
HOW TO CALL THE IMSL
FORTRAN LIBRARIES FROM C

by
Jangwon Kim

Linda M. Robertson
Visual Numerics, Inc.

IMSL Technical Report Series
No. 8902

Copyright � 1989-2000 by IMSL, Inc. All Rights Reserved.

CONTACTS
Visual Numerics, Inc.
Sales Division
1300 W. Sam Houston Pkwy, Suite 150
Houston, Texas 77042, USA.

Corporate Headquarters 713 784-3131 FAX: 713 781-9260
Email : marketing@houston.vni.com
Web: www.vni.com

Trademark Acknowledgments

All terms mentioned in this report that are known to be trademarks or service marks are listed
below. Visual Numerics cannot attest to the accuracy of this information. Use of a term in this
report should not be regarded as affecting the validity of any trademark or service mark.

Solaris is a trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T.
VAX, OpenVMS and VMS are trademarks of Compaq.
CRAY T3E and CF90 are trademarks of Cray Inc.
CRAY and UNICOS are registered trademarks of Cray Inc.
HP and HPUX are registered trademarks of Hewlett Packard Company.
IBM and AIX are registered trademarks of International Business Machines Corp.
Microsoft is a registered trademark of Microsoft Corp.
SGI and IRIX are trademarks of Silicon Graphics, Inc.
Linux is a registered trademark of Linus Torvalds.
Red Hat is a trademark of Red Hat, Inc.

2

How to Call the IMSL Fortran Libraries from C

Jangwon Kim
Linda M. Robertson

Visual Numerics, Inc.

December 15, 1989

Revised September 2000
T. D. Schweizer

Abstract

This report discusses how to call the IMSL Fortran Numerical Libraries from a C
program. To use C with the IMSL Fortran Libraries, the C and Fortran compilers must
share the same object file format. Interfacing between C and Fortran is dependent on the
operating system, and on the compatibility of the compilers and runtime libraries.

This report begins with a discussion on how to overcome the syntax differences between
Fortran and C that are common to all the environments tested, followed by a discussion
on machine and system dependent differences including compiling and linking
procedures. It also provides a complete example for each environment tested.

3

Introduction

This report describes how to call the IMSL Fortran 90 MP Library from a C program. To
use C with the IMSL Fortran library, the C and Fortran compilers must share the same
object file format. If the C and Fortran compilers do not share the same object file format,
the programs will not link properly. There are many environments for which the IMSL
Libraries are available, but we have limited the discussion of our report to the following
environments.

Sun Solaris Release 2.6

Compaq Tru64 Unix 5.0

IBM RS6000 AIX Version 4.3

HP UX 10.01

Cray T3E

OpenVMS Version 7.2

Windows NT /95 /98 with Compaq Visual Fortran 6.5

Red Hat Linux

SGI IRIX 6.5

The first section of this report discusses some general differences between C and Fortran.

Sections 2 through 5 discuss machine and system dependent differences between C and
Fortran. The environments tested in this report have been categorized into four groups.
Several unix operating systems are discussed in the first group, the CRAY UNICOS
environment is discussed in the second group, VMS is discussed in the third group, and
PC Windows in the fourth. This classification is based on the operating system, C and
Fortran compilers, and the runtime libraries. For each group, we discuss how to pass a
character string argument, how to pass a function as an argument, and how to compile a C
main program and link it with the IMSL Fortran Libraries. At the end of each group, a
complete listing of a C program that calls the IMSL linear solver, LSLRG, is provided.
This example covers most of the topics discussed in this report.

Section 6, "Other Environments," provides some suggestions for calling the IMSL Fortran
Libraries from C in environments not discussed in this report.

4

1. Syntax Differences Between C and Fortran

Programs that mix C and Fortran can be linked provided the syntax is understood by both
languages. If the syntax is not understood by both languages, the differences can usually
be overcome with some modifications to the program. This section discusses some
general syntax differences between C and Fortran and how to overcome these differences
when writing C programs that call the IMSL Fortran Libraries. In particular, data types,
data storage, and the argument passing mechanism are discussed.

1.1 Data Types and Data Storage

The length of the data type is environment specific and should be considered when
declaring variables. C and Fortran declarations are related as follows:

C Fortran
char CHARACTER
short int INTEGER*2
long int INTEGER*4
float REAL*4
double REAL*8

The IMSL Fortran 90 Library routines use 32-bit integers (or larger) and thus, for C
compilers that specify the size of int as 16-bits, integers must be declared using long int.

• complex data

Complex and double complex data types are not defined in C. However, they are
frequently used in the IMSL Fortran 90 Library. To get around this problem, an
equivalent structure (at least for all environments in this report) can easily be defined as
follows:

/* type definition of (single) complex data type */
typedef struct

{float r, i;} complex;

/* type definition of double complex data type */
typedef struct

{double r, i;} double_complex;

5

1.2 Argument Passing Mechanism

Since Fortran receives an argument as its address (call by reference), the user's C program
should not pass the value of an argument (call by value). For character strings in the VMS
environment, another type, call by description, is used. Below, the argument passing
mechanism is explained for the different data storage types such as scalars, arrays, (double)
complex types, character strings, and function arguments.

• passing a scalar argument

A scalar variable should be passed by its address; therefore, use the prefix, &, unless it is
already declared as an address.

A constant should not be passed to a Fortran subroutine by value. Use its address instead. For
example, in order to pass 1 (one) in the Sun environment, use:

extern void forsub_ ();
long int one = 1;

forsub_ (. . ., &one, . . .);

• passing an array argument

The name of an array in C is a pointer to the first element of the array. Therefore, the prefix,
&, is not needed and the name itself is passed to the Fortran subroutine, unless a subset of the
array is to be passed.

For a two (or higher) dimensional array, Fortran is column major while C is row major.
Therefore, a two-dimensional array variable must be transposed before it is passed to a
Fortran subroutine. The following example transposes a two-dimensional array using the
IMSL routine, TRNRR, in the Sun environment.

6

double a[2] [3] = {11., 12., 13.,
21., 22., 23.};

main ()
{

extern void dtrnrr_ ();
long int nra=3, nca=2, lda=3;
long int nrb=2, ncb=3, ldb=2;
double b[3] [2];

dtrnrr_ (&nra, &nca, a, &lda, &nrb, &ncb, b, &ldb);
}

Although matrix a in the previous example is a 2 x 3 matrix, it is received by dtrnrr as a 3 x 2
matrix. The matrix is then transposed using dtrnrr and the output matrix, b, is understood by
Fortran to be a 2 x 3 matrix.

Two-dimensional arrays can also be passed by using the transpose option if it exists for the
IMSL routine.

Another method of passing a two-dimensional array is to simply declare the transpose of the
two-dimensional array in the C code. For example, matrix a in the previous example could be
declared as follows:

double a[3] [2] = {11., 21.,
12., 22.,
13., 23.};

• passing a complex or double complex data argument

Complex and double complex data types can be declared using the typedef statement
discussed earlier. The following example repeats the definition of a complex data type and
passes z = 1 + 2i to a Fortran subroutine. (This example is for the UNIX environment.)

/* type definition of (single) complex data type */
typedef struct

{float r, i;} complex;

main ()
{
complex z;

z.r = 1.;
z.i = 2.;
forsub_ (...,&z, ...);
}

7

A double complex data type can be defined and used analogously to a complex data type if
the Fortran compiler allows DOUBLE COMPLEX data type.

• passing a character string argument

When a character string variable is passed from C to Fortran, it must be passed with
information about its length in addition to other attributes of the string. In C, a character
string variable (not a character variable) is terminated with the null character, \0. However, in
Fortran, the length of a character string is stated explicitly. Since the method for passing a
character string is system dependent, this is discussed in each environment section of this
report.

• passing a function as an argument

A C function can usually be passed to a Fortran subroutine as an argument. However, a user
must be cautious in that Fortran invokes the C function and passes the arguments by address.
Passing a function as an argument is system dependent; therefore, it will be discussed in each
environment section along with other system dependent function declarations.

8

2. Unix Platforms

The topics discussed in this section have been tested with the IMSL Fortran 90 MP library
version 4.01, using the following environments:

Sun Solaris Release 2.5 with the Sun Workshop 5.0 compilers

Compaq Tru64 Unix Version 5.0 with Compaq C compiler version 6.1-019 and Compaq
Fortran version 5.3-915.

IBM RS/6000 AIX Version 4.1.2 with IBM C 3.6.6 and XL Fortran version 6.1.

HP UX 10.01 with HP C 10.01 and HP Fortran 90 1.0

Red Hat Linux 6.1 with GNU C egcs-2.91.66 and Portland Group pgf90 3.1-2

SGI 64 bit IRIX 6.5 with SGI Mipspro C and Fortran 90 version 7.2

The UNIX operating system is case sensitive by nature. Since the IMSL Fortran Libraries
were developed in lowercase for the environments specified in this section, all IMSL symbols
and identifiers, such as names of IMSL subroutines and functions, and common block
identifiers, should be in lowercase.

Also, on Solaris, Compaq Unix, AIX, SGI, and linux, the object file format requires a trailing
underscore (_) at the end of the identifiers. For example, the IMSL routine, DTRNRR is written
as dtrnrr_. The underscore is not required on the HP. All examples in this section are shown
for a Solaris system.

For HP systems, the examples would be identical to those shown except that the function calls
do not have an underscore appended as the last character of the function name.

2.1 Passing a Character String Argument

When passing character string arguments in the environments in this section, explicitly
provide the lengths of the strings as additional arguments beyond the last argument of the
Fortran subprogram; otherwise, the length is hidden to Fortran. The following example
transposes a two dimensional array and prints the result. Note that lstr is provided as the
length of char title, which is ten characters long, even though it does not show up in IMSL
subroutines.

/*

9

* This example transposes a two dimensional matrix
* and prints it out.
*/
double a[2] [3] = {11., 12., 13.,

21., 22., 23.};
char title[] = ''2x3 matrix'';

main ()
{
extern void dtrnrr_(), dwrrrn_(); /* external subroutines */
long int nra=3, nca=2, lda=3; /* matrix a is nra by nca */
long int nrb=2, ncb=3, ldb=2; /* matrix b is nrb by ncb */
long int itring=0, lstr=10; /* triangle option and title length */
double b[3][2];

/* transpose matrix a and save the result in matrix b */
dtrnrr_ (&nra, &nca, a, &lda, &nrb, &ncb, b, &ldb);

/* write the matrix b with a title */
dwrrrn_ (title, &nrb, &ncb, b, &ldb, &itring, lstr);

}

The output from Solaris is:

2x3 matrix

1 2 3
1 11 12 13
2 21 22 23

2.2 Passing a Function as an Argument

For the environments in this section, a C function can simply be passed to a Fortran
subroutine as an argument. The following example shows how to pass a function to IMSL
routine DQDNG. Note that myfunc references x as a pointer because Fortran will invoke
myfunc and pass the address of x.

/*
* This example shows how to integrate a user supplied function,
* myfunc, at the given interval [0,2].
*/

#include <stdio.h>
#include <math.h>

10

/*
* myfunc calculates and returns *x * exp(*x). x is a pointer
* since Fortran calls myfunc and passes the address of x.
*/

double myfunc (x);
double *x;
{

double exp ();
return (*x * exp (*x));
}

main ()
{
extern void dqdng_();
double exp(), fabs(), myfunc();
double lower=0.e0, upper=2.e0, errabs=0.e0, errrel=1.e-7;
double result, errest, exact;

/* IMSL routine dqdng integrates a smooth function
using a nonadaptive rule. */

dqdng_ (myfunc, &lower, &upper, &errabs, &errrel, &result, &errest);

/* The exact answer is already known and it is 1 + exp(2). */
exact = l.e0 + exp(2.e0);

/* print the result */
printf ("\nIntegral of y = x*exp(x) on [0,2].\n\n");
printf ("Exact answer = %8.5f\n", exact);
printf ("IMSL dqdng_ = %8.5f\n", result);
printf ("Error = %l2.5e\n", fabs (exact - result));
}

The output from Solaris is:

Integral of y = x*exp(x) on [0,2].

Exact answer = 8.38906
IMSL dqdng_ = 8.38906
Error = 0.00000e+00

2.3 Compilation and Linking

11

The example in Section 2.4 was successfully compiled and linked with version 4.01 of the
IMSL Fortran 90 library, using the UNIX command cc, as shown for the following platforms:

• Sun Solaris 2.5 with Sun Workshop 5.0 Fortran 90 2.0

cc -o main main.c $LINK_F90 –lfui –lfai –lfai2 –lfsumai –lfprodai –lfminlai –lfmaxlai \
–lfminvai –lfmaxvai –lfsu -lsunmath -lm

• Compaq Unix 5.0

cc -o main main.c $LINK_F90 -lfor -lUfor -lm

• IBM RS/6000 AIX 4.3 with IBM C 3.6.6.0 and XL Fortran 6.1.0.0

cc -o main main.c $LINK_F90 -lxlf -lxlf90 -lc -lm

• HP UX 10.01 with HP C 10.01 and HP Fortran 90 1.0

cc -o main -Aa main.c $LINK_F90_STATIC -lm -lcl –W1,-L,/opt/fortran90/lib –lF90 \
–lisamstub –lU77

• Red Hat Linux 6.1 with GNU C egcs-2.91.66 and Portland Group pgf90 3.1-2

gcc –o main main.c $LINK_F90 –lpgf90 –lpgf90_rpm1 –lpgf902 –lpgf90rtl –lpgftnrtl \
-lm –lpgc

• SGI 64 bit IRIX 6.5 with SGI Mipspro C and Fortran 90 version 7.2

cc -o main $F90FLAGS main.c $LINK_F90 -lm -lfortran -lftn

where main.c is a user written main C program

LINK_F90 and F90FLAGS are environment variables set by the cttsetup.csh shell script,
which is supplied with IMSL Fortran 90 MP Library version 4.01.

2.4 Example

/*
* This example solves a linear system of 100 by 100 using
* the IMSL routine dlslrg_.
*/
#include <stdio.h>
#include <math.h>

12

#include <string.h>

#define MAXN 100

main ()
{

extern void dlslrg_(), dmurrv_(), rnset_(), rnun_();

int i, nerr;
long int n=MAXN, nn=MAXN*MAXN, lda=MAXN;
long int ipath=2, seed=123457;
double ermax=1.e-12;
double a[MAXN][MAXN], b[MAXN], x[MAXN], ans[MAXN];

/* generate matrix a with uniform random numbers */
rnset_ (&seed);
drnun_ (&nn, a);

/* generate a pre-determined answer, ans */
for (i=0; i<n; i++) {

ans[i] = (double) (i%5) + 1.;
}

/* calculate b <- a*ans */
dmurrv_ (&n, &n, a, &lda, &n, ans, &ipath, &n, b);

/* calculate x in a*x = b using the IMSL routine dlslrg_ */
dlslrg_ (&n, a, &lda, b, &ipath, x);

/* compare the pre-determined answer (ans) and the result (x) */
nerr = 0;
for (i = 0; i < n; i++)

if (fabs(ans[i] - x[i]) > ermax) {
nerr++;
printf ("ans[%2d]= %g and x[%2d] = %g are different.\n",

i, ans[i], i, x[i]);
}

/* print the result */
if (nerr)

printf ("IMSL: %2 differences occurred.\n", nerr);
else

printf ("IMSL: dlslrg_ is correct with ermax = %g.\n", ermax);
}

13

The output from Solaris is:

IMSL: dlslrg_ is correct with ermax = le-12.

14

3. Cray

The Cray UNICOS environment has been tested using the CRAY T3E computer system
running the Cray operating system UNICOSMK Revision 2.0.0.42 with Revision 6.0.1.3 of
the Cray C compiler, Revision 3.0.1.2 of the Cray CF90 Fortran compiler, and version 3.0 of
the IMSL Fortran 90 MP Library. Since double in Cray C is 64-bits long by default, DOUBLE
PRECISION in Cray Fortran (128 bits) has no matching data type in Cray C. Therefore, the
single precision version of the IMSL Fortran Libraries is demonstrated in conjunction with
double precision of Cray C.

As in other UNIX systems, this environment is case sensitive. The IMSL Fortran Libraries are
written in uppercase for Fortran and compiled as they are. Therefore, the IMSL symbols and
identifiers, such as names of IMSL subroutines and functions, and common block identifiers,
should be in uppercase. Unlike the other UNIX systems however, the object file format does
not append an underscore (_) at the end of those identifiers (e.g., TRNRR should be typed as it
is).

3.1 Passing a Character String Argument

The Cray C character pointer is incompatible with the Cray Fortran character type. Therefore,
character values should not be passed between Cray C and Cray Fortran routines (Cray
Research 1986). Instead, use the macro _cptofcp, which is defined in fortran.h, to describe the
structure of a C character string pointer, and give its length, so that it can be understood by
Fortran. The following example transposes the two-dimensional matrix, a, and prints the
result with a title.

/*
This example transposes a two dimensional matrix
and prints it out.

*/
#include <fortran.h>
#include <string. h>

double a[2] [3] = {11., 12., 13.,
21., 22., 23.};

char title[] = “2x3 matrix”;
main ()
{

long int nra=3, nca=2, lda=3; /* matrix a is nra by nca */
long int nrb=2, ncb=3, ldb=2; /* matrix b is nrb by ncb */
long int itring=0, lstr=10; /* triangle option */
double b[3][2];
_fcd fcd; /* Fortran character definition */

15

/* _cptofcd transforms a C character pointer to a Fortran
* character definition */

fcd = _cptofcd (title, strlen(title));

/* transpose matrix a and save the result in matrix b */
TRNRR (&nra, &nca, a, &lda, &nrb, &ncb, b, &ldb);

/* write the matrix b with a title */
WRRRN (fcd, &nrb, &ncb, b, &ldb,&itring);
}

The output from CRAY is:

2x3 matrix

1 2 3
1 11 12 13
2 21 22 23

3.2 Passing a Function as an Argument

In Cray C, a function can be passed to a Fortran subroutine as an argument, as in other UNIX
systems. The following example shows how to pass a function to IMSL routine QDNG. Note
that myfunc references x as a pointer because Fortran will invoke myfunc and pass the address
of x. Also note that single precision is used with the IMSL Libraries, and double precision is
used with C.

#include <stdio.h>
#include <math.h>
#include <fortran.h>

/*
* myfunc calculates and returns *x * exp(*x). x is a pointer
* since Fortran calls myfunc and passes x as an address.
*/
double myfunc (x)
double *x;
{

double exp ();
return (*x * exp (*x));

}

16

main ()
{

double exp(), fabs(), myfunc();
double lower=0.e0, upper=2.e0, errabs=0.e0, errrel=l.e-7;
double result, errest, exact;

/* IMSL QDNG integrates a smooth function using
* a nonadaptive rule. */
QDNG (myfunc, &lower, &upper, &errabs, &errrel, &result, &errest);

/* The exact answer is already known and it is 1 + exp(2). */
exact = l.0e0 + exp (2.e0);

/* print the result */
printf ("\nIntegral of y = x*exp(x) at [0,2].\n\n");
printf ("Exact answer = %8.5f\n", exact);
printf ("IMSL QDNG = %8.5f\n", result);
printf ("Error = %12.5e\n", fabs (exact - result));
}

The output from CRAY is:

Integral of y = x*exp(x) at [0,2].

Exact answer = 8.38906
IMSL QDNG = 8.38906
Error = 1.70530e-13

3.3 Compilation and Linking

To compile and link a Cray C program with version 3.0 of the IMSL Fortran 90 MP library,
enter:

cc -c main.c $LINK_F90

where main.c is a user written C program and LINK_F90 is an environment variable set by
the iptsetup.csh shell script, which is supplied with IMSL Fortran 90 Libraries version 3.0.

17

3.4 Example

/*
This example solves a linear system of 100 by 100
using the IMSL routine LSLRG.

*/

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <fortran.h>

#define MAXN 100

main()
{

int i, nerr;
long int n=MAXN, nn=MAXN*MAXN, lda=MAXN;
long int ipath=2, seed=123457;
double ermax=l.e-7;
double a[MAXN][MAXN], b[MAXN], x[MAXN], ans[MAXN];

/* generate matrix a with uniform random numbers */
RNSET (&seed);
RNUN (&nn, a);

/* generate a pre-determined answer, ans */
for (i = 0; i < n; i++) {

ans[i] = (double) (i%5) + 1.;
}

/* calculate b <- a*ans */
MURRV (&n, &n, a, &lda, &n, ans, &ipath, &n, b);

/* calculate x in a*x = b by IMSL dlslrg */
LSLRG (&n, a, &lda, b, &ipath, x) ;

/* compare the pre-determined answer, ans, and the result, x */
nerr = 0;
for (i = 0; i < n; i++) {

if (fabs(ans[i] - x[i]) > ermax) {
nerr++;
printf ("ans[%2d]= %g and x[%2d] = %g are different.\n",

i, ans[i], i, x[i]);
}

}

18

/* print the result */
if (nerr)

printf ("IMSL: %2 differences occurred.\n", nerr);
else

printf ("IMSL: LSLRG is correct with ermax = %g.\n", ermax);
}

The output from CRAY is:

IMSL: LSLRG is correct with ermax = 1e-07.

19

4. OpenVMS

The OpenVMS environment has been tested using OpenVMS Version 7.2 with version 6.0 of
the Digital C compiler, version 7.2 of the Compaq Fortran compiler, and version 4.01 of the
IMSL Fortran 90 Library. Although the C language is inherently case sensitive, VMS allows
you to mix the cases in the common language environment (interlanguage environment). For
example, the name of the IMSL routine, DTRNRR, can be interchanged with dtrnrr.

4.1 Passing a Character String Argument

VMS Fortran passes character string variables as descriptors (pass by descriptor); therefore, C
must pass character strings to Fortran only after inserting them in a descriptor structure. VMS
C provides a macro for this purpose called $DESCRIPTOR, which is defined in the #include
descrip header file (Digital Equipment Corporation 1987). The following example shows how
to use this macro to pass a character string (title) to the IMSL routine, DWRRRN, and print
the matrix.

/*
This example transposes a two-dimensional matrix
and prints it out.

*/
#include <string.h>
#include descrip

double a[2] [3] = {11., 12., 13.,
21., 22., 23.};

char title[] = "2x3 matrix";

main ()

{

extern void dtrnrr(), dwrrrn(); /* external IMSL subroutines */
long int nra=3, nca=2, lda=3; /* matrix a is nra by nca */
long int nrb=2, ncb=3, ldb=2; /* matrix b is nrb by ncb */
long int itring=0; /* triangle option */
double b[3] [2];

$DESCRIPTOR (name_desc, title);
dtrnrr (&nra, &nca, a, &lda, &nrb, &ncb, b, &ldb);
dwrrrn (&name_desc, &nrb, &ncb, b, &ldb, &itring);

}

The output from VMS is:

20

2x3 matrix

1 2 3
1 11 12 13
2 21 22 23

Note that the header file, descrip, is not surrounded with < and > and the structure identifier,
name_desc, is declared, not defined by the macro.

4.2 Passing a Function as an Argument

A VMS C function can be passed to a Fortran subroutine as an argument. The following
example shows how to pass a function to IMSL routine DQDNG. Note that myfunc
references x as a pointer because Fortran will invoke myfunc and pass the address of x.

#include <stdio.h>
#include <math.h>
/*
* myfunc calculates and returns *x * exp (*x). x is a pointer
* since Fortran calls myfunc and passes an address of x.
*/

double myfunc (x)
double *x;
{

double exp ();
return (*x * exp (*x));

}

main()
{
extern void dqdng ();
double exp(), fabs(), myfunc();
double lower=0.e0, upper=2.e0, errabs=0.e0, errrel=l.e-7;
double result, errest, exact;

/* IMSL dqdng integrates a smooth function using a
nonadaptive rule. */

dqdng (myfunc, &lower, &upper, &errabs, &errrel, &result, &errest);

/* The exact answer is already known and it is 1 + exp(2). */
exact = l.0e0 + exp (2. e0);

printf ("\nIntegral of y = x*exp(x) at [0,2].\n\n");
printf ("Exact answer = %8.5f\n", exact);
printf ("IMSL dqdng = %8.5f\n", result);
printf ("Error = %l2.5e\n", fabs (exact - result));

21

}

The output from VMS is:

Integral of y = x*exp(x) at [0,2].

Exact answer = 8.38906
IMSL dqdng = 8.38906
Error = 2.22045e-16

4.3 Compilation and Linking

The following steps show how to compile a VMS C program and link it with the IEEE IMSL
Fortran 90 library using the default options.

! Compile the main C program.
$ cc/float=ieee main.c

! Link the library using logicals defined by cttsetup.com

$ link main, link_f90/OPT

4.4 Example

/* This example solves a linear system of 100 by 100
* using the IMSL routine dlslrg.
*/
#include <stdio.h>
#include <math.h>
#include <string.h>

#define MAXN 100

main ()
{
extern void dlslrg(), drnun(), dmurrv(), rnset();
int i, nerr;
long int n=MAXN, nn=MAXN*MAXN, lda=MAXN;
long int ipath=2, seed=123457;
double ermax=1.e-12;
double a[MAXN][MAXN], b[MAXN], x[MAXN], ans[MAXN];

/* generate a random matrix, a */
rnset (&seed);

22

drnun (&nn, a);

/* generate a pre-determined answer, ans */
for (i = 0; i < n; i++) {

ans[i] = (double) (i%5) + 1.;
}

/* calculate b <- a*ans */
dmurrv (&n, &n, a, &lda, &n, ans, &ipath, &n, b);

/* calculate x in a*x =b by IMSL dlslrg */
dlslrg (&n, a, &lda, b, &ipath, x);

/* compare the pre-determined answer, ans, and the result, x */
nerr = 0;
for (i = 0; i < n; i++)

if (fabs(ans[i] - x[i]) > ermax) {
nerr++;
printf ("ans[%2d]= %g and x[%2d] = %g are different.\n",

i, ans[i], i, x[i]);
}

/* print the result */
if (nerr)

printf ("IMSL: %2 differences occurred.\n", nerr);
else

printf ("IMSL: dlslrg is correct with ermax = %g.\n", ermax);
}

The output from VMS is:

IMSL: dlslrg is correct with ermax = l.000000e-12.

23

5. WINDOWS

The Windows environment has been tested using Windows NT 4.0 and Windows 95. The
compilers used are Microsoft Visual C++ 6.0 and Compaq Visual Fortran 6.5. Version 4.01 of
the IMSL Fortran 90 MP Library was used.

Microsoft Visual C++ and Compaq Fortran handle stack bookkeeping for a module
differently. Microsoft C, for example, pushes the first argument of the argument list to the end
(first-in-first-out), which allows the implementation of one of the C features, the variable
length argument list. Compaq Fortran, meanwhile, uses the first-in-last-out scheme.

When a function or subroutine is referenced in a module of a language, it is assumed that the
stack manipulation is one that fits the language it is written in. Therefore, when a module
written in Fortran is referenced in C, it should be declared with the __stdcall keyword, so that
the Compaq compiler can handle the stack problem properly. For example:

extern void __stdcall IVPRK (long *, long *, void * , float *, float *, float *, float *, float *);

Header files containing these declarations are provided with F90 4.01. If these header files are
included in the program, the programmer does not have to explicitly provide the “extern”
statement for each subroutine used. For example:

#include <maths.h> /* include this header file for all single precision subroutines used*/
#include <mathd.h> /* include this header file for all double precision subroutines used*/

Note also that the F90 library names must be referenced in upper case.

24

5.1 Passing a Character String Argument

To pass variable-length strings to Compaq Fortran from Microsoft Visual C++, you must pass
both the string and the length of the string to the Fortran subroutine as separate arguments.

The following example illustrates how to pass a character string, "2x3 matrix", to the IMSL routine.

/*
* This example transposes a two-dimensional matrix
* and prints it out.
*/
#include <mathd.h>
double a[2][3] = {11., 12., 13.,

21., 22., 23.};
char title[] = "2x3 matrix";
unsigned int lstr=10;

main ()

{

long int nra=3, nca=2, lda=3; /* matrix a is nra by nca */
long int nrb=2, ncb=3, ldb=2; /* matrix b is nrb by ncb */
long int itring=0; /* triangle option */
double b[3][2];

DTRNRR (&nra, &nca, a, &lda, &nrb, &ncb, b, &ldb);
DWRRRN (title, lstr, &nrb, &ncb, b, &ldb, &itring);

}

The output from Visual C++ is:

2x3 matrix

1 2 3
1 11.00 12.00 13.00
2 21.00 22.00 23.00

25

5.2 Passing a Function as an Argument

Microsoft Visual C++ and Compaq Fortran use different methods for passing function
arguments. Therefore, it is necessary to declare the C function with __stdcall so that it is
recognized by Fortran.

The following example uses the IMSL routine, QDNG, which integrates a smooth
function supplied by the user (myfunc is a function that the user supplies to be
integrated).

#include <stdio.h>
include <math.h>
#include <mathd.h>

/*
* myfunc calculates and returns *x * exp(*x). x is a pointer
* since Fortran calls myfunc and passes an address of x.
*/
double __stdcall myfunc (x)
double *x;
{
double exp ();
return (*x * exp (*x));
}

main ()
{
double exp(), fabs();
double lower=0.e0, upper=2.e0, errabs=0.e0, errrel=1.e-7;
double result, errest, exact;

/* IMSL dqdng integrates a smooth function using a nonadaptive rule. */
DQDNG (myfunc, &lower, &upper, &errabs, &errrel, &result, &errest);

/* The exact answer is already known and it is 1 + exp(2). */
exact = 1.0e0 + exp (2.0e0);

printf ("\nIntegral of y = x*exp(x) at [0,2].\n\n");
printf ("Exact answer = %8.5f\n", exact);
printf ("IMSL dqdng = %8.5f\n", result);
printf ("Error = %12.5e\n", fabs (exact - result));
}

The output from Visual C++ is:

Integral of y = x*exp(x) at [0,2].

26

Exact answer = 8.38906
IMSL dqdng = 8.38906
Error = 1.77636e-015

5.3 Compilation and Linking

•••• Compaq Visual Fortran 6.5

This is the DOS command used to compile and link a program with the single precision math
library which is bundled with Compaq Visual Fortran 6.5:

cl main.c %link_f90% dfor.lib dfconsol.lib

Libraries dfor.lib and dfconsol.lib are supplied with Compaq Visual Fortran.

27

5.4 Example

/*
* This example solves a linear system of l00x100 by using IMSL dlslrg.
*/
#include <mathd.h>
#include <stdio.h>
#include <math.h>
#include <string.h>

#define MAXN 100

main ()
{

int i, nerr;
long int n=MAXN, nn=MAXN*MAXN, lda=MAXN;
long int ipath=2, seed=123457;

doubleermax=1.e-12;
double a[MAXN] [MAXN], b[MAXN], x[MAXN], ans[MAXN];

/* generate a random matrix, a */
RNSET (&seed);
DRNUN (&nn, a);

/* generate a pre-determined answer, ans */
for (i=0; i < n; i++) {

ans[i] = (double) (i%5) + 1.;
}

/* calculate b <- a*ans */
DMURRV (&n, &n, a, &lda, &n, ans, &ipath, &n, b);

/* calculate x in a*x = b by IMSL dlslrg */
DLSLRG (&n, a, &lda, b, &ipath, x);

/* compare the pre-determined answer, ans, and the result, x */
nerr = 0;
for (i = 0; i < n; i++) {

if (fabs(ans [i] - x [i]) > ermax) {
nerr++;
printf ("ans[%2d]= %g and x[%2d] = %g are different.\n",

i, ans[i], i, x[i]);
}

}

/* print the result */

28

if (nerr)
printf ("IMSL: %2 differences occurred.\n", nerr);

else
printf ("IMSL: dlslrg is correct with ermax = %g.\n”, ermax);

}

The output from Visual C++ is:

IMSL: dlslrg is correct with ermax = le-012.

29

6. Other Environments

This section discusses how to call the IMSL Fortran Libraries from C in environments not
discussed in the previous sections of this report.

The "Introduction" section of this report can be applied to most computing environments with
the exception of the following topics.

• case sensitivity

Although C is case sensitive for grammar, the operating system or the library manager may
not be case sensitive. If the external references of the IMSL Fortran Libraries are case
sensitive, then try switching case.

• naming conventions

As seen in previous sections, many UNIX systems append a trailing underscore (_) at the end
of the routine referenced in order to share the same object file format. Some UNIX systems
and other operating systems may or may not have this requirement.

• data storage type

Even in an integer data type, the length of a data type in one language may not be the same as
in another. Therefore, short int and long int are preferred to int to ensure the data types match
(unless different optimizers are used that require a machine dependent data storage type).
When using INTEGER in Fortran, it is usually safer to use long int in C, rather than int.

• character string arguments

Many C compilers handle character strings differently than Fortran compilers. C reads a
character string until it reaches the null character, \0, while Fortran generally specifies the
length of the character string in advance. In C, a structure is usually used to hold the
information of a character string passed by descriptor.

• passing functions and subroutines as arguments

Passing a function or subroutine as an argument is system dependent. The technical
documents for your environment should be consulted.

• compilation and linking

30

The user should compile C and Fortran modules separately before linking. When linking
object files and libraries, both C and Fortran runtime libraries must be explicitly specified
along with other necessary libraries, since the default libraries may or may not be linked.

For additional information on mixing C and Fortran, it is recommended that you refer to the C
and Fortran manuals provided with your operating system for a discussion on mixing
languages.

31

References

Cray Research, Inc. (1986), Cray C Reference Manual, Publication SR2024, Revision C,
Cray Research, Mendota Heights, Minnesota.

Digital Equipment Corporation (1987), Digital Guide to VAX C, Digital Equipment
Corporation, Maynard, Massachusetts.

Visual Numerics, Inc. (1994), IMSL MATH/LIBRARY FORTRAN Subroutines for
mathematical applications, Visual Numerics, Inc., Houston, Texas.

Kernighan, Brian W. and Dennis M. Ritchie (1978), The C Programming Language, Prentice
Hall, Inc., Englewood Cliffs, New Jersey.

Sun Microsystems, Inc. (1986), FORTRAN Programmer's Guide, Sun Microsystems,
Mountain View, California.

	How to Call FORTRAN from C
	Copyright
	Abstract
	Introduction
	Syntax Differences Between C and Fortran
	Data Types and Data Storage
	Argument Passing Mechanism

	UNIX Platforms
	Passing a Character String Argument
	Passing a Function as an Argument
	Compilation and Linking
	Example

	Cray
	Passing a Character String Argument
	Passing a Function as an Argument
	Compilation and Linking
	Example

	Open VMS
	Passing a Character String Argument
	Passing a Function as an Argument
	Compilation and Linking
	Example

	WINDOWS
	Passing a Character String Argument
	Passing a Function as an Argument
	Compilation and Linking
	Example

	Other Environments
	References

