Chapter 9

O Discovering the Possibilities [

Writing an IDL Graphics Display Program

Chapter Overview

The purpose of this chapter is more ambitious than most. Even though IDL isa
programming language, it isimpossible to find anywhere in the official IDL
documentation how to writean IDL program. | don’t mean to suggest thereisonly one
right way. But anyone who has looked over the shoulders of as many IDL
programmers as | have knows there is definitely a distinction between agood IDL
program and onethat is not so good. As someone who spendsalot of time with people
who are trying to learn IDL for the first time, | see alot of not-so-good programs.

| am convinced the problem islack of information. Most people using IDL are, after
all, scientists, not computer programmers. They are bright and they are trying to get
their work done. They are not trying to write elegant computer programs.

But, still... If only acouple of simple principles were followed, their programs would
be so much better and so much more useful to them. This chapter is an attempt to
specify what those principles might be, while at the same time showing you how to
assemble and use many of the techniques that have been discussed in this book.

Thetask | have set for myself is to show you how to write a reasonably complex
graphics display program that you can use from the IDL command line. But | want to
write this program in such away that the output can be displayed in aresizeable
graphics window, printed directly from the IDL command line, or made into a
PostScript file with little or no effort. The program should use colorsin an intelligent
way that doesn’t depend upon the visual depth or color decomposition state of the
output device.And finally, it should be simple to add a graphical user interface to this
program, so that it can be used by someone unfamiliar with it.

Most programmers know that the best way to learn programming is by understanding
code that has been written by others. But most of the time thisisadaunting task, given
the general lack of documentation in code and the absence of a mentor who can
explain the unfamiliar elements of the code to you. My purpose here is not just to
show you how to write a program, but to explain why the program is written in this
particular way. Writing programs always involves making choices. The choices we
make play a pivotal rolein how useful the programis to us, and how easy it isto
maintain and extend the program over time. In other words, we can make both helpful
and non-helpful choices. By the end of the chapter you should be well on your way to
understanding the distinction.

239

Writing an I DL Graphics Display Program

The Histolmage Program

240

The program | want to write will be named Histolmage. It is quite simple. It will
display an image with axes around it. Above the image will be a colorbar that will
indicate the image values. And above the colorbar will appear a histogram plot of the
image pixel values. In other words, the histogram will show how many pixelsin the
image correspond to a particular image value. You see an illustration of how the
program will appear in Figure 94. The complete listing of the program source code
can be found “Histolmage Program” on page 409. And the histoimage.pro fileis
among the program files you downloaded to use with this book.

i Hiztolmage Program _ O] x|

Image Histagram

S00c
4000

3000
2000

1000 |
C

Piwel Densily

0 &0 100 150 200 280
Image Yalus

0 100 200 300

Figure 94: TheHistol mage program consistsof a histogram plot, a colorbar, and an
image surrounded by axes.

Writing the Procedure Definition Statement

The Histolmage program will be a procedure, so | start by defining the procedure
definition statement. Thisis where all the positional and keyword parameters are
declared. A rule of thumb for parametersisthat any parameter required for the
program to run will be apositional parameter, and anything else will be a keyword
parameter. Thismeans, of course, that | will have to define default valuesfor all of my
input keyword parameters.

It also means that | seldom have in mind all of the keyword parameters | am going to
need when | start coding the program. Most of thetime | start with afew obvious ones
and add others as it occurs to me | need them. | do try to give the users of my
programs as much flexibility as possible. In particular, | like to give them as much
control as| can over how things are going to look, since | know users almost always

The Histol mage Program

have a different aesthetic sense than | do. So | will admost always have keywords that
will allow the user to choose colors.

Here is what the procedure definition statement will look like:

PRO Hi st ol nage, $
i mge, $
Axi sCol or Name=axi sCol or Nane, $
BackCol or Nanme=backcol or Nane, $
Bi nsi ze=bi nsi ze, $
Col or Tabl e=col ortabl e, $
Dat aCol or Nanme=dat acol or Nane, $
Debug=debug, $
_Extra=extra, $
| mgeCol or s=i magecol ors, $
Max_Val ue=max_val ue, $
NoLoadCT=nol oadct, $
XScal e=xscal e, $
YScal e=yscal e

Thefirst and only positional parameter, image, is the image data that will be passed
into the program. | am going to have to check whether thisisa 2D array, sinceit
doesn’t make much sense to cal cul ate the histogram of a 24-bit or 3D image, but | will
delay thisfor amoment.

You see three “color” name keywords in the list: AxisColorName, BackColorName,
and DataColorName. These will be the names of colors to use for the axes and other
annotations, the background, and the data, respectively. | am going to use color names
for these because one of my goalsfor the program is to use colors that are independent
of the color decomposition state or depth of the display. | know that the GetColor
program described in “ Obtaining Device Independent Colors’ on page 87 hasthe
ability to give me asuch acolor if | ask for one of the 16 colors it knows about by
name. By allowing the user to select these colorsthemselves, | give them some control
over how thingslook on the display. | also allow the user to specify a color table index
number with the Colortable keyword. The image datawill be scaled into indices
loaded by the color table.

Image colors almost always present adilemmafor me. On the one hand, | realy want
to set the image colors up correctly, especialy if | am calling this program from the
IDL command line. But on the other hand, | often prefer that color manipulation be
done outside the program code. For example, in widget programs image colors are
often controlled by a color table changing tool like XLoadCT or XColors. Loading a
color table inside a graphics display program will often interfere with the colors that
are being manipulated elsewhere.

I compromise in this program by defining two additional keyword parameters:
NoLoadCT and ImageColors. NoLoadCT will be aflag that if set will prevent the
program from loading the color table specified by the ColorTable keyword. In other
words, | will have away to turn color table loading off from outside the program, if
thisiswhat | choose to do. ImageColorswill be an output keyword that will allow me
to learn from outside the program how many col ors the image data should be scaled
into. Thisisessential information if | am to manage the colors from outside the
program. (Here | will be loading image colors starting at color table index 0. If this
were not the case, | might also define akeyword, say Bottomlndex, that would indicate
the bottom of the image color indices.)

The BinSze keyword is a Histogram command keyword. | will use the Histogram
command inside this program to cal culate the histogram plot and | may want the user
to be able to configure the properties of thiscommand. Note that | don’'t provide all of

241

Writing an I DL Graphics Display Program

the keywords that are available for Histogram, only those that | specifically want the
user to manipulate. Similarly, the Max_Value keyword is a Plot command keyword |
often find useful in histogram plots, so | defineit here.

It isentirely possible (especially with the Plot command) that | will want to
manipul ate other Histogram or Plot or TVImage keywords that are not defined here.
For example, | may want different axes annotations or tick marks. For this reason, |
include an _Extra keyword to take advantage of keyword inheritance, which was
described in “Passing Undefined Keywords by Keyword Inheritance” on page 216.

There are two keywords, XScale and YScale, that will be used to define the range or
scale of the axes that surround the image. These input keywords will be two-element
arrays defining the minimum and maximum extent of the axes.

Finally, thereisaDebug keyword, which | intend to use in the error handler portion of
the code to force atraceback of where the error occurred. | typically don’t like to write
error tracebacks into the command log window unless the user explicitly asksfor such
athing. Using a Debug keyword gives me an easy way of debugging my code without
frightening unfamiliar users with long lines of error text.

Writing the Error Handling Code

The next step in writing aprogram isto add some error handling code. Since | haven't
given agreat deal of thought to the kinds of errors that might occur in the program,
and since | know that users will discover errorsthat | didn’t anticipate anyway, I'll
write agenera purpose Catch error handler. (The Catch error handler is described in
“The Catch Control Statement” on page 230.) I'll use the Error_Message program,
which isamong the programs you downloaded to use with this book and is described
on page 234, because | want to take advantage of its device-independent nature.
Error_Message uses Dialog_Message to report the error if it is running on an output
device that supports widgets and Message if the device does not support widgets.
Error_Message can also provide good error traceback information if it is required.
The code looks like this:

Catch, theError
IF theError NE 0 THEN BEG N
Cat ch, / Cancel

ok = Error_Message(!Error_State.Msg + ' Returning...', $
Tr aceback=Keywor d_Set (debug))
RETURN
ENDI F

Notice that | cancel the Catch error handler as the first step in the error handling part
of the code. | do this because | make too many typing errors during development and |
sometimes have errors in my error handling code. Thiswill cause IDL to go into an
infinite loop. Call this good defensive programming if you can’t think of a gentler
explanation.

Note that | am adding a bit more information (the string Returning....) to the normal
error message. | just want the user to know what | am doing with the error. And notice
that the Traceback keyword is set for Error_Message only if the user set the Debug
keyword when he or she called the Histol mage program. Since the Debug keyword
can either be on or off, | set its value with Keyword_Set, which only returnsa 0 or 1.

Checking for Positional and Keyword Parameters

Immediately after the error handling code, goes the code that checksfor all the
required and optional parameters. Checking is essential (at least for input parameters)
because you will be using the variables somewhere in the code to follow and it is not

242

The Histol mage Program

possible to use undefined variablesin IDL expressions. (Methods for checking
positional and keyword parameters are discussed in “Writing an IDL Procedure” on

page 209.)

Checking for the Image Positional Parameter

| have mentioned earlier that my rule of thumb is that any required parameter isa
positional parameter, and any optional parameter is a keyword parameter. | can’'t do
much in a program that cal culates the histogram of an image and displaysit above the
image without an image! Hence, the image parameter should be a required positional
argument.

But I’ ve never been a person who cared much for arbitrary rules, and I’m going to
choose to break this one right away by being alittle kinder to the user and alowing
this positional parameter to be an optional parameter. Why? Because | don’t think
users should be penalized too harshly if they don’t know how to use a program. It is
my job to explain it to them. So | will select and use an image for them. If they want
another image, they can read the program documentation (you did write this, didn’t
you?) to see how to use their own image.

The code will look like this:
I F N_El enents(i mage) EQ O THEN i mage = LoadDat a(7)

Note that | used N_Elements to check the image parameter, rather than N_Params,
which you might have expected me to use for apositional parameter. Recall that
N_Elementstells meif theimage parameter is defined or not, whereasN_Paramstells
me the number of positional parameters the procedure was called with. (See“Defining
Optional or Required Positional Parameters’ on page 212 for more information.)
Some inexperienced users are sure to call the Histolmage program with asingle
positional parameter that is an undefined variable. By using N_Elements | account for
this eventuality.

If an image parameter is not supplied, | smply load the world elevation data set with
the LoadData program you downloaded to use with this book.

Now that | have an image parameter, | will check to be sureitisa2D array, since that
isalso arequirement for the histogram data to make sense. | can use the Sze command
with the N_Dimensions keyword set to determine the number of dimensions of the
image. (Note that the N_Dimensions keyword to the Sze command is afairly recent
introduction to the programming language. If you are using aversion of IDL prior to
IDL 5.2, you can obtain the same information from the Sze command directly. See
your on-line help for details.)

ndi m = Si ze(i nage, /N _Di nmensi ons)
IF ndimNE 2 THEN $
Message, '2D Inmage Vari able Required.', /NoNane

The Message command will “throw” an error, which will be handled by my Catch
error handling code. Note that the NoName keyword is set to prevent Error_Message
from reporting the name of the program twice.

Checking for Keyword Parameters

I’m now ready to check for optional keyword parameters. | check the two keywords,
BinSze and Max_Value I’'m planning to use with the image histogram first. | expect
most of the images used with this program will be byte data, but | can’t rely on thisto
be the case. Nor do | want to restrict the user to byte image data. But | do want the
histogram plot of byte and, say, float image datato look the same. Thus, | am going to
have 128 bins unless the user tells me something different. Thiswill give mea

243

Writing an I DL Graphics Display Program

244

reasonably good looking plot almost always. | will have to calculate the bin size
appropriately for this. The code will look like this:

I F N_El enents(binsize) EQ 0 THEN BEG N
range = Max(image) - M n(image)
binsize = 2.0 > (range / 128.0)
ENDI F
I F N_El enent s(max_val ue) EQ 0 THEN max_val ue = 5000.0

The bin size will either be 2, or it will be the image data range divided by 128,
whichever number is larger. | an making the assumption here that | am not going to
have floating point image data, that ranges from 0.0 to 1.0, for example. My program
will look lousy with such data, but the chances seem so low of this happening that |
am willing to chance it. And, anyway, if the user did have image data like that, they
could always specify an appropriate bin size for viewing the histogram.

Note the use of the IDL “greater than” operator (>). This operator returnsthe larger of
the two values being compared. Note, too, the parentheses about the value | want to
compare to the right of the operator. Without the parentheses 2.0 would be compared
to the range, and then that value would be divided by 128. Not what | want at all! This
happens because the greater than operator has the same order of precedence as the
division operator. Thisisacommon kind of error to makein IDL programs.

Another common error occurs within the parentheses. Notice | have made the number
128.0 afloating point number by adding a decimal point to the number. You might
easily make the mistake of writing this number asan integer (e.g., 128). Then, for byte
or integer image data, you would be dividing an integer value (the range) by another
integer value. This might easily give you a consistent bin size of 0. A serious error.

The Max_Value keyword variable is assigned a value of 5000, avalue | know works
with most of the example image data sets distributed with IDL.

Next, | can test for the XScale and YScale keyword values. If these are not supplied,
I’1l use the dimensions of the image for scale values. I'll also test to be sure the values
are two element arrays. If not, Il issue error messages. The code will ook like this:

s = Size(image, /Dinmensions)
I F N_El enents(xscale) EQ O THEN xscale = [0, s[O0]]
| F N _El enent s(xscale) NE 2 THEN $
Message, ' XSCALE nust be 2-element array', /NoNane
I F N_El enents(yscale) EQ O THEN yscale = [0, s[1]]
| F N _El enents(yscale) NE 2 THEN $
Message, ' YSCALE must be 2-element array', /NoNane

Notice a new keyword for the Sze command here: Dimensions. As opposed to the
N_Dimensions keyword, which caused Sze to return the number of dimensions of its
argument, the Dimensions keyword causes Size to return a vector containing the size
of each of itsdimensions. In other words, with a 2D image array, | will get atwo-
element array containing the X sizeand Y size of the image, respectively.

Finally, | can check for the color keywords. Because | want to write device
decomposed-state independent code, | am going to use the GetColor program to
specify drawing colors. (GetColor is discussed in “Obtaining Device Independent
Colors’ on page 87.) GetColor “knows’ the names of 16 drawing colorsthat | use
frequently and can obtain those colors for me in a device independent way. (You can
easily add more colorsto GetColor.) | check the keywords like this:

| F N_El enent s(dat aCol or Nane) EQ O THEN $
dat aCol or Nane = "Red"

| F N_El enent s(axi sCol or Nane) EQ O THEN $
axi sCol or Name = "Navy"

The Histol mage Program

| F N_El enent s(backcol or Nane) EQ 0 THEN $
backcol or Nane = "White"

| could check to be sure the color names passed into the program are string variables,
but I know GetColor is going to do that anyway. And | know that it is going to return
to the caller of the program that called it. Thus, | will be able to catch that error in my
error handler when it comes back from GetColor. Thus, there is no need to check for
possible errors here.

Note that | make the background color white by default. Thisis certainly not
necessary, and more often than not | like to have a nice charcoa or gray background
color. | choose white here because it is sometimes easier to visualize what the results
are going to look like when | make a PostScript file from this program. Recall that you
can have any background color you like in PostScript, as long as that color is white.
(This problem is discussed in “Problem: PostScript Devices Use Background and
Plotting Colors Differently” on page 189.)

The most important thing isthat | need some way to change the drawing colors,
because | ailmost certainly will have to change them when | send the output to a
PostScript printer. By making the default colors suitable for printing on a PostScript
printer now, | won't have to worry about resetting colors. I’ll just call the Histolmage
program to draw the graphicsin its default colors when | want to make a PostScript
file.

If the user doesn’'t supply a color table index number, | choose color table 4.

I F N_El enents(colortable) EQ O THEN colortable = 4
colortable = 0 > colortable < 40

Note that there are only 41 color tables supplied with IDL (although users could have
modified this number, certainly). Here you see abit of checking to force the colortable
value into a number between 0 and 40. The IDL greater than and less than operators
are used in aleft to right fashion to force the value into the correct range of numbers.
(In other words, 0 is compared to colortable and the largest value is return. Then that
value is compared to 40 and the smallest of those two valuesis returned into the
colortable variable.) Thiskind of proactive error checking can avoid problems later
on.

Next, I'll supply the ImageColors keyword with avalue. Note that | am going to use
three drawing colorsin this program. | prefer to load my drawing colors at the top of
the color table, athough other people prefer to load them at the bottom of the color
table. It doesn’'t matter much where you load them, as long as you know what you are
doing when you manipulate the color table. But while | like to load drawing colors at
the top of the color table, | don’t like to use the top index number of the color table.

Thereason | don't isthat very often thisindex is used for the ! P.Color system variable.
And many, many programs are written assuming this color is going to be either white
or black. | don't like to break these programs, if | can help it. So | leave this index
aone. | load my three drawing colors starting from the fourth index from the top. This
means that the color indices | have for the image display ranges from 0 to the fifth
index from the top of the color table. Thisis!D.Table Sze-4total colors. Thisiswhat
| assign to the ImageColors keyword value in the program.

i magecol ors = ! D. Tabl e_Si ze- 4

Note that | don’t have to check this output keyword. If the user wants the value he or
she can get it back from the keyword. If they don’t want the value, fine. It didn’t cost
me much of anything to assign it to avariable. (And I'll need the value later in the
program anyway.) Thereis no need to use something like Arg_Present in this case:

I F Arg _Present (i nagecol ors) THEN $

245

Writing an I DL Graphics Display Program

246

i magecol ors = ! D. Tabl e_Si ze- 4

Thisisoverkill and resultsin the imagecolors variable only being defined if the user
passed in a variabl e reference with the keyword. The simpler construction is much
easier to type and | think makes the program easier to read, too.

Remember that the imagecolors variable is designed to help someone outside the
program control the image colors. | don’t have any need for that right now, but | may
later and | want to be prepared for the eventuality.

Loading the Program Colors

The three drawing colors are going to be loaded starting at the fourth index from the
top of the color table. | aways use !D.Table_Szeto indicate the size of the color table.
Then !D.Table_Sze-1 isthe top index in the color table. The code looks like this:

axi sCol or = Get Col or (axi sCol or Narre, !D. Tabl e_Si ze- 2)
dat aCol or = Get Col or (dat aCol or Narre, ! D. Tabl e_Si ze- 3)
backCol or = Get Col or (backcol or Nanme, ! D. Tabl e_Si ze-4)

The variables backColor, dataColor, and axisColor now contain either the correct
color index number for loading the proper color (if device decomposition is off or if
thisisan 8-bit device), or a 24-bit value that can be decomposed into the proper color
(if device decompositionison). In any case, | don’t haveto worry at al about the
current color decomposition state when | draw the graphics with these colors. The
correct colors will appear amost automatically.

Next | load the colors for theimage data. | only do thisif the NoLoadCT keyword
variableis not set.

| F NOT Keyword_Set (nol oadct) THEN $
LoadCT, col ortable, NCol ors=i magecolors, /Silent

Note that | use the Slent keyword to the LoadCT command. | really don’t like the
informational message LoadCT prints in the command log window every timeit loads
acolor table. This keyword suppresses the message.

Note, too, that | restrict, with the NColors keyword, the number of colors loaded to
just those indices used by theimage. | want to be careful not to overwrite the drawing
colors| just loaded. Only color table indices O through ! D.Table Sze-5 will be loaded
by this command.

Preparing to Draw the Graphics

The next step in writing the Histolmage program is to prepare to draw the graphics. |
have three separate items to draw, the histogram plot, the color bar, and theimage
itself.

Calculating Graphic Positions in the Window

So thefirst thing | dois calculate the positionsin the window where | want these items
to go. These positions will be four-element arrays containing normalized window
coordinates of the type that can be used with the Position keyword on most graphics
commands. (See “Positioning Graphic Output in the Display Window” on page 44 for
details of how thisis done.) Normalized coordinates are used so the graphics will go
into awindow of any size. The code will look like this:

hi st oPos = [0.15, 0.675, 0.95, 0.95]
col orbarPos = [0.15, 0.500, 0.95, 0.55]
i mgePos = [0.15, 0.100, 0.95, 0.40]

The Histol mage Program

Changing Character Size According To Window Size

One of the requirements of this program isthat it can display its graphicsin resizeable
graphics windows. Or, put another way, that it can display graphicsin awindow of
any size. In other words, if the window is big the histogram plot should be big and the
image display should be equally big. If the window is small, the plot and image
display should be small, etc. Thisis accomplished, obviously, by the position of the
various components in the window in normalized coordinates, as described above.

But often thisthinking is not carried over to the annotation of the graphic displays as
well. Most programmers will use acharacter size of 1 and call it good. But | would
like to see a big character size used in big windows and a small character size used in
small windows.

Thereisa CharSze keyword that can be used with graphics commands to change the
character size, but how can this be done in away that is consistent with the size of the
window? The answer, like many of the answers you have discovered so far, isto
express the character size in normalized units. Unfortunately, thisisimpossiblein
IDL. Character size isalways expressed in character units. But even so...there must be
away!

Actudlly, thereis. It turns out that by using the XYOutS command you can get the
width of atext string in normalized units. And if you use a negative value with the
CharSze keyword, then XYOutS doesn’t actually write the string to the display
window, it just calculates the width of the string. For example, suppose you wanted to
know the width of the text string “A Sample String”. You could type this:

IDL> thisSize = -1
IDL> XYQutS, 0.5, 0.5, "A Sanple String', /Normal, $
W dt h=t hi sWdth, Charsize=thisSize

Now, suppose you compared the value of thisidth with some target width. Say, for
example, that the target width was 0.25. Another way of saying thisis that the string
should be wide enough to extend across 25 percent of the display window. If the target
width was larger than the value of thiswidth you could increase the character size by
some small amount, and test it again, and so on until the character size was
appropriate to give you the text width you wanted. The code might look like this:

IDL> | F thisWdth LT 0.25 THEN thi sSize = thisSize + 0.01
IDL> XYQutS, 0.5, 0.5, 'A Sanple String', /Normal, $
W dt h=t hi sWdth, Charsize=thisSize

Eventually, thisidth would be within some small delta value of the target width. A
similar algorithm can be employed if thiswidth is larger than the target width.

Thiskind of algorithm has aready been developed for you in the form of the program
Sr_Sze that you downloaded with the program files to use in this book. The
parametersfor Sr_Sze are astring and atarget width, in normalized coordinates. I’'ve
found that the string “A Sample String” and atarget width of 0.20 produces nicely
sized characters on most plotsin the graphics windows | typically use.

IDL> thisSize = Str_Size(' A Sanple String', 0.20)

Thisisacharacter size of approximately 1.4 for anormal sized window on a Windows
machine, for example.

In this program, | will write the font character size selection code like this:
thisCharsize = Str_Size(' A Sanple String', 0.20)

247

Writing an I DL Graphics Display Program

Calculating the Image Histogram

The next step is to calculate the image histogram. (Recall that a histogram issimply a
count of the number of entitiesin each bin of the histogram. Normally, we take thisto
mean the number of pixelswith each image value.) | simply use the Histogram
command, passing it the bin size | want to use, like this:

hi stdata = Hi stogran(i nage, Bi nsize=binsize, $
M n=M n(i nage), Max=Max(i nmage))

Notice | set the Min and Max keywords explicitly for the Histogram function to the
minimum and maximum value of the image. The IDL documentation claimsthisis
what the Histogram function does by default, but | have not found this to be the case.
Rather, | find that it assumes a minimum value of 0 and a maximum value of 255 for
byte images, no matter what the actual data valuesin the image.

Drawing the Graphics

There are three graphical elements | want to draw: a histogram plot, a color bar for
indicating image values, and the image itself.

Drawing the Histogram Plot

IDL gives me several choicesfor drawing the histogram plot, but | find | don’t like the
two most obvious ones. Let me explain what | mean with a simple example you can
type at the IDL command line. Suppose | have five bins of data, each bin being 5 units
in size, and avector that tells me how many “items” arein each bin. The data and bins
vectors could be created like this:

[4 6, 3, 8 2]
[0, 5 10, 15, 20]

The most obvious approach isto ssimply plot the datawith the Plot command, likethis:
IDL> Plot, bins, data, YRange=[O0, 10]

The result, which doesn’t look much like our definition of a“histogram” plot, is
illustrated in Figure 95.

IDL> dat a
IDL> bi ns

10]

o N B~ OO

Figure95: A very simple plot of a histogram function. Note that it doesn’t look
much like a histogram plot.

248

The Histol mage Program

The second obvious approach is to set the PSym keyword to 10, which will result in
the “ stair-step” kind of plot we expect from a histogram plot. | can try this:

IDL> Plot, bins, data, YRange=[O0, 10], PSynr10

The results look better, as shown in Figure 96, but they are still not right. In particular,
the bins are represented incorrectly. Thefirst bin goesfrom 0to 5, the second bin from
510 10, and so on. But in theillustration, the first bin appearsto go from 0 to 2.5, and
the second bin appearsto go from 2.5 to 7.5, and so on. It appears as though each bin
is half abin size off.

10]

o N A O ©
!

Figure 96: This plot looks more like a histogram plot, but it is still not right. Notice
that the bins seem to be half a bin size off.

| could try to fix the problem by adding a half bin size to each of the bins, like this:
IDL> Plot, bins + 2.5, data, YRange=[O0,10], PSym=10

You see the resultsin Figure 97. Again, thisis close to being correct, but | have
problems at either end of the plot, where the lines should extend to the end of the plot
window. To really draw this plot correctly, | should duplicate the first and last values
of the histogram data and the bin val ues.

10
of ,
6]
£ |
J .
ot ‘ ‘ ‘ ‘

0 5 10 15 20 25

Figure97: This plot has had half a bin size added to the bin values. It is accurate,
but the plot lines do not extend to the ends of the plot window.

249

Writing an I DL Graphics Display Program

For example, | can do something like this:

IDL> Plot, [bins[0], bins + 2.5, bins[4] + 2.5 * 2], $
[data[0], data, data[4]], YRange=[0, 10], PSyn¥10

Finaly, | get the kind of histogram plot | expect, asillustrated in Figure 98.

107

o N b O ©
!

Figure98: Thehistogram plot | expected to get. It would be easy enough to add ver-
tical lines with the PlotS command to create histogram boxes for each
bin.

Thisis exactly the kind of approach | am going to take in the Histol mage program.
The code to fudge the bins and histodata vectors for correct plotting looks like this:

npts = N_El enent s(hi st dat a)
hal f bi nsi ze = binsize / 2.0
bi ns = Fi ndgen(N_El enents(histdata)) * binsize + M n(imge)
bi nsToPl ot = [bins[0], bins + hal fbinsize, $

bi ns[npts-1] + binsize]
hi stdataToPl ot = [histdata[0], histdata, histdata[npts-1]]
xrange = [M n(bi nsToPl ot), Max(binsToPl ot)]

The code to draw the histogram plot in the axes color, followed by the histogram data
drawn in the data color will look like this:

Pl ot, binsToPl ot, histdataToPlot, $
Backgr ound=backCol or, $
Char si ze=t hi sCharsi ze, $
Col or =axi scol or, $
Max_Val ue=max_val ue, $
NoDat a=1, $
Posi ti on=hi st oPos, $
Title="Inage Histogram , $
XRange=xr ange, $
XStyle=1, $
XTickformat="(16)"', $
XTitle='lImage Value', $

YM nor=1, $
YRange=[0, max_val ue], $
YStyl e=1, $

YTickformat="(16)"', $
YTitl e=' Pixel Density', $

250

The Histol mage Program

_Extra=extra
OPl ot, binsToPl ot, histdataToPl ot, PSym=10, Col or=dat aCol or
FOR j =1L, N _El ement s(bi ns)-2 DO BEG N
Pl otS, Color=dataColor, [bins[j], bins[j]], $
['Y.CRange[0], histdata[j] < max_val ue]
ENDFOR

Notice that | use the PlotS command to draw vertical lines at each bin boundary. This
gives the histogram a box look that | like better than just using the histogram plotting
symbol (PSym=10) with the Plot command.

| find that by putting the keywords in alphabetical order when | use a command that
requires setting a number of keywords a useful style. It makesit much easier to see
which keywords | am explicitly setting. This savestime and effort if | have to add or
delete a keyword later in program devel opment.

Drawing the Color Bar

Drawing the color bar is easy. | simply use the Colorbar program you downloaded to
use with this book. Like TVImage (see “ An Alternative Image Display Command” on
page 62), the Colorbar program is device decomposition independent and can be used
in any IDL supported graphics device. The commands looks like this:

cbarRange = [M n(bi nsToPl ot), Max(bi nsToPl ot)]
Col orbar, $

Char si ze=t hi sCharsi ze, $

Col or =axi sCol or, $

Di vi si ons=0, $

NCol or s=i magecol ors, $

Posi ti on=col or bar Pos, $

Range=cbar Range, $

XTi ckl en=-0.2, $

_Extra=extra

Notice that the color bar is restricted to the same number of colors as the image, and
that the range of colorsis taken from the fudged binsToPlot variable. By setting the
XTickLen keyword to a negative value, | produce outward facing tick marks. Setting
the Divisions keyword to 0 allows the program to choose annotation divisionsin the
same manner as the Plot command. Thiswill make the Colorbar annotation identical
to the histogram plot annotations directly aboveit and will reinforce the purpose of the
annotations.

Drawing the Image Plot

All that isleft to do is draw the image, with its axes around it. I'll use the TVImage
command to display the image (see “ An Alternative Image Display Command” on
page 62) and the Plot command to draw the axes, using the values given by the XScale
and YScale keywords as the range of the plot. The final code will ook like this:

TVI mage, Byt Scl (i mage, Top=i nagecolors-1), $
Posi ti on=i magePos, _Extra=extra

PLOT, xscale, yscale, $
Char si ze=t hi sCharsi ze, $
Col or =axi sCol or, $
NoDat a=1, $
NoEr ase=1, $
Posi ti on=i nagePos, $
XStyle=1, $
XTi ckl en=-0.025, $

251

Writing an I DL Graphics Display Program

252

YStyle=1, $
YTi ckl en=-0.025, $
_Extra=extra

END

Notice that | scale the image data into the number of image colors and that | position
both the image and the axes about the image with the imagePos variable.

Working Around a Printer Device Bug

Thereisasmall Printer device bug in versions of IDL up through IDL 5.3.1 (the
official version at the time thisiswritten) that will cause a problem when this codeis
sent directly to a PostScript printer. (See “Loading Colorsin the Printer Device” on
page 204 for additional information.) It turns out that when a single color isloaded
into the color table (in this program that is done with the GetColor command) at any
index at all, then that same color is used to display any image pixel having a value of
0. (Thisisastrange bug!). For example, if you type these commands, and your default
printer is a PostScript printer (PCL printers appear to be unaffected), then you might
see output that looks like theillustration in Figure 99.

IDL> t hi sDevice = ! D. Nane

IDL> Set Plot, 'PRI NTER

IDL> LoadCT, 0, NCol ors=!D. Tabl e_Si ze-4
IDL> Hi st ol nage, /NoLoadCT

IDL> Devi ce, /C ose_Docunent

IDL> Set Pl ot, thisDevice

Figure99: A Printer device bug that resultsin all pixelswith value 0 showingupin
the last single color loaded in the color table (the background color, in
this case). The work-around isto get and re-load the color table vectors
after loading a single color.

The Histol mage Program

The work-around for this bug, which will make the code completely device
independent, isto simply get and re-load the color table vectors after the last single
color isloaded into the color table. In the Histol mage code, find thisline:

| F NOT Keyword Set (nol oadct) THEN $
LoadCT, col ortable, NCol ors=i magecolors, /Silent

The line above should be replaced with this code:

| F NOT Keyword_Set (nol oadct) THEN BEGA N
LoadCT, col ortable, NCol ors=i magecolors, /Silent
ENDI F ELSE BEG N
| F !'D.NAME EQ ' PRINTER THEN BEG N
TVLCT, r, g, b, /Get
TVLCT, r, g, b
ENDI F
ENDEL SE

Thiswill cause the correct colors to be loaded when the program is sent to the Printer
device.

Compiling and Testing the Program

To compile and test the program, type this:

IDL> . Conpi | e hi st oi mage
IDL> Hi st ol nage

If the program doesn’t compile, or if you have errors when you run it, delete the
program from your display with the mouse, type RETALL at the IDL command line,
and fix the errors. Don’t forget to re-compile the program before you try to run it
again.

Try running the program with a different image:

IDL> i mage = LoadDat a(5)
IDL> Hi st ol nage, inage

Try setting some of the keywords. For example, try some of the color keywords:

IDL> Hi st ol mage, inege, $
Axi sCol or Nanme=' beige’, $
BackCol or Name='gray', $
Col or Tabl e=33, $
Dat aCol or Nanme="yel | ow

Try putting different scales on the image:
IDL> Hi st ol nage, XScal e=[0, 1], YScal e=[-1, 1]

What about setting keywords that are not defined for Histolmage, but will get picked
up by the keyword inheritance mechanism? Try, for example, setting the

Keep_ Aspect_Ratio keyword of the TVImage command and the Divisions keyword of
the Colorbar command, like this:

IDL> Hi st ol nage, /Keep_Aspect Ratio, Divisions=8

Reviewing the Histolmage Program’s Advantages

Let'sreview some of the Histol mage program’s advantages. And | want to point out a
few that may not be obviousto you even yet. First of all, the program has been written
in such away that it doesn’'t matter whether you are on an 8-bit display or a 24-bit
display, the program will work identically. Nor will it matter whether you have color
decomposition on or off if you are on a 24-bit display. This is because we have used

253

Writing an I DL Graphics Display Program

254

color-aware programs such as GetColor and TVImage to load drawing colors and
display the image.

We have written the Histol mage program with an _Extra keyword defined for it. This
alows usto pass “extra’ keywords into the Plot, Colorbar, and TVImage commands
inside the program. But it also does something far more useful. It allows usto write a
program that can automatically re-display the graphic on 24-bit displays when we
change color tables. (See * Automatic Updating of Graphic Displays When Color
Tables are Loaded” on page 66 for additional information.)

For example, open atext editor and create this simple file, which you can name
histoimage_redisplay.pro. (This program is one of the programs you downloaded to
use with this book, if you prefer not to typeit.)

PRO Hi st ol mage_Redi spl ay, | mage=i nage, _Extra=extra
I F N_El enents(i mage) EQ O THEN i mage = LoadDat a(7)
Hi st ol mage, inmage, /NoLoadCT, Extra=extra

END

This program will allow us to change the color table associated with Histolmage and
see the effects immediately. (Thiswill only be necessary on 24-bit displays,
remember. On 8-bit displays, the colors are updated automatically.) Notice that the
NoLoadCT keyword is set. Thisis necessary, you recal, for an outside entity to
control the colors. If this keyword were not set, Histolmage would always load its
own color table rather than using the colors of the current color table.

First, call the program normally and find out how many image colors there are. The
ImageColors output keyword is used for this purpose.

IDL> i nage = LoadDat a(13)
IDL> Hi st ol nage, inage, Col or Tabl e=33, | nageCol ors=ncol ors

Next, call XColorsto load different color tables. (XColorsis aprogram you
downloaded to use with this book. | useit exclusively in place XLoadCT, which is
supplied with IDL, for reasons you will learn about in the following sections of this
chapter. It has many advantages to XLoadCT, one of whichisthat | think it hasamore
natural syntax for automatically updating graphical displays on a 24-bit device.)

IDL> XCol ors, NCol ors=ncol ors, |nmage=i nage, $
Noti f yPro="Hi st ol nage_Redi spl ay’

If you have both XColors and your open graphics window on the display so you can
see them both, you will notice that as you select color tables from the list of color
tablesin XColors, that the colors are automatically updated in the display window.

Note that if you are running IDL on an 8-bit device, you need only call XColorslike
this:

IDL> XCol ors, NCol ors=ncol ors
Now, close your XColorswindow if it is still on your display.

The XColors program will work with the Histolmage Redisplay program no matter
what keywords you use with Histolmage. For example, you can type this.

IDL> Hi stol nage, inage, BackCol or Name='gray', $
Axi sCol or Nane='yel | ow , | mageCol or s=ncol ors
IDL> XCol ors, |nmage=i mage, NCol ors=ncolors, $
BackCol or Name=' gray', AxisCol orNane="yellow , $
Noti f yPro="Hi st ol nage_Redi spl ay’

The Histol mage Program

The Histolmage Program is Device Independent

We have seen that the Histol mage program is visual display depth independent and
color decomposition independent, but what may not be immediately obviousisthat it
is also device independent. That it to say, it doesn’t matter which graphical display
device you have currently selected to display graphics, the Histol mage program will
work correctly in that device. Thisincludes such devices as the PostScript device
(PS), the printer device (PRINTER), and the Z-graphics buffer device (2).

For example, to print this on your default printer, you can typethis:

IDL> t hi sDevice = ! D. Nane

IDL> Set _Plot, 'PRINTER , /Copy

IDL> Device, XSize=5, YSize=5, /lInches, XOfset=1.75, $
YO fset=3.0

IDL> Hi st ol mage, image

IDL> Device, /C ose_Docunent

IDL> Set Pl ot, thisDevice

Or, to create a PostScript file, you can type this:

IDL> t hi sDevice = ! D. Nane

IDL> Set Plot, 'PS

IDL> Device, XSize=5, YSize=5, /lInches, XOfset=1.75, $
YO fset=3.0

IDL> Hi st ol mage, image

IDL> Device, /Close File

IDL> Set Pl ot, thisDevice

Recall that | set the background color to be white by default just for the purpose of
being able to send the graphic output to a printer or to the PostScript device. If itisnot
white on the display, you should change it to white before you send it to the printer or
create a PostScript file. The color keywords make it easy to make this switch when we
are using these types of graphics output devices.

What makes the Histolmage program device independent is the absence of commands
that only work in a particular device. For example, you see no Window commands in
this program, since a Window command is only appropriate on display devices and
not, for example, in the PostScript device. The graphics have been written to go into
any window that happens to be open. If the graphics deviceis adisplay device (i.e.,
WIN, MAC or X), and awindow is not currently open, a default window will be
opened when the first graphics command is executed.

If you did want to have a Window command in the program (and | almost never do,
especidly if | have plans to use the program in awidget program), then you should
make sure the device supports windows. This can be done with the Flags field of the
D system variable. The flagsfield is abit map and we want to see if the bit
corresponding the value 256 is set (windows are supported by this device) or not
(windows are not supported by this device). The code will look like this for apossible
Window command:

IF (!D.Flags AND 256) NE 0 THEN W ndow

Another common command you don’t seein thisprogram isa Device, Decomposed=0
command. Normally this command is required to display 2D imagesin color. We
don’t have to include it because the Colorbar and TVImage commands have been
written with this intelligence built into them. However, we would have to use a
command like this if we were going to use the TV command to display the color bar
and image. In fact, we would probably have to use several commands to check the
visual depth, the type of device, etc. For details, examine the code in either the
TVImage or Colorbar programs. In the Colorbar program 12 lines of code precede the

255

Writing an I DL Graphics Display Program

256

TV command and another 12 linesfollow it, just to make the TV command work
properly on every device!

Using Histolmage in a “Smart” Resizeable Graphics Window

The Histolmage program also meets the graphics display criteria for being displayed
with aresizeable graphics window program, named FSC_Window, which you
downloaded to be used with this book. The FSC_Window program is a“smart”
graphicswindow, in that it can resizeits contents, create BMP, GIF, JPEG, PICT, PNG,
TIFF, and PostScript files of its window contents, and send its contents directly to the
printer. Plus, if your graphic display program has been written correctly, you can aso
change the colorsin your program with a color table changing tool.

The five criteria FSC_Window imposes on a display program are these:

* 1. The program should be written as a procedure.

e 2. There should be no more than three positional arguments.

e 3. There can be an unlimited number of keyword arguments.

e 4. The program should be written so that the contents goes into any sized window.

* 5. There should be no device-specific commands in the program (e.g, a Window
command).

Many graphics display commands meet this criteria. For example, the Shade_Surf
command does. Type these commands:

IDL> peak = LoadDat a(?2)
IDL> LoadCT, 22
IDL> FSC W ndow, 'Shade_Surf', peak, Charsize=1.5

You see an example of the FSC_Wndow program in Figure 100. Notice the controls
under the File button in the menu bar. You can grab the edge of the window with the
mouse and resize the window. The window contents resize themselvesto fit.

You can have as many FSC_Window programs running as you like. For example, let’s
display animage in an FSC_Window program, but let’s also set the ability of the
program to load different color tables. Type this:

IDL> i nage = Byt Scl (LoadData(7), Top=!D. Table_Size-1)
IDL> FSC W ndow, ' TVInmage', image, /WCol ors

Notice now there is a Colors menu item under the File menu bar button. Clicking this
button will call up the XColors color changing tool. XColorsis a program you
downloaded to use with this book. One of its huge advantagesis that it doesn’t use
common blocksto store its color tables. Which means there can be multiple XColors
programs on the display at once. Something that isimpossible for XLoadCT, the IDL-
supplied color table changing tool.

For example, let’s get the Histolmage program on the display too. Recall, though, that
you do not want to use all of the colorsin the color table. We reserved the top four
colorsfor other things. And recall that if we want colors to be manipulated externally,
we have to be sure not to load the color table in Histolmage. Thisis accomplished by
setting the NoLoadCT keyword. Typethis:

IDL> i nage = Byt Scl (LoadData(5), Top=!D. Table_Si ze-1)

IDL> FSC W ndow, 'Histolnmage', inmage, /NoLoadCT, $
WCol ors=! D. Tabl e_Si ze- 4

Now you can get the color table tool from both programs on the display simulta-
neoudly. If you arerunning IDL on an 8-bit display, thingslook abit chaoctic, no doubt,
since every time the color table is changed, al graphics output changes automatically.

The Histol mage Program

&l SHADE_SURF Window [32] =] E3
Frirt » I
% EMP File
. GIF File
_ BT PCTER
FMG Fila
et JPEGFike
TIFF File
FostScript File
1ol
5o0

Figure100: The FSC_Window resizeable graphics window program with a
Shade_Surf command. Notice the pull-down menu that allows you to
print and save the window contentsin a variety of file formats.

On a 24-bit displays, of course, this al happens independently. What you will notice
on 8-bhit displays, however, isthat the color will be correct for the window that has the
current keyboard focus. In other words, each window “knows” which colors are sup-
posed to be loaded and loads them when it has the focus.

Note that on an 8-hit display, the FSC_Wndow program may not have a Print and
Post<cript File button as shown in Figure 100. When the display device does not have
as many colors as the PostScript or printer devices, it isimpossible to aways get the
colors correct for PostScript and printer output. Too many factors are involved and it
depends too much on how the graphics command that is executed iswritten. For
example, it is hot possible to get correct PostScript output from our Histolmage pro-
gram when it is running on an 8-bit display with color table loading turned off, asis
the case currently.

You will learn more about how to fix these kinds of problemsin the chaptersto follow,
but for now you should know that you can get both a Print button and a PostScript
File button on your FSC_Wndow program on an 8-bit display, but you have to set
them explicitly. For example, you could do this:

IDL> FSC W ndow, 'TVImage', LoadData(7), /Wolors, $
/ WPost Scri pt, /Werint

But even this command would not print correctly or make a correct PostScript file on
an 8-bit display. To make the output correct, the image datawill have to be scaled
correctly for both the display and for the PostScript and printer devices. The only way

257

Writing an I DL Graphics Display Program

this can be accomplished it to perform the scaling right in the TVImage command, like
this:
IDL> i nage = LoadData(7)

IDL> FSC W ndow, 'TVInmage', $
Byt Scl (i mage, Top=!D. Table_Si ze-1), /WColors, $
/ WPost Scri pt, /Wprint

258

