
Bolinger IDL 5.3 Notes

1

IDL 5.3
Things you need to know

Manuals
The manuals are available as PDF files. They should be loaded on the computers, if not, we

need to ask for them to be installed. They are in PDF format and require Acrobat reader 3.0 or

higher. To get to the online manuals:

On Windows, select Start −> Programs -> Research Systems IDL 5.3 -> IDL Online Manuals

On Macintosh, a shortcut can be found in the rsi-directory:RSI:IDL 5.3 folder named IDL Online

Manuals.

On UNIX, execute the following at the UNIX prompt:
idlman

This is the best set of online manuals I have seen for any program. They are exact copies of the

hard copy manuals and have been carefully developed over 15 years.

Getting Started with IDL – Everyone new to IDL should look though this manual. It quickly

covers many important features and points you to the manuals that have more details about the

topics. It is about 200 pages long with lots of pictures and examples for you to try. So it should

be used when you are at a computer so that you can try everything out. This manual covers the

IDL Development Environment, Reading and Writing data, plotting, signal processing, image

processing, surface and contour plotting, volume visualization, mapping (which few of you will

use), plotting irregularly-gridded data, animation, programming in IDL, manipulating data and

using the IDL GUIBuilder. It even has a chapter that is a road map of the rest of the

documentation set and manuals.

List of other Manual Titles
Using IDL – explains IDL from an interactive user’s point of view.

Building IDL Applications – explains how to use the IDL language to write programs
IDL Reference Guide – contains detailed information about all of IDL’s procedures, functions,

objects, system variables, and other useful reference materials.
External Development Guide – explains how to use IDL to develop applications that interact

with programs written in other programming languages.
Scientific Data Formats – contains detailed information about IDL’s routines for dealing with

specific data formats such as CDF, HDF, HDF-EOS and NetCDF.

Bolinger IDL 5.3 Notes

2

Help from inside the IDL program:

Once you are inside the IDL program you can find hypertext linked help for all topics by using

the Help pull down menu in the IDLDE environment or typing a ? at the IDL prompt for those

not using the development interface on Unix machines.

Short History and Philosophy
IDL was originally developed by David Stern (now president of Research Systems, Inc) as a

higher level programming language that he could use to process images obtained from telescopes

and satellites. The language was originally developed under the VMS operating systems in

Fortran. This made sense at the time since the Fortran compiler provided with VMS was the

most optimized compiler available on any system at the time. The program became very popular

with the astronomy community and was often sold with certain image display boards that could

be bought for Vax and MicroVax computers. RSI never intended to port IDL to Unix

workstations, originally. Instead, Precision Visuals licensed the program from RSI and began

that development under the name of PVWave. The laboratory that I was in at the time had used

IDL for five years for our magnetic resonance image and spectroscopy display system and was

just beginning to look into Unix workstations in 1989. Precision Visuals said they would sell us

the program for $10,000. However, a new copy of IDL cost less than $2000 at the time. We told

the Silicon Graphics sales representative that we would not buy an SGI computer unless IDL ran

on it. SGI quickly investigated this software and decided it was software they definitely wanted

on their systems. They gave RSI some loaner computers to port IDL to SGI. Precision Visuals

and RSI severed their ties and since then IDL and PVWave has diverged. But many of the basics

are the same in both.

IDL was originally designed with image processing in mind. This is not something that was

added as a toolbox later. For this reason, it handles multidimensional arrays with ease. There

are large numbers of procedures and functions that you can call that deal with image processing.

In addition, there are many ways to visualize the images. It has evolved to be a very powerful

programming language as well. One thing I like to do with IDL is to test out a programming

algorithm in interactive mode where I can view each step as an image or plot. Then I will use

these commands in a procedure or function to test my idea out on a wide variety of images or

specific situations. If IDL provides answers fast enough, I stop here. If I need it to run faster, I

rewrite the computationally heavy routines in C, C++ or Fortran and call them from IDL in one

of several ways which we will get into later. In the end, I might only be using IDL for the

interface and visualization steps.

Let’s reiterate those steps with some details about IDL:

Bolinger IDL 5.3 Notes

3

 IDL can be run totally in interpretive mode. You type at the IDL> prompt and upon hitting the

return key, the command is executed. Thus, you can work out how commands work, and your

ideas at the keyboard outside of a large complicated program that might be introducing other

errors. For instance, you can type this line at the prompt:

IDL> plot,sin(findgen(100)*!dtor*3.6)
(!dtor is a system variable that convert degrees to radians, findgen(100) produces a float array of

100 elements starting at 0 and ramping up to 99)

This should plot a single cycle of a sine wave. If it doesn’t, you can quickly adjust your numbers

so that it does.

IDL can be run as a compiled language. You can write your own procedures and functions and

call then from procedures and functions. The main program can be run at the command prompt

by typing .run myprogramname.pro. It will be compiled the first time and afterward can simply

be invoked by typing its procedure name. For instance, the single line above could be written as

a procedure like the one below:
__

pro singlecycle,scalefactor,output
; singlecycle is the procedure name and scalefactor is the input
; output is what will be returned.

; This should be saved as singlecycle.pro

ramp = findgen(100)

arg = ramp*scalefactor*!dtor
output = sin(arg)

end

Not a very exciting program since we know we can type it as a single line but it allows me to

introduce a few concepts so bare with me.
The first line of the program declares this as a procedure. That means it does not return a value.

At the IDL prompt, we would call this procedure by typing the following:

IDL> singlecycle, 3.6, forplot

Bolinger IDL 5.3 Notes

4

3.6 will be used as the value for scalefactor and forplot will hold what was calculated and placed

in output. Anything that was stored in forplot before the call to singlecycle will be lost. We can

use forplot to do other things such as

IDL> plot, forplot

If you haven’t guessed, the semicolons signify to the compiler that anything after them is to be

ignored and therefore indicates comments. Another thing to note, is that ramp, arg and output

are all arrays of 100 elements since findgen created an array of 100 elements. Also, these arrays

do not need to be declared ahead of time. They take on the size of ramp and their data type is

determined by the calculation. Since findgen creates a floating point array, arg will be a floating

point array even if scalefactor is an integer. Also, both findgen and sin are functions. You can

also write your own functions. In fact, since there is a single output for the procedure above, it

might be better as a function.
__

funct singlecycle,scalefactor

; singlecycle is the function name and scalefactor is the input
; This should be saved as singlecycle.pro

ramp = findgen(100)
arg = ramp*scalefactor*!dtor
return, sin(arg)

end
__

This would be called in the following way:

IDL> output = singlecycle(3.6)

If you wanted to plot the output you could call this function in the following way:

IDL> plot, singlecycle(3.6)

One thing to note, if you name the file the same as the procedure or function call with .pro as the

extension and place it in a directory on the path IDL looks at, you need not compile the function

or procedure before use. IDL will look in its own library and then in any directory along the

!path system variable to see if a .pro file exists with the procedure or function name.

Bolinger IDL 5.3 Notes

5

IDL Syntax

IDL is not case sensitive. RED = REd = Red = red = rEd = rED = ReD = reD

Function: Result=Function(argument1, argument2, optargument, keyword=value, /keyword)

Procedure: Procedure, argument1, argument2, optargument, keyword=value, /keyword)

Statements

assignment variable = expression assigns a value to a variable

defines a block of statement (same as { } in C)

BEGIN
Statement1
Statement2

Statement2
END

CASE … ENDCASE = selects one statement for execution depending on the value of the

expression
case expression of

expression: statement
expression: statement
expression: statement

else:statement (optional)
endcase

common = common block
common block_name, variable1, variable2, variable3 … variablen

for statements

for variable=initial_value, limit, increment do
or
for variable=initial_value, limit, increment do begin

statement1
…

endfor

Bolinger IDL 5.3 Notes

6

goto - transfers program control to point specified by label
goto, label

if … then … else
if expression then statement

if expression then begin
statements

endif

if expression then statement else statement
if expression then begin

statements

endif else statement
if expression then begin

statements

endif else begin
statements

endelse

repeat … until - statements always executed at least once
repeat statement until expression

repeat begin
statements

endrep until expression

while … do - statements are never executed if condition is initially false
while expression do statement

while expression do begin
statements

endwhile

Bolinger IDL 5.3 Notes

7

Executive Commands

Executive commands must be entered at the IDL command prompt. They cannot be used in

programs.

.compile compiles programs without running

.continue continues execution of a stopped program

.reset_session resets much of the state of IDL session without requiring user to exit and restart

IDL
.full_reset_session does everything as .reset_session but also unloads sharable libraries

.go executes previously compiled main program

.out continues execution until curent routine returns

.return continues execution until return statement

.rnew erases main program variables and then does .run

.run compiles and executes IDL commands from files or keyboard

.skip skips over next n statements and then single steps

.step execues one or n statements from the current position

.stepover executes a single statement if the statement doesn’t call a routing

.trace similar to .continue, but displays each line of code before execution

Special Characters
Ampersand (&) – separates multiple commands on a single line

Apostrophe (‘) – delimits strings or indicates octal or hex
Asterisk (*) – designates an ending subscript range equal to the size of the dimension. Also the

multiplication operator and the pointer dereference operator
At sign (@) – include character. Used at beginning of a line to cause the IDL compiler to

substitute the contents of the file whose name appears after the @ symbol for the line. In

interactive mode, the @ symbol is used to execute a batch file.
Colon (:) – ends label identifiers. Also separates start and end subscript ranges
Dollar Sign ($) – continuation character (at the end of line) or spawn operating system command

(at start of line)
Exclamation Point (!) – First character of system variable names and font-positioning

commands
Period (.) – first character of executive commands. Also indicates floating-point numbers
Question Mark (?) – invokes the online help facility

Quotation Mark (“) – string delimiter or indicates octal number
Semicolon (;) – first character of comment field

Bolinger IDL 5.3 Notes

8

OPERATORS
Mathematical Operators
+ Addition, String Concatenation

- Subtraction and Negation
* Multiplication, Pointer dereference
/ Division

^ Exponentiation
MOD modulo
< The minimum operator

> The maximum operator
and ## Matrix multiplication

Boolean Operators
AND Boolean AND
NOT Boolean complement

OR Boolean OR
XOR Boolean exclusive OR

Relation Operators
EQ equal to
GE greater than or equal to

GT greater than
LE less than or equal to
LT Less than

NE Not equal to

Other Operators

[] array concatenation, enclosed array subscripts
() group expressions to control order of evaluation
= assignment

?: conditional expression

Operator Precedence
Highest () expression groups

Second * (pointer dereference), ^ (exponentiation)
Third * (multiplication), # and ## (matrix multiplication), / (division), MOD (modulus)
Fourth +, -, <, >, NOT (Boolean negation)

Fifth EQ, NE, LE, LT, GE, GT
Sizth AND OR XOR

Bolinger IDL 5.3 Notes

9

Seventh ?: (conditional expression)

Where to look for Example Code

Many of the procedures or functions that you see in the reference manual where also written in

IDL. They are stored in the lib directory under the idl53 directory that is most likely under the

RSI directory. However, the name of the top level directory is chosen by the person who

installed the program. You can look at the .pro files in the lib directory but if you want to change

them, please make a copy and put in your own directory. Do not change the ones in the lib

directory. This will change how this function or procedure works for everyone who uses IDL on

that computer. This is a great place to see good efficient IDL code. These were written by

people who work for RSI. Also, looking at this directory gives you a quick overview of some of

the available functionality at your fingertips. Be careful though, once RSI determined that some

of these features were highly valuable, they rewrote them to be more efficient. For a few of

these procedures and functions, there are new internal (i.e. written in C) procedures or functions

that work faster. The .pro files are retained for backward compatibility.

You will also see some files with .sav extensions. These are IDL save sets. You can compile a

several functions and/or procedures, assign some variables and then save the whole thing in a

save set using the IDL save procedure. Then the next time you come into IDL, you can restore

this session using the restore procedure and return to the IDL state you were in when you saved

the session. There is also a journaling function. I don't use either much but feel free to explore.

Wrap up

You will be hard pressed to find something IDL cannot do. You might think you have to write

your own procedure or function to do something but you should thoroughly investigate what is

available before you bother. I am often amazed at what I find. Sometimes a simple keyword

addition will allow a function to do exactly what I want. Other times, I find a new functionality

that was not there in an earlier version and is there now. Sometimes just asking someone else

helps me find a more efficient way of doing things than how I would have proceeded. This is a

very rich programming environment that allows you to write low level code and/or use already

provided features.

