
DISCREETLY FINICKY TIMESwithDISCRETE FOURIER TRANSFORMS(DFT's with DFT's)or\WHY DOES THAT FFT OUTPUT LOOK SO WEIRD???"Carl Heiles April 12, 2002\Spetral analysis" means desribing a time-varying signal by its power spetrum, otherwiseknown as its Fourier spetrum or its frequeny spetrum. It should be obvious that suh spetraare essential for astronomers: for example, spetra tell us not only about pulsar periods, but alsoabout hemial omposition in stars and Doppler veloities. But the desription of signals in termsof spetra or Fourier omponents has importane in many �elds, and this beomes obvious on justa little reetion. A prime example: a bridge is subjet to shaking by earthquakes; if its naturalresonane frequeny is lose to the frequeny of ground movement, you've got trouble!Spetral analysis is an integral part of some of our labs. We will sample signals at regularintervals with our omputers, a proess known as \disrete sampling", and our omputers willhange the voltages to digital numbers, a proess known as \digitization". We'll then do a disreteFourier transform to alulate the power spetrum. There are some intriaies with this proess. . .Contents1 THE INTEGRAL FOURIER TRANSFORM: TIME $ FREQUENCY 31.1 Classial Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 EFFECTS OF T BEING FINITE: INTEGRAL TRANSFORMS 42.1 Spetral Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 Spetral Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 DISCRETELY SAMPLED SIGNALS 53.1 Disretely-Sampled Signals: The Nyquist Criterion. . . . . . . . . . . . . . . . . . . . 63.2 A Popular MISCONCEPTION!!! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 DISCRETE SAMPLING AND THE FOURIER TRANSFORM 74.1 The maximum reoverable bandwidth: the Nyquist frequeny . . . . . . . . . . . . . 7
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{ 3 {11 SOME FINAL POINTS 2611.1 What's This Business About Negative Frequenies? . . . . . . . . . . . . . . . . . . . 2611.2 For Real Inputs, How Do These Negative Frequenies Enter the Power Calulation? 2711.3 A Detail on Normalization and \Going Bak and Forth" . . . . . . . . . . . . . . . . 271. THE INTEGRAL FOURIER TRANSFORM: TIME $ FREQUENCY1.1. Classial Fourier transformsWe use the Fourier transform (FT) to onvert a time-varying voltage E(t) from the time tothe frequeny domain E(�), and vie versa. The formally orret equations areE(�) = Z 1�1E(t)e[2�i℄�tdt (1a)and, to go the other way, E(t) = Z 1�1E(�)e�[2�i℄�td� (1b)In our ase, we are going to modify this a bit so that we don't run into in�nities. We willwrite. . . E(�) = limT!1 12T Z +T�T E(t)e[2�i℄�tdt : (2)We are often interested in the power spetrum. Power goes as amplitude squared, so the powerspetrum P (�) / E(�)2. A small ompliation: E(�) an be omplex, but the power spetrum isjust watts per Hz and must be real. We take are of this by de�ningP (�) = E(�)� [E(�)℄� ; (3)where the supersripted [E(�)℄� means the omplex onjugate. This multipliation is the equivalentof \detetion".



{ 4 {2. EFFECTS OF T BEING FINITE: INTEGRAL TRANSFORMSThere's a fundamental fat of the real world: we don't live forever, and even if we did TAC'swouldn't allow us in�nite telesope time for our preious projets, so we never an allow T ! 1.This frustrates the old politiians who want absolute ontrol over everything, forever. Less seriouslyin some irles|and more in others|it has two major rami�ations for Fourier transform devotees:1. It limits the frequeny resolution.2. It produes \spetral leakage": The result at a given frequeny in the Fourier transformspetrum is ontaminated by those at all other frequenies in the spetrum!We treat these two rami�ations in the following subsetions.2.1. Spetral ResolutionEquations 1 and 2 are �ne as they stand, but when we sample a signal T is �nite. Thislimits our spetral resolution. To understand this, onsider the analyti solution of equation 2 fora monohromati osine wave of frequeny �s, that is E(t) = os(2��st). For T ! 1, E(�) = 0exept for � = �s; this is ommonly expressed by the term \Dira delta funtion". But moregenerally, we have as the analyti solutionE(�) = sin(2�(� � �s)T )2�(� � �s)T : (4)It is simpler to write Æ� = (� � �s) and writeE(�) = sin(2�Æ�T )2�Æ�T : (5)P (�) = �sin(2�Æ�T )2�Æ�T �2 : (6)and we see that this is just the famous sinxx type behavior. This quantitatively expresses the degra-dation in frequeny resolution when you sample for a �nite time; roughly, the spetral resolutionis the width of this funtion, whih is �� � 1T .In optial and IR astronomy, the need for high spetral resolution leads to the requirement oflong time delays, whih in turn means long path lengths. For grating and prism spetrometers, thisan be ahieved only by using physially large devies. For a Fabry-Perot, the long path is ahievedby multiple reetions. In terms of the onventional de�nition of resolving power, ��� � �size .There's no way around this!



{ 5 {2.2. Spetral LeakageNot only is the in�nitesimally-narrow delta funtion replaed by a funtion of width � 12Tbut also the funtion sinxx has \sidelobes": it spreads power out over a huge range of frequenies,albeit|after squaring, anyway|at a low level. The spread-out power gets weaker as you move awayfrom the signal, that is as Æ� inreases|but it doesn't derease monotonially. Rather, the sidelobesmean that there the spread-out power goes to zero periodially for Æ� = 12T . In olloquial terms,the power of the monohromati sine wave \leaks" away in the power spetrum to all frequenies.Not surprisingly, this is alled \spetral leakage". It's overed in NM hapter 13.4.You an redue spetral leakage by using a \window funtion" W (t) that is not \square".What on Earth does this mean? In equation 2, when you use a �nite T you are integrating over a\window" of total length 2T , as follows:E(�) = 12T Z +T�T W (t)E(t)e[2�i℄�tdt : (7)In equation 2, the window funtion W (t) is unity; when we let W (t) = 1 for the time window oflength 2T , then this is alled a \square window funtion". A square window funtion produes\sharp edges" in the sense that the funtion E(t) has its full amplitude for all t within the windowand then uts o� preipitously at the ends of the window. It's this sudden uto�|the sharpedge|that produes spetral leakage.We an redue spetral leakage by making W (t) a funtion that produes a gradual uto� soas to eliminate the sharp edge. We make W (t) a funtion that gradually falls to zero at the windowedges �T and T . As one possible example among many, onsider the Hanning weighting funtion,whih is ommonly used in radio astronomy:W (t) = 12 �1 + os �tT � : (8)This drastially redues the sidelobes. This omes at a prie, though: the spetral resolution getsworse|by about a fator of two. The reason is that the window funtion W (t) goes to zero at theends of the time window 2T , whih e�etively makes the window shorter. Note: We also use theterm \weighting funtion" for W (t).3. DISCRETELY SAMPLED SIGNALSWhen I was a teenager we had vinyl reords. They ontained ontinuously-sampled signalsthat were diretly imprinted on the vinyl. Today we fous on CD's. These ontain disretely-sampled signals that are digitized and written on to the little silver disk. The fat that CD's



{ 6 {ontain disretely sampled data means that the signal is known only for ertain spei� times. Inpartiular, the signal is not sampled between these times. Does this mean that CD's don't soundas good as the vinyl reords?Regarding the alulation of our power spetrum with a FT, you'd think that the replaementof an integral by a sum would be straightforward, with no subtleties. But this isn't the ase. Thereare subtleties, and they are ruial. Understanding them, and dealing with them properly, makesyour CD's sound just as good as vinyl. So read on: we'll �rst provide a qualitative introdutionand then go into details.3.1. Disretely-Sampled Signals: The Nyquist Criterion.When your CD musi is reorded, or in astronomy when we observe a pulsar or sample aninoming signal to determine the spetrum, we sample the inoming signal sequentially in time, atregular intervals alled the sampling interval �t = tsmpl. Equivalently, we are sampling at a regularrate alled the sampling frequeny �smpl = 1tsmpl .In disrete sampling, we �rst require that the signal be limited in bandwidth. That is, thehighest frequeny in its spetrum must be limited to an upper uto�, whih we all the bandwidthB; thus, the frequenies in the signal extend from 0 to B Hz. Then we must sample the signalperiodially at a fast enough rate|spei�ally, we require (�smpl � 2B Hz). This is the \Nyquistriterion". If the Nyquist riterion is violated, we have the problem of aliasing, whih means thatsignals with frequenies � > B appear as lower frequenies. Remember those movies showing arsand the wheels that seem to rotate bakwards? That's a real-world example of aliasing: the movieframes disretely sample the sene at too slow a rate to faithfully reprodue the wheel's rotation.You an understand aliasing by looking at Figure 1.To put it another way: When we sample at rate �smpl, the maximum signal frequeny that anbe faithfully reprodued is �smpl2 . This is alled the Nyquist frequeny and here we denote this byfN = �smpl2 . Clearly, the signal's bandwidth B must satisfy B � fN . All this is alled the samplingtheorem.How rapidly must musi be sampled for reording on a CD? The human ear responds tosomething like 20 kHz. To prevent aliasing, we need to sample at twie this, at about 40 kHz.3.2. A Popular MISCONCEPTION!!!Somebody, sometime, will probably tell you that aliasing has to do with disrete Fouriertransforms. Tell them to go jump in the lake. It has to do with the sampling rate. Period. Aliasingours if you don't sample fast enough, and a�ets your results whether or not you are dealingwith Fourier transforms. If you don't believe me, just look again at Figure 1. And remember what
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Fig. 1.| Aliasing at its worst. The sample interval is tsmpl = 0:01 s, so the sample frequeny is�smpl = 100 Hz. The Nyquist frequeny is fN = 50 Hz. The stars are the datapoints. The twosignals shown are at frequenies 37.5 and 62.5, i.e. fN � 12:5 Hz. Whih signal do the datapointsrepresent?happens to rotating wheels in movies.4. DISCRETE SAMPLING AND THE FOURIER TRANSFORMWe use the Fourier transform to onvert from the time to the frequeny domain, and vie versa.For ontinuously-sampled signals we use the Fourier integral, equation 2. For disretely-sampledsignals we have to replae this by a summation. This is the disrete Fourier transform, or DFT.4.1. The maximum reoverable bandwidth: the Nyquist frequenyOK, we've sampled our signal at regular intervals tsmpl, meaning that the sampling frequenyis �smpl = 1tsmpl and fN = �smpl2 . If we do this for time 2T then we obtain 2J = 2Ttsmpl independentpoints. From these we wish to ompute the spetrum.If we want to digitally ompute the Fourier transform, then the �rst thing we must realize thatthe original 2J hannels provide only J spetral points! This seems like a loss of information, butit's not: the spetrum is omplex, so those J omplex numbers ontain 2J independent numbers.With sample frequeny �smpl we obtain the spetrum for the range of frequenies 0! �smpl2 or0! fN ; this is known as the bandwidth, denoted by B. With J independent points, the separation(and the frequeny resolution) is �� = �smpl2J . Fortunately, �smpl2J = 12Jtsmpl = 12T ; this on�rms our



{ 8 {earlier disussion in x2.1 about frequeny resolution.But more importantly for the present disussion, when sampling at rate �smpl you annotreover a spetrum wider in bandwidth than fN = �smpl2 .Amazingly, a disretly sampled time series ours where you'd least expet it: in a ommon,garden-variety optial analog devie, namely the lassial optial grating spetrometer. The inom-ing light strikes the grating at angle � away from the normal and for the �rst order reetion leavesat the same angle. Thus the di�erene in time delay from one groove to the next is 2s os � , where sis the groove separation. You don't have any information for time di�erenes between these values.So this is exatly equivalent to tsmpl, so the maximum frational bandwidth is fNf = 14 s� os � . Toattain a substantial frational bandwidth, e.g. fNf > 1=2 say, we require the spaing s < �=2 os �.Moreover, to avoid aliasing it's absolutely neessary to insert a �lter in front of the grating to limitthe input bandwidth.4.2. Summary: The Two Fundamental Parameters in Disrete Sampling andFourier TransformsThe above two parameters are the fundamental ones.(1) To prevent aliasing, we must satisfy the sampling theorem: the total signal bandwidth Bmust be small enough , so B � fN , or B � �smpl2 .1 Usually you need to limit the bandwidth witha �lter.(2) In the Fourier-transformed power spetrum, the spetral resolution is the reiproal of thetotal time over whih the FT is omputed: �� = 1Ttot .5. THE DISCRETE FOURIER TRANSFORM AND DISCRETE SAMPLINGWith the DFT, we have to replae the Fourier integral in equation 2 by a summation. Let's dothis with a one-to-one orrespondene of the terms. First we rewrite equation 2 to make it easierfor a diret omparison: E(�) = 12T Z +T�T E(t)e[2�i℄�tdt : (9)In our disretely-sampled ase we an replae t by jtsmpl, de�ned for j = �J ! J ; � by k�smpl2J ;1For omplex input, whih an our in radio astronomy and some other appliations, the fator of 2 doesn'tapply.



{ 9 {and dt by tsmpl. We would alulate E(k�smpl2J ) for k = �J ! J , so the summation looks like. . .E(k�smpl2J ) = 12Jtsmpl J�1Xj=�JE(jtsmpl)e[2�i℄�smpltsmpl jk2J tsmpl : (10)Here we've taken dt = �t = tsmpl�j = tsmpl (i.e., �j = 1). The produt tsmpl�smpl = 1, so we ansimplify our notation by eliminating these variables, replaing k�smpl2J by the muh simpler k, andreplaing jtsmpl by just j and writing. . .E(k) = 12J J�1Xj=�J E(j)e[�i℄ kjJ : (11)5.1. IMPORTANT DETAIL Regarding Limits of Summation and PeriodiitiesAre you paying attention? If so, you should be asking why the upper limit in equation 11 onthe sum is J � 1 instead of J .One reason is that a sum from �J ! J has (2J + 1) samples. But we have only 2J samples.So we an't possibly sum from �J ! J .This doesn't matter at all. To begin with, look at equation 11 arefully: you an verify foryourself that the trig portion|that is, the e[�i℄ kjJ term|is periodi in both j and k, with period2J . That is, you an use either k or (k + 2J)|you'll get the same answer. Same with j.2 Andone other thing: the disrete Fourier transform makes the impliit, intrinsi, ompletely irrevoableassumption that the input signal E(j) is also periodi with period 2J . Thus the entire quantitybeing summed is periodi with period 2J . This means, also, that the result of the summation,namely E(k), is also periodi with period 2J . The intrinsi, irrevoable assumption that E(j) isperiodi means that we only need to know 2J values of E(j); the j = (2J +1) value is equal to thej = 0 value.Now, everybody knows3 that when we replae an integral by a digital summation we regardeah sample as entered on a bin of width unity � �t. However, the samples at the end, withj = �J and j = J , must have bins of width 12 � �t, so we're supposed to inlude both E(�J)and E(J) in the sum, eah with a weight of 12 . But beause of the 2J periodiity, we an insteadinlude just one and use a weight of unity.2With the quali�ation that k is an integer, i.e. that you are alulating the result only for integral multiples of�smpl2J . We disuss this in more detail below.3If you don't believe me, go look at your elementary alulus book, in the hapter where integration was introdued.



{ 10 {The fat that E(j) is periodi with period 2J allows equation 11 to be written in its moreonventional form E(k) = 12J 2J�1Xj=0 E(j)e[�i℄ kjJ or E(k) = 1N N�1Xn=0 E(n)e[2�i℄ knN : (12)However, this form is valid only for integral values of k; see x7.2.5.2. Again: The Periodi Nature of the Disrete FTAbove we disussed the periodi nature of both E(j) and E(k). Let's delve deeper.By its very nature, the Fourier transform wants to integrate to1. But the input signal doesn'tgo on forever! We have to resolve this basi inompatibility: the input signal is sampled for a �nitetime, but the Fourier transform needs it to go on forever.There's only one way to resolve this inompatibility: we must assume that the input signal doesgo on forever, and beause we don't know what happens outside the sampling interval �J ! J ,the only sensible thing to do is to assume that the input signal is periodi with period 2J .4This assumption of \forever", together with the assoiated 2J periodiity, leads to the neessaryresult that the spetrum E(k) and its power spetrum P (k) = E(k) � [E(k)℄� also go on forever,k = �1! +1, and are periodi with period 2J .Beause of these periodiities, we gain omplete information on the spetrum by restritingour attention to windows of length 2J : these windows are the �nite intervals in (j; k) between thedotted lines in �gure 2. They an begin and end anywhere|all that matters is that their length is2J .6. THAT WEIRD-LOOKING POWER SPECTRUM|IT'S JUST A MATTER OFSTANDARD CONVENTIONAbove we let the indies j and k run from �J ! J � 1. But in the real world of numerialomputing, we don't use negative indies. You might think that the reasonable way to handle thiswould be to displae the whole set of 2J values of E(j) and E(k) upwards by J so that the indiesrun from 0 ! 2J � 1 (this would be perfetly ompatible with IDL's indexing sheme). But this4You might be surprised: why not assume the signal is zero outside the interval? Answer: most signals don't stopsimply beause we stop sampling them|for example, a pulsar. More Fundamental Answer: the math requires thisassumption!



{ 11 {would put the t = 0 or f = 0 point out in the middle, at j or k = J , and this isn't very onvenientfor lots of reasons.Instead, realize that the FT is periodi in j with period 2J . Therefore, in equation 10 it doesn'tmatter whether you sum from j = �J ! J � 1, from j = 0 ! 2J � 1, or even (god forbid!) fromj = �3J + 7 ! �J + 6. So we might as well just sum from j = 0 ! 2J � 1 and not displaeanything at all. This is the standard onvention, and it leads to the standard way in whih FTarrays are stored in memory|not just in IDL but in just about every software pakage. It has thegreat advantage that the t = 0 or f = 0 point is the �rst one in the array.Above we were disussing \the FT array", without speifying whether it was the input oroutput array. The arrangement for the input array works in exatly the same way as that forthe output array. And it doesn't matter whether the independent variable for the array is time orfrequeny. All FT arrays, whether input or output and no matter what the independent variable,are arranged identially with respet to the negative and positive values.6.1. Enough Preahing! Let's Try an Example in IDLHere we take an example with J = 32, with the disretely-sampled input signal being the sumof three osine waves: E(j) = os(� 8j32 ) + 0:5[os(� 7j32 ) + os(� 9j32 )℄. Thus we have power at threefrequenies: k = 7; 8; 9. There is twie as muh voltage, thus four times the power at k = 8 thanthere is at k = 7; 9. The power spetrum onsists of these three nonzero points, plus a bunh ofzeros at all other frequenies.In IDL, we denote E(j) by EJ and generate this 64-element array with the statements. . .EJ = os(!pi � 8 � �ndgen(64)=32) (13a)EJ = EJ+ 0:5 � os(!pi � 7 � �ndgen(64)=32) + os(!pi � 9 � �ndgen(64)=32)) (13b)Figure 2 (top) shows the plot of the 64-element array EJ, with the 64 rosses marking the omputedpoints (or, in our parlane, the disretely-sampled points). The interferene of the sine waves makesthe sampled signal look like a wave paket of frequeny k = 8, attenuated at the middle of the timeinterval where j � 32.The signal E(j) must be periodi with period 2J = 64 and it must go on forever. Figure 2(bottom) shows this for a larger slie of time in whih j = �128! 128. Our points are omputedfor IDL indies 0! 63; this window is shown by the dotted lines on Figure 2 (bottom).We take the Fourier transform [E(k) = FT (E(j))℄. In IDL, we denote E(k) by EK and useIDL's Fast Fourier Transform (FFT) proedure. . .
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Fig. 2.| Upper plots in Figs 2 and 3 show a 64-point time series and power spetrum. Lowerplots show a portion of an in�nitely-long periodi time series and power spetrum from whih the64-point ones are extrated.



{ 13 {EK = �t(EJ) (14a)and get then the power spetrum P (k) (PK in IDL). . .PK = oat(EK � onj(EK)) (14b)For onveniene, we use the oat to disard the imaginary portion of the produt, whih is zero|this makes PK real, so that in later operations we don't have to deal with a omplex array (e.g.,to plot the power spetrum we an type plot, PK instead of plot, oat(PK)).Figure 3 (top) shows the plot of the 64-element array PK, with the 64 rosses marking theomputed points returned by IDL. The positive frequenies lie in the IDL index range 1! 32 andthe negative ones in the range 32! 63. As expeted, there is nonzero power at only three positivefrequenies, the ones with IDL indies 7, 8, 9. There is also power at the three orrespondingnegative frequenies, the ones with IDL indies 55, 56, 57.The power spetrum must be periodi with period 2J = 64 and it must go on forever. Figure3 (bottom) shows this for a larger slie of frequeny in whih k = �128 ! 128. IDL indies forPK are 0! 63; this window is shown by the dotted lines on Figure 3 (bottom).6.2. Is this weirdness perfetly lear?Probably not. So, in the following two subsetions we go through this again in exruiatingdetail. We provide �rst a detailed verbal desription of the arrangement, and then the shortestof short numerial examples. In the verbal desription we fous on the output array to makethings spei�, but we just as well ould have foused on the input array and replaed the word\frequeny" by \time". As you'll see, this leads to something surprising. . . we'll disuss it expliitly(6.2.3). 6.2.1. Verbal DesriptionAgain, we let the time for E(t) run from t = �T ! +T , with T = Jtsmpl. The orrespondingfrequenies run from f = �fN ! +fN , with fN = �smpl2 .All FT arrays are arranged so that the �rst J + 1 hannels ontain the positive-frequenyportion of the transform. Again, here we fous on the output array. Thus, for hannel k = 0! Jthe frequeny of hannel k is �k = +kfNJ . Thus, hannel 0 ontains the � = 0 result, hannel 1 the� = +fNJ result, . . . , up to hannel J whih ontains the maximum frequeny � = +fN .



{ 14 {The remaining J � 1 hannels ontain the negative-frequeny portion of the transform. As wego from hannel J to J + 1 we would go to the next highest positive-frequeny point; but beausethe FT is periodi with period 2J , this must be idential to the orresponding point at negativefrequeny. This means that hannel J ontains not only the result for � = +fN , but also the resultfor � = �fN . And the remaining J � 1 higher hannels ontain the rest of the negative-frequenypoints, so for k = J ! (2J�1) the frequeny is �k = �fN+ (k�J)fNJ . Thus hannel J has � = �fN ,hannel (J + 1) has � = �fN + fNJ , . . . , and hannel (2J � 1) has the � = �fNJ result. If youwere to onsider hannel number 2J it would ontain the next highest frequeny, whih is � = 0;of ourse, this is idential to the result in hannel 0.Note that frequeny an always be onsidered to inrease with hannel number: you an evenregard the big bakwards jump from +fN to �fN at hannel J as not being a jump beausethe periodi nature of the transform means that the results for these two frequenies must beidential, and suessively higher negative frequenies are equivalent to suessively higher positivefrequenies above +fN .So any FT array, for example the spetrum, ontains 2J independent points. More generally,the FT spetrum ould ontain 4J points, or 6J points, et. We ould alulate as many points aswe wish. However, beause the FT is periodi, with period 2J , hannel 2J + 1 would ontain thesame result as in hannel 1, et. So there is no sense in alulating more than 2J points, beausethe alulations would be redundant. 6.2.2. An ExampleConsider a simple ase with J = 4; you've taken 8 time samples. Then the proper way toarrange the input to the FT is the following, where the left-hand matrix ontains the IDL indiesand the right hand the times or frequenies:26666666666664
01234567
37777777777775$

26666666666664
0� TJ1� TJ2� TJ3� TJ�4� TJ�3� TJ�2� TJ�1� TJ

37777777777775 (15a)
and the output looks like



{ 15 {26666666666664
01234567
37777777777775$

26666666666664
0� fNJ1� fNJ2� fNJ3� fNJ�4� fNJ�3� fNJ�2� fNJ�1� fNJ

37777777777775 (15b)
6.2.3. Wait a Minute! You Mean the TIME Isn't CONTINUOUS?Above we said|and we meant it|that in our verbal desription we foused on frequeny, butwe ould just as well have foused on time. And in equation 15 above, where we expliitly listedthe time versus the IDL index, the time begins at 0 for IDL index 0, runs up to 3� TJ for IDL index3, and then \wraps around" to negative times for IDL index � 4. So it seems that time versus IDLindex is disontinuous|just like frequeny.Yes it's true!! If you take a bunh of time samples and ompute the FT, you should put thenegative time samples into the upper index ranges.But for the alulation of just the power spetrum, it doesn't matter whether you bother withthis reshu�ing or not|you get the same answer whether or not you reshu�e. What it does matterfor is the ases for whih you are really interested in the phase of the FT output array. Rememberthat the output array E(k) in equation 10 is omplex; the ratio of imaginary to real parts givesthe phase of the signal. This phase is de�ned with respet to t = 0. If you want the phase to beorretly de�ned, and if you want to regard the samples as extending from �T ! T instead of0! 2T , then you must reshu�e the disrete time samples aording to the above presription.Of ourse, the power spetrum doesn't have any phase information: it's only a spei�ation ofthe power versus frequeny. In other words, deteted signals have no phase information. In our labwork we generally don't are about the absolute phase of the signal, so you have no need to arryout the index reshu�ing before omputing the FT.7. THE SPECTRUM AT AN ARBITRARY FREQUENCYEquation 11 provides results for disretely-spaed frequenies at intervals �� = �smpl2J . It's oftennie to have results for arbitrary frequenies. One way is the brute-fore approah of equation 10,whih we repeat here in slightly modi�ed form:



{ 16 {E(��smpl2J ) = 12J J�1Xj=�JE(j)e[2�i℄ j�2J : (16)Here we have eliminated tsmpl and �smpl on the right hand side and replaed k by � to emphasize thefat that � an be a non-integer. (For non-integral k, you must arry the sum from (�J ! J � 1)and not (0! 2J � 1); see x7.2).This is �ne as long as you don't want to ompute a lot of frequenies. However, supposeyou want to reate four interpolated points per original point so that you have a good visualrepresentation of the spetrum. Eah point requires � 2J operations, so this an be a lot ofomputing.Instead of alulating the points from the whole time series, you an interpolate using thespetral points themselves. In priniple, you need to inlude all points when omputing theseinterpolations. For uniform weighting, the proper interpolation formula in the frequeny domain is(Brault & White) E(�) = 12J 2J�1Xj=0 E(j)sin[�(� � �j)(2Jtsmpl)℄tan[�(� � �j)2tsmpl℄ (17)Note that (2Jtsmpl) = 2T = the total time; many texts use T as the total time.; this involves muh less omputing if you are willing to live with approximate results.Instead of this you an save a lot of omputer time by inluding just a few original data pointson eah side of the point you're alulating beause most of the ontribution omes from thosenearby points. For example, a good approximation isE(�) = XjnearbyE(j)sin[�(� � �j)(2T )℄�(� � �j)(2T ) (18)where jnearby is a set of nearby frequenies in the original spetrum hosen as a ompromise betweenauray and speed. This equation makes sense: you are weighting the spetral points in proportionto their sidelobe response in equation 4. Restriting jnearby to the nearest few spetral hannels to� is suÆient for many purposes. 7.1. Two examplesWe onsider two examples. Both have 64 datapoints; note that 64 = 26.
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Fig. 3.| Monohromati signals with frequeny 12.5 Hz (top) and 10.0 Hz (bottom). The sampleinterval is tsmpl = 0:01 s, so the sample frequeny is �smpl = 100 Hz and the Nyquist frequeny isfN = 50 Hz. Stars are from the FFT, loated at frequenies (�fN + k��) [�� = 12T ℄; the solidurve joins muh more losely spaed points alulated using equation 16.7.1.1. The �rst example: a spike entered on integral kFirst, the example of [E(j) = os(2� �smpl8 t)℄. This is a monohromati wave whose frequenyis exatly one-quarter the Nyquist frequeny, i.e. when plotted it is exatly one-quarter the waybetween 0 and fN . It falls exatly on an integral value of k. We show the resulting E(k�smpl2J ) by



{ 18 {the stars in Figure 3 (top), and we show the almost-ontinuous urve from frational values of � inequation 16 as the solid urve. The stars are nonzero only for one single value of k. This is beausethe signal frequeny is exatly entered on the frequeny represented by this value of k.But look at the solid urve. You might have thought that this would be symmetri about thesignal frequeny; this is what the analyti equation 4 seems to suggest. But it's not symmetri. Thereason is that, beause the signal is real, the spetrum is Hermetian. Hermetian means that thenegative frequeny real part is equal to the positive frequeny real part. (In this ase, the signal issymmetri in time, so the imaginary omponents are zero.) The sidelobes of the negative frequenypart interfere with those of the positive frequeny part, whih auses the asymmetry. If you inludethe negative frequenies in the analyti alulation, then you also �nd that the sidelobes are notsymmetri.Similar asymmetries in sidelobe struture our in the high end of the spetrum beause ofaliasing: The sidelobes of the sinxx funtion go on forever, so they exist at frequenies beyondthe Nyquist frequeny. They are aliased bak into the displayed spetrum and this also produesasymmetry. 7.1.2. The seond example: a spike not entered on integral kSeond, the example of [E(j) = os(2� �smpl10 t)℄. This is a monohromati wave whose frequenyis exatly one-tenth the Nyquist frequeny, i.e. when plotted it is exatly one-�fth the way between0 and fN . But, in ontrast to the previous example, it does not fall on an integral value of k.Again we show the resulting E(k�smpl2J ) by the stars in Figure 3 (bottom), and we show the almost-ontinuous urve from frational values of � in equation 16 as the solid urve. The stars arenowhere zero beause the signal is entered on a non-integral value of �. Comments about thesidelobe asymmetry apply here too, of ourse.7.2. The repeating windows for nonintegral kWe have extensively disussed the periodi nature of the disrete FT in x5. Spei�ally, equa-tion 11 shows this periodiity: both the input signal and the output spetrum are periodi withperiod 2J . But for the input signal, this periodiity exists only if k (� in equation 16) is an integer.5If � is not an integer, then the interpolated spetra (i.e., for nonintegral �) at frequeny o�setsof J�smpl (equal to 2JfN ) are not idential. Fundamentally this is an e�et of the time-shift propertyof FT's. Nevertheless, for the integral values of k, whih provide the basi spetral information,the spetra at frequeny o�sets of J�smpl (equal to 2JfN ) are idential. Here the digital world5Similarly, for the spetrum this periodiity exists only if j is an integer|but j is always an integer!



{ 19 {triumphs over the time-shift theorem!8. THE FAST FOURIER TRANSFORMThe Fourier transform as de�ned in equation 12 requires of order (2J)2 operations: 2J fre-quenies to be omputed, eah of whih requires a sum over 2J datapoints. Many appliationsgenerate huge values of J and the omputing time beomes impratially long.Enter the FFT. The fundamental idea is to split the FT into smaller hunks. Suppose, forexample, you have 2N datapoints. You split the FT into 2N2 hunks eah of whih ontains only twonumbers; you FT eah pair; then you put the hunks bak together again. This works and requiresonly � N log2N operations. This has two advantages: The obvious one is omputing time. Theless obvious one is numerial auray: fewer operations means smaller roundo� errors in the �nalresult.Suppose you have an arbitrary number M of datapoints. IDL's FFT routine fators M intoas many hunks as possible. It's most eÆient for hunks that are powers of 2, 3, or 5. The morefators, the faster the runtime. People tend to think of and always use powers of 2, and this isindeed the fastest kind of FFT, but the presene of other fators an be quite aeptable.This an lead to large apparent anomalies in runtime. You might have M equal to some largeintegral power of 2. If then you add just one more point, M might be a prime number! (An easy,but not interesting, example isM = 16). The di�erene in omputing time an be enormous. IDL'sFFT doesn't warn you about these matters, so you have to think of them yourself|beforehand!If you have an awkward value of M , then you an reate a nie power-of-two value either byutting out datapoints (do you really want to do this???), or by padding your datapoints withenough zeros to produe the requisite power-of-two ondition.Consider padding with zeros. Suppose you are taking datapoints as a funtion of time t. Toretain the proper phase of the signal you need to pad the signal symmetrially around t = 0, withequal numbers at negative and positive times. Reall, however, that in the FFT algorithm thet = 0 point is shifted to the beginning. This means that the negative times are wrapped around tothe large positive indies. This, in turn, means that you need to add the zeros all at the end of thearray that you use in the FFT proedure.9. CORRELATION AND CONVOLUTIONTwo important theorems regarding FT's:1. The onvolution theorem:



{ 20 {FT [s � r℄ = FT (s) � FT (r) = S(f)R(f) (19a)where the apital letter funtions mean the FT versions and the onvolution is de�ned as[s � r℄(t) = Z 1�1 s(ts)r(t� ts)dts (19b)In words, this reads: The FT of the onvolution of two funtions is the produt of the FT'sof the funtions. Regard onvolution as the smoothing of one funtion, the singal s(ts), byanother, the response funtion r(�t). .The lassial example of onvolution is in eletri iruits. A signal varies with time (\signaltime") ts. It passes through some eletroni blak box, for example an RC iruit. This iruithas impulse response r(�t) = e��t=RC , where �t is the time after the impulse is applied; theFT is RC1+[2�i℄RC� , so it ats as a low pass �lter, attenuating high frequenies.A good astronomial example is atmospheri seeing: the star image, whih is in�nitesimallysharp, is blurred by the atmospheri seeing. If the seeing is Gaussian, then the observed starimage is the onvolution of its true image with the atmospheri Gaussian. This example, asmany, has a symmetri response funtion, in ontrast to the above RC iruit example.An important aspet of onvolution is the reversal of the sense of \signal time" ts, or theindependent variable whatever it is, for the response funtion r in the integral. The re-sponse funtion gets ipped. This ipping seems strange|but it's important. For symmetriresponse funtions, as we often enounter in astronomy, this doesn't matter|but be aware!2. The orrelation theorem:FT [orr(s; r)℄(�) = FT (s(t)) � [FT (r(t))℄� = S(f)R�(f) (20a)where the orrelation is de�ned as[orr(s; r)℄(�) = Z 1�1 s(t)r(t+ �)dt (20b)In words, this reads: The FT of the rossorrelation of two funtions is the produt of theFT of one funtion by the omplex onjugate of the FT of the other.The lassial and most important example of rossorrelation is in deriving power spetra.Here, we take two time series, ompute their integrated produt as a funtion of the delay � ;the power spetrum is the FT of this ross orrelation funtion.This theorem is partiularly important for the autoorrelation funtion, namely the rossor-relation of a funtion with itself. Here, the theorem reads: \The power spetrum, de�ned as



{ 21 {the FT of the signal times its omplex onjugate, is equal to the FT of the signal's autoorre-lation funtion." This has wide use in radio astronomy and, also, in spetral interferometry.There are two methods of alulating power spetra: First, the lassial one, the FT of thesignal times its omplex onjugate; this is alled the FX method [Fourier Transform, thenmultipliation (detetion)℄. Seond, the XF method: (multipliation, then FT). The se-ond method is popular with radio astronomers beause it is easy to design a hugely parallelproessor to do auto- and rossorrelation.Aside from the use of the orrelation theorem in spetral analysis, there are two importantappliations of these theorems. One is in alulating onvolutions. If you have a big CCD imageand want to alulate what it would look like under various onditions of atmospheri seeing, youneed to onvolve the seeing funtion with the image. This requires � N2 operations, where N is thenumber of pixels. Using FFT tehniques, you ut this to � N log2N . The other is in deonvolution:the produt of two FT's onvolves, while the ratio of two FT's deonvolves|it's magi! There areissues regarding noise and zeros in the denominator, though! See NM x13.1.These theorems are idential if the response funtion r is symmetri. We will assume this tobe the ase and fous the disussion on autoorrelation as the spei� example.9.1. Digital Calulation of the Autoorrelation Funtion.The way to digitally alulate the autoorrelation funtion A(�) of the time-dependent funtionE(t) is to arry its de�nition, whih is by an analyti integral, to numerial summation in thestandard way. We begin shifting the origin of the time axis so that all times are positive, whih isthe way we usually think of our samples, so we writeA(�) = limT!1 12T Z +2T0 E(t)E(t+ �)dt : (21)For example, if E(t) = sin(2��t), then A(�) = os(2���). This illustrates the general propertythat autoorrelation removes all phase information. (It has to: it's symmetri in � , so its FT isalways real!)Now let's translate this into a digital sum. We have 2N disrete samples separated uniformlyin time by �t = tsmpl = 1�smpl . Reall your elementary alulus in whih an integral was de�ned byutting up the x-axis into tiny bits and taking a sum over the bits. Here we are integrating overtime, so it makes sense to make the \tiny bit" equal to the sample time tsmpl. In terms of samplenumber n, we an write t = ntsmpl and dt = tsmpl, so E(t) = E(ntsmpl) and, for onveniene, wejust write E(n). Similarly, we will alulate A(�) only for disrete values of � whose inrement isalso tsmpl; we write � = jtsmpl and, as for E, we write A(j) instead of A(jtsmpl). With all this, thediret analog of equation 21 in summation form is



{ 22 {A(j) = limN!1 12N 2N�1Xn=0 E(n)E(n+ j) : (22)This looks innoent enough, but it misses a fundamental fat of the real world: we don't liveforever, so we an't let N ! 1. No problem; we just get rid of the limN!1 and write the evensimpler form A(j) = 12N 2N�1Xn=0 E(n)E(n+ j) : (23)But wait! We have just 2N samples of E|that is, E(n) is de�ned only for n = 0! 2N � 1. So inthe sum, whenever n + j > 2N � 1, we're in trouble|we have no samples to put in the sum! Inother words, when N is �nite, you have the problem of \end e�ets". What to do?Now's the time to go bak and review x5 and �gure 2. There we stressed that the summationform of the FT impliitly, and neessarily, assumes that both the input and output arrays areperiodi outside the fundamental window of length 2N|and the period is just 2N . So it's obviouswhat to do: when n+ j > 2N � 1, you use E(n+ j � 2N).Similarly, A(j) is periodi with period 2N . Thus, A(j) is de�ned for the interval j = 0 !2N � 1. And, of ourse, this periodiity makes it easy to generate values for j < 0.9.2. !!!!!!!!!!WARNING!!!!!!!!!Re-read the paragraphs immediately above. They state that the end e�ets are no problembeause the math automatially \wraps around" in the alulation of orrelation funtions. Thismeans that the beginning of the data stream gets orrelated with the end of the data stream!Generally speaking, you don't want this to happen beause the beginning and end are distint andtotally unrelated!What do do? Pad the beginning and end symmetrially with zeros! This ensures that the twoends of the data stream do not interat. And make sure you use enough!! See NM disussion x13.1.9.3. Calulating orrelation funtions in IDLIDL provides several native routines for alulating orrelation funtions. You have to be veryareful, though. Read their doumentation before blindly forging ahead. Here we summarize.You might be tempted to use the routines a orrelate and  orrelate for auto- and rossor-relation. Be aware that these don't do what you think. First, they subtrat the mean before doing



{ 23 {the alulation|something you don't want, if for no other reason that the zeros you so arefullypadded with beome nonzero when the mean is subtrated! Seond, they have sliding limits on thesums, meaning that di�erent numbers of terms are inluded for di�erent delays. I'd stay away fromthese proedures if I were you. Frankly, I an't imagine any irumstane for whih they would beuseful.What you want is IDL's onvol routine, whih onvolves two arrays and allows you to\edge wrap", whih is the equivalent of wrapping around as you need to do to aount prop-erly for the edge e�ets in orrelation as disussed above in x9.1. You all this funtion as result= onvol( array1, array2, /edge wrap). The only ath: array2 needs to be smaller than ar-ray1. So either expand one array by a ouple of elements or ondense the other; you an eliminateany deleterious e�ets by padding with zeros.Or, to make it quiker, use the FFT tehnique! For one dimensional arrays this is easy(but you'd better experiment with some known simple funtions to make sure you understand thedetails). For two dimensional arrays, you should use the Goddard library's onvolve funtion,whih gives you the hoie of using either the FFT or the standard (lunky time onsuming)tehnique. Unfortunately, Goddard's onvolve works only on 2-d images. IDL's onvol works onall types of arrays, but uses only the lunky tehnique.9.4. Calulating the Fourier Transform of the Autoorrelation FuntionWe do this using equation 11 using the variables appropriate here, that is. . .P (k) = 12J J�1Xj=�JA(j)e[�i℄ kjJ : (24)Here, the frequeny � = k�smpl2J , and for onveniene we write P (k) instead of P (k�smpl2J ).Now let's notie that, with a suitable hange of variables in our above equation (2a), you aneasily determine that A(�) = A(��): the autoorrelation funtion is symmetri in � . This meansthat the imaginary portion of its FT is automatially zero. So, in taking the FT, you don't evenhave to speify that we want just the real part of the result! BUT symmetrizing a digitally sampledA(�) is a bit triky and you need to follow the presription in x10.9.5. The FX versus XF methods: Not Entirely Equivalent!!The orrelation theorem says that the FX and XF methods of alulating power spetra shouldprovide idential results. Not many people realize that this isn't exatly the ase.



{ 24 {The reason is that the theorem is proved for integration to in�nity. In fat, we integrate onlyover some range of time 2T . This limits the spetral resolution as disussed in x2: the spetrum isonvolved by the FT of the weighting funtion. The di�erenes between the FX and XF methodsarise only in this realm.There's a fundamental di�erene between applying weighting funtions in the two methods ofgetting power spetra. In the FX method, you apply the weighting funtion W (t) to the voltage,that is before the Fourier transform; and then you \detet" the signal by squaring (really, bymultiplying by its omplex onjugate). So the weighting funtion is also \squared". Alternatively,in the XF method, you apply W (t) to the orrelation funtion, whih is equivalent to the detetedvoltage; the \squaring" has already taken plae, so the weighting funtion does not get \squared".Figure 4 illustrates the di�erene.These appliations of W (t) are not equivalent and, furthermore, annot be made to be equiva-lent. One strange result is in the XF method, a monohromati signal produes sinxx type sidelobesin the power spetrum, and these go negative. The power spetrum an have negative power!. (Ofourse, it's totally meaningless). This an never happen in the FX method.In the �nal analysis|whih is too muh to disuss here, but the essene is that W (t) < 1 so\squaring" it means that it gets smaller|this means that, for idential weighting funtions W (t),the leakage is always muh smaller with the FX method. You an always make this up by usinga more severe weighting funtion in the XF method, but you lose a bit more resolution than withthe FX method. 10. COSINE AND SIN TRANSFORMSThe Fourier transform is by its intrinsi de�nition a omplex operation. However, there aremany instanes when you need to take a osine or sin transform. This is straightforward, but it'sworth spending some spae on this beause almost everybody gets it wrong.Suppose you have J datapoints and you wish to take the osine transform using the FFTmethod. That is, you use equation 11, whih we reprodue here:E(k) = 12J J�1Xj=�J E(j)e[�i℄ kjJ : (25)To take the osine transform, you need to make sure that the argument E(j) is symmetri in j.The datapoints D(j) are de�ned only for j � 0. De�ning the symmetri ounterpart would seemto be easy: just de�ne E(j) = D(j) ;E(�j) = D(j) ; (j � 0) : (26)
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Fig. 4.| Comparison of FX and XF methods for a monohromati signal. �smpl = 100 Hz and2T = 0:64 se. Solid line is XF method, whih an have negative sidelobes; dotted line is XFmethod with Hanning weighting. Dashed line is FX method. Stars are square-window FFT outputspetral points.



{ 26 {This makes the signal symmetri, so that when you take the digital transform using either the FFTor a diret transform you have to get a pure osine transform.But you immediately run into a problem if you wish to use the most eÆient version of theFFT, for whih the number of datapoints needs to be a power of two: the above symmetrizationoperation produes an odd number of datapoints. Spei�ally, if you start with J datapoints, youend up with 2J � 1 datapoints. You have a \missing datapoint".To get around this diÆulty, look at equation 15. There you see that the missing datapoint hasj = +J and, also, j = �J . Beause of the periodi nature of the DFT, these two datapoints mustbe equal to the one and only missing datapoint. You need to set this unknown missing datapointto a reasonable number. The proper hoie for this number is important only insofar as it shouldprodue no disernible impat on the derived Fourier transform.You might be tempted to set the missing datapoint equal to zero. However, this is the wronghoie! The signal may have a nonzero Fourier omponent at the adjaent datapoints where j =�(2J � 1). Setting the missing datapoint equal to zero then produes a spike at j = �(2J), andthis spike produes a hannel-to-hannel osillation in the derived Fourier spetrum. The properhoie for the missing datapoint is the average of the two values at j = �(2J � 1).Similar omments apply to doing a sin transform using the FFT, exept that you need toantisymmetrize the signal. NM x12.3 disusses spei� routines for osine and sin transforms, butIDL does not have these implemented as native proedures.11. SOME FINAL POINTS11.1. What's This Business About Negative Frequenies?There are some ases in whih one an distinguish between negative and positive frequenies.Spei�ally, these are ases in whih the input to the FT is omplex. To be omplex, the inputmust have both a real and imaginary part: in other words, eah sample onsists of two numbers,and these two numbers an be regarded as the real and imaginary parts of a omplex number. Ifyou take AY120B, you will enounter suh a ase.More probably, you enounter this ase in the movies when you see a rotating wheel. The realaxis is horizontal and the imaginary is vertial. If the wheel moves bakwards the true frequeny isnegative, forwards is positive: if the wheel appears to move bakwards when it is moving forwards,that's aliasing! And you wouldn't know the wheel appears to go bakwards without having boththe horizontal and vertial|i.e. real and omples|information.



{ 27 {11.2. For Real Inputs, How Do These Negative Frequenies Enter the PowerCalulation?In the vast majority of appliations, the samples onsist only of one number: eah time samplerepresents a real voltage (or a real number of photons), and there is nothing imaginary|or omplex(mathematially speaking, that is)|about them. But it is perhaps surprising that the FT outputnumbers are omplex: the imaginary part is not zero. The phase angle of eah omplex numberrepresents the phase of that Fourier omponent with respet to t = 0. For the ase of real numbersas input, the outputted omplex numbers have a simpli�ation: the imaginary parts are odd andthe real parts even (in other words, the negative-frequeny number is the omplex onjugate of thepositive-frequeny number).This means that when you use the omplex output spetral numbers to alulate the or-responding power numbers (by P (k) = E(k) � [E(k)℄�), negative and positive frequenies haveidential powers. The proper way to ombine the powers for the negative and positive frequeniesis simply to add them; but beause the numbers are idential, it's equivalent to simply use twiethe full value of, say, the positive-frequeny number. It should be obvious that there is only onenumber representing zero frequeny, so you should not multiply this by two.Thus, in the example above in x6.2, after alulating P (k) = E(k) � [E(k)℄�, your powerspetrum is most simply given by the �rst Pk (k = 0) and twie the next four values of P (k)(k = 1! 4).11.3. A Detail on Normalization and \Going Bak and Forth"In IDL, the FFT is normalized by multiplying the sum by 12J , exatly as we've done in equation10. Not all FFT routines do the normalization in this way. This way has the advantage that thesaling of the output is the same as that of the input|in other words, it's sort of like taking anaverage, beause we divide by the number of points that ontribute to the sum.As we've mentioned in x1, you should know that apart from normalization onstants, you anonvert willy-nilly bak and forth from frequeny to time by applying FT's in suession. That is,E(k) = FT (E(j)) and E(j) = FT�(E(k)). Here the supersript minus sign indiates using thenegative omplex exponential in the transform, as in equation 1b; this is alled the inverse Fouriertransform. More graphially, E(j) = FT�[FT (E(j))℄.With the normalization used by IDL, the inverse transform must not multiply the sum by 12J .Of ourse, IDL's inverse transform does all this orretly. In IDL, you invoke the inverse transformby using the inverse keyword|see IDL's help on the �t proedure.


