al
ulus book, in the 
hapter where integration was introdu
ed.
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t that E(j) is periodi
 with period 2J allows equation 11 to be written in its more
onventional form E(k) = 12J 2J�1Xj=0 E(j)e[�i℄ kjJ or E(k) = 1N N�1Xn=0 E(n)e[2�i℄ knN : (12)However, this form is valid only for integral values of k; see x7.2.5.2. Again: The Periodi
 Nature of the Dis
rete FTAbove we dis
ussed the periodi
 nature of both E(j) and E(k). Let's delve deeper.By its very nature, the Fourier transform wants to integrate to1. But the input signal doesn'tgo on forever! We have to resolve this basi
 in
ompatibility: the input signal is sampled for a �nitetime, but the Fourier transform needs it to go on forever.There's only one way to resolve this in
ompatibility: we must assume that the input signal doesgo on forever, and be
ause we don't know what happens outside the sampling interval �J ! J ,the only sensible thing to do is to assume that the input signal is periodi
 with period 2J .4This assumption of \forever", together with the asso
iated 2J periodi
ity, leads to the ne
essaryresult that the spe
trum E(k) and its power spe
trum P (k) = E(k) � [E(k)℄� also go on forever,k = �1! +1, and are periodi
 with period 2J .Be
ause of these periodi
ities, we gain 
omplete information on the spe
trum by restri
tingour attention to windows of length 2J : these windows are the �nite intervals in (j; k) between thedotted lines in �gure 2. They 
an begin and end anywhere|all that matters is that their length is2J .6. THAT WEIRD-LOOKING POWER SPECTRUM|IT'S JUST A MATTER OFSTANDARD CONVENTIONAbove we let the indi
es j and k run from �J ! J � 1. But in the real world of numeri
al
omputing, we don't use negative indi
es. You might think that the reasonable way to handle thiswould be to displa
e the whole set of 2J values of E(j) and E(k) upwards by J so that the indi
esrun from 0 ! 2J � 1 (this would be perfe
tly 
ompatible with IDL's indexing s
heme). But this4You might be surprised: why not assume the signal is zero outside the interval? Answer: most signals don't stopsimply be
ause we stop sampling them|for example, a pulsar. More Fundamental Answer: the math requires thisassumption!
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onvenientfor lots of reasons.Instead, realize that the FT is periodi
 in j with period 2J . Therefore, in equation 10 it doesn'tmatter whether you sum from j = �J ! J � 1, from j = 0 ! 2J � 1, or even (god forbid!) fromj = �3J + 7 ! �J + 6. So we might as well just sum from j = 0 ! 2J � 1 and not displa
eanything at all. This is the standard 
onvention, and it leads to the standard way in whi
h FTarrays are stored in memory|not just in IDL but in just about every software pa
kage. It has thegreat advantage that the t = 0 or f = 0 point is the �rst one in the array.Above we were dis
ussing \the FT array", without spe
ifying whether it was the input oroutput array. The arrangement for the input array works in exa
tly the same way as that forthe output array. And it doesn't matter whether the independent variable for the array is time orfrequen
y. All FT arrays, whether input or output and no matter what the independent variable,are arranged identi
ally with respe
t to the negative and positive values.6.1. Enough Prea
hing! Let's Try an Example in IDLHere we take an example with J = 32, with the dis
retely-sampled input signal being the sumof three 
osine waves: E(j) = 
os(� 8j32 ) + 0:5[
os(� 7j32 ) + 
os(� 9j32 )℄. Thus we have power at threefrequen
ies: k = 7; 8; 9. There is twi
e as mu
h voltage, thus four times the power at k = 8 thanthere is at k = 7; 9. The power spe
trum 
onsists of these three nonzero points, plus a bun
h ofzeros at all other frequen
ies.In IDL, we denote E(j) by EJ and generate this 64-element array with the statements. . .EJ = 
os(!pi � 8 � �ndgen(64)=32) (13a)EJ = EJ+ 0:5 � 
os(!pi � 7 � �ndgen(64)=32) + 
os(!pi � 9 � �ndgen(64)=32)) (13b)Figure 2 (top) shows the plot of the 64-element array EJ, with the 64 
rosses marking the 
omputedpoints (or, in our parlan
e, the dis
retely-sampled points). The interferen
e of the sine waves makesthe sampled signal look like a wave pa
ket of frequen
y k = 8, attenuated at the middle of the timeinterval where j � 32.The signal E(j) must be periodi
 with period 2J = 64 and it must go on forever. Figure 2(bottom) shows this for a larger sli
e of time in whi
h j = �128! 128. Our points are 
omputedfor IDL indi
es 0! 63; this window is shown by the dotted lines on Figure 2 (bottom).We take the Fourier transform [E(k) = FT (E(j))℄. In IDL, we denote E(k) by EK and useIDL's Fast Fourier Transform (FFT) pro
edure. . .
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Fig. 2.| Upper plots in Figs 2 and 3 show a 64-point time series and power spe
trum. Lowerplots show a portion of an in�nitely-long periodi
 time series and power spe
trum from whi
h the64-point ones are extra
ted.



{ 13 {EK = �t(EJ) (14a)and get then the power spe
trum P (k) (PK in IDL). . .PK = 
oat(EK � 
onj(EK)) (14b)For 
onvenien
e, we use the 
oat to dis
ard the imaginary portion of the produ
t, whi
h is zero|this makes PK real, so that in later operations we don't have to deal with a 
omplex array (e.g.,to plot the power spe
trum we 
an type plot, PK instead of plot, 
oat(PK)).Figure 3 (top) shows the plot of the 64-element array PK, with the 64 
rosses marking the
omputed points returned by IDL. The positive frequen
ies lie in the IDL index range 1! 32 andthe negative ones in the range 32! 63. As expe
ted, there is nonzero power at only three positivefrequen
ies, the ones with IDL indi
es 7, 8, 9. There is also power at the three 
orrespondingnegative frequen
ies, the ones with IDL indi
es 55, 56, 57.The power spe
trum must be periodi
 with period 2J = 64 and it must go on forever. Figure3 (bottom) shows this for a larger sli
e of frequen
y in whi
h k = �128 ! 128. IDL indi
es forPK are 0! 63; this window is shown by the dotted lines on Figure 3 (bottom).6.2. Is this weirdness perfe
tly 
lear?Probably not. So, in the following two subse
tions we go through this again in ex
ru
iatingdetail. We provide �rst a detailed verbal des
ription of the arrangement, and then the shortestof short numeri
al examples. In the verbal des
ription we fo
us on the output array to makethings spe
i�
, but we just as well 
ould have fo
used on the input array and repla
ed the word\frequen
y" by \time". As you'll see, this leads to something surprising. . . we'll dis
uss it expli
itly(6.2.3). 6.2.1. Verbal Des
riptionAgain, we let the time for E(t) run from t = �T ! +T , with T = Jtsmpl. The 
orrespondingfrequen
ies run from f = �fN ! +fN , with fN = �smpl2 .All FT arrays are arranged so that the �rst J + 1 
hannels 
ontain the positive-frequen
yportion of the transform. Again, here we fo
us on the output array. Thus, for 
hannel k = 0! Jthe frequen
y of 
hannel k is �k = +kfNJ . Thus, 
hannel 0 
ontains the � = 0 result, 
hannel 1 the� = +fNJ result, . . . , up to 
hannel J whi
h 
ontains the maximum frequen
y � = +fN .
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hannels 
ontain the negative-frequen
y portion of the transform. As wego from 
hannel J to J + 1 we would go to the next highest positive-frequen
y point; but be
ausethe FT is periodi
 with period 2J , this must be identi
al to the 
orresponding point at negativefrequen
y. This means that 
hannel J 
ontains not only the result for � = +fN , but also the resultfor � = �fN . And the remaining J � 1 higher 
hannels 
ontain the rest of the negative-frequen
ypoints, so for k = J ! (2J�1) the frequen
y is �k = �fN+ (k�J)fNJ . Thus 
hannel J has � = �fN ,
hannel (J + 1) has � = �fN + fNJ , . . . , and 
hannel (2J � 1) has the � = �fNJ result. If youwere to 
onsider 
hannel number 2J it would 
ontain the next highest frequen
y, whi
h is � = 0;of 
ourse, this is identi
al to the result in 
hannel 0.Note that frequen
y 
an always be 
onsidered to in
rease with 
hannel number: you 
an evenregard the big ba
kwards jump from +fN to �fN at 
hannel J as not being a jump be
ausethe periodi
 nature of the transform means that the results for these two frequen
ies must beidenti
al, and su

essively higher negative frequen
ies are equivalent to su

essively higher positivefrequen
ies above +fN .So any FT array, for example the spe
trum, 
ontains 2J independent points. More generally,the FT spe
trum 
ould 
ontain 4J points, or 6J points, et
. We 
ould 
al
ulate as many points aswe wish. However, be
ause the FT is periodi
, with period 2J , 
hannel 2J + 1 would 
ontain thesame result as in 
hannel 1, et
. So there is no sense in 
al
ulating more than 2J points, be
ausethe 
al
ulations would be redundant. 6.2.2. An ExampleConsider a simple 
ase with J = 4; you've taken 8 time samples. Then the proper way toarrange the input to the FT is the following, where the left-hand matrix 
ontains the IDL indi
esand the right hand the times or frequen
ies:26666666666664
01234567
37777777777775$

26666666666664
0� TJ1� TJ2� TJ3� TJ�4� TJ�3� TJ�2� TJ�1� TJ

37777777777775 (15a)
and the output looks like
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01234567
37777777777775$

26666666666664
0� fNJ1� fNJ2� fNJ3� fNJ�4� fNJ�3� fNJ�2� fNJ�1� fNJ

37777777777775 (15b)
6.2.3. Wait a Minute! You Mean the TIME Isn't CONTINUOUS?Above we said|and we meant it|that in our verbal des
ription we fo
used on frequen
y, butwe 
ould just as well have fo
used on time. And in equation 15 above, where we expli
itly listedthe time versus the IDL index, the time begins at 0 for IDL index 0, runs up to 3� TJ for IDL index3, and then \wraps around" to negative times for IDL index � 4. So it seems that time versus IDLindex is dis
ontinuous|just like frequen
y.Yes it's true!! If you take a bun
h of time samples and 
ompute the FT, you should put thenegative time samples into the upper index ranges.But for the 
al
ulation of just the power spe
trum, it doesn't matter whether you bother withthis reshu�ing or not|you get the same answer whether or not you reshu�e. What it does matterfor is the 
ases for whi
h you are really interested in the phase of the FT output array. Rememberthat the output array E(k) in equation 10 is 
omplex; the ratio of imaginary to real parts givesthe phase of the signal. This phase is de�ned with respe
t to t = 0. If you want the phase to be
orre
tly de�ned, and if you want to regard the samples as extending from �T ! T instead of0! 2T , then you must reshu�e the dis
rete time samples a

ording to the above pres
ription.Of 
ourse, the power spe
trum doesn't have any phase information: it's only a spe
i�
ation ofthe power versus frequen
y. In other words, dete
ted signals have no phase information. In our labwork we generally don't 
are about the absolute phase of the signal, so you have no need to 
arryout the index reshu�ing before 
omputing the FT.7. THE SPECTRUM AT AN ARBITRARY FREQUENCYEquation 11 provides results for dis
retely-spa
ed frequen
ies at intervals �� = �smpl2J . It's oftenni
e to have results for arbitrary frequen
ies. One way is the brute-for
e approa
h of equation 10,whi
h we repeat here in slightly modi�ed form:



{ 16 {E(��smpl2J ) = 12J J�1Xj=�JE(j)e[2�i℄ j�2J : (16)Here we have eliminated tsmpl and �smpl on the right hand side and repla
ed k by � to emphasize thefa
t that � 
an be a non-integer. (For non-integral k, you must 
arry the sum from (�J ! J � 1)and not (0! 2J � 1); see x7.2).This is �ne as long as you don't want to 
ompute a lot of frequen
ies. However, supposeyou want to 
reate four interpolated points per original point so that you have a good visualrepresentation of the spe
trum. Ea
h point requires � 2J operations, so this 
an be a lot of
omputing.Instead of 
al
ulating the points from the whole time series, you 
an interpolate using thespe
tral points themselves. In prin
iple, you need to in
lude all points when 
omputing theseinterpolations. For uniform weighting, the proper interpolation formula in the frequen
y domain is(Brault & White) E(�) = 12J 2J�1Xj=0 E(j)sin[�(� � �j)(2Jtsmpl)℄tan[�(� � �j)2tsmpl℄ (17)Note that (2Jtsmpl) = 2T = the total time; many texts use T as the total time.; this involves mu
h less 
omputing if you are willing to live with approximate results.Instead of this you 
an save a lot of 
omputer time by in
luding just a few original data pointson ea
h side of the point you're 
al
ulating be
ause most of the 
ontribution 
omes from thosenearby points. For example, a good approximation isE(�) = XjnearbyE(j)sin[�(� � �j)(2T )℄�(� � �j)(2T ) (18)where jnearby is a set of nearby frequen
ies in the original spe
trum 
hosen as a 
ompromise betweena

ura
y and speed. This equation makes sense: you are weighting the spe
tral points in proportionto their sidelobe response in equation 4. Restri
ting jnearby to the nearest few spe
tral 
hannels to� is suÆ
ient for many purposes. 7.1. Two examplesWe 
onsider two examples. Both have 64 datapoints; note that 64 = 26.
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Fig. 3.| Mono
hromati
 signals with frequen
y 12.5 Hz (top) and 10.0 Hz (bottom). The sampleinterval is tsmpl = 0:01 s, so the sample frequen
y is �smpl = 100 Hz and the Nyquist frequen
y isfN = 50 Hz. Stars are from the FFT, lo
ated at frequen
ies (�fN + k��) [�� = 12T ℄; the solid
urve joins mu
h more 
losely spa
ed points 
al
ulated using equation 16.7.1.1. The �rst example: a spike 
entered on integral kFirst, the example of [E(j) = 
os(2� �smpl8 t)℄. This is a mono
hromati
 wave whose frequen
yis exa
tly one-quarter the Nyquist frequen
y, i.e. when plotted it is exa
tly one-quarter the waybetween 0 and fN . It falls exa
tly on an integral value of k. We show the resulting E(k�smpl2J ) by
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ontinuous 
urve from fra
tional values of � inequation 16 as the solid 
urve. The stars are nonzero only for one single value of k. This is be
ausethe signal frequen
y is exa
tly 
entered on the frequen
y represented by this value of k.But look at the solid 
urve. You might have thought that this would be symmetri
 about thesignal frequen
y; this is what the analyti
 equation 4 seems to suggest. But it's not symmetri
. Thereason is that, be
ause the signal is real, the spe
trum is Hermetian. Hermetian means that thenegative frequen
y real part is equal to the positive frequen
y real part. (In this 
ase, the signal issymmetri
 in time, so the imaginary 
omponents are zero.) The sidelobes of the negative frequen
ypart interfere with those of the positive frequen
y part, whi
h 
auses the asymmetry. If you in
ludethe negative frequen
ies in the analyti
 
al
ulation, then you also �nd that the sidelobes are notsymmetri
.Similar asymmetries in sidelobe stru
ture o

ur in the high end of the spe
trum be
ause ofaliasing: The sidelobes of the sinxx fun
tion go on forever, so they exist at frequen
ies beyondthe Nyquist frequen
y. They are aliased ba
k into the displayed spe
trum and this also produ
esasymmetry. 7.1.2. The se
ond example: a spike not 
entered on integral kSe
ond, the example of [E(j) = 
os(2� �smpl10 t)℄. This is a mono
hromati
 wave whose frequen
yis exa
tly one-tenth the Nyquist frequen
y, i.e. when plotted it is exa
tly one-�fth the way between0 and fN . But, in 
ontrast to the previous example, it does not fall on an integral value of k.Again we show the resulting E(k�smpl2J ) by the stars in Figure 3 (bottom), and we show the almost-
ontinuous 
urve from fra
tional values of � in equation 16 as the solid 
urve. The stars arenowhere zero be
ause the signal is 
entered on a non-integral value of �. Comments about thesidelobe asymmetry apply here too, of 
ourse.7.2. The repeating windows for nonintegral kWe have extensively dis
ussed the periodi
 nature of the dis
rete FT in x5. Spe
i�
ally, equa-tion 11 shows this periodi
ity: both the input signal and the output spe
trum are periodi
 withperiod 2J . But for the input signal, this periodi
ity exists only if k (� in equation 16) is an integer.5If � is not an integer, then the interpolated spe
tra (i.e., for nonintegral �) at frequen
y o�setsof J�smpl (equal to 2JfN ) are not identi
al. Fundamentally this is an e�e
t of the time-shift propertyof FT's. Nevertheless, for the integral values of k, whi
h provide the basi
 spe
tral information,the spe
tra at frequen
y o�sets of J�smpl (equal to 2JfN ) are identi
al. Here the digital world5Similarly, for the spe
trum this periodi
ity exists only if j is an integer|but j is always an integer!



{ 19 {triumphs over the time-shift theorem!8. THE FAST FOURIER TRANSFORMThe Fourier transform as de�ned in equation 12 requires of order (2J)2 operations: 2J fre-quen
ies to be 
omputed, ea
h of whi
h requires a sum over 2J datapoints. Many appli
ationsgenerate huge values of J and the 
omputing time be
omes impra
ti
ally long.Enter the FFT. The fundamental idea is to split the FT into smaller 
hunks. Suppose, forexample, you have 2N datapoints. You split the FT into 2N2 
hunks ea
h of whi
h 
ontains only twonumbers; you FT ea
h pair; then you put the 
hunks ba
k together again. This works and requiresonly � N log2N operations. This has two advantages: The obvious one is 
omputing time. Theless obvious one is numeri
al a

ura
y: fewer operations means smaller roundo� errors in the �nalresult.Suppose you have an arbitrary number M of datapoints. IDL's FFT routine fa
tors M intoas many 
hunks as possible. It's most eÆ
ient for 
hunks that are powers of 2, 3, or 5. The morefa
tors, the faster the runtime. People tend to think of and always use powers of 2, and this isindeed the fastest kind of FFT, but the presen
e of other fa
tors 
an be quite a

eptable.This 
an lead to large apparent anomalies in runtime. You might have M equal to some largeintegral power of 2. If then you add just one more point, M might be a prime number! (An easy,but not interesting, example isM = 16). The di�eren
e in 
omputing time 
an be enormous. IDL'sFFT doesn't warn you about these matters, so you have to think of them yourself|beforehand!If you have an awkward value of M , then you 
an 
reate a ni
e power-of-two value either by
utting out datapoints (do you really want to do this???), or by padding your datapoints withenough zeros to produ
e the requisite power-of-two 
ondition.Consider padding with zeros. Suppose you are taking datapoints as a fun
tion of time t. Toretain the proper phase of the signal you need to pad the signal symmetri
ally around t = 0, withequal numbers at negative and positive times. Re
all, however, that in the FFT algorithm thet = 0 point is shifted to the beginning. This means that the negative times are wrapped around tothe large positive indi
es. This, in turn, means that you need to add the zeros all at the end of thearray that you use in the FFT pro
edure.9. CORRELATION AND CONVOLUTIONTwo important theorems regarding FT's:1. The 
onvolution theorem:
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apital letter fun
tions mean the FT versions and the 
onvolution is de�ned as[s � r℄(t) = Z 1�1 s(ts)r(t� ts)dts (19b)In words, this reads: The FT of the 
onvolution of two fun
tions is the produ
t of the FT'sof the fun
tions. Regard 
onvolution as the smoothing of one fun
tion, the singal s(ts), byanother, the response fun
tion r(�t). .The 
lassi
al example of 
onvolution is in ele
tri
 
ir
uits. A signal varies with time (\signaltime") ts. It passes through some ele
troni
 bla
k box, for example an RC 
ir
uit. This 
ir
uithas impulse response r(�t) = e��t=RC , where �t is the time after the impulse is applied; theFT is RC1+[2�i℄RC� , so it a
ts as a low pass �lter, attenuating high frequen
ies.A good astronomi
al example is atmospheri
 seeing: the star image, whi
h is in�nitesimallysharp, is blurred by the atmospheri
 seeing. If the seeing is Gaussian, then the observed starimage is the 
onvolution of its true image with the atmospheri
 Gaussian. This example, asmany, has a symmetri
 response fun
tion, in 
ontrast to the above RC 
ir
uit example.An important aspe
t of 
onvolution is the reversal of the sense of \signal time" ts, or theindependent variable whatever it is, for the response fun
tion r in the integral. The re-sponse fun
tion gets 
ipped. This 
ipping seems strange|but it's important. For symmetri
response fun
tions, as we often en
ounter in astronomy, this doesn't matter|but be aware!2. The 
orrelation theorem:FT [
orr(s; r)℄(�) = FT (s(t)) � [FT (r(t))℄� = S(f)R�(f) (20a)where the 
orrelation is de�ned as[
orr(s; r)℄(�) = Z 1�1 s(t)r(t+ �)dt (20b)In words, this reads: The FT of the 
ross
orrelation of two fun
tions is the produ
t of theFT of one fun
tion by the 
omplex 
onjugate of the FT of the other.The 
lassi
al and most important example of 
ross
orrelation is in deriving power spe
tra.Here, we take two time series, 
ompute their integrated produ
t as a fun
tion of the delay � ;the power spe
trum is the FT of this 
ross 
orrelation fun
tion.This theorem is parti
ularly important for the auto
orrelation fun
tion, namely the 
ross
or-relation of a fun
tion with itself. Here, the theorem reads: \The power spe
trum, de�ned as
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omplex 
onjugate, is equal to the FT of the signal's auto
orre-lation fun
tion." This has wide use in radio astronomy and, also, in spe
tral interferometry.There are two methods of 
al
ulating power spe
tra: First, the 
lassi
al one, the FT of thesignal times its 
omplex 
onjugate; this is 
alled the FX method [Fourier Transform, thenmultipli
ation (dete
tion)℄. Se
ond, the XF method: (multipli
ation, then FT). The se
-ond method is popular with radio astronomers be
ause it is easy to design a hugely parallelpro
essor to do auto- and 
ross
orrelation.Aside from the use of the 
orrelation theorem in spe
tral analysis, there are two importantappli
ations of these theorems. One is in 
al
ulating 
onvolutions. If you have a big CCD imageand want to 
al
ulate what it would look like under various 
onditions of atmospheri
 seeing, youneed to 
onvolve the seeing fun
tion with the image. This requires � N2 operations, where N is thenumber of pixels. Using FFT te
hniques, you 
ut this to � N log2N . The other is in de
onvolution:the produ
t of two FT's 
onvolves, while the ratio of two FT's de
onvolves|it's magi
! There areissues regarding noise and zeros in the denominator, though! See NM x13.1.These theorems are identi
al if the response fun
tion r is symmetri
. We will assume this tobe the 
ase and fo
us the dis
ussion on auto
orrelation as the spe
i�
 example.9.1. Digital Cal
ulation of the Auto
orrelation Fun
tion.The way to digitally 
al
ulate the auto
orrelation fun
tion A(�) of the time-dependent fun
tionE(t) is to 
arry its de�nition, whi
h is by an analyti
 integral, to numeri
al summation in thestandard way. We begin shifting the origin of the time axis so that all times are positive, whi
h isthe way we usually think of our samples, so we writeA(�) = limT!1 12T Z +2T0 E(t)E(t+ �)dt : (21)For example, if E(t) = sin(2��t), then A(�) = 
os(2���). This illustrates the general propertythat auto
orrelation removes all phase information. (It has to: it's symmetri
 in � , so its FT isalways real!)Now let's translate this into a digital sum. We have 2N dis
rete samples separated uniformlyin time by �t = tsmpl = 1�smpl . Re
all your elementary 
al
ulus in whi
h an integral was de�ned by
utting up the x-axis into tiny bits and taking a sum over the bits. Here we are integrating overtime, so it makes sense to make the \tiny bit" equal to the sample time tsmpl. In terms of samplenumber n, we 
an write t = ntsmpl and dt = tsmpl, so E(t) = E(ntsmpl) and, for 
onvenien
e, wejust write E(n). Similarly, we will 
al
ulate A(�) only for dis
rete values of � whose in
rement isalso tsmpl; we write � = jtsmpl and, as for E, we write A(j) instead of A(jtsmpl). With all this, thedire
t analog of equation 21 in summation form is
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ent enough, but it misses a fundamental fa
t of the real world: we don't liveforever, so we 
an't let N ! 1. No problem; we just get rid of the limN!1 and write the evensimpler form A(j) = 12N 2N�1Xn=0 E(n)E(n+ j) : (23)But wait! We have just 2N samples of E|that is, E(n) is de�ned only for n = 0! 2N � 1. So inthe sum, whenever n + j > 2N � 1, we're in trouble|we have no samples to put in the sum! Inother words, when N is �nite, you have the problem of \end e�e
ts". What to do?Now's the time to go ba
k and review x5 and �gure 2. There we stressed that the summationform of the FT impli
itly, and ne
essarily, assumes that both the input and output arrays areperiodi
 outside the fundamental window of length 2N|and the period is just 2N . So it's obviouswhat to do: when n+ j > 2N � 1, you use E(n+ j � 2N).Similarly, A(j) is periodi
 with period 2N . Thus, A(j) is de�ned for the interval j = 0 !2N � 1. And, of 
ourse, this periodi
ity makes it easy to generate values for j < 0.9.2. !!!!!!!!!!WARNING!!!!!!!!!Re-read the paragraphs immediately above. They state that the end e�e
ts are no problembe
ause the math automati
ally \wraps around" in the 
al
ulation of 
orrelation fun
tions. Thismeans that the beginning of the data stream gets 
orrelated with the end of the data stream!Generally speaking, you don't want this to happen be
ause the beginning and end are distin
t andtotally unrelated!What do do? Pad the beginning and end symmetri
ally with zeros! This ensures that the twoends of the data stream do not intera
t. And make sure you use enough!! See NM dis
ussion x13.1.9.3. Cal
ulating 
orrelation fun
tions in IDLIDL provides several native routines for 
al
ulating 
orrelation fun
tions. You have to be very
areful, though. Read their do
umentation before blindly forging ahead. Here we summarize.You might be tempted to use the routines a 
orrelate and 
 
orrelate for auto- and 
ross
or-relation. Be aware that these don't do what you think. First, they subtra
t the mean before doing
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al
ulation|something you don't want, if for no other reason that the zeros you so 
arefullypadded with be
ome nonzero when the mean is subtra
ted! Se
ond, they have sliding limits on thesums, meaning that di�erent numbers of terms are in
luded for di�erent delays. I'd stay away fromthese pro
edures if I were you. Frankly, I 
an't imagine any 
ir
umstan
e for whi
h they would beuseful.What you want is IDL's 
onvol routine, whi
h 
onvolves two arrays and allows you to\edge wrap", whi
h is the equivalent of wrapping around as you need to do to a

ount prop-erly for the edge e�e
ts in 
orrelation as dis
ussed above in x9.1. You 
all this fun
tion as result= 
onvol( array1, array2, /edge wrap). The only 
at
h: array2 needs to be smaller than ar-ray1. So either expand one array by a 
ouple of elements or 
ondense the other; you 
an eliminateany deleterious e�e
ts by padding with zeros.Or, to make it qui
ker, use the FFT te
hnique! For one dimensional arrays this is easy(but you'd better experiment with some known simple fun
tions to make sure you understand thedetails). For two dimensional arrays, you should use the Goddard library's 
onvolve fun
tion,whi
h gives you the 
hoi
e of using either the FFT or the standard (
lunky time 
onsuming)te
hnique. Unfortunately, Goddard's 
onvolve works only on 2-d images. IDL's 
onvol works onall types of arrays, but uses only the 
lunky te
hnique.9.4. Cal
ulating the Fourier Transform of the Auto
orrelation Fun
tionWe do this using equation 11 using the variables appropriate here, that is. . .P (k) = 12J J�1Xj=�JA(j)e[�i℄ kjJ : (24)Here, the frequen
y � = k�smpl2J , and for 
onvenien
e we write P (k) instead of P (k�smpl2J ).Now let's noti
e that, with a suitable 
hange of variables in our above equation (2a), you 
aneasily determine that A(�) = A(��): the auto
orrelation fun
tion is symmetri
 in � . This meansthat the imaginary portion of its FT is automati
ally zero. So, in taking the FT, you don't evenhave to spe
ify that we want just the real part of the result! BUT symmetrizing a digitally sampledA(�) is a bit tri
ky and you need to follow the pres
ription in x10.9.5. The FX versus XF methods: Not Entirely Equivalent!!The 
orrelation theorem says that the FX and XF methods of 
al
ulating power spe
tra shouldprovide identi
al results. Not many people realize that this isn't exa
tly the 
ase.
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t, we integrate onlyover some range of time 2T . This limits the spe
tral resolution as dis
ussed in x2: the spe
trum is
onvolved by the FT of the weighting fun
tion. The di�eren
es between the FX and XF methodsarise only in this realm.There's a fundamental di�eren
e between applying weighting fun
tions in the two methods ofgetting power spe
tra. In the FX method, you apply the weighting fun
tion W (t) to the voltage,that is before the Fourier transform; and then you \dete
t" the signal by squaring (really, bymultiplying by its 
omplex 
onjugate). So the weighting fun
tion is also \squared". Alternatively,in the XF method, you apply W (t) to the 
orrelation fun
tion, whi
h is equivalent to the dete
tedvoltage; the \squaring" has already taken pla
e, so the weighting fun
tion does not get \squared".Figure 4 illustrates the di�eren
e.These appli
ations of W (t) are not equivalent and, furthermore, 
annot be made to be equiva-lent. One strange result is in the XF method, a mono
hromati
 signal produ
es sinxx type sidelobesin the power spe
trum, and these go negative. The power spe
trum 
an have negative power!. (Of
ourse, it's totally meaningless). This 
an never happen in the FX method.In the �nal analysis|whi
h is too mu
h to dis
uss here, but the essen
e is that W (t) < 1 so\squaring" it means that it gets smaller|this means that, for identi
al weighting fun
tions W (t),the leakage is always mu
h smaller with the FX method. You 
an always make this up by usinga more severe weighting fun
tion in the XF method, but you lose a bit more resolution than withthe FX method. 10. COSINE AND SIN TRANSFORMSThe Fourier transform is by its intrinsi
 de�nition a 
omplex operation. However, there aremany instan
es when you need to take a 
osine or sin transform. This is straightforward, but it'sworth spending some spa
e on this be
ause almost everybody gets it wrong.Suppose you have J datapoints and you wish to take the 
osine transform using the FFTmethod. That is, you use equation 11, whi
h we reprodu
e here:E(k) = 12J J�1Xj=�J E(j)e[�i℄ kjJ : (25)To take the 
osine transform, you need to make sure that the argument E(j) is symmetri
 in j.The datapoints D(j) are de�ned only for j � 0. De�ning the symmetri
 
ounterpart would seemto be easy: just de�ne E(j) = D(j) ;E(�j) = D(j) ; (j � 0) : (26)
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Fig. 4.| Comparison of FX and XF methods for a mono
hromati
 signal. �smpl = 100 Hz and2T = 0:64 se
. Solid line is XF method, whi
h 
an have negative sidelobes; dotted line is XFmethod with Hanning weighting. Dashed line is FX method. Stars are square-window FFT outputspe
tral points.
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, so that when you take the digital transform using either the FFTor a dire
t transform you have to get a pure 
osine transform.But you immediately run into a problem if you wish to use the most eÆ
ient version of theFFT, for whi
h the number of datapoints needs to be a power of two: the above symmetrizationoperation produ
es an odd number of datapoints. Spe
i�
ally, if you start with J datapoints, youend up with 2J � 1 datapoints. You have a \missing datapoint".To get around this diÆ
ulty, look at equation 15. There you see that the missing datapoint hasj = +J and, also, j = �J . Be
ause of the periodi
 nature of the DFT, these two datapoints mustbe equal to the one and only missing datapoint. You need to set this unknown missing datapointto a reasonable number. The proper 
hoi
e for this number is important only insofar as it shouldprodu
e no dis
ernible impa
t on the derived Fourier transform.You might be tempted to set the missing datapoint equal to zero. However, this is the wrong
hoi
e! The signal may have a nonzero Fourier 
omponent at the adja
ent datapoints where j =�(2J � 1). Setting the missing datapoint equal to zero then produ
es a spike at j = �(2J), andthis spike produ
es a 
hannel-to-
hannel os
illation in the derived Fourier spe
trum. The proper
hoi
e for the missing datapoint is the average of the two values at j = �(2J � 1).Similar 
omments apply to doing a sin transform using the FFT, ex
ept that you need toantisymmetrize the signal. NM x12.3 dis
usses spe
i�
 routines for 
osine and sin transforms, butIDL does not have these implemented as native pro
edures.11. SOME FINAL POINTS11.1. What's This Business About Negative Frequen
ies?There are some 
ases in whi
h one 
an distinguish between negative and positive frequen
ies.Spe
i�
ally, these are 
ases in whi
h the input to the FT is 
omplex. To be 
omplex, the inputmust have both a real and imaginary part: in other words, ea
h sample 
onsists of two numbers,and these two numbers 
an be regarded as the real and imaginary parts of a 
omplex number. Ifyou take AY120B, you will en
ounter su
h a 
ase.More probably, you en
ounter this 
ase in the movies when you see a rotating wheel. The realaxis is horizontal and the imaginary is verti
al. If the wheel moves ba
kwards the true frequen
y isnegative, forwards is positive: if the wheel appears to move ba
kwards when it is moving forwards,that's aliasing! And you wouldn't know the wheel appears to go ba
kwards without having boththe horizontal and verti
al|i.e. real and 
omples|information.
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ies Enter the PowerCal
ulation?In the vast majority of appli
ations, the samples 
onsist only of one number: ea
h time samplerepresents a real voltage (or a real number of photons), and there is nothing imaginary|or 
omplex(mathemati
ally speaking, that is)|about them. But it is perhaps surprising that the FT outputnumbers are 
omplex: the imaginary part is not zero. The phase angle of ea
h 
omplex numberrepresents the phase of that Fourier 
omponent with respe
t to t = 0. For the 
ase of real numbersas input, the outputted 
omplex numbers have a simpli�
ation: the imaginary parts are odd andthe real parts even (in other words, the negative-frequen
y number is the 
omplex 
onjugate of thepositive-frequen
y number).This means that when you use the 
omplex output spe
tral numbers to 
al
ulate the 
or-responding power numbers (by P (k) = E(k) � [E(k)℄�), negative and positive frequen
ies haveidenti
al powers. The proper way to 
ombine the powers for the negative and positive frequen
iesis simply to add them; but be
ause the numbers are identi
al, it's equivalent to simply use twi
ethe full value of, say, the positive-frequen
y number. It should be obvious that there is only onenumber representing zero frequen
y, so you should not multiply this by two.Thus, in the example above in x6.2, after 
al
ulating P (k) = E(k) � [E(k)℄�, your powerspe
trum is most simply given by the �rst Pk (k = 0) and twi
e the next four values of P (k)(k = 1! 4).11.3. A Detail on Normalization and \Going Ba
k and Forth"In IDL, the FFT is normalized by multiplying the sum by 12J , exa
tly as we've done in equation10. Not all FFT routines do the normalization in this way. This way has the advantage that thes
aling of the output is the same as that of the input|in other words, it's sort of like taking anaverage, be
ause we divide by the number of points that 
ontribute to the sum.As we've mentioned in x1, you should know that apart from normalization 
onstants, you 
an
onvert willy-nilly ba
k and forth from frequen
y to time by applying FT's in su

ession. That is,E(k) = FT (E(j)) and E(j) = FT�(E(k)). Here the supers
ript minus sign indi
ates using thenegative 
omplex exponential in the transform, as in equation 1b; this is 
alled the inverse Fouriertransform. More graphi
ally, E(j) = FT�[FT (E(j))℄.With the normalization used by IDL, the inverse transform must not multiply the sum by 12J .Of 
ourse, IDL's inverse transform does all this 
orre
tly. In IDL, you invoke the inverse transformby using the inverse keyword|see IDL's help on the �t pro
edure.


