VisualNMsm

Fortran 90
Subroutines
a and Functions

with MPI Enhanced Subroutines and Functions
for Distributed Scientific Applications

Fortran 90 MP Library User's Guide

Click to display only the page. Click to go back to the previous page

from which you jumped.

=

Click to display both bookmark
and the page.

[[=]]

Click to go to the next page.

Double-click to jump to atopic

! Click to go to the last page.
when the bookmarks are displayed.

Click to jump to atopic when the

\ Click to go back to the previous view and
bookmarks are displayed.

page from which you jumped.

Click to display both thumbnails

Click to return to the next view.
and the page.

Click and use to drag the pagein vertical Click to view the page at 100% zoom.
direction and to select items on the page.
Click to fit the entire page within the

Click and drag to page to magnify window

the view.

Click to fit the page width inside the
window.

PR EE § DT

Click and drag to page to reduce the view.

Click to find part of aword, acomplete
word, or multiple words in a active
document.

Click and drag to the page to select text.

B EEBERE AE||<

m Click to go to the first page.

Printing an onlinefile. Select Print from the File menu to print an online file. The dialog box that opens allows
you to print full text, range of pages, or selection.

Important Note: The last blank page of each chapter (appearing in the hard copy documentation) has been del eted
from the on-line documentation causing a skip in page numbering before the first page of the next chapter, for
instance, Chapter 8 of this on-line manual ends on page 299 and Chapter 9 begins on page 301.

Numbering Pages. When you refer to a page number in the PDF online documentation, be aware that the page
number in the PDF online documentation will not match the page number in the original document. A PDF
publication always starts on page 1, and supports only one page-numbering sequence per file.

button and drag to select and copy text.

Viewing M ultiple Online M anuals. Select Open from the File menu, and open the .PDF file you need.
Select Cascade from the Window menu to view multiplefiles.

Resizing the Bookmark Areain Windows. Drag the double-headed arrow that appears on the area’ s border as
you pass over it. Resizing the Bookmark Areain UNIX. Click and drag the button E that appears on the area’s
border at the bottom of the vertical bar.

Jumping to Topics. Throughout the text of this manual, references to subroutines, examples, tables, or other
sections appear in green color, underline style to indicate that you can jump to them.To return to the page from
which you jumped, use the return back icon ﬂl on the toolbar. Note: |f you zoomed in or out after jumping to a
topic, you will return to the previous zoom view(s) before returning to the page from which you jumped.

Let'stry it, click on the following green color, underlined text: see error_post.

If you clicked on the green color, underlined text in the example above, the section on er r or _post opened.
To return to this page, click the ﬂl on the toolbar.

Visual Numerics, Inc.

Corporate Headquarters

1300 W. Sam Houston Pkwy. Ste. 150
Houston, Texas 77042-2444

USA

PHONE: 713-784-3131
FAX: 713-781-9260
e-mail: marketing@houston.vni.com

Visual Numerics S. A. de C. V.
Cerrada de Berna #3

Tercer Piso Col. Juarez

Mexico D. F. C. P. 06600
MEXICO

PHONE: +52-5-514-9730 or 9628
FAX: +52-5-514-4873

Visual Numerics, Inc.
7/F, #510, Sect. 5
Chung Hsiao E. Road
Taipei, Taiwan 110
ROC

PHONE: (886) 2-727-2255
FAX: (886) 2-727-6798
e-mail: info@vni.com.tw

World Wide Web site: http:/Aww.vni.com

Visual Numerics International Ltd.
New Tithe Court

23 Datchet Road

SLOUGH, Berkshire SL3 7LL
UNITED KINGDOM

PHONE: +44 (0) 1753-790600
FAX: +44 (0) 1753-790601
e-mail: info@vniuk.co.uk

Visual Numerics International GmbH
Zettachring 10, D-70567

Stuttgart

GERMANY

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-1, MAPO-DONG, MAPO-GU
SEOUL, 121-050

KOREA SOUTH

PHONE: +82-2-3273-2632 or 2633
FAX: +82-2-3273--2634
e-mail: leevni@chollian.dacom.co.kr

Visual Numerics SARL

Tour Europe

33 Place des Corolles

F-92049 PARIS LA DEFENSE, Cedex
FRANCE

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics Japan, Inc.
GOBANCHO HIKARI BLDG. 4™ Floor
14 GOBAN-CHO CHIYODA-KU
TOKYO, JAPAN 113

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

COPYRIGHT NOTICE: Copyright 1990-1998, an unpublished work by Visual Numerics, Inc. All rights reserved.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THISMATERIAL, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Visual Numerics, Inc., shall not beliable for errors contained herein or for incidental, consequential, or other indirect damages
in connection with the furnishing, performance, or use of this material.

TRADEMARK NOTICE: IMSL and Visual Numerics are registered trademarks or trademarks of Visual Numerics, Inc., inthe U.S. and
other countries. All other trademarks are the property of their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement. This document contains confidential and proprietary
information constituting valuable trade secrets. No part of this document may be reproduced or transmitted in any form without the prior

written consent of Visual Numerics.

RESTRICTED RIGHTS LEGEND: This documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by
the U.S. Government is subject to the restrictions set forth in subparagraph (c)(1)) of the Rightsin Technical Data and Computer
Software clause at DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer Software - Restricted Rights
clause at FAR 52.227-19, and in similar clausesin the NASA FAR Supplement, when applicable. Contractor/Manufacturer is Visual
Numerics, Inc., 9990 Richmond Avenue, Suite 400, Houston, Texas 77042.

Fortran and C
I M Sl Application Development Tools

Fortran 90

Subroutines
_|and Functions
a

Fortran 90 MP Library User’s Guide

with MPI Enhanced Subroutines and Functions
for Distributed Scientific Applications

Version Revision History Y ear Part #
2.0 Original Issue 1994 5351
3.0 Fixed bugs, added significant changes to 1996 3743

functionality

4.0 Added two new chapters, each adding major 1998 7959
functionality
ScalLAPACK Utilities and Large-Scale
Solvers, plus seven examples

Partial Differential Equations, plus nine
examples

Bug Fixes and Improvements

Repairs were made in the parallel error
processing suite, described in Chapter 9
of the library.

Significant performance improvements
were made in the real arithmetic
versions of the linear algebra codes:
lin_sol_gen, lin_sol_self, lin_eig_gen,
lin_sol svd, and lin_svd.

Contents

INEFOTUCTION e [
Chapter:1 Linear SOIVEIS ... 1
Chapter 2: Singular Value and Eigenvalue Decomposition a7
Chapter 3: Fourier TranSfOrMSuuuiiii e 79
Chapter 4: Curve and Surface Fitting with Splines...........cccccoooiiiiiiiinnn, 95
Chapter 5: ULHITIES oo 123
Chapter 6: Operators and Generic Functions - The Parallel Option141
Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers....... 231
Chapter 8: Partial Differential EQUAtiONSooviiiiiiiiiiiiiiiie e 265
Chapter 9: Error Handling and Messages - The Parallel Option............ 301
Appendix A: List of Subprograms and GAMS Classification A-1
Appendix B: List of EXamples ... B-1
AppendiX C: REFEIENCESuuiiii e C-1
Appendix D: Benchmarking or Timing Programsccccevvvvviiineeeeeeee. D-1

Introduction

The IMSL Fortran 90 MP Library

The IMSL Fortran 90 MP Library consists of numerical agorithms using Fortran
90 language constructs, including Fortran 90 array data types. One feature of the
design is that the default use is as simple as the problem statement. Complicated,
professional-quality mathematical software is hidden from the casual or beginning
user. The IMSL Fortran 90 MP Library draws upon subroutines in the IMSL
FORTRAN 77 Numerical Libraries products for software activities such as error
processing and additional functionality. We emphasize that users who have calls to
IMSL FORTRAN 77 Libraries routines will continue to have their codes function as
they did using earlier FORTRAN 77 compilers.

Users of the IMSL Fortran 90 MP Library benefit by a standard (MPI) Message
Passing Interface environment. This is needed to accomplish parallel computing
within parts of Chapter 6-9. Gray shading in the documentation cues the reader
when thisis an issue. If parallel computing is not required, then the MP Library
suite of dummy MPI routines can be substituted for standard MPI routines. All
requested MPI routines called by the MP Library are in this dummy suite. Warning
messages will appear if a code or example requires more than one process to
execute. Typically users need not be aware of the parallel codes.

Note that a standard MPI environment is not part of the IMSL Fortran 90 MP
Library. The standard includes alibrary of MPI Fortran and C routines, MPI
“include” files, usage documentation, and other run-time utilities.

MPI REQUIRED

The library routineswhich begin on page butline usage instructions for a suite

of mathematical software written in Fortran 90. These routines are used with
computer systems that support a standard Fortran 90 compiler. A basic library of
numerical routines is provided for common applicatid/sers with linear solver
application can turn directly toage 1In addition, high-level operators and
functions are described in Chaptet®perators and Generic Functions - The
Parallel Option.” For information on writing a more compact and readable code,
see Chapter 6.

1 Important Note: Please refer to the “Table of Contents” for locations of chapter references, example references, and
function references.

IMSL Fortran 90 MP Library 4.0 Introduction « i

User Background

To use this product you should be familiar with the Fortran 90 language as well as
the FORTRAN 77 language, which is, in practice, a subset of Fortran 90. A
summary of thel SO and ANSI standard language is found in Metcalf and Reid
(1990). A more comprehensiveillustrationis givenin Adams et a. (1992).

Those routines implemented in the IMSL Fortran 90 MP Library provide a
simpler, morereliable user interface than is possible with FORTRAN 77 IMSL
Numerical Libraries products. Features of the IMSL Fortran 90 MP Library
include the use of descriptive names, short required argument lists, packaged
user-interface blocks for the Fortran 90 routines, interface blocks for the entire
FORTRAN 77 Numerical Libraries, a suite of testing and benchmark software, and
a collection of examples. Source codeis provided for the benchmark software and
examples.

The IMSL Fortran 90 MP Library routines have lots of flexibility in their design.
On the other hand, the design includes the feature of being able to ignore these
extrasif they are not needed.

Using Library Subprograms

Each routine in the IMSL Library has a generic root name that abbreviatesits
function. For example, the name r and_gen isthe suffix for the routine that
generates a Fortran 90 rank-1 array of random numbers. The routine name has the
prefix of the data type for the routine. These separate parts of the name are joined
with the underscore character “_". Thus, the full prefix and suffix joined together
form the complete name of the single-precision version of the random number
generator,s_rand_gen. A generic name is also supported, in this case
rand_gen. In most cases, the strings_", “d_", “c_", or “z_" can be

deleted. The documentation for the routines omits the prefix, and hence the
entire suite of routines for that subject is documented.

Examples that appear in the documentation use the generic name. To further
illustrate this principle, note thiei n_sol _gen documentatiorisee Chapter 1)
for solving general systems of linear algebraic equations. A description is
provided for just one data type. There are four documented routines in this
subject areas_| i n_sol _gen, d_l i n_sol _gen, c_li n_sol _gen, and
z_lin_sol _gen.

The appropriate routine is identified by the Fortran 90 compiler. Use of a module
is required with the routines. The naming convention for modules joins the suffix
“_int” tothe generic routine name. Thus, the line isen_sol _gen_int” is
inserted near the top of any routine that calls the subprotjram sol _gen”.

These routines constitute single-precision, double-precision, complex, and
complex double-precision versions of the code. When dealing with a complex
matrix, all references to theanspose of a matrix, AT, are replaced by thagijoint
matrix

ii * Introduction IMSL Fortran 90 MP Library 4.0

AT = A= A"
where the overstrike denotes complex conjugation. IMSL Fortran 90 MP Library
linear algebra software uses this convention to conserve the utility of generic
documentation for that code subject. References to orthogonal matrices are
replaced by their complex counterparts, unitary matrices. Thus, ann x n
orthogonal matrix Q satisfies the condition Q'Q = I,,- Ann x nunitary matrix V

satisfies the anal ogous condition for complex matrices, V'V = 1,,.

Using Operators and Generic Functions

For users who are primarily interested in easy-to-use software for numerical linear
algebra, see Chapter 6, “Operators and Generic Functions - The Parallel Option.”
This compact notation for writing Fortran 90 programs, when it applies, results in
code that is easier to read and maintain than traditional subprogram usage.

Note that all of the examples in Chapters 1 ahd\& been rewritten using
operators and generic functions whenever appropriate. These examples are
renamed as shown @hapter 6, Table A - “Examples and Corresponding
Operators.”Less code is typically needed to compute equivalent results.

Users may begin their code development using operators and generic functions. If
a shorter executable code is required, a user may need to switch to equivalent
subroutine calls using IMSL Fortran 90 MP Library routines or mathematical
routines in the IMSL BRTRAN 77 Libraries.

Defined Array Operation Matrix Operation

A .x. B AB
i A AL
.t. A.h. A AT A
A.ix. B AlB
B.xi. A BA™!
A .tx. Bor(.t. A .x. B ATB A'B
A .hx. Bor(.h. A .x. B

B .xt. AoB .x. (.t. A BAT,BA
B .xh. AorB .x. (.h. A

Defined Array Functions
S=SVD(A [, L=U, V=V])
E=El QA [[, B=B, D=D],
V=V, WW)

Matrix Operation
A=usv’

(AV = VE), AVD = BVE
(AW = WE), AWD = BWE

IMSL Fortran 90 MP Library 4.0 Introduction e iii

Defined Array Functions

Matrix Operation

R=CHOL(A) A=R'R

Q=ORTH(A [, R=R]) (A=QR),Q'Q =1
G0N TCA) [v-]=[as/fa) -]
F=DET(A det(A) = determinant
K=RANK(A) rank(A) = rank

P=NORM(A[, [type=]i]) m
p=1l, = max; (3 [ay)
1=1

p= ||'°4|2 = = largest singular value

n
P=1AL . hugerny = MaXi (Z |a1'J' |)
=1

C=COND(A) St/ Sranka)
Z=EYE(N) Z=1y

A=DI AG(X) A= diag(x,,...)
X=DI AGONALS(A) X =(ayy,...)

WEFFT(2Z); Z=I FFT(W Discrete Fourier Transform, Inverse

A=RAND(A) random numbers, 0< A< 1

L=i sNaN(A) test for NaN, if (1) then...

Getting Started

It is strongly suggested that users force al program variables to be explicitly

typed. Thisis done by including theline “I MPLI CI T NONE” as close to the first

line as possible. Study some of the examples accompanying an IMSL Fortran 90
MP Library routine early on. These examples are available online as part of the
product.

Each subject routine called or otherwise referenced requiréuitied statement

for an interface block designed for that subject routine. The contents of this
interface block are the interfaces to the separate routines for that subject and the
packaged descriptive names for option numbers that modify documented optional
data or internal parameters. Although this seems like an additional complication,
many typographical errors are avoided at an early stage in development. The
“use” statement is required for each routine called. As illustratétkamples 3

and 4in routinel i n_gei g_gen, the “use” statement is required for defining

the secondary option flags.

The function subprogram far_NaN() or d_NaN() does not require an
interface block because it has only a “required” dummy argument.

iv e Introduction

IMSL Fortran 90 MP Library 4.0

Error Processing and the Testing Suite

A design principle of the IMSL Fortran 90 MP Library subroutinesis that error
messages are, by default, printed in the routines. Information to print the error
messages can be returned to the calling program unit. No printing in the routine
itself needs to occur. This happens when the argument “epack=" is included in
the call to the routine. The argument is an array of derivedsyper or or
d_error, see Chapter.5

The reasons for this design are described more fully in Hanson (1992). Primarily
the use of separate arrays for each parallel call to routines will allow the user to
summarize errors using the routiaer or _post in a non-parallel part of an
application. This allows any number of parallel calls to be made without danger
of “jumbling” or mixing error messages.

Most users call IMSL Fortran 90 MP Library routines, but not in parallel. If they
do not include thé'epack=" argument, error messages will print within the
routines. This is the same principle as for the Numerical Libraries.

When an error occurs with the arguméapack=" used, but the array has an
inadequate size to hold the information describing the error, output is flooded or
blocked with a NaN (Not a Number) (ANSI/IEEE, 1985). Further computational
use of the output may result in an unhandled exception from the processor. To
test for NaN output, the calling program unit can execute the following logical
condition:

i sNan(fl oating_point_output) == . TRUE
See the sNaN() function Chapter 6

The symbolf | oati ng_poi nt _out put will be any scalar or array output of the
routine.

For complete information on errors, include the argunieptck="in your

program. This argument is used to pass message numbers, error severity level,
and associated data to the error post-processing roetim@y _post . Every

call to a separate routine that includes #rgument“epack=" may increase the
number of pending error messages. When several fatal or terminal error messages
are pending, reset the level BRI NT and STOP associated with error message
printing and stoppingsee Chapter.9

The value ofs_error (1) % dummy, or d_error (1) % dumy, indicates the
size of the list containing error message numbers and dateerCalt _post ,
see Chapter 5any time the array valug error (1) % dumy or (d_error
(1) % dummy) is positive. You may follow calls to any IMSL Library routine
with a call to the error post-processor.

IMSL Fortran 90 MP Library 4.0 Introduction « v

Optional Subprogram Arguments

IMSL Fortran 90 MP Library routines have required and optional arguments. All
arguments are documented for each routine. For example, consider the routine

l'i n_sol _gen that solvesthe linear algebraic matrix equation Ax=b. The
required arguments are three rank-2 Fortran 90 arrays: A, b, and x. The input data
for the problem are the A and b arrays; the solution output is the x array. Often
there are other arguments for this linear solver that are closely connected with the
computation but are not as compelling as the primary problem. Theinverse

matrix A~ may be needed as part of alarger application. To output this

parameter, use the optional argument given by the “ai nv=" keyword. The rank-2
output array argument used on the right-hand side of the equal sign contains the
inverse matrixSee Example 2 in Chapter 1, “Linear Solvas®'l i n_sol _gen
for an example of computing the inverse matrix.

Each of the primary routines have argumeftdpack="and ‘i opt =". As noted
the “epack=" argument is of derived type error or d_error. The prefix
“s_" or “d_" is chosen depending on the precision of the data type for that
routine. The optional argumeriti opt =" is part of the interface to each routine,

and its use is to modify internal algorithm choices or other parameters.

Optional Data

This additional optional argument is further distinguished—a derived type array
that contains a number of parameters to modify the internal algorithm of a
routine. This derived type has the namept i ons, where“?_" is either“s_"

or “d_". The choice depends on the precision of the data type. The declaration of
this derived type is packaged within the modules for each generic suite of codes.

The definition of the derived types is:

type ?_options
i nteger idummy; real (kind(?)) rdummy
end type

where the"?_" is either“s_" or “d_", and the&ki nd value matches the
desired data type indicated by the choicé <f or “d”.

Example 3 in Chapter 1, “Linear Solveaf’| i n_sol _gen illustrates the use of
iterative refinement to compute a double-precision solution based on a single-
precision factorization of the matrix. This is communicated to the routine using an
optional argument with optional data. For efficiency of iterative refinement,
perform the factorization step once, then save the factored matrix in théarray
and the pivoting information in the rank-1 integer arigyi, vot s. By default,

the factorization is normally discarded. To enable the routine to be re-entered
with a previously computed factorization of the matrix, optional data are used as
array entries in théi opt =" optional argument. The packaging of

l'i n_sol _gen includes the definitions of the self-documenting integer
parameters i n_sol _gen_save LU andlin_sol _gen_sol ve_A. These
parameters have the values 2 and 3, but the programmer usually does not need to

vi ¢ Introduction

IMSL Fortran 90 MP Library 4.0

be aware of it.
The following rules apply to the “i opt =i opt ” optional argument:

1. Define a relative index, for exampleO, for placing option numbers and
data into the array argumenbpt . Initially, setl O= 1. Before a call to the
IMSL Library routine, follow Steps 2 through 4.

2. The data structure for the optional data array has the following form:
iopt (10 =7?_options (Option_number, Optional_data)
[i opt (10+1)=? options (Option_number, Optional _data)]

The length of the data set is specified by the documentation for an individual
routine. (TheOptional _data is output in some cases and may be not used in
other cases.) The square braces [. . .] denote optional items.

lllustration: Example 3 in Chapter 2, “Singular Value and Eigenvalue
Decompositionof 1'i n_ei g_sel f, a new definition for a small diagonal
term is passed tbi n_sol _sel f. There is one line of code required for the
change and the new tolerance:

iopt (1) = d _options(d_lin_sol_self_set_small,
epsilon(one) *abs (d(i)))

3. The internal processing of option numbers stops v@ption_number ==
or whenl O> size{ opt). This sends a signal to each routine having this
optional argument that all desired changes to default values of internal
parameters have been made. This implies that the last option number is the
value zero or the value of sieopt) matches the last optional value
changed.

4. To add more options, replac® with 1 O+ n, wheren is the number of items
required for the previous option. Go to Step 2.

Option numbers can be written in any order, and any selected set of options can

be chosen to be changed from the defaults. They may be refgestethle 3 in
Chapter 1, “Linear Solversdf 1 i n_sol _sel f uses three and then four option
numbers for purposes of computing an eigenvector associated with a known
eigenvalue.

Combining Fortran 90 and FORTRAN 77

Routines

Users will often want to combineoRTRAN 77 application software with

IMSL Fortran 90 MP Library routines. This section deals with the rules that a
programmer must follow to accomplish this. Fortran 90 arrays are no longer
required to be stored in a specified manner as was require@RTRAN 77.
However, much software exists iDETRAN 77 that relies on this previous
memory model of computation.

IMSL Fortran 90 MP Library 4.0 Introduction e vii

Example 4 in Chapter 1, “Linear Solveref i n_sol _gen illustrates how the
various libraries work together. In this example, which evaluates the matrix
exponential to solve a linear, constant matrix system of ordinary differential
equations, routines from both libraries are used.

The interface folEVCRG and other routines in thedRTRAN 77 IMSL
MATH/LIBRARY and STAT/LIBRARY products are provided by use of the
IMSL Fortran 90 MP Library modulllumerical_Libraries. This module is
invoked with the statemefitylse Nuneri cal _Li brari es” near thefirst line of
the program unit. Even for users who choose to continue with just the FORTRAN

77 IMSL routines, we strongly recommend the use of this module. It can show
type mismatches, missing arguments, and other “silly” mistakes before they
become dangerously hidden in an application. Interface blocks for the Fortran 90
codes are individually provided. The interface for tliRFRAN 77 routine shows
that the array®\, EVAL and EVEC, containing input and output fa&#vVCRG, are
“assumed-size”. The alternate arrays in this example are “assumed-shape”.

viii ¢ Introduction

IMSL Fortran 90 MP Library 4.0

Chapter:1 Linear Solvers

Introduction

This chapter describes routines for solving systems of linear algebraic equations
by direct matrix factorization methods, for computing only the matrix
factorizations, and for computing linear |east-squares solutions.

Contents

I o T Yo I o =Y o I PSPPSR 2
Example 1: Solving a Linear System of Equations..............ccccveviieeennnnnns 2
Example 2: Matrix Inversion and Determinant................ccccceeee e, 5
Example 3: Solving a System with Iterative Refinement............................ 6
Example 4: Evaluating the Matrix Exponential............ccccoceeeeiiiiiiiiieinineennn. 7
I S =Y Y=Y 9
Example 1: Solving a Linear Least-squares SYSteM.........cccceeevvviciiiiieennnnn. 9
Example 2: System Solving with Cholesky Methodccccccceveiiiinis 13
Example 3: Using Inverse Iteration for an Eigenvector...........cccccceeeeennnn. 14
Example 4: Accurate Least-squares Solution with Iterative Refinement.. 16
L TS Y o | I =Y o P 17
Example 1: Solving a Linear Least-squares System..........cccccccveeeeriinnns 18
Example 2: System Solving with the Generalized Inverse.............cccc...... 22
Example 3: Two-Dimensional Data Fittingccceevviiiiiiieieeeiiiiiieeeenn, 23
Example 4: Least-squares with an Equality Constraint.............cccccceeennnn. 25
L T =3V 26
Example 1: Least-squares solution of a Rectangular System.................. 26
Example 2: Polar Decomposition of a Square MatriX..........ccccccceeeeeriinnns 29
Example 3: Reduction of an Array of Black and Whitecccccceeennn. 30
Example 4: Laplace Transform Solutionccccceoviiiiiiiiieeeniiiiiiieeenn, 31
T o T Yo A P SR 34
Example 1: Solution of Multiple Tridiagonal Systemscccccceeeiiiniee 34
Example 2: Iterative Refinement and Use of Partial Pivoting................... 37
Example 3: Selected Eigenvectors of Tridiagonal Matrices..................... 39
Example 4: Tridiagonal Matrix Solving within Diffusion Equations........... 41

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 1

lin_sol _gen

Solves a general system of linear equations Ax = b. Using optional arguments, any
of several related computations can be performed. These extratasks include
computing the LU factorization of A using partial pivoting, representing the

determinant of A, computing the inverse matrix A", and solving ATx =b or
Ax = b given the LU factorization of A.

Required Arguments

A (Input [/Output])
Array of sizen x n containing the matrix.

b (Input [/Output])
Array of size n x nb containing the right-hand side matrix.

x (Output)
Array of sizen x nb containing the solution matrix.

Example 1: Solving a Linear System of Equations

This example solves alinear system of equations. Thisisthe simplest use of

l'i n_sol _gen. The equations are generated using a matrix of random numbers,
and a solution is obtained corresponding to a random right-hand side matrix.
Also, seeoper at or _ex01, Chapter 6, for this example using the operator
notation.

use |in_sol_gen_int
use rand_gen_int
use error_option_packet

inmplicit none
I This is Exanple 1 for LIN_SO.L_GEN.

i nteger, paraneter :: n=32

real (kind(1e0)), paraneter :: one=1e0

real (kind(1e0)) err

real (kind(1e0)) A(n,n), b(n,n), x(n,n), res(n,n), y(n**2)

I Generate a random matri Xx.
call rand_gen(y)
A = reshape(y, (/n,n/))

I Generate random right-hand sides.
call rand_gen(y)
b = reshape(y,(/n,n/))

I Conpute the solution matrix of Ax=b.
call lin_sol_gen(A b, x)

I Check the results for snmall residuals.
res = b - matnul (A x)
err = maxval (abs(res))/sunm(abs(A)+abs(b))
if (err <= sqrt(epsilon(one))) then

2« Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

wite (*,*) "Exanple 1 for LIN.SO._GEN is correct.’

end if

end

Optional Arguments

NROAS = n (Input)

NRHS =

pi vots

Usesarray A(1: n, 1: n) for the input matrix.
Default: n =size (A, 1)

nb (Input)

Usesarray b(1: n, 1: nb) for the input right-hand side matrix.
Default: nb = size(b, 2)

Note that b must be arank-2 array.

= pivots(:) (Output[/Input])
Integer array of size n that contains the individual row interchanges. To
construct the permuted order so that no pivoting is required, define an

integer array i p(n). Initializei p(i) =1, i = 1, n and then execute the
loop, after calling I i n_sol _gen,
k=pi vots(i)

interchange i p(i) and ip(k), i=1,n

The matrix defined by the array assignment that permutes the rows,
A(L: n, 1: n) = A(i p(2: n), 1: n), requires no pivoting for maintaining
numerical stability. Now, the optional argument “i opt =" and the
packaged option numbex_| i n_sol _gen_no_pi voti ng can be
safely used for increased efficiency duringlthkfactorization ofA.

det = det(1:2) (Output)

ainv =

iopt =

Array of size 2 of the same type and kinddsr representing the
determinant of the input matrix. The determinant is represented by two
numbers. The first is the base with the sign or complex angle of the
result. The second is the exponent. When(2) is within exponent
range, the value of this expression is given bydsg(l))* * det (2) *
(det (1))/abs(flet (1)). If the matrix is not singular, al{ (1)) =
radix(det); otherwisedet (1) = 0., anddet (2) = - huge(absiet (1))).
ainv(:,:) (Output)

Array of the same type and kind&4: n, L n). It contains the inverse
matrix, A", when the input matrix is nonsingular.

iopt(:) (Input)

Derived type array with the same precision as the input matrix; used for
passing optional data to the routine. The options are as follows:

IMSL Fortran 90 MP Library 4.0

Chapter:1 Linear Solvers « 3

Packaged Options for |1 i n_sol _gen
Option Prefix = ? Option Name Option Vaue
s ,d_,c_,z_ l'in_sol _gen_set_smal | 1
s _,d_,c_,z_ lin_sol _gen_save_ LU 2
s ,d_,c_,z_ lin_sol _gen_solve_A 3
s _,d_,c_,z_ l'in_sol _gen_sol ve_ADJ 4
s ,d_,c_,z_ I'in_sol _gen_no_pivoting 5
s_,d_,c_,z_ l'in_sol _gen_scan_for_NaN 6
s ,d_,c_,z_ I'i n_sol _gen_no_si ng_ness 7
s ,d_,c_,z_ lin_sol _gen_A is_sparse 8

iopt(10 = ?_options(?_lin_sol_gen_set_smal |, Small)
Replaces adiagonal term of the matrix U if it is smaller in magnitude
than the value Small using the same sign or complex direction as the
diagonal. The system isdeclared singular. A solution is approximated

based

on this replacement if no overflow results.

Default: the smallest number that can be reciprocated safely

iopt (10O

= ?_options(?_lin_sol _gen_set_save_LU, ?_dunmy)

Savesthe LU factorization of A. Requires the optional argument

“pi vot s=

”

if the routine will be used later for solving systems with the

same matrix. This is the only case where the input arkaysdb are not
saved. For solving efficiency, the diagonal reciprocals of the matrix
are saved in the diagonal entries/of

iopt (10O =

iopt (10O =

?_options(?_lin_sol _gen_sol ve_A, ?_dunmy)
Uses thd U factorization ofaA computed and saved to soke =b.

?_options(?_lin_sol _gen_solve ADJ,

?_dumy)

Uses thd U factorization ofA computed and saved to sokéx = b.

iopt (10

= ?_options(?_lin_sol _gen_no_pivoting,

?_dumy)

Does no row pivoting. The arrgy vot s (:), if present, are output as
pivots (i) =i, fori=1,...,n.

iopt (10O =

?_options(?_lin_sol _gen_scan_for_NaN,

?_dumy)

Examines each input array entry to find the first value such that

i sNaN(a(i,j))

See't

.or. isNan(b(i,j))

he sNaN() function,Chapter 6

Default: Does not scan for NaNs.

iopt (10O =

iopt (10 =

==.true.

?_options(?_lin_sol _gen_no_sing_ness, ?_dunmy)
Do not point an error message when the matix singular.

?_options(?_lin_sol _gen_A is_sparse, ?_dumy)
Uses an indirect updating loop for the LU factorization that is efficient
for sparse matrices where all matrix entries are stored.

4+ Chapter:1 Linear Solvers

IMSL Fortran 90 MP Library 4.0

Description

The 1'i n_sol _gen routine solves a system of linear algebraic equations with a
nonsingular coefficient matrix A. It first computes the LU factorization of A with
partial pivoting such that LU = A. The matrix U is upper triangular, while the
following istrue:

L'A=LPL P - LRA=U
The factors P; and L; are defined by the partia pivoting. Each P; is an interchange
of row i withrow j > i. Thus, P, is defined by that value of j. Every
L =1+me’

isan elementary elimination matrix. The vector m, iszeroin entries 1, ..., i. This

vector is stored as column i in the strictly lower-triangular part of the working
array containing the decomposition information. The reciprocals of the diagonals
of the matrix U are saved in the diagonal of the working array. The solution of the
linear system Ax = b is found by solving two simpler systems,

y=L"band x=U"y
more mathematical details are found in Golub and VVan Loan (1989, Chapter 3).

Example 2: Matrix Inversion and Determinant

This example computes the inverse and determinant of A, arandom matrix. Tests
are made on the conditions

AATL =
and
det(A™) = det(A) ™
Also, seeoper at or _ex02.

use lin_sol_gen_int
use rand_gen_int

inmplicit none

I This is Exanple 2 for LIN_SO.L_GEN.

i nteger i
i nteger, paraneter :: n=32
real (kind(1e0)), paraneter :: one=1.0e0, zero=0.0e0

real (kind(1e0)) err
real (kind(1e0)) A(n,n), b(n,0), inv(n,n), x(n,0), res(n,n), &
y(n**2), determnant(2), inv_determ nant(2)

| Generate a random matri x.

call rand_gen(y)
A = reshape(y, (/n,n/))

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 5

Conpute the matrix inverse and its determ nant.

call lin_sol _gen(A, b, x, nrhs=0, &
ai nv=i nv, det=determ nant)

Conpute the determinant for the inverse matrix.

call lin_sol _gen(inv, b, x, nrhs=0, &
det =i nv_det er m nant)
Check residuals, Atimes inverse = ldentity.
res = matmul (A inv)
do i=1, n
res(i,i) =res(i,i) - one
end do

<= sqrt(epsilon(one)))*abs(deternm nant(2))) then

err = sunm(abs(res)) / sun(abs(a))
if (err <= sqgrt(epsilon(one))) then
if (determinant(1l) == inv_determnant(1l) .and. &
(abs(determ nant (2) +i nv_determ nant(2)) &
<= abs(determ nant(2))*sqrt(epsilon(one)))) then
wite (*,*) "Exanple 2 for LIN.SO._GEN is correct.’
end if
end if
end

Example 3: Solving a System with Iterative Refinement

This example computes a factorization of a random matrix using single-precision
arithmetic. The double-precision solution is corrected using iterative refinement.
The corrections are added to the devel oping solution until they are no longer
decreasing in size. The initialization of the derived type array i opti (1:2) =
s_option(0, 0. 0e0) leavestheinteger part of the second element of

i opti (:) atthevauezero. Thisstopstheinternal processing of optionsinside
i n_sol _gen. Itresultsinthe LU factorization being saved after exit. The next
time the routine is entered the integer entry of the second element of i opt (:)
resultsin asolve step only. Since the LU factorization issaved in arrays A(:, :)
andi pi vot s(:), at thefina step, solve only steps can occur in subsequent
entriestol i n_sol _gen. Also, seeoper at or _ex03,Chapter 6.

use lin_sol _gen_int
use rand_gen_int

inplicit none

This is Exanple 3 for LIN SO._GEN

i nteger, paraneter :: n=32

real (kind(1e0)), paraneter :: one=1.0e0, zero0=0.0e0
real (kind(1d0)), paraneter :: d_zero=0.0d0

i nteger ipivots(n)

real (kind(1e0)) a(n,n), b(n,1), x(n,1), wn**2)

real (ki nd(1e0)) change_new, change_ol d

6 ¢ Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

real (kind(1d0)) c(n,1), d(n,n), y(n,1)
type(s_options) :: iopti(2)=s_options(0,zero)
I Generate a random matri X.

call rand_gen(w)
a = reshape(w, (/n,n/))

I Generate a randomright hand side.
call rand_gen(b(1:n,1))
I Save doubl e precision copies of the matrix and right hand side.

d
c

a
b

I Start solution at zero.

y = d_zero
change_ol d = huge(one)

I Use packaged option to save the factorization.
iopti (1) = s_options(s_lin_sol_gen_save_LU, zero)

iterative_refinement: do
b =c¢c - matmul (d,vy)
call lin_sol _gen(a, b, x, &
pi vots=i pivots, iopt=iopti)
y =x+y
change_new = sun{abs(x))

I Exit when changes are no | onger decreasing.

i f (change_new >= change_old) &
exit iterative_refinenment
change_ol d = change_new

I Use option to re-enter code with factorization saved; solve only.
iopti(2) = s_options(s_lin_sol_gen_solve_A zero)
end do iterative_refinement
wite (*,*) "Exanple 3 for LIN.SOL_GEN is correct.’
end

Example 4: Evaluating the Matrix Exponential
This example computes the solution of the ordinary differential equation problem

dy _

P
with initia valuesy(0) = y,. For this example, the matrix A isreal and constant
with respect to t . The unique solution is given by the matrix exponential:

Ay

y(t) = ey,

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 7

This method of solution uses an eigenval ue-eigenvector decomposition of the

matrix
A=XDXx™*
to evaluate the solution with the equivalent formula
y(t) = xe™ z,
where
2= XY

is computed using the complex arithmetic version of 1 i n_sol _gen. Theresults
for y(t) are real quantities, but the evaluation uses intermediate complex-valued
calculations. Note that the computation of the complex matrix X and the diagonal
matrix D is performed using the IMSL MATH/LIBRARY FORTRAN 77 routine
EVCRG. Thisisan illustration of combining parts of FORTRAN 77 and Fortran 90
code. Theinformation is made available to the Fortran 90 compiler by using the
FORTRAN 77 interface for EVCRG. Also, seeoper at or _ex04, Chapter 6, where
the Fortran 90 function EI () has replaced the call to EVCRG.

use |in_sol_gen_int
use rand_gen_int
use Nunerical _Libraries

inmplicit none
I This is Exanple 4 for LIN_SOL_GEN.

integer, paraneter :: n=32, k=128

real (kind(1e0)), paraneter :: one=1.0e0, t_max=1, delta_t=t_max/(k-1)
real (kind(1e0)) err, A(n,n), atenp(n,n), ytenp(n**2)

real (kind(1e0)) t(k), y(n,k), y_prime(n,Kk)

conpl ex(ki nd(1e0)) EVAL(n), EVEC(n,n)

conmpl ex(ki nd(1e0)) x(n,n), z_0(n,1), y_0(n,1), d(n)

i nteger i

I Generate a randommatrix in an F90 array.

call rand_gen(ytenp)
atenmp = reshape(ytenp, (/n,n/))

I Assign data to an F77 array.
A = atenp

I Use IMSL Nunerical Libraries F77 subroutine for the
I ei genval ue-ei genvector cal cul ation.
CALL EVCRGN, A, N, EVAL, EVEC, N

I Generate a randominitial value for the ODE system
call rand_gen(ytenp(1l:n))
y_0(1l:n,1) = ytenp(1l:n)

I Assign the eigenval ue-ei genvector data to F90 arrays.
d = EVAL; x = EVEC

8« Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

I Solve conpl ex data systemthat transfornms the initial values, Xz_0=y_O.
call lin_sol _gen(x, y_0, z_0)
t = (/(i*delta_t,i=0,k-1)/)
I Conpute y and y’ at the values t(1:k).
y = matnul (x, exp(spread(d,2,k)*spread(t,1,n))* &
spread(z_0(1:n,1),2,k))
y_prime = matmul (x, spread(d,2,k)* &
exp(spread(d, 2, k) *spread(t,1,n))* &
spread(z_0(1:n,1),2,k))

I Check results. Is y - Ay = 0?
err = sum(abs(y_prine-matnul (atenp,y))) / &
(sun(abs(atenp)) *sum(abs(y)))
if (err <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 4 for LIN.SO._GEN is correct.’

end if
end
Fatal and Terminal Error Messages
See the messages.gls file for error messagesfor | i n_sol _gen. The messages are
numbered 161-175; 181-195; 201-215; 221-235.
lin_sol_self

Solves a system of linear equations Ax = b, where A is a self-adjoint matrix. Using
optional arguments, any of several related computations can be performed. These
extratasks include computing and saving the factorization of A using symmetric

pivoting, representing the determinant of A, computing the inverse matrix A l, or
computing the solution of Ax = b given the factorization of A. An optional
argument is provided indicating that A is positive definite so that the Cholesky
decomposition can be used.

Required Arguments

A (Input [/Output])
Array of size n x n containing the self-adjoint matrix.

b (Input [/Output])
Array of sizen x nb containing the right-hand side matrix.

X (Output)
Array of size n x nb containing the solution matrix.
Example 1: Solving a Linear Least-squares System

This example solves alinear least-squares system Cx Od, where C,,,,, isared

matrix with m = n. The least-squares solution is computed using the self-adjoint
matrix

A=C'C

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 9

and the right-hand side

b=A"d
The n x n self-adjoint system Ax = b is solved for x. This solution method is not
as satisfactory, in terms of numerical accuracy, as solving the systemCx Od

directly by using theroutinel i n_sol _I sq. Also, see oper at or _ex05,
Cha pter6.

use lin_sol_self_int
use rand_gen_int

inmplicit none
I This is Exanple 1 for LIN_SOL_SELF.

i nteger, paraneter :: me64, n=32

real (kind(1e0)), paraneter :: one=1e0

real (kind(1e0)) err

real (kind(1e0)), dinmension(n,n) :: A b, x, res, y(nfrn), &
C(mn), d(mn)

I Generate two rectangul ar random matri ces.
call rand_gen(y)
C = reshape(y, (/mn/))

call rand_gen(y)
d = reshape(y,(/mn/))

I Form the normal equations for the rectangul ar system
A = matmul (transpose(C), O
b = matmul (transpose(C), d)

I Conpute the solution for Ax = b.
call lin_sol_self(A b, x)

I Check the results for small residuals.
res = b - matnmul (A x)
err = maxval (abs(res))/sunmabs(A)+abs(b))
if (err <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 1 for LIN_SO._SELF is correct.’
end if

end

Optional Arguments

NROAS = n (Input)
Usesarray A(1: n, 1: n) for the input matrix.
Default: n = size(A, 1)

NRHS = nb (Input)
Usesthe array b(1: n, 1: nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be arank-2 array.

10 « Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

pi vots

= pivots(:) (Output[/Input])

Integer array of size n + 1 that contains the individual row interchanges
inthefirst n locations. Applied in order, these yield the permutation
matrix P. Location n + 1 contains the number of the first diagonal term
no larger than Small, which is defined on the next page of this chapter.

det = det(1:2) (Output)

Array of size 2 of the same type and kind as A for representing the
determinant of the input matrix. The determinant is represented by two
numbers. The first is the base with the sign or complex angle of the
result. The second is the exponent. When det (2) iswithin exponent
range, the value of the determinant is given by the expression

abs(det (1))**det (2) * (det (1))/abs(det (1)). If the matrix is not
singular, abs(det (1)) = radix(det); otherwise, det (1) =0., and

det (2) = —huge(abs(det (1))).

ainv = ainv(:,:) (Output)
Array of the same type and kind as A(1: n, 1: n). It contains the inverse
matrix, A" when the input matrix is nonsingular.
iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix; used for
passing optional data to the routine. The options are as follows:
Packaged Options for i n_sol _sel f
Option Prefix = ? Option Name Option Vaue
s ,d_,c_,z_ lin_sol _self_set_small 1
s_,d_,c_,z_ lin_sol _self_save factors 2
s ,d ,c_,z_ l'in_sol _sel f_no_pivoting 3
s_,d_,c_,z_ lin_sol _self _use_Chol esky 4
s ,d ,c_,z_ lin_sol _self_solve_A 5
s_,d_,c_,z_ lin_sol _self_scan_for_NaN 6
s ,d_,c_,z_ l'in_sol _sel f_no_sing_ness 7

iopt (10 = ? options(?_lin_sol_self_set_small, Small)

When Aasen’s method is used, the tridiagonal system v is solved
usingLU factorization with partial pivoting. If a diagonal term of the
matrix U is smaller in magnitude than the vafimall, it is replaced by
Small. The system is declared singular. When the Cholesky method is
used, the upper-triangular matiRx (see “Description”), is obtained. If a
diagonal term of the matriR is smaller in magnitude than the value
Small, it is replaced byamall. A solution is approximated based on this
replacement in either case.

Default: the smallest number that can be reciprocated safely

IMSL Fortran 90 MP Library 4.0

Chapter:1 Linear Solvers » 11

iopt (10 = ? options(?_lin_sol_self_save factors, ?_dunmy)
Saves the factorization of A. Requires the optional argument “pi vot s="
if the routine will be used for solving further systems with the same
matrix. This is the only case where the input arrayend b are not
saved. For solving efficiency, the diagonal reciprocals of the nRatrix
are saved in the diagonal entriesfofvhen the Cholesky method is
used.

iopt(10Q = ?_options(?_lin_sol_self_no_pivoting, ?_dummy)
Does no row pivoting. The arrgy vot s(:), if present, satisfies
pi vots(i) =i + 1 fori = 1,..., n — 1 when using Aasen’s method. When
using the Cholesky methogi,vot s(i) =i fori =1, ..., n.

iopt (10 = ? options(?_lin_sol_self_use_Chol esky, ?_dunmy)

The Cholesky decompositicFPAPT =R’Ris used instead of the Aasen
method.

iopt (10 = ? options(?_lin_sol_self_solve A ?_dumy)
Uses the factorization o& computed and saved to solée =b.

iopt(10Q = ?_options(?_lin_sol_self_scan_for_NaN, ?_dunmy)
Examines each input array entry to find the first value such that
isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.
See the sNaN() function,Chapter 6.
Default: Does not scan for NaNs

iopt (10 = ? options(?_lin_sol_self_no_sing_ness, ?_dumy)
Do not print an error message when the natrix singular.

Description

Thel i n_sol _sel f routine solves a system of linear algebraic equations with a
nonsingular coefficient matriX. By default, the routine computes the
factorization ofA using Aasen’s method. This decomposition has the form

PAPT = LTL'"

whereP is a permutation matrix, is a unit lower-triangular matrix, afidis a
tridiagonal self-adjoint matrix. The solution of the linear systems b is found
by solving simpler systems,

u=L"Pb
Tv=u
and
x=PTL v

More mathematical details for real matrices are found in Golub and Van Loan
(1989, Chapter 4).

When the optional Cholesky algorithm is used with a positive definite, self-
adjoint matrix, the factorization has the alternate form

PAPT =R'R

12 « Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

where P is a permutation matrix and R is an upper-triangular matrix. The solution
of the linear system Ax = b is computed by solving the systems

u=R TPb
and
x=PTR™u

The permutation is chosen so that the diagonal term is maximized at each step of
the decomposition. The individual interchanges are optionally available in the
argument “pi vot s”.

Example 2: System Solving with Cholesky Method

This example solves the same form of the system as Example 1. The optional
argumehn “i opt =" is used to note that the Cholesky algorithm is used since the
matrix A is positive definite and self-adjoint. In addition, the saneplariance
matrix

r=o’A™
is computed, where
2
o _ld-of
m-n
the inverse matrix is returned as tla¢ nv=" optional argument. The scale factor

o? andl" are computed after returning from the routine. Atse
oper at or _ex06, Chapter 6.

use lin_sol _self_int

use rand_gen_int

use error_option_packet

inplicit none

I This is Exanple 2 for LIN_SO._SELF

i nteger, paraneter :: mF64, n=32

real (kind(1e0)), paraneter :: one=1.0e0, zero0=0.0e0

real (kind(1e0)) err

real (kind(1e0)) a(n,n), b(n,1), c¢c(mn), d(m1), cov(n,n), x(n, 1), &

res(n, 1), y(n¥rn)
type(s_options) :: iopti(1l)=s_options(0,zero)

I Generate a randomrectangul ar matrix and a random ri ght hand si de.

call rand_gen(y)
¢ = reshape(y, (/mn/))

call rand_gen(d(1l:n,1))

I Formthe normal equations for the rectangul ar system

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers » 13

a
b

mat nul (transpose(c), c)
mat nul (transpose(c), d)

I Use packaged option to use Chol esky deconposition.
iopti (1) = s_options(s_lin_sol_self_Use_Chol esky, zer o)
I Conpute the solution of Ax=b with optional inverse obtained.

call lin_sol _self(a, b, x, ainv=cov, &
i opt =i opti)

I Conpute residuals, x - (inverse)*b, for consistency check.
res = x - matnul (cov, b)
I Scale the inverse to obtain the covariance natri x.
cov = (sun({(d-matmul (c,x))**2)/(mn)) * cov
I Check the results.
err = sunm(abs(res))/sumabs(cov))
if (err <= sqgrt(epsilon(one))) then
wite (*,*) "Exanple 2 for LIN SO._SELF is correct.’

end if

end

Example 3: Using Inverse Iteration for an Eigenvector

This exampleillustrates the use of the optional argument “i opt =" to reset the
value of a9mall diagonal term encountered during the factorization. Eigenvalues
of the selfadjoint matrix

A=C'C
are computed using the rowgihi n_ei g_sel f. An eigenvectagrcorresponding
to one of theseigenvalues\, is computed usminverse iteration. This solves the

near singular syste (A — Al)x = b for an eigenvectox. Following the
computation of a normalized eigenvector

y=X
I

the consistency condition
A=y’ Ay

is checked. Since a singular system is expected, suppress the fatal error message
that normally prints when the error post-processor rewin or _post is called
within the routire | i n_sol _sel f. Also, seeoper at or _ex07, Chapter 6.

use lin_sol_self_int
use lin_eig_self_int
use rand_gen_int

14 « Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

use error_option_packet
inmplicit none
I This is Exanple 3 for LIN SOL_SELF

integer i, tries

i nteger, paraneter :: me8, n=4, k=2

i nteger ipivots(n+l)

real (kind(1d0)), paraneter :: one=1.0d0, zero=0.0dO0

real (kind(1d0)) err

real (kind(1d0)) a(n,n), b(n,1), c(mn), x(n,1), y(nn), &
e(n), atenp(n,n)

type(d_options) :: iopti(4)

I Generate a random rectangul ar matrix.

call rand_gen(y)
¢ = reshape(y, (/mn/))

I Generate a randomright hand side for use in the inverse
I iteration.

call rand_gen(y(1:n))
b = reshape(y,(/n,1/))

I Conpute the positive definite matrix
a = mat mul (transpose(c), c)

I Obtain just the eigenval ues.
call lin_eig_self(a, e)

I Use packaged option to reset the value of a snall diagonal
iopti = d_options(0, zero)
iopti (1) = d_options(d_lin_sol_self_set_small, &

epsilon(one) * abs(e(1)))

I Use packaged option to save the factorization.
iopti(2) = d_options(d_lin_sol_self_save_factors, zero)

I Suppress error messages and stopping due to singularity

I of the matrix, which is expected.
iopti(3) = d_options(d_lin_sol_self_no_sing_ness, zero)
atemp = a
doi=1, n

a(i,i)

end do

=a(i,i) - e(k)

I Conpute A-eigenvalue*l as the coefficient matrix
do tries=1, 2
call lin_sol_self(a, b, x, &
pi vots=i pivots, iopt=iopti)
I When code is re-entered, the already conmputed factorization
I is used.
iopti(4) = d_options(d_lin_sol_self_solve_A zero)
| Reset right-hand side nearly in the direction of the eigenvector
b = x/sqgrt(sum(x**2))
end do

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 15

I Normalize the eigenvector.
X = x/sqrt(sum x**2))

I Check the results.
err = dot_product (x(1:n,1), matnul (atenp(1:n,1:n),x(1:n,1))) - &
e(k)

I If any result is not accurate, quit with no summary printing.
if (abs(err) <= sqrt(epsilon(one))*e(1)) then

wite (*,*) "Exanple 3 for LIN SO._SELF is correct.’
end if

end

Example 4: Accurate Least-squares Solution with Iterative
Refinement

This exampleillustrates the accurate solution of the self-adjoint linear system

bl

computed using iterative refinement. This solution method is appropriate for
least-squares problems when an accurate solution is required. The solution and
residuals are accumulated in double precision, while the decomposition is
computed in single precision. Also, see oper at or _ex08, Chapter 6.

use lin_sol _self_int
use rand_gen_int

inmplicit none

I This is Exanple 4 for LIN_SOL_SELF.

i nteger i
i nteger, paraneter :: nE8, n=4
real (kind(1e0)), paraneter :: one=1.0e0, zero0=0.0e0

real (kind(1d0)), paraneter :: d_zero=0.0d0

i nteger ipivots((n+m+1)

real (kind(1e0)) a(mn), b(m1l), w(nrn), f(n+rmn+m, &

g(n+m 1), h(n+m1)

real (ki nd(1e0)) change_new, change_old

real (kind(1d0)) ¢(m1), d(mn), y(n+m1l)

type(s_options) :: iopti(2)=s_options(0,zero)
I Generate a random matri x.

call rand_gen(w)

a = reshape(w, (/mn/))
I Generate a randomright hand side.

call rand_gen(b(1l:m1l))

I Save doubl e precision copies of the matrix and right hand side.

16 « Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

d = a

c=5b
' Fill in augnmented systemfor accurately solving the | east-squares
I problem

f = zero

doi=1, m

f(i,i) = one

end do

f(L:mmtl:) = a

f(mtl:,1:m) = transpose(a)

I Start solution at zero.

y = d_zero
change_ol d = huge(one)

I Use packaged option to save the factorization.
iopti (1) = s_options(s_lin_sol_self_save_factors, zero)

iterative_refinement: do
g(l:m1l) =c(l:m1l) - y(1:m1) - matmul (d,y(m+l: men, 1))

g(mtl: mtn, 1) = - nmatmul (transpose(d),y(1:m1))
call lin_sol_self(f, g, h, &

pi vots=i pivots, iopt=iopti)
y =h+y

change_new = sun(abs(h))
I Exit when changes are no | onger decreasing.

i f (change_new >= change_old) &
exit iterative_refinement
change_ol d = change_new

I Use option to re-enter code with factorization saved; solve only.
iopti(2) = s_options(s_lin_sol_self_solve_A zero)
end do iterative_refinement
wite (*,*) 'Exanple 4 for LIN_SO._SELF is correct.’

end
Fatal and Terminal Error Messages
See the messages.gls file for error messagesfor 1i n_sol _sel f. These error
messages are numbered 321-336; 341-356; 361-376; 381-396.
lin_sol _Isq

Solves arectangular system of linear equations Ax b, in aleast-squares sense.
Using optional arguments, any of several related computations can be performed.
These extra tasks include computing and saving the factorization of A using
column and row pivoting, representing the determinant of A, computing the
generalized inverse matrix AT, or computing the least-squares solution of

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers » 17

AxOb

or

AT y Ob,
given the factorization of A. An optional argument is provided for computing the
following unscaled covariance matrix
-1
C=(ATA)

L east-sguares solutions, where the unknowns are non-negative or have simple
bounds, can be computed with PARALLEL Nonegative LSQ and
PARALLEL_Bounded LSQ, Chapter 7. These codes can be restricted to execute
without MPI.

Required Arguments

A (Input [/Output])
Array of size m x n containing the matrix.

b (Input [/Output])
Array of sizem x nb containing the right-hand side matrix. When using
the option to solve adjoint sysiemsATx Ob, thesize of bisn x nb.

X (Output)
Array of size n x nb containing the solution matrix. When using the
option to solve adjoint systemsATx Ob, the size of xism x nb.

Example 1: Solving a Linear Least-squares System
This example solves alinear |east-squares system Cx [1d, where
C

mxn

isareal matrix with m > n. The least-squares problem is derived from polynomial
data fitting to the function

y(x)=¢"+ COS(ng)

using a discrete set of valuesin theinterval —1 < x < 1. The polynomial is
represented as the series

N
W4 S eT ()
i=0
wherethe T, (x) are Chebyshev polynomials. It is natural for the problem matrix

and solution to have a column or entry corresponding to the subscript zero, which
isused in this code. Also, see oper at or _ex09, Chapter 6.

18 « Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

use lin_sol_lsqg_int
use rand_gen_int
use error_option_packet

inmplicit none
I This is Exanple 1 for LIN_SO._LSQ

i nteger i

i nteger, paraneter :: nF128, n=8

real (kind(1d0)), paraneter :: one=1d0, zero=0d0

real (kind(1d0)) A(mO:n), c¢(0:n,1), pi_over_2, x(mM, y(ml), &
u(m, v(m, w(n, delta_x

I Generate a randomgrid of points.
call rand_gen(x)

I Transformpoints to the interval -1,1.
X = X*2 - one

I Conpute the constant "PI/2'.
pi _over_2 = atan(one)*2

I Generate known function data on the grid.
y(1:m1) = exp(x) + cos(pi_over_2*x)

' Fill in the |least-squares matrix for the Chebyshev pol ynom al s.
A(:,0) =one; A(:,1) =x
doi=2, n
A(: i) = 2%x*A(:,i1-1) - A(:,1-2)
end do

I Solve for the series coefficients.
call lin_sol _Isq(A vy, c)

I Generate an equally spaced grid on the interval.

delta_x = 2/real (m1, ki nd(one))
do i=1, m

x(i) = -one + (i-1)*delta_x
end do

I Eval uat e residual s using backward recurrence fornul as.
u = zero

y(1:m1) = exp(x) + cos(pi_over_2*x) - (u-x*v)

I Check that n+l1 sign changes in the residual curve occur.
X = one
x = sign(x,y(l:m1))

if (count(x(1:m1l) /= x(2:m) >= n+l) then
wite (*,*) "Exanple 1 for LIN.SOL_LSQ is correct.’

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 19

end if

end

Optional Arguments

MROWS = m (Input)
Uses array A(1: m 1: n) for theinput matrix.
Default: m=size(A, 1)

NCOLS = n (Input)
Usesarray A(1: m 1: n) for the input matrix.
Default: n = size(A, 2)

NRHS = nb (Input)
Usesthe array b(1: , 1: nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be arank-2 array.

pivots = pivots(:) (Output[/Input])
Integer array of size2* min(m n) + 1 that contains the individual row
followed by the column interchanges. The last array entry contains the
approximate rank of A.

trans = trans(:) (Output [/Input])
Array of size 2* min(m n) that contains data for the construction of the
orthogonal decomposition.

det = det(1:2) (Output)
Array of size 2 of the same type and kind as A for representing the
products of the determinants of the matrices Q, P, and R. The
determinant is represented by two numbers. The first is the base with the
sign or complex angle of the result. The second is the exponent. When
det (2) iswithin exponent range, the value of this expression is given by
abs (det (1))**det (2) * (det (1))/abs(det (1)). If the matrix is not
singular, abs(det (1)) = radix(det); otherwise, det (1) =0., and
det (2) = — huge(abs(det (1))).

ainv = ainv(:,:) (Output)
Array with sizen x mof the same type and kind asA(L: m 1: n). It
contains the generalized inverse matrix, A'.

cov = cov(:,:) (Output)
Array with sizen x n of the same type and kind asA(1: m 1: n). It

contains the unscaled covariance matrix, C = (ATA)’1 .

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix; used for
passing optional datato the routine. The options are as follows:

20 ¢ Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

Packaged Options for i n_sol _I sq

Option Prefix = ? Option Name Option Value
s ,d_,c_,z lin_sol _Isq _set_snall 1
s ,d_,c_,z_ lin_sol _|sqg_save QR 2
s_,d_,c_,z_ lin_sol Isq_solve A 3
s ,d ,c_,z_ lin_sol | sqg_solve_ADJ 4
s_,d_,c_,z_ l'in_sol _I sq_no_row_pi voting 5
s ,d ,c_,z_ lin_sol _|sqg_no_col _pivoting 6
s_,d_,c_,z_ lin_sol _I sq_scan_for_NaN 7
s ,d ,c_,z_ lin_sol _I sq_no_sing_ness 8
iopt (10 = ? options(?_lin_sol Isq_set _small, Small)

Replaces with Small if adiagonal term of the matrix Ris smaller in
magnitude than the value Small. A solution is approximated based on
this replacement in either case.

Default: the smallest number that can be reciprocated safely

opt (10 ?_options(?_lin_sol _Isq_save QR ?_dunmy)
Saves the factorization of A. Requires the optional arguments
“pi vot s=" and“trans=" if the routine is used for solving further

systems with the same matrix. This is the only case where the input
arraysA andb are not saved. For efficiency, the diagonal reciprocals of

the matrixR are saved in the diagonal entriesfof

opt (10 = ? options(?_lin_sol _Isqg_solve A ?_dumy)
Uses the factorization @ computed and saved to sole =b.

opt (109 = ?_options(?_lin_sol_lsq_solve_ADJ, ?_dunmy)
Uses the factorization @ computed and saved to soléx =b.
opt (10 = ? options(?_lin_sol_|sg_no_row pivoting, ?_dummy)

Does no row pivoting. The arrgy vot s(:), if present, satisfies
pi vots(i) =i fori =1,..., min (mn).

opt (109 = ?_options(?_lin_sol_lsq_no_col _pivoting, ?_dunmy)
Does no column pivoting. The arrgiyvot s(;), if present, satisfies
pi vots(i + min mn)) =ifori=1,..., min (Mmn).

opt (10 = ? _options(?_lin_sol _Isqg_scan_for_NaN, ?_dunmy)
Examines each input array entry to find the first value such that
i sNaN(a(i,j)) i sNan(b(i,j))

See the sNaN() function,Chapter 6.
Default: Does not scan for NaNs

opt (10 ?_options(?_lin_sol _I sqg_no_sing_ness, ?_dumy)
Do not print an error message whis singular ok < min(m n).

.or. ==.true.

IMSL Fortran 90 MP Library 4.0

Chapter:1 Linear Solvers « 21

Description

Theroutine 1'i n_sol _| sq solvesarectangular system of linear algebraic
equationsin aleast-squares sense. It computes the decomposition of A using an
orthogonal factorization. This decomposition has the form

_ Rk><k 0
QAP—{ 0 0}

where the matrices Q and P are products of elementary orthogonal and
permutation matrices. The matrix Risk x k, wherek is the approximate rank of A.
Thisvalueis determined by the value of the parameter Small. See Golub and Van
Loan (1989, Chapter 5.4) for further details. Note that the use of both row and
column pivoting is nonstandard, but the routine defaults to this choice for en-
hanced reliability.

Example 2: System Solving with the Generalized Inverse

This example solves the same form of the system as Example 1. In this case, the
grid of evaluation pointsis equally spaced. The coefficients are computed using
the“smoothing formulas” by rows of élyeneralized inverse matrigT,
computed using the optional arguméaitnv=". Thus, the coefficients are given
by the matrix-vector product= (A") y, wherey is the vector of values of the
function y(x) evaluated at the grid of points. Also, see oper at or _ex10,

Chapter6.

use lin_sol_lsqg_int
inmplicit none
This is Exanple 2 for LIN_SO__LSQ
i nteger i
i nteger, paraneter :: nF128, n=8
real (kind(1d0)), paraneter :: one=1.0d0, zero=0.0dO0

real (kind(1d0)) a(mO0O:n), c¢(0:n,1), pi_over_2, x(m, y(ml), &
u(m, v(m, w(m, delta_x, inv(0:n,

CGenerate an array of equally spaced points on the interval -1,1.

delta_x = 2/real (m1, ki nd(one))
do i=1, m

x(i) = -one + (i-1)*delta_x
end do

Conpute the constant '"PI/2'.
pi _over_2 = atan(one)*2

Conmput e data val ues on the grid.
y(1:m1) = exp(x) + cos(pi_over_2*x)

Fill in the |east-squares matrix for the Chebyshev pol ynoni al s.

22+ Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

a(:,0) = one
a(:,1) =x
doi=2, n
a(:,i) = 2*x*a(:,i-1) - a(:,i-2)
end do

Conput e the generalized inverse of the | east-squares matrix.
call lin_sol_Isqg(a, y, ¢, nrhs=0, ainv=inv)

Conmput e the series coefficients using the generalized inverse
as 'snoot hing formul as.’

c(0:n,1) = matmul (inv(0:n,1:n,y(l:m1l))

I Eval uate residual s using backward recurrence fornul as.

u = zero
vV = zero
do i=n, 0, -1
w = 2*x*u - v + c(i,1)
v =u
u=w
end do

y(1:m1) = exp(x) + cos(pi_over_2*x) - (u-x*v)

I Check that n+2 sign changes in the residual curve occur.
I (This test will fail when n is larger.)

X
X

one
sign(x,y(1:m1))

if (count(x(1:m1l) /= x(2:m) == n+2) then
wite (*,*) "Exanple 2 for LIN.SOL_LSQis correct.’
end if

end

Example 3: Two-Dimensional Data Fitting

This example illustrates the use of radial-basis functions to least-squares fit
arbitrarily spaced data points. Let m datavalues{y,} be given at pointsin the unit
square, {p;}. Each p; isapair of real values. Then, n points{q;} are chosen on the
unit square. A series of radial-basis functions is used to represent the data,

(=3 oo, 5"
j=1

where isa parameter. This example uses 5= 1, but either larger or smaller
values can give a better approximation for user problems. The coefficients{ c;}

are obtained by solving the following m x n linear |east-squares problem;

f(m)=y,

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 23

This exampleillustrates an effective use of Fortran 90 array operationsto
eliminate many details required to build the matrix and right-hand side for the
{cj} . Forthisexample, the two sets of points {p;} and {q;} are chosen randomly.
Thevalues{y;} arecomputed from the following formula

Y
J

Theresidua function

r(p)4 olof _ f(p)

iscomputed at an N x N square grid of equally spaced points on the unit square.
The magnitude of r(p) may be larger at certain points on this grid than the
residuals at the given points, {p; }. Also, see oper at or _ex11, Chapter 6.

use lin_sol _Isqg_int
use rand_gen_int

inmplicit none
I This is Exanple 3 for LIN_SO.L_LSQ
integer i, j
i nteger, paraneter :: mF128, n=32, k=2, n_eval =16
real (kind(1d0)), paraneter :: one=1.0d0, delta_sqr=1.0d0
real (kind(1d0)) a(mn), b(m1l), c(n,1), p(k,m, q(k,n), &
x(k*m, y(k*n), t(k,mn), res(n_eval,n_eval), &
w(n_eval), delta
I Generate a random set of data points in k=2 space.

call rand_gen(x)
p = reshape(x, (/k,nm))

I Generate a random set of center points in k-space.

call rand_gen(y)
g = reshape(y, (/k,n/))

I Conpute the coefficient matrix for the | east-squares system

t = spread(p, 3,n)

do j =1, n . .
t(1:,:,j) =t(1:,:,j) - spread(q(l:,j),2,m

end do

a = sqrt(sumt**2,dinFl) + delta_sqr)

I Conpute the right hand side of data val ues.
b(1:,1) = exp(-sun(p**2,dinrl))

I Conpute the solution.

call lin_sol _Isq(a, b, c)

24 « Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

I Check the results.

i f (sunm(abs(matmul (transpose(a),b-matmul (a,c))))/sunmabs(a)) &
<= sqrt(epsilon(one))) then
wite (*,*) "Exanple 3 for LIN.SOL_LSQ is correct.’

end if

I Eval uate residuals, known function - approximation at a square
I grid of points. (This evaluation is only for k=2.)

delta = one/real (n_eval -1, ki nd(one))
do i=1, n_eval
wWi) = (i-1)*delta

end do
res = exp(-(spread(w, 1,n_eval)**2 + spread(w, 2, n_eval)**2))
do j=1, n

res =res - c(j,1)*sqrt((spread(w,1,n_eval) - g(1,j))**2 + &
(spread(w, 2,n_eval) - qg(2,j))**2 + delta_sqr)
end do

end

Example 4: Least-squares with an Equality Constraint

This example solves aleast-squares system Ax Ob with the constraint that the
solution values have a sum equal to the value 1. To solve this system, one heavily
weighted row vector and right-hand side component is added to the system
corresponding to this constraint. Note that the weight used is

E—JJZ

where € is the machine precision, but any larger value can be used. The fact that
lin_sol I sq performsrow pivoting in this caseis critical for obtaining an
accurate solution to the constrained problem solved using weighting. See Golub
and Van Loan (1989, Chapter 12) for more information about this method. Also,
see oper at or _ex12, Chapter 6.

use lin_sol_Isqg_int
use rand_gen_int

inmplicit none
I This is Exanple 4 for LIN_SOL_LSQ
i nteger, paraneter :: me64, n=32

real (kind(1e0)), paraneter :: one=1.0e0
real (kind(1e0)) :: a(m1,n), b(mtl, 1), x(n,1), y(nfn)

| Generate a random matri x.

call rand_gen(y)
a(l:m1l:n) = reshape(y,(/mn/))

I Generate a random right hand side.

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 25

call rand_gen(b(1l:m1l))
I Heavily weight desired constraint. Al variables sumto one.
a(m+1l, 1: n) = one/sqrt(epsilon(one))
b(mtl, 1) = one/sqrt(epsilon(one))
call lin_sol _Isq(a, b, x)
if (abs(sunm(x) - one)/sun({abs(x)) <= &

sqrt(epsilon(one))) then
wite (*,*) "Exanple 4 for LIN.SOL_LSQis correct.’

end if
end
Fatal and Terminal Error Messages
See the messages.gls file for error messagesfor | i n_sol _| sq. Theseerror
messages are numbered 241-256; 261-276; 281-296; 301-316.
lin_sol svd

Solves arectangular least-squares system of linear equations Ax [1b using
singular value decomposition

A=USvT

With optional arguments, any of several related computations can be performed.
These extra tasks include computing the rank of A, the orthogonal mx mand n x n
matrices U and V, and the m x n diagonal matrix of singular values, S.

Required Arguments

A (Input [/Output])
Array of sizem x n containing the matrix.

b (Input [/Output])
Array of size m x nb containing the right-hand side matrix.

x (Output)
Array of sizen x nb containing the solution matrix.

Example 1: Least-squares solution of a Rectangular System

The least-squares solution of arectangular m x n system Ax (b is obtained. The
useof |in_sol | sq ismoree€fficient in this case since the matrix is of full
rank. This example anticipates a problem where the matrix A is poorly
conditioned or not of full rank; thus, 1i n_sol _svd isthe appropriate routine.
Also, see oper at or _ex13, Chapter 6.

26 » Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

use lin_sol _svd_

use rand_gen_int

inmplicit none

i nt

I This is Exanple 1 for LIN_SOL_SVD.

i nteger, paranet
real (kind(1d0)),
real (ki nd(1d0))

er :: nmF128, n=32
paraneter :: one=1d0
A(mn), b(m1l), x(n,1), y(ntn), err

I Generate a random matrix and right-hand side.

call rand_gen(y)
A = reshape(y, (/
call rand_gen(b(

I Conmpute the | east-sq
call lin_sol _svd

I Check that the resid
! colum vectors of A

mn/))
1:m1))

uares solution matri x of Ax=b.
(A, b, x)

ual s are orthogonal to the

err = sum(abs(matmul (transpose(A), b-mat mul (A, x))))/sum abs(A))

if (err <= sqrt(
wite (*,*) "’
end if

end

Option
MROVS

NCOLS

NRHS =

epsilon(one))) then
Exanple 1 for LIN.SOL_SVD is correct.’

al Arguments

= m (Input)
Usesarray A(1: m 1: n) for the input matrix.
Default: m=size (A, 1)

= n (Input)
Usesarray A(1: m 1: n) for the input matrix.
Default: n = size(A, 2)

nb (Input)

Usesthe array b(1: , 1: nb) for the input right-hand side matrix.
Default: nb = size(b, 2)

Note that b must be arank-2 array.

RANK = k (Output)

<
1

u(

2]
1]

s(

Number of singular values that are at least as large as the value Small. It
will satisfy k <= min(m n).

:,) (Output)
Array of the same type and kind asA(1: m 1: n). It containsthemx m
orthogonal matrix U of the singular value decomposition.

;) (Output)
Array of the same precision asA(1: m 1: n). Thisarray isrea even when
the matrix datais complex. It contains the m x n diagona matrix Sina
rank-1 array. The singular values are nonnegative and ordered non-
increasing.

IMSL Fortran 90 MP Library 4.0

Chapter:1 Linear Solvers « 27

v = v(:,:) (Output)
Array of the same type and kind asA(1: m 1: n). It containsthen x n
orthogonal matrix V.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix. Used for
passing optional datato the routine. The options are as follows:

Packaged Options for i n_sol _svd
Option Prefix = ? Option Name Option Vaue
s ,d_,c_,z_ lin_sol _svd_set_snall 1
s_,d_,c_,z_ lin_sol _svd_overwite_input 2
s ,d_,c_,z_ l'in_sol _svd_safe_reciprocal 3
s_,d_,c_,z_ l'in_sol _svd_scan_for_NaN 4

iopt(10 = ?_options(?_lin_sol_svd_set_small, Small)
Replaces with zero a diagonal term of the matrix Sif itissmaller in
magnitude than the value Small. This determines the approximate rank
of the matrix, which isreturned asthe “r ank=" optional argument. A
solution is approximated based on this replacement.
Default: the smallest number that can be safely reciprocated

iopt (10 = ? options(?_lin_sol_svd overwite_input,? dumy)
Does not save the input arrays ,:) andb(: ,:).

iopt(10 = ?_options(?_lin_sol_svd_safe_reciprocal, safe)
Replaces a denominator term with safe if it is smaller in magnitude than
the valuesafe.
Default: the smallest number that can be safely reciprocated

iopt (10 = ? options(?_lin_sol_svd_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the sNaN() function,Chapter 6.
Default: Does not scan for NaNs

Description

The li n_sol _svd routine solves a rectangular system of linear algebraic
equations in a least-squares sense. It computes the factorizaidmoin as the
singular value decomposition. This decomposition has the following form:

A=Usv’

The matriced) andV are orthogonal. The matr&is diagonal with the diagonal
terms non-increasing. See Golub and Van Loan (1989, Chapters 5.4 and 5.5) for
further details.

28 « Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

Example 2: Polar Decomposition of a Square Matrix

A polar decomposition of an n x n random matrix is obtained. This
decomposition satisfies A = PQ, where P is orthogonal and Q is self-adjoint and
positive definite.

Given the singular value decomposition
A=USVT
the polar decomposition follows from the matrix products
P=UVT andQ=Vsv'

This example uses the optional arguments “u=", “s=", and ‘v=", then array
intrinsic functions to calculaetP andQ. Also, seeoper at or _ex14, Chapter 6.

use lin_sol_svd_int
use rand_gen_int

inmplicit none
I This is Exanple 2 for LIN_SOL_SVD.
i nteger i
i nteger, paraneter :: n=32
real (kind(1d0)), paraneter :: one=1.0d0, zero=0.0dO0
real (kind(1d0)) a(n,n), b(n,0), ident(n,n), p(n,n), q(n,n), &
s_d(n), u_d(n,n), v_d(n,n), x(n,0), y(n*n)
I Generate a random matri X

call rand_gen(y)
a = reshape(y, (/n,n/))

I Conpute the singular val ue deconposition.

call lin_sol_svd(a, b, x, nrhs=0, s=s_d, &
u=u_d, v=v_d)

I Compute the (left) orthogonal factor
p = matnul (u_d, transpose(v_d))
I Conpute the (right) self-adjoint factor.
g = matmul (v_d*spread(s_d, 1, n),transpose(v_d))
i dent =zero
doi=1, n
ident(i,i) = one
end do
I Check the results.
i f (sunm(abs(matmul (p,transpose(p)) - ident))/sum(abs(p)) &

<= sqgrt(epsilon(one))) then
if (sunm(abs(a - matmul (p,q)))/sumabs(a)) &

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 29

<= sqrt(epsilon(one))) then
wite (*,*) "Exanple 2 for LIN.SOL_SVD is correct.
end if
end if

end

Example 3: Reduction of an Array of Black and White

Ann x narray A contains entries that are either 0 or 1. The entry is chosen so that
as atwo-dimensional object with origin at the point (1, 1), the array appearsasa
black circle of radius n/4 centered at the point (n/2, n/2).

A singular value decomposition
A=Usv’

is computed, where Sis of low rank. Approximations using fewer of these
nonzero singular values and vectors suffice to reconstruct A. Also, see
oper at or _ex15, Chapter 6.

use lin_sol _svd_ int
use rand_gen_int
use error_option_packet

inplicit none
I This is Exanple 3 for LIN_SO._SVD.

integer i, j, k

i nteger, paraneter :: n=32

real (kind(1e0)), paraneter :: hal f=0.5e0, one=1e0, zero=0e0

real (kind(1e0)) a(n,n), b(n,0), x(n,0), s(n), u(n,n), &
v(n,n), c(n,n)

' Fill in value one for points inside the circle
a = zero
do i=1, n
do j=1, n
if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) a(i,j) = one
end do
end do

I Conpute the singular val ue deconposition.
call lin_sol _svd(a, b, x, nrhs=0, &
S=S, UuU=u, V=V)

! How many terns, to the nearest integer, exactly
I match the circle?
c = zero; k = count(s > half)
do i=1, k
c =c¢ + spread(u(l:n,i),2,n)*spread(v(1l:n,i),1,n)*s(i)
if (count(int(c-a) /=0) == 0) exit
end do

if (i <k) then

wite (*,*) "Exanple 3 for LIN.SOL_SVD is correct.’
end if
end

30 ¢ Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

Example 4: Laplace Transform Solution

This exampleillustrates the solution of alinear least-sguares system where the
matrix is poorly conditioned. The problem comes from solving the integral
equation:

1

Je“St f(t)dt = s'l(l— e's) =g(s)

0

The unknown function f(t) = 1 is computed. This problem is equivalent to the
numerical inversion of the Laplace Transform of the function g(s) using real
values of t and s, solving for afunction that is nonzero only on the unit interval.
The evaluation of the integral uses the following approximate integration rule:

1 n tj+1
J'f(t)e‘s‘dt =y f(t]-)J-e_Stdt
0 j=1 t,
The points {t; } are chosen equally spaced by using the following:
j-1
t]. :J_
n

The points {sj } are computed so that the range of g(s) is uniformly sampled. This
requires the solution of m equations

m+1

forj=1,...,nandi=1, ..., m. Fortran 90 array operations are used to solve for
the collocation points {s } asasingle series of steps. Newton's method,

S S——
h
isapplied to the array function
h(s)=e*+sg-1
where the following istrue:
9=[gu 1G]

Note the coefficient matrix for the solution values

f:[f(tl),...,f(tn)]T

whose entry at the intersection of row i and column j isequal to the value

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 31

tj+l

J-e_ﬁtdt
5

is explicitly integrated and evaluated as an array operation. The solution analysis
of the resulting linear least-squares system

Af Og
is obtained by computing the singular value decomposition
A=usv’
An approximate solution is computed with the transformed right-hand side
b=UTg

followed by using as few of the largest singular values as possible to minimize the
following squared error residual:

n
2
> (-1)
j=1
This determines an optimal value k to use in the approximate solution
k
V.
f= Zb- £
i
j=1 5
Also, see oper at or _ex16, Chapter 6.

use lin_sol _svd_ int
use rand_gen_int
use error_option_packet

inmplicit none
I This is Exanple 4 for LIN_SO._SVD.

integer i, j, k

i nteger, paraneter :: mF64, n=16

real (kind(1e0)), paraneter :: one=1e0, zero0=0.0e0

real (kind(1e0)) :: g(m, s(m, t(n+l), a(mn), b(m1l), &
f(n,1), US(mm, V.S(n,n), S S(n), &
rns, ol drns

real (kind(1e0)) :: delta_g, delta_t

delta_g = one/real (mtl, ki nd(one))

I Conpute which collocation equations to solve

do i=1,m
g(i)=i*delta_ g
end do

I Conpute equal ly spaced quadrature points
delta_t =one/real (n, kind(one))
do j=1,n+l

32« Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

t(j)=(j-1)*delta_t
end do

Conmput e col | ocati on points.
s=m
sol ve_equations: do
s=s- (exp(-s)-(one-s*g))/ (g-exp(-s))
if (sunm(abs((one-exp(-s))/s - g)) <= &
epsilon(one) *sum(g)) &
exit solve_equations
end do sol ve_equations

Eval uate the integrals over the quadrature points
a = (exp(-spread(t(1:n),1, m*spread(s,2,n)) &
- exp(-spread(t(2:n+l),1, mM*spread(s,2,n))) / &
spread(s, 2,n)

b(1:,1)=g
Conput e the singular val ue deconposition.

call lin_sol_svd(a, b, f, nrhs=0, &
rank=k, u=U_S, v=V_S, s=S 9)

Si ngul ar values that are |arger than epsilon determ ne
t he rank=k.

k = count(S_S > epsilon(one))

ol drms = huge(one)

g = matmul (transpose(U_S), b(1:m1))

Find the m ni num nunber of singular values that gives a good
approxi mation to f(t) = 1.

do i=1,k

f(l:n,1) = matmul (V_S(1:,1:i), g(1:i)/S_S(1:i))

f =f - one

rms = sum(f**2)/n

if (rns > oldrns) exit

oldrnms = rns
end do
wite (*,"(' Using this nunmber of singular values, ', &

& 4 /| ' the approximate RMS. error is ', 1lpel2.4)") &

i-1, oldrms

if (sqrt(oldrns) <= delta_t**2) then
wite (*,*) "Exanple 4 for LIN.SOL_SVD is correct.’
end if

end

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messagesfor | i n_sol _svd. These error
messages are numbered 401-412; 421-432; 441-452; 461-472.

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 33

lin_sol_tri
Solves multiple systems of linear equations
A=y j=1.,k

Each matrix A, istridiagonal with the same dimension, n. The default solution

method is based on LU factorization computed using cyclic reduction or,
optionally, Gaussian elimination with partial pivoting.

Required Arguments

C (Input [/Output])
Array of size 2n x k containing the upper diagonals of the matrices A;.
Each upper diagonal is entered in array locations c(1: n - 1, j). The data
C(n, 1: K) are not used.

D (Input [/Output])
Array of size 2n x k containing the diagonals of the matrices A;. Each
diagonal is entered in array locations D(1: n, j).

B (Input [/Output])
Array of size 2n x k containing the lower diagonals of the matrices A;.
Each lower diagonal is entered in array locations B(2: n, j). The data
B(1, 1: K) are not used.

Y (Input [/Output])
Array of size 2n x k containing the right-hand sides, y;. Each right-hand
sideisentered in array locations Y(1: n, j). The computed solution x; is
returned in locations Y(1: n, j).

Note: Therequired arguments have the Input data overwritten. If these
quantities are used later, they must be saved in user-defined arrays. The routine
uses each array’'slocations(n + 1:2 * n, 1:K) for scratch storage and
intermediate data in the LU factorization. The default values for problem
dimensionsaren = (size (D, 1))/2 and k= size (D, 2).z

Example 1: Solution of Multiple Tridiagonal Systems

The upper, main and lower diagonals of n systems of sizen x n are generated
randomly. A scalar is added to the main diagonal so that the systems are positive
definite. A random vector x; is generated and right-hand sidesy; = A; y; are
computed. The routine is used to compute the solution, using the A; and y;. The
results should compare closely with thex; used to generate the right-hand sides.
Also, see oper at or _ex17, Chapter 6.

use lin_sol tri_int
use rand_gen_int
use error_option_packet

inplicit none

34 « Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

This is Exanple 1 for LIN_SO__TRI

i nteger i

i nteger, paraneter :: n=128

real (kind(1d0)), paraneter :: one=1d0, zero0=0d0

real (kind(1d0)) err

real (kind(1d0)), dimension(2*n,n) :: d, b, c, res(n,n),
t(n), x, vy

CGenerate the upper, nmain, and | ower diagonals of the

n matrices Ai. For each systema randomvector x is used
to construct the right-hand side, Ax = y. The |ower part
of each array renmains zero as a result.

c = zero;, d=zero; b=zero; x=zero
doi =1, n

call rand_gen (c(1:n,i))
call rand_gen (d(1:n,i))
call rand_gen (b(1:n,i))
call rand_gen (x(1:n,i))

end do

Add scalars to the main diagonal of each system so that
all systems are positive definite.

t = sum(c+d+b, DI M=1)

d(1:n,1:n) = d(1:n,1:n) + spread(t, Dl M=1, NCOPI ES=n)

Set Ax = y. The vector x generates y. Note the use
of ECSHI FT and array operations to conpute the matrix
product, n distinct ones as one array operation.

y(1l:n,1:n)=d(1:n,1:n)*x(1:n,1:n) + &
c(1:n,1:n)*ECSH FT(x(1:n,1:n), SH FT=+1, DI M-1)
b(1:n,1:n)*ECSH FT(x(1:n,1:n), SH FT=-1, DI M~1)

Conmput e the solution returned in y. (The input values of c,
d, b, and y are overwitten by lin_sol_tri.) Check for any
error messages.

call lin_sol tri (c, d, b, y)

Check the size of the residuals, y-x. They should be snall,
relative to the size of values in x.
res x(1l:n,1:n) - y(1l:n,1:n)
err sum(abs(res)) / sun(abs(x(1:n,1:n)))
if (err <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 1 for LIN.SOL_TRI is correct.’
end if

end

Optional Arguments

NCOLS = n (Input)

Usesarrays C(1: n — 1, 1: k), D(1: n, 1: k), and B(2: n, 1: k) as the upper,

&

+ &

main and lower diagonals for the input tridiagonal matrices. The right-
hand sides and solutionsarein array Y(1: n, 1: k). Note that each of

IMSL Fortran 90 MP Library 4.0

Chapter:1 Linear Solvers * 35

these arrays are rank-2.
Default: n = (size(D, 1))/2

NPROB = k (Input)
The number of systems solved.
Default: k = size(D, 2)

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix. Used for
passing optional datato the routine. The options are as follows:

Packaged Options for i n_sol _tri
Option Prefix = ? Option Name Option Value
s ,d ,c_,z_ lin_sol _tri_set_small 1
s_,d_,c_,z_ lin_sol tri_set_jolt 2
s ,d_,c_,z_ lin_sol _tri_scan_for_NaN 3
s_,d_,c_,z_ lin_sol _tri_factor_only 4
s ,d_,c_,z_ lin_sol _tri_solve_only 5
s_,d_,c_,z_ lin_sol _tri_use_Gauss_elim 6

iopt(10 = ?_options(?_lin_sol_tri_set_small, Small)
Whenever areciprocation is performed on a quantity smaller than Small,
itisreplaced by that value plus 2 x jolt.
Default: 0.25 x epsilon()

iopt(10 = ? options(?_lin_sol tri_set jolt, jolt)
Default: epsilon(), machine precision

iopt (10 = ? options(?_lin_sol _tri_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that
i sSNaN(C(i,j)) .or.
i sNaN(D(i,j)) .or.
i sSNaN(B(i,j)) .or.
i sNaN(Y(i,j)) == .true
Seethei sNaN() function, Chapter 6.
Default: Does not scan for NaNs.

iopt(10 = ?_options(?_lin_sol _tri_factor_only, ?_dunmy)
Obtain the LU factorization of the matrices A;. Does not solve for a
solution.
Default: Factor the matrices and solve the systems.

iopt(10Q = ?_options(?_lin_sol_tri_solve_only, ?_dumy)
Solve the systems Aj; = y; using the previously computed LU

36 « Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

factorization.
Default: Factor the matrices and solve the systems.

iopt(10Q = ?_options(?_lin_sol_tri_use_Gauss_elim ?_dumy)
The accuracy, numerical stability or efficiency of the cyclic reduction
algorithm may beinferior to the use of LU factorization with partial
pivoting.
Default: Use cyclic reduction to compute the factorization.

Description

Theroutinel i n_sol _tri solvesk systems of tridiagonal linear algebraic
equations, each problem of dimension n x n. No relation between kand nis
required. See Kershaw, pages 86—88 in Rodrigue (1982) for further details. To
deal with poorly conditioned or singular systems, a specific regularizing termis
added to each reciprocated value. This technique keeps the factorization process
efficient and avoids exceptions from overflow or division by zero. Each
occurrence of an array reciprocal a isreplaced by the expression (a+t)_1,
where the array temporary t has the value O whenever the corresponding entry
satisfies Ja] > Small. Alternately, t has the value 2 x jolt. (Every small
denominator gives rise to a finite “jolt” $ince this tridiagonal solver is used in
the routined i n_svd and! i n_ei g_sel f for inverse iteration, regularization
is required. Users can reset the valueSnaall andjolt for their own needs. Using
the default values for these parameters, it iegly necessary to scale the
tridiagonal matrix so that the maximum magnitude has value apmt®ty one.
This is normally not an issue when the systems are nonsingular.

The routine is designed toaisyclic reduction as the default method for
computing tle LU factorization. Using an optional parameter, standard
elimination awl partial pivoting will be used to compute the factorization. Partial
pivoting is numerically stable but is likely to be less efficient than cyclic
reduction.

Example 2: Iterative Refinement and Use of Partial Pivoting

This program unit shows usage that typically gives acceptable accuracy for a
large class of ptdems. Our goal is to use the efficient cyclic reduction algorithm
when possible, and keep on using it unless it will fail. In exceptional cases our
program switches to &L U factorization with partial pivoting. This use of both
factorization and solution methods enhances reliability and mainféicisrecy

on the average. Alsggeoper at or _ex18, Chapter 6.

use lin_sol _tri_int
use rand_gen_int
inmplicit none
I This is Exanple 2 for LIN_SOL_TRI.

integer i, nopt
i nteger, paraneter :: n=128

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 37

real (kind(1e0)), paraneter :: s_one=1e0, s_zero=0e0
real (kind(1d0)), paraneter :: d_one=1d0, d_zero=0d0
real (kind(1e0)), dinmension(2*n,n) :: d, b, c, res(n,n), &

X,
real (ki nd(1e0)) change_new, change old, err
type(s_options) :: iopt(2) = s_options(0,s_zero)
real (kind(1d0)), dinmension(n,n) :: d_save, b_save, c_save, &

X_save, y_save, x_sol
| ogi cal solve_only

C = s_zero; d=s_zero; b=s_zero; X=s_zero

I Generate the upper, main, and | ower diagonals of the
! matrices A A randomvector x is used to construct the
I right-hand sides: y=A*x.

doi =1, n

call rand_gen (c(1:n,i))
call rand_gen (d(1:n,i))
call rand_gen (b(1:n,i))
call rand_gen (x(1:n,i))

end do

I Save doubl e precision copies of the diagonals and the
I right-hand side
c_save = c¢(1:n,1:n); d_save = d(1l:n,1:n)
b save = b(1l:n,1:n); x_save = x(1:n,1:n)
y_save(1l:n,1:n) = d(1:n,1:n)*x_save + &
c(1:n, 1: n) *ECSH FT(x_save, SH FT=+1, DI Mc1) + &
b(1:n, 1: n) *ECSH FT(x_save, SH FT=- 1, DI M=1)

I lterative refinenent |oop.
factorization_choice: do nopt=0, 1

| Set the logical to flag the first tine through

solve_only = .fal se
x_sol = d_zero
change_ol d = huge(s_one)

iterative_refinenent: do

I This flag causes a copy of data to be noved to work arrays
I and a factorization and solve step to be perforned.
if (.not. solve_only) then
c(1l:n,1:n)=c_save; d(1:n,1:n)=d_save
b(1:n,1:n)=b_save
end if

I Conpute current residuals, y - A*X, using current Xx.
y(1l:n,1:n) = -y _save + &
d_save*x_sol + &
c_save*EOSHI FT(x_sol , SH FT=+1, DI Mc1) + &
b_save* EOSH FT(x_sol , SH FT=-1, DI M=1)

call lin_sol _tri (c, d, b, y, iopt=iopt)

x_sol = x_sol + y(1l:n,1:n)

38 ¢ Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

change_new = sum(abs(y(1:n,1:n)))

I If size of change is not decreasing, stop the iteration.
i f (change_new >= change_ol d) exit iterative_refinenent

change_ol d = change_new
i opt (nopt+1) = s_options(s_lin_sol _tri_solve_only,s_zero)
solve_only = .true.

end do iterative_refinenent

I Use CGaussian Elinmnation if Cyclic Reduction did not get an
I accurate sol ution.
I It is an exceptional event when Gaussian Elinmnation is required.
if (sunm(abs(x_sol - x_save)) / sum(abs(x_save)) &
<= sqrt(epsilon(d_one))) exit factorization_choice

iopt = s_options(0,s_zero)
iopt(nopt+1) = s_options(s_lin_sol _tri_use_Gauss_elims_zero)

end do factorization_choice
I Check on accuracy of solution.

res = x(1:n,1:n)- x_save
err = sum(abs(res)) / sumabs(x_save))
if (err <= sqrt(epsilon(d_one))) then
wite (*,*) "Exanple 2 for LIN.SOL_TRI is correct.’
end if

end

Example 3: Selected Eigenvectors of Tridiagonal Matrices

The eigenvalues
Al A

of atridiagonal real, self-adjoint matrix are computed. Note that the computation
is performed using the IMSL MATH/LIBRARY EVASB routine from the
FORTRAN 77 Library. Thisinformation is made available to the Fortran 90
compiler by using the FORTRAN 77 interface for EVASB. The user may write this
interface based on documentation of the arguments (IMSL 1994, p. 356), or use
the module Numerical_Libraries as we have done here. The eigenvectors
corresponding to k < n of the eigenvalues are required. These vectors are
computed using inverse iteration for all the eigenvalues at one step. See Golub
and Van Loan (1989, Chapter 7). The eigenvectors are then orthogonalized. Also,
see oper at or _ex19, Chapter 6.

use lin_sol _tri_int

use rand_gen_int

use Nunerical _Libraries
inmplicit none

I This is Exanple 3 for LIN_SOL_TRI.

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 39

integer i, j, nopt

i nteger, paraneter :: n=128, k=n/4, ncoda=1, |da=2
real (kind(1e0)), paraneter :: s_one=1e0, s_zero=0e0
real (kind(1e0)) A(lda,n), EVAL(Kk)

type(s_options) :: iopt(2)=s_options(0,s_zero)

real (kind(1e0)) d(n), b(n), d_t(2*n,k), c_t(2*n,k), perf_ratio, &
b t(2*n,k), y_t(2*n,k), eval _t(k), res(n,k), tenp
| ogi cal smal

I This flag is used to get the k | argest eigenval ues.
smal | = .fal se.

I Generate the nain diagonal and the co-diagonal of the
I tridiagonal matrix

call rand_gen (b)
call rand_gen (d)

A(l,1:)=b; A(2,1:)=d

! Use Nunerical Libraries routine for the calculation of k
I largest eigenval ues.

CALL EVASB (N, K, A, LDA, NCODA, SMALL, EVAL)
EVAL_T = EVAL

I Use DNFL tridiagonal solver for inverse iteration
I calcul ation of eigenvectors.
factorization_choice: do nopt=0,1

I Create k tridiagonal problens, one for each inverse
I iteration system

b t(1:n,1:k) = spread(b, DI M=2, NCOPI ES=k)
c_t(1:n,1:k) = EOSH FT(b_t(1:n,1:k), SH FT=1, DIl M=1)
d t(1:n,1:k) = spread(d, DI M2, NCOPI ES=k) - &

spread(EVAL_T, DI M=1, NCOPI ES=n)

I Start the right-hand side at random val ues, scal ed downward
I to account for the expected 'blowup’ in the solution
do i=1, k
call rand_gen (y_t(1:n,i))
end do

| Do two iterations for the eigenvectors

do i=1, 2
y t(1:n,1:k) =y t(1l:n,1:k)*epsilon(s_one)
call lin_sol tri(c_t, d_t, b_t, y t, &
i opt =i opt)
i opt (nopt+1) = s _options(s_lin_sol _tri_solve_only,s zero)
end do

I Othogonalize the eigenvectors. (This is the npbst
I intensive part of the conputing.)
do j=1,k-1 ! Forward sweep of HMGS orthogonalization.
tenp=s_one/sqrt(sumy_t(1:n,j)**2))
y t(l:n,j)=y_t(l:n,j)*tenp

y t(l:n,j+1:k)=y t(1l:n,j+1l: k) + &
spread(-matmul (y_t(1:n,j),y_t(1l:n,j+1:k)), &

40 « Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

DI ME1, NCOPI ES=n) * &
spread(y_t(1:n,j), DIl M=2, NCOPI ES=k- |)
end do
tenp=s_one/sqrt (sum(y_t(1l:n, k)**2))
y_t(1l:n,K)=y_t(1l:n,k)*tenp

do j=k-1,1,-1 ! Backward sweep of HMGS.
y t(l:n,j+1:k)=y t(1l:n,j+1:k)+ &
spread(-matmul (y_t(1:n,j),y_t(1:n,j+1:k)), &
DI M=1, NCOPI ES=n) * &
spread(y_t(1:n,j), DIl M=2, NCOPI ES=k- |)
end do

See if the performance ratio is snaller than the val ue one.

If it is not the code will re-solve the systens using Gaussian
Elimnation. This is an exceptional event. It is a necessary
conmplication for achieving reliable results.

res(1l:n,1:k) = spread(d, DI M=2, NCOPI ES=k)*y_t(1:n,1:k) + &
spread(b, DI M=2, NCOPI ES=K) * &
ECSH FT(y_t(1:n,1:k), SH FT=-1, Dl MF1) + &
ECSHI FT(spread(b, DI M=2, NCOPI ES=k) *y_t (1: n, 1: k), SH FT=1) &
- y_t(1l:n,1:k)*spread(EVAL_T(1: k), DI M=1, NCOPI ES=n)

If the factorization nethod is Cyclic Reduction and perf_ratio is
| arger than one, re-solve using Gaussian Elimnation. |[|f the
nethod is already Gaussian Elinmination, the loop exits
and perf_ratio is checked at the end.
perf_ratio = sum(abs(res(1:n,1:k))) / &
sum(abs(EVAL_T(1:Kk))) / &
epsilon(s_one) / (5*n)
if (perf_ratio <= s_one) exit factorization_choice
iopt(nopt+1) = s_options(s_lin_sol _tri_use_Gauss_elims_zero)

end do factorization_choice
if (perf_ratio <= s_one) then

wite (*,*) "Exanple 3 for LIN.SOL_TRI is correct.’
end if

end

Example 4: Tridiagonal Matrix Solving within Diffusion Equations

The normalized partia differential equation

ot ox
issolved for values of 0 < x < Ttand t > 0. A boundary value problem consists of
choosing the value
u(0,t) = u,
such that the equation
u(Xq,ty) =ty

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers » 41

issatisfied. Arbitrary values
Xy = 7—T Uy = 1
2 2
and
t, =1
are used for illustration of the solution process. The one-parameter equation
u(x,t)-u =0
The variables are changed to
v(X,t) = u(x,t) —u,

that v(0, t) = 0. The function v(x, t) satisfies the differential equation. The one-
parameter equation solved is therefore

V04 t) = (U = Up) =0

To solve this equation for ug, use the standard technique of the variational

equation,
e o
ou,
Thus
ow _o*w
o o
Sincethe initial datafor
v(x,0) = —u,

the variational equation initial condition is
w(x,0)=-1

This model problem illustrates the method of lines and Galerkin principle

implemented with the differential-algebraic solver, D2SPG (IMSL 1994, pp.

696-717). We use the integrator‘inreverse communication” mode for evaluating
the required functions, derivatives, and solving linear algebraic equations. See
Example 4 of routinedASPG (IMSL 1994, pp. 73-717) for a problem that uses
reverse communication. Next see Example 4 of reutvPAG (IMSL 1994, p.
674-678) for the development ofethiecewise-lineaGalerkin discretization

method to solve the differential equation. This present example extends parts of
both previous examples and illustrates Fortran 90 constructs. It further illustrates
how a user can deal with a defect of an integrator that normaltiidng using

only dense linear algebra factorization methods for solving the corrector
equations. See the comment8renan et al. (1989, esp. p. 137). Alsee

oper at or _ex20, Chapterb.

42 « Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

use lin_sol _tri_int
use rand_gen_int
use Nunerical _Libraries
inmplicit none
I This is Exanple 4 for LIN_SOL_TRI.

i nteger, paraneter :: n=1000, ichap=5, iget=1, iput=2, &
i NnUME6G, i rnume7

real (kind(1e0)), paraneter :: zero=0e0, one = 1le0
i nteger i, ido, in(50), inr(20), iopt(6), ival(7), &
i wk(35+n)
real (ki nd(1e0)) hx, pi_value, t, u_0, u_1, atol, rtol, sval(2), &

tend, wk(41+11*n), y(n), ypr(n), a_diag(n), &
a_off(n), r_diag(n), r_off(n), t_y(n), t_ypr(n), &
t_g(n), t_diag(2*n,1), t_upper(2*n,1),
t_lower(2*n,1), t_sol(2*n,1)

type(s_options) :: iopti(2)=s_options(0,zero)

character(2) :: pi(1l) = "'pi’
| Define initial data.

I Initial values for the variational equation.
y = -one; ypr= zero
pi _val ue = const (pi)
hx = pi_val ue/ (n+1)

a_diag = 2*hx/3
a_off = hx/6
r_diag = -2/ hx
r_off = 1/hx

I Get integer option nunbers

iopt(1l) = inum

call iumag ('math’, ichap, iget, 1, iopt, in)
I Get floating point option nunbers.

iopt(1l) = irnum

call iumag ('math’, ichap, iget, 1, iopt, inr)

I Set for reverse conmunicati on eval uation of the DAE
iopt(1l) = in(26)
ival (1) =0
I Set for use of explicit partial derivatives.
iopt(2) = in(5)
ival (2) =1
I Set for reverse conmunication evaluation of partials
iopt(3) = in(29)
ival (3) =0
I Set for reverse conmunication solution of |inear equations
iopt(4) = in(31)
ival(4) =0
I Storage for the partial derivative array are not allocated or
I required in the integrator.

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 43

iopt(5) = in(34)
ival(5) =1
Set the sizes of iwk, wk for internal checking
iopt(6) = in(35)
ival (6) = 35 + n
ival (7) = 41 + 11*n
Set integer options:
call iumag ('math’, ichap, iput, 6, iopt, ival)

Reset tol erances for integrator:

atol = l1le-3; rtol= le-3

sval (1) = atol; sval(2) =rto

iopt(1) = inr(5)
Set floating point options:

call sumag ('math’, ichap, iput, 1, iopt, sval)
Integrate ODE/ DAE. Use dunmy external names for g(y,y')
and partial s.

ido =1

I ntegration_Loop: do

call d2spg (n, t, tend, ido, y, ypr, dgspg, djspg, iwk, wk)
Find where g(y,y') goes. (It only goes in one place here, but can
vary where divided differences are used for partial derivatives.)
iopt (1) =in(27)
call iumag ('math’, ichap, iget, 1, iopt, ival)
Direct user response:
sel ect case(i do)

case(1, 4)
Thi s should not occur.
wite (*,*) ' Unexpected return with ido ="', ido
stop
case(3)

Reset options to defaults. (This is good housekeepi ng but not
required for this problem)

in=-in
call iumag ('math’, ichap, iput, 50, in, ival)
inr = -inr
call sumag ('math’, ichap, iput, 20, inr, sval)
exit Integration_Loop

case(5)

Eval uate partials of g(y,y').
t_y =y; t_ypr = ypr

t g =r _diag*t_y + r_of f*ECSH FT(t _y, SH FT=+1) &
+ EOSH FT(r_off*t_y, SH FT=-1) &
- (a_diag*t_ypr + a_of f*EOSH FT(t _ypr, SH FT=+1) &
+ ECSHI FT(a_of f*t _ypr, SHI FT=-1))
Move data fromthe assumed size to assunmed shape arrays

do i=1, n
wk(ival (1)+i-1) =t _g(i)
end do

cycle Integration_Loop

case(6)
Eval uate partials of g(y,y').
Get value of c_j for partials.
iopt(1l) = inr(9)
call sumag ('math’, ichap, iget, 1, iopt, sval)

44 « Chapter:1 Linear Solvers IMSL Fortran 90 MP Library 4.0

I Subtract c_j fromdiagonals to compute (partials for y')*c_j
I The linear systemis tridiagonal
t_diag(1:n,1) =r_diag - sval (1)*a_diag
t_upper(1:n,1) =r_off - sval(1)*a_off
t_l ower = EOSH FT(t_upper, SH FT=+1, DI M=1)

cycle Integration_Loop

case(7)
I Conpute the factorization.
iopti (1) = s_options(s_lin_sol_tri_factor_only, zero)
call lin_sol _tri (t_upper, t_diag, t_lower, &
t_sol, iopt=iopti)
cycle Integration_Loop

case(8)
I Solve the system
iopti (1) = s_options(s_lin_sol_tri_solve_only, zero)
I Move data fromthe assuned size to assunmed shape arrays
t_sol (1:n,1)=wk(ival (1):ival (1)+n-1)

call lin_sol _tri (t_upper, t_diag, t_lower, &
t_sol, iopt=iopti)

I Move data fromthe assumed shape to assunmed size arrays
wk(ival (1):ival (1)+n-1)=t_sol (1:n, 1)

cycle Integration_Loop

case(2)
I Correct initial value to reach u_1 at t=tend
u0O=u0- (u 0*y(n/2) - (u_1-u_0)) / (y(n/2) + 1)

I Finish up internally in the integrator
ido =3
cycle Integration_Loop
end sel ect
end do I ntegration_Loop

wite (*,*) '"reaches the value ',u_1, ' at time =

wite (*,*) 'The equation u_t = u_xx, with u(0,t) ="', u0
wite (*,*) 'Exanple 4 for LIN.SOL_TRI is correct.’

end

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messagesfor Ii n_sol _tri . These error
messages are numbered 1081-1086; 1101-1106; 1121-1126; 1141-1146.

IMSL Fortran 90 MP Library 4.0 Chapter:1 Linear Solvers « 45

Chapter 2: Singular Value and
Eigenvalue Decomposition

Introduction

This chapter describes routines for computing the singular value decomposition
for rectangular matrices, and the eigenval ue-eigenvector decomposition for

sguare matrices.
Contents

T o T3 V2 o SRR 48
Example 1: Computing the SVDcoiiiiiiiiiiiiiiieeee e 48
Example 2: Linear Least Squares with a Quadratic Constraint................ 50
Example 3: Generalized Singular Value Decomposition...................c...... 52
Example 4: Ridge Regression as Cross-Validation with Weighting.......... 54
L T T = 56
Example 1: Computing Eigenvaluesccccceeiiiiiiiieeee, 56
Example 2: Eigenvalue-Eigenvector Expansion of a Square Matrix........ 58
Example 3: Computing a few Eigenvectors with Inverse Iteration........... 59
Example 4: Analysis and Reduction of a Generalized Eigensystem........ 61
T o T =Y T o L= o I SO 62
Example 1: Computing Eigenvaluescccuveeeieeiiiiiiiiiiiiie e 63
Example 2: Complex Polynomial Equation ROOtS.............uvveeeiiiiiiininnnnn, 66

Example 3: Solving Parametric Linear Systems with a Scalar Change... 68
Example 4: Accuracy Estimates of Eigenvalues Using Adjoint and

Ordinary BigeNVECIOrS.c.iiiieiiiiiee et et e e e 69
I e T Ao o = [P P 71
Example 1: Computing Generalized Eigenvalues.............ccccvveeeeeeeennnnns 71
Example 2: Self-Adjoint, Positive-Definite Generalized Eigenvalue

PrODIEM L. 74
Example 3: A Test for a Regular Matrix Pencil............ccccceeeieiiiiiiiiiiininennn, 76
Example 4: Larger Data Uncertainty than Working Precision.................. 77

IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition « 47

lin_svd

Computes the singular value decomposition (SVD) of arectangular matrix, A.
This gives the decomposition

A=UsvT

where V isan n x n orthogonal matrix, U isan m x m orthogona matrix, and Sis
areal, rectangular diagonal matrix.

Required Arguments

A (Input [/Output])
Array of size m x n containing the matrix.

S (Output)
Array of size min(m, n) containing the real singular values. These
nonnegative values are in non-increasing order.

U (Output)
Array of size m x m containing the singular vectors, U.

V (Output)
Array of sizen x n containing the singular vectors, V.

Example 1: Computing the SVD

The SVD of asquare, random matrix A iscomputed. Theresiduas R= AV - USare
small with respect to working precision. Also, see oper at or _ex21, Chapter 6.

use lin_svd_int
use rand_gen_int

inmplicit none
This is Exanple 1 for LIN_SVD.

i nteger, paraneter :: n=32

real (kind(1d0)), paraneter :: one=1d0

real (kind(1d0)) err

real (kind(1d0)), dinmension(n,n) :: A U V, S(n), y(n*n)

Generate a randomn by n natrix.
call rand_gen(y)
A = reshape(y, (/n,n/))

Conput e the singular val ue deconposition.
call lin_svd(A S U V)

Check for snall residuals of the expression A*V - US.
err = sum(abs(matmul (A V) - U spread(sS, di n¥l, ncopies=n))) &
/ sun{abs(S))
if (err <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 1 for LIN.SVDis correct.’
end if
end

48 « Chapter 2: Singular Value and Eigenvalue Decomposition IMSL Fortran 90 MP Library 4.0

Optional Arguments

MROAS = m (Input)
Usesarray A(1: m 1: n) for the input matrix.
Default: m= size(A, 1)

NCOLS = n (Input)
Uses array A(1: m 1: n) for theinput matrix.
Default: n = size(A, 2)

RANK = k (Output)
Number of singular values that exceed the value Small. RANK will satisfy
k <= min(m n).

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix. Used for
passing optional data to the routine. The options are as follows:

Packaged Options for I'i n_svd
Option Prefix = ? Option Name Option Vaue
s ,d_,c_,z_ lin_svd_set_snall 1
s_,d_,c_,z_ lin_svd_overwrite_input 2
s ,d_,c_,z_ i n_svd_scan_for_NaN 3
s _,d_,c_,z_ l'in_svd_use_qgr 4
s ,d_,c_,z_ l'in_svd_skip_orth 5
s _,d_,c_,z_ lin_svd_use_gauss_elim 6
s ,d_,c_,z_ lin_svd_set_perf_ratio 7

iopt (10 = ? options(?_lin_svd set_small,Small)
If asingular valueis smaller than Small, it is defined as zero for the
purpose of computing the rank of A.
Default: the smallest number that can be reciprocated safely

iopt (10 = ? options(?_lin_svd overwite_input, ?_dumy)
Does not savetheinput array A(: , :).

opt (109 = ?_options(?_lin_svd_scan_for_NaN, ?_dumy)
Examines each input array entry to find the first value such that
isNaN(a(i,j)) == .true.
Seethei sNaN() function, Chapter 6.
Default: The array is not scanned for NaNs.

iopt (10 = ? options(?_lin_svd use_qr, ?_dunmy)
Uses arational QR agorithm to compute eigenvalues. Accumulate the

IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition « 49

singular vectors using this algorithm.
Default: singular vectors computed using inverse iteration

iopt (10 = ? options(?_lin_svd_skip_Oth, ?_dunmy)
If the eigenvalues are computed using inverse iteration, skips the final
orthogonalization of the vectors. This method results in a more efficient
computation. However, the singular vectors, while a complete set, may
not be orthogonal .
Default: singular vectors are orthogonalized if obtained using inverse
iteration

iopt (10 = ? options(?_lin_svd use_gauss_elim ?_dummy)
If the eigenvalues are computed using inverse iteration, uses standard
elimination with partial pivoting to solve the inverse iteration problems.
Default: singular vectors computed using cyclic reduction

iopt(10 = ?_options(?_lin_svd_set_perf_rati o, perf_ratio)
Usesresiduals for approximate normalized singular vectors if they have
aperformance index no larger than perf_ratio. Otherwise an aternate
approach is taken and the singular vectors are computed again: Standard
elimination is used instead of cyclic reduction, or the standard QR
algorithm is used as a backup procedure to inverse iteration. Larger
values of perf_ratio are lesslikely to cause these exceptions.
Default: perf_ratio= 4

Description

Routine | i n_svd isanimplementation of the QR agorithm for computing the
SVD of rectangular matrices. An orthogonal reduction of the input matrix to
upper bidiagonal form is performed. Then, the SVD of areal bidiagonal matrix is
calculated. The orthogonal decomposition AV = USresults from products of
intermediate matrix factors. See Golub and Van Loan (1989, Chapter 8) for
details.

Additional Examples

Example 2: Linear Least Squares with a Quadratic Constraint

Anm x n matrix equation Ax Ob, m> n, is approximated in aleast-squares sense.

The matrix b is size m x k. Each of the k solution vectors of the matrix x is

constrained to have Euclidean length of value o, > 0. The value of a is chosen so

that the constrained solution is 0.25 the length of the nonregularized or standard
|east-squares equation. See Golub and Van Loan (1989, Chapter 12) for more

details. In the Example 2 code, Newton’s method is used to solve for eadp re
ularizing parameter of tHesystems. The solution is then computed and its length
is checked. Alsoseeoper at or _ex22, Chaptel6.

50 « Chapter 2: Singular Value and Eigenvalue Decomposition IMSL Fortran 90 MP Library 4.0

use lin_svd_ int
use rand_gen_int

inplicit none
I This is Exanple 2 for LIN_SVD.

i nteger, paraneter :: me64, n=32, k=4

real (kind(1d0)), paraneter :: one=1d0, zero=0d0

real (kind(1d0)) a(mn), s(n), u(mm, v(n,n), y(mrmax(n,k)), &
b(mk), x(n,k), g(mk), alpha(k), landa(k), &
delta_landa(k), t_g(n,k), s_sq(n), phi(n,k), &
phi _dot (n, k), rand(k), err

| CGenerate a randommatrix for both A and B
call rand_gen(y)
a = reshape(y, (/mn/))

call rand_gen(y)
b = reshape(y, (/mk/))

I Conpute the singular val ue deconposition.
call lin_svd(a, s, u, v)

I Choose al pha so that the lengths of the regularized solutions
| are 0.25 tinmes lengths of the non-regul arized sol utions.

mat nul (transpose(u), b)
mat nul (v, spread(one/s, di n=2, ncopi es=k) *g(1:n, 1: k))

g:
X =
al pha = 0. 25*sqgrt (sum(x**2, di mel))

t g g(1l:n, 1: k) *spread(s, di mF2, ncopi es=k)
s_sq = s**2; landa = zero

solve _for_landa: do
x=one/ (spread(s_sq, di m=2, ncopi es=k) + &
spread(| anda, di mr1, ncopi es=n))
phi = (t_g*x)**2; phi_dot = -2*phi*x
delta_l anda = (sum(phi, di mel) -al pha**2)/sun(phi _dot, di nrl)

I Make Newton nethod correction to solve the secul ar equations for
I | anda.
landa = landa - delta_l anda

if (sun{abs(delta_landa)) <= &
sqrt(epsilon(one))*sun(l anda)) &
exit solve_for_|anda

! This is intended to fix up negative solution approxi mati ons.
call rand_gen(rand)
where (landa < 0) landa = s(1) * rand
end do solve_for_|anda
I Conpute solutions and check |engths
x = matmul (v,t_g/ (spread(s_sq, di mF2, ncopi es=k) + &
spread(| anda, di n¥1, ncopi es=n)))

err = sum(abs(sum(x**2,di me1l) - al pha**2))/sun{abs(al pha**2))

IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition « 51

if (err <= sqgrt(epsilon(one))) then

end

wite (*,*) "Exanple 2 for LIN.SVDis correct.’
end if

Example 3: Generalized Singular Value Decomposition

The n x n matrices A and B are expanded in a Generalized Singular Value
Decomposition (GSVD). Two n x n orthogonal matrices, U and V, and a
nonsingular matrix X are computed such that

AX =Udiag(c,,...,c,)
and
BX = Vdiag(s,....,s,)
Thevalues s, and c;; are normalized so that
§+¢ =1

The c; are nonincreasing, and the s; are nondecreasing. See Golub and Van Loan

(1989, Chapter 8) for more details. Our method is based on computing three
SVDs as opposed to the QR decomposition and two SVDs outlined in Golub and
Van Loan. Asabonus, an SVD of the matrix X is obtained, and you can use this
information to answer further questions about its conditioning. This form of the
decomposition assumes that the matrix

A
D=
B
has al its singular values strictly positive. For aternate problems, where some
singular values of D are zero, the GSVD becomes
UTA=diag(c,,...,c,)W
and
V'B=dag(s,,...,s,)W

The matrix W has the same singular values as the matrix D. Also, see
oper at or _ex23, Chapter 6.

use lin_svd_ int
use rand_gen_int

inplicit none

i nteger,
i nteger i

This is Exanple 3 for LIN_SVD.

paraneter ::. n=32

real (kind(1d0)), paraneter :: one=1.0d0
real (kind(1d0)) a(n,n), b(n,n), d(2*n,n), x(n,n), u_d(2*n,2*n), &

52 « Chapter 2: Singular Value and Eigenvalue Decomposition IMSL Fortran 90 MP Library 4.0

v_d(n,n), v_c(n,n), u.c(n,n), v_s(n,n), us(n,n), &
y(n*n), s_d(n), c(n), s(n), sc_c(n), sc_s(n), &
errl, err2

I Generate random square matrices for both A and B

call rand_gen(y)
a = reshape(y, (/n,n/))

call rand_gen(y)
b = reshape(y,(/n,n/))

I Construct D Ais on the top; Bis on the bottom

d(1l:n,1:n) = a
d(n+1:2*n,1:n) = b

I Conpute the singular value deconpositions used for the GSVD.

call lin_svd(d, s_d, u.d, v_d)
call lin_svd(u d(1:n,1:n), ¢, u.c, v_c)
call lin_svd(u d(n+1:,1:n), s, u.s, Vv_s)

| Rearrange c(:) so it is non-increasing. Myve singular
I vectors accordingly. (The use of tenporary objects sc_c and
I X is required.)

sc_c =c(n:1:-1); ¢ = sc_c
x =uc(l:nn:l:-1); uc =x
x =v_c(l:nn:1:-1); v.c =X

I The colums of v_c and v_s have the sane span. They are
I equivalent by taking the signs of the |argest nmagnitude val ues
I positive.

do i=1, n
sc_c(i) = sign(one,v_c(sum maxl oc(abs(v_c(1l:n,i)))),i))
sc_s(i) = sign(one,v_s(sum maxl oc(abs(v_s(1l:n,i)))),i))
end do
v_c = v_c*spread(sc_c, di nel, ncopi es=n)
u_c = u_c*spread(sc_c, di n¥1, ncopi es=n)

v_s*spread(sc_s, di n¥1, ncopi es=n)
u_s*spread(sc_s, di m=1, ncopi es=n)

c <
n n
Inn

! Inthis formof the GSVD, the matrix X can be unstable if D
I is ill-conditioned.
x = matmul (v_d*spread(one/s_d, di nrl, ncopi es=n),v_c)

I Check residuals for GSVD, A*X = u_c*diag(c_1, ..., c_n), and
I B¥X = u_s*diag(s_1, ..., s_n)
errl = sun{abs(matmul (a,x) - u_c*spread(c, di n¥l, ncopies=n))) &
! sun(s_d)
err2 = sun(abs(matnmul (b, x) - u_s*spread(s, di nF1, ncopies=n))) &
! sun(s_d)

if (errl <= sqrt(epsilon(one)) .and. &
err2 <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 3 for LIN.SVDis correct.’

IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition ¢ 53

end if

end

Example 4: Ridge Regression as Cross-Validation with
Weighting

This exampleillustrates a particular choice for the ridge regression problem: The
least-squares problem Ax Ob is modified by the addition of aregularizing term to
become

min, (| Ax =] + ()

The solution to this problem, with row k deleted, is denoted by x,(A). Using
nonnegative weights (w,, ..., w,,), the cross-validation squared error C(A) is
given by:
m
mC(A) 4 Z Wk(alxk(A) - bk)

k=1

2

With the SVD A= USV” and product g = U Tp, this quantity can be written as
2

n Sj2
o ([P)
mC(A) = ZWk -)
k=1 _ > S
1 jz:lukJ 7(312 +}\2)

This expression is minimized. See Golub and Van Loan (1989, Chapter 12) for
more details. In the Example 4 code, mC(A), at p = 10 grid points are evaluated
using alog-scale with respect to A, 0.1s; < A <10s;. Array operationsand
intrinsics are used to eval uate the function and then to choose an approximate
minimum. Following the computation of the optimumA, the regularized solutions
are computed. Also, see oper at or _ex24, Chapter 6.

use lin_svd_int
use rand_gen_int

inmplicit none
I This is Exanple 4 for LIN_SVD.

i nteger i

i nteger, paraneter :: m=32, n=16, p=10, k=4

real (kind(1d0)), paraneter :: one=1dO0

real (kind(1d0)) log_l anda, |log_l|l anda_t, delta_l og_I| anda

real (kind(1d0)) a(mmn), b(mKk), w(mk), g(mk), t(n), s(n), &
s_sq(n), u(mm, v(n,n), y(ntmax(n k)), &

54 « Chapter 2: Singular Value and Eigenvalue Decomposition IMSL Fortran 90 MP Library 4.0

c_lanmda(p, k), landa(k), x(n,k), res(n,Kk)

I Generate randomrectangular matrices for A and right-hand
I sides, b.

call rand_gen(y)

a = reshape(y, (/mn/))

call rand_gen(y)
b = reshape(y, (/mk/))

I Generate random wei ghts for each of the right-hand sides
call rand_gen(y)
w = reshape(y, (/ mk/))

I Conpute the singular val ue deconposition.
call lin_svd(a, s, u, v)

g = matnul (transpose(u), b)
S_sq = s**2

log_lamda = 10g(10.*s(1)); log_lamda_t=Ilog_| anda
delta_log landa = (log_l|anda - 10g(0.1*s(n))) / (p-1)

I Choose landa to mninize the "cross-validation" weighted
| square error. First evaluate the error at a grid of points,
I uniformin log scale

cross_validation_error: do i=1, p
t = s_sql/(s_sqg+exp(l og_l anda))
c_lamda(i,:) = sum(w*((b-matrmul (u(1:m1:n),g(1l:n
spread(t, DI M=2, NCOPI ES=k)))/
(one-matmul (u(l:m1l:n)**2, &
spread(t, DI M2, NCOPI ES=k)))) **2, DI Mr1)
log landa = log_ | anda - delta_l og | anda
end do cross_validation_error

1 k)* &
&

I Conpute the grid value and | anda corresponding to the m ni mum
do i=1, k
landa(i) = exp(log landa_t - delta_log |anda* &
(sun{mnloc(c_landa(l:p,i)))-1))
end do

I Conpute the solution using the optimm"cross-validation"
I paraneter.
x = matmul (v, g(1:n, 1: k) *spread(s, Dl M=2, NCOPI ES=k)/ &
(spread(s_sq, DI M=2, NCOPI ES=k) + &
spread(| anda, DI M=1, NCOPI ES=n)))
I Check the residuals, using normal equations.
res = matmul (transpose(a), b-matnmul (a,x)) - &
spread(| anda, DI M=1, NCOPI ES=n) * x
if (sum(abs(res))/sun(s_sq) <= &
sqrt(epsilon(one))) then
wite (*,*) "Exanple 4 for LIN.SVDis correct.’
end if

end

IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition ¢ 55

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messagesfor | i n_svd. These error messages
are numbered 1001-1010; 1021-1030; 1041-1050; 1061—-1070.

lin_eig_self

Computes the eigenvalues of a self-adjoint matrix, A. Optionally, the eigenvectors

can be computed. This gives the decomposition A = VDV’ whereVisannxn
orthogonal matrix and D isarea diagonal matrix.

Required Arguments

A (Input [/Output])
Array of size n x n containing the matrix.

d (Output)
Array of size n containing the eigenvalues. The values are in order of
decreasing absolute value.

Example 1: Computing Eigenvalues

The eigenvalues of a self-adjoint matrix are computed. The matrix A = C+ clis
used, where C israndom. The magnitudes of eigenvalues of A agree with the
singular values of A. Also, see oper at or _ex25, Chapter 6.

use lin_eig_self_int
use lin_sol_svd_int
use rand_gen_int

inmplicit none
I This is Exanple 1 for LIN_EI G SELF.

i nteger, paraneter :: n=64
real (kind(1e0)), paraneter :: one=1e0
real (kind(1e0)) :: A(n,n), b(n,0), D(n), S(n), x(n,0), y(n*n)

I Generate a randommatrix and fromit
I a self-adjoint matrix.

call rand_gen(y)

A = reshape(y, (/n,n/))

A = A + transpose(A)

I Conpute the eigenval ues of the nmatrix.
call lin_eig_self(A D)

I For conparison, conpute the singular val ues.
call lin_sol_svd(A b, x, nrhs=0, s=5)

I Check the results: Magnitude of eigenval ues shoul d equal
I the singular val ues.

56 « Chapter 2: Singular Value and Eigenvalue Decomposition IMSL Fortran 90 MP Library 4.0

if (sum(abs(abs(D) - S)) <= &
sqrt(epsilon(one))*S(1)) then
wite (*,*) "Exanple 1 for LIN EIG SELF is correct.’

end if
end
Optional Arguments
NROAS = n (Input)
Usesarray A(1: n, 1: n) for the input matrix.
Default: n = size(A, 1)
v = v(:,:) (Output)
Array of the same type and kind asA(L: n, 1: n). It containsthen x n
orthogonal matrix V.
iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix; used for
passing optional data to the routine. The options are as follows:
Packaged Options for i n_ei g_sel f
Option Prefix = ? Option Name Option Value
s ,d_,c_,z_ lin_eig_self_set_small 1
s_,d_,c_,z_ lin_eig self_overwite_input 2
s ,d_,c_,z_ lin_eig_self_scan_for_NaN 3
s_,d_,c_,z_ lin_eig self_use QR 4
s ,d ,c_,z_ lin_eig_self_skip_Oth 5
s_,d_,c_,z_ lin_eig self_use Gauss_elim 6
s ,d ,c_,z_ lin_eig_self_set_perf_ratio 7

iopt(10 = ?_options(?_lin_eig self_set_small,Small)
If adenominator term is smaller in magnitude than the value Small, it is
replaced by Small.
Default: the smallest number that can be reciprocated safely

iopt (10 = ? options(?_lin_eig_self_overwite_ input,
?_dummy)
Do not save the input array A(: , @).

iopt(10Q = ?_options(?_lin_eig_self_scan_for_NaN, ?_dunmy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) == .true.
Seethei sNaN() function, Chapter 6.
Default: The array is not scanned for NaNs.

iopt (10 = ? options(?_lin_eig use QR ?_dunmy)
Uses arational QR agorithm to compute eigenvalues. Accumulate the

IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition ¢ 57

eigenvectors using this algorithm.
Default: the eigenvectors computed using inverseiteration

iopt (10 = ? options(?_lin_eig _skip_Oth, ?_dunmmy)
If the eigenvalues are computed using inverse iteration, skips the final
orthogonalization of the vectors. Thiswill result in amore efficient
computation but the eigenvectors, while a complete set, may be far from
orthogonal.
Default: the eigenvectors are normally orthogonalized if obtained using
inverse iteration.

iopt (10 = ? options(?_lin_eig use _Gauss_elim ?_dumy)
If the eigenvalues are computed using inverse iteration, uses standard
elimination with partial pivoting to solve the inverse iteration problems.
Default: the eigenvectors computed using cyclic reduction

iopt(10 = ?_options(?_lin_eig_self_set_perf_ratio, perf ratio)
Usesresiduals for approximate normalized eigenvectorsif they have a
performance index no larger than perf_ratio. Otherwise an alternate
approach is taken and the eigenvectors are computed again; Standard
elimination is used instead of cyclic reduction, or the standard QR
algorithm is used as a backup procedure to inverse iteration. Larger
values of perf_ratio are lesslikely to cause these exceptions.
Default: perf ratio=4

Description

Routinel i n_ei g_sel f isan implementation of the QR algorithm for self-
adjoint matrices. An orthogonal similarity reduction of the input matrix to self-
adjoint tridiagonal form is performed. Then, the eigenvalue-eigenvector
decomposition of areal tridiagonal matrix is calculated. The expansion of the
matrix as AV = VD results from a product of these matrix factors. See Golub and
Van Loan (1989, Chapter 8) for details.

Additional Examples

Example 2: Eigenvalue-Eigenvector Expansion of a Square
Matrix
A self-adjoint matrix is generated and the eigenvalues and eigenvectors are

computed. Thus, A = vDV’, where Vis orthogonal and D isareal diagonal
matrix. The matrix V is obtained using an optional argument. Also, see
oper at or _ex26, Chapter 6.

use lin_eig_self_int
use rand_gen_int

inmplicit none
I This is Exanple 2 for LIN_ElI G SELF.

integer, parameter :: n=8

58 « Chapter 2: Singular Value and Eigenvalue Decomposition IMSL Fortran 90 MP Library 4.0

real (kind(1e0)), paraneter :: one=1e0
real (kind(1e0)) :: a(n,n), d(n), v_s(n,n), y(n*n)

I Generate a random self-adjoint natrix.
call rand_gen(y)
a = reshape(y, (/n,n/))
a = a + transpose(a)
I Conpute the eigenval ues and ei genvectors
call lin_eig_self(a, d, v=v_s)
I Check the results for small residuals.
if (sum(abs(matmul (a,v_s)-v_s*spread(d,1,n)))/d(1) <= &
sqrt(epsilon(one))) then
wite (*,*) "Exanple 2 for LIN EIG SELF is correct.
end if
end

Example 3: Computing a few Eigenvectors with Inverse
Iteration

A self-adjoint n x n matrix is generated and the eigenvalues, {d, }, are computed.

The eigenvectors associated with the first k of these are computed using the self-
adjoint solver, | i n_sol _sel f, and inverse iteration. With random right-hand
sides, these systems are as follows:

(A=dil)y; =h

The solutions are then orthogonalized asin Hanson et al. (1991) to comprise a
partial decomposition AV = VD whereV isan n x k matrix resulting from the
orthogonalized {v;} and D isthe k x k diagonal matrix of the distinguished

eigenvalues. It is necessary to suppress the error message when the matrix is
singular. Since these singularities are desirable, it is appropriate to ignore the
exceptions and not print the message text. Also, see oper at or _ex27, Chapter 6.

use lin_eig self_int
use lin_sol _self_int
use rand_gen_int

use error_option_packet

inplicit none
I This is Exanple 3 for LIN_EI G SELF.

integer i, j

i nteger, paraneter :: n=64, k=8

real (kind(1d0)), paraneter :: one=1d0, zero=0d0

real (kind(1d0)) big, err

real (kind(1d0)) :: a(n,n), b(n,1), d(n), res(n, k), tenmp(n,n), &
v(n, k), y(n*n)

type(d_options) :: iopti(2)=d_options(0, zero)

I Generate a random self-adjoint natrix.
call rand_gen(y)
a reshape(y, (/n,n/))
a a + transpose(a)

IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition ¢ 59

Conput e just the eigenval ues.

call lin_eig_self(a, d)
do i=1, k
Define a tenporary array to hold the matrices A - eigenval ue*l.
temp = a
do =1, n . |
tenp(j,j) = temp(j,j) - d(i)
end do

Use packaged option to reset the value of a small diagonal
iopti(1l) = d_options(d_lin_sol_self_set_small, &
epsi l on(one) *abs(d(i)))

Use packaged option to skip singularity nmessages
iopti(2) = d_options(d_lin_sol_self_no_sing ness, &

zero)
call rand_gen(b(1l:n,1))
call lin_sol _self(tenp, b, v(1:,i:i),&
i opt =i opti)

end do

O thogonal i ze the ei genvectors.

do i=1, k
bi g = maxval (abs(v(1:,i)))
v(1l:,i) = v(1l:,i)/big
v(1l:,i) = v(1l:,i)/sgrt(sumv(l:,i)**2))
if (i == k) cycle

v(1l:,i+1:k) = v(1l:,i+1l:k) + &
spread(-matmul (v(1:,i),v(1:,i+1:k)),1,n)* &
spread(v(1l:,i),2,k-i)
end do
do i=k-1, 1, -1
v(1l:,i+1:k) = v(1l:,i+1l:k) + &
spread(-matmul (v(1:,i),v(1:,i+1:k)),1,n)* &
spread(v(1l:,i),2,k-i)
end do

Check the results for both orthogonality of vectors and snal
resi dual s.
res(1l:k,1: k) = matmul (transpose(v), V)

do i=1,k
res(i,i)=res(i,i)-one
end do

err = sun{abs(res))/k**2

res = matmul (a,v) - v*spread(d(1:k),1,n)

if (err <= sqrt(epsilon(one))) then
if (sun(abs(res))/abs(d(1l)) <= sqrt(epsilon(one))) then

wite (*,*) 'Exanple 3 for LIN_EIG SELF is correct.’

end if

end if

end

60 « Chapter 2: Singular Value and Eigenvalue Decomposition

IMSL Fortran 90 MP Library 4.0

Example 4: Analysis and Reduction of a Generalized
Eigensystem

A generalized eigenvalue problem is Ax = ABx, where A and B are n x n self-
adjoint matrices. The matrix B is positive definite. This problem is reduced to an
ordinary self-adjoint eigenvalue problem Cy = Ay by changing the variables of the

generalized problem to an equivaent form. The eigenvalue-eigenvector

decomposition B = vsvTisfirst computed, labeling an eigenvalue too small if it
islessthan epsi | on(1. d0) . The ordinary self-adjoint eigenvalue problem is
Cy = Ay provided that the rank of B, based on this definition of Small, hasthe

value n. In that case,
C=DVTAVD
where

D=s"?

The relationship between x and y is summarized as X = VDY, computed after the
ordinary eigenvalue problem is solved for the eigenvectors Y of C. The matrix X

is normalized so that each column has Euclidean length of value one. This

solution method is nonstandard for any but the most ill-conditioned matrices B.
The standard approach is to compute an ordinary self-adjoint problem following

computation of the Cholesky decomposition
B=R'R
where Ris upper triangular. The computation of C can also be completed

efficiently by exploiting its self-adjoint property. See Golub and Van Loan (1989,

Chapter 8) for more information. Also, see oper at or _ex28, Chapter 6.

use lin_eig self_int
use rand_gen_int
inplicit none

I This is Exanple 4 for LIN_EI G SELF.

i nteger
i nteger, paraneter :: n=64
real (kind(1e0)), paraneter :: one=1d0

real (kind(1e0)) b_sum
real (kind(1e0)), dinmension(n,n) :: A B, C D(n), |anbda(n), &

S(n), vb_d, X ytenmp(n*n), res

I Generate random sel f-adjoint matrices
call rand_gen(ytenp)

A
A

o WO

a

reshape(ytenp, (/n,n/))
A + transpose(A)

rand_gen(yt emp)
reshape(ytenp, (/n,n/))
B + transpose(B)

_sum = sqrt(sun{abs(B**2))/n)

IMSL Fortran 90 MP Library 4.0

Chapter 2: Singular Value and Eigenvalue Decomposition « 61

I Add a scalar matrix so Bis positive definite.
do i=1, n
B(i,i) = B(i,i) + b_sum
end do

I Get the eigenval ues and ei genvectors for B.
call lin_eig_self(B, S, v=vb_d)
I For full rank problens, convert to an ordinary self-adjoint

I problem (Al of these exanples are full rank.)
if (S(n) > epsilon(one)) then

D = one/sqrt(S)
C = spread(D, 2, n)*mat nul (transpose(vb_d), &
mat nul (A, vb_d)) *spread(D, 1, n)

I Get the eigenval ues and ei genvectors for C
call lin_eig_self(C Ilanbhda, v=X)

I Conpute the generalized ei genvectors.
X = matmul (vb_d, spread(D, 2, n) *X)

I Normalize the eigenvectors for the generalized problem
X = X * spread(one/sqgrt(sum X**2,di m2)), 1, n)

res = matnul (A X) - &
mat nul (B, X) *spread(| anbda, 1, n)

I Check the results.
if (sun(abs(res))/(sun(abs(A))+sunm(abs(B))) <= &
sqrt(epsilon(one))) then
wite (*,*) "Exanple 4 for LIN E G SELF is correct.’

end if
end if
end
Fatal, Terminal, and Warning Error Messages
See the messages.gls file for error messagesfor | i n_ei g_sel f. These error
messages are numbered 81-90; 101-110; 121-129; 141-149.
lin_eig_gen

Computes the eigenvalues of an n x n matrix, A. Optionally, the eigenvectors of A

or AT are computed. Using the eigenvectors of A gives the decomposition AV =
VE, where V isan n x n complex matrix of eigenvectors, and E is the complex
diagonal matrix of eigenvalues. Other options include the reduction of A to upper
triangular or Schur form, reduction to block upper triangular form with 2 x 2 or
unit sized diagonal block matrices, and reduction to upper Hessenberg form.

62 « Chapter 2: Singular Value and Eigenvalue Decomposition IMSL Fortran 90 MP Library 4.0

Required Arguments

A (Input [/Output])
Array of sizen x n containing the matrix.

E (Output)
Array of size n containing the eigenvalues. These complex values arein
order of decreasing absolute value. The signs of imaginary parts of the
eigenvalues arein no predictable order.

Example 1: Computing Eigenvalues

The eigenvalues of arandom real matrix are computed. These values define a
complex diagonal matrix E. Their correctness is checked by obtaining the
eigenvector matrix V and verifying that the residuals R = AV — VE are small.
Also, see oper at or _ex29, Chapter 6.

use lin_eig gen_int
use rand_gen_int

inplicit none
I This is Exanple 1 for LIN_EI G GEN.

i nteger, paraneter :: n=32

real (kind(1d0)), paraneter :: one=1d0

real (kind(1d0)) A(n,n), y(n*n), err

conpl ex(kind(1d0)) E(n), V(n,n), E T(n)
type(d_error) :: d_epack(16) = d_error (0, 0d0)

| Generate a random natri x.
call rand_gen(y)
A = reshape(y, (/n,n/))

I Conpute only the eigenval ues.
call lin_eig_gen(A E)

I Conpute the deconposition, A*V = V*val ues,
I obtaining eigenvectors.
call lin_eig_gen(A ET, v=V)

I Use values fromthe first deconposition, vectors fromthe
I second deconposition, and check for small residuals.
err = sunm(abs(matmul (A V) - V*spread(E, DI M=1, NCOPI ES=n))) &
| sun(abs(E))
if (err <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 1 for LINEIG GENis correct.’
end if

end

IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition ¢ 63

Optional Arguments

NROAS = n (Input)
Usesarray A(1: n, 1: n) for the input matrix.
Default: n = size(A, 1)

v = V(:,:) (Output)
Returns the complex array of eigenvectors for the matrix A.
v_adj = U(:,:) (Output)
Returns the complex array of eigenvectors for the matrix AT, Thusthe
residuals
S=A'U-UE
are small.
tri = T(:,:) (Output)
Returns the complex upper-triangular matrix T associated with the

reduction of the matrix A to Schur form. Optionally a unitary matrix Wis
returned inarray V(: , :) such that theresiduals Z = AW - WT are small.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix. Used for
passing optional data to the routine. The options are as follows:

Packaged Options for i n_ei g_gen

Option Prefix = ? Option Name Option Vaue
s_,d_,c_,z lin_eig_gen_set_small 1
s ,d_,c_,z_ lin_eig_gen_overwite_input 2
s_,d_,c_,z_ l'in_eig_gen_scan_for_NaN 3
s ,d ,c_,z_ Iin_eig_gen_no_bal ance 4
s_,d_,c_,z_ lin_eig_gen_set_iterations 5
s ,d_,c_,z_ lin_eig_gen_in_Hess_form 6
s_,d_,c_,z_ lin_eig_gen_out_Hess_form 7
s ,d ,c_,z_ lin_eig_gen_out_block form 8
s_,d_,c_,z_ lin_eig gen_out _tri_form 9
s ,d_,c_,z_ l'in_eig_gen_continue_with_V 10
s_,d_,c_,z_ l'in_eig_gen_no_sorting 1

iopt(10 = ?_options(?_lin_eig_gen_set_small, Small)
Thisisthe tolerance used to declare off-diagonal values effectively zero
compared with the size of the numbers involved in the computation of a
shift.
Default: Small = epsilon(), the relative accuracy of arithmetic

64 « Chapter 2: Singular Value and Eigenvalue Decomposition

IMSL Fortran 90 MP Library 4.0

iopt (10 = ? options(?_lin_eig _gen_overwite_input, ?_dumy)
Does not savetheinput array A(: , :).
Default: The array is saved.

iopt (10 = ?_options(?_lin_eig_gen_scan_for_NaN, ?_dunmy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) == .true.

Seethei sNaN() function, Chapter 6.
Default: The array is not scanned for NaNs.

iopt (10 = ? _options(?_lin_eig_no_balance, ?_dunmy)
The input matrix is not preprocessed searching for isolated eigenvalues
followed by rescaling. See Golub and VVan Loan (1989, Chapter 7) for
references. With some optional uses of the routine, this option flag is
required.
Default: The matrix isfirst balanced.

iopt (10 = ? options(?_lin_eig _gen_set_iterations, ?_dummy)
Resets the maximum number of iterations permitted to isolate each
diagonal block matrix.
Default: The maximum number of iterationsis 52.

iopt (10 = ? options(?_lin_eig _gen_in_Hess form ?_dummy)
The input matrix isin upper Hessenberg form. Thisflag is used to avoid
theinitial reduction phase which may not be needed for some problem
classes.
Default: The matrix isfirst reduced to Hessenberg form.

iopt (10O = ? options(?_lin_eig _gen_out_Hess form ?_dunmy)
The output matrix is transformed to upper Hessenberg form, H;. If the
optional argument “v=V(:, :)" ispassed by the calling program unit,
thenthearray V(: , :) containsan orthogonal matrix Q, such that

AQ, -QH, 0O

Requires the simultaneous use of option?_| i n_ei g_no_bal ance.
Default: The matrix is reduced to diagonal form.

iopt (10 = ? options(?_lin_eig _gen_out_block form ?_dummy)
The output matrix is transformed to upper Hessenberg form, H,, which
is block upper triangular. The dimensions of the blocks are either 2 x 2
or unit sized. Nonzero subdiagonal values of H, determine the size of
the blocks. If the optional argument “ v=V(:,:)" ispassed by the
calling program unit, then the array V(: , :) contains an orthogonal
matrix Q, such that

AQ, -Q,H, [0

Requires the simultaneous use of option?_| i n_ei g_no_bal ance.
Default: The matrix is reduced to diagonal form.

IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition ¢ 65

iopt (10 = ? options(?_lin_eig _gen out tri_form ?_dummy)
The output matrix is transformed to upper-triangular form, T. If the
optional argument * v=V(:, :)" ispassed by the calling program unit,
thenthearray V(:, :) containsaunitary matrix W such that
AW - WT 0. The upper triangular matrix T is returned in the optional
argument“tri=T(:,:)". Theeigenvaluesof A arethe diagonal
entries of the matrix T . They are in no particular order. The output array
E(:) isblocked with NaNs using this option. This option requires the
simultaneous use of option ?_I i n_ei g_no_bal ance.
Default: The matrix is reduced to diagonal form.

iopt(10 = ?_options(?_lin_eig_gen_continue_with_V, ?_dumy)
As aconvenience or for maintaining efficiency, the calling program unit
sets the optional argument “ v=V(: , :)" to amatrix that has transformed
aproblem to the similar matrix, A. The contentsof \(: , :) are updated
by the transformations used in the algorithm. Requires the simultaneous
use of option?_I i n_ei g_no_bal ance.
Default: Thearray V(:, :) isinitialized to the identity matrix.
iopt(10Q = ?_options(?_lin_eig_gen_no_sorting, ?_dummy)
Does not sort the eigenvalues as they are isolated by solving the 2 x 2 or
unit sized blocks. Thiswill have the effect of guaranteeing that complex
conjugate pairs of eigenvalues are adjacent inthe array E(:) .
Default: The entries of E(:) are sorted so they are non-increasing in
absolute value.

Description

Theinput matrix A isfirst balanced. The resulting similar matrix is transformed to
upper Hessenberg form using orthogonal transformations. The double-shifted QR
algorithm transforms the Hessenberg matrix so that 2 x 2 or unit sized blocks

remain along the main diagonal. Any off-diagonal that is classified as “small” in
order to achieve this block form is set to the value zero. Next the block upper
triangular matrix is transformed to upper triangular form with unitary rotations.
The eigenvectors of the upper triangular matrix are computed using back
substitution. Care is taken to avoid overflows during this process. At the end,
eigenvectors are normalized to have Euclidean length one, with the largest
component real and positive. This algorithm follows that given in Golub and Van
Loan, (1989, Chapter 7), with some novel organizational details for additional
options, efficiency and robustness.

Example 2: Complex Polynomial Equation Roots

The roots of a complex polynomial equation,

f(2)= Zbkzn_k +2"'=0

66 « Chapter 2: Singular Value and Eigenvalue Decomposition IMSL Fortran 90 MP Library 4.0

arerequired. This algebraic equation is formulated as a matrix eigenvalue
problem. The equivalent matrix eigenvalue problem is solved using the upper
Hessenberg matrix which has the value zero except in row number 1 and along
the first subdiagonal. The entriesin the first row are given by

8 ,;=-b;,i=1,...,n, while those on the first subdiagonal have the value one.
Thisisacompanion matrix for the polynomial. The results are checked by testing
for small values of ff(e)|,i =1, ..., n, at the eigenvalues of the matrix, which are
theroots of f(2). Also, see oper at or _ex30, Chapter 6.

use lin_eig gen_int
use rand_gen_int

inplicit none

This is Exanple 2 for LIN_El G GEN

i nteger i

i nteger, paraneter :: n=12

real (kind(1d0)), paraneter :: one=1.0d0, zero0=0.0d0
real (kind(1d0)) err, t(2*n)

type(d_options) :: iopti(1l)=d_options(0,zero)

conpl ex(kind(1d0)) a(n,n), b(n), e(n), f(n), fg(n)

call rand_gen(t)

b = cmpl x(t(1:n),t(n+l:), kind(one))

Define the conpanion nmatrix with polynonial coefficients
in the first row

a = zero
do i=2, n

a(i,i-1) = one
end do

a(l,1:n) = -b

Note that the input conpanion matrix is upper Hessenberg.
iopti (1) = d options(z_lin_eig_gen_in_Hess form zero)

Conput e conpl ex ei genval ues of the conpanion natri x.
call lin_eig_gen(a, e, iopt=iopti)
f=one; fg=one
Use Horner’'s nethod for eval uation of the conplex pol ynom al

and size gauge at all roots.

n
fre + b(i)
g = fg*rabs(e) + abs(b(i))

Check for small errors at all roots.

err = sum(abs(f/fg))/n
if (err <= sqgrt(epsilon(one))) then

IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition ¢ 67

wite (*,*) "Exanple 2 for LINEIG GENis correct.’
end if
end

Example 3: Solving Parametric Linear Systems with a Scalar
Change

The efficient solution of afamily of linear algebraic equationsis required. These
systemsare (A + hl)x = b. Here Aisan n x n real matrix, | isthe identity matrix,
and b isthe right-hand side matrix. The scalar h is such that the coefficient matrix
isnonsingular. The method is based on the Schur form for matrix

A: AW = WT, where Wis unitary and T is upper triangular. This provides an
efficient solution method for several values of h, once the Schur formis
computed. The solution steps solve, for y, the upper triangular linear system

(T+hl)y=WTb

Then, x = x(h) = Wy. Thisis an efficient and accurate method for such parametric
systems provided the expense of computing the Schur form has a pay-off in later
efficiency. Using the Schur form in thisway, it is not required to compute an LU
factorization of A + hl with each new value of h. Note that even if the data A, h,
and b arereal, subexpressions for the solution may involve complex intermediate
values, with x(h) finally areal quantity. Also, see oper at or _ex31, Chapter 6.

use lin_eig gen_int
use lin_sol _gen_int
use rand_gen_int
inmplicit none

I This is Exanple 3 for LIN_EI G GEN.

i nteger i

i nteger, paraneter :: n=32, k=2

real (kind(1e0)), paraneter :: one=1.0e0, zero0=0.0e0

real (kind(1e0)) a(n,n), b(n,k), x(n,k), tenp(n*max(n,k)), h, err
type(s_options) :: iopti(2)

conpl ex(ki nd(1e0)) w(n,n), t(n,n), e(n), z(n, k)

call rand_gen(tenp)
a = reshape(tenmp, (/n,n/))

call rand_gen(tenp)
b = reshape(tenp, (/n,k/))

iopti(1)
iopti(2)

s_options(s_lin_eig_gen_out _tri_formzero)
s_options(s_lin_eig_gen_no_bal ance, zero)

I Conpute the Schur deconposition of the matrix.

call lin_eig_gen(a, e, v=w, tri=t, &
i opt =i opti)

I Choose a value so that A+h*l is non-singular.
h = one

68 « Chapter 2: Singular Value and Eigenvalue Decomposition IMSL Fortran 90 MP Library 4.0

I Solve for (A+h*l)x=b using the Schur deconposition.
z = matmul (conj g(transpose(w)), b)

I Solve internedi ate upper-triangular systemwith inplicit

I additive diagonal, h*l. This is the only dependence on
! hin the solution process
do i=n,1,-1

z(i,1:k) = z(i,1:k)/(t(i,i)+h)
z(1:i-1,1:k) = z(1:i-1,1: k) + &
spread(-t(1:i-1,i),di m2, ncopi es=k)* &
spread(z(i, 1:k), di me1l, ncopi es=i -1)
end do

I Conpute the solution. It should be the same as x, but will not be

I exact due to rounding errors. (The quantity real (z,kind(one)) is

I the real -val ued answer when the Schur deconposition nethod is used.)
z = matmul (w, z)

I Conpute the solution by solving for x directly.

do i=1, n

a(i,i) =a(i,i) +h
end do
call lin_sol _gen(a, b, x)

I Check that x and z agree approxinmately.
err = sum(abs(x-2z))/sun(abs(x))
if (err <= sqgrt(epsilon(one))) then
wite (*,*) "Exanple 3 for LINEIGGEN is correct.’
end if

end

Example 4: Accuracy Estimates of Eigenvalues Using Adjoint
and Ordinary Eigenvectors

A matrix A has entries that are subject to uncertainty. Thisis expressed as the
realization that A can be replaced by the matrix A + nB, wherethe valuen is

“small” but still significantly larger than machine precision. The m&rsatisfies
[BIlI< |All- A variation in eigenvalues is estimated using analysis found in Golub
and Van Loan, (1989, Chapter 7, p. 344). Each eigenvalue and eigenvector is
expanded in a power seriesinWith

e(n)=e +nen)

and normalized eigenvectors, the bound

1AL

i "ﬁ’i‘

IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition « 69

is satisfied. The vectors u;, and v; are the ordinary and adjoint eigenvectors
associated respectively with e, and its complex conjugate. This gives an upper
bound on the size of the change to each |g| due to changing the matrix data. The
reciprocal

o

is defined as the condition number of €. Also, see oper at or _ex32, Chapter 6.

use lin_eig gen_int
use rand_gen_int

inplicit none
This is Exanple 4 for LIN El G GEN

i nt eger

i nteger, paraneter :: n=17

real (kind(1d0)), paraneter :: one=1d0

real (kind(1d0)) a(n,n), c(n,n), variation(n), y(n*n), tenp(n), &
normof _a, eta

conpl ex(kind(1d0)), dinmension(n,n) :: e(n), d(n), u, v

Generate a random matri x
call rand_gen(y)
a = reshape(y, (/n,n/))

Conput e the eigenvalues, left- and right- eigenvectors
call lin_eig_gen(a, e, v=v, v_adj=u)

Conput e condition nunbers and variati ons of eigenval ues.
normof _a = sqrt(suma**2)/n)

do i=1, n
variation(i) = normof _a/abs(dot_product(u(l:n,i), &
v(l:n,i)))
end do

Now perturb the data in the matrix by the relative factors
eta=sqrt(epsilon) and solve for values again. Check the

di fferences conpared to the estimates. They shoul d not exceed
t he bounds.

eta = sqrt(epsilon(one))
do i=1, n

call rand_gen(tenp)

c(l:n,i) = a(l:n,i) + (2*tenp - 1)*eta*a(l:n,i)
end do

call lin_eig_gen(c,d)

Looki ng at the differences of absol ute values accounts for
switching signs on the imginary parts.

if (count(abs(d)-abs(e) > eta*variation) == 0) then
wite (*,*) "Exanple 4 for LINEIG GENis correct.’

end if

end

70 Chapter 2: Singular Value and Eigenvalue Decomposition IMSL Fortran 90 MP Library 4.0

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messagesfor | i n_ei g_gen. These error
messages are numbered 841-858; 861-878; 881-898; 901-918.

lin_geig_gen

Computes the generalized eigenvalues of ann x n matrix pencil, Av = ABv.
Optionally, the generalized eigenvectors are computed. If either of Aor Bis
nonsingular, there are diagonal matrices a and [3, and a complex matrix V, all
computed such that AV[3 = BVa.

Required Arguments

A (Input [/Output])
Array of size n x n containing the matrix A.

B (Input [/Output])
Array of sizen x n containing the matrix B.

al pha (Output)
Array of size n containing diagonal matrix factors of the generalized
eigenvalues. These complex values are in order of decreasing absolute
value.

beta (Output)
Array of size n containing diagonal matrix factors of the generalized
eigenvalues. Thesereal values arein order of decreasing value.

Example 1: Computing Generalized Eigenvalues

The generalized eigenvalues of arandom real matrix pencil are computed. These
values are checked by obtaining the generalized eigenvectors and then showing
that the residuals

AV - BVag?

are small. Note that when the matrix B isnonsingular 3 = 1, the identity matrix.
When Bissingular and A is nonsingular, some diagonal entries of 3 are
essentially zero. This corresponds itafinite eigenvalues” of the matrix pencil.
This random matrix pencil example has all finite eigenvaliiss, see

oper at or _ex33, Chaptel6.

use lin_geig _gen_int
use rand_gen_int
inplicit none
I This is Exanple 1 for LIN_CEl G GEN.

i nteger, paraneter :: n=32

IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition « 71

real (kind(1d0)), paraneter :: one=1d0
real (kind(1d0)) A(n,n), B(n,n), beta(n), beta t(n), err, y(n*n)
conpl ex(ki nd(1d0)) al pha(n), alpha_t(n), V(n,n)

I Generate random matrices for both A and B.
call rand_gen(y)
A = reshape(y, (/n,n/))
call rand_gen(y)
B = reshape(y, (/n,n/))

I Conpute the generalized ei genval ues.

call lin_geig gen(A B, alpha, beta)
I Conpute the full deconposition once again, A*V = B*V*val ues.
call lin_geig gen(A B, alpha t, beta t, &
v=V)

I Use values fromthe first deconposition, vectors fromthe
I second deconposition, and check for small residuals.
err = sum(abs(matnmul (A V) - &
mat nul (B, V) *spread(al pha/ beta, DI M=1, NCOPI ES=n))) / &
sun{abs(a) +abs(b))
if (err <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 1 for LIN. GEIG GEN is correct.’

end if
end
Optional Arguments
NROWS = n (Input)
Uses arrays A(1: n, 1: n) and B(L: n, 1: n) for the input matrix pencil.
Default: n = size(A, 1)
v = V(:,:) (Output)
Returns the complex array of generalized eigenvectors for the matrix
pencil.
iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix. Used for
passing optional datato the routine. The options are as follows:
Packaged Options for |'i n_gei g_gen
Option Prefix = ? Option Name Option Value
s ,d_,c_,z_ lin_geig_gen_set_small 1
s_,d_,c_,z_ lin_geig_gen overwite_input 2
s ,d_,c_,z_ l'in_geig_gen_scan_for_NaN 3
s_,d_,c_,z_ lin_geig_gen_self_adj pos 4
s ,d ,c_,z_ lin_geig_gen_for_lin_sol_self 5

72+ Chapter 2: Singular Value and Eigenvalue Decomposition IMSL Fortran 90 MP Library 4.0

Packaged Options for i n_gei g_gen

,d_,c_,z_ lin_geig_gen_for_lin_eig_self

d ,c_,z_ lin_geig_gen for_lin_sol _Isq

,d_,c .,z lin_geig_gen_for_lin_eig_gen 8
iopt (10 = ? options(?_lin_geig gen_set_small, Small)

This tolerance, multiplied by the sum of absolute value of the matrix B,
isused to define asmall diagonal termintheroutines | i n_sol _I sq
and i n_sol _sel f. That value can be replaced using the option flags
lin_geig_gen_for_lin_sol_Isqg,and
lin_geig gen for_lin_sol_self.
Default: Small = epsilon(.), the relative accuracy of arithmetic

opt (10O = ? options(?_lin_geig gen_overwite_input,
?_dummy)
Does not savetheinput arraysA(: , :) and B(: , @).
Default: The array is saved.

opt (10 = ?_options(?_lin_geig_gen_scan_for_NaN, ?_dumy)
Examines each input array entry to find the first value such that

i sNaN(a(i,j)) i sNaN(b(i,j))

Seethei sNaN() function, Chapter 6.
Default: The arrays are not scanned for NaNs.

opt (10 = ? options(?_lin_geig _gen_self_adj_pos, ?_dunmy)
If both matrices A and B are self-adjoint and additionally B is positive-
definite, then the Cholesky algorithm is used to reduce the matrix pencil
to an ordinary self-adjoint eigenvalue problem.

.or. .true.

opt (10 = ? options(?_lin_geig gen for_lin_sol_self,
?_dumy)

opt (10+1) = ?_options((k=size of options for lin_sol_self),
?_dumy)

Theoptionsfor | i n_sol _sel f follow asdataini opt () .
opt (109 = ?_options(?_lin_geig_gen_for_lin_eig_self,
?_dumy)
opt (10+1) = ?_options((k=size of options for
?_dumy)
Theoptionsfor I i n_ei g_sel f follow asdataini opt ().
opt (10 = ? options(?_lin_geig gen for_lin_sol _Isq,
?_dumy)
opt (10+1) = ?_options((k=size of options for
?_dumy)
The optionsfor i n_sol _I sq follow asdataini opt ().
opt (10 = ?_options(?_lin_geig _gen_for_lin_eig_gen,
?_dumy)

lin_eig_self),

lin_sol _Isq),

IMSL Fortran 90 MP Library 4.0

Chapter 2: Singular Value and Eigenvalue Decomposition ¢ 73

iopt (10+1) = ?_options((k=size of options for lin_eig _gen),
?_dumy)
The optionsfor | i n_ei g_gen follow asdatain i opt ().

Description

Routinel i n_gei g_gen implements a standard algorithm that reduces a
generalized eigenvalue or matrix pencil problem to an ordinary eigenvalue
problem. An orthogonal decomposition is computed

BP' = HR

The orthogonal matrix H is the product of n — 1 row permutations, each followed
by a Householder transformation. Column permutations, P, are chosen at each
step to maximize the Euclidian length of the pivot column. The matrix R is upper
triangular. Using the default tolerance T = ¢|[B|, where € is machine relative
precision, each diagonal entry of R exceeds T in value. Otherwise, Ris singular.
In that case A and B are interchanged and the orthogonal decomposition is
computed one more time. If both matrices are singular the problem is declared
singular and is not solved. The interchange of A and B is accounted for in the
output diagonal matrices a and . The ordinary eigenvalue problem is Cx = Ax,
where

C=HTAPTR™
and
RPv = x
If the matrices A and B are self-adjoint and if, in addition, B is positive-definite,
then a more efficient reduction than the default algorithm can be optionally used

to solve the problem: A Cholesky decomposition is obtained, R'RR=PBP’.
The matrix Ris upper triangular and P is a permutation matrix. Thisis equivalent
to the ordinary self-adjoint eigenvalue problem Cx = Ax, where RPv = x and

C=RTPAP'R?
The self-adjoint eigenvalue problem is then solved.

Additional Examples

Example 2: Self-Adjoint, Positive-Definite Generalized
Eigenvalue Problem

This example illustrates the use of optional flags for the special case where A and
B are complex self-adjoint matrices, and B is positive-definite. For purposes of
maximum efficiency an option is passed to routinel i n_sol _sel f sothat
pivoting is not used in the computation of the Cholesky decomposition of matrix
B. This example does not require that secondary option. Also, see

oper at or _ex34, Chapter 6.

74 « Chapter 2: Singular Value and Eigenvalue Decomposition IMSL Fortran 90 MP Library 4.0

use lin_geig _gen_int
use lin_sol _self_int
use rand_gen_int

inplicit none
| This is Exanple 2 for LIN_CEI G GEN

i nt eger

i nteger, paraneter :: n=32

real (kind(1d0)), paraneter :: one=1.0d0, zero0=0.0d0

real (kind(1d0)) beta(n), temp_c(n,n), tenp_d(n,n), err
type(d_options) :: iopti(4)=d_options(0,zero)

conpl ex(kind(1d0)), dinmension(n,n) :: A B, C D, V, alpha(n)

| Generate random matrices for both A and B
doi=1, n
call rand_gen(tenp_c(1:n,i))
call rand_gen(tenp_d(1:n,i))

end do
c =tenp_c; d =tenp_c
doi=1, n

call rand_gen(tenp_c(1:

n,i))
call rand_gen(tenp_d(1:n,i))

end do

c = cnpl x(real (c), tenp_c, ki nd(one))
d = cnpl x(real (d), tenp_d, ki nd(one))
a = conjg(transpose(c)) + ¢

b = mat nul (conj g(transpose(d)), d)

| Set option so that the generalized ei genval ue sol ver uses an

I efficient method for well-posed, self-adjoint problens.
iopti (1) = d_options(z_lin_geig_gen_self_adj_pos, zero)
iopti(2) d_options(z_lin_geig gen for_lin_sol_self,zero)

I Nunber of secondary optional data itenms and the options:

iopti(3) = d_options(1, zero)
iopti(4) = d_options(z_lin_sol _self_no_pivoting, zero)
call lin_geig gen(a, b, alpha, beta, v=v, &
i opt =i opti)
I Check that residuals are small. Use the real part of al pha

I since the values are known to be real
err = sum(abs(matmul (a,v) - matnul (b,v)* &
spread(real (al pha, ki nd(one))/beta, di nl, ncopies=n))) / &
sun{abs(a) +abs(b))
if (err <= sqgrt(epsilon(one))) then
wite (*,*) "Exanple 2 for LIN GEIG GEN is correct.
end if

end

IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition ¢ 75

Example 3: A Test for a Regular Matrix Pencil

In the classification of Differential Algebraic Equations (DAE), a system with
linear constant coefficientsisgivenby AX+Bx=f. Hare AandBaren x n
matrices, and f is an n-vector that is not part of this example. The DAE system is
defined as solvable if and only if the quantity det (LA + B) does not vanish
identically as afunction of the dummy parameter u. A sufficient condition for
solvability is that the generalized eigenvalue problem Av = ABv is nonsingular. By
constructing A and B so that both are singular, the routine flags nonsolvability in
the DAE by returning NaN for the generalized eigenvalues. Also, see

oper at or _ex35, Chapter 6.

use |in_geig_gen_int
use rand_gen_int

use error_option_packet
use isnan_int

inmplicit none
This is Exanple 3 for LIN_GEl G GEN

i nteger, paraneter :: n=6

real (kind(1d0)), paraneter :: one=1.0d0, zero=0.0dO0
real (kind(1d0)) a(n,n), b(n,n), beta(n), y(n*n)
type(d_options) iopti(1)

type(d_error) epack(1l)

conpl ex(ki nd(1d0)) al pha(n)

I Generate random natrices for both A and B.
call rand_gen(y)
a = reshape(y, (/n,n/))

call rand_gen(y)
b = reshape(y,(/n,n/))

I Make columms of A and B zero, so both are singular
a(l:n,n) =0; b(l:n,n) =0

I Set internal tolerance for a snall diagonal term
iopti (1) = d_options(d_lin_geig_gen_set_small,sqrt(epsilon(one)))

I Conmpute the generalized ei genval ues
call lin_geig _gen(a, b, alpha, beta, &
i opt =i opti, epack=epack)

I See if singular DAE systemis detected.
I (The size of epack() is too small for the nessage, so
I output is blocked with NaNs.)
if (isnan(al pha)) then
wite (*,*) "Exanple 3 for LIN.GEIG CENis correct.
end if

end

76 « Chapter 2: Singular Value and Eigenvalue Decomposition IMSL Fortran 90 MP Library 4.0

Example 4: Larger Data Uncertainty than Working Precision

Data values in both matrices A and B are assumed to have relative errors that can

be aslarge as €2 where € is the relative machine precision. This example
illustrates the use of an optional flag that resets the tolerance used in routine

l'i n_sol _I sq for determining asingularity of either matrix. The toleranceis
reset to the new value £"2||B| and the generalized eigenvalue problem is solved.
We anticipate that B might be singular and detect this fact. Also, see

oper at or _ex36, Chapter 6.

use |in_geig_gen_int
use lin_sol_Isqg_int
use rand_gen_int

use i sNaN_int

inmplicit none
I This is Exanple 4 for LIN_CEl G GEN
i nteger, paraneter :: n=32
real (kind(1d0)), paraneter :: one=1d0, zero0=0d0
real (ki nd(1d0)) a(n,n), b(n,n), beta(n), y(n*n), err
type(d_options) iopti(4)
type(d_error) epack(1l)
compl ex(ki nd(1d0)) al pha(n), v(n,n)
I Generate random matrices for both A and B.

call rand_gen(y)
a = reshape(y, (/n,n/))

call rand_gen(y)
b = reshape(y,(/n,n/))

I Set the option, a larger tolerance than default for lin_sol _Isq.
iopti (1) = d_options(d_lin_geig_gen_for_lin_sol_Isq,zero)

I Nunber of secondary optional data itens

iopti(2) = d_options(2,zero)

iopti(3) = d_options(d_lin_sol_lsq_set_snall,sqrt(epsilon(one))*&
sqrt(sumb**2)/n))

iopti(4) = d_options(d_lin_sol _I sq_no_sing_ness, zero)

I Conpute the generalized ei genval ues.
call lin_geig_gen(A B, alpha, beta, v=v, &
i opt =i opti, epack=epack)

if(.not. isNaN(al pha)) then

I Check the residuals.
err = sum(abs(matmul (A, V) *spread(beta, di m=1, ncopi es=n) - &
mat mul (B, V) *spr ead(al pha, di n=1, ncopi es=n))) / &
sun{ abs(a) +abs(b))
if (err <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 4 for LIN.GEIG CENis correct.’

IMSL Fortran 90 MP Library 4.0 Chapter 2: Singular Value and Eigenvalue Decomposition ¢ 77

end if
end if
end

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messagesfor | i n_gei g_gen. These error
messages are numbered 921-936; 941-956; 961-976; 981-996.

78 « Chapter 2: Singular Value and Eigenvalue Decomposition IMSL Fortran 90 MP Library 4.0

Chapter 3: Fourier Transforms

Introduction

Following are routines for computing Fourier Transfoms of rank-1, rank-2, and
rank-3 complex arrays.

Contents

fast _dft..
Example 1:
Example 2:
Example 3:
Example 4:
fast_2dft
Example 1:
Example 2:
Example 3:
fast_3dft
Example 1:

.. 79
Transforming an Array of Random Complex Numbers......... 79
Cyclical Data with a Linear Trend...........ccccvveeeeeiiiiiiiiiieeeenn. 82
Several Transforms with Initialization..............ccccccoevcneennnn 83
Convolutions using Fourier Transformscccccccvveveneeennn. 84
.. 86
Transforming an Array of Random Complex Numbers......... 86
Cyclical 2D Data with a Linear Trend..........ccccceeeeeieiieineeenenn. 88
Several 2D Transforms with Initializationccccccceeee. 90
.. 91
Transforming an Array of Random Complex Numbers......... 91

fast_dft

Computes the Discrete Fourier Transform (DFT) of arank-1 complex array, X.

Required Arguments

No required

arguments; pairs of optional arguments are required. These pairs are

forward_in andforward_out or inverse_in and inverse_out.

Example 1

: Transforming an Array of Random Complex Numbers

An array of random complex numbers is obtained. The transform of the numbers
isinverted and the final results are compared with the input array.

use fast_dft_int
use rand_gen_int

inmplicit none

IMSL Fortran 90 MP Library 4.0

Chapter 3: Fourier Transforms « 79

I This is Exanple 1 for FAST_DFT.

i nteger, paraneter :: n=1024

real (kind(1e0)), paraneter :: one=1e0

real (kind(1e0)) err, y(2*n)

conpl ex(kind(1e0)), dinension(n) :: a, b, c

I Generate a random conpl ex sequence.
call rand_gen(y)
a crmpl x(y(21:n),y(n+1l:2*n), ki nd(one))
c a

I Transformand then invert the sequence back.
call c_fast _dft(forward_in=a, &
f orwar d_out =b)
call c_fast_dft(inverse_in=b, &
i nver se_out =a)

I Check that inverse(transforn{sequence)) = sequence.
err = maxval (abs(c-a))/ maxval (abs(c))
if (err <= sqgrt(epsilon(one))) then
wite (*,*) "Exanple 1 for FAST DFT is correct.’
end if

end

Optional Arguments

forward_in = x (Input)
Stores the input complex array of rank-1 to be transformed.

forward_out =y (Output)
Stores the output complex array of rank-1 resulting from the transform.

inverse_in =y (Input)
Stores the input complex array of rank-1 to be inverted.

i nverse_out = x (Output)
Stores the output complex array of rank-1 resulting from theinverse
transform.

ndata = n (Input)
Uses the sub-array of sizen for the numbers.
Default value: n = size(x).

ido = ido (Input/Output)
Integer flag that directs user action. Normally, this argument is used only
when the working variables required for the transform and itsinverse are
saved in the calling program unit. Computing the working variables and
saving them ininternal arrayswithinf ast _dft isthe default. This
initialization step is expensive.

There is atwo-step process to compute the working variables just once.
Example 3 illustrates this usage. The general algorithm for this usageis

80 « Chapter 3: Fourier Transforms IMSL Fortran 90 MP Library 4.0

toenter fast _dft with i do = 0. A return occurs thereafter with

i do < 0. The optional rank-1 complex array w(:) with size(w) >= =i do
must be re-allocated. Then, re-enter f ast _df t . The next return from
fast _df t hastheoutput value i do = 1. The variablesrequired for the
transform and itsinverse are saved in w(:). Thereafter, when the routine
is entered withi do = 1 and for the same value of n, the contents of w(:)
will be used for the working variables. The expensive initialization step
isavoided. The optional arguments “i do=" and “wor k_array=" must
be used together.

”

work_array = w(:) (Output/Input)
Complex array of rank-1 used to store working variables and values
between calls tbast _df t . The value for sizef) must be at least as
large as the valuei do for the value of do < 0.

iopt = iopt(:) (Input/Output)
Derived type array with the same precision as the input array; used for
passing optional data fast _df t. The options are as follows:

Packaged Options for fast _dft
Option Prefix = ? Option Name Option Vaue
c .,z fast _dft_scan_for_NaN 1
c_,z_ fast _dft_near _power_of 2 2
c_,z_ fast _dft_scal e_forward 3
c_,z_ fast _dft_scal e_i nverse 4

iopt (10 = ? options(?_fast_dft_scan_for_NaN, ?_dunmy)
Examines each input array entry to find the first value such that

i sNaN(x(i)) ==.true.

See the sNaN() function,Chapter 6
Default: Does not scan for NaNs.

iopt(10 = ?_options(?_fast_dft_near_power_of_2, ?_dummy)
Nearest power of 2 nis returned as an outputiiopt (10 +
1) % durmmy.

iopt (10 = ? options(?_fast_dft_scale forward,
real _part_of scale)

iopt (10O+1) = ?_options(?_dumy, inmaginary_part_of scale)
Complex number defined by the factor
cmplx(eal _part _of _scal e, imaginary_part_of _scal e)is
multiplied by the forward transformed array.
Default value is 1.

iopt(10 = ?_options(?_fast_dft_scal e_i nverse,
real _part_of _scal e)

IMSL Fortran 90 MP Library 4.0 Chapter 3: Fourier Transforms « 81

iopt (10O+1) = ?_options(?_dumy, inmmginary_part_of scale)
Complex number defined by the factor
cmplx(real _part _of _scal e, imaginary_part_of _scal e)is
multiplied by the inverse transformed array.
Default valueis 1.

Description

Thef ast _dft routineisaFortran 90 version of the FFT suite of IMSL (1994,
pp. 772-776). The maximum computing efficiency occurs when the size of the
array can be factored in the form

n= 2132455
using non-negative integer values{i,, i,, i3, i4}. Thereisno further restriction on
n=1

Additional Examples

Example 2: Cyclical Data with a Linear Trend

This set of datais sampled from a function x(t) = at + b + y(t), where y(t) isa
harmonic series. The independent variableis normalized as -1 < t < 1. Thus, the
datais said to have cyclical components plusa linear trend. As afirst step, the
linear terms are effectively removed from the data using the least-squares system
solver 1in_sol | sq, Chapter 1. Then, the residuals are transformed and the
resulting frequencies are analyzed.

use fast_dft_int
use lin_sol_lsqg_int
use rand_gen_int
use sort_real _int
inmplicit none

I This is Exanple 2 for FAST_DFT.

i nteger i

i nteger, paraneter :: n=64, k=4

i nteger ip(n)

real (kind(1e0)), paraneter :: one=1e0, two=2e0, zero=0e0

real (kind(1e0)) delta_t, pi

real (kind(1e0)) y(k), z(2), indx(k), t(n), tenp(n)

conmpl ex(ki nd(1e0)) a_trend(n,2), a, b_trend(n,1), b, c(k), f(n), &
r(n), x(n), x_trend(2,1)

I Generate randomdata for linear trend and harnonic series.
call rand_gen(z)
a=12(1); b =12(2)
call rand_gen(y)
I Thi s enphasi zes harnmonics 2 through k+1.
c =y + one

| Determine sanpling interval.
delta_t = two/n

82 « Chapter 3: Fourier Transforms IMSL Fortran 90 MP Library 4.0

t=(/(-one+i*delta_t, i=0,n-1)/)

I Conpute pi.
pi = atan(one)*4EOQ
i ndx=(/(i*pi,i=1,k)/)

I Make up data set as a linear trend plus harnonics
X = a + b*t + &
mat nul (exp(cnpl x(zero, spread(t, 2, k) *spread(i ndx, 1, n), ki nd(one))), c¢)

| Define least-squares matrix data for a linear trend

a_trend(1:,1) = one
a trend(1:,2) =t
b trend(1:,1) = x

I Solve for a linear trend
call lin_sol _Isq(a_trend, b_trend, x_trend)

I Conpute harnonic residuals
r = x - reshape(matnul (a_trend, x_trend), (/n/))

I Transform harnoni c residual s
call c_fast_dft(forward_in=r, forward_out=f)
ip=(/(i,i=1,n)/)

I The doni nant frequencies should be 2 through k+1
I Sort the nmagnitude of the transformfirst.
call s_sort_real (-(abs(f)), tenp, ipern¥ip)

I The domi nant frequencies are output in ip(l:k).

| Sort these values to conpare with 2 through k+1
call s_sort _real(real (ip(1l:k)), tenp)
ip(Ll:k)=(/(i,i=2,k+1)/)

I Check the results.
if (count(int(tenmp(1:k)) /=1ip(l:k)) == 0) then

wite (*,*) "Exanple 2 for FAST DFT is correct.

end if

end

Example 3: Several Transforms with Initialization

In this example, the optional arguments i do and wor k_arr ay are used to save
working variablesin the calling program unit. This resultsin maximum efficiency
of the transform and its inverse since the working variables do not have to be
precomputed following each entry to routine f ast _dft.

use fast_dft_int
use rand_gen_int

inmplicit none
I This is Exanple 3 for FAST_DFT.

I The value of the array size for work(:) is conputed in the
I routine fast_dft as a first step.

IMSL Fortran 90 MP Library 4.0 Chapter 3: Fourier Transforms « 83

i nteger, paraneter :: n=64

i nteger ido_value

real (kind(1e0)) :: one=1e0

real (kind(1e0)) err, y(2*n)

conpl ex(kind(1e0)), dinension(n) :: a, b, save_a
conpl ex(kind(1e0)), allocatable :: work(:)

I Generate a random conpl ex array.
call rand_gen(y)
a = cnpl x(y(1:n),y(n+1: 2*n), ki nd(one))
save_a = a

I Transformand then invert the sequence using the pre-conputed
I wor ki ng val ues
ido_value = 0
do
i f(allocated(work)) deall ocate(work)

I Allocate the space required for work(:).
if (ido_value <= 0) allocate(work(-ido_value))

call c_fast_dft(forward_in=a, forward_out=bh, &
i do=i do_val ue, work_array=wor k)

if (ido_value == 1) exit
end do

| Re-enter routine with working values available in work(:).
call c_fast_dft(inverse_in=b, inverse out=a, &
i do=i do_val ue, work_array=wor k)

| Deall ocate the space used for work(:).
if (allocated(work)) deall ocate(work)

I Check the results.
err = maxval (abs(save_a-a))/ maxval (abs(save_a))
if (err <= sqgrt(epsilon(one))) then
wite (*,*) "Exanple 3 for FAST DFT is correct.
end if

end

Example 4: Convolutions using Fourier Transforms
In this example we compute sums
n-1
Ck: ajbk_j,kzo,...,n_l
The definition implies a matrix-vector product. A direct approach requires about

n? operations consisisting of an add and multiply. An efficient method consisting
of computing the products of the transforms of the

{3 Jand {b;}

84 « Chapter 3: Fourier Transforms IMSL Fortran 90 MP Library 4.0

then inverting this product, is preferable to the matrix-vector approach for large
problems. The exampleisasoillustratedin oper at or _ex37, Chapter 6
using the generic function interface FFT and IFFT.

use fast_dft_int
use rand_gen_int

inmplicit none
I This is Exanple 4 for FAST_DFT.

i nteger j

i nteger, paraneter :: n=40

real (kind(1e0)) :: one=1le0

real (kind(1e0)) err

real (kind(1e0)), dimension(n) :: X, y, yy(n,n)

conmpl ex(ki nd(1e0)), dinmension(n) :: a, b, c, d, e, f

I Generate two random conpl ex sequence 'a' and 'b’

call rand_gen(x)
call rand_gen(y)
a=x; b=y

I Conpute the convolution 'c¢’ of "a and 'b’
I Use matrix tinmes vector for test results
yy(1l:, 1)=y
do j=2,n _
yy(2:,j)=yy(l:n-1,j-1)
yy(1,j)=yy(n,j-1)
end do

c=mat mul (yy, x)

I Transformthe 'a' and 'b’ sequences into 'd and 'e
call c_fast_dft(forward_in=a, &

f orwar d_out =d)
call c_fast_dft(forward_in=b, &

f orwar d_out =e)

I Invert the product d*e.

call c_fast_dft(inverse_in=d*e, &
i nverse_out =f)

I Check the Convol uti on Theorem
I inverse(transform(a)*transform(b)) = convol ution(a,b).

err = maxval (abs(c-f))/ maxval (abs(c))
if (err <= sqrt(epsilon(one))) then

wite (*, *) "Exanple 4 for FAST_DFT is correct.’
end if

end

IMSL Fortran 90 MP Library 4.0 Chapter 3: Fourier Transforms ¢ 85

Fatal and Terminal Messages

See the messages.gls file for error messagesfor f ast _df t. These error mes-
sages are numbered 651-661; 701-711.

fast_2dft

Computes the Discrete Fourier Transform (2DFT) of arank-2 complex array, X.

Required Arguments

No required arguments; pairs of optional arguments are required. These pairs are
forward_in and forward_out orinverse_inandinverse_out.

Example 1: Transforming an Array of Random Complex Numbers

An array of random complex numbers is obtained. The transform of the numbers
isinverted and the final results are compared with the input array.

use fast_2dft_int
use rand_i nt

inmplicit none
I This is Exanple 1 for FAST_2DFT.

i nteger, paraneter :: n=24

i nteger, paraneter :: n¥40

real (kind(1e0)) :: err, one=le0

conmpl ex(ki nd(1e0)), dinmension(n,m :: a, b, ¢

I Generate a random conpl ex sequence.
a=rand(a); c=a

I Transform and then invert the transform
call c_fast_2dft(forward_in=a, &
f orwar d_out =b)
call c_fast_2dft(inverse_in=b, &
i nver se_out =a)

I Check that inverse(transforn(sequence)) = sequence.
err = maxval (abs(c-a))/ maxval (abs(c))
if (err <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 1 for FAST_2DFT is correct.’
end if

end

Optional Arguments

forward_in = x (Input)
Stores the input complex array of rank-2 to be transformed.

86 « Chapter 3: Fourier Transforms IMSL Fortran 90 MP Library 4.0

forward_out =y (Output)

Stores the output complex array of rank-2 resulting from the transform.

inverse_in =y (Input)

Stores the input complex array of rank-2 to be inverted.

i nverse_out = x (Output)

Stores the output complex array of rank-2 resulting from theinverse
transform.

nmdata = m (Input)

Uses the sub-array in first dimension of size m for the numbers.
Default value: m = size(x, 1).

ndata = n (Input)

ido =

Uses the sub-array in the second dimension of sizen for the numbers.
Default value: n = size(x, 2).

i do (Input/Output)

Integer flag that directs user action. Normally, this argument is used only
when the working variables required for the transform and itsinverse are
saved in the calling program unit. Computing the working variables and
saving them ininternal arrayswithin f ast _2df t isthe default. This
initialization step is expensive.

There is atwo-step process to compute the working variables just once.
Example 3 illustrates this usage. The general algorithm for thisusageis
toenter fast _2dft withi do = 0. A return occurs thereafter with

i do < 0. The optional rank-1 complex array w(:) with size(w) >= —i do
must be re-allocated. Then, re-enter f ast _2df t . The next return from
fast _2dft hastheoutput valuei do = 1. The variables required for the
transform and itsinverse are saved in w(:). Thereafter, when the routine
isentered withi do = 1 and for the same values of m and n, the contents
of w(:) will be used for the working variables. The expensive
initialization step is avoided. The optional arguments “i do="
“wor k_array=" must be used together.

and

work_array = w(:) (Output/Input)

iopt =

Complex array of rank-1 used to store working variables and values
between calls tbast _2dft. The value for siz&) must be at least as
large as the valuei do for the value of do < 0.

iopt(:) (Input/Output)
Derived type array with the same precision as the input array; used for
passing optional data toast _2dft. The options are as follows:

IMSL Fortran 90 MP Library 4.0

Chapter 3: Fourier Transforms « 87

Packaged Options for f ast _2dft
Option Prefix = ? Option Name Option Value
c ,Z_ fast_2dft_scan_for_NaN 1
c_,z_ fast _2dft_near_power_of 2 2
c_,z_ fast_2dft_scal e_forward 3
c_,z_ fast _2dft_scal e_i nverse 4

iopt (10 = ? options(?_fast_2dft_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

i sNaN(x(i,j)) ==.true.

Seethei sNaN() function, Chapter 6.
Default: Does not scan for NaNs.

iopt (10 = ?_options(?_fast_2dft_near_power_of_2, ?_dunmy)
Nearest powersof 2= mand = n are returned asan outputsini opt (1 0
+ 1)% dummy andi opt (1 O + 2) % dunmy.

iopt (10 = ? options(?_fast_2dft_scal e_forward,
real _part_of scale)

iopt (10O+1) = ?_options(?_dumy, inmmginary_part_of scale)
Complex number defined by the factor
cmplx(real _part _of _scal e, imaginary_part_of _scal e)is
multiplied by the forward transformed array.
Default valueis 1.

iopt(10 = ?_options(?_fast_2dft_scal e_i nverse,
real _part_of _scal e)

iopt(10O+tl) = ?_options(?_dumy, inmaginary_part_of_scal e)
Complex number defined by the factor
cmplx(real _part_of scal e, imaginary_part_of _scale)is
multiplied by the inverse transformed array.
Default valueis 1.

Description

Thef ast _2dft routineisaFortran 90 version of the FFT suite of IMSL (1994,
pp. 772-776).

Additional Examples

Example 2: Cyclical 2D Data with a Linear Trend

This set of datais sampled from afunction x(s, t) = a+ bs+ ct + y(s, t) , where
y(s, t) isan harmonic series. The independent variables are normalized as
-l<s<land-1<t<1. Thus, thedataissaid to have cyclical components plus
alinear trend. Asafirst step, the linear terms are effectively removed from the
data using the least-squares system solver | i n_sol _I sg, Chapter 1. Then, the
residuals are transformed and the resulting frequencies are analyzed.

88 « Chapter 3: Fourier Transforms IMSL Fortran 90 MP Library 4.0

use fast_2dft_int
use lin_sol_lsqg_int
use sort_real _int
use rand_i nt
inmplicit none

I This is Exanple 2 for FAST_2DFT.

i nteger i

i nteger, paraneter :: n=8, k=15

integer ip(n*n), order(k)

real (kind(1e0)), paraneter :: one=1e0, two=2e0, zero=0e0

real (kind(1e0)) delta_t

real (kind(1e0)) rn(3), s(n), t(n), tenp(n*n), new_order (k)

conpl ex(kind(1e0)) a, b, ¢, a_trend(n*n,3), b_trend(n*n,1), &
f(n,n), r(n,n), x(n,n), x_trend(3,1)

conmpl ex(ki nd(1e0)), dinmension(n,n) :: g=zero, h=zero

I Generate random data for planar trend
rn = rand(rn)

a =rn(l)
b =rn(2)
c =rn(3)

I Generate the frequency conponents of the harnonic series

I Non-zero random anplitudes given on two edges of the square domain
g(1:,1)=rand(g(1:,1))
g(1,1:)=rand(g(1,1:))

I Invert 'g’ into the harnonic series "h' in tine domain.
call c_fast_2dft(inverse_in=g, inverse_out=h)

I Conpute sanpling interval

delta_t = two/n
(/(-one + (i-1)*delta_t, i=1,n)/)
(/(-one + (i-1)*delta_t, i=1,n)/)

t

I Make up data set as a linear trend plus harnonics
X = a + b*spread(s, di m2, ncopi es=n) + &
c*spread(t, di m=1, ncopi es=n) + h

I Define |east-squares matrix data for a planar trend
a_trend(1:,1) one
a_trend(1:,2) reshape(spread(s, di m=2, ncopi es=n), (/n*n/))
a_trend(1:,3) reshape(spread(t, di me1, ncopi es=n), (/n*n/))
b_trend(1:,1) reshape(x, (/n*n/))

I Solve for a linear trend
call lin_sol _Isqg(a_trend, b_trend, x_trend)

I Conpute harnoni c residuals
r = x - reshape(matnul (a_trend,x_trend), (/n,n/))

I Transform harnoni ¢ residual s
call c_fast_2dft(forward_in=r, forward_out=f)

ip = (/(i,i=1,n**2)/)

IMSL Fortran 90 MP Library 4.0 Chapter 3: Fourier Transforms « 89

Sort the magnitude of the transform
call s_sort_real (-(abs(reshape(f,(/n*n/)))), &
tenp, ipernFip)

The domi nant frequencies are output in ip(1l:Kk).
Sort these values to conpare with the original frequency order
call s_sort _real(real (ip(1:k)), new order)

(/(i,i=1,n)/)
= (/((i-n)*n+l,i=n+1,k)/)

order(1l:n) =
order (n+1: k)

Check the results.

if (count(order /= int(new order)) == 0) then
wite (*,*) 'Exanple 2 for FAST 2DFT is correct.

end if

end

Example 3: Several 2D Transforms with Initialization

In this example, the optional arguments i do and wor k_ar ray are used to save
working variablesin the calling program unit. This results in maximum efficiency
of the transform and its inverse since the working variables do not have to be
precomputed following each entry to routine f ast _2dft .

use fast_2dft_int
inmplicit none

This is Exanple 3 for FAST_2DFT.

integer i, j
i nteger, paraneter :: n=256
real (kind(1e0)), paraneter :: one=1e0, zero0=0e0

real (kind(1e0)) r(n,n), err
conpl ex(kind(1e0)) a(n,n), b(n,n), c(n,n)

The value of the array size for work(:) is conputed in the
routine fast_dft as a first step.

i nteger ido_val ue
conpl ex(kind(1e0)), allocatable :: work(:)

Fill i
a
r

val ue one for points inside the circle with r=64.

zero

reshape((/(((i-n/2)**2 + (j-n/2)**2, i=1,n), &
i=1,nm)/),(/n,nl))

where (r <= (n/4)**2) a = one

c =a

Inns

Transform and then invert the sequence using the pre-conputed
wor ki ng val ues
ido_value =0
do
if(allocated(work)) deall ocate(work)

90 « Chapter 3: Fourier Transforms IMSL Fortran 90 MP Library 4.0

I Allocate the space required for work(:).
if (ido_value <= 0) allocate(work(-ido_value))

I Transformthe image and then invert it back.
call c_fast_2dft(forward_in=a, &
forward_out=b, |1DO=ido_val ue, work_array=work)
if (ido_value == 1) exit
end do
call c_fast_2dft(inverse_in=b, &
i nverse_out=a, |DOC=ido_val ue, work_array=wor k)

| Deall ocate the space used for work(:).
if (allocated(work)) deall ocate(work)

I Check that inverse(transforn{inmge)) = inmage.
err = maxval (abs(c-a))/ maxval (abs(c))
if (err <= sqgrt(epsilon(one))) then
wite (*,*) "Exanple 3 for FAST 2DFT is correct.’
end if

end

Fatal and Terminal Messages

See the messages.gls file for error messages for f ast _2df t . These error mes-
sages are numbered 670-680; 720—-730.

fast_3dft

Computes the Discrete Fourier Transform (2DFT) of arank-3 complex array, x.

Required Arguments

No required arguments; pairs of optional arguments are required. These pairs are
forward_in and forward _out or inverse_in and inverse_out.
Example 1: Transforming an Array of Random Complex Numbers

An array of random complex numbers is obtained. The transform of the numbers
isinverted and the final results are compared with the input array.

use fast_3dft_int
inmplicit none
I This is Exanple 1 for FAST_3DFT.
integer i, j, k
i nteger, paraneter :: n=64
real (kind(1e0)), paraneter :: one=1e0, zero=0e0

real (kind(1e0)) r(n,n,n), err
conpl ex(kind(1e0)) a(n,n,n), b(n,n,n), c(n,n,n)

IMSL Fortran 90 MP Library 4.0 Chapter 3: Fourier Transforms « 91

' Fill in value one for points inside the sphere
I with radius=16
a = zero
do i=1,n
do j=1,n
do k=1,n
r(i,j,k) = (i-n/2)**2+(j-n/2)**2+(k-n/2)**2
end do
end do
end do
where (r <= (n/4)**2) a = one
c =a

I Transformthe image and then invert it back.
call c_fast_3dft(forward_in=a, &
f orwar d_out =b)
call c_fast_3dft(inverse_in=h, &
i nver se_out =a)

I Check that inverse(transforn(inmage)) = inage
err = maxval (abs(c-a))/ maxval (abs(c))
if (err <= sqgrt(epsilon(one))) then
wite (*,*) "Exanple 1 for FAST 3DFT is correct.
end if

end

Optional Arguments

forward_in = x (Input)
Stores the input complex array of rank-3 to be transformed.

forward_out =y (Output)
Stores the output complex array of rank-3 resulting from the transform.

inverse_in =y (Input)
Stores the input complex array of rank-3 to be inverted.

i nverse_out = x (Output)
Stores the output complex array of rank-3 resulting from theinverse
transform.

ndata = m (Input)
Uses the sub-array in first dimension of size mfor the numbers.
Default value: m = size(x, 1).

ndata = n (Input)
Uses the sub-array in the second dimension of size n for the numbers.
Default value: n = size(x, 2).

kdata = k (Input)
Uses the sub-array in the third dimension of sizek for the numbers.
Default value: k = size(x, 3).

ido = ido (Input/Output)
Integer flag that directs user action. Normally, this argument is used only
when the working variables required for the transform and itsinverse are

92 « Chapter 3: Fourier Transforms IMSL Fortran 90 MP Library 4.0

saved in the calling program unit. Computing the working variables and
saving them in internal arrayswithin f ast _3dft isthe default. This
initialization step is expensive.

There is atwo-step process to compute the working variables just once.
The general algorithm for this usageisto enter f ast _3dft with

i do = 0. A return occurs thereafter with i do < 0. The optional rank-1
complex array W(:) with size(w) >= —i do must be re-allocated. Then,
re-enter f ast _3dft. The next return fromf ast _3df t has the output
valuei do = 1. The variables required for the transform and itsinverse
are saved in w(:). Thereafter, when the routine is entered withi do =1
and for the same values of m and n, the contents of w(:) will be used for
the working variables. The expensive initialization step is avoided. The
optional arguments “i do=" and “wor k_ar r ay=" must be used
together.

work_array = w(:) (Output/Input)
Complex array of rank-1 used to store working variables and values
between calls td ast _3dft. The value for siz& must be at least as
large as the value i do for the value ofi do < 0.

iopt = iopt(:) (Input/Output)
Derived type array with the same precision as the input array; used for
passing optional data toast _3dft. The options are as follows:

Packaged Options for fast _3dft
Option Prefix = ? Option Name Option Value
c_,z_ fast _3dft_scan_for_NaN 1
c .,z fast_3dft_near_power_of _2 2
c_,z_ fast _3dft_scale_forward 3
c .,z fast_3dft_scal e_i nverse 4

iopt(10 = ?_options(?_fast_3dft_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

i sSNaN(x(i,j,K)) == true.

See the sNaN() function Chapter 6
Default: Does not scan for NaNs.

iopt (10 = ? options(?_fast_3dft_near_power_of 2, ?_dunmy)
Nearest powers of 2m, = n, and = k are returned as an outputs in
i opt (1 O+1) % dumy ,i opt (1 O+2) % dunmmy and
i opt (1 O+3) % dummy

iopt(10 = ?_options(?_fast_3dft_scal e_forward,
real _part_of _scal e)

iopt(10O+tl) = ?_options(?_dumy, inmaginary_part_of_scal e)
Complex number defined by the factor

IMSL Fortran 90 MP Library 4.0 Chapter 3: Fourier Transforms ¢ 93

cmplx(real _part _of _scal e, imaginary_part_of _scal e)is
multiplied by the forward transformed array.
Default valueis 1.

iopt(10Q = ?_options(?_fast_3dft_scal e_i nverse,
real _part_of _scal e)

iopt (10O+1) = ?_options(?_dumy, inmaginary_part_of _scal e)
Complex number defined by the factor
cmplx(real _part_of scale, imaginary_part_of scale)is
multiplied by the inverse transformed array.
Default valueis 1.

Description

Thefast _3dft routineisaFortran 90 version of the FFT suite of IMSL (1994,
pp. 772-776).

Fatal and Terminal Messages

See the messages.gls file for error messages for f ast _3df t . These error mes-
sages are numbered 685-695; 740-750.

94 « Chapter 3: Fourier Transforms IMSL Fortran 90 MP Library 4.0

Chapter 4: Curve and Surface
Fitting with Splines

Contents
SPliNE_CONSE T A NES toiiiiiiii it e e e e e e e s 99
SPl i NE_ VAl UBS i e e e e e s 100
£y o B A =Y T 0 4 o 101
Example 1: Natural Cubic Spline Interpolation to Data.............ccccccuvenn. 101
Example 2: Shaping a Curve and its DerivativesSccccveveveveeeninnns 104
Example 3: Splines Model a Random Number Generator..................... 106
Example 4: Represent a Periodic CUIVecceeeviiiiiiiiiieeee e 108
SUMfAaCe_CONSE T A NES tuuuiiiiiii e e 110
T = Lo =YY Z= LB VL= 111
LT = o =Y 0 A 2 Vo 112
Example 1: Tensor Product Spline Fitting of Datacccccceeeeiiiiiinennn. 113
Example 2: Parametric Representation of a Sphere..........cccccccceeeine 116
Example 3: Constraining Some Points using a Spline Surface.............. 119
Example 4: Constraining a Spline Surface to be non-Negative.............. 120

Introduction

The following describes routines for fitting or smoothing sets of discrete databy a
sum of B-splines, in one dimension, or atensor-product of B-splines, in two
dimensions. First time users are advised to see IMSL (1994, pp. 413-414) and de
Boor (1978) for the basics about B-splines. The sense of the approximation is
weighted least-squares datafitting. We have included the capability of enforcing
constraints on the resulting function. For the two-dimensional problem we
provide regularization of the least-squares surface fitting problem, and we allow
users to change the default values of the parameters. We provide controls for
users to shape resulting curves or surfaces based on other information about the
problem that cannot be easily expressed as least-squares data fitting. For instance
auser may want the fitted curve to be monotone decreasing, everywhere non-
negative, and with a specified sign for the second derivativein sub intervals.
Example 2 for theroutine spl i ne_fi tting presentsacurve fitting problem

IMSL Fortran 90 MP Library 4.0 Chapter 4: Curve and Surface Fitting with Splines « 95

with these constraints. Example 4 for theroutine sur f ace_fitting givesan
example of constraining a surface to be non-negative.

One-Dimensional Smoothing, Check-List
For datafitting or smoothing, users should follow a check-list:

1. Choose the degree of the piece-wise polynomials (spline function) and their
knots. Usethe IMSL DNFL derived type s_spl i ne_knot's or
d_spline_knots todefinethisdatafor use as an argument to the fitting
routine. These derived types are discussed below.

2. Choose the constraints that the spline function must satisfy. Use the generic
derived type function spl i ne_const rai nt s for defining this optional
information to be passed to the fitting routine. This derived typeis discussed
below.

3. Definethe datavaluesto befit. These are triples of independent and
dependent variable values

(%,Y;),i =1...,ndata

and uncertainty: Each dependent variable value requires an estimate of its
uncertainty, o;.

4. Usethearray function spline_fitting tocompute the coefficients of the
B-spline.

5. With the coefficients obtained in the previous step, the array function
spl i ne_val ues evauatesthe spline, its derivatives, or the square root of its
variance.

The Derived Types s_knots and d_knots

The user defines the polynomial degree of the B-spline (which is one less than its
order) and the knots or breakpoints for this set of data. We have packaged the
derived types

type ?_spline_knots

i nteger spline_degree

real (kind(?)), pointer :: ?_knots(:)
end type

Herethe “?_’' iseither 's_’ or ‘d_’' for single or double precision,
respectively. The definition of these derived types are in the module MP_TYPES
Thisisinherited by using the module SPLINE_FITTING_INT . Examples1-4
illustrate how this derived type is declared and assigned components.

The Derived Type Function spline_constraints

The user defines the constraints of the spline at discrete points by use of an array
of derived type. Each entry of that array has components with the following
definitions:

type ?_spline_constraints

96 « Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

i nteger derivative_index
real (kind(?)) where_applied
CHARACTER (LEN=*) constraint _indi cator
real (kind(?)) value_applied

end type

A generic function is packaged in the module SPLI NE_FI TTI NG_I NT. Itsvalues
are arrays of derived type ?_spl i ne_const r ai nt s, determined by the
precision of the arguments.

The Evaluator Function spl i ne_val ues

After computation of the B-spline coefficients, values of the spline, its derivative
functions, or the square root of the variance function, are evaluated with this
function. Since amajor use of the values are likely to be for graphical display, a
vector of input value yields a vector of output spline values of the same size as
theinput. The same quantities can be evaluated at a single independent variable
value.

The Array Function spline fitting

The coefficients of the B-spline are the output values of this generic function.
The precision of the coefficients is determined through the generic interface by
the precision of the arguments. The data array and the derived type

?_spl i ne_knot s arerequired arguments. The array of derived type
?_spline_constraints isanoptional argument.

Two-Dimensional Smoothing, Check-List
For two-dimensional smoothing, users should follow the check-list below:

1. Choose the degree of the piece-wise polynomials (tensor product spline
function) and their knotsin both independent variables. The degree of the
spline must be the same in both dimensions. Use the IMSL DNFL derived
type s_spl i ne_knots or d_spline_knots todefinethisdatafor use as
an argument to the fitting routine. Note that this derived typeis also used for
the one-dimensional problem, but for two-dimensional problems separate
arguments are needed in each dimension.

2. Choose the regularization parameters and constraints that the tensor product
spline function must satisfy. Values of the regularization parameters are
passed to the fitting routine using the derived types_opt i ons or
d_opti ons. Of particular importance for obtaining pleasing results isthe
need to vary the parameters thinness and, occasionally flatness or smallness,
appearing in the least-squares model .

3. Usethe generic derived type function sur f ace_constrai nts for
specifying optional constraint information for the fitting routine. This derived
typeis discussed below.

4. Definethe datavaluesto befit. These are quadruples consisting of pairs of
independent and single dependent variable values

IMSL Fortran 90 MP Library 4.0 Chapter 4: Curve and Surface Fitting with Splines « 97

(%,¥,%),i =1,...,ndata

and uncertainty: Each dependent variable value requires an estimate of its
uncertainty, o;.

5. Usethe array function surface fitting to compute the coefficients of the tensor
product B-spline.

6. With the coefficients obtained in the previous step, the array function
surface_val ues evaluatesthe spline, its derivatives, or the square root of
its variance.

The Derived Type Function surface_constraints

The user defines the constraints of the tensor product spline at discrete points by
use of an array of derived type. Each entry of that array has components with the
following definitions:

type ?_surface_constraints
i nteger derivative_index(2)
real (kind(?)) where_applied(2)
CHARACTER (LEN=*) constraint _indi cator
real (kind(?)) value_applied
real (kind(?)) periodic_point(2)

end type

A generic function is packaged in the module SURFACE_FI TTI NG_I NT. Its
values are arrays of derived type ?_sur face_constrai nt s, depending on the
precision of the arguments.

The Evaluator Function surface_val ues

After computation of the tensor product B-spline coefficients, values of the spline
surface, its various derivative functions, or the square root of the variance of the
curve, are computed or evaluated with this function. Since a major use of the
values are likely to be for graphical display, arrays of input values for both of the
independent variables yield an array output spline values of the size of the
product of the sizes of the input. Users can also evaluate the same surface
guantities at a single point.

The Array Function surface_fitting

The coefficients of the tensor product B-spline are the output values of this
generic function. The precision of the coefficients is determined through the
generic interface by the precision of the arguments. The data array and the
derived type ?_spl i ne_knot s, for the x and y coordinates, are required
arguments. The array of derived type ?_surface_constrai nts isanoptiona
argument.

98 « Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

spline_constraints

This function returns the derived type array result, ?_spl i ne_constraints,
given optional input. There are optional arguments for the derivative index, the
value applied to the spline, and the periodic point for any periodic constraint.

The function is used, for entry number j ,

?_spline_constraints(j) = &
spline_constraints([derivative=derivative_index,] &
point = where_applied, [value=value_applied,], &
type = constraint_indicator, &

[periodi c_point = val ue_applied])

The square brackets enclose optional arguments. For each constraint either (but
not both) the ‘value =’ or the ‘periodic_point =’ optional arguments
must be present.

Required Arguments

point = where_applied (Input)
The point in the data interval where a constraint is to be
applied.

type = constraint_indicator (Input)

Theindicator for the type of constraint the spline function or its
derivativesisto satisfy at the point: where_applied . The
choices are the character strings ‘==, ‘<=, >=",

‘= and ‘.= . They respectively indicate that the spline
value or its derivatives will be equal to, not greater than, not
less than, equal to the value of the spline at another point, or
equal to the negative of the spline value at another point. These
last two constraints are called periodic and negative-periodic,
respectively. The alternate independent variable point is
value_applied for either periodic constraint. Thereisause
of periodic constraintsin Example 4.

Optional Arguments

derivative = derivative_index (Input)
Thisisthe number of the derivative for the spline to apply the
constraint. The value 0 corresponds to the function, the value 1
to the first derivative, etc. If thisargument is not present in the
list, the value O is substituted automatically. Thus a constraint
without the derivative listed applies to the spline function.

periodic_point = value_applied
This optional argument improves readability by automatically
identifying the second independent variable value for periodic
constraints.

IMSL Fortran 90 MP Library 4.0 Chapter 4: Curve and Surface Fitting with Splines « 99

spline_values

Thisrank-1 array function returns an array result, given an array of input. Usethe
optional argument for the covariance matrix when the square root of the variance

functionisrequired. Theresult will be ascalar value when the input variable is
scalar.

Required Arguments

derivative = derivative (Input)
Theindex of the derivative evaluated. Use non-negative
integer values. For the function itself use the value 0.

vari abl es = vari abl es (Input)
The independent variable values where the spline or its

derivatives are evaluated. Either arank-1 array or ascalar can
be used as this argument.

knots = knots (Input)

The derived type ?_spl i ne_knot s, defined asthe array
CCEFFS was obtained with the function SPLI NE_FI TTI NG.

This contains the polynomial spline degree and the number of
knots and the knots themselves for this spline function.
coeffs = ¢ (Input)
The coefficients in the representation for the spline function,
N

f(x):chBj(x).
=

These result from the fitting process or array assignment
C=SPLINE_FI TTINE. ..), defined below. Thevaue

N = size(C) satisfiestheidentity

N - 1+ spline_degree = size (?_knots), where the two right-
most quantities refer to components of the argument knot s.

Optional Arguments

covariance = G (Input)

This argument, when present, results in the evaluation of the
sguare root of the variance function

&(x) = (b(x)" Gb(x)

2

where

and G isthe covariance matrix associated with the coefficients
of the spline

100 « Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

T
c=[cy,....c\]

The argument Gis an optional output parameter from the
function spline_fitting, described below. When the
sguare root of the variance function is computed, the arguments
DERI VATI VE and C are not used.

iopt = iopt (Input)

This optional argument, of derived type ?_opti ons, isnot
used in thisrelease.

spline_fitting

Weighted least-squares fitting by B-splines to discrete One-Dimensional datais
performed. Constraints on the spline or its derivatives are optional. The spline
function

1=1

its derivatives, or the square root of its variance function are evaluated after the
fitting.

Required Arguments

data = data(1:3,:) (Input/Output)
An assumed-shape array withsi ze(dat a, 1) = 3. Thedataare placed in
thearray: data(1,i) = x;,data(2,i) =y;,arddata(3,i) =0j,
i =1,...,ndata. If the variances are not known but are proportional to an
unknown value, usersmay setdat a(3,i) = 1,i=1,...,ndata.

knots = knots (Input)
A derived type, ?_spl i ne_knot s, that definesthe degree of the spline and
the breakpoints for the data fitting interval.

Example 1: Natural Cubic Spline Interpolation to Data

The function
9(x) = exp(-x* 1 2)
isinterpolated by cubic splines on the grid of points
x; =(i—1Ax,i=1...,ndata
Those natural conditions are

. d?f d’g, . .
f(x)=9(x),i= 0,...,nda1a,F(xi) =F(Xi)’l =0 and ndata
X X

IMSL Fortran 90 MP Library 4.0 Chapter 4: Curve and Surface Fitting with Splines « 101

Our program checks the term const. appearing in the maximum truncation error
term

error = const.xAx*
at afiner grid.

USE spline fitting_ int
USE show_i nt
USE norm.int

inplicit none

I This is Exanple 1 for SPLINE_FITTING Natural Spline
I Interpolation using cubic splines. Use the function
I exp(-x**2/2) to generate sanples

integer :: i
i nteger, paraneter :: ndata=24, nord=4, ndegree=nord-1, &
nbkpt =ndat a+2* ndegr ee, ncoef f =nbkpt - nord, nval ues=2*ndat a

real (kind(1e0)), paraneter :: zero=0e0, one=1e0, hal f=5e-1

real (kind(1e0)), paraneter :: delta_x=0.15, delta xv=0.4*delta x

real (kind(1e0)), target :: xdata(ndata), ydata(ndata), &
spline_data (3, ndata), bkpt(nbkpt), &
ycheck(nval ues), coeff(ncoeff), &
xval ues(nval ues), yval ues(nval ues), diff

real (kind(1e0)), pointer :: pointer_bkpt(:)
type (s_spline_knots) break_points
type (s_spline_constraints) constraints(2)

xdata = (/((i-1)*delta_x, i=1,ndata)/)

ydata = exp(-hal f *xdat a**2)

xval ues =(/(0.03+(i-1)*delta_xv,i=1, nval ues)/)
ycheck= exp(-hal f *xval ues**2)
spline_data(l,:)=xdata

spline_data(2,:)=ydata

spline_data(3,:)=one

| Define the knots for the interpolation problem
bkpt (1: ndegree) = (/(i*delta_x, i=-ndegree,-1)/)
bkpt (nor d: nbkpt - ndegree) = xdata
bkpt (nbkpt - ndegr ee+1: nbkpt) = &
(/ (xdat a(ndat a) +i *del ta_x, i=1,ndegree)/)

I Assign the degree of the polynonmial and the knots
poi nt er _bkpt => bkpt
br eak_poi nt s=s_spl i ne_knot s(ndegree, pointer_bkpt)

I These are the natural conditions for interpolating cubic
I splines. The derivatives match those of the interpolating
I function at the ends.

constraints(1l)=spline_constraints &

(derivative=2, point=bkpt(nord), type='==", val ue=-one)
constraints(2)=spline_constraints &
(derivative=2, poi nt =bkpt (nbkpt - ndegree), type='==", &

val ue=(- one+xdat a(ndat a) **2) *ydat a(ndat a))

coeff = spline_fitting(data=spline_data, knots=break_points, &

102 « Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

constrai nts=constraints)

yval ues=spl i ne_val ues(0, xval ues, break _points, coeff)

di f f =nor m(yval ues-ycheck, huge(1))/delta_x**nord

if (diff <= one) then
wite(*,*) "Exanple 1 for SPLINE FITTING is correct.’

end if
end
Optional Arguments
constraints = spline_constraints (Input)
A rank-1 array of derived type?_spl i ne_constrai nts that give
constraints the output splineisto satisfy.
covariance = G (Output)
An assumed-shape rank-2 array of the same precision asthe data. This output
is the covariance matrix of the coefficients. Itis optionally used to evaluate
the square root of the variance function.
iopt = iopt(:) (Input/Output)
Derived type array with the same precision as the input array; used for passing
optional datato spline_fitting. Theoptionsareasfollows:
Packaged Options for spline_fitting
Prefix = None Option Name Option Value

spline_fitting_tol _equal

spline_fitting_tol _I east 2

iopt(10O = ?_options(spline_fitting_tol_equal, ?_value)
Thisresets the value for determining that equality constraint equations are

rank-deficient. The defaultis?_val ue = 107,

iopt(10O = ?_options(spline_fitting_tol_least, ?_value)
Thisresets the value for determining that |east-squares equations are rank-

deficient. Thedefaultis? val ue = 107™*.

Description

This routine has similar scope to CONFT/ DCONFT found in IMSL (1994, pp 551-
560). We provide the square root of the variance function, but we do not provide
for constraints on the integral of the spline. The least-squares matrix problem for
the coefficientsis banded, with band-width equal to the spline order. Thisfactis
used to obtain an efficient solution algorithm when there are no constraints.
When constraints are present the routine solves a linear-least squares problem
with equality and inequality constraints. The processed |east-squares equations
result in abanded and upper triangular matrix, following accumulation of the
splinefitting equations. The agorithm used for solving the constrained | east-

IMSL Fortran 90 MP Library 4.0 Chapter 4: Curve and Surface Fitting with Splines « 103

sguares system will handle rank-deficient problems. A set of reference are
available in Hanson (1995) and Lawson and Hanson (1995). The

CONFT/ DCONFT routine uses QPROG (loc cit., p. 959), which requires that the
|east-squares equations be of full rank.

Additional Examples

Example 2: Shaping a Curve and its Derivatives
The function

9(x) = exp(-x?/ 2)(1+ noise)

isfit by cubic splines on the grid of equally spaced points
x; = (i —1Ax,i=1...,ndata

The term noise is uniform random numbers from the normalized interval
[-7,7], where 7 = 0.01. The spline curveis constrained to be convex down for

for 0 < x £ 1 convex upward for 1< x < 4, and have the second derivative exactly
equal tothevaluezero at x=1. Thefirst derivative is constrained with the value
zero at X =0 and is non-negative at the right and of theinterval, x =4. A sample
table of independent variables, second derivatives and square root of variance
function valuesis printed.

use spline_fitting_int

use show_i nt

use rand_i nt
use norm.int

inmplicit none

I This is Exanple 2 for SPLINE_FITTING Use 1st and 2nd derivative
I constraints to shape the splines

integer :: i, icurv
i nteger, paraneter :: nbkptin=13, nord=4, ndegree=nord-1, &
nbkpt =nbkpt i n+2*ndegr ee, ndat a=21, ncoeff=nbkpt-nord
real (kind(1e0)), paraneter :: zero=0e0, one=1e0, hal f=5e-1
real (kind(1e0)), paraneter :: range=4.0, ratio=0.02, tol=ratio*half
real (kind(1e0)), paraneter :: delta_x=range/(ndata-1),
del t a_b=range/ (nbkptin-1)
real (kind(1e0)), target :: xdata(ndata), ydata(ndata), ynoise(ndata), &

sddat a(ndata), spline_data (3, ndata), bkpt(nbkpt), &
val ues(ndata), derivatl(ndata), derivat2(ndata), &
coef f(ncoeff), root_variance(ndata), diff

real (kind(1e0)), dimension(ncoeff,ncoeff) :: signma_squared

real (kind(1e0)), pointer :: pointer_bkpt(:)
type (s_spline_knots) break_points
type (s_spline_constraints) constraints(nbkptin+2)

xdata = (/((i-1)*delta_x, i=1,ndata)/)
ydata = exp(-hal f *xdat a**2)

ynoi se = ratio*ydata*(rand(ynoise)-half)
ydata = ydat a+ynoi se

104 « Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

sddata = ynoi se

spline_data(l,:)=xdata
spline_data(2,:)=ydata
spline_data(3,:)=sddata

bkpt=(/ ((i-nord)*delta_b, i=1, nbkpt)/)

I Assign the degree of the polynonmial and the knots
poi nter _bkpt => bkpt
br eak_poi nt s=s_spl i ne_knot s(ndegree, pointer_bkpt)

i curv=int(one/delta_b)+1

I At first shape the curve to be convex down.
do i=1,icurv-1
constraints(i)=spline_constraints &
(derivative=2, point=bkpt(i+ndegree), type='<=', val ue=zero)
end do

I Force a curvature change
constraints(icurv)=spline_constraints &

(derivative=2, point=bkpt(icurv+ndegree), type='==", val ue=zero)
! Finally, shape the curve to be convex up
do i =icurv+l, nbkptin
constraints(i)=spline_constraints &
(derivative=2, point=bkpt(i+ndegree), type='>=", val ue=zero)
end do

I Make the sl ope zero and val ue non-negative at right.
constrai nts(nbkptin+l)=spline_constraints &

(derivative=1, point=bkpt(nord), type='==", val ue=zero)
constrai nts(nbkptin+2)=spline_constraints &
(derivative=0, point=bkpt(nbkptin+ndegree), type='>=", val ue=zero)

coeff = spline_fitting(data=spline_data, knots=break points, &
constrai nts=constraints, covariance=si gna_squar ed)

! Conpute value, first two derivatives and the vari ance.
val ues=spl i ne_val ues(0, xdata, break_points, coeff)
root _variance=spline_val ues(0, xdata, break_points, coeff, &
covari ance=si gna_squar ed)
derivat 1=spli ne_val ues(1, xdata, break_points, coeff)
derivat 2=spl i ne_val ues(2, xdata, break_points, coeff)

call show(reshape((/xdata, derivat2, root_variance/),(/ndata,3/)), &
"The x values, 2-nd derivatives, and square root of variance.")

| See that differences are relatively small and the curve has
I the right shape and signs
di f f =nor n(val ues-ydat a)/ nor n{ ydat a)
if (all(values > zero) .and. all(derivatl < epsilon(zero))&
.and. diff <=tol) then
wite(*,*) '"Exanple 2 for SPLINE FITTING is correct.
end if

end

IMSL Fortran 90 MP Library 4.0 Chapter 4: Curve and Surface Fitting with Splines « 105

Example 3: Splines Model a Random Number Generator
The function
9(x) = exp(-x?/2), -1< x<1
=0,|x/=1

isan unnormalized probability distribution. Thisfunctionis similar to the
standard Normal distribution, with specific choices for the mean and variance,
except that it istruncated. Our algorithm interpolates g(x) with anatural cubic
spling, f(x). The cumulative distribution is approximated by precise evaluation of
the function

Gauss-L egendre quadrature formulas, IMSL (1994, pp. 621-626), of order two

are used on each polynomial piece of f(t) to evaluate q(x) cheaply. After
normalizing the cubic spline so that q(1) = 1, we may then generate random

numbers according to the distribution f(x) Og(x). Thevauesof X are

evaluated by solving q(X) = u, -1 <x< 1. Here u isauniform random sample.
Newton’s method, for a vector of unknowns, is used for the solution algorithm.
Recalling the relation

a4

dx
we believe this illustrates a method for generating a vector of random numbers
according to a continuous distribution function having finite support.

(a)-u) = f(x),-1<x<1

use spline fitting_ int
use |linear_operators
use Nunerical Libraries

inmplicit none

This is Exanple 3 for SPLINE FITTING Use splines to

generate random (al nost nornal) nunbers. The normal distribution
function has support (-1,+1), and is zero outside this interval.
The variance is 0.5.

integer i, niterat
integer, paraneter :: iweight=1, nfix=0, nord=4, ndata=50
i nteger, paraneter :: nquad=(nord+1)/2, ndegree=nord-1
i nteger, paraneter :: nbkpt=ndata+2*ndegree, ncoeff=nbkpt-nord
i nteger, paraneter :: |ast=nbkpt-ndegree, n_sanpl es=1000
integer, paraneter :: limt=10
real (kind(1e0)), dinmension(n_sanples) :: fn, rn, x, alpha_x, beta x
| NTEGER LEFT_OF(n_sanpl es)
real (kind(1e0)), paraneter :: one=1e0, hal f=5e-1, zero=0e0, two=2e0
real (kind(1e0)), paraneter :: delta_x=two/(ndata-1)
real (kind(1e0)), paraneter :: gal pha=zero, gbeta=zero, domai n=two

real (kind(1e0)) gx(nquad), gxi(nquad), gw nquad), gxfix(nquad)
real (kind(1e0)) alpha_, beta_, quad(0:ndata-1)

106 « Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

real (kind(1e0)), target :: xdata(ndata), ydata(ndata),
coeff(ncoeff), &
spline_data(3, ndata), bkpt(nbkpt)

real (kind(1e0)), pointer :: pointer_bkpt(:)
type (s_spline_knots) break_points
type (s_spline_constraints) constraints(2)

I Approximate the probability density function by splines
xdata = (/(-one+(i-1)*delta_x, i=1,ndata)/)
ydata = exp(-hal f *xdat a**2)

spline_data(l,:)=xdata
spline_data(2,:)=ydata
spline_data(3,:)=one

bkpt =(/ (- one+(i-nord)*delta_x, i=1,nbkpt)/)

I Assign the degree of the polynonmial and the knots
poi nter _bkpt => bkpt
br eak_poi nt s=s_spl i ne_knot s(ndegree, pointer_bkpt)

I Define the natural derivatives constraints
constraints(1l)=spline_constraints &
(derivative=2, point=bkpt(nord), type="==", &
val ue=(-one+xdata(1)**2)*ydata(1))
constraints(2)=spline_constraints &
(derivative=2, point=bkpt(last), type="==", &
val ue=(-one+xdat a(ndata) **2) * ydata(ndata))

I Qotain the spline coefficients
coeff=spline_fitting(data=spline_data, knots=break points, &
constrai nts=constraints)

I Conpute the evaluation points 'gx(*)' and weights "gw(*)’' for
I the Gauss-Legendre quadrature. This will give a precise
I quadrature for polynom als of degree <= nquad*2
call ggrul (nquad, iweight, qgal pha, gbeta, nfix, gxfix, gx, qw)

I Conpute pieces of the accunmul ated distribution function:
quad(0) =zero
do i =1, ndata-1
al pha_= (bkpt (nord+i)-bkpt (ndegree+i))*hal f
beta_ = (bkpt(nord+i) +bkpt (ndegree+i))*hal f

I Normalized absci ssas are stretched to each spline interval
I Each polynom al piece is integrated and accunul at ed.
gxi = al pha_*qgx+beta_
quad(i) = sun{gw'spline_values(0, gxi, break_points,
coeff))*al pha_&
+ quad(i-1)
end do

I Normalize the coefficients and partial integrals so that the
I total integral has the val ue one.
coef f =coef f/ quad(ndat a- 1) ; quad=quad/ quad(ndat a- 1)
rn=rand(rn)
Xx=zero; niterat=0

IMSL Fortran 90 MP Library 4.0 Chapter 4: Curve and Surface Fitting with Splines « 107

sol ve_equation: do

! Find the intervals where the x values are | ocated.
LEFT_OF=NDEGREE; | =NDEGREE
do
I=1+1; if(l >= LAST) EXIT
VWHERE(x >= BKPT(1))LEFT_OF = LEFT_OF+1
end do

I Use Newton's nethod to solve the nonlinear equation:
I accurul ated_di stribution_function - random nunber = 0.
al pha_x = (x-bkpt (LEFT_OF))*hal f
beta x = (x+bkpt(LEFT_CF))*half
FN=QUAD(LEFT_OF- NORD) - RN
DO | =1, NQUAD
FN=FN+QW(|) *spl i ne_val ues(0, al pha x*QX(1)+beta_x, &
break_points, coeff)*al pha_x
END DO

I This is the Newton nmethod update step:
x=x-fn/spline_val ues(0, x, break_points, coeff)
niterat=niterat+1

I Constrain the values so they fall back into the interval
I Newton’s nethod may gi ve approxi mates outside the interval.
where(x <= -one .or. X >= one) x=zero

if(norm(fn,1) <= sqgrt(epsilon(one))*nornm(x,1))&
exit solve_equation
end do sol ve_equation

I Check that Newton's nethod converges

if (niterat <= limt) then
wite (*,*) "Exanple 3 for SPLINE FITTINGis correct.’
end if
end

Example 4: Represent a Periodic Curve

The curve tracing the edge of arectangular box, traversed in a counter-clockwise
direction, is parameterized with a spline representation for each coordinate

function, (x(t), y(t)). The functions are constrained to be periodic at the ends of

the parameter interval. Since the perimeter arcs are piece-wise linear functions,

the degree of the splinesisthe value one. Some breakpoints are chosen so they
correspond to corners of the box, where the derivatives of the coordinate

functions are discontinuous. The vaue of this representation isthat for each t the

splines representing (X(t), y(t)) are points on the perimeter of the box. This

“eases” the complexity of evaluating the edge of the box. This example illustrates
a method for representing the edge of a domain in two dimensions, bounded by a
periodic curve.

use spline_fitting_int
use norm.int

108 « Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

inplicit none

I This is Exanple 4 for SPLINE _FITTING Use piecew se-linear
| splines to represent the perineter of a rectangul ar box.

integer i, j

i nteger, paraneter :: nbkpt=9, nord=2, ndegree=nord-1, &
ncoef f =nbkpt - nord, ndata=7, ngri d=100, &
nval ues=(ndata-1)*ngrid

real (kind(1e0)), paraneter :: zero=0e0, one=1e0

real (kind(1e0)), paraneter :: delta_t=one, delta_b=one, delta v=0.01
real (kind(1e0Q)) delta_x, delta y

real (kind(1e0)), dinension(ndata) :: sddata=one, &

I These are redundant coordi nates on the edge of the box.
xdata=(/0.0, 1.0, 2.0, 2.0, 1.0, 0.0, 0.0/), &
ydata=(/0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0/)

real (kind(1e0)) tdata(ndata), xspline_data(3, ndata), &
yspline_data(3, ndata), tvalues(nvalues), &
xval ues(nval ues), yval ues(nval ues), xcoeff(ncoeff), &
ycoef f (ncoef f), xcheck(nval ues), ycheck(nval ues), diff

real (kind(1e0)), target :: bkpt(nbkpt)

real (kind(1e0)), pointer :: pointer_bkpt(:)

type (s_spline_knots) break_points

type (s_spline_constraints) constraints(1)

tdata = (/((i-1)*delta_t, i=1,ndata)/)
xspline_data(1l,:)=tdata; yspline data(l,:)=tdata
xspline_data(2,:)=xdata; yspline_data(2,:)=ydata
xspline_data(3,:)=sddata; yspline_data(3,:)=sddata

bkpt (nord: nbkpt - ndegree) =(/((i-nord)*delta_b, &
i =nord, nbkpt-ndegree)/)
I Col

apse the outside knots
bkpt (1: ndegr ee) =bkpt (nor d)
bkpt (nbkpt - ndegr ee+1: nbkpt) =bkpt (nbkpt - ndegr ee)

I Assign the degree of the polynonmial and the knots
poi nter _bkpt => bkpt
br eak_poi nt s=s_spl i ne_knot s(ndegree, pointer_bkpt)

I Make the two parametric curves al so periodic.
constraints(1)=spline_constraints &
(derivative=0, point=bkpt(nord), type=".=", &
val ue=bkpt (nbkpt - ndegr ee))

xcoeff = spline_fitting(data=xspline_data, knots=break points, &
constrai nt s=constraints)

ycoeff = spline_fitting(data=yspline_data, knots=break_points, &
constrai nts=constraints)

I Use the splines to conpute the coordinates of points along the perineter
I Conpare themwith the coordi nates of the edge points.
tvalues= (/((i-1)*delta_v, i=1,nvalues)/)
xval ues=spline_val ues(0, tval ues, break_points, xcoeff)
yval ues=spl i ne_val ues(0, tval ues, break_points, ycoeff)
do i =1, nval ues
j=(i-1)/ngrid+1
delta_x=(xdata(j+1)-xdata(j))/ngrid
delta_y=(ydata(j+1)-ydata(j))/ngrid

IMSL Fortran 90 MP Library 4.0 Chapter 4: Curve and Surface Fitting with Splines « 109

xcheck(i)=xdata(j)+nod(i+ngrid-1, ngrid)*delta_x
ycheck(i)=ydata(j)+nod(i+ngrid-1,ngrid)*delta_y
end do

di f f =nor m(xval ues- xcheck, 1)/ nor m(xcheck, 1) +&
nor n(yval ues-ycheck, 1)/ nor m{ ycheck, 1)
if (diff <= sqrt(epsilon(one))) then
wite(*,*) 'Exanple 4 for SPLINE FITTING is correct.’
end if

end

Fatal and Terminal Error Messages

See the messages.gls file for error messagesfor spline_fitting. Theseerror
messages are numbered 1340-1367.

surface_constraints

This function returns the derived type array result, ?_sur f ace_constrai nt s,
given optional input. There are optional arguments for the partial derivative
indices, the value applied to the spline, and the periodic point for any periodic

constraint. The function is used, for entry number j ,

? surface_constraints(j) = &

surface_constrai nts&
([derivative=derivative_index(1:2),] &
point = where_applied(1:2),[val ue=value_applied,], &
type = constraint_indicator, &
[periodic_point = periodic_point(1l:2)])

The square brackets enclose optional arguments. For each constraint the
arguments ‘value =’ and ‘periodic_point =’ are not used at the same
time.

Required Arguments

point = where_applied (Input)
The point in the data domain where a constraint is to be
applied. Each point has an x and y coordinate, in that order.

type = constraint_indicator (Input)
The indicator for the type of constraint the tensor product spline
function or its partial derivativesisto satisfy at the point:
where_applied . The choices are the character strings ‘==",
<=, > =), and ‘.= . They respectively indicate
that the spline value or its derivatives will be equal to, not
greater than, not less than, equal to the value of the spline at
another point, or equal to the negative of the spline value at
another point. These last two constraints are called periodic
and negative-periodic, respectively.

110 » Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

Optional Arguments

derivative = derivative_index(1:2) (Input)
These are the number of the partial derivatives for the tensor
product spline to apply the constraint. Thearray (/ 0, 0/)
corresponds to the function, thevalue (/ 1, 0/) tothefirst
partial derivative with respect to x, etc. If thisargument is not
present in thelist, thevalue (/ 0, 0/) issubstituted
automatically. Thus a constraint without the derivatives listed
appliesto the tensor product spline function.

periodic = periodi c_point(1:2)
This optional argument improves readability by identifying the
second pair of independent variable values for periodic
constraints.

surface values

Thisrank-2 array function returns atensor product array result, given two arrays
of independent variable values. Use the optional input argument for the
covariance matrix when the sguare root of the variance function is evaluated. The
result will be a scalar value when the input independent variable is scalar.

Required Arguments

derivative = derivative(1l:2) (Input)
Theindices of the partia derivative evaluated. Use non-

negative integer values. For the function itself use the array
(10,0/).

vari abl esx = vari abl esx (Input)
The independent variable valuesin thefirst or X dimension
where the spline or its derivatives are evaluated. Either arank-
1 array or ascalar can be used as this argument.

vari abl esy = vari abl esy (Input)
Theindependent variable valuesin the second or y dimension
where the spline or its derivatives are evaluated. Either arank-
1 array or ascaar can be used as this argument.

knot sx = knot sx (Input)
The derived type ?_spl i ne_knot s, used when the array
coef fs(:, :) was obtained with the function
SURFACE_FI TTI NG. This contains the polynomial spline
degree and the number of knots and the knots themselves, in the
x dimension.

knot sy = knotsy (Input)
The derived type ?_spl i ne_knot s, used when the array

IMSL Fortran 90 MP Library 4.0

Chapter 4: Curve and Surface Fitting with Splines « 111

coef fs(:,:) wasobtained with the function

SURFACE_FI TTI NG. This contains the polynomial spline
degree and the number of knots and the knots themselves, in the
y dimension.

coeffs = c (Input)
The coefficientsin the representation for the spline function,
N M
f(x,y) = Z Zcij B (Y)B;(x)

=1 1=1

These result from the fitting process or array assignment
C=SURFACE_FI TTING. ..), defined below. ThevauesM =
size(C,1) and N = size (C,2) satisfies the respective identities N
-1+ spline_degree = size (?_knotsx), and

M -1 + spline_degree = size (?_knotsy) , where the two right-
most quantities in both equations refer to components of the
argumentsknot sx and knot sy. The same value of
spline_degree must be used for both knotsx and knotsy.

Optional Arguments

covariance = G (Input)
This argument, when present, resultsin the evaluation of the
sguare root of the variance function

T V2
e(xy) = (b(x,y)" Gb(x,y))

where

b(x,y) =[B.(X)Bi(¥)..... By (X)By(Y)...]

and G isthe covariance matrix associated with the coefficients
of the spline

c:[oll,...,c,\,l,...]T

The argument Gis an optional output from sur f ace _fitti ng,
described below. When the square root of the variance function
is computed, the arguments DERI VATI VE and C are not used.

iopt = iopt (Input)

This optional argument, of derived type ?_opti ons, isnot
used in thisrelease.

surface_fitting

Weighted least-squares fitting by tensor product B-splines to discrete two-
dimensiona datais performed. Constraints on the spline or its partial derivatives
areoptional. The spline function

112 « Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

f(xy) = S ¢ B (Y)B; (%),
22

its derivatives, or the square root of its variance function are evaluated after the
fitting.
Required Arguments

data = data(1:4,:) (Input/Output)
An assumed-shape array withsi ze(dat a, 1) = 4. Thedataare placed in

the array:
data(1,i) =X,
data(2,i) =Y,
data(3,i) =z,
data(4,i) =o0;,i=1...,ndata.

If the variances are not known, but are proportional to an unknown value, use
data(4,i) = 1,i=1...,ndata.

knot sx = knotsx (Input)
A derived type, ?_spl i ne_knot s, that defines the degree of the spline and
the breakpoints for the data fitting domain, in the first dimension.

knotsy = knotsy (Input)
A derived type, ?_spl i ne_knot s, that defines the degree of the spline and
the breakpoints for the data fitting domain, in the second dimension.
Example 1: Tensor Product Spline Fitting of Data

The function
g(x.y) = exp(-x* —y?)
isleast-squares fit by atensor product of cubic splines on the square
[0,2]0[0,2]

There are ndata random pairs of values for the independent variables. Each
datum is given unit uncertainty. The grid of knotsin both x and y dimensions are
equally spaced, in theinterior cells, and identical to each other. After the
coefficients are computed a check is made that the surface approximately agrees
with g(x,y) at atensor product grid of equally spaced values.

USE surface_fitting_int
USE rand_i nt

USE norm.i nt

inmplicit none

I This is Exanple 1 for SURFACE FI TTI NG tensor product

IMSL Fortran 90 MP Library 4.0 Chapter 4: Curve and Surface Fitting with Splines « 113

B- spl i nes approxi mation. Use the function
exp(-x**2-y**2) on the square (0, 2) x (0, 2) for sanples
The spline order is "nord" and the nunber of cells is

"(ngrid-1)**2". There are "ndata" data values in the square
integer :: i
i nteger, paraneter :: ngrid=9, nord=4, ndegree=nord-1, &

nbkpt =ngri d+2*ndegr ee, ndata = 2000, nval ues=100
real (kind(1d0)), paraneter :: zero=0d0, one=1d0, two=2d0
real (kind(1d0)), paraneter :: TOLERANCE=1d-3
real (kind(1d0)), target :: spline_data (4, ndata), bkpt(nbkpt), &
coeff(ngrid+ndegree-1, ngrid+ndegree-1), delta, sizev, &
x(nval ues), y(nvalues), val ues(nval ues, nval ues)

real (kind(1d0)), pointer :: pointer_bkpt(:)
type (d_spline_knots) knotsx, knotsy

I Generate random (x,y) pairs and eval uate the

I exanpl e exponential function at these val ues
spline_data(1l:2,:)=two*rand(spline_data(1:2,:))
spline_data(3,:)=exp(-sun(spline_data(l:2,:)**2,dinmFl))
spline_data(4,:)=one

I Define the knots for the tensor product data fitting problem
delta = two/(ngrid-1)
bkpt (1: ndegree) = zero
bkpt (nbkpt - ndegr ee+1: nbkpt) = two
bkpt (nor d: nbkpt - ndegree) =(/ (i *delta, i =0,ngrid-1)/)

I Assign the degree of the polynonial and the knots
poi nter _bkpt => bkpt
knot sx=d_spl i ne_knot s(ndegree, pointer_bkpt)
knot sy=knot sx

! Fit the data and obtain the coefficients
coeff = surface fitting(spline_data, knotsx, knotsy)

| Evaluate the residual = spline - function
I at a grid of points inside the square
del t a=t wo/ (nval ues+1)
x=(/(i*delta,i=1, nvalues)/); y=x

val ues=exp(-spread(x**2, 1, nval ues) - spread(y**2, 2, nval ues))
val ues=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)-&
val ues

! Conpute the RMS. error
si zev=nor n{ pack(val ues, (values == val ues)))/nval ues

if (sizev <= TOLERANCE) then

wite(*,*) 'Exanple 1 for SURFACE FITTINGis correct.’
end if
end

114 « Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

Optional Arguments

constraints = surface_constraints (Input)

A rank-1 array of derived type ?_sur f ace_constrai nt s that defines
constraints the tensor product spline isto satisfy.

covariance = G (Output)

An assumed-shape rank-2 array of the same precision as the data. This output
is the covariance matrix of the coefficients. It isoptionally used to evaluate
the square root of the variance function.

iopt = iopt(:) (Input/Output)

Derived type array with the same precision as the input array; used for passing
optional datato surface_fitting. Theoptionsareasfollows:

Packaged Options for surface fitting

Prefix = None

Option Name Option Vaue

surface_fitting_small ness 1

surface_fitting_fl atness

surface_fitting_tol _equal

surface_fitting_tol _| east

surface_fitting_residuals

surface_fitting_print

N[([ojlo|(~|[w(N

surface_fitting_thinness

iopt (10 = ? _options&

(surface_fitting_smallnes, ?_value)
This resets the square root of the regularizing parameter multiplying the
squared integral of the unknown function. The argument ?_val ue is
replaced by the default value. The default is ?_val ue = 0.

iopt(10Q = ?_options&

(surface_fitting flatness, ?_value)
This resets the square root of the regularizing parameter multiplying the
squared integral of the partial derivatives of the unknown function. The
argument ?_val ue isreplaced by the default value. The default is ?_val ue
= sqrt(epsilon(?_val ue))*size, where

size= z |data(3,:) / data(4,:)|/(ndata+1).

iopt (10 = ? _options&

(surface_fitting_tol _equal, ?_value)
Thisresets the value for determining that equality constraint equations are

rank-deficient. The defaultis ? val ue = 107,

iopt (10 = ? _options&

IMSL Fortran 90 MP Library 4.0 Chapter 4: Curve and Surface Fitting with Splines « 115

(surface_fitting_tol _l| east, ?_value)
Thisresets the value for determining that |east-squares equations are rank-
deficient. The defaultis ?_val ue = 107,

iopt (10 = ? _options&

(surface_fitting_residuals, dumy)
This option returns the residuals = surface - data, indat a(4, :). That row
of the array is overwritten by theresiduals. The datais returned in the order
of cell processing order, or left-to-right in X and then increasinginy. The
allocation of atemporary for dat a(1: 4, :) isavoided, which may be

desirable for problems with large amounts of data. The default isto not
evaluate theresiduals and to leave dat a(1: 4, :) asinput.

iopt (10 = ? _options&
(surface_fitting_print, dummy)

This option prints the knots or breakpoints for x and y, and the count of data
pointsin cell processing order. The default isto not print these arrays.

iopt(10Q = ?_options&
(surface_fitting_thinness, ?_value)
This resets the square root of the regularizing parameter multiplying the

sgquared integral of the second partial derivatives of the unknown function.
Theargument ?_val ue isreplaced by the default value. The default is

? value = 107 x size, , where

size= Z |data(3,:) / data(4,:)[/(ndata+1).

Description

The coefficients are obtained by solving aleast-squares system of linear algebraic
equations, subject to linear equality and inequality constraints. The system isthe
result of the weighted data equations and regularization. If there are no
constraints, the solution is computed using a banded least-squares solver. Details
are found in Hanson (1995).

Additional Examples

Example 2: Parametric Representation of a Sphere

From Struik (1961), the parametric representation of points (x,y,z) on the surface
of asphere of radius a > 0 is expressed in terms of spherical coordinates,
X(u,v) = acogu)cogv), -T< 2u< T
y(u,v) =acogu)sin(v),-msv<T
z(u,v) =asin(u)
The parameters are radians of latitude (u)and longitude (v). The example

program fits the same ndata random pairs of latitude and longitude in each
coordinate. We have covered the sphere twice by allowing

116 « Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

—JTTSUsTT

for latitude. We solve three data fitting problems, one for each coordinate
function. Periodic constraints on the value of the spline are used for both u and v.
We could reduce the computational effort by fitting a spline function in one
variable for the z coordinate. To illustrate the representation of more general
surfaces than spheres, we did not do this. When the surface is evaluated we
compute latitude, moving from the South Pole to the North Pole,

—T<2u<s T
Our surface will approximately satisfy the equality
x2+y?+7% = a2

These residuals are checked at a rectangular mesh of latitude and longitude pairs.
To illustrate the use of some options, we have reset the three regularization
parameters to the value zero, the least-squares system tolerance to a smaller value
than the default, and obtained the residual s for each parametric coordinate
function at the data points.

USE surface fitting_int
USE rand_int
USE norm.int
USE Nunerical _Libraries

inplicit none

This is Exanple 2 for SURFACE FI TTING tensor product
B-splines approximation. Fit x, y, z paranetric functions
for points on the surface of a sphere of radius “A".
Random val ues of |atitude and | ongitude are used to generate
data. The functions are evaluated at a rectangular grid

in latitude and | ongitude and checked to lie on the surface
of the sphere

integer :: i, j
i nteger, paraneter :: ngrid=6, nord=6, ndegree=nord-1, &
nbkpt =ngri d+2* ndegr ee, ndata =1000, nval ues=50, NOPT=5

real (kind(1d0)), paraneter :: zero=0d0, one=1d0, two=2d0

real (kind(1d0)), paraneter :: TOLERANCE=1d-2

real (kind(1d0)), target :: spline_data (4, ndata, 3), bkpt(nbkpt), &
coef f (ngri d+ndegree-1, ngri d+ndegree-1, 3), delta, sizev, &
pi, A x(nvalues), y(nvalues), values(nval ues, nvalues), &
dat a(4, ndat a)

real (kind(1d0)), pointer :: pointer_bkpt(:)
type (d_spline_knots) knotsx, knotsy
type (d_options) OPTI ONS(NOPT)

Get the constant "pi" and a randomradius, > 1.
pi = DCONST((/"pi"/)); A=one+rand(A)

CGenerate random (|l atitude, |ongitude) pairs and eval uate the
surface paraneters at these points
spline_data(1l:2,:,1)=pi *(two*rand(spline_data(1l:2,:,1))-one)
spline_data(l:2,:,2)=spline_data(l:2,:,1)
spline_data(l:2,:,3)=spline_data(1l:2,:,1)

IMSL Fortran 90 MP Library 4.0 Chapter 4: Curve and Surface Fitting with Splines « 117

| Evaluate x, y, z paranmetric points.
spline_data(3,:,1)=A*cos(spline_data(l,:,1))*cos(spline_data(2,:,1))
spline_data(3,:,2)=A*cos(spline_data(l,:,2))*sin(spline_data(2,:,2))
spline_data(3,:,3)=A*sin(spline_data(l,:,3))

I The values are equally uncertain
spline_data(4,:,:)=one

I Define the knots for the tensor product data fitting problem
delta = two*pi/(ngrid-1)
bkpt (1: ndegree) = -pi
bkpt (nbkpt - ndegr ee+1: nbkpt) = pi
bkpt (nor d: nbkpt - ndegree) =(/ (-pi +i *delta, i =0,ngrid-1)/)

I Assign the degree of the polynonmial and the knots
poi nter _bkpt => bkpt
knot sx=d_spl i ne_knot s(ndegree, pointer_bkpt)
knot sy=knot sx

Fit a data surface for each coordinate
Set default regularization paraneters to zero and conpute
residuals of the individual points. These are returned
in DATA(4,:).
do j=1,3
dat a=spline_data(:,:,j)
OPTI ONS(1) =d_options(surface_fitting_thinness, zero)
OPTI ONS(2) =d_options(surface _fitting flatness, zero)
OPTI ONS(3) =d_options(surface_fitting_small ness, zero)
OPTI ONS(4) =d_options(surface _fitting tol | east, 1d-5)
OPTI ONS(5) =surface_fitting_residuals
coeff(:,:,j) = surface_fitting(data, knotsx, knotsy, &
| OPT=0PTI ONS)
end do

Eval uate the function at a grid of points inside the rectangle of
| atitude and | ongitude covering the sphere just once. Add the
sum of squares. They should equal "A**2" but will not due to
truncation and roundi ng errors.

del t a=pi / (nval ues+1)

x=(/(-pi/two+i *del ta,i=1,nvalues)/); y=two*x

val ues=zero

do j=1,3

val ues=val ues+&

surface_values((/0,0/), x, y, knotsx, knotsy, coeff(:,:,j))**2
end do

val ues=val ues- A**2
I Conpute the RMS. error

si zev=nor m(pack(val ues, (values == val ues)))/nval ues

if (sizev <= TOLERANCE) then

wite(*,*) "Exanple 2 for SURFACE FITTING is correct."
end if
end

118 « Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

Example 3: Constraining Some Points using a Spline Surface

This exampleillustrates the use of discrete constraints to shape the surface. The
data fitting problem of Example 1 is modified by requiring that the surface
interpolate the valueone at x = y = 0. The shapeis constrained so first partial
derivativesin both x and y are zero at x = y = 0. These constraints mimic some
properties of the function g(x,y). The size of theresiduals at agrid of points and
the residuals of the constraints are checked.

USE surface fitting_int
USE rand_i nt
USE norm.int

inplicit none

This is Exanple 3 for SURFACE FI TTING tensor product

B- splines approxi mation, f(x,y). Use the function
exp(-x**2-y**2) on the square (0, 2) x (0, 2) for sanples
The spline order is "nord" and the nunber of cells is
"(ngrid-1)**2". There are "ndata" data values in the square
Constraints are put on the surface at (0,0). Nanely

f(0,0) =1, f_x(0,0) =0, f_y(0,0) = 0.

integer :: i
i nteger, paraneter :: ngrid=9, nord=4, ndegree=nord-1, &
nbkpt =ngri d+2*ndegree, ndata = 2000, nval ues=100, NC = 3

real (kind(1d0)), paraneter :: zero=0d0, one=1d0, two=2d0

real (kind(1d0)), paraneter :: TOLERANCE=1d-3

real (kind(1d0)), target :: spline_data (4, ndata), bkpt(nbkpt), &
coeff (ngrid+ndegree-1, ngrid+ndegree-1), delta, sizev, &
x(nval ues), y(nvalues), values(nval ues, nvalues), &
f_00, f_x00, f_y0O0

real (kind(1d0)), pointer :: pointer_bkpt(:)
type (d_spline_knots) knotsx, knotsy

type (d_surface_constraints) C(NC

LOd CAL PASS

Generate random (x,y) pairs and eval uate the
exanpl e exponential function at these val ues
spline_data(1l:2,:)=two*rand(spline_data(1:2,:))
spline_data(3,:)=exp(-sun(spline_data(l:2,:)**2,dinml))
spline_data(4,:)=one
Define the knots for the tensor product data fitting problem
delta = two/(ngrid-1)
bkpt (1: ndegree) = zero
bkpt (nbkpt - ndegr ee+1: nbkpt) = two
bkpt (nor d: nbkpt - ndegree) =(/ (i *delta,i=0,ngrid-1)/)

Assign the degree of the polynom al and the knots
poi nter _bkpt => bkpt
knot sx=d_spl i ne_knot s(ndegree, pointer_bkpt)
knot sy=knot sx

Define the constraints for the fitted surface.
C(1) =surface_constraints(point=(/zero, zero/), type='==", val ue=one)
C(2)=surface_constraints(derivative=(/1,0/), &

IMSL Fortran 90 MP Library 4.0 Chapter 4: Curve and Surface Fitting with Splines « 119

poi nt=(/ zero, zero/), type='==", val ue=zer o)
C(3)=surface_constraints(derivative=(/0,1/), &
poi nt=(/ zero, zero/), type='==", val ue=zer o)

Fit the data and obtain the coefficients

coeff = surface fitting(spline_data, knotsx, knotsy, &
CONSTRAI NTS=C)

Eval uate the residual = spline - function
at a grid of points inside the square

del t a=t wo/ (nval ues+1)
x=(/(i*delta,i=1, nvalues)/); y=x

val ues=exp(-spread(x**2, 1, nval ues) - spread(y**2, 2, nval ues))
val ues=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)-&

val ues
f 00 = surface_values((/0,0/), zero, zero, knotsx, knotsy, coeff)
f _x00= surface_values((/1,0/), zero, zero, knotsx, knotsy, coeff)
f _y00= surface_values((/0,1/), zero, zero, knotsx, knotsy, coeff)

Conpute the RMS. error

si zev=nor n{ pack(val ues, (values == val ues)))/nval ues
PASS = si zev <= TOLERANCE

PASS = abs (f_00 - one) <= sqrt(epsilon(one)) .and. PASS
PASS = f_x00 <= sqrt(epsilon(one)) .and. PASS

PASS = f_y00 <= sqrt(epsilon(one)) .and. PASS

if (PASS) then

write(*,*) 'Exanple 3 for SURFACE FITTINGis correct.’
end if
end

Example 4: Constraining a Spline Surface to be non-Negative

Thereview of interpolating methods by Franke (1982) uses a test data set

originally due to James Ferguson. We use this data set of 25 points, with unit
uncertainty for each dependent variable. Our algorithm does not interpolate the
data values but approximately fits them in the least-squares sense. We reset the
regularization parameter values of flatness and thinness, Hanson (1995). Then

the surface isfit to the data and evaluated at agrid of points. Although the

surface appears smooth and fits the data, the values are negative near one corner.
Our scenario for the application assumes that the surface be non-negative at all

points of the rectangle containing the independent variable data pairs. Our

algorithm for constraining the surface is simple but effectivein this case. The
datafitting is repeated one more time but with positive constraints at the grid of

points where it was previously negative.
USE surface fitting_ int
USE rand_int
USE norm.int

inplicit none

This is Exanple 4 for SURFACE FI TTING tensor product
B- spl i nes approxi mation, f(x,y). Use the data set from

120 » Chapter 4: Curve and Surface Fitting with Splines

IMSL Fortran 90 MP Library 4.0

I Franke, due to Ferguson. Wthout constraints the function
I becones negative in a corner. Constrain the surface
| at a grid of values so it is non-negative

integer :: i, j, q
i nteger, paraneter :: ngrid=9, nord=4, ndegree=nord-1, &
nbkpt =ngri d+2*ndegr ee, ndata = 25, nval ues=50

real (kind(1d0)), paraneter :: zero=0d0, one=1d0

real (kind(1d0)), paraneter :: TOLERANCE=1d-3

real (kind(1d0)), target :: spline_data (4, ndata), bkptx(nbkpt), &
bkpt y(nbkpt), coef f (ngri d+ndegr ee- 1, ngri d+ndegree-1), &
x(nval ues), y(nvalues), values(nval ues, nvalues), &
delta

real (kind(1d0)), pointer :: pointer_bkpt(:)

type (d_spline_knots) knotsx, knotsy

type (d_surface_constraints), allocatable :: C(:)
real (kind(1e0)) :: data (3*ndata) = & ! This is Ferguson’s data
(/2.0 , 15.0 , 2.5, 2.49 , 7. 647, 3.2,&

2.981 , 0. 291, 3.4, 3. 471, -7.062, 3.5,&
3.961 , -14.418, 3.5, 7.45 12. 003, 2.5, &
7.35 6.012, 3.5, 7. 251, 0. 018, 3.0,&
7.151 , -5.973, 2.0 , 7.051, -11. 967, 2.5, &
10. 901, 9. 015, 2.0 , 10. 751, 4,536, 1.925, &
10. 602, 0.06 , 1. 85, 10. 453, -4, 419, 1.576, &
10. 304, -8.895, 1.7, 14. 055, 10. 509, 1.5 &
14. 194, 6. 783, 1.3, 14. 331, 3. 054, 1.7, &
14. 469, -0.672, 2.1, 14. 607, - 4. 398, 1.75, &
15.0 , 12.0 , 0.5, 15. 729, 8. 067, 0.5, &
16. 457, 4,134, 0.7, 17. 185, 0.198, 1.1, &
17.914, -3.735, 1.7/)

spline_data(1:3,:)=reshape(data, (/3,ndata/)); spline_data(4,:)=one

I Define the knots for the tensor product data fitting problem
I Use the data limts to the knot sequences
bkpt x(1: ndegree) = minval (spline_data(l,:))
bkpt x(nbkpt - ndegr ee+1: nbkpt) = maxval (spline_data(l,:))
del t a=(bkpt x(nbkpt) - bkpt x(ndegree))/ (ngrid-1)
bkpt x(nor d: nbkpt - ndegr ee) =(/ (bkpt x(1) +i *delta,i=0,ngrid-1)/)

I Assign the degree of the polynom al and the knots for x.
poi nter _bkpt => bkptx
knot sx=d_spl i ne_knot s(ndegree, pointer_bkpt)
bkpty(1l: ndegree) = minval (spline_data(2,:))
bkpt y(nbkpt - ndegr ee+1: nbkpt) = maxval (spline_data(2,:))
del t a=(bkpt y(nbkpt) - bkpt y(ndegree))/ (ngrid-1)
bkpt y(nor d: nbkpt - ndegr ee) =(/ (bkpty(1)+i *delta,i=0,ngrid-1)/)

I Assign the degree of the polynom al and the knots for vy.
poi nter _bkpt => bkpty
knot sy=d_spl i ne_knot s(ndegree, pointer_bkpt)

! Fit the data and obtain the coefficients
coeff = surface_fitting(spline_data, knotsx, knotsy)

del t a=(bkpt x(nbkpt) - bkpt x(1))/ (nval ues+1)
x=(/ (bkptx(1)+i *del ta,i=1, nval ues)/)
del t a=(bkpt y(nbkpt)-bkpty(1))/ (nval ues+1)

IMSL Fortran 90 MP Library 4.0 Chapter 4: Curve and Surface Fitting with Splines « 121

y=(/ (bkpty(1)+i *del ta,i=1, nval ues)/)

I Evaluate the function at a rectangul ar grid.
I Use non-positive values to a constraint.
val ues=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)

I Count the nunber of values <= zero. Then constrain the spline
| sothat it is >= TOLERANCE at those points where it was <= zero.
g=count (val ues <= zero)
allocate (C(q))
DO | =1, nval ues
DO J=1, nval ues
| F(val ues(1,J) <= zero) THEN
C(q) =surface_constraints(point=(/x(i),y(j)/), type=">=",6&
val ue=TOLERANCE)
gq=g-1
END | F
END DO
END DO

! Fit the data with constraints and obtain the coefficients.
coeff = surface fitting(spline_data, knotsx, knotsy, &
CONSTRAI NTS=C)
deal | ocate(Q)

| Evaluate the surface at a grid and check, once again, for
I non-positive values. Al values should now be positive.
val ues=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)

if (count(values <= zero) == 0) then
wite(*,*) 'Exanple 4 for SURFACE FITTINGis correct.’
end if
end

Fatal and Terminal Error Messages

See the messages.gls file for error messagesfor surface_fitting. Theseerror
messages are numbered 1151-1152, 1161-1162, 1370-1393.

122 « Chapter 4: Curve and Surface Fitting with Splines IMSL Fortran 90 MP Library 4.0

Chapter 5: Utilities

Contents
LY oY S o Yo 13 SO 123
(= Vg Lo o =Y o TP 126
Example 1: Running Mean and Variance............ccccccceveeeeeennnns 126
Example 2: Seeding, Using, and Restoring the Generator 129
Example 3: Generating Strategy with a Histogram 130
Example 4: Generating with a Cosine Distribution..................... 132
oY S =YY OSSR 134
Example 1: Sorting an ArTaycc..eeeeeeeeeeiiiiiiieeee e eeiieeeeeae e 134
Example 2: Sort and Final Move with a Permutation 136
S Ottt aaaan 137
Example 1: Printing @an Array........ccceeeeeeeeiiiiiiiieecee e 137
Example 2: Writing an Array to a Character Variable 139

error_post

Prints error messages that are generated by IMSL Fortran 90 routines.

Required Argument

epack (Input [/Output])
Derived type array of size p containing the array of message numbers and
associated data for the messages. The definition of this derived type is packaged
within the modules used as interfaces for each suite of routines. The declaration
is:
type ?_error

i nteger idummy; real (kind(?_)) rdumy
end type

Thechoiceof “?_" is either“s_" or “d_" depending on the accuracy of the

data. This array gets additional messages and data from each routine that uses the
“epack=" optional argument, providealis large enough to hold data for a new
message. The valye= 8 is sufficient to hold the longest singgeminal, fatal, or

warning message that an IMSL Fortran 90 routine generates.

The location at entrgpack (1)% dummy contains the number of data items for

all messages. When thee r or _post routine exits, this value is set to zero.

IMSL Fortran 90 MP Library 4.0 Chapter 5: Utilities » 123

Locationsin array positions (2:) % dummy contain groups of integers consisting
of amessage number, the error severity level, then the required integer data for
the message. Floating-point data, if required in the message, ispassed in
locations(:)9 dummy matched with the starting point for integer data. The extent
of the data for each message is determined by the requirements of the larger of
each group of integer or floating-point values.

Optional Arguments

new unit = nunit (Input)

Unit number, of type integer, associated for reading the direct-accessfile of error
messages for the IMSL Fortran 90 routines.

Default: nunit =4

new_path = path (Input)

Pathname in the local file space, of type character* 64, needed for reading the
direct-accessfile of error messages. Default string for pat h is defined during the
installation procedure for the IMSL Fortran 90 routines.

Description

A default direct-access error message file (.daf file) is supplied with this product.
Thisfileisread by er r or _post using the contents of the derived type argument
epack, containing the message number, error severity level, and associated data.
The message is converted into character strings accepted by the error processor
and then printed. The number of pending messages that print depends on the
settings of the parameters PRI NT and STOP IMSL MATH/LIBRARY User’s
Manual (IMSL 1994, pp. 1194-1195). These values areinitialized to defaults
such that any Level 5 or Level 4 message causes a STOP within the error processor
after aprint of the text. To change these defaults so that more than one error
message prints, use the routine ERSET documented and illustrated with examples
in IMSL MATH/LIBRARY User’s Manual (IMSL 1994, pp. 1196-1198). The
method of using a message file to store the messages is required to support
“shared-memory parallelism.”

Managing the Message File

For most applications of this product, there will be no need to manage this file.
However, there are a few situations which may require changing or adding
messages:

New system-wide messages have been developed for applications using the
IMSL Fortran 90 MP Library.

All or some of the existing messages need to be translated to another
language

A subset of users need to add a specific message file for their applications
using the IMSL Fortran 90 MP Library.

124 « Chapter 5: Utilities IMSL Fortran 90 MP Library 4.0

Following isinformation on changing the contents of the message file, and
information on how to create and access a message file for a private application.

Changing Messages
In order to change messages, two files are required:
An editable message glossary, messages. gl s, supplied with this product.

A source program, pr epness. f, used to generate an executable which
builds nessages. daf from nessages. gl s.

To change messages, first make a backup copy of nessages. gl s. Use atext
editor to edit messages. gl s. Theformat of thisfileis a series of pairs of
statements:

message_number=<nnnn>
message=" message string’
(Note that neither of these lines should begin with atab.)

Thevariable <nnnn> is an integer message number (see below for ranges and
reserved message numbers).

The ’ nessage string’ isany valid message string not to exceed 255
characters. If amessage lineistoo long for a screen, the standard Fortran 90
concatenation operator // with the line continuation character & may be used to
wrap the text.

Most strings have substitution parameters embedded within them. These may be
in the following forms:

o i <n>) for aninteger substitution, where n isthe nth integer output in
this message.

9 r <n>) for single precision real number substitution, where n isthe nth
real number output in this message.

9 d<n>) for double precision real number substitution, where n isthe nth
double precision number output in this message.

New messages added to the system-wide error message file should be placed at
the end of the file. Message numbers 5000 through 10000 have been reserved for
user-added messages. Currently, messages 1 through 1400 are used by IMSL.
Gaps in message number ranges are permitted; however, the message numbers
must be in ascending order within the file. The message nhumbers used for each
IMSL Fortran 90 MP Library subroutine are documented in this manual and in
online help.

If existing messages are being edited or translated, make sure not to alter the
message_nunber lines. (This prevents conflicts with any new messages. gl s
file supplied with future versions of IMSL Fortran 90 MP Library.)

IMSL Fortran 90 MP Library 4.0 Chapter 5: Utilities » 125

Building a New Direct-access Message File

The pr epnmess executable must be available to compl ete the message changing
process. For information on building the pr eprmess executable from
prepness. f , consult the installation guide for this product.

Once new messages have been placed in the messages. gl s file, make a backup
copy of themessages. daf file. Thenremove nmessages. daf from the current
directory. Now enter the following command:

prepmess > prepness_out put

A new nessages. daf fileiscreated. Editthe prepnmess_out put fileand
look near the end of the file for the new error messages. The pr epness
program processes each message through the error message system as a validity
check. There should be no FATAL error announcement within the
prepnmess_out put file

Private Message Files

Users can create a private message file within their own messages. Thisfile
would generally be used by an application that calls the IMSL Fortran 90 MP
Library. Follow the steps outlined above to created a private messages. gl s
file. The user should then be given a copy of the prepness executable. Inthe
application code, call the error _post subprogram with the

new_uni t/ new_pat h optional arguments. The new path should point to the
directory in which the private messages. daf fileresides.

rand_gen

use rand_gen_int

Generates arank-1 array of random numbers. The output array entries are
positive and lessthan 1 in value.

Required Argument

x (Output)
Rank-1 array containing the random numbers.

Example 1: Running Mean and Variance

An array of random numbers is obtained. The sample mean and variance are
computed. These values are compared with the same quantities computed using a
stable method for the running means and variances, sequentially moving through
the data. Details about the running mean and variance are found in Henrici (1982,
pp. 21-23).

inmplicit none

I This is Exanple 1 for RAND_CEN.

126 « Chapter 5: Utilities IMSL Fortran 90 MP Library 4.0

i nteger i

i nteger, paraneter :: n=1000

real (kind(1e0)), paraneter :: one=1e0, zero=0e0

real (kind(1e0)) x(n), mean_1(0:n), nean_2(0:n), s_1(0:n), s_2(0:n)

I Obtain random nunbers.
call rand_gen(x)

I Calcul ate each partial nean.
do i=1,n
mean_1(i) = sum(x(1l:i))/i
end do

I Calcul ate each partial variance.
do i=1,n
s_1(i)=sum((x(1l:i)-mean_1(i))**2)/i
end do

mean_2(0) =zero
mean_2(1)=x(1)
s_2(0:1)=zero

I Alternately cal cul ate each running nean and vari ance,
I handl ing the random nunbers once.

do i=2

ne;n_z?i):((i-1)*nean_2(i-1)+x(i))/i

s_2(i) = (i-1)*s_2(i-1)/i+(mean_2(i)-x(i))**2/(i-1)
end do

I Check that the two sets of neans and variances agree.
i f (maxval (abs(nmean_1(1:)-nmean_2(1:))/nmean_1(1:)) <= &
sqrt(epsilon(one))) then
if (maxval (abs(s_1(2:)-s_2(2:))/s_1(2:)) <= &
sqrt(epsilon(one))) then
wite (*,*) "Exanple 1 for RAND GEN is correct.’
end if
end if

end

Optional Arguments

irnd = irnd (Output)
Rank-1 integer array. These integers are the internal results of the Generalized
Feedback Shift Register (GFSR) agorithm. The values are scaled to yield the

floating-point array x. The output array entries are between 1 and 2 '~ 1invaue.
istate_in = istate_in (Input)

Rank-1 integer array of size 3p + 2, where p = 521, that defines the ensuing state
of the GFSR generator. It is used to reset the internal tables to a previously

defined state. It isthe result of aprevious use of the “i st at e_out =" optional
argument.
istate _out = istate out (Output)

Rank-1 integer array of siz@ 3 2 that describes the current state of the GFSR

IMSL Fortran 90 MP Library 4.0 Chapter 5: Utilities » 127

generator. It isnormally used to later reset the internal tables to the state defined
following areturn from the GFSR generator. It is the result of a use of the
generator without a user initialization, or it is the result of a previous use of the
optional argument “i st at e_i n=" followed by updates to the internal tables
from newly generated valugsxample Zllustrates use of state_i n and

i state_out for setting and then resettingand_gen so that the sequence of
integers,i r nd, is repeatable.

iopt = iopt(:) (Input[/Output])
Derived type array with the same precision as the arraged for passing
optional data to and_gen. The options are as follows:

Packaged Options for rand_gen
Option Prefix = ? Option Name Option Vaue
s_,d_ rand_gen_generat or _seed 1
s_,d_ rand_gen_LCM nodul us 2
s_,d_ rand_gen_use_Fushim _start 3

iopt (10 = ? _options(?_rand_gen_generator_seed, ?_dumy)

Sets the initial values for the GFSR. The present value of the seed, obtained by
default from the real-time clock as described below, swaps places ayith{ | O

+ 1) % dummy. If the seed is set before any current usageanfd_gen, the
exchanged value will be zero.

iopt (10 = ? _options(?_rand_gen_LCM nodul us, ?_dummy)

i opt (10O+1) = ?_options(nmodul us, ?_dunmy)

Sets the initial values for the GFSR. The present value of the LCM, with default
valuek = 16807, swaps places wittopt (1 O+1) % dummy.

iopt (10O = ?_options(?_rand_gen_use_Fushim _start, ?_dumy)

Starts the GFSR sequence as suggested by Fushimi (IT%@0jlefault starting
sequence is with the LCM recurrence described below.

Description

This GFSR algorithm is based on the recurrence
Xt = Xt—3p O Xt—Sq

wherea [0 b is the exclusivéR operation on two integeesandb. This operation
is performed untiti ze(x) numbers have been generated. The subscripts in the
recurrence formula are computed modyto Bhese numbers are converted to
floating point by effectively multiplying the positive integer quantity

X, 01

by a scale factor slightly smaller than Aufe(1)). The valuep = 521 and
g = 32 yield a sequence with a period approximately

128 « Chapter 5: Utilities IMSL Fortran 90 MP Library 4.0

The default initial values for the sequence of integers {x,} are created by a
congruential generator starting with an odd integer seed

m = v+count n (2”570 ~1)01

obtained by the Fortran 90 real-time clock routine:

CALL SYSTEM CLOCK(COUNT=count , CLOCK_RATE=CLRATE)
An error condition is noted if the value of CLRATE=0. Thisindicates that the
processor does not have a functioning real-time clock. In this exceptiona case a
starting seed must be provided by the user with the optional argument “i opt ="

and option numbe?_r and_gener at or _seed. The valuev is the current clock
for this day, in milliseconds. This value is obtained using the date routine:

CALL DATE_AND_TI ME(VALUES=val ues)

and convertingal ues(5: 8) to milliseconds.

The LCM generator initializes the sequetigg using the following recurrence:
m — mx Kk, mod(huge(1)/ 2)

The default value df = 16807. Using the optional arguméntopt =" and the
packaged option number rand_gen_LCM nodul us, k can be given an

alternate value. The option numb&rr and_gen_gener at or _seed can be

used to set the initial value ofinstead of using the asghronous value given by
the system clock. This is illustratedBixample 2 If the default choice ofn

results in an unsatisfactory starting sequence or it is necessary to duplicate the
sequence, then it is recommended that users set the initial seed value to one of
their own choosing. Resetting the seed complicates the usage of the routine.

This software is based on Fushimi (1990), who gives a more elaborate starting
sequence for the {xt} . The starting sequence suggested by Fushimi can be used
with the option numhke?_r and_gen_use_Fushi mi _st art . Fushimi’s starting
process is more expensive than the default method, and it is equivalent to starting

in another place of the sequence with pefiod

Additional Examples

Example 2: Seeding, Using, and Restoring the Generator
use rand_gen_int
inmplicit none

I This is Exanple 2 for RAND_CEN.

i nteger i
i nteger, paraneter :: n=34, p=521
real (kind(1e0)), paraneter :: one=1.0e0, zero=0.0e0

IMSL Fortran 90 MP Library 4.0 Chapter 5: Utilities » 129

integer irndi(n), i_out(3*p+2), hidden_nessage(n)
real (kind(1e0)) x(n), y(n)

type(s_options) :: iopti(2)=s_options(0,zero)
character*34 nessage, returned_nessage

I This is the nessage to be hidden
message = ' SAVE YOURSELF. WE ARE DI SCOVERED!’

I Start the generator with a known seed
iopti (1) = s_options(s_rand_gen_gener at or_seed, zero)
iopti(2) = s_options(123, zero)
call rand_gen(x, iopt=iopti)

I Save the state of the generator.
call rand_gen(x, istate_out=i_out)

I Get random i ntegers.
call rand_gen(y, irnd=irndi)

I Hide text using collating sequence subtracted fromi ntegers.

do i=1, n
hi dden_message(i) = irndi (i) - ichar(message(i:i))
end do

| Reset generator to previous state and generate the previous
I random i nt egers

call rand_gen(x, irnd=irndi, istate_in=i_out)
I Subtract hidden text fromintegers and convert to character.
do i=1, n
returned_nessage(i:i) = char(irndi (i) - hidden_nessage(i))
end do

I Check the results.

if (returned_nessage == nessage) then

wite (*,*) "Exanple 2 for RAND GEN is correct.’
end if
end

Example 3: Generating Strategy with a Histogram

We generate random integers but with the frequency asin ahistogram withn;,,,
slots. The generator isinitially used alarge number of times to demonstrate that
it is making choices with the same shape as the histogram. Thisis not required to
generate samples. The program next generates a summary set of integers
according to the histogram. These are not repeatable and are representative of the
histogram in the sense of looking at 20 integers during generation of alarge
number of samples.

use rand_gen_int
use show. int

inplicit none

130 « Chapter 5: Utilities IMSL Fortran 90 MP Library 4.0

I This is Exanple 3 for RAND_GEN

integer i, i_bin, i_mp, i_left, i_right
i nteger, paraneter :: n_work=1000
i nteger, paraneter :: n_bins=10
i nteger, paraneter :: scal e=1000
i nteger, paraneter :: total _counts=100
i nteger, paraneter :: n_sanples=total counts*scale
i nteger, dinmension(n_bins) :: histogranr &
(/4, 6, 8, 14, 20, 17, 12, 9, 7, 31/)
i nteger, dinmension(n_work) :: working=0
i nteger, dinmension(n_bins) :: distribution=0

nt eger break_poi nts(0: n_bins)
real (ki nd(1e0)) rn(n_sanpl es)
real (kind(1e0)), paraneter :: tol erance=0.005

i nteger, paraneter :: n_sanples_20=20
i nteger rand_num 20(n_sanpl es_20)
real (kind(1e0)) rn_20(n_sanpl es_20)

I Conpute the normalized cunul ative distribution.
br eak_poi nt s(0) =0
do i=1,n_bins
br eak_poi nts(i)=break_points(i-1)+histogran{i)
end do

br eak_poi nt s=break_poi nts*n_work/total counts

I Obtain uni formrandom nunbers
call rand_gen(rn)

I Set up the secondary mapping array.
do i _bin=1, n_bins
i _left=break _points(i_bin-1)+1
i _right=break_points(i_bin)

do i=i _left, i_right
wor ki ng(i)=i _bin
end do
end do

I Map the random nunbers into the "distribution’ array.
I This is made approxi mately proportional to the histogram
do i =1, n_sanpl es
i _map=nint(rn(i)*(n_work-1)+1)
di stribution(working(i_map))= &
di stributi on(working(i_map))+1
end do

I Check the agreenment between the distribution of the
I generated random nunbers and the original histogram
wite (*, "(A)’', advance="no’) 'Original:

wite (*, '(1016)’) histogranrscal e
wite (*, '(A)’, advance="no’) ' Cenerated:
wite (*, '(1016)’) distribution

i f (maxval (abs(histogram(1l:)*scale-distribution(1:))) &
<= tol erance*n_sanpl es) then

IMSL Fortran 90 MP Library 4.0 Chapter 5: Utilities « 131

wite(*, "(A/)’) 'Exanple 3 for RAND GEN is correct.’
end if

| Generate 20 integers in 1, 10 according to the distribution
I induced by the histogram
call rand_gen(rn_20)

I Map fromthe uniformdistribution to the induced distribution
do i =1, n_sanples_20
i _map=nint(rn_20(i)*(n_work-1)+1)
rand_num 20(i) =wor ki ng(i _map)
end do
call show(rand_num 20, &

"Twenty integers generated according to the histogram’)
end

Example 4: Generating with a Cosine Distribution
We generate random numbers based on the continuous distribution function
p(x) = (1+cos(x))/ 2m, —m< X< 1T

Using the cumulative

X

q(x) = J’ p(t)dt =1/ 2+ (x+sin(x)) / 277

=
we generate the samples by obtaining uniform samplesu, 0 < u < 1 and solve the
equation

gxX)-u=0,-m<x<m

These are evaluated in vector form, that is all entries at one time, using Newton’s
method:

X « x—dx, dx = (q(x) —u)/ p(x)

An iteration counter forces the loop to terminate, but this is not often required
although it is an important detail.

use rand_gen_int

use show_i nt

use Nunerical _Libraries
I MPLI CI' T NONE

I This is Exanple 4 for RAND_CEN.

integer i, i_mp, k

i nteger, paraneter :: n_bins=36

i nteger, paraneter :: offset=18

i nteger, paraneter :: n_sanpl es=10000
i nteger, paraneter :: n_sanples_30=30
i

nteger, paranmeter :: COUNT=15
real (kind(1e0)) probabilities(n_bins)

132 « Chapter 5: Utilities IMSL Fortran 90 MP Library 4.0

real (kind(1e0)), dinension(n_bins) :: counts=0.0
real (kind(1e0)), dinension(n_sanples) :: rn, x, f, fprinme, dx
real (kind(1e0)), dinension(n_sanples_30) :: rn_30, &

x_30, f_30, fprinme_30, dx_30
real (kind(1e0)), paraneter :: one=1e0, zero=0e0, hal f=0.5e0
real (kind(1e0)), paraneter :: tol erance=0.01
real (kind(1e0)) two_pi, onega

I Initialize values of "two_pi’ and ’'onega’
two_pi =2.0*const((/'pi’'/))
onmega=two_pi / n_bins

I Conpute the probabilities for each bin according to
I the probability density (cos(x)+1)/(2*pi), -pi<x<pi
do i=1,n_bins
probabilities(i)=(sin(omega*(i-offset)) &
-sin(onega*(i-offset-1))+onmega)/two_pi
end do

I Qotain uniformrandom nunbers in (0, 1)
call rand_gen(rn)

I Use Newton's nethod to solve the nonlinear equation:
I accurul ated_di stribution_function - random nunber = 0.
x=zero; k=0
sol ve_equation: do
f=(sin(x)+x)/two_pi+half-rn
fprime=(one+cos(x))/two_pi
dx=f/fprinme
x=x-dx; k=k+1
i f (maxval (abs(dx)) <= sqrt(epsilon(one)) &
.or. k > COUNT) exit solve_equation
end do sol ve_equation

I Map the random nunbers 'x’ array into the 'counts’ array.
do i =1, n_sanpl es
i _map=int(x(i)/onmega+offset)+1
count s(i _map)=count s(i _map) +one
end do

! Normalize the counts array.
count s=count s/ n_sanpl es

I Check that the generated random nunbers are indeed
I based on the original distribution.
i f (maxval (abs(counts(1:)-probabilities(1:))) &
<= tol erance) then
wite (*,”(a/)’) 'Exanple 4 for RAND GEN is correct.’
end if

I Generate 30 random nunbers in (-pi,pi) according to
I the probability density (cos(x)+1)/(2*pi), -pi<x<pi
call rand_gen(rn_30)

x_30=0.0; k=0

sol ve_equati on_30: do
f_30=(si n(x_30)+x_30)/two_pi +hal f-rn_30
fpri me_30=(one+cos(x_30))/two_pi
dx_30=f _30/fprinme_30

IMSL Fortran 90 MP Library 4.0 Chapter 5: Utilities » 133

x_30=x_30-dx_30
i f (maxval (abs(dx_30)) <= sqrt(epsilon(one))&
.or. k > COUNT) exit solve_equation_30
end do sol ve_equation_30

wite(*,”(A)’) "Thirty random nunbers generated ', &
"according to the probability density ', &
"pdf (x)=(cos(x)+1)/(2*pi), -pi<x<pi:’

call show(x_30)

end
Fatal and Terminal Error Messages
See the messages.gls file for error messagesfor r and_gen. These error mes-
sages are numbered 521-528; 541-548.
sort_real

Sorts arank-1 array of real numbers x so the y results are algebraically
nondecreasing, y; <Y, < ... Y,
Required Argument

x (Input)
Rank-1 array containing the numbersto be sorted.

y (Output)
Rank-1 array containing the sorted numbers.
Example 1: Sorting an Array

An array of random numbersis obtained. The values are sorted so they are
nondecreasing.

use sort_real _int
use rand_gen_int

inplicit none
I This is Exanple 1 for SORT_REAL.

i nteger, paraneter :: n=100
real (kind(1e0)), dinension(n) :: X, Yy

| CGenerate randomdata to sort.
call rand_gen(x)

| Sort the data so it is non-decreasing.
call sort_real (x, y)

I Check that the sorted array is not decreasing.

134 « Chapter 5: Utilities IMSL Fortran 90 MP Library 4.0

if (count(y(1:n-1) > y(2:n)) == 0) then
wite (*,*) "Exanple 1 for SORT_REAL is correct.’

end if
end
Optional Arguments
nsize = n (Input)
Uses the sub-array of sizen for the numbers.
Default value: n = size(x)
i perm = i perm (Input/Output)
Appliesinterchanges of elements that occur to the entries of i per n(:). If the
valuesi pern(i)=i,i=1, n areassigned prior to call, then the output array is
moved to its proper order by the subscripted array assignmenty =
x(iperm1:n)).
icycle = icycle (Output)
Permutations applied to the input data are converted to cyclic interchanges. Thus,
the output array y is given by the following elementary interchanges, where: =:
denotes a swap:
j =icycle(i)
y(j) =0 y(i), i =1,n
iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix; used for passing
optional datato the routine. The options are as follows:
Packaged Options for sort _real
Option Prefix = ? Option Name Option Vaue
s ,d_ sort_real _scan_f or_NaN 1

iopt(10 = ?_options(?_sort_real_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

i sSNaN(x(i)) == .true.

See thei sNaN() function, Chapter 6.

Default: Does not scan for NaNs.
Description

Thesort _real routineisaFortran 90 version of SVRGN from IMSL
MATH/LIBRARY User’s Manual (IMSL 1994, p. 1141).

IMSL Fortran 90 MP Library 4.0 Chapter 5: Utilities » 135

Additional Examples

Example 2: Sort and Final Move with a Permutation

A set of n random numbers is sorted so the results are nonincreasing. The

columns of an n x n random matrix are moved to the order given by the
permutation defined by the interchange of the entries. Since the routine sorts the
results to be algebraically nondecreasing, the array of negative valuesis used as
input. Thus, the negative value of the sorted output order is nonincreasing. The
optional argument “i per m=" records the final order and is used to move the
matrix columns to that order. This example illustrates the principle of sorting
recordkeys, followed by direct movement of the records to sorted order.

use sort_real _int
use rand_gen_int

inmplicit none
I This is Exanple 2 for SORT_REAL

i nteger i

i nteger, paraneter :: n=100

i nteger ip(n)

real (kind(1e0)) a(n,n), x(n), y(n), tenmp(n*n)

I Generate a random array and matrix of val ues.
call rand_gen(x)
call rand_gen(tenp)
a = reshape(tenmp, (/n,n/))

I Initialize pernutation to the identity.

do i=1, n
ip(i) =i
end do

I Sort using negative values so the final order is
I non-increasing.
call sort_real (-x, y, ipern¥ip)

! Final rmovement of keys and matrix col ums.
y = x(ip(1l:n))
a a(:,ip(1:n))

I Check the results.
if (count(y(1:n-1) <y(2:n)) == 0) then
wite (*,*) "Exanple 2 for SORT_REAL is correct.’
end if

end

Fatal and Terminal Error Messages

See themessages.gls file for error messages farort _r eal . These error
messages are numbered 5667; 581-587.

136 « Chapter 5: Utilities IMSL Fortran 90 MP Library 4.0

show

Print rank-1 or rank-2 arrays of numbersin areadable format.

Required Argument

X (Input)
Rank-1 or rank-2 array containing the numbersto be printed.

Example 1: Printing an Array

Array of random numbers for al the intrinsic data types are printed. For
REAL(KI ND(1E0)) rank-1 arrays, the number of displayed digitsis reset from
the default value of 4 to the value 7 and the subscripts for the array are reset so
they match their declared extent when printed. The output is not shown.

use show. int
use rand_int

inplicit none
! This is Exanple 1 for SHOW

i nteger, paraneter :: n=7, n¥3
real (kind(1e0)) s _x(-1:n), s_mmn)
real (kind(1d0)) d_x(n), d_m mn)
conpl ex(kind(1e0)) c_x(n), c_m mn)
conpl ex(kind(1d0)) z_x(n),z_nm(mn)
integer i _x(n), i_nm(mn)

type (s_options) options(3)

I The data types printed are real (kind(1e0)), real (kind(1d0)),
conpl ex(ki nd(1e0)),
I conpl ex(kind(1d0)), and INTEGER. Fill with randsom nunbers
I and then print the contents, in each case with a | abel.
s_x=rand(s_x); s_nmrrand(s_m
d x=rand(d_x); d_nmrrand(d_m
c_x=rand(c_x); c_nmrrand(c_m
z x=rand(z_x); z_nmrrand(z_m
i _x=100*rand(s_x(1:n)); i_n¥100*rand(s_m

call show (s_x, 'Rank-1, REAL')

call show (s_m ’'Rank-2, REAL')

call show (d_x, 'Rank-1, DOUBLE')

call show (d_m ’'Rank-2, DOUBLE')

call show (c_x, 'Rank-1, COWPLEX)

call show (c_m ’'Rank-2, COWPLEX)

call show (z_x, 'Rank-1, DOUBLE COWPLEX)
call show (z_m ’'Rank-2, DOUBLE COWPLEX)

call show (i _x, 'Rank-1, |NTEGER)
call show (i _m ’'Rank-2, | NTEGER)

I Show 7 digits per nunber and according to the
I natural or declared size of the array.

IMSL Fortran 90 MP Library 4.0 Chapter 5: Utilities » 137

options(1)=show significant _digits_ is_ 7
options(2)=show starting_index_is
The starting val ue.

options(3)= -11!
call show (s_x,

end

_ &
"Rank-1, REAL with 7 digits, natural indexing , |OPT=options)

Optional Arguments

text = CHARACTER (Input)

CHARACTER(LEN=*) string used for labeling the array.

i mage =buffer (Output)
CHARACTER(LEN=*) string used for an internal write buffer. With this argument
present the output is converted to characters and packed. The lines are separated

by an end-of-line sequence. Thelength of buf f er isestimated by the line width
in effect, time the number of lines for the array.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input array; used for passing

optional datato theroutine. Use the REAL(KI ND(1EQ)) precision for output of
| NTEGER arrays. The options are as follows:

Packaged Options for show
Prefix is blank Option Name Option Value
show significant _digits_is_4 1
show significant_digits_is_7 2
show significant_digits_is_16 3
show line_ width_is_44 4
show line width_is 72 5
show line_ width_ is_ 128 6
show _end_of |ine_sequence_is 7
show starting_index_is 8
show starting _row_ index_is 9
show starting _col _index_is 10
iopt(10 = show_ significant_digits_is_4
iopt (10 = showsignificant_digits_is_7
iopt(10O = show_ significant_digits_is_16

These options allow more precision to be displayed. The default is 4D
for each value. The other possible choices display 7D or 16D.

iopt (10O
iopt (10

show_| i ne_wi dth_is_44
show_|ine_width_is_72

138 « Chapter 5: Utilities

IMSL Fortran 90 MP Library 4.0

iopt (10 = show line width_ is 128

These options allow varying the output line width. The default is 72
characters per line. This allows output on many work stations or
terminals to be read without wrapping of lines.

iopt (10 = show end-of |ine_sequence_is

The sequence of characters ending aline when it is placed into the
internal character buffer corresponding to the optional argument

‘IMAGE = buffer‘. The value of iopt(I0+1)%idummy isthe
number of characters. These are followed, starting at
iopt(I0+2)%idummy , by the ASCII codes of the characters themselves.
The default is the single character, ASCII value 10 or New Line.

iopt(I0) = show_starting_index_is

This are used to reset the starting index for arank-1 array to avalue
different from the default value, whichis 1.

iopt(I0) = show_starting_row_index_is
iopt(I0) = show_starting_col_index_is

These are used to reset the starting row and column indices to values
different from their defaults, each 1.

Description

The show routine is a generic subroutine interface to separate low-level
subroutines for each data type and array shape. Output is directed to the unit
number IUNIT. That number is obtained with the subroutine UMACHIMSL
MATH/LIBRARY User’s Manual (IMSL 1994, pp. 1204-1205. Thus the user
must open this unit in the calling program if it desired to be different from the
standard output unit. If the optional argument ‘IMAGE = buffer* is present,
the output is not sent to afile but to a character string within buffer . These
characters are available to output or be used in the application.

Additional Examples

Example 2: Writing an Array to a Character Variable

This example prepares arank-1 array for further processing, in this case delayed
writing to the standard output unit. The indices and the amount of precision are
reset from their defaults, asin Example 1. An end-of-line sequence of the
characters CR-NL (ACII 10,13) is used in place of the standard ASCII 10. This
isnot required for writing this array, but isincluded for an illustration of the
option.

use show_int
use rand_int

implicit none

IMSL Fortran 90 MP Library 4.0 Chapter 5: Utilities » 139

! This is Exanple 2 for SHOW
i nteger, paraneter :: n=7
real (kind(1e0)) s_x(-1:n)
type (s_options) options(7)
CHARACTER (LEN=(72+2) *4) BUFFER
! The data types printed are real (kind(1e0)) random nunbers.
s_x=rand(s_x)

Show 7 digits per nunber and according to the

natural or declared size of the array.

Prepare the output lines in array BUFFER

End each line with ASCII sequence CR-NL.
options(1)=show significant _digits_ is_7

options(2)=show starting_index_is
options(3)= -1 ! The starting val ue.

opti ons(4)=show end_of |ine_sequence_is
options(5)= 2 ! Use 2 EQL characters.

options(6)= 10 ! The ASCI| code for CR
options(7)= 13 ! The ASCI| code for NL.

BUFFER= ' I Blank out the buffer.

| Prepare the output in BUFFER
call show (s_x, &
"Rank-1, REAL with 7 digits, natural indexing '//&
"internal BUFFER, CR-NL EQLs.’, &
| MAGE=BUFFER, | OPT=0pti ons)

| Display BUFFER as a CHARACTER array. Discard bl anks
I on the ends.
WRI TE(*, "’ (1x,A)’) TRl M BUFFER)

end

Fatal and Terminal Error Messages

See the messages.gls file for error messages for show. These error messages are
numbered 601-606; 611-617; 621-627; 631-636; 641—646.

140 « Chapter 5: Utilities IMSL Fortran 90 MP Library 4.0

Chapter 6: Operators and Generic
Functions - The Parallel Option

Introduction

This chapter describes numerical linear algebra software packaged as operations

MPI REQUIRED that are executed with a function notation similar to standard mathematics. The
resulting interface is a great simplification. It alters the way libraries are presented
to the user. Many computations of numerical linear algebra are documented here
as operators and generic functions. A notation is developed reminiscent of matrix
algebra. This allows the Fortran 90 user to express mathematical formulasin
terms of operators. Thus, important aspects of “object-oriented” programming
are provided as a part of this chapter's design.

A comprehensive Fortran 90 moduiggar_operators, defines the operators and
functions. Its use provides this simplification. Subroutine calls and the use of
type-dependent procedure names are largely avoided. This makes a rapid
development cycle possible, at least for the purposes of experiments and proof-of-
concept. The goal is to provide the Fortran 90 programmer with an interface,
operators, and functions that are useful and succinct. The modules can be used
with existing Fortran programs, but the operators provide a more readable
program. Frequently this approach requires more hidden working storage. The
size of the executable program may be larger than alternatives using subroutines.
There are applications wherein the operator and function interface does not have
the functionality that is available using subroutine libraries. To retain greater
flexibility, some users will continue to require the traditional techniques of calling
subroutines.

A parallel computation for many of the defined operators and functions has been
implemented. Most of the detailed communication is hidden from the user. Those
functions having this data type computed in parallel are markbdlid t ype.

The section“Parallelism Using MPI'(in this chapteryjives an introduction on

how users should write their codes to use other machines on a network.

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 141

Contents

Matrix Algebra Operations............coeeiiiiiiiiiiieee e 142
Matrix and Utility FUNCHIONSuuuiiii e 144
MBIREQUIRED Optional Data ChanNQEScciviieiiieiciie e et ree e 149
Operators: .X., .tX., .Xt., .nX., XN 150
OPerators: . t., . N i 150

(@) o1=] =1 (0] £ PP SPPPPPTIN 151
OPErators: . i X., « Xi « covieeiiiiiiiiiiie et eeeene 153

CHOL ettt ettt e e e e et e e e e e e r e e e e e e e 154

(60 AN USRS PPPPPPRTR 155

I PP P PSP PPPPPPRTR 156

DI AG it e 157

D N I 158
PP PP P PPPPPPPRPR 158

BV E ittt e e e e e e e 160

e OO P PRSP PPPPPPRTR 160

FF T BOXe vttt etee et et et e et e e e seesee et e e e et eeeaeeeteeereeseeseeeereeans 161

I 162

I e I T 163

I SINAIN ettt eeaaae 164

BN ettt ettt e e e e e e e e e e e e 165

INORM .tttk bttt e e e e ettt e e e e e skt e e e e e e e e s bbb ne e e e e e e e aanas 166

(@ 2 I PSP PPPPPPPRRR 167

RAND ...ttt ettt ettt et e e e e e e e e e e e 168

RANK .ttt ettt e ettt e e e e e et e e e e e e e e e e e 169

SVD ettt et e e e e e e e e e e e 170

L 171
Overloaded =, /=, etc., for Derived TYPES.......ccooeeeeeieieeeeeeeeeeeeeeeee e, 172
Operator EXAMPIESveeiiiieeiiiiiiiiiiee ettt e e e e 173
Parallel EXamPleS......ccooieiiieeeie e 206

Matrix Algebra Operations

Consider a Fortran 90 code fragment that solves alinear system of algebraic
MPI REQUIRED equations, Ay = b, then computestheresidual r = b — Ay. A standard
mathematical notation is often used to write the solution,

y=A"p

A user thinks: “matrix and right-hand side yields solutiofhie code shows the
computation of this mathematical solution using a defined Fortran operator
“.ix.", and random data obtained with the functicand. This operator is read
“inverse matrix times.” The residuals are computed with another defined Fortran

142 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

operator ‘! x. ”, read “matrix times vector.” Once a user understands the equiva-
lence of a mathematical formula with the corresponding Fortran operator, it is
possible to write this program with little effort. The last line of the example
beforeend is discussed below.

USE | i near _operators

i nt eger, par anet er n=3; real A(n,n), y(n), b(n), r(n)
A=rand(A); b=rand(b); vy = A.ix. b
r=b- (A.x.y)

end

The IMSL Fortran 90 MP Library provides additional lower-level software that
implements the operationi‘x.”, the functionrand, matrix multiply “. x. ", and

others not used in this example. Standard matrix products and inverse operations
of matrix algebra are shown in the following table:

Defined Array Operation Matrix Operation Alternative in Fortran 90
A.x. B AB mat mul (A, B)
i A AL lin_sol _gen
lin_sol _Isq
.t. A.h A AT,AH transpose(A)
conj g(transpose(A))
A.ix. B ATlB lin_sol _gen
lin_sol _Isq
B .xi. A BA™L lin_sol _gen
lin_sol _Isq
A .tx. Bor(.t. A .x. B ATB,A"B mat mul (t ranspose (A), B)
A .hx. Bor(.h. A .x mat mul (conj g(transpose(A)), B)
B.xt. AoB.x. (.t. A BAT, BAM mat mul (B, transpose(A))
B.xh. AorB.x. (.h. A mat mul (B, conj g(transpose(A)))

Operators apply generically to all precisions and floating-point data types and to
objects that are broader in scope than arrays. For example, the matrix product
“. x..” applies to matrix times vector and matrix times matrix represented as
Fortran 90 arrays. It also applies‘tmdependent matrix products.For this,

use the notiona box of problems to refer to independent linear algebra
computations, of the same kind and dimension, but different dataadissof

the box are the distinct problems. In terms of Fortran 90 arrays, a rank-3,
assumed-shape array is the data structure used for a box. The first two

IMSL Fortran 90 MP Library 4.0

Chapter 6: Operators and Generic Functions - The Parallel Option « 143

dimensions are the data for amatrix problem; the third dimension is the rack
number. Each problem isindependent of other problemsin consecutive racks of
the box. We use parallelism of an underlying network of processors when
computing these digjoint problems.

In addition to the operators . i x., . xi ., .i ., and . x. , additional operators
.t.,.h.,.tx., . hx., .xt., and .xh. areprovided for complex matrices.
Since the transpose matrix is defined for complex matrices, this meaning is kept
for the defined operations. In order to write one defined operation for both real
and complex matrices, use the conjugate-transpose in all cases. Thiswill result
in only real operations when the data arrays are real.

For sums and differences of vectors and matrices, the intrinsic array operations

“+” and “~” are available. It is not necessary to have separate defined
operations. A parsing rule in Fortran 90 states that the result of a defined
operation involving two quantities has a lower precedence than any intrinsic
operation. This explains the parentheses around the next-to-last line containing
the sub-expressiohA . x. y” found in the example. Users are advised to
always include parentheses around array expressions that are mixed with
defined operations, or whenever there is possible confusion without them. The
next-to-last line of the example results in computing the residual associated
with the solution, namely=b — Ay. Ideally, this residual is zero when the
system has a unique solution. It will be computed as a non-zero vector due to
rounding errors and conditioning of the problem.

Matrix and Utility Functions

Several decompositions and functions required for numerical linear algebra
follow. The convention of enclosing optional quantities in brackets, “[]” is used.
The functions that use MPI for parallel execution of the box data type are marked

in bol d.
Defined Array Functions Matrix Operation
S=SVD(A [, U=U, V=V]) A=usv’
E=El (A [[, B=B, D=D], (AV = VE), AVD = BVE
V=V, WEW) (AW = WE), AWD = BWE
R=CHOL(A) A=R'R
Q=ORTH(A [, R=R]) (A=QR),Q'Q=1
U=UNET(A) [u,..]=[a/|fa]...]
F=DET(A) det(A) = determinant
K=RANK(A) rank(A) = rank

144 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

Defined Array Functions

Matrix Operation

P=NORMA[, [type=]i])

p= 1Ay = max; (y [ay))
=1

p=|A|, =s, = largest singular value

n
p= "A”oo « huge(1) = maX; (z |aIl |)
=1

C=COND(A) St/ Siank(a)
Z=EYE(N) Z=ly

A=DI AG(X) A=diag(xy,...)
X=DI AGONALS(A) X = (ay,...)

Y=FFT (X, [\WORK=W) ;
X=I FFT(Y, [WORK=W)

Discrete Fourier Transform, Inverse

Y=FFT_BOX (X, [WORK=W) ;
X=I FFT_BOX(Y, [WORK=W)

Discrete Fourier Transform for Boxes, Inverse

A=RAND(A)

random numbers, 0 < A< 1

L=i sNaN(A)

test for NaN, if (1) then...

In certain functions, the optional arguments are inputs while other optional

arguments are outputs. To illustrate the example of the box SVD function, a code
is given that computes the singular value decomposition and the reconstruction of

the random matrix box, A. Using the computed factors, R = USV T

Mathematically R = A, but thiswill be true, only approximately, due to rounding

errors. The value units_of_error = ||A — RJl/(JIAlle), shows the merit of this

approximation.

USE | i near_operators

USE npi _setup_int

n=3, k=16

real, dinension(n,n,Kk) A UV, R S(n, k),
MP_NPROCS=MP_SETUP() | Set up MPI.
A=rand(A); S=SVD(A UW=U, V=V)

R=U.x. diag(S) .xt. V; units_of _error
norn(A-R)/ S(1, 1: k) / epsi |l on(A)

MP_NPROCS=MP_SETUP(‘Final’) ! Shut down MPI.
end

i nt eger, par anet er

units_of _error (k)

IMSL Fortran 90 MP Library 4.0

Chapter 6: Operators and Generic Functions - The Parallel Option « 145

Parallelism Using MPI

General Remarks
MPI REQUIRED

The central theme we use for the computing functions of the box datatypeis
that of delivering results to a distinguished node of the machine. One of the
design goals was to shield much of the complexity of distributed computing
from the user.

The nodes are numbered by their “ranks.” Each nodeanvalue

MP_RANK. There areMP_NPROCS nodes, sdVP_RANK = 0,
1,...,MP_NPRCCS-1. Therootnode hagP_RANK = 0. Most of the
elementary MPI material is found in Gropp, Lusk, and Skjellum (1994) and
Snir, Otto, Huss-Lederman, Walker, and Dongarra (198@&houghFort r an

90 MP Library users are for the most part shielded from the complexity of
MPI, it is desirable for some users to learn this important topic. Users should
become familiar with any referenced MPI routines and the documentation of
their usage. MPI routines are not discussed here, because that is best found in
the above references.

The Fortran 90 MP Library algorithm for allocating the racks of the box to the
processors consists of creating a schedule for the processors, followed by
communication and execution of this schedule. The efficiency may be
improved by using the nodes according to a speaifarity order. This order

can reflect information such as a powerful machine on the network other than
the user’s work station, or even complex or transient network behavior. The
Fortran 90 MP Library allows users to define this order, including using a
default. A setup function establishes an order based on timing matrix products
of a size given by the useParallel Example #llustrates this usage.

Getting Started with Modules MPI _set up_i nt and
MPI _node_i nt

The MPI _setup_i nt and MPl _node_i nt modules are part of the
Fortran 90 MP Library and not part of MPI itself. Following a call to the
function MP_SETUP(), the moduleMPl _node_i nt will contain
information about the number of processors, the rank of a processor, the
communicator for Fortran 90 MP Library, and the usage priority order of the
node machines. Sind#’l node_i nt isused byMPl _setup_int, itis

not necessary to explicitly use this module. If neiterSETUP() nor

MPlI I nit() is called, then the box data type will compute entirely on one
node. No routine from MPI will be called.

MODULE MPI _NODE_| NT
| NTEGER, ALLOCATABLE :: MPI _NODE_PRI ORI TY(:)
I NTEGER, SAVE :: MP_LIBRARY_WORLD = huge(1)
LOGI CAL, SAVE :: MPl _ROOT WORKS = . TRUE.
INTEGER, SAVE :: MP_RANK = 0, MP_NPRCCS = 1

146 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

END MCODULE

When the function MP_SETUP() is called with no arguments, the following
events occur:

e If MPI has not been initialized, it isfirst initialized. This step uses the
routines MPl _Initialized() andpossibly MPl I nit(). Users
who choose not to call MP_SETUP() must make the required
initialization call before using any Fortran 90 MP Library code that relies
on MPI for its execution. If the user’s code calls a Fortran 90 MP Library
function utilizing the box data type and MPI has not been initialized, then
the computations are performed on the root node. The only MPI routine
always called in this contexthl I nitialized(). The name
MP_SETUP is pushed onto the subprogram or call stack.

e If MP_LI BRARY_WORLD equals its initial valu¢ =huge(1)) then
MPI _COVMM WORLD, the default MPI communicator, is duplicated and
becomes its handle. This uses the roub® Conm dup() . Users can
change the handle ofP_LI BRARY_WORLD as required by their
application code. Often this issue can be ignored.

¢ The integersvVP_RANK and MP_NPRCCS are respectively the node’s
rank and the number of nodes in the communicator,
MP_LI BRARY_WORLD. Their values require the routines
MPI _Comm si ze() andMPl _Comm rank(). The default values are
important when MPI is not initialized and a box data type is computed. In
this case the root node is the only node and it will do all the work. No calls
to MPI communication routines are made whidh NPROCS = 1 when
computing the box data type functions. A program can temporarily assign
this value to force box data type computation entirely at the root node.
This is desirable for problems where using many nodes would be less
efficient than using the root node exclusively.

e The arrayMPl _NODE_ PRI ORI TY(:) is unallocated unless the user
allocates it. The Fortran 90 MP Library codes use this array for assigning
tasks to processors, if it is allocated. If it is not allocated, the default
priority of the nodes i§0, 1, . .., MP_NPRCCS- 1) . Use of the
function callMP_SETUP(N) allocates the array, as explained below.
Once the array is allocated its siz&4# NPROCS. The contents of the
array is a permutation of the integérs. . . , M°_NPROCS- 1. Nodes
appearing at the start of the list are used first for parallel compufing.
node other than the root can avoid any computing, except receiving the
schedule, by setting the valv®l _NODE_PRI ORI TY(1) < 0. This
means that nodeMPI _NCODE_PRI ORI TY(1)| will be sent the task
schedule but will not perform any significant work as part of box data type
function evaluations.

e TheLOd CAL flag MPI _ROOT_WORKS designates whether or not the
root node participates in the major computation of the tasks. The root
node communicates with the other nodes to complete the tasks but can be

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 147

designated to do no other work. Since there may be only one processor,
this flag has the default value. TRUE. , assuring that one node exists to do
work. When more than one processor is available users can consider
assigning MPI _ ROOT_WORKS=. FALSE. Thisisdesirable when the
alternate nodes have equal or greater computational resources compared
with the root node. Example 4 illustrates this usage. A single problemis
given abox data type, with onerack. The computing is done at the node,
other than the root, with highest priority. This example requires more than
one processor since the root does not work.

When the generic function MP_SETUP(N) iscalled, where Nisa positive
integer, acall to MP_SETUP() isfirst made, using no argument. Usejust one
of these callsto MP_SETUP() . Thisinitializesthe MPI system and the other
parameters described above. Thearray MPI _NODE PRI ORI TY(:) is
allocated with size MP_NPROCS. Then DOUBLE PRECI SI ON matrix
products C = AB, where A and B are N by N matrices, are computed at each
node and the elapsed time is recorded. These elapsed times are sorted and the
contentsof MPI _NODE_PRI ORI TY(:) permuted in accordance with the
shortest times yielding the highest priority. All the nodesin the communicator
MP_LI BRARY_WORLD aretimed. Thearray MPI _NODE_PRI ORI TY(:) is
then broadcast from the root to the remaining nodes of MP_LI BRARY_WORLD
using the routine MPl _Bcast (). Timing matrix products to define the node
priority isrelevant because the effort to compute C is comparable to that of
many linear algebra computations of similar size. Users are free to define their
own node priority and broadcast thearray MPI _NODE_PRI ORI TY(:) tothe
alternate nodes in the communicator.

To print any IMSL Fortran 90 MP Library error messages that have occurred at

any node, and to finalize MPI, use the function call MP_SETUP(‘Fi nal ’) .

Case of the strind=i nal ’ is not important. Any error messages pending will

be discarded after printing on the root node. This is triggered by popping the
name*‘MP_SETUP’ from the subprogram stack or returning to Level 1 in the
stack. Users can obtain error messages by popping the stack to Level 1 and still
continuing with MPI calls. This requires executing edlpop (‘MP_SETUP’).

To continue on after summarizing errors executeegiish (‘MP_SETUP’).

More details about the error processor are found in Chapter 9

Messages are printed by nodes from largest rank to smallest, which is the root
node. Use of the routin®Pl _Fi nal i ze() is made within

MP_SETUP(‘Fi nal "), which shuts down MPI. AftelPl _Fi nal i ze()

is called, the value oP_NPROCS = 0. This flags that MPI has been

initialized and terminated. It cannot be initialized again in the same program
unit execution. No MPI routine is defined whéi?_NPROCS has this value.

Using Processors

There are certain pitfalls to avoid when using Fortran 90 MP Library and box
data types as implemented with MPI. A fundamental requirement is to allow all
processors to participate in parts of the program where their presence is needed

148 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

for correctness. Itisincorrect to have a program unit that restricts nodes from
executing a block of code required when computing with the box data type.

On the other hand it is appropriate to restrict computations with rank-2 arrays to
theroot node. Thisisnot required, but the results for the alternate nodes are
normally discarded. Thiswill avoid gratuitous error messages that may appear
at alternate nodes.

Observe that only the root has a correct result for a box data type function.
Alternate nodes have the constant value one as the result. The reason for thisis
that during the computation of the functions, sub-problems are alocated to the
alternate nodes by the root, but for only the root to utilize the result. If auser
needs a value at the other nodes, then the root must send it to the nodes. This
principleisillustrated in Parallel Example 3: Convergence information is
computed at the root node and broadcast to the others. Without this step some
nodes would not terminate the loop even when corrections at the root become
small. Thiswould cause the program to be incorrect.

Optional Data Changes

To reset tolerances for determining singularity and to alow for other data

changes, non-allocated “hidden” variables are defined within the modules. These
variables can be allocated first, then assigned values which result in the use of
different tolerances or greater efficiency in the exagle program. The non-
allocated variables, whose scope is limited to the module, are hidden from the
casual user. Default values or rules are applied if these arrays are not allocated.
In more detail, the inverse matrix operaton . " applied to a square matrix first

uses the LU factorization code | i n_sol _gen and row pivoting. The default

value for asmall diagonal term is defined to be:

sqrt(epsilon(A))*sumabs(A))/ (n*n+l)

If the system is singular, a generalized matrix inverse is computed with theQR
factorization code 1i n_sol _I sq using this same tolerance. Both row and
column pivoting are used. If the systemis singular, an error message will be
printed and a Fortran 90 STOP is executed. Users may want to change thisrule.
Thisisillustrated by continuing and not printing the error message. The
following is an additional source to accomplish this, for all following invocations

of the operator “.i. ™
al | ocate(inverse_options(1))
i nverse_options(1)=skip_error_processing
B=.i. A

There are additional self-documenting integer parameters, packaged in the
module linear_operators, that allow users other choices, such as changing the
value of the tolerance, as noted above. Included will be the ability to have the
option apply for just the next invocation of the operator. Options are available
that allow optional datato be passed to supporting Fortran 90 subroutines. This
isillustrated with an examplein oper at or _ex36 inthis chapter.

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 149

Operators: .x., .tx., .xt., .hx., .xh.

Compute matrix-vector and matrix-matrix products. The results are in a precision
and data type that ascends to the most accurate or complex operand. The
operators apply when one or both operands are rank-1, rank-2 or rank-3 arrays.
Required Operands

Each of these operators requires two operands. Mixing of intrinsic floating-point
datatypes arraysis permitted. There is no distinction made between arank-1
array, considered a slim matrix, and the transpose of this matrix. Defined
operations have lower precedence than any intrinsic operation, so the liberal use
of parentheses is suggested when mixing them.

Modules

Use the appropriate one of the modules:
operation_x
operation_tx
oper ati on_xt
oper ati on_hx
operation_xh

or linear_operators

Optional Variables, Reserved Names

These operators have neither packaged optional variables nor reserved names.

Examples
Compute the matrix timesvectory=Ax: y = A .x. X
« Computethevector timesmatrix y=X"A: y = x .x. Ay = A .tx. X

e Compute the matrix expressonD =B-AC: D=B - (A .x. O

Operators: .t., .h.

Compute transpose and conjugate transpose of a matrix. The operation may be
read transpose or adjoint, and the results are the mathematical objectsin a
precision and data type that matches the operand. The operators apply when the
single operand is arank-2 or rank-3 array.

150 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

Required Operand

Each of these operators requires a single operand. Since these are unary
operations, they have higher Fortran 90 precedence than any other intrinsic unary
array operation.

Modules

Use the appropriate one of the modules:
operation_t
operation_h

or |linear_operators

Optional Variables, Reserved Names

These operators have neither packaged optional variables nor reserved names.

Examples

Compute the matrix times vector

y:ATX: y = . t.A.X. X;y =A . .tx. X
Compute the vector times matrix

y:XTA: y =X .X. Ay = A.tx. X

Compute the matrix expression
D=B-A"C: D=B - (A.hx. O; D=B - (.h.A.x. C

Operator: .i.

Compute the inverse matrix, for square non-singular matrices, or the Moore-
Penrose generalized inverse matrix for singular square matrices or rectangular
matrices. The operation may be read inverse or generalized inverse, and the
results are in aprecision and data type that matches the operand. The operator can
be applied to any rank-2 or rank-3 array.

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option ¢ 151

Required Operand

This operator requires asingle operand. Since thisis a unary operation, it has
higher Fortran 90 precedence than any other intrinsic array operation.
Modules

Use the appropriate one of the modules:
operation_i

orlinear_operators

Optional Variables, Reserved Names

This operator usestheroutines 1i n_sol _gen or lin_sol _I sq (See Chapter
1, “Linear Solvers” i n_sol gen andlin_sol |sq).

The option and derived type names are given in the following tables:

Option Names for . i . Option Value
use_l in_sol _gen_only 1
use_lin_sol _Isg_only 2
i _options_for_lin_sol_gen 3
i _options_for_lin_sol_Isq 4
ski p_error_processing 5
Derived Type Name of Unallocated Array
s_options s_inv_options(:)
s_options s_inv_iptions_once(:)
d_options d_inv_options(:)
d_options d_i nv_options_once(:)
Examples

Compute the matrix times vector

y:AJK y =.i.A.X. X;y=A.ix. X

Compute the vector times matrix

y=xﬂ¥% y =X .X. .i.Ay=x.xi. A

Compute the matrix expression

D=B-A'CC. D=B-(iA.x. Q; D=B-(A.ix. O

152 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

Operators: .ix., .Xi.

Compute the inverse matrix times a vector or matrix for square non-singular
matrices or the corresponding M oore-Penrose generalized inverse matrix for
singular square matrices or rectangular matrices. The operation may be read
generalized inverse times or times generalized inverse. Theresultsarein a
precision and data type that matches the most accurate or complex operand.

Required Operand

This operator requires two operands. In the template for usage,y = A .ix. b,
the first operand A can be rank-2 or rank-3. The second operand b can be rank-1,
rank-2 or rank-3. For the alternate usagetemplate,y = b . xi. A, thefirst
operand b can be rank-1, rank-2 or rank-3. The second operand A can be rank-2
or rank-3.

Modules

Use the appropriate one of the modules:
operation_iXx
oper at i on_xi
orlinear_operators

Optional Variables, Reserved Names

This operator usestheroutines!| i n_sol _gen or |in_sol _|Isq
(See Chapter 1, “Linear Solvers”i n_sol _gen and | i n_sol _I sq).

The option and derived type names are given in the following tables:

Option Names for .ix., .xi. Option Value
use_lin_sol _gen_only
use_lin_sol _Isg only 2
Xi _, ix_options_for_lin_sol _gen 3
Xi _, ix_options_for_lin_sol _Isq 4

5

ski p_error_processing

Derived Type Name of Unallocated Array
s_options s_invx_options(:)
s_options s_invx_options_once(:)
d_options d_invx_options(:)
d_options d_i nvx_options_once(:)
s_options s_xinv_options(:)
s_options s_Xxinv_options_once(:)
d_options d_xinv_options(:)
d_options d_xi nv_options_once(:)

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 153

Examples
Compute the matrix timesvectory=A"'x y = A .ix. x
Compute the vector times matrixy=x’A™": y = x .xi. A

Compute the matrix expressionD=B-A'C: D= B - (A .ix. O

CHOL

Compute the Cholesky factorization of a positive-definite, symmetric or self-
adjoint matrix, A. The factor is upper triangular, R'R= A.

Required Argument

This function requires one argument. This argument must be arank-2 or rank-3
array that contains a positive-definite, symmetric or self-adjoint matrix. For rank-
3 arrays each rank-2 array, (for fixed third subscript), is a positive-definite,
symmetric or self-adjoint matrix. In this case, the output is arank-3 array of
Cholesky factors for the individual problems.

Modules

Use the appropriate one of the modules:
chol _int

orlinear_operators

Optional Variables, Reserved Names

Thisfunctionuses | i n_sol _sel f (See Chapter 1, “Linear Solvers,”
I'in_sol sel f), using the appropriate options to obtain the Cholesky factorization.

The option and derived type names are given in the following tables:

Option Name for CHOL Option Value
use_lin_sol _gen_only 4
use_lin_sol _Isqg_only 5
Derived Type Name of Unallocated Array
s_options s_chol _options(:)
s_options s_chol _options_once(:)
d_options d_chol _options(:)
d_options d_chol _options_once(:)

154 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

Example

Compute the Cholesky factor of a positive-definite symmetric matrix:
B=A.tx. A R= CHO(B); B=R.tx. R

COND

Compute the condition number of arectangular matrix, A. The condition number
isthe ratio of the largest and the smallest positive singular values,

S / Srank(A)

or huge(A) , whichever is smaller.

Required Argument

This function requires one argument. This argument must be arank-2 or rank-3
array. For rank-3 arrays, each rank-2 array section, (for fixed third subscript), isa
separate problem. In this case, the output is arank-1 array of condition numbers
for each problem.

Modules

Use the appropriate one of the modules:

cond_i nt

orlinear_operators

Optional Variables, Reserved Names

Thisfunctionuses | i n_sol _svd (see Chapter 1, “Linear Solvers,”
l'i n_sol _svd), to compute the singular valuet/A

The option and derived type names are given in the following tables:

Option Name for COND Option Value

s_cond_set _snal |
s_cond_for_lin_sol_svd
d_cond_set _snal |
d_cond for_lin_sol_svd
c_cond_set _snal |
c_cond for_lin_sol_svd
z_cond_set _snal |

z_cond_for_lin_sol_svd

N P NP NP DN B

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option ¢ 155

Derived Type Name of Unallocated Array

s_options s_cond_options(:)

s_options s_cond_options_once(:)

d_options d_cond_options(:)

d_options d_cond_options_once(:)
Example

Compute the condition number:
B=A.tx. A c = COND(B); ¢ = COND(A)**2

DET

Compute the determinant of arectangular matrix, A. The evaluation is based on

the QR decomposition,
Rk><k 0
QAP =
{ 0O O

and k = rank(A). Thus det(A) = s x det(R) where s = det(Q) x det(P) = 1.

Required Argument

This function requires one argument. This argument must be arank-2 or rank-3
array that contains a rectangular matrix. For rank-3 arrays, each rank-2 array (for
fixed third subscript), is a separate matrix. In this case, the output is arank-1
array of determinant values for each problem. Even well-conditioned matrices can
have determinants with values that have very large or very tiny magnitudes. The
values may overflow or underflow. For this class of problems, the use of the
logarithmic representation of the determinant found in 1'i n_sol _gen or
lin_sol _Isqg isrequired.

Modules

Use the appropriate one of the modules:
det _int

orlinear_operators

Optional Variables, Reserved Names

Thisfunctionuses | i n_sol _I sq (see Chapter 1, “Linear Solvers”
l'in_sol _I sq) to compute th&R decomposition oA, and the logarithmic
value ofdet (A), which is exponentiated for the result.

156 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

The option and derived type names are given in the following tables:

Option Name for DET Option Value
s_det _for_lin_sol _Isq 1
d_det _for_lin_sol _Isq 1

c_det _for_lin_sol _Isq

z_det _for_lin_sol _Isq

Derived Type Name of Unallocated Array

s_options s_det _options(:)

s_options s_det _options_once(:)

d_options d_det _options(:)

d_options d_det _options_once(:)
Example

Compute the determinant of a matrix and itsinverse:
b = DET(A); ¢ = DET(.i.A); b=1l./c

DIAG

Construct a square diagonal matrix from arank-1 array or several diagonal
matrices from arank-2 array. The dimension of the matrix is the value of the size
of the rank-1 array.

Required Argument

This function requires one argument, and the argument must be arank-1 or rank-2
array. The output is arank-2 or rank-3 array, respectively. The use of DI AG may
be obviated by observing that the defined operations

C=diag(x) .x. Aor D= B .x. diag(x) arerespectively thearray
operationsC = spread(x, DI M=1, NCOPI ES=si ze(A, 1)) *A, and

D = B*spread(x, DI M=2, NCOPI ES=si ze(B, 2)) . These array products are
not as easy to read as the defined operations using DI AG and matrix multiply, but
their use results in amore efficient code.

Modules

Use the appropriate module:
di ag_int

orlinear_operators

Optional Variables, Reserved Names

This function has neither packaged optional variables nor reserved names.

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option ¢ 157

Example

Compute the singular value decomposition of a square matrix A:
S = SVD(A U=U, V=V)

Then reconstruct A=USV "
A=U.x.diag(S) .xt. V

DIAGONALS

Extract arank-1 array whose values are the diagonal terms of arank-2 array
argument. The size of the array is the smaller of the two dimensions of the rank-2
array. When the argument is arank-3 array, the result is arank-2 array consisting
of each separate set of diagonals.

Required Argument

This function requires one argument, and the argument must be arank-2 or rank-3
array. The output isarank-1 or rank-2 array, respectively.

Modules

Use the appropriate one of the modules:
di agonal s_i nt

or linear_operators

Optional Variables, Reserved Names

This function has neither packaged optional variables nor reserved names.

Example

Compute the diagonals of the matrix product RR’:
x = DIAGONALS(R . xt. R)

EIG

Compute the eigenval ue-eigenvector decomposition of an ordinary or generalized
eigenvalue problem.

For the ordinary eigenvalue problem, Ax = ex, the optional input “B=" is not

used. With the generalized problefx = eBx, the matrixB is passed as the array
in the right-side of'B=". The optional output“D=" is an array required only for
the generalized problem and then only when the matisxsingular.

The array of real eigenvectors is an optional output for both the ordinary and the
generalized problem. It is used ‘@g=" where the right-side array will contain

158 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

the eigenvectors. If any eigenvectors are complex, the optional output “We” must
be present. In that cas&=" should not be used.
Required Argument

This function requires one argument, and the argument must be a square rank-2
array or a rank-3 array with square first rank-2 sections. The output is a rank-1 or
rank-2 complex array of eigenues.
Modules
Use the appropriate module:

eig int

or linear_operators

Optional Variables, Reserved Names

This functionuse i n_ei g_sel f, lin_eig_gen, and |in_gei g_gen, to
compute the decompositiorfsee Chapter 2, “Singular Value and Eigenvalue Decomposition”
lin_eig self,lin_eig gen,and!in_geig_gen

The option and derived type names are given in the following tables:

Option Name for EI G Option Value
options _for_lin_eig_self 1
options_for_lin_eig_gen 2
options _for_lin_geig _gen 3
ski p_error_processing 5
Derived Type Name of Unallocated Array
s_options s_eig_options(:)
s_options s_ei g_options_once(:)
d_options d_eig_options(:)
d_options d_eig_options_once(:)
Example

Compute the maximum magnitude eigenvalue of a squarexiafiihe values
are sorted pEI () to be non-increasing in magnitude).

E = EIQA); max_magnitude = abs(E(1))
Compute the eigenexpansion of a square mBtri
E=EQB W=W,; B=W.x. diag(E) .xi. W

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option ¢ 159

EYE

Create arank-2 sguare array whose diagonals are al the value one. The off-
diagonals all have value zero.

Required Argument

This function requires one integer argument, the dimension of the rank-2 array.
The output array is of type and kind REAL(KI ND(1EO)) .

Modules

Use the appropriate module:
eye_int

orlinear_operators

Optional Variables, Reserved Names

This function has neither packaged optional variables nor reserved names.

Example
Check the orthogonality of a set of n vectors, Q
e = normEYE(n) - (Q .hx. Q)

FFT

The Discrete Fourier Transform of a complex sequence and its inverse transform.

Required Argument

The function requires one argument, x. If x isan assumed shape complex array
of rank 1, 2 or 3, the result is the complex array of the same shape and rank
consisting of the DFT.

Modules

Use the appropriate module:
fft_int

orlinear_operators

Optional Variables, Reserved Names

The optional argument iNORK=, "3 a COMPLEX array of the same precision
as the data. For rank-1 transforms the sizZ&@RK is n+15. To define this
array for each problem, s#ORK(1) = 0. Each additional rank adds the
dimension of the transform plus 15. Using the optional arguMeRK increases

160 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

the efficiency of the transform. Thisfunctionuses f ast _dft, fast 2dft,
andf ast _3dft from Chapter 3.

The option and derived type names are given in the following tables:

Option Name for FFT Option Value
options_for_fast_dft 1
Derived Type Name of Unallocated Array
s_options s_fft_options(:)
s_options s_fft_options_once(:)
d_options d_fft_options(:)
d_options d_fft_options_once(:)
Example

Compute the DFT of arandom complex array:
x=rand(x); y=fft(x)

FFT_BOX

The Discrete Fourier Transform of several complex or real sequences.

Required Argument

The function requires one argument, X. If x isan assumed shape complex array
of rank 2, 3 or 4, the result is the complex array of the same shape and rank
consisting of the DFT for each of the last rank’s indices.

Modules

Use the appropriate module:
fft_box_int

orlinear_operators

Optional Variables, Reserved Names

The optional argument ISWORK=," a COMPLEX array of the same precision as
the data. For rank-1 transforms the siz8¥ORK is n+15. To define this array

for each problem, sedORK(1) = 0. Each additional rank adds the dimension of
the transform plus 15. Using the optional argumAERK increases the
efficiency of the transform. This function uses rowinest dft, fast 2dft,
andfast_3dft from Chapter 3.

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 161

The option and derived type names are given in the following tables:

Option Name for FFT

Option Value

options for_fast_dft

1

Derived Type

Name of Unallocated Array

s_options s_fft_box_options(:)

s_options s_fft_box_options_once(:)

d_options d_fft_box_options(:)

d_options d_fft_box_options_once(:)
Example

Compute the DFT of arandom complex array:
x=rand(x); y=fft_box(x)

IFFT

Theinverse of the Discrete Fourier Transform of a complex sequence.

Required Argument

The function requires one argument, Xx. If x isan assumed shape complex array
of rank 1, 2 or 3, the result is the complex array of the same shape and rank
consisting of theinverse DFT.

Modules

Use the appropriate module;

ifft_int

orlinear_operators

Optional Variables, Reserved Names

The optional argument f8AORK=, ” a COVPLEX array of the same precision as
the data. For rank-1 transforms the siz&\0RK is n+15. To define this array

for each problem, $&\ORK(1) = 0. Each additional rank adds the dimension of
the transform plus 15. Using the optional argumAERK increases the

efficiency of the transform. This function uses rowinest dft, fast 2dft,
and f ast _3dft from Chapter 3.

162 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

The option and derived type names are given in the following tables:

Option Name for IFFT

Option Value

options_for_fast_dft

Derived Type

Name of Unallocated Array

s_options s_ifft_options(:)

s_options s_ifft_options_once(:)

d_options d_ifft_options(:)

d_options d_ifft_options_once(:)
Example

Compute the DFT of arandom complex array and itsinverse transform;
x=rand(x); y=fft(x); x=ifft(y)

IFFT_BOX

Theinverse Discrete Fourier Transform of several complex or real sequences.

Required Argument

The function requires one argument, X. If x isan assumed shape complex array
of rank 2, 3 or 4, the result is the complex array of the same shape and rank
consisting of theinverse DFT.

Modules

Use the appropriate module;

i fft_box_int

orlinear_operators

Optional Variables, Reserved Names

The optional argument is “WORK=," a COVPLEX array of the same precision as
the data. For rank-1 transforms the sizeWiRK is n+15 To define this array
for each problem, $&\ORK(1) = 0. Each additional rank adds the dimension of
the transform plus 18Jsing the optional argumeMORK increases the

efficiency of the transformThis function uses routisef ast _dft, fast_2dft,
andfast_3dft from Chapter 3.

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 163

The option and derived type names are given in the following tables:

Option Name for IFFT Option Value
options_for_fast_dft 1
Derived Type Name of Unallocated Array
s_options s_ifft_box_options(:)
s_options s_ifft_box_options_once(:)
d_options d_ifft_box_options(:)
d_options d ifft_box_options_once(:)
Example

Compute the inverse DFT of arandom complex array:
x=rand(x); x=ifft_box(y)

ISNaN

Thisisageneric logical function used to test scalars or arrays for occurrence of
an |EEE 754 Standard format of floating point (ANSI/IEEE 1985) NaN, or not-a-
number. Either quiet or signaling NaNs are detected without an exception
occurring in the test itself. The individual array entries are each examined, with
bit manipulation, until the first NaN islocated. For non-IEEE formats, the bit
pattern tested for single precisionis t r ansf er (not (0), 1) . For double
precision numbers x, the bit pattern tested is equivalent to assigning the integer
array i (1:2) = not (0), thentesting thisarray with the bit pattern of the
integer array t r ansf er (x, i). Thisfunctionislikely to be required whenever
there is the possibility that a subroutine blocked the output with NaNsin the
presence of an error condition.

Required Arguments

The argument can be a scalar or array of rank-1, rank-2 or rank-3. The output
valuetests . true. only if thereisat least one NaN in the scalar or array. The
values can be any of the four intrinsic floating-point types.

Modules

Use one of the modules:
i sNaN_i nt

orlinear_operators

Optional Variables, Reserved Names

This function has neither packaged optional variables nor reserved names.

164 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

Example

If thereisnot aNaN in an array Ait isused to solve alinear system:
if(.not. isNaN(A)) x = A.ix. b

NaN

Returns, as a scalar function, a value corresponding to the |EEE 754 Standard
format of floating point (ANSI/IEEE 1985) for NaN. For other floating point
formats a special pattern isreturned that tests ..t r ue. using the function

i sSNaN() .

Required Arguments

* X (Input)
Scalar value of the same type and precision as the desired result, NaN. This
input value is used only to match the type of output.

Example 1: Blocking Output
Arrays are assigned all NaN values, using single and double-precision formats.
These are tested using the logical function routine, i sNaN.

use isnan_int

inmplicit none

I This is Exanple 1 for NaN.

i nteger, paraneter :: n=3

real (kind(1e0)) A(n,n); real (kind(1d0)) B(n,n)
real (kind(1e0)), external :: s_NaN

real (kind(1d0)), external :: d_NaN

I Assign NaNs to both A and B:
A = s_Nan(1e0); B = d_Nan(1dO0)
I Check that NaNs are noted in both A and B:
if (isNan(A) .and. isNan(B)) then
wite (*,*) "Exanple 1 for NaNis correct.’
end if

end

Optional Arguments

There are no optional arguments for this routine.

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 165

Description

The bit pattern used for single precisionistransfer (not(0),1). For double
precision, the bit pattern for single precision is replicated by assigning the
temporary integer array i (1: 2) = not (0), and then using the double-precision
bit patternt r ansf er (i, x) for the output value.

Fatal and Terminal Error Messages

This routine has no error messages.

NORM

Compute the norm of arank-1 or rank-2 array. For rank-3 arrays, the norms of
each rank-2 array, in dimension 3, are computed.

Required Arguments

The first argument must be an array of rank-1, rank-2, or rank-3. An optional,
second position argument can be used that provides a choice between the norms
1,15, and 1,

If this optional argument, with keyword “ t ype="'is not present, tl, norm is
computed. Thl; andl,, norms are likely to be less expensive to compute than the
I norm. Use of the option number r eset _def aul t _nor m will switch the

default from tee |, to the l; or I, norms.

Modules

Use the appropriate modules:

nor m i nt

orlinear_operators

Optional Variables, Reserved Names

If the |, norm is required, this function wski n_sol _svd (see Chapter 1,
“Linear Solvers,1i n_sol _svd), to compute the largest singular valdé\oFor
the other norms, Fortran 90 intrinsics are used.

166 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

The option and derived type names are given in the following tables:

Option Name for NORM Option Value

s_normfor_lin_sol _svd 1
s_reset _default_norm
d_normfor_lin_sol _svd
d_reset _default_norm
c_normfor_lin_sol _svd
c_reset _default_norm
z_normfor_lin_sol _svd
z_reset_defaul t_norm

N P NP N PPN

Derived Type Name of Unallocated Array

s_options s_normoptions(:)

s_options s_normoptions_once(:)

d_options d_normoptions(:)

d_options d_norm options_once(:)
Example

Compute three norms of an array. (Both assignments of n_2 yield the same
value).

A n_1 =norm A 1); n_2 = nornm(A type=2); n_2=norn(A); n_inf
= norn(A huge(1))

ORTH

Orthogonalize the columns of arank-2 or rank-3 array. The decomposition
A = QRiscomputed using aforward and backward sweep of the Modified Gram-
Schmidt algorithm.

Required Arguments

The first argument must be an array of rank-2 or rank-3. An optional argument
can be used to obtain the upper-triangular or upper trapezoidal matrix R. If this
optional argument, with keyword “R=", is present, the decomposition is
complete. The array output contains the magixf the first argument is rank-3,
the output array and the optional argument are rank-3.

Modules

Use the appropriate one of the modules:
orth_int

or linear_operators

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 167

Optional Variables, Reserved Names

The option and derived type names are given in the following tables:

Option Name for ORTH Option Value
ski p_error_processing 5
Derived Type Name of Unallocated Array
s_options s_orth_options(:)
s_options s_orth_options_once(:)
d_options d_orth_options(:)
d_options d_orth_options_once(:)
Example

Compute the scaled sample variances, v, of an m x n linear least squares system,
(m>n),AxOb: Q= ORTHAR=R); G.i. R x =G .x. (Q.hx. b);
v=DlI AGONALS(G . xh. @ ; v=v*sunm((b-(A .x. x))**2)/(mn)

RAND

Compute a scalar, rank-1, rank-2 or rank-3 array of random numbers. Each
component number is positive and strictly less than onein value.
Required Arguments

The argument must be a scalar, rank-1, rank-2, or rank-3 array of any intrinsic
floating-point type. The output function value matches the required argument in
type, kind and rank. For complex arguments, the output values will be real and
imaginary parts with random values of the same type, kind, and rank.

Modules

Use the appropriate modules:
rand_i nt

orlinear_operators

Optional Variables, Reserved Names

This function uses r and_gen to obtain the number of values required by the
argument. The values are then copied using the RESHAPE intrinsic.

Note: If any of thearrayss_rand_options(:), s_rand_opti ons_once(:),
d_rand_options(:),ord_rand_options_once(:) areallocated, they are
passed as argumentsto r and_gen using the keyword “i opt =".

168 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

The option and derived type hames are given in the following table:

Derived Type Name of Unallocated Array

s_options s_rand_options(:)

s_options s_rand_options_once(:)

d_options d_rand_options(:)

d_options d_rand_options_once(:)
Examples

Compute arandom digit:
1<i<n: i=rand(1le0)*n+1
Compute arandom vector:

X : x=rand(x)

RANK

Compute the mathematical rank of arank-2 or rank-3 array.

Required Arguments

The argument must be rank-2 or rank-3 array of any intrinsic floating-point type.
The output function value is an integer with avalue equal to the number of
singular valuesthat are greater than a tolerance. The default value for this

toleranceis 81/251, where £ ismachine precision and s;is the largest singular
value of the matrix.

Modules

Use the appropriate one of the modules:
rank_int

orlinear_operators

Optional Variables, Reserved Names

Thisfunctionuses | i n_sol _svd to compute the singular values of the
argument. The singular values are then compared with the value of the tolerance
to compute the rank.

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 169

The option and derived type names are given in the following tables:

Option Name for RANK Option Value
s_rank_set _snal | 1
s_rank _for_lin_sol_svd 2
d_rank_set _snal | 1
d_rank _for_lin_sol_svd 2
c_rank_set _snall 1
c_rank _for_lin_sol_svd 2
z_rank_set _snmal | 1
z_rank _for_lin_sol_svd 2
Derived Type Name of Unallocated Array
s_options s_rank_options(:)
s_options s_rank_options_once(:)
d_options d_rank_options(:)
d_options d_rank_options_once(:)
Example

Compute the rank of an array of random numbers and then the rank of an array
where each entry is the value one:

A=rand(A); k=rank(A); A=1; k=rank(A)

SVD

Compute the singular value decomposition of arank-2 or rank-3 array,
A=USVT.
Required Arguments

The argument must be rank-2 or rank-3 array of any intrinsic floating-point type.

The keyword arguments “U=" and “V=" are optional. The output array names

used on the right-hand side must have sizes that are large enough to contain the
right and left singular vectork) andV.

Modules

Use the appropriate module:
svd_i nt

orlinear_operators

170 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

Optional Variables, Reserved Names

This function uses one of theroutines | i n_svd and | i n_sol _svd. Ifa
complete decompositionisrequired, | i n_svd isused. If singular values only, or
singular values and one of theright and left singular vectors are required, then
lin_sol _svd iscalled.

The option and derived type names are given in the following tables:

Option Name for SVD Option Value

options_for_lin_svd
options_for_lin_sol _svd
ski p_error_processing

Derived Type Name of Unallocated Array

s_options s_svd_options(:)

s_options s_svd_options_once(:)

d_options d_svd_options(:)

d_options d_svd_options_once(:)
Example

Compute the singular value decomposition of arandom square matrix:
A=rand(A); S=SVD(A U=U,V=V); A=U .x. diag(S) .xt. V

UNIT

Normalize the columns of arank-2 or rank-3 array so each has Euclidean length
of value one.

Required Arguments
The argument must be arank-2 or rank-3 array of any intrinsic floating-point
type. The output function valueis an array of the same type and kind, where each
column of each rank-2 principal section has Euclidean length of value one.
Modules
Use the appropriate one of the modules:

unit_int

or linear_operators
Optional Variables, Reserved Names

This function uses a rank-2 Euclidean length subroutine to compute the lengths of
the nonzero columns, which are then normalized to have lengths of value one.

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 171

The subroutine carefully avoids overflow or damaging underflow by rescaling the
sums of sguares as required. There are no reserved names.

Example

Normalize a set of random vectors; A=UNI T(RAND(A)) .

Overloaded =, /=, etc., for Derived Types

To assist usersin writing compact and readable code, the IMSL Fortran 90 MP
Library provides overloaded assignment and logical operations for the derived
types s_options,d_options, s_error, and d_error. Each of these
derived types has an individual record consisting of an integer and a floating-
point number. The components of the derived types, in all cases, are named

i durmy followed by r dummy. In many cases, the item referenced is the
component i dunmy. Thisinteger value can be used exactly as any integer by use
of the conmponent sel ect or character (%). Thus, aprogram could assign a
value and test after calling aroutine:

s_epack(1) % dunmmy = 0

call lin_sol_gen(A b, x, epack=s_epack)

if (s_epack(1)% dummy > 0) call error_post(s_epack)

Using the overloaded assignment and logical operations, this code fragment can
be written in the more readable form:

s_epack(1l) =0

call lin_sol_gen(A, b, x, epack=s_epack)

if (s_epack(1l) > 0) call error_post(s_epack)

Generally the assignments and logical operations refer only to component

i dummy. Theassignment “s_epack(1) =0" is equivalent to

“s_epack(1)=s_error (0, 0E0)". Thus, the floating-point componendunmy

is assigned the valugE0. The assignment statement$_epack(1)”, forl an
integer type, is equivalent to2s_epack(1) % dumy”. The value of

componentr dunmy is ignored in this assignment. For the logical operators, a
single element of any of the IMSL Fortran 90 MP Library derived types can be in
either the first or second operand.

Derived Type | Overloaded Assignments and Tests

s_options I=s_options(1);s_options(l)=l |= = /= < <= > >=

s_options I =d_options(1);d options(1l)=l |= = /= < <= > >=

d_epack | =s_epack(1l);s_epack(1)=l = = /= < <= > >=

d_epack | =d_epack(1); d_epack(1)=I = = /= < <= > >=
In the examplespper at or _ex01, ..., _ex37, the overloaded assignments and

tests have been used whenever they improve the readability of the code.

172 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

Operator Examples

This section presents an equivalent implementation of the examples in “Linear
Solvers, “Singular Value and Eigenvalue Decomposition,” and a single example
from “Fourier Tranforms Chapters 1 and 2, and a single example from Chapter
3.” In all cases, the examples have been tested for correctness using equivalent
mathematical criteria. On the other hand, these criteria are not identical to the
corresponding examples in all cases. In Example 1ifor sol _gen,

err = maxval (abs(res))/sumabs(A) + abs(b))is computed. In the
operator revision of this exampleper at or _ex01,err = norm(b -

(A .x. x))/(norm(A)*norm(x) + norn(b)) is computed

Both formulas foer r yield values that are aboapsi | on(A). To be safe, the
larger valuesgrt (epsi | on(A)) is used as the tolerance.

The operator version of the examples are shorter and intended to be easier to
read.

To match the corresponding examples in Chapters 1, 2, and 3 to those using the
operators, consult the following table:

Chapters 1, 2 and 3 Examples

Corresponding Operators

l'in_sol _gen_ex1, _ex2, _ex3, _ex4
lin_sol _sel f_ex1, _ex2, _ex3, _ex4
lin_sol _I sq_ex1, _ex2, _ex3, _ex4
lin_sol _svd_ex1, _ex2, _ex3, _ex4
lin_sol _tri_ex1, _ex2,_ex3, _ex4
lin_svd_exl, ex2, ex3, _ex4
lin_eig_self_exl, _ex2,_ex3, _ex4
l'in_eig_gen_exl, _ex2,_ex3, _ex4
lin_geig_gen_exl, _ex2,_ex3, _ex4
fast_dft_ex4

oper at or _ex01, _ex02, ex03, _ex04
oper at or _ex05, _ex06, _ex07, _ex08
oper at or _ex09, _ex10, _ex11, _ex12
oper at or _ex13, _ex14, _ex15, _ex16
oper at or _ex17, _ex18, _ex19, _ex20
oper at or _ex21, _ex22, _ex23, _ex24
oper at or _ex25, _ex26, _ex27, _ex28
oper at or _ex29, _ex30, _ex31, _ex32
oper at or _ex33, _ex34, ex35, _ex36
oper at or _ex37

Table A: Examples and Corresponding Operators

Operator_ex01

use |inear_operators
inmplicit none

I This is Exanple 1 for LIN SOL_GEN, with operators and functions.

i nteger, paraneter :: n=32
one=1.0e0, err

real (ki nd(1e0))

real (kind(1e0)), dimension(n,n) :: A b, X

| Generate randommatrices for A and b

A = rand(A); b=rand(b)

IMSL Fortran 90 MP Library 4.0

Chapter 6: Operators and Generic Functions - The Parallel Option « 173

I Conpute the solution matrix of Ax = bh.
x =A.ix. b

I Check the results.
err = norm(b - (A .x. x))/(norn(A) *norn(x)+norm b))
if (err <= sqgrt(epsilon(one))) &
wite (*,*) "Exanple 1 for LIN_SO._CEN (operators) is correct.’
end

Operator_ex02

use |inear_operators
inmplicit none

I This is Exanple 2 for LIN_SOL_GEN using operators and functions.

i nteger, paraneter :: n=32
real (kind(1e0)) :: one=1e0, err, det_A, det_i
real (kind(1e0)), dimension(n,n) :: A inv

I Generate a random matri X.
A = rand(A)

I Conpute the matrix inverse and its determn nant.
inv = .i.A det_A = det(A)

I Conpute the determinant for the inverse matrix.
det _i = det(inv)

I Check the quality of both left and right inverses.
err = (norm(EYE(n)-(A .x. inv))+norn{EYE(n)-(inv.x.A)))/cond(A)
if (err <= sqgrt(epsilon(one)) .and. abs(det_A*det_i - one) <= &
sqrt(epsilon(one))) &
wite (*,*) 'Exanple 2 for LIN_SOL_GEN (operators) is correct.’
end

Operator_ex03

use |linear_operators
inplicit none

I This is Exanple 3 for LIN_SO.L_GEN using operators.
i nteger, paraneter :: n=32
real (kind(1e0)) :: one=1e0, zero=0e0, A(n,n), b(n), x(n)
real (ki nd(1e0)) change_new, change_ol d
real (kind(1d0)) :: d_zero=0d0, c(n), d(n,n), y(n)

| Generate a randomnmatri x and right-hand side.
A = rand(A); b= rand(b)

I Save doubl e precision copies of the matrix and right-hand side.

D=A
c=5b

I Conpute single precision inverse to conpute the iterative refinenent.
A=.i. A

I Start solution at zero. Update it to an accurate solution
I with each iteration.
y = d_zero

174 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

change_ol d = huge(one)

iterative_refinenment: do
I Conpute the residual w th higher accuracy than the data.
b=c- (D.x.vy)

I Conpute the update in single precision
X =A.X. b

y =x+y
change_new = nor n(x)
I Exit when changes are no | onger decreasing.
if (change_new >= change_old) exit iterative_refinenent
change_ol d = change_new
end do iterative_refinenent

wite (*,*) "Exanple 3 for LIN SO.L_GEN (operators) is correct.
end

Operator_ex04
use |inear_operators

inmplicit none

I This is Exanple 4 for LIN_SOL_GEN using operators

i nteger, paraneter :: n=32, k=128
i nteger i
real (kind(1e0)), paraneter :: one=1e0, t_max=1, delta_t=t_nax/(k-1)

real (kind(1e0)) err, A(n,n)
real (kind(1e0)) t(k), y(n,k), y_prine(n,k)
conpl ex(kind(1e0)) x(n,n), z_0(n), y_0(n), d(n)

I Generate a random coefficient matrix
A = rand(A)

I Conpute the eigenval ue-ei genvect or deconposition
I of the systemcoefficient matrix
D = El A WX)

I Generate a randominitial value for the ODE system
y_0 = rand(y_0)

I Solve conplex data systemthat transforns the initial
I values, X z_0=y_0.
z0=X.ix. y_0

I The grid of points where a solution is conputed:
t = (/(i*delta_t,i=0,k-1)/)

I Conpute y and y’ at the values t(1:k).
I Wth the eigenval ue-eigenvector deconposition AX = XD, this
I is an evaluation of EXP(At)y_0 = y(t).
y = X .x. exp(spread(d, 2, k)*spread(t,1,n))*spread(z_0, 2, k)

I This is y', derived by differentiating y(t).

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option ¢ 175

y _prime = X .x. spread(d, 2, k)*exp(spread(d, 2,k)*spread(t,1,n))* &
spread(z_0, 2, k)

I Check results. Is y - Ay = 0?
err = norm(y_prinme-(A .x. y))/(nornm(y_prine)+norn(A) *norn(y))
if (err <= sqgrt(epsilon(one))) then
wite (*,*) "Exanple 4 for LIN_SO._CEN (operators) is correct.’
end if

end

Operator_ex05

use | i near_operators
inmplicit none

I This is Exanple 1 for LIN_SOL_SELF using operators and functions.
i nteger, paraneter :: me64, n=32
real (kind(1e0)) :: one=1.0e0, err
real (kind(1e0)) A(n,n), b(n,n), C(mn), d(mn), x(n,n)

I Generate two rectangul ar random matri ces.
C = rand(C); d=rand(d)

I Form the normal equations for the rectangul ar system
A=C.tx. C b=C.tx. d

I Compute the solution for Ax = b, Ais symetric.
X =A.ix. b
I Check the results.
err = normb - (A .x. x))/(normA)+normb))
if (err <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 1 for LIN_SO._SELF (operators) is correct.’
end if

end

Operator_ex06

use |linear_operators
inmplicit none
I This is Exanple 2 for LIN SO._SELF using operators and functions.
i nteger, paraneter :: mF64, n=32
real (kind(1e0)) :: one=1e0, zero=0e0, err
real (kind(1e0)) A(n,n), b(n), C(mn), d(m, cov(n,n), x(n)

I Generate a random rectangul ar matrix and ri ght-hand si de.
C = rand(C); d=rand(d)

I Formthe normal equations for the rectangul ar system
A=C.tx. C b=C.tx. d
COvV = .i. CHOL(A); COV = COV .xt. COv

176 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

I Conpute the | east-squares sol ution.
x=C.ix. d

I Conpare with solution obtained using the inverse natrix.
err = norm(x - (COV .x. b))/ norn{cov)

I Scale the inverse to obtain the sanple covariance nmatri x.
COV = sunm((d - (C.x. x))**2)/(mn) * COV
I Check the results.
if (err <= sqgrt(epsilon(one))) then
wite (*,*) "Exanple 2 for LIN SO._SELF (operators) is correct.’
end if

end

Operator_ex07

use |inear_operators
inmplicit none
I This is Exanple 3 (using operators) for LIN_SO._SELF.

integer tries

i nteger, paraneter :: me8, n=4, k=2

i nteger ipivots(n+l)

real (kind(1d0)) :: one=1.0d0, err

real (kind(1d0)) a(n,n), b(n,1), c(mn), x(n,1), &
e(n), ATEMP(n,n)

type(d_options) :: iopti(4)
I Generate a random rectangul ar matrix.

C = rand(C
I Generate a randomright hand side for use in the inverse
I iteration.

b = rand(b)

I Conpute the positive definite matrix.
A=C.tx. C A= (A+rt.A/2

I Obtain just the eigenval ues.

E = El QA

I Use packaged option to reset the value of a snall diagonal.
iopti(4) =0
iopti (1) = d_options(d_lin_sol_self_set_small, &

epsil on(one)*abs(E(1)))

I Use packaged option to save the factorization.
iopti(2) = d_lin_sol _self_save_factors

I Suppress error messages and stopping due to singularity
I of the matrix, which is expected.
iopti(3) = d_lin_sol _self_no_sing_ness

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 177

ATEMP = A

I Conpute A-eigenvalue*l as the coefficient matrix.
I Use eigenval ue nunber k.
A=A - e(k)*EYE(n)

do tries=1,2
call lin_sol _self(A b, x, &
pi vot s=i pi vots, iopt=iopti)
I When code is re-entered, the already conputed factorization
I is used.
iopti(4) = d_lin_sol _self_solve A

| Reset right-hand side in the direction of the eigenvector.
B = UNI T(x)
end do

I Normalize the eigenvector.
x = UNI T(x)

I Check the results.
b=ATEMP . Xx. X
err = dot_product(x(1:n,1), b(1l:n,1)) - e(k)

I If any result is not accurate, quit with no printing
if (abs(err) <= sqrt(epsilon(one))*E(1)) then
wite (*,*) "Exanple 3 for LIN SO._SELF (operators) is correct.’
end if

end

Operator_ex08

use |inear_operators
inmplicit none

I This is Exanple 4 for LIN_SOL_SELF using operators and functions

i nteger, paraneter :: me8, n=4

real (kind(1e0)) :: one=1e0, zero=0e0

real (kind(1d0)) :: d_zero=0d0

i nteger ipivots((n+m+1)

real (kind(1e0)) A(mn), b(m1l), F(ntmn+m, &
g(n+m 1), h(n+m 1)

real (ki nd(1e0)) change_new, change_old

real (kind(1d0)) c¢(m1), D(mn), y(n+m1)

type(s_options) :: iopti(2)

I Generate a random matrix and right-hand side
A = rand(A); b = rand(b)

I Save doubl e precision copies of the matrix and right hand side
D=A c=0b

' Fill in augnmented matrix for accurately solving the | east-squares
I problemusing iterative refinement.
F = zero; F(1:m1:m=EYE(mM

178 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

F(I:mml:) = A F(mtl:,1:m = .t. A

I Start solution at zero.
y = d_zero
change_ol d = huge(one)

I Use packaged option to save the factorization.
iopti (1) = s_lin_sol_self_save factors
iopti(2) =0

iterative_refinenment: do
g(l:m1l) =c¢(1l:m1l) - y(1:m1l) - (D.x. y(ml:mn,1))
g(ml:mn,1) = - D.tx. y(1l:m1l)
call lin_sol _self(F, g, h, &
pi vot s=i pi vots, iopt=iopti)
y =h+y
change_new = norn(h)

I Exit when changes are no | onger decreasing.
i f (change_new >= change_ ol d) &
exit iterative_refinenment
change_ol d = change_new

I Use option to re-enter code with factorization saved; solve only.
iopti(2) = s_lin_sol _self_solve A
end do iterative_refinenent
wite (*,*) "Exanple 4 for LIN SO._SELF (operators) is correct.’
end

Operator_ex09

use |inear_operators
use Nunerical _Libraries
inmplicit none

I This is Exanple 1 for LIN_SOL_LSQ using operators and functions.

i nteger i

i nteger, paraneter :: nF128, n=8

real (kind(1d0)), paraneter :: one=1d0, zero0o=0d0

real (kind(1d0)) A(mO0:n), c¢(0:n), pi_over_2, x(m, y(m, &
u(m, v(m, wn, delta_x

CHARACTER(2) :: PI(1)

I Generate a randomgrid of points and transform
! to the interval -1,1.
X = rand(x); x = x*2 - one

| Get the constant "PI/2" from | MSL Nunerical Libraries.
Pl ="pi’'; pi_over_2 = DCONST(PI)/2

I Generate function data on the grid.
y = exp(x) + cos(pi_over_2*x)

' Fill in the |least-squares matrix for the Chebyshev pol ynom al s.
A(:,0) =one; A(:,1) =x

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 179

do i=2, n
A(: i) = 2*x*A(:,i-1) - A(:,i-2)
end do

| Solve for the series coefficients.
c=A.ix.y

I Generate an equally spaced grid on the interval.
delta_x = 2/real (m1, ki nd(one))
x = (/(-one + i*delta x,i=0,m1)/)

I Eval uate residuals using backward recurrence fornul as.
U = zero;, v = zero
do i=n, 0, -1
w = 2*x*u - v + c(i)
v u
u=w
end do

I Conpute residuals at the grid:
y = exp(x) + cos(pi_over_2*x) - (u-x*v)

I Check that n+l1 sign changes in the residual curve occur.
I (This test will fail when n is larger.)
X one

X sign(x,y)

if (count(x(1:m1l) /= x(2:m) >= n+l) then
wite (*,*) "Exanple 1 for LIN SO.L_LSQ (operators) is correct.’
end if

end

Operator_ex10

use |inear_operators
inmplicit none

I This is Exanple 2 for LIN_SOL_LSQ using operators and functions.

i nteger i

i nteger, paraneter :: nF128, n=8

real (kind(1d0)), paraneter :: one=1d0, zero0=0d0

real (kind(1d0)) A(mO0:n), c¢(0:n), pi_over_2, x(m, y(m, &
u(m, v(m, w(m, delta_x, inv(0:n,

real (kind(1d0)), external :: DCONST

I Generate an array of equally spaced points on the interval -1,1.
delta_x = 2/real (m1, ki nd(one))
X = (/(-one + i*delta_x,i=0,m1)/)

| Get the constant "PI/2" from | MSL Nunerical Libraries.
pi _over_2 = DCONST('PI')/2

I Conmpute data val ues on the grid.
y = exp(x) + cos(pi_over_2*x)

180 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

' Fill in the least-squares matrix for the Chebyshev pol ynom al s

A(:,0) = one
A(:,1) =x
do i=2, n
A(:,i) = 2*x*A(:,i-1) - A(:,i-2)
end do

I Conpute the generalized inverse of the | east-squares matri x.
I Conpute the series coefficients using the generalized inverse
I as 'snoothing formul as.’

inv = .i. A c=inv .x.y

I Eval uate residuals using backward recurrence fornul as.

u zero

v zero

do i=n, 0, -1
w = 2*x*u - v + c(i)
vV =u
u=w

end do

I Conpute residuals at the grid:
y = exp(x) + cos(pi_over_2*x) - (u-x*v)

I Check that n+2 sign changes in the residual curve occur.
| (This test will fail when n is larger.)

X = one; X = sign(x,y)

if (count(x(1:m1) /= x(2:m) == n+2) then
wite (*,*) "Exanple 2 for LIN_SO._LSQ (operators) is correct.’
end if

end

Operator_ex11

use operation_ix
use operation_tx
use operation_x
use rand_i nt

use norm.int
inmplicit none

I This is Exanple 3 for LIN_SOL_LSQ using operators and functions
integer i, j
integer, paraneter :: n¥128, n=32, k=2, n_eval =16
real (kind(1d0)), paraneter :: one=1d0, delta_sqr=1d0
real (kind(1d0)) A(mn), b(m, c(n), p(k,m, a(k,n), &
res(n_eval,n_eval), w(n_eval), delta

I Generate a random set of data and center points in k=2 space
p = rand(p); g=rand(q)

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 181

I Conpute the coefficient matrix for the | east-squares system
A = sqgrt(sun((spread(p,3,n) - spread(q,2,nm)**2,dinmrl) + delta_sqr)

I Conpute the right-hand side of function val ues
b = exp(-sun(p**2,dinrl))

I Conpute the | east-squares solution. An error nessage due
! torank deficiency is ignored with the flags:

al locate (d_invx_options(1))
d_invx_options(1)=skip_error_processing
c=A.ix. b

I Check the results.
if (norm(A .tx. (b - (A .x. c)))/(norm A +norm(c)) &
<= sqrt(epsilon(one))) then
wite (*,*) "Exanple 3 for LIN SOL_LSQ (operators) is correct.
end if

| Eval uate residuals, known function - approximtion at a square
I grid of points. (This evaluation is only for k=2.)

delta = one/real (n_eval -1, ki nd(one))
w = (/(i*delta,i=0,n_eval-1)/)

res = exp(-(spread(w, 1,n_eval)**2 + spread(w, 2, n_eval)**2))
doj=1, n
res =res - c(j)*sqrt((spread(w, 1, n_eval)

- **2 + &
(spread(w, 2,n_eval) - g(2,j))**2

a(l,j))

+ delta_sqr)
end do

I Unl oad option type for good housekeepi ng
deal | ocate (d_i nvx_options)

end

Operator_ex12
use |inear_operators
inmplicit none
I This is Exanple 4 for LIN_SOL_LSQ using operators and functions

i nteger, paraneter :: me64, n=32
real (kind(1e0)) :: one=1e0, A(m+1,n), b(mtl), x(n)

I Generate a random matrix and right-hand side
A=rand(A); b = rand(b)

I Heavily weight desired constraint. Al variables sumto one
A(mtl,) one/ sqrt (epsil on(one))
b(mtl) one/ sqrt (epsil on(one))

I Conmpute the | east-squares solution with this heavy weight.
x =A.ix. b

I Check the constraint.
if (abs(sum(x) - one)/norm(x) <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 4 for LIN_SOL_LSQ (operators) is correct.

182 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

end if

end

Operator_ex13

use |inear_operators
inmplicit none

I This is Exanple 1 for LIN_SOL_SVD using operators and functions.
i nteger, paraneter :: mr128, n=32
real (kind(1d0)) :: one=1d0, err
real (kind(1d0)) A(mn), b(m, x(n), Umm, V(n,n), S(n), g(m

I Generate a random matrix and right-hand side.
A = rand(A); b = rand(b)

I Conpute the |east-squares solution matrix of Ax=b.
S=SVD(A U=U V=V
g U.tx. b; x =V .x. diag(one/S) .x. g(1l:n)

I Check the results.
err = normA .tx. (b - (A .x. x)))/(norn(A)+norm x))
if (err <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 1 for LIN_SO._SVD (operators) is correct.’
end if

end

Operator_ex14

use |linear_operators
inplicit none

I This is Exanple 2 for LIN_SOL_SVD using operators and functions.
i nteger, paraneter :: n=32
real (kind(1d0)) :: one=1d0, zero=0d0
real (kind(1d0)) A(n,n), P(n,n), Qn,n), &
S D(n), UD(n,n), V_D(n,n)

| CGenerate a random matri x.
A = rand(A)

I Conpute the singular val ue deconposition.
S D= SVD(A, W=UD, V=V D

I Conpute the (left) orthogonal factor.
P=UD.xt. VD

I Conpute the (right) self-adjoint factor.
Q=V.D.x. diag(S D .xt. V.D

I Check the results.
if (norm(EYE(n) - (P .xt. P)) &
<= sqrt(epsilon(one))) then
if (normlA- (P .x. Q)/norm(A &

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 183

<= sqrt(epsilon(one))) then
wite (*,*) "Exanple 2 for LIN SO._SVD (operators) is correct.’
end if
end if
end

Operator_ex15

use | i near_operators
inmplicit none

This is Exanple 3 for LIN_SOL_SVD.
integer i, j, kK
i nteger, paraneter :: n=32
real (kind(1e0)), paraneter :: half=0.5e0, one=1e0, zero0=0e0
real (kind(1e0)), dimension(n,n) :: A S(n), U, V, C

Fill in value one for points inside the circle,
zero on the outside.
A = zero
DO i=1, n
DO j=1, n
if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) A(i,j) = one

Conput e the singular val ue deconposition.
S = SVD(A, U=U, V=V)

How many terms, to the nearest integer, match the circle?
k = count (S > half)
C=U(:,1:k) .x. diag(S(1:Kk)) .xt. V(:,1:k)
if (count(int(CA) /=0) == 0) then
wite (*,*) "Exanple 3 for LIN_SO._SVD (operators) is correct.’
end if

end

Operator_ex16

use |linear_operators
inmplicit none
I This is Exanple 4 (operators) for LIN SO._SVD.

integer i, j, k

i nteger, paraneter :: me64, n=16

real (kind(1e0)), paraneter :: one=1e0, zero=0e0

real (kind(1e0)) :: g(m, s(m, t(n+l), a(mn), f(n), US(mmM, &
V_S(n,n), S S(n)

real (kind(1e0)) :: delta_g, delta_t, rns, oldrns

I Conpute collocation equations to sol ve.
delta_g = one/real (mtl, ki nd(one))

184 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

g=(/(i*delta_g,i=1,m/)

I Conpute equal ly spaced quadrature points
delta_t =one/real (n, kind(one))
t=(/((j-1)*delta_t,j=1,n+1)/)

I Conpute collocation points with an array form of
I Newton’s method.
s=m
SOLVE_EQUATI ONS: do
s=s- (exp(-s)-(one-s*g))/(g-exp(-s))
if (sunm(abs((one-exp(-s))/s - g)) <= &
epsilon(one) *sunm(g)) exit SOLVE_EQUATI ONS
end do SOLVE_EQUATI ONS

| Evaluate the integrals over the quadrature points.
A = (exp(-spread(t(1l:n),1,nm *spread(s,2,n)) &
- exp(-spread(t(2:n+1),1, m*spread(s,2,n))) / &
spread(s, 2, n)

I Conpute the singular val ue deconposition.
S S = SVD(A WUS, V=V 9

I Singular values, larger than epsilon, determ ne
I the rank, k.
k = count(S_S > epsilon(one))

I Conpute U S**T times right-hand side, g.
g=US.tx. g

I Use the m ni num nunber of singular values that give a good
| approximation to f(t) = 1.
ol drms = huge(one)
do i=1,k
f = V.S(:,2:i) .x. (g(l:i)/S_S(1:i))
roms = sum((f-one)**2)/n
if (rms > oldrns) exit
oldrns = rns

end do
wite (*,"(' Using this nunber of singular values, ', &

& 4 | ' the approximate RMS. error is ', 1pel2.4)") &
i-1, oldrms

if (sqrt(oldrns) <= delta_t**2) then
wite (*,*) "Exanple 4 for LIN_SOL_SVD (operators) is correct.
end if

end

Operator_ex17

use |inear_operators
use lin_sol _tri_int

inmplicit none
I This is Exanple 1 (using operators) for LIN_SO._TRI

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 185

i nteger, paraneter :: n=128
real (kind(1d0)), paraneter :: one=1d0, zero=0d0
real (kind(1d0)) err
real (kind(1d0)), dinmension(2*n,n) :: d, b, c, x, vy, t(n)
type(d_error) :: d_lin_sol _tri_epack(08) = d_error(0, zero)

Generate the upper, main, and | ower diagonals of the

n matrices Ai. For each systema randomvector x is used
to construct the right-hand side, Ax = y. The |ower part
of each array remains zero as a result.

c = zero;, d=zero; b=zero; x=zero
c(1l:n,:)=rand(c(1l:n,:)); d(1l:n,:)=rand(d
2)); x(1lin

(1:n,:
b(1:n,:)=rand(b(1:n, ,) =rand(x(1:n,

~——
~——

I Add scalars to the main diagonal of each system so that
I all systens are positive definite.

t = sun(c+d+b, DI M=1)

d(1l:n,1:n) =d(1:n,1:n) + spread(t, Dl M1, NCOPI ES=n)

I Set Ax = y. The vector x generates y. Note the use
I of EOSHI FT and array operations to conpute the matrix
I product, n distinct copies, as one array operation

y(1:n,1:n)=d(1:n,1:n)*x(1:n,1:n) + &
c(1:n,1:n)*ECSH FT(x(1: n, 1: n), SH FT=+1, DI Me1) + &

b(1:n, 1: n)*EOSH FT(x(1:n, 1: n), SH FT=-1, DI Mc1)

Conpute the solution returned iny. (The input values of c,

d, b, and y are overwitten by lin_sol _tri.) Check for any

errors. This is not recessary but illustrates contro
returning to the calling programunit.
call lin_sol tri (c, d, b, vy, &

epack=d_lin_sol _tri_epack)
call error_post(d_lin_sol _tri_epack)

I Check the size of the residuals, y-x. They should be snall
| relative to the size of values in x.

err = norm(x(1l:n,1:n) - y(1:n,1:n),1)/normx(1:n,1:n),1)
if (err <= sqgrt(epsilon(one))) then

wite (*,*) "Exanple 1 for LIN.SOL_TRI (operators) is correct.’
end if

end

Operator_ex18

use |inear_operators
use lin_sol _tri_int

inmplicit none

I This is Exanple 2 (using operators) for LIN_SO._TRI
i nt eger nopt
i nteger, paraneter :: n=128
real (kind(1e0)), paraneter :: s_one=1e0, s_zero=0e0

186 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

real (kind(1d0)), paraneter :: d_one=1d0, d_zero=0d0

real (kind(1e0)), dinmension(2*n,n) :: d, b, c, X, y

real (kind(1e0)) change_new, change old, err

type(s_options) :: iopt(2) = s_options(0,s_zero)

real (kind(1d0)), dinension(n,n) :: d_save, b_save, c_save, &
X_save, y_save, x_sol

| ogi cal solve_only

C = s_zero; d=s_zero; b=s_zero; X=s_zero

I Generate the upper, main, and | ower diagonals of the

I matrices AA A randomvector x is used to construct the

I right-hand sides: y=A*x.
c(l:n,:)=rand(c(1:n,
d(1l:n,:)=rand(c(1:n,

2)); d(1:n,:)=rand(d(1:n,:))
2)): x(1:n,:)=rand(d(1l:n,:))

I Save doubl e precision copies of the diagonals and the
I right-hand side
c_save = c¢(1:n,1:n); d_save = d(1l:n,1:n)
b save = b(1l:n,1:n); x_save = x(1:n,1:n)
y_save(1l:n,1:n) = d(1:n,1:n)*x_save + &
c(1:n, 1: n) *ECSH FT(x_save, SH FT=+1, DI Mc1) + &
b(1:n, 1: n) *ECSH FT(x_save, SH FT=-1, DI M=1)

I lIterative refinenent |oop.
factorization_choice: do nopt=0, 1

| Set the logical to flag the first tine through

solve_only = .fal se
x_sol = d_zero
change_ol d = huge(s_one)

iterative_refinenent: do

I This flag causes a copy of data to be noved to work arrays
I and a factorization and solve step to be perforned.
if (.not. solve_only) then
c(1l:n,1:n)=c_save; d(1:n,1:n)=d_save
b(1:n,1:n)=b_save
end if

I Conpute current residuals, y - A*X, using current Xx.
y(1l:n,1:n) = -y _save + &
d_save*x_sol + &
c_save*EOSHI FT(x_sol , SH FT=+1, DI Mc1) + &
b_save* EOSH FT(x_sol , SH FT=-1, DI M=1)
call lin_sol tri (c, d, b, y, iopt=iopt)
x_sol = x_sol + y(1l:n,1:n)
change_new = sum(abs(y(1:n,1:n)))

I If size of change is not decreasing, stop the iteration.
if (change_new >= change_old) exit iterative_refinenent

change_ol d = change_new

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 187

iopt(nopt+l) = s lin_sol _tri_solve only
solve_only = .true

end do iterative_refinenent
I Use Gaussian Elimnation if Cyclic Reduction did not get an
I accurate sol ution.
I It is an exceptional event when Gaussian Elimnation is required
if (norm(x_sol - x_save,1) / norm(x_save,1l) &
<= sqgrt(epsilon(d_one))) exit factorization_choice
iopt(nopt+l) = s lin_sol _tri_use_Gauss_elim
end do factorization_choice
I Check on accuracy of solution.
err = nornm(x(1l:n,1:n)- x_save, 1)/ norm x_save, 1)
if (err <= sqgrt(epsilon(d_one))) then
wite (*,*) "Exanple 2 for LIN.SOL_TRI (operators) is correct.’
end if

end

Operator_ex19

use |inear_operators
use lin_sol _tri_int

use rand_i nt

use Nunerical _Libraries

inmplicit none

I This is Exanple 3 (using operators) for LIN_SO._TRI

integer i, nopt

i nteger, paraneter :: n=128, k=n/4, ncoda=1, |da=2
real (kind(1e0)), paraneter :: s_one=1e0, s_zero=0e0
real (kind(1e0)) A(lda,n), EVAL(k)

type(s_options) :: iopt(2)

real (kind(1e0)) d(n), b(n), d_t(2*n,k), c_t(2*n,k), perf_ratio, &
b_t(2*n,k), y_t(2*n,k), eval _t(k), res(n,Kk)
| ogical small

I This flag is used to get the k | argest eigenval ues.
smal | = .fal se.

I Generate the nmin diagonal and the co-di agonal of the
I tridiagonal matrix

b=rand(b); d=rand(d)

A(L1,1:)=b; A(2,1:)=d

I Use Nunerical Libraries routine for the calculation of k
I largest eigenval ues.

CALL EVASB (N, K, A, LDA, NCODA, SMALL, EVAL)

EVAL_T = EVAL

188 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

I Use Fortran 90 MP Librarytridi agonal solver for inverse iteration
I calcul ation of eigenvectors.
factorization_choice: do nopt=0,1

I Create k tridiagonal problens, one for each inverse
I iteration system

b t(1:n,1:k) = spread(b, DI M=2, NCOPI ES=k)
c_ t(1:n,1:k) = EOSH FT(b_t(1:n,1:k), SH FT=1, DI M=1)
d t(1:n,1:k) = spread(d, DI M2, NCOPI ES=k) - &

spread(EVAL_T, DI M=1, NCOPI ES=n)
I Start the right-hand side at random val ues, scal ed downward
I to account for the expected 'blowup’ in the solution
y_t=rand(y_t)

| Do two iterations for the eigenvectors

do i=1, 2
y t(1:n,1:k) =y t(1l:n,1:k)*epsilon(s_one)
call lin_sol tri(c_t, d_t, b_t, y t, &
i opt =i opt)
iopt(nopt+l) = s lin_sol _tri_solve only
end do

I Othogonalize the eigenvectors. (This is the npst
| intensive part of the conputing.)
y t(1l:n,1:k) = ORTH(y_t(1:n,1:k))

See if the performance ratio is smaller than the val ue one

If it is not the code will re-solve the systens using Gaussi an
Elimnation. This is an exceptional event. It is a necessary
conplication for achieving reliable results.

res(1:n,1:k) = spread(d, DI M=2, NCOPI ES=k)*y t(1:n,1:k) + &
spread(b, DI M=2, NCOPI ES=k) * &
EOSH FT(y t(1:n, 1:k), SHI FT=-1, Dl M=1) + &
EOSHI FT(spread(b, DI M=2, NCOPI ES=k) *y_t (1:n, 1: k), SH FT=1) &
- y t(1:n,1l:k)*spread(EVAL_T(1: k), DI M=1, NCOPI ES=n)

If the factorization nethod is Cyclic Reduction and perf_ratio is
| arger than one, re-solve using Gaussian Elinmnation. |If the
nmet hod is already Gaussian Elimnation, the |loop exits
and perf_ratio is checked at the end.

perf ratio = norm(res(1:n,1:k),1) / &

norn(EVAL_T(1:k),1) / &
epsilon(s_one) / (5*n)
if (perf_ratio <= s_one) exit factorization_choice
iopt(nopt+1) = s_lin_sol_tri_use_Gauss_elim

end do factorization_choice
if (perf_ratio <= s_one) then

wite (*,*) "Exanple 3 for LIN.SOL_TRI (operators) is correct.
end if

end

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 189

Operator_ex20

use lin_sol _tri_int
use Nunerical _Libraries

inmplicit none
I This is Exanple 4 (using operators) for LIN_SO._TRI

i nteger, paraneter :: n=1000, ichap=5, iget=1, iput=2, &
i NnUME6G, i rnume7

real (kind(1e0)), paraneter :: zero=0e0, one = 1e0
i nt eger i, ido, in(50), inr(20), iopt(6), ival(7), &
i wk(35+n)
real (ki nd(1e0)) hx, pi_value, t, u 0, u_1, atol, rtol, sval(2), &

tend, wk(41+11*n), y(n), ypr(n), a_diag(n), &
a_off(n), r_diag(n), r_off(n), t_y(n), t_ypr(n), &
t_g(n), t_diag(2*n,1), t_upper(2*n,1),
t_lower(2*n,1), t_sol(2*n,1)

type(s_options) :: iopti(l)=s_options(O, zero)

I Define initial data.
t = 0e0; u_0 = one
u_l =0.5 tend = one

I Initial values for the variational equation.
y = -one; ypr= zero
pi _value = const((/ pi'/))
hx = pi _val ue/ (n+1)

a_diag = 2*hx/3
a_off = hx/6
r_diag = -2/ hx
r_off = 1/hx

I Get integer and floating point option numbers.

iopt(1l) = inum
call iumag ('math’, ichap, iget, 1, iopt, in)
iopt(1l) = irnum
call iumag ('math’, ichap, iget, 1, iopt, inr)

I Set for reverse conmunicati on eval uation of the DAE
iopt(1l) = in(26)
ival (1) =0
I Set for use of explicit partial derivatives.
iopt(2) = in(5)
ival (2) =1
I Set for reverse conmuni cation evaluation of partials
iopt(3) = in(29)
ival (3) =0
I Set for reverse conmunication solution of |inear equations
iopt(4) = in(31)
ival(4) =0
I Storage for the partial derivative array are not allocated or
I required in the integrator.
iopt(5) = in(34)
ival (5) =1
I Set the sizes of iwk, wk for internal checking
iopt(6) = in(35)

190 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

i val (6) 35 + n

ival (7) = 41 + 11*n
| Set integer options:

call iumag ('math’, ichap, iput, 6, iopt, ival)
| Reset tolerances for integrator:

atol = l1le-3; rtol= le-3

sval (1) = atol; sval(2) =rto
iopt(1) = inr(5)
I Set floating point options:
call sumag ('math’, ichap, iput, 1, iopt, sval)

| Integrate ODE/ DAE. Use dummy external nanes for g(y,y’')
! and partials: DGSPG DJSPG

ido =1

I ntegration_Loop: do

call d2spg (n, t, tend, ido, y, ypr, dgspg, djspg, iwk, wk)
I Find where g(y,y’) goes. (It only goes in one place here, but can
I vary where divided differences are used for partial derivatives.)
iopt (1) =in(27)
call iumag ('math’, ichap, iget, 1, iopt, ival)
I Direct user response:
sel ect case(i do)

case(1,4)
I This should not occur.
write (*,*) ' Unexpected return with ido ="', ido
stop
case(3)

| Reset options to defaults. (This is good housekeepi ng but not
! required for this problem)

in=-in
call iumag ('math’, ichap, iput, 50, in, ival)
inr = -inr
call sumag ('math’, ichap, iput, 20, inr, sval)
exit Integration_Loop

case(5)

| Evaluate partials of g(y,y').
t_y =y; t_ypr = ypr

t g =r_diag*t_y + r_of f*ECSH FT(t _y, SH FT=+1) &
+ EOSH FT(r_off*t_y, SH FT=-1) &
- (a_diag*t_ypr + a_of f*EOSH FT(t _ypr, SH FT=+1) &
+ ECSHI FT(a_of f*t _ypr, SHI FT=-1))
I Move data from assunmed size to assuned shape arrays.

do i=1, n
wk(ival (1)+i-1) =t _g(i)
end do

cycle Integration_Loop

case(6)
| Evaluate partials of g(y,y').
I Get value of c_j for partials.
iopt(1l) = inr(9)
call sumag ('math’, ichap, iget, 1, iopt, sval)

I Subtract c_j fromdiagonals to conmpute (partials for y')*c_j
I The linear systemis tridiagonal
t_diag(1:n,1) =r_diag - sval (1)*a_diag

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 191

t _upper(l:n,1) = r_off - sval(1l)*a off
t _lower = ECSH FT(t _upper, SH FT=+1, DI M=1)

cycle Integration_Loop

case(7)
I Conpute the factorization
iopti (1) = s_lin_sol _tri_factor_only
call lin_sol tri (t_upper, t_diag, t_lower, &
t_sol, iopt=iopti)
cycle Integration_Loop

case(8)
I Solve the system
iopti(1) = s_lin_sol _tri_solve only
I Move data fromthe assuned size to assuned shape arrays
t_sol (1:n,1)=wk(ival (1):ival (1)+n-1)

call lin_sol tri (t_upper, t_diag, t_lower, &
t_sol, iopt=iopti)

I Move data fromthe assuned shape to assuned size arrays
wk(ival (1):ival (1)+n-1)=t_sol (1:n, 1)

cycle Integration_Loop

case(2)
| Correct initial value to reach u 1 at t=tend

uO=uO0- (uo*y(n/f2) - (u_1l-u 0)) / (y(n/2) + 1)
! Finish up internally in the integrator
ido =3
cycle Integration_Loop
end sel ect
end do Integration_Loop
wite (*,*) 'The equation u_t = u xx, with u(0,t) ="', u0
wite (*,*) '"reaches the value ',u_1, ' at tinme ="', tend, .’
wite (*,*) "Exanple 4 for LIN SOL_TRI (operators) is correct.

end

Operator_ex21

use |inear_operators
inmplicit none
I This is Exanple 1 (using operators) for LIN_SVD
i nteger, paraneter :: n=32
real (kind(1d0)), paraneter :: one=1d0

real (ki nd(1d0)) err
real (kind(1d0)), dinmension(n,n) :: A U V, S(n)

I Generate a randomn by n matriXx.

192 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

A = rand(A)

I Conpute the singular val ue deconposition.
S=SVD(A, U=U, V=V)

I Check for small residuals of the expression A*V - U*S
err = norn((A .x. V) - (U.x. diag(S)))/normS)
if (err <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 1 for LIN SVD (operators) is correct.’
end if

end

Operator_ex22

use |inear_operators
inmplicit none
I This is Exanple 2 (using operators) for LIN_SVD.

i nteger, paraneter :: me64, n=32, k=4

real (kind(1d0)), paraneter :: one=1.0d0, zero=0.0dO0

real (kind(1d0)) a(mn), s(n), u(mm, v(n,n), &
b(mk), x(n,k), g(mk), alpha(k), lamda(k), &
delta_l anda(k), t_g(n,k), s_sq(n), phi(n,k), &
phi _dot (n, k), move(k), err

| Generate a randommatrix for both A and B.
A=rand(A); b=rand(b)

I Conpute the singular val ue deconposition.
S = SVD(A, U=u, V=v)

I Choose al pha so that the lengths of the regularized solutions
I are 0.25 times lengths of the non-regularized sol utions.

g= u.tx. b x =v .x. diag(one/S) .x. g(1l:n,:)
al pha = 0.25*sqgrt (sum(x**2, Dl M=1))
t_g=diag(S) .x. g(l:n,:); s_sq = s**2; landa = zero

solve_for_landa: do
x = one/ (spread(s_sq, DI M=2, NCOPI ES=k) + &
spread(| anda, DI M=1, NCOPI ES=n))

phi = (t_g*x)**2; phi_dot = -2*phi*x
delta_l anda = (sun{(phi, DI M-1) - al pha**2)/ sun(phi _dot, DI M-1)

I Make Newton nethod correction to solve the secul ar equations for
I | anda.
|l anda = |l anda - delta_l anda

I Test for convergence and quit when it happens.
if (norm(delta_l anda) <= &
sgrt(epsilon(one))*norm(landa)) EXI T sol ve_for_| anda

I Correct any bad noves to a positive restart.

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option ¢ 193

nmove = rand(nmove); where (landa < 0) landa = s(1) * nove
end do solve_for_|anda

I Conpute solutions and check | engths.
X = Vv .X. (t_g/(spread(s_sq, DI M=2, NCOPlI ES=k) + &
spread(| anda, DI M=1, NCOPI ES=n)))

err = norn(sun(x**2, Dl M=1) - al pha**2)/norn{al pha)**2
if (err <= sqgrt(epsilon(one))) then

wite (*,*) "Exanple 2 for LIN SVD (operators) is correct.’
end if

end

Operator_ex23

use |inear_operators
inmplicit none
I This is Exanple 3 (using operators) for LIN_SVD.

i nteger, paraneter :: n=32

i nteger i

real (kind(1d0)), paraneter :: one=1d0

real (kind(1d0)), dimension(n,n) :: d(2*n,n), x, u_d(2*n,2*n), &
v_d, v_c, uc, v_s, us, &
s_d(n), c(n), s(n), sc_c(n), sc_s(n)

real (kind(1d0)) errl, err2

I Generate random square matrices for both A and B.
I Construct D, Ais on the top; Bis on the bottom
D = rand(D)! D(1:n,:) = A D(n+l:,:) =B

I Conpute the singular value deconpositions used for the GSVD.
S D= SV D, U=u_d, V=v_d)
C SvD(u_d(1:n, 1:n),
S SVD(u_d(n+1:,1:n),

I Rearrange c(:) so it is non-increasing. Move singular
I vectors accordingly. (The use of tenporary objects sc_c and
I x is required.)
sc_c =c¢(n:1:-1); ¢ = sc_c
X =u_c(linn:1:-1); uc=x; x =v_c(l:nn1l:-1); v_c =X
I The colums of v_c and v_s have the sane span. They are
I equivalent by taking the signs of the |argest magnitude val ues

I positive.
do i=1, n
sc_c(i) = sign(one,v_c(sun(maxl oc(abs(v_c(1l:n,i)))),i))
sc_s(i) = sign(one,v_s(sun(maxl oc(abs(v_s(1:n,i)))),i))
end do
v.c =v_c .x. diag(sc_c); uc = u_c .x. diag(sc_c)
V.s =v_s .x. diag(sc_s); u_s = u_s .x. diag(sc_s)

194 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

! Inthis formof the GSVD, the matrix X can be unstable if D
I is ill-conditioned.
X =v_d .x. diag(one/s_d) .x. v_c

I Check residuals for GSVD, A*X = u_c*diag(c_1, ..., c_n), and
I B¥X = u_s*diag(s_1, ..., s_n).
errl = norm((D(1:n, :) .x. X) - (u_c .x. diag(Q))/s_d(1)
err2 = norm((D(n+l:,:) .x. X) - (u_s .x. diag(S)))/s_d(1)

if (errl <= sqrt(epsilon(one)) .and. &

err2 <= sqrt(epsilon(one))) then

wite (*,*) "Exanple 3 for LIN SVD (operators) is correct.’
end if

end

Operator_ex24

use |inear_operators
inmplicit none
I This is Exanple 4 (using operators) for LIN_SVD.

i nteger i

i nteger, paraneter :: m=32, n=16, p=10, k=4

real (kind(1d0)), paraneter :: one=1d0

real (kind(1d0)) log_l anda, |log_|l anda_t, delta_l og_I| anda

real (kind(1d0)) a(mmn), b(mKk), w(mk), g(mk), t(n), s(n), &
s_sq(n), u(mn), v(n,n), c_landa(p, k), &
I amda(k), x(n,k), res(n,Kk)

I Generate random rectangul ar matrices for A and right-hand
| sides, b. GCenerate random weights for each of the
I right-hand sides.

A=rand(A); b=rand(b); w=rand(w)

I Conpute the singular val ue deconposition.
S = SVD(A, U=U, V=V)
g U.tx. b; s_sq = s**2

log_l anda = [0g(10.*s(1)); log_landa_t=I og_I anda
delta_log_landa = (log_landa - 10g(0.1*s(n))) / (p-1)

I Choose landa to mininize the "cross-validation" weighted
I square error. First evaluate the error at a grid of points,
I uniformin |l og_scale.

cross_validation_error: doi=1, p
t = s_sq/(s_sqg+exp(l og_l anda))
c_lamda(i,:) = sum(w*((b-(U1l:m1l:n) .x. g(l:n,L:k)* &
spread(t, DI M2, NCOPI ES=k)))/ &
(one-(u(1l:m11:n)**2 .x. spread(t, DI M2, NCOPI ES=k))))**2, DI M-1)
log_landa = log_l anda - delta_l og_| anda
end do cross_validation_error

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option ¢ 195

I Conpute the grid value and | anda corresponding to the m ni mum
do i=1, k
landa(i) = exp(log landa_t - delta_log |anda* &
(sunm(minloc(c_landa(l:p,i)))-1))
end do

I Conpute the solution using the optimm"cross-validation"
| paraneters
x =V .x. g(l:n,1:k)*spread(s, DI M2, NCOPI ES=k)/ &
(spread(s_sq, DI M=2, NCOPI ES=k) + &
spread(| anda, DI M=1, NCOPI ES=n))
I Check the residuals, using normal equations.
res = (A.tx. (b - (A .x. X)) - &
spread(| anda, DI M=1, NCOPI ES=n) * x
if (norm(res)/s_sq(1l) <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 4 for LIN SVD (operators) is correct.’
end if

end

Operator_ex25

use |inear_operators
inmplicit none
I This is Exanple 1 (using operators) for LIN_El G SELF

i nteger, paraneter :: n=64
real (kind(1e0)), paraneter :: one=1e0
real (kind(1e0)) :: A(n,n), D(n), S(n)

I Generate a randommatrix and fromit
I a self-adjoint matrix.
A =rand(A; A=A+ .t.A

I Conpute the eigenval ues of the nmatrix.
D = ElGA)

I For conparison, conpute the singular values and check for
I any error messages for either deconposition.
S = SVD(A)

I Check the results: Magnitude of eigenval ues should equa
I the singular val ues.

if (normlabs(D) - S) <= sqgrt(epsilon(one))*S(1l)) then
wite (*,*) "Exanple 1 for LIN_El G SELF (operators) is correct.
end if

end

196 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

Operator_ex26

use |linear_operators
inmplicit none
I This is Exanple 2 (using operators) for LIN_EI G SELF.

i nteger, paraneter :: n=8
real (kind(1e0)), paraneter :: one=1e0
real (kind(1e0)), dinmension(n,n) :: A d(n), v_s

I Generate a random self-adjoint natrix.
A=rand(A; A=A+ . t.A

I Conpute the eigenval ues and ei genvectors.
D = El QA V=v_s)

I Check the results for small residuals.
if (norm((A .x. v_s) - (v_s .x. diag(D)))/abs(d(1)) <= &
sqrt(epsilon(one))) then
wite (*,*) "Exanple 2 for LIN EIG SELF (operators) is correct.’
end if

end

Operator_ex27
use |inear_operators
inmplicit none
I This is Exanple 3 (using operators) for LIN_El G SELF.

i nteger i

i nteger, paraneter :: n=64, k=08

real (kind(1d0)), paraneter :: one=1d0, zero=0d0

real (kind(1d0)) err

real (kind(1d0)), dimension(n,n) :: A D(n), &
res(n, k), v(n,k)

I Generate a random sel f-adjoint matrix.
A =rand(A; A=A+ .t.A

I Compute just the eigenval ues.
D=EJA),; V=rand(V)

I Ready options to skip error processing and reset
I tolerance for linear solver.

al |l ocate (d_invx_options(5))

do i=1, k

I Use packaged option to reset the value of a snmall diagonal.
d_i nvx_options(1) = skip_error_processing

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option ¢ 197

d_invx_options(2) = ix_options_for_|lin_sol _gen
d_i nvx_options(3) 2
d_i nvx_options(4) d_options&
(d_lin_sol _gen_set_small, epsilon(one)*abs(d(i)))
d_i nvx_options(5) d lin_sol _gen_no_sing ness

Conput e the eigenvectors with inverse iteration.
V(1:,i)= (A - EYE(n)*d(i)).ix. V(1:,i)
end do
deal | ocate (d_i nvx_options)

O thogonal i ze the ei genvectors.
V = ORTH(V)

Check the results for both orthogonality of vectors and small
resi dual s.

res(l:k,1:k) = (V .tx. V) - EYE(k)
err = norm(res(1:k,1:k)); res= (A .x. V) - (V .x. diag(D(1:k)))
if (err <= sqgrt(epsilon(one)) .and. &
norn(res)/abs(d(1)) <= sqgrt(epsilon(one))) then
wite (*,*) "Exanple 3 for LIN EI G SELF (operators) is correct.’
end if
end

Operator_ex28

use |inear_operators
inmplicit none
This is Exanple 4 (using operators) for LIN_ElI G SELF.

i nteger, paraneter :: n=64

real (kind(1e0)), paraneter :: one=1d0

real (kind(1e0)), dimension(n,n) :: A B, C D(n), l|anbda(n), &
S(n), vb_d, X res

Generate random sel f-adj oi nt matrices.
A =rand(A; A=A+ .t.A
B =rand(B); B=B + .t.B

Add a scalar matrix so B is positive definite.
B = B + norn(B)*EYE(n)

Get the eigenval ues and ei genvectors for B.
S = EI B, V=vb_d)

For full rank problens, convert to an ordinary self-adjoint
problem (Al of these exanples are full rank.)

if (S(n) > epsilon(one)) then
D = one/sqrt(S)
diag(D) .x. (vb_d .tx. A .x. vb_d) .x. diag(D)
(C+.t.0/2

C
C

Get the eigenval ues and ei genvectors for C
| anbda = El G C, v=X)

198 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

I Conpute and normalize the generalized ei genvectors.

X = UNIT(vb_d . x.
res = (A.x. X) -

I Check the results.

diag(D) .x.

X)
(B .x. X .x. diag(lanbda))

if(norn(res)/(norn(A) +normB)) <= &
sqrt(epsilon(one))) then

wite (*,*) "Exanple 4 for LIN EI G SELF (operators) is correct.’
end if
end if
end
Operator_ex29
use |inear_operators
inmplicit none
I This is Exanple 1 (using operators) for LIN_El G GEN
i nteger, paraneter n=32
real (ki nd(1d0)), paraneter one=1d0
real (kind(1d0)) err
real (ki nd(1d0)), dimension(n,n) A
conpl ex(ki nd(1d0)), di mension(n) E, E.T, V(n,n)
I Generate a random matri X.
A = rand(A)
I Compute only the eigenval ues.
E = ElQ A
I Conmpute the deconposition, A*V = Vval ues,
I obtaining eigenvectors.
ET=EGA W=V
I Use values fromthe first deconposition, vectors fromthe
I second deconposition, and check for snmall residuals.
err = norm((A .x. V) - (V.x. diag(E)))/&
(norm(A) +norn(E))
if (err <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 1 for LIN_El G CGEN (operators) is correct.’
end if
end

IMSL Fortran 90 MP Library 4.0

Chapter 6: Operators and Generic Functions - The Parallel Option ¢ 199

Operator_ex30

use |inear_operators
inmplicit none
I This is Exanple 2 (using operators) for LIN_El G GEN

i nteger i

i nteger, paraneter :: n=12

real (kind(1d0)), paraneter :: one=1d0, zero=0d0

conmpl ex(ki nd(1d0)), dinmension(n) :: a(n,n), b, e, f, fg

b = rand(b)

I Define the conpanion matrix with polynonial coefficients
I in the first row
A = zero; A = ECSH FT(EYE(n), SH FT=1, DI M-2); a(1,1:) =- b

I Conpute conpl ex ei genval ues of the conpanion natri x.
E = ElQA)

I Use Horner’s nethod for evaluation of the conpl ex polynoni al
I and size gauge at all roots.
f =one; fg=one
do i=1, n
f =f*E + b(i)
fg = fgrabs(E) + abs(b(i))
end do
I Check for small errors at all roots.
if (norm(f/fg) <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 2 for LIN_E G CGEN (operators) is correct.’
end if

end

Operator_ex31

use |linear_operators
inmplicit none
I This is Exanple 3 (using operators) for LIN_EI G GEN.
i nteger, paraneter :: n=32, k=2
real (kind(1e0)), paraneter :: one=1e0, zero=0e0
real (kind(1e0)) a(n,n), b(n,k), x(n,k), h
conpl ex(kind(1e0)), dimension(n,n) :: W T, e(n), z(n, k)
type(s_options) :: iopti(2)
A = rand(A); b=rand(b)

_lin_eig gen_out tri_form
_lin_eig_gen_no_bal ance

200 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

I Conpute the Schur deconposition of the matrix.
call lin_eig_gen(a, e, v=w, &
tri=t,iopt=iopti)

I Choose a value so that A+h*l is non-singul ar
h = one

I Solve for (A+h*l)x=b using the Schur deconposition.
z =W.hx. b

I Solve internedi ate upper-triangular systemwith inplicit

I additive diagonal, h*lI. This is the only dependence on

! hin the solution process
z = (T + h*EYE(n)) .ix. z

I Conpute the solution. It should be the same as x, but will not be

I exact due to rounding errors. (The quantity real (z,kind(one)) is

I the real -val ued answer when the Schur deconposition nethod is used.)
z =W.x. z

I Compute the solution by solving for x directly.
x = (A + EYE(n)*h) .ix. b

I Check that x and z agree approxi mately.
if (norm(x-z)/norm(z) <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 3 for LIN_EI G GEN (operators) is correct.
end if

end

Operator_ex32

use |linear_operators
inmplicit none
I This is Exanple 4 (using operators) for LIN_El G GEN

i nteger, paraneter :: n=17

real (kind(1d0)), paraneter :: one=1d0

real (kind(1d0)), dimension(n,n) :: A C

real (kind(1d0)) variation(n), eta

conpl ex(kind(1d0)), dinmension(n,n) :: U V, e(n), d(n)

I Generate a random matri x
A = rand(A)

I Compute the eigenvalues, left- and right- eigenvectors
D=EGQGA WV),; E=EQG.t.A WU

I Conmpute condition nunbers and variations of eigenval ues.
variation = norm(A)/abs(diagonal s(U .hx. V))

Now perturb the data in the matrix by the relative factors
eta=sqrt(epsilon) and solve for values again. Check the
di fferences conpared to the estimates. They should not exceed
t he bounds.

eta = sqgrt(epsilon(one))
A + eta*(2*rand(A)-1)*A
El QO

D

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 201

I Looking at the differences of absolute values accounts for
I switching signs on the imginary parts.

i f (count(abs(d)-abs(e) > eta*variation) == 0) then

wite (*,*) "Exanple 4 for LIN_EI G CGEN (operators) is correct.’
end if
end

Operator_ex33

use |linear_operators
inmplicit none
I This is Exanple 1 (using operators) for LIN_CEI G GEN

i nteger, paraneter :: n=32

real (kind(1d0)), paraneter :: one=1d0

real (kind(1d0)) A(n,n), B(n,n), beta(n), beta t(n), err
conpl ex(ki nd(1d0)) al pha(n), alpha_t(n), V(n,n)

| CGenerate random matrices for both A and B.
A = rand(A); B = rand(B)

I Conpute the generalized ei genval ues.
al pha = EIG A, B=B, D=beta)

I Conpute the full deconposition once again, A*V = B*V*val ues,
I and check for any error nessages.
al pha_t = EIG A, B=B, D=beta t, W=1V)

I Use values fromthe first deconposition, vectors fromthe
I second deconposition, and check for snmall residuals.
err = norn((A .x. V .x. diag(beta)) - (B .x. V .x. diag(alpha)),1)/&
(norm(A 1) *norn{beta, 1) + norm(B, 1) *norn{al pha, 1))
if (err <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 1 for LIN GEIG GEN (operators) is correct.’
end if

end

Operator_ex34

use |inear_operators
inmplicit none
I This is Exanple 2 (using operators) for LIN_GEl G GEN.
i nteger, paraneter :: n=32
real (kind(1d0)), paraneter :: one=1d0, zero=0d0

real (kind(1d0)) err, al pha(n)
conmpl ex(ki nd(1d0)), dinmension(n,n) :: A B C D V

| Generate random matrices for both A and B.

202 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

C
A

rand(C); D = rand(D)
C+ .h.C B=D.hx. DD B=(B+ .h.B)/2

ALPHA = EI (A, B=B, WV)

I Check that residuals are small. Use a real array for alpha
I since the eigenval ues are known to be real.
err= norm((A .x. V) - (B.x. V.x. diag(alpha)),1)/&
(nornm(A, 1) +norm(B, 1) *nor n{ al pha, 1))
if (err <= sqgrt(epsilon(one))) then
wite (*,*) "Exanple 2 for LIN _GEIG GEN (operators) is correct.’
end if

end

Operator_ex35

use rand_i nt

use eig_int

use isnan_int

use norm.int

use lin_sol_Ilsqg_int

inmplicit none
I This is Exanple 3 (using operators) for LIN_GEl G CGEN

i nteger, paraneter :: n=6

real (kind(1d0)), paraneter :: one=1d0, zero0=0d0
real (kind(1d0)), dimension(n,n) :: A B, d_beta(n)
conpl ex(ki nd(1d0)) al pha(n)

I Generate random matrices for both A and B.
A = rand(A); B = rand(B)

I Make colums of A and B zero, so both are singular.
A(l:n,n) =0; B(1:n,n) =0

I Set the option, a larger tolerance than default for lin_sol _|Isq.
I Skip showi ng any error messages.
al l ocate(d_ei g_options(6))
d_eig_options(1l) = skip_error_processing
d_ei g_options(2) options_for_lin_geig_gen
d_ei g_options(3)
d_ei g_options(4)
d_ei g_options(5)
d_ei g_options(6)

w

d_lin_geig_gen_for_lin_sol_lsq
1

d_options(d_lin_sol _Isq_set_small, &
sqrt (epsilon(one))*norm B, 1))

I Conmpute the generalized ei genval ues.
ALPHA = El (A, B=B, D=d_beta)

I See if singular DAE systemis detected.
if (isNaN(ALPHA)) then
wite (*,*) "Exanple 3 for LIN_GEI G CEN (operators) is correct.’
end if
I Clean up allocated option arrays for good housekeepi ng.

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 203

deal | ocate(d_ei g_opti ons)
end

Operator_ex36

use |inear_operators
inmplicit none
I This is Exanple 4 for LIN_CGEI G GEN (using operators).

i nteger, paraneter :: n=32

real (kind(1d0)), paraneter :: one=1d0, zero0=0d0
real (kind(1d0)) a(n,n), b(n,n), beta(n), err
conpl ex(ki nd(1d0)) al pha(n), v(n,n)

I Generate random matrices for both A and B.
A = rand(A); B = rand(B)

I Set the option, a larger tolerance than default for lin_sol_Isq
al l ocate(d_ei g_options(6))
d_eig_options(1l) = options_for_lin_geig_gen
d_eig_options(2) =
d_ei g_options(3)
d_ei g_options(4)
d_ei g_options(5)

I

d_lin_geig_gen_for_lin_sol _lsq
2

d_options(d_lin_sol _Isq_set_small, &
sqrt (epsilon(one))*normB, 1))
d_lin_sol _|Isq_no_sing_mess

d_ei g_options(6)

I Conmpute the generalized ei genval ues
al pha = El (A, B=B, D=beta, WV)

I Check the residuals.
err = norm((A .x. V .x. diag(beta)) - (B .x. V .x. diag(alpha)),1l)/&
(norm(A 1) *norm(bet a, 1) +nor m(B, 1) *nor n(al pha, 1))

if (err <= sqrt(epsilon(one))) then
wite (*,*) "Exanple 4 for LIN_GEI G CEN (operators) is correct.
end if
I Clean up the allocated array. This is good housekeepi ng
deal | ocat e(d_ei g_options)
end

Operator_ex37

use rand_gen_int

use fft_int

use ifft_int

use |linear_operators

204 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

inplicit none
This is Exanple 4 for FAST_DFT (using operators).

i nteger j

i nteger, paraneter :: n=40

real (kind(1e0)) :: err, one=1le0

real (kind(1e0)), dinmension(n) :: a, b, c, yy(n,n)
conpl ex(kind(1e0)), dinmension(n) :: f

Generate two random periodi c sequences 'a' and 'b’
a=rand(a); b=rand(b)

Conpute the convolution "¢’ of "a and 'b’
yy(1:,1)=b
do i=2,n .
yy(2:,j)=yy(1lin-1,j-1)
yy(1,j)=yy(n,j-1)
end do

c=yy .X. a

Conput e f=inverse(transforn{a)*transformb)).
f=ifft(fft(a)*fft(b))

Check the Convol uti on Theorem
i nverse(transform(a)*transform b)) = convolution(a,b).
err = norn{c-f)/norn(c)
if (err <= sqgrt(epsilon(one))) then
wite (*,*) "Exanple 4 for FAST_DFT (operators)
end if

end

is correct.

IMSL Fortran 90 MP Library 4.0

Chapter 6: Operators and Generic Functions - The Parallel Option « 205

Parallel Examples

This section presents avariation of key examples listed above or in other parts
MPI REQUIRED of the document. In all cases the examples appear to be simple, use parallel

computing, deliver results to the root, and have been tested for correctness by

validating small residuals or other first principles. Program names are

par al | el _exnn, where nn=01, 02, ... Thenumerical digit part of the

name matches the example number.

Parallel Examples 1-2 comments

These show the box data type used for solving several systems and then
checking the results using matrix products and norms or other mathematical
relationships. Note the first call to the function MP_SETUP() that initiates
MPI. Thecall to the function MP_SETUP(’ Fi nal *) shuts down MPI and
retrieves any error messages from the nodes. It is only here that error messages
will print, in reverse node order, at the root node. Note that the results are
checked for correctness at the root node. (Thisiscommon to all the parallel
examples.)

Parallel Example 1

use |inear_operators
use npi _setup_int

inmplicit none

| This is Parallel Exanple 1 for .ix., with box data types
I and functions.

i nteger, paraneter :: n=32, nr=4

real (kind(1e0)) :: one=1e0

real (kind(1e0)), dinension(n,n,nr) :: A b, x, err(nr)
I Setup for MI.

MP_NPROCS=MP_SETUP()

I CGenerate random matrices for A and b:
A = rand(A); b=rand(b)

I Conpute the box solution matrix of Ax = b.
x =A.ix. b

I Check the results.
err = norm(b - (A .x. x))/(norn(A) *norn(x)+norm b))
if (ALL(err <= sqrt(epsilon(one))) .and. MP_RANK == 0) &
wite (*,*) '"Parallel Exanple 1 is correct.’

| See to any error nmessages and quit M.
MP_NPROCS=MP_SETUP(’ Fi nal ')

end

206 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

Parallel Example 2

use |inear_operators
use npi _setup_int

inmplicit none

! This is Parallel Exanple 2 for .i. and det() with box
| data types, operators and functions.
integer, paraneter :: n=32, nr=4
integer J
real (kind(1e0)) :: one=1e0
real (kind(1e0)), dinension(nr) :: err, det_A det_i

real (ki nd(1e0)), dinmension(n,n,nr) :: A inv, R S

I Setup for MPI.
MP_NPROCS=MP_SETUP()
I Generate a random matri Xx.

A = rand(A)

I Conpute the matrix inverse and its determ nant.
inv = .i.A det_A = det(A)

I Conpute the determ nant for the inverse matrix.
det _i = det(inv)

I Check the quality of both left and right inverses.
DO J=1,nr; R(:,:,J)=EYE(N); END DO

S=R;, RFR-(A .Xx. inv); S=S-(inv .x. A
err = (nornm(R)+norn(S))/cond(A)
if (ALL(err <= sgrt(epsilon(one)) .and. &
abs(det _A*det i - one) <= sqrt(epsilon(one)))&
.and. MP_RANK == 0) &
wite (*,*) "Parallel Exanple 2 is correct.’

| See to any error nmessages and quit MPI.
MP_NPROCS=MP_SETUP("’ Fi nal ")

end

Parallel Example 3

This example shows the box data type used while obtaining an accurate solution

of several systems. Important in this example is the fact that only the root will

achieve convergence, which controls program flow out of the loop. Therefore

the nodes must share the root’s view of convergence, and that is the reason for
the broadcast of the update from root to the nodes. Note that when writing an
explicit call to an MPI routine there must be the liNSCLUDE ‘npi f . h’,

placed just after thé MPLI CI T NONE statement. Any number of nodes can

be used.

use |linear_operators
use npi _setup_int

inmplicit none

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 207

| NCLUDE ’ npi f. v’

| This is Parallel Exanple 3 for .i. and iterative
I refinenent with box date types, operators and functions.
i nteger, paraneter :: n=32, nr=4

i nteger | ERROR

real (kind(1e0)) :: one=1e0, zero=0e0

real (kind(1e0)) :: A(n,n,nr), b(n,1,nr), x(n,1,nr)

real (ki nd(1e0)) change_ol d(nr), change_new(nr)

real (kind(1d0)) :: d_zero=0d0, c(n,1,nr), D(n,n,nr), y(n,1, nr)

I Setup for MPI.
MP_NPROCS=MP_SETUP()

| Generate a random matri x and ri ght-hand side.
A = rand(A); b= rand(b)

I Save doubl e precision copies of the matrix and ri ght-hand si de.
D
c

b

I Get single precision inverse to conpute the iterative refinenent.
A=.i. A

| Start solution at zero. Update it to a nore accurate sol ution
I with each iteration.

y = d_zero

change_ol d = huge(one)

| TERATI VE_REFI NEMENT: DO

I Conpute the residual w th higher accuracy than the data.
b=c- (D.x.vy)

I Conpute the update in single precision.
X =A.Xx. b
y =x+y
change_new = nor m(x)

I All processors nmust share the root’s test of convergence.
CALL MPI _BCAST(change_new, nr, MPI_REAL, 0, &
MP_LI BRARY_WORLD, | ERROR)

I Exit when changes are no | onger decreasing.
if (ALL(change_new >= change_old)) exit iterative_refinenent
change_ol d = change_new

end DO | TERATI VE_REFI NEMENT

I F(MP_RANK == 0) wite (*,*) 'Parallel Exanple 3 is correct.’
| See to any error nmessages and quit M.

MP_NPROCS=MP_SETUP(’ Fi nal ")
end

208 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

Parallel Example 4

Here an alternate node is used to compute the majority of a single application,
and the user does not need to make any explicit callsto MPI routines. The
time-consuming parts are the evaluation of the eigenval ue-eigenvector
expansion, the solving step, and the residuals. To do this, therank-2 arrays are
changed to a box data type with a unit third dimension. This uses parallel
computing. The node priority order is established by theinitial function call,
MP_SETUP(n) . Theroot isrestricted from working on the box data type by
assigning MPI _ ROOT_WORKS=. f al se. Thisexample anticipates that the
most efficient node, other than the root, will perform the heavy computing.
Two nodes are required to execute.

use |linear_operators
use npi _setup_int

inmplicit none

I This is Parallel Exanple 4 for matrix exponenti al .
I The box di mensi on has a single rack.

i nteger, paraneter :: n=32, k=128, nr=1
i nteger i
real (kind(1e0)), paraneter :: one=1e0, t_max=one, delta t=t_ max/(k-1)

real (kind(1e0)) err(nr), sizes(nr), A(n,n,nr)

real (kind(1e0)) t(k), y(n,k,nr), y prinme(n,k,nr)

conpl ex(kind(1e0)), dinmension(n,nr) :: x(n,n,nr), z 0, &
Z 1(n,nr,nr), y 0, d

Setup for MPI. Establish a node priority order.

Restrict the root fromsignificant conputing.

Illustrates using the 'best’ performng node that

is not the root for a single task.
MP_NPROCS=MP_SETUP(n)

MPI _ROOT_WORKS=. f al se.

I CGenerate a random coefficient matri x.
A = rand(A)

I Conpute the eigenval ue-ei genvector deconposition
I of the systemcoefficient matrix on an alternate node.
D = ElG A WX

| Generate a randominitial value for the ODE system
y_0 = rand(y_0)

I Solve conplex data systemthat transforns the initial
I values, X z_0=y_0.

z 1=X.ix. y0; z O(:,nr) =2z 1(:,nr,nr)

I The grid of points where a solution is conputed:
t = (/(i*delta_t,i=0,k-1)/)

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 209

| Conpute y and y’ at the values t(1:k).
I Wth the ei genval ue-ei genvector deconposition AX = XD, this
I is an evaluation of EXP(At)y 0 = y(t)
y = X .x.exp(spread(d(:,nr),2,k)*spread(t,1,n))*spread(z_O(:,nr), 2, k)

I This is y’, derived by differentiating y(t).
y prime =X .x. &
spread(d(:,nr), 2, k) *exp(spread(d(:,nr),2,k)*spread(t,1,n))* &
spread(z_O(:,nr), 2, k)

I Check results. Is y - Ay = 07?
err = norn(y_prinme-(A .Xx. y))
si zes=nor n{y_pri ne) +nor n{ A) *nor n(y)
if (ALL(err <= sqgrt(epsilon(one))*sizes) .and. MP_RANK == 0) &
wite (*,*) '"Parallel Exanple 4 is correct.

| See to any error nessages and quit MPI
MP_NPROCS=MP_SETUP(’ Fi nal ")

end

Parallel Example 5-6 comments

The computations performed in these examples are for linear least-squares
solutions. Thereis use of the box datatype and MPI. Otherwise these are
similar to Parallel Examples 1-8xcept they use alternate operators and
functions. Any number of nodes can be used.

Parallel Example 5

use |linear_operators
use npi _setup_int

inmplicit none

I This is Parallel Exanple 5 using box data types, operators
I and functi ons.

i nteger, paraneter :: me64, n=32, nr=4
real (kind(1e0)) :: one=1e0, err(nr)
real (kind(1e0)), dinension(n,n,nr) A b, X
real (kind(1e0)), dinmension(mn,nr) :: C d
I Setup for MPI

np_nprocs = np_setup()

I Generate two rectangular random matrices, only
I at the root node.
if (mp_rank == 0) then

210 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

C = rand(Q; d=rand(d)
endi f

I Form the normal equations for the rectangul ar system
A=C.tx. C b=C.tx. d

I Conpute the solution for Ax = b.
x =A.ix. b
I Check the results.
err = norm(b - (A .x. x))/(norn(A) +norn(b))
if (ALL(err <= sqrt(epsilon(one))) .AND. MP_RANK == 0) &
wite (*,*) '"Parallel Exanple 5 is correct.’

| See to any error nmessages and quit M.
np_nprocs = np_setup(’ Final’)

end

Parallel Example 6
use | i near_operators
use npi _setup_int
inmplicit none

I This is Parallel Exanple 6 for box data types, operators and
I functions.

i nteger, paraneter :: me64, n=32, nr=4
real (kind(1e0)) :: one=1e0, zero=0e0, err(nr)
real (kind(1e0)), dimension(mn,nr) :: C d(m1,nr)
real (kind(1e0)), dinmension(n,n,nr) :: A cov
real (kind(1e0)), dinmension(n,1,nr) :: b, Xx
I Setup for MPI:

np_nprocs=np_set up()

I Generate a random rectangul ar matrix and right-hand side.
i f(nmp_rank == 0) then
C = rand(Q); d=rand(d)
endi f

I Form the normal equations for the rectangul ar system
A=C.tx. C b=C.tx. d
COv = .i. CHOL(A); COV = COV .xt. Cov

I Conpute the | east-squares sol ution.
x =C.ix. d

I Conpare with solution obtained using the inverse natrix.
err = normx - (COV .x. b))/normcov)

I Check the results.
if (ALL(err <= sgrt(epsilon(one))) .and. np_rank == 0) &
wite (*,*) "Parallel Exanple 6 is correct.’

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 211

See to any eror nessages and quit M

np_nprocs=np_setup(’ Final ")

end

Parallel Example 7

In this example alternate nodes are used for computing with the El ()
function. Inverseiteration is used to obtain eigenvectors for the second most
dominant eigenvalue for each rack of the box. The factorization and solving
steps for the eigenvectors are executed only at the root node.

use |linear_operators
use npi _setup_int

inmplicit none

I This is Parallel Exanple 7 for box data types, operators

I and functions.

integer tries, nrack

i nteger, paraneter :: mE8, n=4, k=2, nr=4

i nteger ipivots(n+l)

real (ki nd(1d0)) one=1D0, err(nr), E(n,nr)

real (kind(1d0)), dinmension(mn,nr) :: C
real (ki nd(1d0)), dinension(n,n,nr) A, ATEMP
real (kind(1d0)), dinension(n,1,nr) :: b, x

type(d_options) i opti(4)
| ogi cal, dinension(nr) results_are_true

I Setup for MPI
np_nprocs = np_set up()

I Generate a random rectangul ar matri x.

if (mp_rank == 0) C = rand(CQ
I Generate a randomright hand side for use in the
I inverse iteration.

if (mp_rank == 0) b = rand(b)

I Conpute a positive definite matrix
A=C.tx. C A= (A+ .t.A/2

I obtain just the eigenval ues
E = ElQ A

ATEMP = A

I Conpute A-eigenvalue*l as the coefficient matri x.

I Use eigenval ue nunber k.

do nrack = 1,nr
I F(MP_RANK > 0) EXIT

212 « Chapter 6: Operators and Generic Functions - The Parallel Option

IMSL Fortran 90 MP Library 4.0

I Use packaged option to reset the value of a snmall diagonal

iopti(1l) = d _options(d_lin_sol_self_set_small, &
epsi | on(one) *abs(E(1, nrack)))

I Use packaged option to save the factorization
iopti(2) = d lin_sol _self_save factors

I Suppress error nmessages and stopping due to singularity
I of the matrix, which is expected.

iopti(3) = d lin_sol _self_no_sing ness

iopti(4) =0

A(:,:,nrack) = A(:,:,nrack) - E(k,nrack)*EYE(n)

do tries=1,2
call lin_sol _self(A(:,:,nrack), &
b(:,:,nrack), x(:,:,nrack), &
pi vot s=i pi vots, iopt=iopti)
I When code is re-entered, the already conputed factorization
I is used.
iopti(4) = d_lin_sol _self_solve A

I Reset right-hand side in the direction of the eigenvector.
B(:,:,nrack) = UNIT(x(:,:,nrack))
end do

end do
I Normalize the eigenvector.

| F(MP_RANK == 0) x = UNI T(X)

I Check the results.
b = ATEMP . Xx. X

do nrack = 1, nr
err(nrack) = &
dot _product (x(1:n,1,nrack), b(1l:n,1,nrack)) - E(k, nrack)
results _are_true(nrack) = &
(abs(err(nrack)) <= sqgrt(epsilon(one))*E(1, nrack))
enddo

I Check the results.
if (ALL(results are_true) .and. MP_RANK == 0) &
wite (*,*) '"Parallel Exanple 7 is correct.

I See to any error nessages and quit MPI
np_nprocs = np_setup(’ Final’)
end

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 213

Parallel Example 8

This example, similar to Parallel Example 3, shows the box data type used
while obtaining an accurate solution of severa linear |east-squares systems.
Compuitation of the residuals for the box datatypeis executed in parallel. Only
the root node performs the factorization and update step during iterative
refinement.

use |inear_operators
use npi _setup_int

inmplicit none
I NCLUDE ' npi f. h’

I This is Parallel Exanple 8. Al nodes share in
I just part of the work.

i nteger, paraneter :: m=8, n=4 , nr=4

real (kind(1e0)) :: one=1e0, zero=0e0

real (kind(1d0)) :: d_zero=0dO0

integer ipivots((n+m+1), ierror, nrack

real (kind(1e0)) A(mn,nr), b(m1,nr), F(ntmn+mnr), &
g(n+m 1,nr), h(n+m1,nr)

real (ki nd(1e0)) change_new(nr), change_ol d(nr)

real (kind(1d0)) c(m21,nr), D(mn,nr), y(ntm1,nr)

type(s_options) :: iopti(2)

I Setup for MPI:
np_nprocs=np_set up()

I Generate a random matrix and right-hand side
i f(nmp_rank == 0) then
A = rand(A); b = rand(b)

endi f
I Save doubl e precision copies of the matrix and right hand side
D=A c=0b
I' Fill in augmented matrix for accurately solving the |east-squares
I problemusing iterative refinement.
F = zero

do nrack = 1,nr
F(1: m 1: m nrack) =EYE(m)
enddo
F(L:mml:,:) = A F(nml:,1:m:) =.t. A

I Start solution at zero.
y = d_zero
change_ol d = huge(one)

I Use packaged option to save the factorization.
iopti (1) = s_lin_sol _self_save_factors

214 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

iopti(2) =0
h = zero

| TERATI VE_REFI NEMENT: DO
g(l:m:,:) =c(l:m:,:) - y(Iim:,:) &
- (D .x. y(ml:mtn,:,:))
g(ml:mtn,:,:) =- D.tx. y(1I:m:,:)
i f(nmp_rank == 0) then
do nrack = 1,nr

call lin_sol _self(F(:,:,nrack), &
g(:,:,nrack), h(:,:,nrack), pivots=ipivots, iopt=iopti)
enddo
y =h+y

endi f
change_new = norn{ h)

I All processors share the root’s test for convergence
call npi_bcast (change _new, nr, MPl_REAL, 0, MP_LI BRARY_WORLD,
| ERROR)

I Exit when changes are no | onger decreasing.
i f (ALL(change_new >= change_old))&
exit iterative_refinement
change_ol d = change_new

I Use option to re-enter code with factorizati on saved; solve only.
iopti(2) = s_lin_sol_self_solve A
end do iterative_refinenent

if(np_rank == 0) &
wite (*,*) '"Parallel Exanple 8 is correct.

| See to any error nmessage and quit M
np_nprocs=np_setup(’ Final ")

end

Parallel Example 9

Thisisavariation of Parallel Example 8. A single problem is converted to a
box data type with one rack. The use of the function call MP_SETUP(M+N)
allocates and defines the array MPI _NODE_PRI ORI TY(:) , the node priority
order. By setting MPI _ROOT_WORKS=. f al se. , the computation of the
residual is off-loaded to the node with highest priority, wherein we expect the
results to be computed the fastest. The remainder of the computation, including
the factorization and solve step, are executed at the root node. This example
requires two nodes to execute.
use |inear_operators
use npi _setup_int
inmplicit none

| NCLUDE ’ npi f. v’

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 215

| This is Parallel Exanple 9, showing iterative
I refinenent with only one non-root node working
I There is only one problemin this exanple.

i nt eger, paraneter n=8, n=4, nr=1

real (ki nd(1e0)) one=1e0, zero0=0e0

real (ki nd(1d0)) d_zer o=0d0

i nteger ipivots((n+m+1), nrack, ierror

real (kind(1e0)) A(mn,nr), b(m2l,nr), F(ntmn+mnr), &
g(n*+m 1,nr), h(n+m1,nr)

real (ki nd(1e0)) change_new(nr), change_ol d(nr)
real (kind(1d0)) c(m21,nr), D(mn,nr), y(n+m1,nr)
type(s_options) iopti(2)

Setup for MPI. Establish a node priority order.
Restrict the root fromsignificant computing
Illustrates the "best" perfornm ng non-root node
conputing a single task.

np_nprocs=np_set up(m-n)

MPI _ROOT_WORKS = . fal se.

I Generate a random nmatrix and right-hand side

A =rand(A); b = rand(b)
I Save doubl e precision copies of the matrix and ri ght
D=A c=0b
' Fill in augnented matrix for accurately solving the
I problemusing iterative refinenent.
F = zero;
do nrack = 1,nr; F(1:m1: mnrack)=EYE(m); end do

Lt A

F(I:mml:,:) = A F(ml:,1:m:) =
I Start solution at zero.
y = d_zero

change_ol d = huge(one)
I Use packaged option to save the factorization
iopti (1) = s _lin_sol_self_save factors
iopti(2) =0
h = zero
| TERATI VE_REFI NEMENT: DO
g(l:m:,:) =c(l:m:,:) - y(1:m:,:) - (D .x.
g(ml:mn,:,:) =- D.tx. y(1:m:,:)
IF (MP_RANK == 0) THEN
call lin_sol _self(F(:,:,nr), g(:,:,nr), &
h(:,:,nr), pivots=ipivots, iopt=iopti)
y=h+y
END | F
change_new = norn(h)
!
I Al processors share the root’s test for convergence

hand si de

east - squar es

y(m+l: men, :

1))

216 « Chapter 6: Operators and Generic Functions - The Parallel Option

IMSL Fortran 90 MP Library 4.0

call npi_bcast(change_new, nr, npi _real, 0, np_library world,
ierror)

I Exit when changes are no | onger decreasing.
if (ALL(change_new >= change_ol d)) &
exit | TERATI VE_REFI NEMENT

change_ol d = change_new

I Use option to re-enter code with factorizati on saved; solve only.
iopti(2) = s _lin_sol _self_solve A
end do | TERATI VE_REFI NEMENT

if(nmp_rank == 0) &

wite (*,*) '"Parallel Exanple 9 is correct.’
| See to any error nmessages and quit M.

np_nprocs = np_setup(’ Final’)

end

Parallel Example 10

Thisillustrates the computation of abox data type |east-squares
polynomial datafitting problem. The problem is generated at
theroot node. The aternate nodes are used to solve the least-
squares problems. Results are checked at the root node. Any
number of nodes can be used.

use |inear_operators

use npi _setup_int

use Nunerical _Libraries, only : DCONST
implicit none

I This is Parallel Exanple 10 for .ix..
i nteger i, nrack
i nteger, paraneter :: mr1l28, n=8, nr=4
real (kind(1d0)), paraneter :: one=1d0, zero=0d0
real (kind(1d0)) A(mO:n,nr), c(0:n,1,nr), pi_over_2, &
x(ml,nr), y(ml,nr), uimil,nr), viml,nr), &
w(m1l,nr), delta x

I Setup for MPI:
np_nprocs = np_setup()

I Generate a randomgrid of points and transform
I to the interval (-1,1).

i f(np_rank == 0) x = rand(x)

X = X*2 - one

| Get the constant "PI’'/2 from | MSL Nunerical Libraries.
pi _over 2 = DCONST((/'Pl'/))/2

I Generate function data on the grid.
y = exp(x) + cos(pi_over_2*x)

I Fill in the |east-squares matrix for the Chebyshev pol ynoni al s.
A(:,0,:) =one; A(:,1,:) =x(:,1,:)

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 217

doi=2, n
AC:yi,) = 2%x(:, 1,) *A(:,i-2,:) - A(:,i-2,:)
end do

| Solve for the series coefficients
c=A.ix.y

I Generate an equally spaced grid on the interval
delta_x = 2/real (m1, ki nd(one))
do nrack = 1, nr
x(:,1,nrack) = (/(-one + i*delta x,i=0,m1)/)
enddo

I Eval uate residuals using backward recurrence fornulas.
U = zero; v = zero
do nrack =1, nr
do i=n, 0, -1

wW(:,:,nrack) = 2*x(:,:,nrack)*u(:,:,nrack) - &
v(:,:,nrack) + c(i,1,nrack)
v(:,:,nrack) = u(:,:,nrack)
u(:,:,nrack) = w:,:,nrack)
end do

enddo

I Conpute residuals at the grid:
y = exp(x) + cos(pi_over_2*x) - (u-x*v)

I Check that n+l1 sign changes in the residual curve occur.
X one
X sign(x,y)

if (count(x(1:m1,1,:) /=x(22m1,:)) >= n+l) then
if(mp_rank == 0)&
wite (*,*) "Parallel Exanple 10 is correct.
end if

| See to any error nessages and exit MPI
MP_NPROCS = MP_SETUP(’ Fi nal ")
end

Parallel Example 11

In this example a single problem is elevated by using the box data type with one
rack. Thefunction cal MP_SETUP(M may take longer to compute than the
computation of the generalized inverse, which follows. Other methods for
determining the node priority order, perhaps based on specific knowledge of the
network environment, may be better suited for this application. This example
requires two nodes to execute.

use |inear_operators

use npi _setup_int

use Nunerical Libraries, only : DCONST
inplicit none

| This is Parallel Exanple 11 using a priority order with
I only the fastest alternate node working

218 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

i nt eger

i nteger, paraneter :: nme128, n=8, nr=1

real (kind(1d0)), paraneter :: one=1d0, zero=0d0

real (kind(1d0)) A(mO:n,nr), c(0:n,1,nr), pi_over_2, x(m, &
y(mi1,nr), u(m, v(m, w(m, delta x, inv(0:n, m nr)

| Setup for MPI. Create a priority order list. Force the
I problemto work on the fastest non-root machi ne

np_nprocs = np_setup(n
MPI _ROOT_WORKS = . fal se.

| CGenerate an array of equally spaced points on the interval (-1,1).
delta x = 2/real (m1, ki nd(one))
x = (/(-one + i*delta x,i=0,m1l)/)

| Get the constant "PI’'/2 from | MSL Nunerical Libraries
pi _over 2 = DCONST((/'PlI'/))/2

I Conpute data values on the grid.
y(:,1,1) = exp(x) + cos(pi_over_2*x)

I Fill in the |east-squares matrix for the Chebyshev pol ynom al s
A(:,0,1) = one
A(:,1,1) = x
do i=2, n
A(:,i,1) = 2*x*A(:,i-1,1) - A(:,i-2,1)
end do

I Conpute the generalized inverse of the |east-squares matri x.
I Conpute the series coefficients using the generalized inverse
I as 'snoothing fornul as.’
inv =.i. A c=inv .x.y
| Eval uate residual s using backward recurrence formul as.

u zero
v = zero
do i=n, 0, -1

w = 2*x*u - v + c(i,1,1)
v =u
u=w

end do

I Conpute residuals at the grid:
y(:,1,1) = exp(x) + cos(pi_over_2*x) - (u-x*v)

I Check that n+2 sign changes in the residual curve occur.
X = one; x = sign(x,y(:,1,1))

if (count(x(1:m1) /= x(2:m) == n+2) then
if(nmp_rank == 0) &
wite (*,*) 'Parallel Exanple 11 is correct.
end if

I See to any error nessages and exit P
np_nprocs = np_setup(’ Final’)
end

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 219

Parallel Example 12

Thisillustrates a surface fitting problem using radial basis functions and a box data
type. Itisof interest because this problem fits three component functions of the
same form in a space of dimension two. The racks of the box represent the
separate problems for the three coordinate functions. The coefficients are obtained
withthe . i x. operator. When the |east-squares fitting process requires more
elaborate software, it may be necessary to send the data to the nodes, compute, and
send the results back to the root. See Parallel Example 18 for more details. Any
number of nodes can be used.

use |linear_operators
use npi _setup_int
inmplicit none

This is Parallel Exanple 12 for
.ix. , NORM .tx. and .x. operators.
integer i, j, nrack
i nteger, paraneter :: mF128, n=32, k=2, n_eval =16, nr=3
real (kind(1d0)), paraneter :: one=1d0, delta_sqr=1d0
real (kind(1d0)) A(mn,nr), b(m2l,nr), c(n,1,nr), p(k, mnr), q(k,n,nr)

Setup for MPI
np_nprocs = np_set up()

Generate a random set of data and center points in k=2 space
if(mp_rank == 0) then
p = rand(p); g=rand(q)

Conpute the coefficient matrix for the | east-squares system
do nrack=1, nr
A(:,:,nrack) = sqgrt(sun((spread(p(:,:,nrack),3,n) - &
spread(q(:,:,nrack),2, m)**2,di mFl) + delta_sqr)

Conput e the right-hand side of function val ues
b(:,1,nrack) = exp(-sum(p(:,:,nrack)**2,dinrl))
enddo

endi f

Conpute the | east-squares solution. An error nessage due
to rank deficiency is ignored with the flags:

al locate (d_i nvx_options(1))
d_invx_options(1)=skip_error_processing
c=A.ix. b

Check the results.
if (ALL(norm(A .tx. (b - (A .x. ¢)))/(normA) +norn(c)) &
<= sqrt(epsilon(one)))) then
if(nmp_rank == 0) &
wite (*,*) '"Parallel Exanple 12 is correct.
end if

Unl oad option type for good housekeepi ng.
deal | ocate (d_i nvx_opti ons)

220 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

| See to any error nmessages and quit M.
np_nprocs = np_setup(’ Final’)

end

Parallel Example 13

Here | east-squares problems are solved, each with an equality constraint that the
variables sum to the value one. A box data type is used and the solution
obtained with the . i x. operator. Any number of nodes can be used.

use |linear_operators
use npi _setup_int
inmplicit none

I This is Parallel Exanple 13 for .ix. and NORM
i nteger, paraneter :: me64, n=32, nr=4
real (kind(1e0)) :: one=1e0, A(m+l,n,nr), b(ml,1,nr), x(n,1,nr)

I Setup for MI:
np_nprocs=np_set up()
i f(np_rank == 0) then
| Generate a randommatri x and right-hand side.
A=rand(A); b = rand(b)

I Heavily weight desired constraint. Al variables sumto one.

A(m+l, :,:) = one/ sqrt (epsilon(one))
b(m+l,:,:) = one/ sqrt (epsilon(one))
endi f

I Conpute the | east-squares solution with this heavy weight.
x =A.ix. b

I Check the constraint.
if (ALL(abs(sum(x(:,1,:),dinmel) - one)/norm(x) &
<= sqrt(epsilon(one)))) then
if(mp_rank == 0) &
wite (*,*) "Parallel Exanple 13 is correct.’
endi f

| See to any error nessages and exit MPI
np_nprocs=np_setup(’ Final ')

end

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 221

Parallel Example 14

Systems of |east-squares problems are solved, but now using the SVD()
function. A box datatypeisused. Thisisan example which uses optional
arguments and a generic function overloaded for parallel execution of abox
datatype. Any number of nodes can be used.

use linear_operators
use npi_setup_int
inmplicit none

| This is Parallel Exanple 14
I for SVD, .tx. , .x. and NORM
i nteger, paraneter :: mrl128, n=32, nr=4
real (kind(1d0)) :: one=1d0, err(nr)
real (kind(1d0)) A(mn,nr), b(m1,nr), x(n,1,nr), Ummnr), &
V(n,n,nr), S(n,nr), g(m1,nr)

I Setup for MPI:
np_nprocs=np_set up()

i f(np_rank == 0) then
| Generate a random nmatri x and ri ght-hand side.
A = rand(A); b = rand(b)
endi f

I Conpute the |east-squares solution matrix of Ax=b.
S=SVDA U=U V=V

U.tx. b

V .x. (diag(one/S) .x. g(1:n,:,:))

g
X

I Check the results.
err = norn(A .tx. (b - (A .x. x)))/(norn(A) +norm x))
if (ALL(err <= sqgrt(epsilon(one)))) then
if(nmp_rank == 0) &
wite (*,*) "Parallel Exanple 14 is correct.’
end if

| See to any error nessages and quit MPI
np_nprocs = np_setup(’ Final’)

end

Parallel Example 15

A “Polar Decomposition” of several matrices are computed. The box data type
and theSVD() function are used. Orthogonality and small residuals are
checked to verify that the results are correct.

use |linear_operators
use npi _setup_int
inmplicit none

| This is Parallel Exanple 15 using operators and

222 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

I functions for a polar deconposition.
i nteger, paraneter :: n=33, nr=3
real (kind(1d0)) :: one=1d0, zero=0d0
real (ki nd(1d0)), di mensi on(n,n,nr) :: A P, Q &
S D(n,nr), UD V.D
real (ki nd(1d0)) TEMP1(nr), TEMP2(nr)

I Setup for MPI:
np_nprocs = np_set up()

| CGenerate a random matri x.
if(np_rank == 0) A = rand(A)

I Conpute the singular val ue deconposition.
S D = SVD(A, U=UD, V=V D

I Conpute the (left) orthogonal factor.
P=UD.xt. VD

I Conpute the (right) self-adjoint factor.
Q=V.D.x. diag(S D .xt. V.D
I Check the results for orthogonality and
I small residuals.
TEMP1 = NORM spread(EYE(n),3,nr) - (p .xt. p))
TEMP2 = NORMA -(P . X. Q) / NORMA)
if (ALL(TEMP1 <= sqgrt(epsilon(one))) .and. &
ALL(TEMP2 <= sqrt(epsilon(one)))) then
if(np_rank == 0) &
wite (*,*) '"Parallel Exanple 15 is correct.’
end if

| See to any error nmessages and exit M.
np_nprocs = np_setup(’ Final’)

end

Parallel Example 16

A compute-intensive single task, in this case the singular values decomposition of
amatrix, is computed and partially reconstructed with matrix products. This
result is sent back to the root node. The node of highest priority, not the root, is
used for the computation except when only the root is available.

use |inear_operators
use npi _setup_int
inmplicit none

I NCLUDE ' npi f. h’

I This is Parallel Exanple 16 for SVD.
integer i, j, |IERROR BEST
i nteger, paraneter :: n=32
real (kind(1e0)), paraneter :: half=5e-1, one=1e0, zero0=0e0
real (kind(1e0)), dinmension(n,n) :: A S(n), U, V, C
i nteger k, STATUS(MPI _STATUS_SI ZE)

I Setup for MPI:

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 223

np_nprocs = np_setup(n)

BEST=1
BLOCK: DO
' Fill in value one for points inside the circle,
I zero on the outside.
A = zero
DOi=1, n
DO j=1, n
if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) A(i,j) = one
END DO
END DO

| F(MP_NPROCS > 1 .and. MPI_NODE_PRI ORI TY(1) == 0) BEST=2

I Only the nost effective node does this job.
I The rest set idle.
| F(MP_RANK /= MPI _NODE_PRI ORI TY(BEST)) EXI T BLOCK

I Conpute the singular val ue deconposition.
S = SVD(A, U=U, V=V)

I How many terns, to the nearest integer, match the circle?
k count (S > hal f)
C=U:,1:k) .x. diag(S(1:k)) .xt. V(:,1l:k)

I If root is not the nost efficient node, send C back.
| F(MPI _NODE_PRI ORI TY(BEST) > 0) &
CALL MPI_SEND(C, N**2, MPI_REAL, 0, MP_RANK, MP_LIBRARY WORLD, | ERROR)
EXI T BLOCK

END DO BLOCK

I There may be a matrix to receive fromthe "best" node.
| F(MPI _NODE_PRI ORI TY(BEST) > 0 .and. MP_RANK == 0) &
CALL MPI_RECV (C, N**2, MPl _REAL, MPI _ANY_SOURCE, MPI _ANY TAG &
MP_LI BRARY WORLD, STATUS, | ERROR)

if (count(int(CA /=0) ==0 .and. MP._ RANK == 0) &
wite (*,*) "Parallel Exanple 16 is correct.’

I See to any error nmessages and exit M.
np_nprocs = np_setup(’ Final’)
end

Parallel Example 17

Occasionally it is necessary to print output from all nodes of a communicator.
This example has each non-root node prepare the output it will printin a
character buffer. Then, each node in turn, the character buffer is transmitted to
theroot. The root prints the buffer, line-by-line, which contains an indication
of where the output originated. Note that the root directs the order of results by
broadcasting an integer value (BATON) giving the index of the node to
transmit. The random numbers generated at the nodes and then listed are not
checked. Thereisafinal printed line indicating that the example is completed.

224 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

use show_ i nt
use rand_i nt
use npi _setup_int

inmplicit none
| NCLUDE ' npi f . h’

This is Parallel Exanple 17. Each non-root node transnmits
the contents of an array that is the output of SHOW
The root receives the characters and prints the lines from
al t ernat e nodes.

i nteger, paraneter :: n=7, BSIZE=(72+2)*4

integer k, p, q, ierror, status(Ml _STATUS Sl ZE)

i nteger |, BATON

real (kind(1e0)) s_x(-1:n)

type (s_options) options(7)

CHARACTER (LEN=BSI ZE) BUFFER

character (LEN=12) PROC_NUM

I Setup for MPI
np_nprocs = np_setup()
if (mp_rank > 0) then
I The data types printed are real (kind(1e0)) random nunbers
s_x=rand(s_x)

| Convert node rank to CHARACTER dat a
wite(proc_num’ (13)’) np_rank

Show 7 digits per nunber and according to the

natural or declared size of the array.

Prepare the output lines in array BUFFER

End each line with ASCII sequence CR-NL.
options(1)=show significant _digits_ is_ 7

options(2)=show starting_ index_is
options(3)= -1 ! The starting val ue.

opti ons(4)=show _end_of |ine_sequence_is
options(5)= 2 ! Use 2 EQL characters

options(6)= 10 ! The ASCI| code for CR
options(7)= 13 ! The ASCI| code for NL.

BUFFER= ' '’ I Blank out the buffer.

| Prepare the output in BUFFER

call show (s_x, &
"Rank-1, REAL with 7 digits, natural indexing fromrank # '//&
trinmadjustl (PROC_NUM), |MAGE=BUFFER, | OPT=0pti ons)

do i =1, np_nprocs-1
I A handle or baton is received by the non-root nodes.
call npi_bcast (BATON, 1, MPI I NTEGER, 0, &
MP_LI BRARY_WORLD, ierror)

I If this node has the baton, it transmts its buffer.
i f (BATON == np_rank) &
call npi_send(buffer, BSIZE, MPI _CHARACTER, 0, nmp_rank, &
MP_LI BRARY_WORLD, ierror)
end do

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 225

el se
DO | =1, MP_NPRCCS- 1

| The root sends out a handle to a node. It is received as
| the val ue BATON.
call npi_bcast (I, 1, MPI I NTEGER, 0, &
MP_LI BRARY_WORLD, ierror)

I A buffer of data arrives from a node.
call npi_recv(buffer, BSIZE, MPI _CHARACTER, MPI_ANY_SOURCE, &
MPI _ANY _TAG MP_LI BRARY WORLD, STATUS, | ERROR)

I Display BUFFER as a CHARACTER array. Discard bl anks
I on the ends. Look for non-printable characters as limts.

p=0
k=LEN(TRl M BUFFER))
DI SPLAY: DO
DO
IF (p >= k) EXIT DI SPLAY
p=p+1
| F(1 CHAR(BUFFER(p: p)) >= ICHAR(’® ')) EXI T
END DO
q=p- 1
DO
:q+1
I'F (1 CHAR(BUFFER(q: q)) < ICHAR(’® ')) EXI T
END DO

WRI TE(*,’ (1x, A)’) BUFFER(p: g- 1)

pP=q
END DO DI SPLAY
END DO
end if
| F(MP_RANK ==0) &
wite(*,*) 'Parallel Exanple 17 is finished.’

| See to any error nessages and quit MPI
np_nprocs = np_setup(’ Final’)

end

Parallel Example 18

Here we illustrate a surface fitting problem implemented using tensor product
B-splines with constraints. There are three functions, each depending on two
parametric variables, for the spatial coordinates. Fitting each coordinate
function to the data is a natural example of parallel computing in the sense that
there are three separate problems of the same type. The approach is to break
the problem into three data fitting computations. Each of these computations
are allocated to nodes. Note that the datais sent from the root to the nodes.

Every node compl etes the least-sgquares fitting, and sends the spline coefficients
back to the root node. This example requires four nodes to execute.

226 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

USE surface fitting_ int

USE rand_i nt

USE norm.i nt

USE Nunerical _Libraries, only : DCONST
USE npi _setup_int

inmplicit none

I NCLUDE '’ npi f. h’

This is a Parallel Exanple 18 for SURFACE FI TTI NG or

tensor product B-splines approximation. Fit x, y, z paranetric
functions for points on the surface of a sphere of radius "A".
Random val ues of latitude and | ongitude are used to generate
data. The functions are evaluated at a rectangular grid

in latitude and | ongitude and checked so they lie on the
surface of the sphere.

integer :: i, j, ierror, status(Ml _STATUS Sl ZE)
i nteger, paraneter :: ngrid=5, nord=8, ndegree=nord-1, &
nbkpt =ngri d+2* ndegr ee, ndata =400, nval ues=50, NOPT=4
real (kind(1d0)), paraneter :: zero=0d0, one=1d0, two=2d0
real (ki nd(1d0)), paraneter :: TOLERANCE=1d-3
real (kind(1d0)), target :: spline_data (4, ndata, 3), bkpt(nbkpt), &
coef f (ngri d+ndegree- 1, ngri d+ndegree-1, 3), delta, sizev, &
pi, A x(nvalues), y(nvalues), values(nval ues, nvalues), &
dat a(4, ndat a)

real (ki nd(1d0)), pointer :: pointer_bkpt(:)

type (d_surface _constraints), allocatable :: C(:)
type (d_spline_knots) knotsx, knotsy

type (d_options) OPTI ONS(NOPT)

| Setup for MPI:
MP_NPROCS = MP_SETUP()
BLOCK: DO
I This program needs at |east three nodes plus a root to execute.
I As many as three error nessages nmay print.
i f(np_nprocs < 4) then
call elsti (1, MP_NPRCCS)
call elmes (5, 1, "Parallel Exanple 18 requires FOUR nodes"// &
" to execute. Nunmber of nodes is now %11).")
EXI T BLOCK
endi f

I Get the constant "pi" and a randomradius, > 1.
pi = DCONST((/' pi’/)); A=one+rand(A)

I Generate random (|l atitude, |ongitude) pairs and eval uate the

| surface paraneters at these points.
spline_data(1:2,:,1)=pi *(two*rand(spline_data(l:2,:,1))-one)
spline_data(1l:2,:,2)=spline_data(1:2,:,1)
spline_data(l:2,:,3)=spline_data(1:2,:,1)

| Evaluate x, y, z parametric points.
spline_data(3,:,1)=A*cos(spline_data(l,:,1))*cos(spline_data(2,:,1))
spline_data(3,:,2)=A*cos(spline_data(l,:,2))*sin(spline_data(2,:,2))
spline_data(3,:,3)=A*sin(spline_data(l,:,3))

I The val ues are equal ly uncertain.
spline_data(4,:,:)=one

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 227

I Define the knots for the tensor product data fitting problem
delta = two*pi/(ngrid-1)
bkpt (1: ndegree) = - pi
bkpt (nbkpt - ndegr ee+1: nbkpt) = pi
bkpt (nor d: nbkpt - ndegree) =(/(-pi +i *del ta, i =0, ngrid-1)/)

I Assign the degree of the polynonm al and the knots
poi nt er _bkpt => bkpt
knot sx=d_spl i ne_knot s(ndegree, pointer_bkpt)
knot sy=knot sx

Fit a data surface for each coordinate
Set default regularization paraneters to zero and conpute
residual s of the individual points. These are returned
in DATA(4,:).
al locate (C(2*ngrid))
I "Sew' the ends of the paranetric surfaces together
do i=0,ngrid-1
C(i +1)=surface_constrai nts(point=(/-pi,-pi+i*deltal), &
type='.=.", periodic=(/pi,-pi+i*deltal))
end do
do i=0,ngrid-1
C(ngrid+i +1) =surface_constrai nts(poi nt=(/-pi+i*delta,-pi/), &
d aype=’.:.’, periodi c=(/-pi+i*delta,pi/))
en 0

if (mp_rank == 0) then
| Send the data to a node
do j=1,3
call npi_send(spline data(:,:,j), 4*ndata, &
MPI _DOUBLE PRECI SICN, j, j, MP_LIBRARY WORLD, ierror)

enddo
do i=1,3
I Receive the coefficients back.
call npi_recv(coeff(:,:,i), (ngrid+ndegree-1)**2, &
MPI _DOUBLE PRECISION, i, i, MP_LIBRARY WORLD, &
status, ierror)
enddo

else if (nmp_rank < 4) then

I Receive the data fromthe root.
call npi_recv(data, 4*ndata, MPI_DOUBLE PRECI SION, 0, &
nmp_rank, MP_LIBRARY WORLD, status, ierror)
OPTI ONS(1) =d_opti ons(surface_fitting_thinness, zero)
OPTI ONS(2) =d_options(surface fitting fl atness, zero)
OPTI ONS(3) =d_options(surface fitting small ness, zero)
OPTI ONS(4) =surface_fitting_residuals

I Conpute the coefficients at this node
coeff(:,:,mp_rank) = surface_fitting(data, knotsx, knotsy, &
CONSTRAI NTS=C, | OPT=0PTI ONS)

I Send the coefficients back to the root.
call npi_send(coeff(:,:,np_rank), (ngrid+ndegree-1)**2, &
MPI _DOUBLE_PRECI SI ON, 0, np_rank, MP_LIBRARY_WORLD, | ERROR)
end if

| Evaluate the function at a grid of points inside the rectangle of
| latitude and | ongitude covering the sphere just once. Add the
I sum of squares. They should equal "A**2" but will not due to
I truncation and rounding errors.

del t a=pi / (nval ues+1)

228 « Chapter 6: Operators and Generic Functions - The Parallel Option IMSL Fortran 90 MP Library 4.0

x=(/(-pi/two+i *del ta,i=1,nvalues)/); y=two*x
val ues=zero
do j=1,3
val ues=val ues + surface_values((/0,0/), x, y, knotsx, knotsy, &
coeff(:,:,j))**2
end do
val ues=val ues- A**2

| Conpute the RMS. error
si zev=nor n(pack(val ues, (values == val ues)))/nval ues
if (sizev <= TOLERANCE) then
if(nmp_rank == 0) &
wite(*,*) "Parallel Exanple 18 is correct."
end if
EXI T BLOCK
END DO BLOCK

| See to any error nessages and exit MPI
np_nprocs = np_setup(’ Final’)

end

IMSL Fortran 90 MP Library 4.0 Chapter 6: Operators and Generic Functions - The Parallel Option « 229

Chapter 7: ScaLAPACK Utilities and
Large-Scale Parallel Solvers

Introduction

. This chapter describes the use of ScaLAPACK, asuite of dense linear algebra

MPI REQUIRED solvers, applicable when a single problem size is large. We have integrated usage of

' Fortran 90 MP Library with this library. However, the ScaLAPACK library,

including libraries for BLACS and PBLAS, are not part of Fortran 90 MP Library. To
use ScaL APACK software, the required libraries must be installed on the user’s
computer system. We adhered to the specification of Blackford, et al. (1997), but
use only MPI for communication. TI8ealLAPACK library includes certain

LAPACK routines, Anderson, et al. (1995), redesigned for distributed memory
parallel computers. It is written in a Single Program, Multiple Data (SPMD) style
using explicit message passing for communication. Matrices are laid out in a two-
dimensional block-cyclic decomposition. Using High Performance Fortran (HPF)
directives, Koelbel, et al. (1994), andtatic p x g processor array, and following

declaration of the array(*, *), this is illustrated by:

| NTEGER, PARAVETER :: N=500, P= 2, Q=3, MB=32, NB=32
| HPF$ PROCESSORS PROC(P, Q
I HPF$ DI STRI BUTE A(cyclic(MB), cyclic(NB)) ONTO PROC

Our integration work provides modules that describe the interface to the

Scal APACK library. We recommend that users include these modules when using
Scal APACK or ancillary packages, includi®l. ACS andPBLAS. For the job of
distributing data within a user’s application to the block-cyclic decomposition
required byScal APACK solvers, we provide a utility that reads data from an
external file and arranges the data within the distributed machines for a
computational step. Another utility writes the results into an external file.

The data types supported for these utilitiesiareger; single precision, real;
double precision, real; single precision, complex, anddouble precision,
complex.

IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers« 231

A Scal APACK library normally includes routines for:
e thesolution of full-rank linear systems of equations,
e genera and symmetric, positive-definite, banded linear systems of equations,

e genera and symmetric, positive-definite, tri-diagonal, linear systems of
equations,

e condition number estimation and iterative refinement for LU and Cholesky
factorization,

e matrix inversion,

e full-rank linear least-squares problems,

e orthogonal and generalized orthogonal factorizations,

e orthogonal transformation routines,

e reductionsto upper Hessenberg, bidiagonal and tridiagonal form,

¢ reduction of asymmetric-definite, generalized eigenproblem to standard form,
e the self-adjoint or Hermitian eigenproblem,

e thegeneraized self-adjoint or Hermitian eigenproblem, and

e the non-symmetric eigenproblem

Scal APACK routines are available in four data types: single precision, real;
double precision; real, single precision, complex, and double precision,
complex. At present, the non-symmetric eigenproblem is only available in single
and double precision. More background information and user documentation is
available on the World Wide Web at location

http: //mamw.netlib.or g/scal apack/slug/scalapack slug.html

For users with rank deficiency or smple constraintsin their linear systems or |east-
squares problem, we have routines for:
e full or deficient rank least-squares problems with non-negativity constraints

e full or deficient rank least-squares problems with simple upper and lower
bound constraints

These are available in two data types: single precision, real, and double
precision, real, and they are not part of ScaL APACK. The matrices are distributed
in ageneral block-column layout.

Contents
ScaLAPACK Supporting MUl €S ...ciieeiiiiiiiiii e 233
SCALAPACK READ. ... ettt e e e e e e e e e e e e anennens 233
SCALAPACK WRI TE.. ittt e e e e e e e e e e e e e nneneens 235
Example 1: Distributed Transpose of a Matrix, In Place........................ 237
Example 2: Distributed Matrix Product with PBLASccccccevviiiiinneen. 239
Example 3: Distributed Linear Solver with ScaLAPACK............ccc.c.c..... 242

232« Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

Paral |l el Constrained Least-Squares SOl VErscccoooovieiiinniennns 245

PARALLEL _NONNEGATI VE_LSQ ..viiveeviireerieieeireeiestestesetesresesssesnessesssesnens 245
Example 1: Distributed Linear Inequality Constraint Solver................... 247
Example 2: Distributed Non-negative Least-Squaresccccccceeeeveneee 249
PARALLEL _BOUNDED LSQ .. .ccviiviiuieeiereirieiteireaseestessesaessessesssessesssesesseens 252
Example 1: Distributed Equality and Inequality Constraint Solver.......... 255

Example 2: Distributed Newton-Raphson Method with Step Control..... 257

ScaLAPACK Supporting Modules

MPI REQUIRED

We recommend that users needing routines from ScaLAPACK, PBLAS or
BLACS, Version 1.4, use modules that describe the interface to individual
codes. This practice, including use of the declaration directive, | MPLI CI T
NONE, is areliable way of writing ScaLAPACK application code, since the
routines may have lengthy lists of arguments. Using the modules is helpful to
avoid the mistakes such as missing arguments or mismatches involving Type,
Kind or Rank (TKR). The modules are part of the Fortran 90 MP Library
product. There is a comprehensive module, ScaLAPACK_Support , that
includes use of all the modulesin the table below. This module decreases the
number of lines of code for checking the interface, but at the cost of increasing
source compilation time compared with using individual modules.

Module Name Contents of the Module

ScaLAPACK_Suppor t All of the following modules

Scal APACK_I nt All interfaces to ScaL APACK routines

PBLAS_I nt All interfacesto parallel BLAS, or PBLAS

BLACS | nt All interfacesto basic linear algebra communication routines, or
BLACS

TOOLS I nt Interfaces to ancillary routines used by ScaL APACK, but not in
other packages

LAPACK_I nt All interfaces to LAPACK routines required by ScaL APACK

Scal APACK_I O_I nt All interfacesto ScaLAPACK_Read, ScaLAPACK Wite
utility routines. See this Chapter.

MPI _Node_I nt The module holding data describing the MPI communicator,
MP_LI BRARY_WORLD. See Chapter 6.

ScaLAPACK_READ

This routine reads matrix data from afile and transmitsit into the two-
dimensiona block-cyclic form required by Scal APACK routines. This routine
contains a call to a barrier routine so that if one processis writing the file and
an alternate processis to read it, the results will be synchronized.

All processorsin the BLACS context call the routine.

IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers s 233

Required Arguments

File_Name— (Input)
A character variable naming the file containing the matrix data. Thisfileis
opened with STATUS="OLD" If the name is misspelled or the file does not
exist, or any access violation happens, atype = terminal error message
will occur. After the contents are read, thefileis closed. Thisfileisread
with aloop logically equivalent to groups of reads:

READ() ((BUFFER(I,J), I=1,M), J=1, NB)
or (optionally):

READ() ((BUFFER(],J), J=1,N), I=1, MB)

DESC_A(*)—(Input)
The nine integer parameters associated with the Scal APACK matrix descriptor.
Vauesfor NB,MB,LDA are contained in this array.

A(LDA, *) —Output)
Thisis an assumed-size array, with leading dimension LDA, that will
contain this processor’s piece of the block-cyclic matrix. The data type for
A(*,*) is any of five Fortran intrinsic typesnteger, single precision, real;
double precision, real; single precision, complex, anddouble precision-
complex.

Optional Arguments

Format—(Input)
A character variable containing aformat to be used for reading the file
containing matrix data. If this argument is not present, an unformatted, or
list-directed read is used.

iopt— (Input)
Derived type array with the same precision asthe array A(*,*) , used for
passing optional datato ScaLAPACK_READ The options are as follows:

Packaged Options for ScaLAPACK_READ
Option Prefix = ? Option Name Option Vaue
s ,d_ ScaLAPACK_READ_UNIT 1
s_,d_ ScaLAPACK_READ_FROM_PROCESS 2
s_,d_ ScaLAPACK_READ_BY_ROWS 5

234 « Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

iopt (10 = ScalLAPACK READ UNIT
Sets the unit number to the valuein i opt (1 O + 1) % dunmy. The default
unit number isthe value 11.

iopt (10 = ScalLAPACK READ FROM PROCESS
Sets the process number that reads the named file to the value in
i opt (10 + 1) % dummy. The default process number is the value 0.

iopt (1 O = ScalLAPACK_READ BY RO\
Read the matrix by rows from the named file. By default the matrix is read
by columns.

Algorithm

Subroutine Scal APACK_READ reads columns or rows of a problem matrix so
that it is usable by a ScaLAPACK routine. It uses the two-dimensional block-
cyclic array descriptor for the matrix to place the data in the desired assumed-
size arrays on the processors. The blocks of data are read, then transmitted and
received. The block sizes, contained in the array descriptor, determines the
data set size for each blocking send and receive pair. The number of these
synchronization points is proportional to |'M x N /(MB x NB)-|. A temporary

local buffer is allocated for staging the matrix data. 1t is of size Mby NB, when
reading by columns, or N by MB, when reading by rows.

ScaLAPACK_WRITE

This routine writes the matrix datato afile. The dataistransmitted from the
two-dimensional block-cyclic form used by ScaLAPACK. This routine contains
acall to abarrier routine so that if one processiswriting thefile

and an alternate process isto read it, the results will be synchronized. All
processors in the BLACS context call the routine.

Required Arguments

File_Name— (Input)
A character variable naming the file to receive the matrix data. Thisfileis
opened with “STATUS="UNKNOWN.” If any access violation happens, a
type = terminal error message will occur. If thefile already existsit will be
overwritten. After the contents are written, the file is closed. Thisfileis
written with aloop logically equivalent to groups of writes:

WRITE() ((BUFFER(1,J), I=1,M), J=1, NB)
or (optionally):

WRITE() ((BUFFER(I,J), J=1,N), I=1, MB)

DESC_A(*) —{Input)

IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers s 235

The nine integer parameters associated with the ScaL APACK matrix
descriptor. Valuesfor NB, MB, LDA are contained in this array.

A(LDA, *) —{lnput)
Thisis an assumed-size array, with leading dimension LDA, containing this
processor’s piece of the block-cyclic matrix. The data typa(or *) is
any of five Fortran intrinsic typemteger, single precision, real, double
precision, real, single precision, complex, anddouble precision-
complex.

Optional Arguments

Format—(Input)
A character variable containing aformat to be used for writing the file that
receives matrix data. If thisargument is not present, an unformatted, or
list-directed write is used.

iopt— (Input)

Derived type array with the same precision asthe array A(*,*) , used for
passing optional datato ScaLAPACK_WRITE Use single precision when
A(**) istypeINTEGER The optionsare asfollows:

Packaged Options for ScaLAPACK_WRI TE
Option Prefix = ? Option Name Option Vaue
s ,d_ ScalLAPACK_WRITE_UNIT 1
s ,d_ ScaLAPACK_WRITE_FROM_PROCESS 2
s ,d_ ScalLAPACK_WRITE_BY_ROWS 3

iopt(10) =ScaLAPACK_WRITE_UNIT
Sets the unit number to the integer component of
iopt(10 + 1)%idummy . The default unit number isthe value 11.

iopt(10) = ScaLAPACK_WRITE_FROM_PROCESS
Sets the process number that writes the named file to the integer
component of iopt(I0 + 1)%idummy . The default process number is
the value 0.

iopt(10) = ScaLAPACK_WRITE_BY_ROWS
Write the matrix by rows to the named file. By default the matrix iswritten
by columns.

Algorithm

Subroutine ScaLAPACK_WRITE writes columns or rows of a problem matrix
output by a ScaL APACK routine. It uses the two-dimensional block-cyclic
array descriptor for the matrix to extract the data from the assumed-size

236 « Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

arrays on the processors. The blocks of data are transmitted and received,
then written. The block sizes, contained in the array descriptor, determines
the data set size for each blocking send and receive pair. The number of
these synchronization points is proportional to [M x N/(MB x NB)]. A

temporary local buffer is allocated for staging the matrix data. It isof size
Mby NB, when writing by columns, or N by MB, when writing by rows.

Example 1: Distributed Transpose of a Matrix, In Place

The program SCPK_EX1 illustrates an in-situ transposition of a matrix. An

mx nmatrix, A, iswritten to afile, by rows. The nxmmatrix, B= AT,
overwrites storage for A. Two temporary files are created and deleted. There
is usage of the BLACSto define the process grid and provide further
information identifying each process. Thisalgorithm for transposing a matrix is
not efficient. We useit to illustrate the read and write routines and optional
arguments for writing of data by matrix rows.

program scpk_ex1
I This is Exanple 1 for ScalLAPACK READ and ScalLAPACK WRI TE.
I It shows in-situ or in-place transposition of a
I bl ock-cyclic matri x.
USE ScalAPACK_SUPPORT
USE ERROR_OPTI ON_PACKET
USE MPI _SETUP_I NT

I MPLI CI' T NONE
| NCLUDE "npi f. h"

| NTEGER, PARAMETER :: M6, N=6, MB=2, NB=2, NI N=10
| NTEGER CONTXT, DESC A(9), NPROW NPCOL, MYROWN &
MYCOL, IERROR, |, J, K L, LDA, TDA
real (kind(1d0)), allocatable :: A(:,:), d_A(:,:)
real (ki nd(1d0)) ERROR
TYPE(d_OPTI ONS) | OPT(1)
MP_NPROCS=MP_SETUP()

CALL BLACS_PI NFO{ MP_RANK, MP_NPROCS)
| Make initialization for BLACS.
CALL BLACS GET(0, 0, CONTXT)

I Approxi mate processor grid to be nearly square.

NPROWEsqrt (real (MP_NPROCS)) ; NPCOL=MP_NPROCS/ NPROW

| F(NPROW NPCOL < MP_NPROCS) THEN

NPROWEL; NPCOL=MP_NPROCS

END | F

CALL BLACS GRI DI NI T(CONTXT, ' Rows’, NPROW NPCOL)
| Get this processor’s role in the process grid.

CALL BLACS GRI DI NFQ{ CONTXT, NPROW NPCOL, MYROW MYCQOL)
BLOCK: DO

LDA=NUMROC(M MB, MYROW 0, NPROW
TDA=NUMROC(N, NB, MYCOL, 0, NPCOL)
ALLOCATE(d_A(LDA, TDA))

I Aroot process is used to create the matrix data for the test.
| F(MP_RANK == 0) THEN
ALLCCATE(A(M N))

IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers s 237

I Fill array with a pattern that is easy to recognize.
K=0

DO
K=K+1; |F(10**K > N) EXIT
END DO

DO J=1, N
DO I=1, M
I The values will appear, as decimals |.J, where | is
| the rowand J is the col um.
A(l,J)=REAL(1) +REAL(J) *10d0**(- K)
END DO
END DO

OPEN(UNI T=NI'N, FILE="test.dat’, STATUS=" UNKNOMN)
| Wite the data by col umms.
DO J=1, N, NB
WRI TE(NIN, *) ((A(1,L),1=1,M,L=J, min(N, J+NB- 1))
END DO
CLOSE(NIN)
END | F

| F(MP_RANK == 0) THEN
DEALL OCATE(A)
ALLOCATE(A(N, M)
END | F

I Define the descriptor for the global matrix.
DESC A=(/1, CONTXT, M N, MB, NB, 0, 0, LDA)

| Read the matrix into the |ocal arrays.
CALL ScalLAPACK READ('test.dat’, DESC A, d_A)

I To transpose, wite the matrix by rows as the first step.
I This requires an option since the default is to wite
I by col ums.
| OPT(1) =ScaLAPACK_V\RI TE_BY_RO\S
CALL ScalAPACK WRI TE(" TEST. DAT", DESC A, &
d A | OPT=I OPT)

| Resize the local storage and read the transpose natri x.
DEALLOCATE(d_A)
LDA=NUMROC(N, MB, MYROW 0, NPROW
TDA=NUMROC(M NB, MYCOL, 0, NPCOL)
ALLOCATE(d_A(LDA, TDA))

| Reshape the descriptor for the transpose of the matrix.
I The nunber of rows and col ums are swapped.
DESC A=(/1, CONTXT, NN M M, NB, 0, 0, LDA)

CALL ScalAPACK_READ("TEST. DAT", DESC A, d_A)

| F(MP_RANK == 0) THEN

I Open the used files and del ete when cl osed.
OPEN(UNI T=NIN, FILE="test.dat’, STATUS=' OLD)

CLOSE(NI N, STATUS=" DELETE')
OPEN(UNI T=NI N, FI LE=" TEST. DAT', STATUS=" OLD)

DO J=1, M MB
READ(NI N, *) ((A(l,L), I=1,N),L=J, nin(MJ+MB-1))

END DO

CLOSE(NI N, STATUS=" DELETE')

DO | =1, N

238 « Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

DO J=1, M
I The values will appear, as decinmals |.J, where | is the row
I and J is the colum.
A(1, J) =REAL(J) +REAL(1)*10d0**(-K) - A(l,J)
END DO
END DO
ERROR=SUM ABS(A))
END | F

I The processors in use now exit the | oop.
EXI' T BLOCK
END DO BLOCK

| See to any error nessages.
call elpop("M_setup")

I Check results on just one process.
| F(ERROR <= SQRT(EPSI LON(ERROR)) .and. &
MP_RANK == 0) THEN
wite(*,*) " Exanple 1 for BLACS is correct."
END | F

| Deal |l ocate storage arrays and exit from BLACS.
| F(ALLOCATED(A)) DEALLOCATE(A)
| F(ALLOCATED(d_A)) DEALLOCATE(d_A)

| Exit fromusing this process grid.
CALL BLACS GRI DEXI T(CONTXT)
CALL BLACS EXI T(0)

END

Example 2: Distributed Matrix Product with PBLAS

The program SCPK_EX2 illustrates computation of the matrix product
Cixn = Arnxk Bixn- The matrices on the right-hand side are random. Three temporary

files are created and deleted. Thereis usage of the BLACS and PBLAS. The problem
sizesis such that the results are checked on one process.

program scpk_ex2
I This is Exanple 2 for ScalLAPACK READ and ScalLAPACK VWRI TE.
I The product of two matrices is conputed with PBLAS
I and checked for correctness.

USE ScalAPACK_SUPPORT
USE MPI _SETUP_I NT

I MPLI CI' T NONE
| NCLUDE "npi f. h"

| NTEGER, PARAMETER :: &
K=32, Me33, N=34, MB=16, NB=16, NI N=10

| NTEGER CONTXT, NPRON NPCOL, MYROW MYCOL, &
INFO, IA JA 1B, JB IC, JC, LDAA TDAA &
LDA B, TDAB, LDAC, TDAC IERROR I, J, L &
DESC A(9), DESC B(9), DESC C(9)

IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers s 239

real (kind(1d0)) :: ALPHA, BETA, ERROR=1d0, SIZE C
real (kind(1d0)), allocatable, dinension(:,:) :: ABCX:),&
d A dB dCC

MP_NPROCS=MP_SETUP()
| Routines with the "BLACS " prefix are fromthe BLACS library.
I This is an adjunct library to the ScalLAPACK li brary.

CALL BLACS_PI NFO{ MP_RANK, MP_NPRCCS)

| Make initialization for BLACS.
CALL BLACS GET(0, 0, CONTXT)

I Approxi mate processor grid to be nearly square.
NPROWEsqrt (real (MP_NPROCS)) ; NPCOL=MP_NPROCS/ NPROW
| F(NPROW NPCOL < MP_NPROCS) THEN

NPROWEL; NPCOL=MP_NPROCS
END | F
CALL BLACS GRI DI NI T(CONTXT, ' Rows’, NPROW NPCOL)

I Get this processor’s role in the process grid.
CALL BLACS GRI DI NFOQ{ CONTXT, NPROW NPCOL, MYROW MYCOL)

I Associate context (BLACS) with | MSL conmuni cat or:
CALL BLACS GET(CONTXT, 10, MP_LI BRARY_WORLD)

BLOCK: DO

I Allocate local space for each array.
LDA A=NUMROC(M MB, MYROW 0, NPROW
TDA_A=NUMROC(K, NB, MYCOL, 0, NPCOL)
LDA B=NUMROC(K, NB, MYROW 0, NPROW
TDA B=NUMROC(N, NB, MYCOL, 0, NPCOL)
LDA C=NUMROC(M MB, MYROW 0, NPROW
TDA_C=NUMROC(N, NB, MYCOL, 0, NPCOL)

ALLOCATE(d_A(LDA A TDA A), d_B(LDA B, TDA B), &
d_C(LDA C, TDA O))

I Aroot process is used to create the matrix data for the test.
| F(MP_RANK == 0) THEN

ALLCCATE(A(M K), B(K,N), C(MN), X(M)

CALL RANDOM NUMBER(A); CALL RANDOM NUNMBER(B)

OPEN(UNI T=NI N, FI LE=" Atest.dat’, STATUS=" UNKNOW)
| Wite the data by col umms.
DO J=1, K, NB
WRITE(NIN, *) ((A(l,L),1=1,M,L=J, min(K, J+NB- 1))
END DO
CLOSE(NI N)

OPEN(UNI T=NI N, FI LE=' Btest.dat’, STATUS=" UNKNOMW)
| Wite the data by col umms.
DO J=1, N, NB
WRI TE(NIN, *) ((B(1,L),1=1,K),L=J, nmn(N, J+NB- 1))
END DO
CLOSE(NIN)
END | F

I Define the descriptor for the global matrices.
DESC A=(/1, CONTXT, M K, MB, NB, 0, 0, LDA A/)
DESC B=(/1, CONTXT, K, N, NB, NB, 0, 0, LDA B/)
DESC C=(/1, CONTXT, M N, MB, NB, 0, 0, LDA C/)

240 « Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

| Read the factors into the |ocal arrays.
CALL ScalLAPACK READ(' Atest.dat', DESC A d_A)
CALL ScalLAPACK READ(' Btest.dat’, DESC B, d_B)

I Conpute the distributed product C = A x B.
ALPHA=1d0; BETA=0dO
I A=1; JA=1; 1B=1; JB=1; 1C=1; JC=1
d_Cc=0
CALL pdGEMM &
("No", "No", M N, K ALPHA, d A I|A JA&
DESC A, d_B, IB, JB, DESC B, BETA &
d_C IC JC DESCC)

I Put the product back on the root node.
Cal | ScaLAPACK WRI TE(’ Ctest.dat’, DESC C, d_C)

| F(MP_RANK == 0) THEN

! Read the residuals and check them for size.
OPEN(UNI T=NI'N, FILE=" Ctest.dat’, STATUS=" OLD)

| Read the data by col ums.
DO J=1, N, NB
READ(NI N, *) ((C(1,L),1=1,M,L=J, mn(N, J+NB- 1))
END DO

CLOSE(NI N, STATUS=" DELETE’)
SI ZE_C=SUM ABS(C)) ; C=C-mat nul (A, B)
ERROR=SUM ABS(C))/ SI ZE_C

I Open other tenporary files and del ete them
OPEN(UNI T=NI'N, FILE=" Atest.dat’, STATUS=" OLD)
CLCSE(NI N, STATUS=" DELETE’)

OPEN(UNI T=NI'N, FILE="Btest.dat’, STATUS=" OLD)
CLCSE(NI N, STATUS=" DELETE’)

END | F

I The processors in use now exit the | oop.
EXI T BLOCK
END DO BLOCK

I See to any error nessages.
call elpop("M_Setup")
| Deal |l ocate storage arrays and exit from BLACS.
| F(ALLOCATED(A)) DEALLOCATE(A)
| F(ALLOCATED(B)) DEALLOCATE(B)
| F(ALLOCATED(C)) DEALLOCATE(C)
| F(ALLOCATED(X)) DEALLOCATE(X)
| F(ALLOCATED(d_A)) DEALLOCATE(d_A)
| F(ALLOCATED(d_B)) DEALLOCATE(d_B)
| F(ALLOCATED(d_C)) DEALLOCATE(d_C)

I Check the results.
| F(ERROR <= SQRT(EPSI LON(ALPHA)) .and. &
MP_RANK == 0) THEN

wite(*,*) " Exanple 2 for BLACS and PBLAS is correct."

END | F

| Exit fromusing this process grid.
CALL BLACS _GRI DEXI T(CONTXT)
CALL BLACS_EXI T(0)

END

IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers e 241

Example 3: Distributed Linear Solver with ScaLAPACK

The program SCPK_EX3 illustrates solving a system of linear-algebraic equations,

Ax=b. Theright-hand side is produced by defining A and y to have random values.
Then the matrix-vector product b = Ay iscomputed. The problem sizeis such that the
residuals, X — y = O are checked on one process. Three temporary files are created and

deleted. Thereis usage of the BLACS to define the process grid and provide further
information identifying each process. Then ScaL APACK is used to compute the
approximate solution, X.

program scpk_ex3
I This is Exanple 3 for ScalLAPACK READ and ScalLAPACK WRI TE.
I Alinear systemis solved with ScaLAPACK and checked.
USE Scal APACK SUPPORT
USE ERROR_OPTI ON_PACKET
USE MPI _SETUP_| NT

I MPLI CI' T NONE

| NCLUDE " npi f . h"

| NTEGER, PARAMETER :: N=9, MB=3, NB=3, NI N=10

| NTEGER CONTXT, NPRON NPCOL, MYROW MYCOL, &
INFO, IA, JA 1B, JB, LDAA TDAA &
LDA B, TDA B, IERROR |, J, L, DESC A(9),&
DESC B(9), DESC X(9), BUFF(3), RBUF(3)

LOG CAL :: COVMJTE = .true.

| NTEGER, ALLOCATABLE :: |PIV(:)

real (kind(1d0)) :: ERROR=0dO, SIZE X

real (kind(1d0)), allocatable, dinension(:,:) :: A B(:), &
X(:), d_A d_B

MP_NPROCS=MP_SETUP()

| Routines with the "BLACS " prefix are fromthe BLACS library.
CALL BLACS_PI NFO{ MP_RANK, MP_NPROCS)

I Make initialization for BLACS.
CALL BLACS GET(0,0, CONTXT)

I Approxi mate processor grid to be nearly square.
NPROWEsqrt (real (MP_NPROCS)) ; NPCOL=MP_NPROCS/ NPROW
| F(NPROW NPCOL < MP_NPROCS) THEN

NPROWEL; NPCOL=MP_NPROCS
END | F
CALL BLACS GRI DI NI T(CONTXT, ' Rows’, NPROW NPCOL)

I Get this processor’s role in the process grid.
CALL BLACS GRI DI NFQ{ CONTXT, NPROW NPCOL, MYROW MYCQOL)

I Associ ate context (BLACS) with DNFL conmuni cator:
CALL BLACS CET(CONTXT, 10, MP_LI BRARY_WORLD)

BLOCK: DO
I Allocate local space for each array.

LDA A=NUMROC(N, MB, MYROW 0, NPROW
TDA_A=NUMROC(N, NB, MYCOL, 0, NPCOL)

242 « Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

LDA B=NUMROC(N, MB, MYROW 0, NPROW
TDA B=1

ALLOCATE(d_A(LDA A TDA A), d_B(LDA B, TDA B), &
| Pl V(LDA_A+MB))

I Aroot process is used to create the matrix data for the test.
| F(MP_RANK == 0) THEN

ALLOCATE(A(N, N), B(N), X(N))

CALL RANDOM NUMBER(A); CALL RANDOM NUNMBER(X)

I Conpute the correct result.
B=MATMUL(A, X); Sl ZE_X=SUM ABS(X))
OPEN(UNI T=NI N, FI LE=" Atest.dat’, STATUS=" UNKNOVW)

| Wite the data by col umms.
DO J=1, N, NB
WRI TE(NIN, *) ((A(1,L),1=1,N), L=J, min(N, J+NB- 1))
END DO
CLOSE(NIN)

OPEN(UNI T=NI N, FILE='Btest.dat’, STATUS=" UNKNOVW)
| Wite the data by col umms.

VWRI TE(NIN, *) (B(1),1=1,N)

CLOSE(NI N)
END | F

I Define the descriptor for the global matrices.
DESC A=(/1, CONTXT, N, N, MB, NB, 0, 0, LDA A)
DESC B=(/1, CONTXT, N, 1, MB, NB, 0, 0, LDA B/)
DESC_X=DESC B

| Read the factors into the |ocal arrays.
CALL ScalLAPACK READ(' Atest.dat', DESC A, d_A)
CALL ScalLAPACK READ(' Btest.dat’, DESC B, d_B)

| Conpute the distributed product solution to A x = b.
| A=1; JA=1; I1B=1; JB=1

CALL pdGESV &
(N, 1, d A IA JA DESCA IPIV, &
d_B, IB, JB, DESC B, |NFO

| Put the result on the root node.
Cal | ScalLAPACK WRI TE(’ Xtest.dat’, DESC B, d_B)

| F(MP_RANK == 0) THEN

| Read the residuals and check themfor size.
OPEN(UNI T=NI'N, FILE=" Xtest.dat’', STATUS=' OLD)

I Read the approxi mate sol uti on dat a.
READ(NI' N, *) B
B=B- X

CLOSE(NI N, STATUS=" DELETE')
ERROR=SUM ABS(B)) / SI ZE_X

| Delete tenporary files.
OPEN(UNI T=NI' N, FI LE=" Atest.dat’, STATUS=" OLD)
CLOSE(NI N, STATUS=" DELETE')
OPEN(UNI T=NI N, FILE="Btest.dat’, STATUS=" OLD)

IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers s 243

CLOSE(NI N, STATUS=" DELETE')
END | F

I The processors in use now exit the | oop.
EXI T BLOCK
END DO BLOCK

I See to any error nessages.
call elpop("M_Setup")

Deal | ocate storage arrays and exit from BLACS.
F(ALLOCATED(A)) DEALLOCATE(A)

F(ALLOCATED(B)) DEALLOCATE(B)

F(ALLOCATED(X)) DEALLOCATE(X)
F(ALLOCATED(d_A)) DEALLOCATE(d_A)
F(ALLOCATED(d_B)) DEALLOCATE(d_B)

F(ALLOCATED(| PI V)) DEALLOCATE(T PI V)

F

(ERROR <= SQRT(EPSI LON(ERROR)) . and. &

MP_RANK == 0) THEN

wite(*, *) &

" Exanpl e 3 for BLACS and ScalLAPACK solver is correct."
END | F

| Exit fromusing this process grid.
CALL BLACS GRI DEXI T(CONTXT)
CALL BLACS_EXI T(0)

END

244 « Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

Parallel Constrained Least-Squares Solvers
Usage Notes

Solving Constrained Least-Squares Systems

The routine PARALLEL_NONNEGATI VE_LSQis used to solve dense least-
squares systems. These are represented by Ax Ob where Aisan mxn
coefficient data matrix, b is a given right-hand side M-vector, and X isthe
solution N-vector being computed. Further, there is a constraint requirement,
x=0. Theroutine PARALLEL_ BOUNDED LSQis used when the problem has
lower and upper bounds for the solution, a < x<B. By making the bounds
large, individual constraints can be eliminated. There are no restrictionson the
relative sizesof Mand N. When N islarge, these codes can substantially
reduce computer time and storage regquirements, compared with using aroutine
for solving a constrained system and a single processor.

The user provides the matrix partitioned by blocks of columns:
A=[A]Al..|A]]. Anindividual block of the partitioned matrix, say A,, is
located entirely on the processor with rank MP_RANK = p-1, where
MP_RANK is packaged in the module MPI _SETUP_| NT. This module, and the

function MP_SETUP() , defines the Fortran 90 MP Library MPI communicator,
MP_LI BRARY_WORLD. See Chapter 6, Parallelism Using MPI.

PARALLEL_NONNEGATIVE_LSQ

Solve alinear, non-negative constrained least-squares system.

Usage Notes

CALL PARALLEL_NONNEGATI VE_LSQ&
(A, B, X, RNORM W | NDEX, | PART, | OPT = | OPT)

Required Arguments

A(1:M,:)— (Input/Output) Columns of the matrix with limits given by entries
in the arrayl PART(1: 2, 1: max(1, M°_NPROCS)) . On outputA, is
replaced by the produ€A, , whereQis an orthogonal matrix. The value
SI ZE(A, 1) defines the value ofi Each processor starts and exits with its
piece of the partitioned matrix.

B(1:M) — (Input/Output) Assumed-size array of lengtbontaining the right-
hand side vectoly . On outputb is replaced by the produ€ib, where
Qis the orthogonal matrix applied #a All processors in the

IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers s 245

communicator start and exit with the same vector.

X(1:N) — (Output) Assumed-size array of lengthontaining the solution,
x=0. The valuesl ZE(X) defines the value oN. All processors exit
with the same vector.

RNORM — (Output) Scalar that contains the Euclidean or least-squares length
of the residual vectoflAx—bj|. All processors exit with the same value.

W(1:N) — (Output) Assumed-size array of lengtbontaining the dual vector,
w= AT(b- Ax)< 0. All processors exit with the same vector.

INDEX(1:N) — (Output) Assumed-size array of lengtbontaining the
NSETP indices of columns in the positive solution, and the remainder that
are at their constraint. The number of positive components in the
solutionXis give by the Fortran intrinsic function value,
NSETP=COUNT(X > 0). All processors exit with the same array.

IPART(2:2,1:max(1,MP_NPROCS)) — (Input) Assumed-size array
containing the partitioning describing the ma#ix The valuevP_NPROCS
is the number of processors in the communicator,
except when MPI has been finalized with a call to the routine
MP_SETUP(‘Final’) . Thiscauses MP_NPROCH be assigned 0.
Normally users will give the partitioning to processor of rank =
MP_RANK by setting IPART(1,MP_RANK+1)=first column index, and
IPART(2,MP_RANK+1)= last columnindex. The number of columns per
nodeis typically based on their relative computing power. To avoid anode
with rank MP_RANKloing any work except communication, set
IPART(1,MP_RANK+1) =0 and IPART(2,MP_RANK+1)=-1 . Inthis
exceptional case there is no reference to the array A(:,:) at that node.

Optional Argument

IOPT(:)— (Input) Assumed-size array of derived ty$éPTI ONS or
D_OPTI ONS. This argument is used to change internal parameters of the
algorithm. Normally users will not be concerned about this argument, so
they would not include it in the argument list for the routine.

Packaged Options for PARALLEL_NONNEGATI VE_LSQ
Option Name Option Value
PNLSQ SET_TOLERANCE 1
PNLSQ SET_MAX_| TERATI ONS 2
PNLSQ SET_M N_RESI DUAL 3

246 « Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

| OPT(1 O)=?_OPTI ONS(PNLSQ SET_TOLERANCE, TOLERANCE) Replaces
the default rank tolerance for using a column, from
EPSILON(TOLERANCE) to TOLERANCE. Increasing the value of
TOLERANCE will cause fewer columns to be moved from their
constraints, and may cause the minimum residual RNORM to increase.

| OPT(1 O)=?_OPTI ONS(PNLSQ SET_M N_RESI DUAL, RESI D) Replaces
the default target for the minimum residual vector length from 0 to RESI D.
Increasing the value of RESI D can result in fewer iterations and thus
increased efficiency. The descent in the optimization will stop at the first
point where the minimum residual RNORMis smaller than RESI D. Using this
option may result in the dual vector not satisfying its optimality conditions,
as noted above.

| OPT(1 O = PNLSQ SET_MAX_| TERATI ONS

| OPT(| O+1) = NEW MAX_I| TERATI ONS Replaces the default maximum
number of iterations from 3* Nto NEW MVAX_| TERATI ONS. Note that this
option requires two entriesin the derived type array.

Algorithm

Subroutine PARALLEL_NONNEGATI VE_LSQ solves the linear |east-squares
system Ax [Ob, x>0, using the algorithm NNLSfound in Lawson and Hanson,
(1995), pages 160-161. The code now updates the dual vector W of Step 2,
page 161. The remaining new steps involve exchange of required data, using
MPI.

Example 1: Distributed Linear Inequality Constraint Solver

The program PNLSQ_EX1 illustrates the computation of the minimum Euclidean
length solution of an m' x n’ system of linear inequality constraints, Gy = h.
The solution algorithm is based on Algorithm LDP, page 165-166, loc. cit. The
rowsof E =[G h|are partitioned and assigned random values. When the

minimum Euclidean length solution to the inequalities has been calculated, the
residuals r = Gy —h > 0 are computed, with the dual variablesto the NNLS

problem indicating the entriesof I' that are precisely zero.

The fact that matrix productsinvolving both E and E' are needed to compute
the constrained solution y and theresiduals I' , implies that message passing is

required. This occurs after the NNL S solution is computed.

PROGRAM PNLSQ EX1

Use Parall el _nonnegative LSQ to solve an inequality
constraint problem Gy >= h. This al gorithm uses
Al gorithm LDP of Sol ving Least Squares Problens,
page 165. The constraints are allocated to the
processors, by rows, in colums of the array A(:,:).

USE PNLSQ | NT

USE MPI _SETUP_I NT

IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers s 247

USE RAND | NT
USE SHOW | NT

I MPLI CI' T NONE
| NCLUDE "nmpi f. h"

| NTEGER, PARAMETER :: MP=500, NP=400, M:=NP+1l, N=MP

REAL(KI ND(1D0)), PARAMETER :: ZERO=0D0, ONE=1DO
REAL(KI ND(1D0)), ALLOCATABLE :: &

AC:L,), B(:), X(:), Y(:), W:), ASAVE(:,:)
REAL (KI ND(1D0)) RNORM
| NTEGER, ALLOCATABLE :: INDEX(:), |PART(:,:)

I NTEGER K, L, DN, J, JSH FT, |ERROR
LOG CAL :: PRINT=. fal se.

I Setup for MPI:
MP_NPROCS=MP_SETUP()

DN=N max(1, max(1, MP_NPROCS)) - 1
ALLOCATE(| PART(2, max(1, MP_NPROCS)))

I Spread constraint rows evenly to the processors.
| PART(1, 1) =1
DO L=2, MP_NPROCS
| PART(2, L- 1) =I PART(1, L- 1) +DN
| PART(1, L) =l PART(2, L-1) +1
END DO
| PART(2, MP_NPROCS) =N

I Define the constraint data using random val ues.
K=max(0, | PART(2, MP_RANK+1) - | PART(1, MP_RANK+1) +1)
ALLOCATE(A(M K), ASAVE(M K), X(N), WN), &

B(M, Y(M, INDEX(N))

I The use of ASAVE can be renoved by regenerating
| the data for A(:,:) after the return from
I Parall el _nonnegative_LSQ
A=rand(A); ASAVE=A
| F(MP_RANK == 0 .and. PRINT) &
CALL SHOW | PART, &
"Partition of the constraints to be sol ved")

I Set the right-hand side to be one in the |ast conponent, zero el sewhere.
B=ZERQ, B(M) =ONE

I Solve the dual problem
CALL Parall el nonnegative LSQ &
(A, B, X, RNORM W I NDEX, | PART)

I Each processor multiplies its block tines the part of
I the dual corresponding to that part of the partition.
Y=ZERO
DO J=I PART(1, MP_RANK+1) , | PART(2, MP_RANK+1)
JSH FT=J- | PART(1, MP_RANK+1) +1
Y=Y+ASAVE(: , JSHI FT) *X(J)
END DO

I Accurul ate the pieces fromall the processors. Put suminto B(:)
I on rank O processor.

B=Y

| F(MP_NPRCOCS > 1) &

248 « Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

CALL MPI_REDUCE(Y, B, M MPI _DOUBLE PRECI Sl ON, &
MPl_SUM 0, MP_LIBRARY WORLD, | ERROR)
| F(MP_RANK == 0) THEN

I Conpute constrained solution at the root.
I The constraints will have no solution if B(M = ONE
I All of these exanpl e probl ens have sol utions.

B(M =B(M - ONE; B=- B/ B(M

END | F

I Send the inequality constraint solution to all nodes.

| F(MP_NPROCS > 1) &

CALL MPI _BCAST(B,

M MPI _DOUBLE_PRECI SI ON, &

0, MP_LIBRARY_WORLD, | ERROR)

I For large problens this printing needs to be renoved.
| F(MP_RANK == 0 .and. PRINT) &

CALL SHOWNB(1:NP), &

“"Mnimal |ength solution of the constraints")

| Conpute residuals of the individual constraints.
I If only the solution is desired, the program ends here.

X=ZERO

DO J=I PART(1, M°_RANK+1) , | PART(2, MP_RANK+1)
JSHI FT=J- | PART(1, MP_RANK+1) +1
X(J) =dot _pr oduct (B, ASAVE(:, JSHI FT))

END DO

by exact zero.

This cleans up residuals that are about rounding
error unit (tinmes) the size of the constraint
equation and right-hand side. They are repl aced

VWHERE(W == ZERO) X=ZERO, WX

I Each group of residuals is disjoint, per processor.
I W add all the pieces together for the total set of

| constraints.
| F(MP_NPRCCS > 1)

&

CALL MPI _REDUCE(X, W N, MPI DOUBLE PRECI SI ON, &
MPI _SUM 0, MP_LI BRARY WORLD, | ERROR)
| FCMP_RANK == 0 .and. PRINT) &
CALL SHONW "Residuals for the constraints")

| See to any errors and shut down MPI.
MP_NPROCS=MP_SETUP(’ Fi nal ')
| FCMP_RANK == 0) THEN
| F(CCOUNT(W < ZERO) == 0) WRI TE(*,*)&

Exanple 1 for
END | F
END

PARALLEL_NONNEGATI VE LSQ is correct."

Example 2: Distributed Non-negative Least-Squares

The program PNLSQ_EX2 illustrates the computation of the solution to a system
of linear |east-squares equations with simple constraints:

a'x0b,i=1,...,m, subject to x=0. In this example we write the row vectors

[aiT: q] on afile. Thisillustrates reading the data by rows and arranging the

IMSL Fortran 90 MP Library 4.0

Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers ¢ 249

data by columns, as required by PARALLEL_NONNEGATI VE_LSQ. After
reading the data, the right-hand side vector is broadcast to the group before
computing a solution, X. The block-size is chosen so that each participating
processor receives the same number of columns, except any remaining columns
sent to the processor with largest rank. This processor contains the right-hand
side before the broadcast.

This example illustrates connecting a BLACS ‘context’ handle and the
Fortran 90 MP Library MPI communicatolP_LI BRARY_ WORLD, described
in Chapter 6

PROGRAM PNLSQ EX2

Use Parall el Nonnegative LSQ to solve a |east-squares
problem A x = b, with x >= 0. This algorithmuses a

di stributed version of NNLS, found in the book

Sol vi ng Least Squares Probl ens, page 165. The data is
read froma file, by rows, and sent to the processors,
as array col ums.

USE PNLSQ | NT
USE SCALAPACK_| O | NT
USE BLACS_| NT

USE MPI _SETUP_I NT
USE RAND | NT
USE ERROR OPTI ON_PACKET

I MPLI CI' T NONE
I NCLUDE " npi f . h"

I NTEGER, PARAMETER :: M=128, N=32, NP=N+1, NI N=10

real (kind(1d0)), ALLOCATABLE, DIMENSION(:) :: &
d A(:,:), A(:,:), BB C W X Y

real (ki nd(1d0)) RNORM ERROR

| NTEGER, ALLOCATABLE :: |INDEX(:), |PART(:,:)

INTEGER I, J, K, L, DN, JSH FT, |ERROR &
CONTXT, NPRON MYROW MYCOL, DESC A(9)
TYPE(d_OPTI ONS) | OPT(1)

Routines with the "BLACS " prefix are fromthe
BLACS li brary.
CALL BLACS_PI NFO{ MP_RANK, MP_NPRCCS)

Make initialization for BLACS.
CALL BLACS GET(0, 0, CONTXT)

Define processor grid to be 1 by MP_NPRCCS.
NPROWEL
CALL BLACS GRI DI NI T(CONTXT, 'N A", NPROWN MP_NPROCS)

Cet this processor’s role in the process grid.
CALL BLACS _GRI DI NFQ{ CONTXT, NPROW MP_NPRCCS, &
MYROW MYCQL)

Connect BLACS context with comuni cator MP_LI BRARY_WORLD.
CALL BLACS CET(CONTXT, 10, MP_LI BRARY_WORLD)

Setup for MPI:

250 « Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

MP_NPROCS=MP_SETUP()

DN=rmax (1, NP/ MP_NPROCS)
ALLOCATE(| PART(2, MP_NPROCS))

| Spread colums evenly to the processors. Any odd
! numl::er of colums are in the processor w th highest
I rank.
| PART(1,:)=1; |PART(2,:)=0
DO L=2, MP_NPROCS
| PART(2, L- 1) =I PART(1, L- 1) +DN
| PART(1, L) =l PART(2, L-1) +1
END DO
| PART(2, MP_NPROCS) =NP
| PART(2, :)=ni n(NP, | PART(2, :))

I Note which processor (L-1) receives the right-hand side.
DO L=1, MP_NPRCCS
I F(I PART(1,L) <= NP .and. NP <= I PART(2,L)) EXIT
END DO

K=max (0, | PART(2, MP_RANK+1) - | PART(1, MP_RANK+1) +1)
ALLOCATE(d_A(M K), "WN), X(N), Y(N),&
B(M, C(M, INDEX(N))

| F(MP_RANK == 0) THEN
ALLOCATE(A(M N))
| Define the matrix data using random val ues.
A=rand(A); B=rand(B)

| Wite the rows of data to an external file.
OPEN(UNI T=NI N, FILE=" Atest.dat’, STATUS=" UNKNOMW)
DO I=1,M
WRI TE(NIN, *) (A(l,J),J=1,N), B(l)
END DO
CLOSE(NI N)
ELSE

I No resources are used where this array is not saved.
ALLOCATE(A(M 0))
END | F

Define the matrix descriptor. This includes the

ri ght-hand side as an additional colum. The row
bl ock size, on each processor, is arbitrary, but is
chosen here to match the colum bl ock size.

DESC A=(/1, CONTXT, M NP, DN+1, DN+1, 0, 0, M)

| Read the data by rows.
| OPT(1) =ScaLAPACK_READ BY_ROWS
CALL ScalLAPACK READ ("Atest.dat", DESC A &
d_A, | OPT=I OPT)

I Broadcast the right-hand side to all processors.
JSHI FT=NP- | PART(1, L) +1
I F(K > 0) B=d_A(:,JSH FT)
| F(MP_NPRCCS > 1) &
CALL MPI _BCAST(B, M MPl _DOUBLE PRECISION , L-1, &
MP_LI BRARY_WORLD, | ERROR)

I Adjust the partition of colums to ignore the
I last colum, which is the right-hand side. It is
I now noved to B(:).

IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers« 251

I PART(2, :)=mi n(N, | PART(2,:))

I Solve the constrained distributed problem
C=B
CALL Parall el _Nonnegative LSQ &
(d_A, B, X, RNORM W | NDEX, | PART)

I Solve the problemon one processor, with data saved

I for a cross-check.
| PART(2,:)=0; |PART(2,1)=N, MP_NPROCS=1

I Since all processors execute this code, all arrays

| nust be allocated in the nmain program
CALL Parall el Nonnegative LSQ &
(A, C Y, RNCRM W I NDEX, |PART)

I See to any errors.
CALL elpop("M_Setup")

I Check the differences in the two solutions. Unique solutions

! may differ in the last bits, due to rounding.
| F(MP_RANK == 0) THEN
ERROR=SUM ABS(X- Y))/ SUM Y)

I F(ERROR <= sqrt (EPSI LON(ERROR))) write(*,*) &

Exanpl e 2 for PARALLEL NONNEGATIVE LSQ is correct.’

OPEN(UNI T=NI N, FILE=' Atest.dat’, STATUS=' OLD)

CLOSE(NI N, STATUS=' Del ete’)
END | F

| Exit fromusing this process grid.
CALL BLACS GRI DEXI T(CONTXT)
CALL BLACS_EXI T(0)

END

PARALLEL_BOUNDED_LSQ

Solve alinear |east-squares system with bounds on the unknowns.

Usage Notes
CALL PARALLEL_ BOUNDED LSQ &

(A, B, BND, X, RNORM W | NDEX, |PART, &

NSETP, NSETZ, | OPT=I OPT)

Required Arguments

A(1:M,:)— (Input/Output) Columns of the matrix with limits given by
entries in the arrayPART(1: 2, 1: max(1, M°P_NPROCS)). On
output A, is replaced by the produ@A,, whereQis an orthogonal
matrix. The valuesl ZE(A, 1) defines the value ofi Each
processor starts and exits with its piece of the partitioned matrix.

252 « Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers

IMSL Fortran 90 MP Library 4.0

B(1:M) — (Input/Output) Assumed-size array of lengtbontaining the
right-hand side vectoh . On outputb is replaced by the product
Q(b- Ag), whereQis the orthogonal matrix applied foand g is a
set of active bounds for the solution. All processors in the
communicator start and exit with the same vector.

BND(1:2,1:N) — (Input) Assumed-size array containing the bounds for
X. The lower bound; is inBN(1, J) , and the upper bourfsi; is

in BND(2, J) .

X(1:N) — (Output) Assumed-size array of lengthontaining the
solution,a < x<[3. The valuesl ZE(X) defines the value oN. All

processors exit with the same vector.

RNORM — (Output) Scalar that contains the Euclidean or least-squares
length of the residual vectdrAx —b||. All processors exit with the

same value.

W(1:N) — (Output) Assumed-size array of lengthontaining the dual
vector,w = AT(b— Ax). At a solution exactly one of the following is
true for eachj,1< j <n,

o =X; =B, and w; arbitrary
'a]‘ :Xj,andeSO
’a]‘ <Xj <Bj,andW] =0

All processors exit with the same vector.

INDEX(1:N) — (Output) Assumed-size array of lengthontaining the
NSETP indices of columns in the solution interior to bounds, and the
remainder that are at a constraint. All processors exit with the same
array.

IPART(2:2,1:max(1,MP_NPROCS)) — (Input) Assumed-size array
containing the partitioning describing the ma#ix The value
MP_NPRQOCS is the number of processors in the communicator, except
when MPI has been finalized with a call to the routine
MP_SETUP(‘Final’). This causes MP_NPROCH be assigned 0.
Normally users will give the partitioning to processor of rank =
MP_RANK by setting IPART(1,MP_RANK+1)="first column index,
and IPART(2,MP_RANK+1)= last columnindex. The number of
columns per node istypically based on their relative computing
power. To avoid anode with rank MP_RANKIoing any work except
communication, set IPART(1,MP_RANK+1) =0 and
IPART(2,MP_RANK+1)=-1 . Inthisexceptiona casethereisno
reference to the array A(:,:) at that node.

IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers s 253

NSETP— (Output) Anl NTEGER indicating the number of solution
components not at constraints. The column indices are output in the
arrayl NDEX(:) .

NSETZ— (Output) Anl NTEGER indicating the solution components
held at fixed values. The column indices are output in the array
I NDEX(:) .

Optional Argument

IOPT(:)— (Input) Assumed-size array of derived ty$éPTI ONS or
D_OPTI ONS. This argument is used to change internal parameters of
the algorithm. Normally users will not be concerned about this
argument, so they would not include it in the argument list for the
routine.

Packaged Options for PARALLEL_BOUNDED LSQ

Option Name Option Value

PBLSQ SET_TOLERANCE
PBLSQ SET_MAX_| TERATI ONS
PBLSQ SET_M N_RESI DUAL 3

| OPT(1 O) =?_OPTI ONS(PBLSQ SET_TOLERANCE, TOLERANCE) Replaces the
default rank tolerance for using a column, fréR$! LON(TOLERANCE) to
TOLERANCE. Increasing the value @fOLERANCE will cause fewer columns
to be increased from their constraints, and may cause the minimum residual
RNORMto increase.

| OPT(1 O)=?_OPTI ONS(PBLSQ SET_M N_RESI DUAL, RESI D) Replaces the
default target for the minimum residual vector length feorm RESI D.
Increasing the value &SI D can result in fewer iterations and thus
increased efficiency. The descent in the optimization will stop at the first
point where the minimum residiRNORMis smaller thaRESI D. Using this
option may result in the dual vector not satisfying its optimality conditions, as
noted above.

| OPT(1 O = PBLSQ SET_MAX_| TERATI ONS

| OPT(| O+1) = NEW MAX_| TERATI ONS Replaces the default maximum number
of iterations fronB8* N to NEW MAX_| TERATI ONS. Note that this option
requires two entries in the derived type array.

254 « Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

Algorithm

Subroutine PARALLEL_BOUNDED LSQ solves the |east-squares linear system
Ax Ob, a < x< 3, using the algorithm BVLSfound in Lawson and Hanson,
(1995), pages 279-283. The new steps involve updating the dual vector and
exchange of required data, using MPI. The optional changesto default
tolerances, minimum residual, and the number of iterations are new features.

Example 1: Distributed Equality and Inequality Constraint Solver

The program PBLSQ_EX1 illustrates the computation of the minimum Euclidean
length solution of an m' x n’ system of linear inequality constraints, Gy = h.
Additionally the first f >0 of the constraints are equalities. The solution
algorithm is based on Algorithm LDP, page 165-166, loc. cit. By allowing the
dual variablesto be free, the constraints become equalities. The rows of

E =[G h]are partitioned and assigned random values. When the minimum

Euclidean length solution to the inequalities has been calculated, the residuals
r = Gy —h =0 are computed, with the dual variablesto the BVLS problem
indicating theentriesof I' that are exactly zero.

PROGRAM PBLSQ EX1

Use Parall el _bounded LSQ to solve an inequality
constraint problem Gy >= h. Force F of the constraints
to be equalities. This algorithmuses LDP of
Sol vi ng Least Squares Probl ens, page 165.
Forcing equality constraints by freeing the dual is
new here. The constraints are allocated to the
processors, by rows, in colums of the array A(:,:).

USE PBLSQ | NT

USE MPI _SETUP_I NT

USE RAND | NT

USE SHOW. | NT

I MPLI CI' T NONE
| NCLUDE "npi f. h"

| NTEGER, PARAMETER :: MP=500, NP=400, M:=NP+1, &
N=MP, F=NP/ 10

REAL(KI ND(1D0)), PARAMETER :: ZERO=0DO, ONE=1D0
REAL(KI ND(1D0)), ALLOCATABLE :: &
A(:,:), B(:), BND(:,:), X(:), Y(:), &
W:), ASAVE(:,:)
REAL (KI ND(1D0)) RNORM
| NTEGER, ALLOCATABLE :: INDEX(:), |PART(:,:)

I NTEGER K, L, DN, J, JSH FT, |ERROR, NSETP, NSETZ
LOG CAL :: PRINT=. fal se.

| Setup for MPI:
MP_NPROCS=MP_SETUP()

DNEN max(1, max(1, MP_NPROCS)) - 1
ALLOCATE(| PART(2, max(1, MP_NPROCS)))

IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers s 255

| Spread constraint rows evenly to the processors.
| PART(1, 1) =1
DO L=2, MP_NPROCS
| PART(2, L- 1) =I PART(1, L- 1) +DN
| PART(1, L) =I PART(2, L-1) +1
END DO
| PART(2, MP_NPRQCCS) =N

| Define the constraints using random dat a.
K=max(0, | PART(2, M°_RANK+1) - | PART(1, MP_RANK+1) +1)
ALLOCATE(A(M K), ASAVE(M K), BND(2,N), &
X(N, WN, B(M, Y(M, INDEX(N))

I The use of ASAVE can be replaced by regenerating the
| data for A(:,:) after the return from
I Parallel _bounded_ LSQ
A=rand(A); ASAVE=A
| F(MP_RANK == 0 .and. PRINT) &
call show(| PART, &
"Partition of the constraints to be sol ved")

I Set the right-hand side to be one in the |ast
I conponent, zero el sewhere.
B=ZERQ, B(M) =ONE

| Solve the dual problem Letting the dual variable
I have no constraint forces an equality constraint
I for the prinmal problem
BND(1, 1: F) =- HUGE(ONE) ; BND(1, F+1:) =ZERO
BND(2, :) =HUGE(ONE)
CALL Parall el bounded LSQ &
(A, B, BND, X, RNORM W | NDEX, |PART, &
NSETP, NSETZ)

I Each processor multiplies its block tines the part
I of the dual corresponding to that partition.
Y=ZERO
DO J=I PART(1, MP_RANK+1) , | PART(2, MP_RANK+1)
JSH FT=J- | PART(1, MP_RANK+1) +1
Y=Y+ASAVE(: , JSHI FT) *X(J)
END DO

I Accurul ate the pieces fromall the processors.
I Put suminto B(:) on rank O processor.
B=Y
| F(MP_NPROCS > 1) &
CALL MPI _REDUCE(Y, B, M MPI _DOUBLE PRECI SI ON, &
MPl _SUM 0, MP_LIBRARY WORLD, | ERROR)
| F(MP_RANK == 0) THEN

I Conpute constraint solution at the root.
I The constraints will have no solution if B(M = ONE
I All of these exanpl e probl ens have sol utions.
B(M =B(M - ONE; B=- B/ B(M
END I F

I Send the inequality constraint or primal solution to all nodes.
| F(MP_NPRCCS > 1) &
CALL MPI _BCAST(B, M MPI _DOUBLE PRECI SION, 0, &
MP_LI BRARY_WORLD, | ERROR)

| For large problens this printing may need to be renpved.
| FCOMP_RANK == 0 .and. PRINT) &

256 « Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

call show(B(1l:NP), &
"Mnimal length solution of the constraints")

I Conpute residuals of the individual constraints.
X=ZERO
DO J=I PART(1, M°_RANK+1) , | PART(2, MP_RANK+1)
JSH FT=J- | PART(1, MP_RANK+1) +1
X(J) =dot _pr oduct (B, ASAVE(:, JSHI FT))
END DO

I This cleans up residuals that are about rounding error
I unit (times) the size of the constraint equation and
I right-hand side. They are replaced by exact zero.
WHERE(W == ZERO) X=ZERO
WeX

I Each group of residuals is disjoint, per processor.
I W add all the pieces together for the total set of
I constraints.
| F(MP_NPROCS > 1) &
CALL MPI _REDUCE(X, W N, MPI _DOUBLE PRECI SIQON, &
MPI _SUM 0, MP_LI BRARY WORLD, | ERROR)
| FCMP_RANK == 0 ~and. PRINT) &
call show(W "Residuals for the constraints")

| See to any errors and shut down MPI.
MP_NPROCS=MP_SETUP(’ Fi nal ")
| F(MP_RANK == 0) THEN
| F(COUNT(W < ZERO) == 0 .and. &
COUNT(W == ZERO) >= F) WRITE(*, *) &
" Exanple 1 for PARALLEL BOUNDED LSQ is correct."
END | F
END

Example 2: Distributed Newton-Raphson Method with Step Control

The program PBLSQ_EX2 illustrates the computation of the solution of a non-
linear system of eguations. We use a constrained Newton-Raphson method.
This algorithm works with the problem chosen for illustration. The step-size
control used here, employing only simple bounds, may not work on other non-
linear systems of equations. Therefore we do not recommend the simple non-
linear solving technique illustrated here for an arbitrary problem. Thetest caseis
Brown’s Almost Linear ProblenMoré, et al. (1982). The components are given
by:
n
cfi(X)= %+ z x; —(n+1),i =1,..,n-1
=1
o fo(X) = XX, =1

T
The functions are zero at the point (6,...,6,61‘“) , Whered >1 is a particular
root of the polynomial equation” —(n+1)3"" +1=0. To avoid convergence
to the local minimunx = (0,...,0,n+1)T, we start at the standard point

IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers s 257

x=(1/2,..,1/2,1/ 2)" and develop the Newton method using the linear terms
f(x-y)= f(x)=J(x)y 0O, where J(x)is the Jacobian matrix. The updateis
constrained so that the first n—1 components satisfy x; —y; 21/2, or

Yj < X; —1/2. The last component is bounded from both sides,
0<X,~Y,<1/2, or X, >V, 2(x,—1/2). These boundsavoid the local

n
minimum and allow us to replace the last equation by z In(xj) =0, whichis
=1
better scaled than the original. The positive lower bound for x, -y, is replaced
by the strict bound, EPSI LON(1D0) , the arithmetic precision, which restricts the
relative accuracy of x,. Theinput for routine PARALLEL_BOUNDED_LSQ

expects each processor to obtain that part of J(x) it owns. Those columns of the

Jacobian matrix correspond to the partition giveninthe array | PART(:, :). Here
the columns of the matrix are evaluated, in parallel, on the nodes where they are
required.

PROGRAM PBLSQ EX2

Use Parall el _bounded LSQ to solve a non-linear system
of equations. The exanple is an ACM TOWVS t est probl em
except for the larger size. It is "Brown’s Al npbst Linear
Function."

USE ERROR_OPTI ON_PACKET

USE PBLSQ | NT

USE MPI _SETUP_I NT

USE SHOW | NT

USE Nunerical _Libraries, ONLY : NLRTY

I MPLI CI' T NONE
| NTEGER, PARAMETER :: N=200, MAXI T=5

REAL(KI ND(1D0)), PARAMETER :: ZERO=0DO, ONE=1D0, &
HALF=5D- 1, TWO=2DO0
REAL(KI ND(1D0)), ALLOCATABLE :: &
A(:,:), B(:), BND(:,:), X(:), Y(:), W:)
REAL (KI ND(1D0)) RNORM
| NTEGER, ALLOCATABLE :: INDEX(:), |PART(:,:)

I NTEGER K, L, DN, J, JSH FT, |ERROR, NSETP, &
NSETZ, | TER

LOd CAL :: PRI NT=.fal se.

TYPE(D_OPTI ONS) | OPT(3)

I Setup for MPI:
MP_NPROCS=MP_SETUP()

DNEN max(1, max(1, MP_NPROCS)) - 1
ALLOCATE(| PART(2, max(1, MP_NPROCS)))

I Spread Jacobian matrix colums evenly to the processors.
| PART(1, 1) =1
DO L=2, MP_NPROCS
| PART(2, L- 1) =I PART(1, L- 1) +DN
| PART(1, L) =l PART(2, L-1) +1

258 « Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

END DO
| PART(2, MP_NPROCS) =N

K=max (0, | PART(2, MP_RANK+1) - | PART(1, MP_RANK+1) +1)
ALLOCATE(A(N, K), BND(2,N), &
XN, WN, B(N), Y(N), INDEX(N))

| This is Newton’s nethod on "Brown’s al nbst
I linear function."
X=HALF
| TER=0

I Turn off nmessages and stopping for FATAL class errors.
CALL ERSET (4, 0, 0)

NEWFON_METHOD: DO

I Set bounds for the values after the step is taken.

I Al variables are positive and bounded bel ow by HALF,

I except for variable N, which has an upper bound of HALF.
BND(1, 1: N- 1) =- HUGE(ONE)
BND(2, 1: N- 1) =X(1: N-1) - HALF

BND(1, N) =X(N) - HALF
BND(2, N) =X(N) - EPSI LON(ONE)

I Conpute the residual function.

B(1:N-1)=SUM X) +X(1: N- 1) - (N+1)
B(N) =LOG(PRODUCT(X))
if(nmp_rank == 0 .and. PRI NT) THEN

CALL SHOWNB, &
"Devel opi ng non-linear function residual")

END I F

I F (MAXVAL(ABS(B(1: N-1))) <= SQRT(EPSILON(ONE))) &

EXI T NEWTON_METHOD

I Conpute t h derivatives |local to each processor.
(N-1,:)=0ONE

DO J=1, N-1
I F(J < | PART(1, MP_RANK+1)) CYCLE
I F(J > | PART(2, MP_RANK+1)) CYCLE
JSHI FT=J- | PART(1, MP_ RANK+1) +1
A(J, JSHI FT) =TWD
END DO
A(N, :) =ONE/ X(| PART(1, MP_RANK+1) : | PART(2, MP_RANK+1))

I Reset the |linear independence tolerance.
| OPT(1) =D OPTI ONS(PBLSQ SET_TOLERANCE, &
sqrt (EPSI LON(ONE)))
| OPT(2) =PBLSQ SET_MAX_| TERATI ONS

I If Niterations was not enough on a previous iteration, reset to 2*N.
I F(NLIRTY(1) == 0) THEN
I OPT(3) =N
ELSE
| OPT(3)=2*N
CALL E1POP(’ MP_SETUP')
CALL E1PSH(’ MP_SETUP')
END | F

CALL parallel _bounded LSQ &
(A, B, BND, Y, RNORM W | NDEX, |PART, NSETP, &
NSETZ, | OPT=I OPT)

IMSL Fortran 90 MP Library 4.0 Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers s 259

I The array Y(:) contains the constrai ned Newton step.
I Update the vari abl es.
X=X-Y

| F(nmp_rank == .and. PRI NT) THEN
CALL show(BND, "Bounds for the nobves")
CALL SHOW X, "Devel oping Sol ution")
CALL SHON (/RNORM), &
"Li near problemresidual norni')
END | F

I This is a safety nmeasure for not taking too many steps.
| TER=I TER+1
I F(I TER > MAXI T) EXI T NEWION_METHOD

END DO NEWION_METHOD

| F(MP_RANK == 0) THEN

IF(I1 TER <= MAXIT) WRITE(*, *) &

" Exanple 2 for PARALLEL BOUNDED LSQ is correct."
END | F

| See to any errors and shut down MPI.
MP_NPROCS=MP_SETUP(’ Fi nal ')

END

260 « Chapter 7: ScaLAPACK Utilities and Large-Scale Parallel Solvers IMSL Fortran 90 MP Library 4.0

Chapter 8: Partial Differential Equations

Contents
SUbroutiNe PDE_ID MG ..iiiiiiiiiiiiiiiie i e e e e ettt e e e e et e e e e e 268
Example 1 - Electrodynamics Model..........ccuveeiiiiiiiiiiiiiiiieee i 277
Example 2 - Inviscid Flow on aPlatecccoeeeeeeie e, 280
Example 3 - Population DYNamMICSccooiiiiiiiiiiieeeeiiiiieeee e 283
Example 4 - A Model in Cylindrical Coordinatesccccevevcieiiiiienneeennn. 285
Example 5 - A Flame Propagation Modelccccooiiiiiiiiiiiiiniiiiiieee. 287
Example 6 - A ‘Hot Spot’ Model ... 289
Example 7 - Traveling WaVESooiiieiiiiiiiiiieeee e 291
Example 8 - Black-Scholes ... 293
Example 9 - Electrodynamics, Parameters Studied with MPI 295

Introduction

This chapter describes an algorithm and a corresponding integrator subroutine
PDE_1D MGfor solving a system of partial differential equations

U, EE: f(u,x,t), X, <X<Xg,t>t,

Equation 1

This software is aone-dimensional solver. It requiresinitial and boundary

conditions in addition to values of %. The integration method is noteworthy due
to the maintenance of grid linesin the space variable, X. Detailsfor choosing
new grid lines are given in Blom and Zegeling, (1994). The class of Equation 1
problems solved with PDE_1D MGis expressed by equations:

NPDE auk Py
;Cj,k(xvt!u’ux)w = Xi m&(Xij (X’t'u'ux)) B Qi (X't’u!ux)'

j=1..,NPDE, X, <X<Xg,t>t,,m0{012}

Equation 2

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations « 265

T
isthe solution. Theinteger valueNPDE =1 jsthe

R adQ o be regarded, in
U,C] ko R] and Q] are

The vector us [ul""’uNpDE]

number of differential equations. The functions

special cases, as flux and source terms. The functions

expected to be continuous. Allowed values M=0m=1,andm=2 gefor
problemsin Cartesian, cylindrical polar, and spherical polar coordinates. Inthe

two cases M> 0, theinterval [X'- 'XR] must not contain X =0 as an interior point.
The boundary conditions have the master equation form

B ()R (x,t,u,u,) = v (X.t,u,uy),
atx=x,_ andx=Xg,] =1,...,NPDE

Equation 3

In the boundary conditions the Bj andy; are continuous functions of their

arguments. In the two cases m> 0 and an endpoint occurs at 0, the finite value

of the solution at X =0 must be ensured. This requires the specification of the
=0 R =0 o

X=X or ***= . Theinitia values

J

solution at X =0, or impliesthat

satisfy U(X.to) = Uo(X), X D[XL ’XR], where Yis a piece-wise continuous vector
function of X with NPDE components.

The user must pose the problem so that mathematical definitions are known for

the functions ki * i Q) By and These functions are provided to the
routine PDE_1D_MgGin the form of three subroutines. Optionally, this
information can be provided by reverse communication. These forms of the
interface are explained below and illustrated with examples. Users may turn
directly to the examples if they are comfortable with the description of the
algorithm.

Algorithm Summary

The equation % = f(UX,1), X, <X<Xg,1>1o isapproximated at N time-
dependent grid values XL =% << (8) < X (t) <o <Xy = xR, Using the total
differentia
%: +Uu %
a g
transforms the differential equation to
du dx
—-u,—=u, = f(uxt
d ().

Using central divided differences for the factor Yxleads to the system of ordinary
differential equationsin implicit form

266 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

du; _(Ui+1_Ui—l) dx; =F,t>ty,,i=1..,N

dt (X —X-y) dt

U

Theterms Yi+ respectively represent the approximate solution to the partial

differential equation and the value of F(uxt) at the point (x.t) = (X" (t)’t) . The
truncation error is second-order in the space variable, X. The above ordinary
differential equations are underdetermined, so additional equations are added for
the variation of the time-dependent grid points. It is necessary to discuss these
equations, since they contain parameters that can be adjusted by the user. Often it
will be necessary to modify these parametersto solve a difficult problem. For
this purpose the following quantities are defined’:

A% =%, =%, =(A%) ™
Hi =n —K(K+1)(n,, -2 +n4),0<i< N
N_; = Np, Ny4g =Ny

Thevalues " are the so-called point concentration of the grid, and K = 0 denotes
aspatial smoothing parameter. Now the grid points are defined implicitly so that
dii—y duy
HigtT— — MW +1—=
' dt_ - _dt jci<n
Mi—l i

where T2 0 js atime-smoothing parameter. Choosing T very largeresultsin a
fixed grid. Increasing the value of T from its default avoids the error condition
where grid lines cross. Thedivisors are

. N2
NPDE (U), —U/]
M,% = +(NPDE) Z %
1= (%)

Thevalue K determinesthe level of clustering or spatial smoothing of the grid
points. Decreasing K from its default decrease the amount of spatial smoothing.

The parameters M; approximate arc length and help determine the shape of the
grid or X -distribution. The parameter T prevents the grid movement from

adjusting immediately to new values of the M; , thereby avoiding oscillationsin
the grid that cause large relative errors. Thisisimportant when applied to
solutions with steep gradients.

The discrete form of the differential equation and the smoothing equations are
combined to yield the implicit system of differential equations

1 The three-tiered equal sign, used here and below, is rea&‘Dor a and b are exactly the same
object or value.”

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations « 267

dy

A=)

dt

.
¥ =[Ud U8 U U PP g

Thisisfrequently a stiff differential-algebraic system. It is solved using the
integrator DASPG and its subroutines, including D2SPG. These are documented in
the IMSL Fortran Numerical Library, Chapter 5. Note that DASPGisrestricted to
use within PDE_1D_MgG until the routine exits with the flag

I DO = 3. If DASPGis needed during the evaluations of the differential equations
or boundary conditions, use of a second processor and inter-process
communication isrequired. The only options for DASPG set by PDE_1D MG are
the Maximum BDF Order, and the absolute and relative error values, ATOL and
RTOL. Usersmay set other options using the Options Manager. Thisis described
in Chapter 5, for DASPG, and generally in Chapter 10 of the IMSL Fortran
Numerical Library.

PDE_1D_MG_INT

Invoke amodule, with the statement USE PDE_1D MG | NT, near the second line
of the program unit. The integrator is provided with single or double precision
arithmetic, and a generic named interface is provided. We do not recommend
using 32-bit floating point arithmetic here. The routine is called within the
following loop, and is entered with each value of | DO. The loop continues until a
value of | DOresultsin an exit.

| DO=1

DO
CASE(1DO == 1) {Do required initialization steps}
CASE(I DO == 2) {Save solution, update TO and TOUT }

| F{Fi ni shed with integration} |DO=3

CASE(1 DO == 3) EXI T {Nornmal}
CASE(IDO == 4) EXIT {Due to errors}
CASE(I DO == 5) {Evaluate initial data}
CASE(I DO == 6) {Evaluate differential equations}
CASE(I DO == 7) {Eval uate boundary conditions}
CASE(I DO == 8) {Prepare to solve banded systent
CASE(I DO == 9) {Sol ve banded systent

CALL PDE_1D MG (TO, TOUT, IDO, U, &
initial_conditions, &

268 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

pde_systemdefinition, &
boundary_conditions, |COPT)

END DO

The argumentsto PDE_1D MGare required or optional.

Required Arguments
TO—(Input/Output)

This is the value of the independent variablehere the integration dt
begins. Itis set to the vald@UT on return.

TOUT—(Input)

This is the value of the independent variablehere the integration Jf
ends. Note: Values a0 < TQUT imply integration in the forward
direction. While Values of0 > TQUT imply integration in the backward
direction. Either direction is permitted.

I DO—(Input/Output)
This in an integer flag that directs program control and user action. Its value
is used for initialization, termination, and for directing user response during
reverse communication.

I DO=1 This value is assigned by the user for the start of a new problem.
Internally it causes allocated storage to be reallocated, conforming to the
problem size. Various initialization steps are performed.

I DO=2 This value is assigned by the routine when the integrator has successfully
reached the end point, TOUT.

I DO=3 This value is assigned by the user at the end of a problem. The routine is
called by the user with this value. Internally it causes termination steps to be
performed.

I DO=4 This value is assigned by the integrator when afpdéL or TERM NAL
error condition has occurred, and error processing is®at to STOP for
these types of errors. It is not necessary to make a final call to the integrator
with I DO=3 in this case.

Values ofl DO = 5,6,7,8,9 are reserved for applications that provide problem
information or linear algebra computations using reverse communication.
When problem information is provided using reverse communication, the
differential equations, boundary conditions and initial data must all be given.
The absence of optional subroutine names in the calling sequence directs the
routine to use reverse communication. In the moeDie 1D MG | NT,
scalars and arrays for evaluating results are named below. The names are
preceded by the prefix" pde_1d_ng_" or “d_pde_1d_ng_", depending
on the precision. We use the prefix pde_1d_ng_", for the appropriate
choice.

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations * 269

I DO=5 Thisvalueis assigned by the integrator, requesting data for the initial
conditions. Following this evaluation the integrator is re-entered.

(Optional) Update the grid of valuesin array locations

U(NPDE +1,j),j =2,...N =1 Thisgrid is returned to the user
equally spaced, but can be updated as desired, provided the values
areincreasing.

(Required) Provideinitial values for all components of the system at the

grid of values U(NPDE +1,j),j =1...N the optional step of
updating the initial grid is performed, then the initial values are
evaluated at the updated grid.

I DO=6 Thisvalueisassigned by the integrator, requesting data for the
differential equations. Following this evaluation the integrator is re-entered.
Evaluate the terms of the system of Equation 2. A default valueof m=0 is
assumed, but this can be changed to one of the other choices m=1o0r 2. Use
the optional argument | OPT(:) for that purpose. Put the valuesin the arrays
as indicated?.

Xx=7?_pde_1d_mg_x

t=? pde_1d_mg_t

u =2 pde 1d_mg_u(j)

@J
0x
?_pde_1d_mg_c(j,k):=Cjx(x,t,u,uy)
?_pde_1d_mg_r(j):=r;(xt,u,uy)

?_pde_1d_mg_q(j):=q;(x.t,u,uy)
j.k=1,...,NPDE

=ul =2_pde_1d_mg_dudx(j)

If any of the functions cannot be evaluated, set pde_1d_ng_i r es=3. Otherwise
do not change its value.

| DO=7 Thisvalueisassigned by the integrator, requesting data for the boundary
conditions, as expressed in Equation 3. Following the evaluation the
integrator is re-entered.

2 The assign-to equality, a:=b, used here and below, is read “the expres§lais evaluated and
then assigned to the location.”

270 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

X=? pde_ 1d _mg_x
t=? pde 1d mg_t
u =2 pde 1d_mg_u(j)

— =u}=7? pde 1d_mg_dudx(j)

?_pde_1d_mg_beta(j):=pB;(x,t,u,uy)
?_pde_1d_mg_gammay(j):=y;(x,t,u,uy)
j=1..,NPDE

Thevalue X XU XR} and the logical flag pde_1d_mg_LEFT=. TRUE. for

X=X_ |thasthevaluepde_1d_ng LEFT=. FALSE. for X~ XRr. If any of the
functions cannot be evaluated, set pde_1d_nyg_i r es=3. Otherwise do not

changeitsvalue.

| DO=8 Thisvalueis assigned by the integrator, requesting the calling program to
prepare for solving a banded linear system of algebraic equations. Thisvalue

will occur only when the option for “reverse communication solving” is set in

the arrayl OPT(:), with optionPDE_1D MG REV_COWVM FACTOR_SOLVE.
The matrix data for this system isBand Storage Mode, described in the
section: Reference Material for the IMSL Fortran Numerical Libraries.

PDE_1D_MG | BAND

Half band-width of linear system

PDE_1D MG LDA

The value 3PDE_1D MG | BAND+1, with
NEQ =(NPDE +1)N

?_PDE_1D MG A

Array of sizePDE_1D MG _LDA by NEQ
holding the problem matrix in Band Storage
Mode

PDE_1D_MG PANI C FLAG

Integer set to anon-zero value only if the linear
system is detected as singular

I DO=9 This value is assigned by the integrator , requesting the calling program to

solve a linear system with the matrix defined as notedivia@as.

?_PDE_1D_MG RHS

Array of size NEQ holding the linear
system problem right-hand side

PDE_1D MG PANI C FLAG

Integer set to a non-zero value only if the
linear system is singular

?_PDE_1D_MG SOL

Array of size NEQ to receive the solution,

after the solving step

IMSL Fortran 90 MP Library 4.0

Chapter 8: Partial Differential Equations « 271

U(1: NPDE+1, 1: N) —(Input/Output)
This assumed-shape array specifigait information about the problem size
and boundaries. The dimension of the problem is obtained from
NPDE +1=sz&(U 1) The number of grid points is obtained by
N =sze(U.2) Limits for the variableX are assigned as input in array
locations Y (NPDE +1,) = x ,U(NPDE +1L,N) =Xg 15 1ot required to

defineY (NPDE+1,j),j =2,...N =1 At completion, the array

U(1: NPDE, 1: N) contains the approximate solution value

Ui(xj (TOUT)’TOUT) in locationU(1, J). The grid valug' (TouT) isin
locationU(NPDE+1, J) . Normally the grid values are equally spaced as the
integration starts. Variable spaced grid values can be provided by defining
them agOutput from the subroutineni ti al _condi ti ons or during

reverse communicationpo=5.

Optional Arguments

initial_conditions—(Input)
The name of an external subroutine, written by the user, when using forward
communication. If this argument is not used, then reverse communication is
used to provide the problem information. The routine gives the initial values
for the system at the starting independent variable W@ué his routine can
also provide a non-uniform grid at the initial value.

SUBROUTI NE i nitial _conditions (NPDE,N,U)
I nt eger NPDE, N
REAL(ki nd(T0)) U(:,:)

END SUBROUTI NE

(Optional) Update the grid of values in array locations

U(NPDE+1,j),j=2,..N-1 1phjs grid is input equally spaced, but can be
updated as desired, provided the values are increasing.

(Required) Provide initial valudd (1) =L N gor o) components of the

system at the grid of valub(NPDE +1,}),j =1,.,N ' i the optional step
of updating the initial grid is performed, then the initial values are evaluated
at the updated grid.

pde_syst em defi ni ti on—(Input)
The name of an external subroutine, written by the user, when using
forward communication. It gives the differential equation, as expressed in
Equation 2

272 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

SUBROUTI NE pde_system definition&
(t, x, NPDE, u, dudx, ¢, q, r, IRES)
I nteger NPDE, |RES
REAL(ki nd(TO)) t, x, u(:), dudx(:)
REAL(ki nd(TO)) c(:,:), q(:), r(:)
END SUBROUTI NE
Evaluate the terms of the system of Equation 2. A default value of m=0 is

assumed, but this can be changed to one of the other choices m=1o0r 2. Usethe
optional argument | OPT(:) for that purpose. Put the valuesin the arrays as

indicated.
u =u(j)
ou! - .
o uy = dudx()

o j,k):=Cjx(x,t,u,uy)
r(j):=r(xtuuy)
ali) =0, (xtu)
jk=1,..,NPDE

If any of the functions cannot be evaluated, set | RES=3. Otherwise do not change
itsvalue.

boundary_condi ti ons—(Input)
The name of an external subroutine, written by the user when using forward
communication. It gives the boundary conditions, as expressegliation 2

u=u(j)
ou! - .
& =uy =dudx(j)

beta(j) : = B;(x.t,u,uy)
gamma(j) :=y;(x,t,u,uy)
j=1..,NPDE

The valueX Pt ’XR}, and the logical flagEFT=. TRUE. for X~ XL. The flag
has the valueEFT=. FALSE. for X~ Xr.

I OPT—(Inpuf)
Derived type arrag_opt i ons ord_opti ons, used for passing optional
data toPDE_1D MG. See the sectioBptional Data in thelntroduction for
an explanation of the derived type and its use. It is necessary to invoke a
module, with the statemedSE ERROR _OPTI ON_PACKET, near the second
line of the program unit. Examples 2-8 use this optional argument. The
choices are as follows:

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations « 273

Packaged Options for PDE_1D_MG

Option Prefix = ? Option Name

Option Value

s_,d_ PDE_1D_MG_CART_COORDI NATES

1

PDE_1D MG CYL_COORDI NATES

PDE_1D_MG SPH_COORDI NATES

PDE_1D MG TI ME_SMOOTHI NG

PDE_1D_MG SPATI AL_SMOOTHI NG

PDE_1D MG MONI TOR_REGULARI ZI NG

PDE_1D_MG RELATI VE_TOLERANCE

PDE_1D MG ABSOLUTE_TOLERANCE

PDE_1D_MG MAX_BDF_ORDER

Olo|N|OO[lO|B~[W|DN

PDE_1D MG REV_COVM FACTOR_SOLVE

=
o

mmmmmlmmmmm
Q_Q_Q_Q_Q_lQ_Q_Q_Q_Q_

PDE_1D_MG NO NULLI FY_STACK

[
[N

| OPT(10) = PDE_1D MG CART_COORDI NATES

Usethevalue m=0 in Equation 2. Thisisthe default.

| OPT(10) = PDE_1D MG CYL_COORDI NATES

Use the value m=1in Equation 2. The default valueis m=0.

| OPT(1O = PDE_1D MG SPH_COCRDI NATES

Usethevalue M= 2 in Equation 2. The default valueis m=0.,

lOPT(10) =

?_OPTI ONS(PDE_1D_MG_TI ME_SMOOTHI NG, TAU)

This option resets the value of the parameter T2 0, described above.

The default valueis T=0,
IOPT(10) =

?_OPTI ONS(PDE_1D MG _SPATI AL_SMOOTHI NG, KAP)

This option resets the value of the parameter K = 0, described above.

The default valueis K = 2,
OPT(10 =

2 _OPTI ONS(PDE_1D_MG_MONI TOR_SMOOTHI NG, ALPH)

This option resets the value of the parameter @ 2 0, described above.

The default valueis @ = 001,

| OPT(1 0 = ?_OPTIONS
(PDE_1D_MG RELATI VE_TOLERANCE, RTOL)

This option resets the value of the relative accuracy parameter used in
DASPG. The default valueis RTOL=1E- 2 for single precision and

RTOL=1D- 4 for double precision.

| OPT(10) = ?_OPTIONS
(PDE_1D_MG ABSOLUTE_TOLERANCE, ATOL)

This option resets the value of the absolute accuracy parameter used in

274 « Chapter 8: Partial Differential Equations

IMSL Fortran 90 MP Library 4.0

DASPG. The default valueis ATOL=1E- 2 for single precision and
ATOL=1D- 4 for double precision.

| OPT(10) = PDE_1D MG MAX_BDF_ORDER
| OPT(1 O+1) = MAXBDF
Reset the maximum order for the BDF formulas used in DASPG. The default
valueis MAXBDF=2. The new value can be any integer between 1 and 5.
Some problems will benefit by making this change. We used the default
value due to the fact that DASPG may cycle on its selection of order and step-
size with orders higher than value 2.

| OPT(10) = PDE_1D M5 REV_COMM FACTOR SOLVE
The calling program unit will solve the banded linear systems required in the
stiff differential-algebraic equation integrator. Values of IDO=8, 9 will
occur only when this optional valueis used.

| OPT(10) = PDE_1D MG NO NULLI FY_STACK
To maintain an efficient interface, the routine PDE_1D_MG collapses the
subroutine call stack with CALL_E1PSH(“NULLIFY_STACK”) . Thisimplies
that the overhead of maintaining the stack will be eliminated, which may be
important with reverse communication. It does not eliminate error
processing. However, precise information of which routines have errors will
not be displayed. To seethefull call chain, this option should be used.
Following completion of the integration, stacking is turned back on with
CALL_E1POP(“NULLIFY_STACK") .

Remarks on the Examples

Due to itsimportance and the complexity of itsinterface, this subroutineis
presented with several examples. Many of the program features are exercised.
The problems complete without any change to the optional arguments, except
where these changes are required to describe or to solve the problem.

In many applications the solution to a PDE is used as an auxiliary variable,
perhaps as part of alarger design or simulation process. The truncation error of
the approximate solution is commensurate with piece-wise linear interpolation on
the grid of values, at each output point. To show that the solution is reasonable, a
graphical display is revealing and helpful. We have not provided graphical

output as part of our documentation, but users may already have the Visual
Numerics, Inc. product, PV-WAVE, not included with Fortran 90 MP Library.
Examples 1-8 write resultsin files“PDE_ex0?.out” that can be visualized with
PV-WAVE. We provide ascript of commands, “pde_1d_mg_plot.pro” , for
viewing the solutions (see example below). The grid of values and each
consecutive solution component is displayed in separate plotting windows. The
script and data files written by examples 1-8 on a SUN-SPARC system are in the
directory for Fortran 90 MP Library examples. When inside PV_WAVE, execute
the command line*“pde_1d_mg_plot,filename="PDE_ex0?.out” toview
the output of a particular example.

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations « 275

Code for PV-WAVE Plotting (Examples Directory)
PRO PDE_1d_ng_pl ot, FILENAME = fil enane, PAUSE = pause

if keyword_set(FILENAME) then file = filename else file = "res.dat"”

if keyword_set (PAUSE) then twait = pause else twait = .1
; Define floating point variables that will be read
; fromthe first line of the data file.

x|l = 0DO

xr = 0DO

t0 = 0DO

tlast = 0DO

Open the data file and read in the probl em paraneters.
openr, lun, filenane, /get_lun
readf, lun, npde, np, nt, xl, xr, tO, tlast

Define the arrays for the solutions and grid.
dblarr(nt, npde, np)

dblarr(nt, np)

imes = dblarr(nt)

—~“Q C

Define a tenporary array for reading in the data.
tnp = dbl arr(np)
t_tnp = 0DO

; Read in the data.
for i =0, nt-1 do begin ; For each step in tine
readf, lun, t_tnp
times(i) =t_tnp

for k = 0, npde-1 do begin ; For each PDE:
rnf, lun, tnp
u(i,k,*) =tnp ; Read in the conponents.
end
rnf, lun, tnp
g(i,*) =tnp ; Read in the grid.
end

Close the data file and free the unit.
close, lun
free_lun, lun

W now have all of the solutions and grids.

Del ete any window that is currently open.
while (!d.w ndow NE -1) do WDELETE

Open two wi ndows for plotting the solutions
; and grid.

wi ndow, 0, xsize
wi ndow, 1, Xxsize

420
420

550, ysize
550, ysize

Plot the grid.

wset, O
plot, [xl, xr], [tO, tlast], /nodata, ystyle =1, $
title = "Gid Points", xtitle ="X", ytitle = "Tine"
for i = 0, np-1 do begin
oplot, g(*, i), times, psym= -1
end

; Pl ot the solution(s):
wset, 1
for k = 0, npde-1 do begin
um n mn(u(*, k,*))
umax max(u(*, k, *))
for i =0, nt-1 do begin
title = strconmpress("U "+string(k+1), /renove_all)+ $

276 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

"at tine "+string(tinmes(i))

plot, g(i, *), u(i,k,*), ystyle =1, $
title = title, xtitle = "X", $
ytitle = strconpress("U "+string(k+1), /renove_all), $
xr = [xl, xr], yr = [umn, umax], $
psym= -4

wait, twait

end
end
end

Example 1 - Electrodynamics Model

This exampleisfrom Blom and Zegeling (1994). The systemis
U = €pU, — g(u-v)
Vi = pvg +g(u-v),
where g(z) = exp(nz/ 3) —exp(-2nz/ 3)
0<x<1,0<t<4
u,=0andv=0atx=0
u=landv, =0atx=1
€=0143,p=01743,n=1719

We make the connection between the model problem statement and the example:

c=1,
m=0, R, =epu,, R, = pvy
Q=g(u-v),Q=-Q

u=landv=0att=0
The boundary conditions are
B1=1B,=0,y;=0,y, =v,ax=x_=0
B1=0B,=Ly;=u-1y,=0ax=xz=1

Rationale

Thisisanon-linear problem with sharply changing conditions near t =0. The
default settings of integration parameters allow the problem to be solved. The use
of PDE_1D MG with forward communication requires three subroutines provided
by the user to describe theinitia conditions, differential equations, and boundary
conditions.

program PDE_EX1
! El ectrodynam cs Mdel :
USE PDE_1d_nyg_i nt
I MPLI CI T NONE

I NTEGER, PARAMETER :: NPDE=2, N=51, NFRAMES=5

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations « 277

INTEGER |, 1DO

! Define array space for the solution.
real (kind(1d0)) U(NPDE+1,N), TO, TOUT
real (kind(1d0)) :: ZEROC=0DO, ONE=1DO, &
DELTA T=10D0, TEND=4DO0
EXTERNAL | C 01, PDE 01, BC 01

! Start loop to integrate and wite solution val ues.
| DO=1
DO
SELECT CASE (I DO

! Define values that determine limts.
CASE (1)
TO=ZERO
TOUT=1D- 3
U(NPDE+1, 1) =ZERG, U(NPDE+1, N) =ONE
OPEN(FI LE=" PDE_ex01. out’ , UNI T=7)
WRI TE(7, "(315, 4F10.5)") NPDE, N, NFRAMES, &
U(NPDE+1, 1), U(NPDE+1,N), TO, TEND
! Update to the next output point.
! Wite solution and check for final point.
CASE (2)

WRI TE(7, " (F10. 5) ") TOUT
DO | =1, NPDE+1

WRI TE(7, " (4E15.5)") U1, :)
END DO
TO=TOUT; TOUT=TOUT* DELTA_T
| F(TO >= TEND) |DO=3
TOUT=M N(TOUT, TEND)

1 All completed. Solver is shut down.
CASE (3)
CLOSE(UNI T=7)
EXIT

END SELECT

I Forward communi cation is used for the probl em data.

278 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

CALL PDE_1D M5 (TO, TOUT, IDO U, &
initial _conditions= ICO01, &
PDE_system definiti on= PDE_O01, &
boundary_condi ti ons= BC 01)

END DO

END

SUBROUTI NE | C_01(NPDE, NPTS, U)
! This is the initial data for Example 1.

I MPLICI T NONE

I NTEGER NPDE, NPTS

REAL(KI ND(1D0)) U(NPDE+1, NPTS)
U(1,:)=1D0; U(2, :)=0D0

END SUBROUTI NE

SUBROUTI NE PDE_01(T, X, NPDE, U, DUDX, C, Q R
! This is the differential equation for Exanple 1.

I MPLI CI T NONE

| NTEGER NPDE, | RES

REAL(KIND(1D0)) T, X, U(NPDE), DUDX(NPDE), &
C(NPDE, NPDE), Q(NPDE), R(NPDE)

REAL(KI ND(1D0)) :: EPS=0.143D0, P=0.1743D0, &
ETA=17.19D0, Z, TWO=2D0, THREE=3D0

C=0D0; (1, 1) =1D0; C(2, 2) =1D0
R=P* DUDX; R(1) =R(1) * EPS
Z=ETA*(U(1) - U(2))/ THREE
Q1) =EXP(2) - EXP(- TWD* 2)
Q2)=-Q1)

END SUBROUTI NE

SUBROUTI NE BC 01(T, BETA, GAMVA,

| RES)

! These are the boundary conditions for Exanple 1.

I MPLI CI T NONE

| NTEGER NPDE, | RES

LOG CAL LEFT

REAL(KI ND(1D0)) T, BETA(NPDE), GAMVA(NPDE), &
U(NPDE) , DUDX(NPDE)

| RES)

U, DUDX, NPDE, LEFT,

IMSL Fortran 90 MP Library 4.0

Chapter 8: Partial Differential Equations * 279

| F(LEFT) THEN

BETA(1) =1D0; BETA(2) =0D0

GAMVA(1) =0D0; GAMVA(2) =U(2)
ELSE

BETA(1) =0D0; BETA(2) =1D0

GAMVA(1) =U(1) - 1D0; GAMVA(2) =0D0
END | F

END SUBROUTI NE

Example 2 - Inviscid Flow on a Plate

Thisexampleisafirst order system from Pennington and Berzins, (1994). The
equations are

U = —Vy

Uy, = —VU, + W,

W = U, implying that uu, = —vu, + Uy,

u(0,t) =v(0,t) = 0,u(e0,t) = u(xg,t) =1,t 20

u(x,0) =1,v(x,0)=0,x=0
Following elimination of W, there remain NPDE = 2 differential equations. The

variable t isnot time, but a second space variable. The integration goes from
t=0tot=5. Itisnecessary to truncate the variable Xat afinite value,

say Xmex =Xg=25
m=0 and

. Interms of theintegrator, the system is defined by letting

csteafy gheel o)

The boundary conditions are satisfied by

B:O,y:{u—exp\)/(—zm)}, atx=x_

B:O,y:[uv],atx:xR

X

Weuse N =10+51= 61 grid points and output the solution at steps of At =01,

Rationale

Thisisanon-linear boundary layer problem with sharply changing conditions
near t =0. The problem statement was modified so that boundary conditions are
continuous near t =0. Without this change the underlying integration software,
DASPG, cannot solve the problem. The continuous blending function

u - exp(~20t) isarbitrary and artfully chosen. Thisisamathematical change to

280 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

All

the problem, required because of the stated discontinuity at t =0. Reverse
communication is used for the problem data. No additional user-written
subroutines are required when using reverse communication. We also have

chosen 10 of theiinitial grid points to be concentrated near XL = O, anticipating
rapid change in the solution near that point. Optional changes are madeto use a
pure absolute error tolerance and non-zero time-smoothing.

program PDE_1D MG EX02

Inviscid Flow Over a Plate

USE PDE_1d_ng_i nt
USE ERROR_OPTI ON_PACKET
I MPLI CI' T NONE

I NTEGER, PARAMETER :: NPDE=2, N1=10, N2=51, N=NL+N2
I NTEGER |, 1 DO, NFRAMES

Define array space for the solution.

Start

real (ki nd(1d0)) U(NPDE+1,N), TO, TOUT, DX1, DX2, DI FF
real (ki nd(1d0)) :: ZERO=0DO, ONE=1D0, DELTA T=1D-1, &
TEND=5D0, XMAX=25D0
real (ki nd(1d0)) :: U0=1D0, ULl=0D0, TDELTA=1D-1, TOL=1D 2
TYPE(D _OPTI ONS) | OPT(3)
|l oop to integrate and record sol uti on val ues.
| DO=1
DO
SELECT CASE (1 DO

Define values that determine limts and options.

CASE (1)

TO=ZERO

TOUT=DELTA T

U(NPDE+1, 1) =ZERO, U(NPDE+1, N) =XMAX

OPEN(FI LE=' PDE_ex02. out ', UNI T=7)

NFRAVES=NI NT((TEND+DELTA _T)/ DELTA_T)

WRI TE(7, "(315, 4D14.5)") NPDE, N, NFRAMES, &
U(NPDE+1, 1), U(NPDE+1,N), TO, TEND

DX1=XMAX/ N2; DX2=DX1/ N1

| OPT(1) =D_OPTI ONS(PDE_1D_M_RELATI VE_TOLERANCE, ZERO)

| OPT(2) =D_OPTI ONS(PDE_1D_M3 ABSOLUTE_TOLERANCE, TOL)

| OPT(3) =D_OPTI ONS(PDE_1D_M5_TI ME_SMOOTHI NG, 1D- 3)

Update to the next output point.
Wite solution and check for final point.

CASE (2)

TO=TOUT

I F(TO <= TEND) THEN
WRI TE(7, " (F10. 5) ") TOUT
DO | =1, NPDE+1

WRI TE(7, " (4E15.5)") (1, :)

END DO
TOUT=M N(TOUT+DELTA T, TEND)
| F(TO == TEND) | DO=3

END | F

conpl eted. Solver is shut down.

CASE (3)

CLOSE(UNI T=7)
EXIT

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations « 281

| Define initial data val ues.
CASE (5)
U(: NPDE, :) =ZERO, U(1,
DO | =1, N1
U(NPDE+1, 1) =(1 - 1) * DX2
END DO
DO | =N1+1, N
U(NPDE+1, 1) =(| - N1) * DX1
END DO
VWRI TE(7, " (F10.5)") TO
DO | =1, NPDE+1
WRI TE(7, "
END DO

| Define differential
CASE (6)
D PDE _

equati ons.

) MG_C=ZERO
S C(1, 1) =ONE

e
UUU

IUIU

IUIU
U'U'U T T T
oE

P
|
AR ,Q

P
|

IUIU
SRR AR
%Q

_H
:*lo
o
20
<
\B I 1

| Define boundary condi
CASE (7)
D PDE_1D MG BETA=ZERO
| F(PDE_1D MG LEFT) THEN

) =ONE

(4E15.5)") U(I,

2,1)=D_PDE_1D MG U(1)

DE_1D MG U(2)
DE_1D_MG_DUDX(1)

D_PDE_1D MG DUDX(1)

DI FF=EXP(- 20D0* D_PDE_1D_MG_T)

Bl end the | eft boundary val ue down to zero.

D_PDE_1D M5 GAMVA=(/D_PDE_1D MG U(1)-

DI FF, D_PDE_1D MG U(2)/)

ELSE
D_PDE_1D M5 GAMVA=(/D_PDE_1D MG U(1)-

ONE, D_PDE_1D MG DUDX(2)/)
END | F
END SELECT

I Reverse conmunication is used for the probl em data.

CALL PDE 1D MG (TO, TOUT,
END DO
end program

I1DO, U,

| OPT=I OPT)

282 « Chapter 8: Partial Differential Equations

IMSL Fortran 90 MP Library 4.0

Example 3 - Population Dynamics
This exampleis from Pennington and Berzins (1994). The systemis

U =-u,—I(t)u, x, =0 x<a=xg,t=20

I(t) = ju(x,t)dx

__ep(=x)
u(x,O)—m
u(0,t) = g[jlb(x, I (t))u(x,t)dx,t], where
y) =2y eR(=X)
b(x,y) (y+1)2 , and
9(zt)=

47(2-2exp(-a) + exp(—t))2
(1~ exp(-a))(1- (1+ 2a) exp(~2a))(1- exp(~a) + exp(~t))
Thisis anotable problem because it involves the unknown
exp(—x)

1-exp(~a) +&p(~1) across the entire domain. The software can solve
the problem by introducing two dependent algebraic equations:

u(x,t) =

vy(t) = | u(x,t)dx,

Vy(t) = | xexp(=x)u(x,t)dx

Ot——p O

This|leads to the modified system
U =-u,-vu, 0sx<a, t=0
1t
U(O,t) = —g()V1\2/2
(v +2)

In the interface to the evaluation of the differential equation and boundary
conditions, it is necessary to evaluate the integrals, which are computed with the

values of u(x.t) onthegrid. Theintegrals are approximated using the trapezoid
rule, commensurate with the truncation error in the integrator.
Rationale

Thisisanon-linear integro-differential problem involving non-local conditions
for the differential equation and boundary conditions. Access to evaluation of

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations « 283

these conditions is provided using reverse communication. It isnot possible to
solve this problem with forward communication, given the current subroutine
interface. Optional changes are made to use an absolute error tolerance and non-
zero time-smoothing. The time-smoothing valueT =1 prevents grid lines from
crossing.

program PDE_1D MG EX03
I Popul ati on Dynam cs Model .
USE PDE_1d_ng_i nt
USE ERROR_OPTI ON_PACKET

I MPLI CI' T NONE
I NTEGER, PARAMETER :: NPDE=1, N=101
I NTEGER 1 DO, |, NFRAMES

I Define array space for the solution.
real (kind(1d0)) U(NPDE+1,N), MD(N1), TO, TOUT, V_1, V. 2
real (kind(1d0)) :: ZEROC=0DO, HALF=5D-1, ONE=1D0, &
TWO=2D0, FOUR=4D0, DELTA T=1D- 1, TEND=5D0, A=5D0
TYPE(D_OPTI ONS) | OPT(3)
I Start loop to integrate and record solution val ues.
| DO=1
DO
SELECT CASE (1 DO
I Define values that deternmine linmts.
CASE (1)
TO=ZERO
TOUT=DELTA_ T
U(NPDE+1, 1) =ZERQO, U(NPDE+1, N) =A
OPEN(FI LE=" PDE_ex03. out’ , UNI T=7)
NFRAMES=NI NT((TEND+DELTA_T)/ DELTA_T)
WRI TE(7, "(315, 4D14.5)") NPDE, N, NFRAMES, &
U(NPDE+1, 1), U(NPDE+1,N), TO, TEND
| OPT(1) =D_OPTI ONS(PDE_1D_MG_RELATI VE_TOLERANCE, ZERO)
| OPT(2) =D_OPTI ONS(PDE_1D_M5 ABSOLUTE_TOLERANCE, 1D- 2)
| OPT(3)=D_OPTI ONS(PDE_1D_M5_TI ME_SMOOTHI NG, 1D0)
I Update to the next output point.
I Wite solution and check for final point.
CASE (2)
TO=TOUT
| F(TO <= TEND) THEN
WRI TE(7, " (F10.5)") TQUT
DO | =1, NPDE+1
WRI TE(7, " (4E15.5) ") U(I, :)
END DO
TOUT=M N(TOUT+DELTA T, TEND)
| F(TO == TEND) | DO=3
END | F
I All conpleted. Solver is shut down.
CASE (3)
CLOSE(UNI T=7)
EXIT
I Define initial data val ues.
CASE (5)
U(1,:)=EXP(-U(2,:))! (TWD EXP(-A))
WRI TE(7, " (F10.5)") TO
DO | =1, NPDE+1
WRI TE(7, " (4E15.5) ") U(I, :)
END DO

284 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

| Define differential equations.
CASE (6)
D PDE 1D MG C(1, 1) =ONE
D PDE_1D MG R(1) =-D PDE 1D MG (1)
| Evaluate the approximate integral, for this t.
V_1:HALF*SUI\/((U(1 TN 1) +U(L, 2: N)) *&
(W2,2:N) - U2 1:N1)))
D PDE 1D MG 1)=V_1*D PDE 1D M5 U(1)
! Define boundary conditions.
CASE (7)
| F(PDE_1D MG LEFT) THEN
| Evaluate the approximate integral, for this t.
I A second integral is needed at the edge.
V_1=HALF*SUM (U(1, 1: N-1) +U(1, 2: N)) * &
(U2,22N - U2 1:N1)))
M D=HALF* (U(2, 2: N) +U(2, 1: N-1))
V_2=HALF* SUM M D* EXP(- M D) * &
(UL, LN +YU(L, 22N))*(U(2,22N-U(2,1:N1)))
D PDE_1D MG BETA=ZERO

D PDE 1D MG GAMMA=G(ONE, D PDE_1D MG T)*V_1*V 2/ (V_1+ONE) **2- &
D PDE 1D MG U
ELSE
D PDE_1D MG BETA=ZERO
D PDE_1D M5 GAMVA=D PDE 1D MG DUDX(1)
END | F
END SELECT
I Reverse communication is used for the probl em data.
CALL PDE 1D MG (TO, TOUT, IDO, U, |OPT=I OPT)
END DO
CONTAI NS
FUNCTI ON ((z,t)
I MPLI CI' T NONE
REAL(KIND(1d0)) z, T, G
G=FOUR* Z* (TWD- TWO* EXP(- A) +EXP(- T)) **2
G=G ((ONE- EXP(-A))* (ONE- (ONE+TWOF A) * &
EXP(- TWO* A)) * (1- EXP(- A) +EXP(-T)))
END FUNCTI ON
end program

Example 4 - A Model in Cylindrical Coordinates

This exampleisfrom Blom and Zegeling (1994). The system models a reactor-

diffusion problem:
4 0(BrT) (j
T,=r ' ——+yex
z ar VO et
T.(0,2=0,T(L2) =0,z>0
T(r0)=0,0sr<1
B=10"*y=1e=01

The axial direction Z istreated as atime coordinate. Theradius I' istreated as
the single space variable.

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations « 285

Rationale

Thisisanon-linear problem in cylindrical coordinates. Our example illustrates
assigning m=1in Equation 2. We provide an optional argument that resets this
value from its default, m=0. Reverse communication is used to interface with
the problem data.

program PDE_1D MG _EX04
React or-Di ffusion problemin cylindrical coordinates.
USE pde_1d_ng_i nt
USE error_option_packet

I MPLI CI' T NONE
I NTEGER, PARAMETER :: NPDE=1, N=41
I NTEGER 1 DO, |, NFRAMES

Define array space for the solution.
real (ki nd(1d0)) T(NPDE+1,N), Z0, zZOUJT
real (kind(1d0)) :: ZERO=0DO, ONE=1D0, DELTA Z=1D-1, &
ZEND=1D0, ZMAX=1D0, BETA=1D-4, GAMMA=1D0, EPS=1D-1
TYPE(D_OPTI ONS) | OPT(1)
Start loop to integrate and record solution val ues.
| DO=1
DO
SELECT CASE (| DO
Define values that determine limts.
CASE (1)
Z0=ZERO
ZOUT=DELTA Z
T(NPDE+1, 1) =ZERO, T(NPDE+1, N) =ZMAX
OPEN(FI LE=" PDE_ex04. out’ , UNI T=7)
NFRAMES=NI NT((ZEND+DELTA_Z) / DELTA_Z)
WRI TE(7, "(315, 4D14.5)") NPDE, N, NFRAMES, &
T(NPDE+1, 1), T(NPDE+1, N), Z0, ZEND
| OPT(1) =PDE_1D_MG_CYL_COORDI NATES
Update to the next output point.
Wite solution and check for final point.
CASE (2)
| F(Z0 <= ZEND) THEN
WRI TE(7, " (F10.5)") ZzQUJT
DO | =1, NPDE+1
WRI TE(7, " (4E15.5) ") T(I,:)
END DO
ZOUT=M N(ZOUT+DELTA_Z, ZEND)
| F(Z0 == ZEND) | DO=3

END I F
Al conpleted. Solver is shut down.
CASE (3)
CLOSE(UNI T=7)
EXIT
Define initial data val ues.
CASE (5)
T(1,:)=ZERO

WRI TE(7, " (F10.5)") Z0
DO | =1, NPDE+1
WRI TE(7, " (4E15.5)")T(I,:)
END DO
Define differential equations.
CASE (6)
D PDE 1D MG C(1, 1) =ONE

286 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

D PDE_1D MG R(1) =BETA*D_PDE_1D M3 DUDX(1)
D PDE 1D MG Q1) = - GAMA* EXP(D _PDE_1D MG U(1)/ &
(ONE+EPS*D_PDE_1D MG U(1)))
Defi ne boundary conditi ons.
CASE (7)
| F(PDE_1D MG LEFT) THEN
D PDE 1D M3 BETA=ONE; D PDE_1D MG GAMVA=ZERO
ELSE
D PDE 1D M3 BETA=ZERO, D PDE_1D MG GAMMA=D PDE 1D MG (1)
END | F
END SELECT
Reverse conmmuni cation is used for the probl em data.
The optional derived type changes the internal nodel
to use cylindrical coordinates.
CALL PDE 1D MG (Z0, ZOUT, IDO, T, |OPT=I OPT)
END DO
end program

Example 5 - A Flame Propagation Model
This exampleis presented more fully in Verwer, et al., (1989). Thesystemisa
x,t)

normalized problem relating mass density u(xit) and temperature v(
U = Uy, —uf (V)
V; =V +UF(V),
wheref (z) = yexp(-B/ 2),p = 4,y =352 x10°
0<x<1,0<t <0006
u(x,0) = 1,v(x,0) =02
u, =v, =0,x=0
u, =0,v=h(t),x =1, where
b(t) =12,fort>2x10™, and
= 0.2+5x10%,for 0<t<2x107*

Rationale

Thisisanon-linear problem. The example shows the model steps for replacing
the banded solver in the software with one of the user’s choice. Reverse

communication is used for the interface to the problem data and the linear solver.
Following the computation of the matrix factorizatiorbireCRB, we declare the
system to be singular when the reciprocal of the condition number is smaller than
the working precision. This choice is not suitable for all problems. Attention

must be given to detecting a singularity when this option is used.

program PDE_1D M5 EX05
Fl ane propagati on nodel
USE pde_1d_ng_i nt
USE ERROR_OPTI ON_PACKET
USE Nunerical _Libraries, OWLY :&
dl 2crb, dlifsrb
I MPLI CI' T NONE

IMSL Fortran 90 MP Library 4.0

Chapter 8: Partial Differential Equations « 287

| NTECER, PARAMETER :: NPDE=2, N=40, NEQ=(NPDE+1)*N
I NTEGER I, 1 DO, NFRAMES, | PVT(NEQ

| Define array space for the solution.
real (ki nd(1d0)) U(NPDE+1, N), TO, TOUT
I Define work space for the banded sol ver.
real (ki nd(1d0)) WORK(NEQ , RCOND
real (ki nd(1d0)) :: ZERO=0DO, ONE=1DO, DELTA T=1D-4, &
TEND=6D- 3, XMAX=1D0, BETA=4D0, GAVWMA=3.52D6
TYPE(D_OPTI ONS) | OPT(1)
I Start loop to integrate and record sol uti on val ues.
| DO=1
DO
SELECT CASE (1 DO

I Define values that determne limts.
CASE (1)
TO=ZERO
TOUT=DELTA T
U(NPDE+1, 1) =ZERO, U(NPDE+1, N) =XMAX
OPEN(FI LE=' PDE_ex05. out’ , UNI T=7)
NFRAMVES=NI NT((TEND+DELTA T)/ DELTA T)
WRI TE(7, "(315, 4D14.5)") NPDE, N, NFRAMES, &
U(NPDE+1, 1), U(NPDE+1, N), TO, TEND
| OPT(1) =PDE_1D M5 REV_COMM FACTOR SOLVE
I Update to the next output point.
I Wite solution and check for final point.
CASE (2)
TO=TOUT
| F(TO <= TEND) THEN
VWRI TE(7, " (F10. 5) ") TOUT
DO | =1, NPDE+1
VRl TE(7, " (4E15.5)") U(I,)
END DO
TOUT=M N(TOUT+DELTA T, TEND)
| F(TO == TEND) | DO=3

END I F
I All conpleted. Solver is shut down.
CASE (3)
CLOSE(UNI T=7)
EXIT

I Define initial data val ues.
CASE (5)
Ul :)=ONE U(2,:)=2D1
VWRI TE(7, " (F10.5)") TO
DO | =1, NPDE+1
VRl TE(7, " (4E15.5)") U(I, :)
END DO
I Define differential equations.
CASE (6)
D PDE 1D MG C=ZERO
D PDE_ 1D MG (1, 1) =ONE; D _PDE_1D MG (2, 2) =ONE

D_PDE_1D MG R=D_PDE_1D_ MG DUDX

D PDE_ 1D MG 1)= D PDE_1D M5 U(1)*F(D_PDE_1D MG U(2))

288 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

D PDE 1D MG Q2)= -D PDE 1D M5 (1)
I Define boundary conditions
CASE (7)
| F(PDE_1D MG LEFT) THEN

D_PDE_1D MG BETA=ZERO, D_PDE_1D MG GAMVA=D PDE_1D MG DUDX
ELSE
D_PDE_1D MG BETA(1) =ONE
D_PDE_1D_MG_GAMVA(1) =ZERO
D_PDE_1D MG BETA(2) =ZERO
| F(D_PDE_1D MG T >= 2D-4) THEN
D_PDE_1D MG GAMVA(2) =12D- 1
ELSE
D_PDE_1D MG GAMVA(2) =2D- 1+5D3*D_PDE_1D MG T
END | F
D_PDE_1D M5 GAMVA(2) =D_PDE_1D MG GAMVA(2) - &
D _PDE_1D MG U(2)
END I F
CASE(8)

I Factor the banded matrix. This is the sane sol ver used
| internally but that is not required. A user can substitute
I one of their own.
call dl2crb (neq, d_pde_1d ng_a, pde_1d ng |l da
pde_1d_ny_i band, &
pde_1d _ng_i band, d_pde_1d ng_a, pde_1d ngy_lda, ipvt, rcond
wor k)
I F(rcond <= EPSILON(ONE)) pde_1d _ng_panic_flag =
CASE(9)
I Solve using the factored banded natri x.
call dlfsrb(neq, d_pde_1d_ng_a, pde_1d_ng_| da
pde_1d_ng_i band, &
pde_1d_ng_i band, ipvt, d_pde_1d_ng_rhs, 1, d_pde_1d_ng_sol)
END SELECT

I Reverse conmunication is used for the problemdata
CALL PDE 1D MG (TO, TOUT, 1DO, U, |OPT=I OPT)
END DO
CONTAI NS
FUNCTI ON F(2)
| MPLI CI' T NONE
REAL(KI ND(1D0)) Z, F
F=GAMVA* EXP(- BETA/ Z)
END FUNCTI ON
end program

Example 6 - A ‘Hot Spot’ Model
This exampleis presented more fully in Verwer, et al., (1989). Thesystemisa
normalized problem relating the temperature U(X’t), of areactant in achemical

system. Theformulafor h(2) is equivalent to their example.

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations « 289

Up = Uy + h(u)’
where h(z) = a—i(1+ a-z)exp(-3(1/ z-1)),

a=156=20,R=5
0<x<10<t<029
u(x0)=1

u, =0,x=0
u=1x=1

Rationale

Thisisanon-linear problem. The output shows a case where arapidly changing
front, or hot-spot, develops after a considerable way into the integration. This
causes rapid change to the grid. An option sets the maximum order BDF formula
from its default value of 2 to the theoretical stable maximum value of 5.

USE pde_1d_ng_i nt
USE error_option_packet
| MPLI CI' T NONE

| NTEGER, PARAMETER :: NPDE=1, N=80
I NTEGER |, |1 DO, NFRAMES

Define array space for the solution.
real (ki nd(1d0)) U(NPDE+1, N), TO, TOUT
real (kind(1d0)) :: ZERO=0DO, ONE=1D0, DELTA T=1D-2, &
TEND=29D- 2, XMAX=1DO, A=1D0, DELTA=2D1, R=5D0
TYPE(D_OPTI ONS) | OPT(2)
Start loop to integrate and record solution val ues.
| DO=1
DO
SELECT CASE (I DO

Define values that determine limts.
CASE (1)
TO=ZERO
TOUT=DELTA_ T
U(NPDE+1, 1) =ZERC, U(NPDE+1, N) =XMAX
OPEN(FI LE=" PDE_ex06. out’ , UNI T=7)
NFRAMES=(TEND+DELTA T)/DELTA T
WRI TE(7, "(315, 4D14.5)") NPDE, N, NFRAMES, &
U(NPDE+1, 1), U(NPDE+1,N), TO, TEND
Illustrate allowing the BDF order to increase
to its maxi mum al | owed val ue.
| OPT(1) =PDE_1D_MG MAX_BDF_ORDER
| OPT(2)=5
Update to the next output point.
Wite solution and check for final point.
CASE (2)
TO=TOUT
| F(TO <= TEND) THEN
VWRI TE(7, " (F10.5)") TQUT
DO | =1, NPDE+1

290 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

WRI TE(7, " (4E15.5)") (1, @)
END DO
TOUT=M N(TOUT+DELTA_T, TEND)
| F(TO == TEND) | DO=3

END | F
I All conpleted. Solver is shut down.
CASE (3)
CLOSE(UNI T=7)
EXIT
! Define initial data val ues.
CASE (5)
U(1,:)=0ONE

VWRI TE(7, " (F10.5)") TO
DO | =1, NPDE+1
VRI TE(7, " (4E15.5)") U(I, :)
END DO
| Define differential equations.
CASE (6)
D PDE 1D M5 C=ONE

I Define boundary conditions.
CASE (7)
| F(PDE_1D MG LEFT) THEN
D PDE 1D M5 BETA=ZERO
D PDE 1D _ NG GAMVA=D PDE 1D M5 DUDX
ELSE

D_PDE_1D MG BETA=ZERO
D_PDE_1D MG _GAMVA=D PDE_1D M5 U(1) - ONE
END TF
END SELECT

I Reverse communication is used for the probl em data.
CALL PDE 1D MG (TO, TOUT, IDO, U, |OPT=I OPT)
END DO
CONTAI NS
FUNCTI ON H(2)
real (kind(1d0)) Z, H
H=(R/ (A* DELTA)) * (ONE+A- Z) * EXP(- DELTA* (ONE/ Z- ONE))
END FUNCTI ON
end program

Example 7 - Traveling Waves

This exampleis presented more fully in Verwer, et al., (1989). Thesystemisa

normalized problem relating the interaction of two waves, u(x.t) and v(x.t)
moving in opposite directions. The waves meet and reduce in amplitude, due to
the non-linear termsin the equation. Then they separate and travel onward, with
reduced amplitude.

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations « 291

U =—u, —100uv,

V; =V, —100uv,

-05<x<05,0<t<05

u(x,0) = 051+ cog(10mx)),x O[-0.3,- 01], and
=0, otherwise

v(x,0) = 05(1+ cos(10mx)),x [01,03], and
=0, otherwise

u=v=0atbothends, t 20

Rationale
Thisisanon-linear system of first order equations.

program PDE_1D MG EX07
I Traveling Waves
USE pde_1d_ng_i nt
USE error_option_packet
| MPLI CI' T NONE

| NTEGER, PARAMETER :: NPDE=2, N=50
I NTEGER |, |1 DO, NFRAMES

I Define array space for the solution.
real (ki nd(1d0)) U(NPDE+1,N), TEMP(N), TO, TOUT
real (kind(1d0)) :: ZERC=0DO, HALF=5D-1, &
ONE=1D0, DELTA T=5D 2, TEND=5D-1, PI
TYPE(D_OPTI ONS) | OPT(5)
I Start loop to integrate and record solution val ues.
| DO=1
DO
SELECT CASE (1 DO

I Define values that deternmine linmts.
CASE (1)
TO=ZERO
TOUT=DELTA T
U(NPDE+1, 1) =- HALF; U(NPDE+1, N) =HALF
OPEN(FI LE=" PDE_ex07. out’ , UNI T=7)
NFRAMES=(TEND+DELTA T)/DELTA T
WRI TE(7, "(315, 4D14.5)") NPDE, N, NFRAMES, &
U(NPDE+1, 1), U(NPDE+1,N), TO, TEND
| OPT(1) =D_OPTI ONS(PDE_1D_M5_TI ME_SMOOTHI NG, 1D- 3)
| OPT(2) =D_OPTI ONS(PDE_1D_M5_RELATI VE_TOLERANCE, ZERO)
| OPT(3) =D_OPTI ONS(PDE_1D_M5 ABSOLUTE_TOLERANCE, 1D- 3)
| OPT(4)=PDE_1D_MG MAX_BDF_ORDER
| OPT(5) =3
I Update to the next output point.
I Wite solution and check for final point.

| F(TO <= TEND) THEN
WRI TE(7, " (F10. 5) ") TOUT
DO | =1, NPDE+1

292 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

WRI TE(7, " (4E15.5)") (1, @)
END DO
TOUT=M N(TOUT+DELTA_T, TEND)
| F(TO == TEND) | DO=3
END | F

I All conpleted. Solver is shut down.
CASE (3)
CLOSE(UNI T=7)
EXIT

| Define initial data val ues.
CASE (5)
TEMP=U(3, :)
U(1,:)=PULSE(TEMP); U(2,:)=U(1,:)
WHERE (TEMP < -3D-1 .or. TEMP > -1D-1) U(1,:)=ZERO
WHERE (TEMP < 1D-1 .or. TEMP > 3D-1) U(2,:)=ZERO
VRI TE(7, " (F10.5)") TO
DO | =1, NPDE+1
VRl TE(7, " (4E15.5)") U(I, :)
END DO

| Define differential equations.
CASE (6)
D PDE 1D M5 C=ZERO
5 C(1, 1) =ONE; D PDE_1D MG C(2, 2) =ONE

100D0* D_PDE_1D_M U(1) *D_PDE_1D MG U(2)
D_PDE_1D MG Q(1)

I Define boundary conditions.
CASE (7)
D PDE 1D M3 BETA=ZERQ, D PDE_1D MG GAMVA=D PDE 1D MG U

END SELECT

I Reverse communication is used for the probl em data.
CALL PDE 1D MG (TO, TOUT, IDO, U, |OPT=I OPT)

END DO
CONTAI NS

FUNCTI ON PULSE(2)

real (kind(1d0)) Z(:), PULSE(SIZE(Z))

=ACOS(- ONE)
PUL SE=HAL F* (ONE+COS(10D0* Pl * 7))
END FUNCTI ON
end program

Example 8 - Black-Scholes

The value of a European “call optionc,('s't), with exercise pric€and
expiration datel , satisfies the “asset-or-nothing payoff "

o(sT)=s52€=0s5< € Priorto expirationc(s’t) is estimated by the Black-
Scholes differential equation

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations « 293

02 _ 02 2 _
G+ S?C +rSC,—FC=G + 5 (szcs)S +(r o)SCS rc 0. The parametersin
the model are the risk-free interest rate, I' , and the stock volatility,0. The
boundary conditions are o(0.t)=0 and c(st)=1s- ® . This devel opment is
described in Wilmott, et al. (1995), pages 41-57. There are explicit solutions for
this equation based on the Normal Curve of Probability. The normal curve, and
the solution itself, can be efficiently computed with the IMSL function ANORDF,
IMSL (1994), page 186. With numerical integration the equation itself or the

payoff can be readily changed to include other formulas, C(S'T), and
corresponding boundary conditions. We use

e=100,r =008,T -t =025,02 =004,5 =0, and sz =150

Rationale

Thisisalinear problem but with initial conditions that are discontinuous. Itis
necessary to use a positive time-smoothing value to prevent grid lines from

crossing. We have used an absolute tolerance of 107, 1n $US, thisis one-tenth
of acent.

program PDE_1D M5 EX08
Bl ack- Schol es call price
USE pde_1d_ng_i nt
USE error_option_packet
I MPLI CI' T NONE

| NTEGER, PARAMETER :: NPDE=1, N=100
I NTEGER |, 1 DO, NFRAMES

Define array space for the solution.
real (ki nd(1d0)) U(NPDE+1, N), TO, TOUT, SIGSQ XVAL
real (ki nd(1d0)) :: ZERO=0DO, HALF=5D-1, ONE=1D0, &
DELTA T=25D-3, TEND=25D-2, XMAX=150, SI GVA=2D-1, &
R=8D- 2, E=100D0
TYPE(D_OPTI ONS) | OPT(5)
Start loop to integrate and record sol ution val ues.
| DO=1
DO
SELECT CASE (1 DO

Define values that determine limts.
CASE (1)
TO=ZERO
TOUT=DELTA T
U(NPDE+1, 1) =ZERO, U(NPDE+1, N) =XMAX
OPEN(FI LE=' PDE_ex08. out’ , UNI T=7)
NFRAMVES=NI NT((TEND+DELTA T)/ DELTA T)
WRI TE(7, "(315, 4D14.5)") NPDE, N, NFRAMES, &
U(NPDE+1, 1), U(NPDE+1, N), TO, TEND
S| GSQ=SI GVA* * 2
Illustrate allowing the BDF order to increase
to its maximum al |l owed val ue.
| OPT(1) =PDE_1D M5 MAX_BDF_ORDER
| OPT(2) =5

294 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

| OPT(3) =D_OPTI ONS(PDE_1D M5 Tl ME_SMOOTHI NG, 5D- 3)
| OPT(4) =D_OPTI ONS(PDE_1D_M5_RELATI VE_TOLERANCE, ZERO)
| OPT(5) =D_OPTI ONS(PDE_1D_ M5 _ABSOLUTE_TOLERANCE, 1D- 2)
I Update to the next output point.
I Wite solution and check for final point.
CASE (2)
TO=TQUT
| F(TO <= TEND) THEN
VWRI TE(7, " (F10. 5) ") TOUT
DO | =1, NPDE+1
VRI TE(7, " (4E15.5)") U(I, :)
END DO
TOUT=M N(TOUT+DELTA T, TEND)
| F(TO == TEND) | DO=3

END | F
I All conpleted. Solver is shut down.
CASE (3)
CLOSE(UNI T=7)
EXIT
I Define initial data val ues.
CASE (5)
U(1,:)=MAX(U(NPDE+1,:)-E, ZERO) ! Vanilla European Call
U(1,:)=UNPDE+1, :) I Asset-or-nothing Call

WHERE(U(1,:) <= E) U(1,:)=ZERO ! on these two |ines
VWRI TE(7, " (F10.5)") TO
DO | =1, NPDE+1
VRI TE(7, " (4E15.5)") U(I, :)
END DO
I Define differential equations.
CASE (6)
XVAL=D PDE_1D MG X
D PDE 1D MG C=ONE
D PDE_1D MG R=D PDE_1D MG DUDX* XVAL** 2* S| GSQ* HALF
D PDE_1D MG Q=- (R SI GSQ *XVAL*D _PDE_1D M3 DUDX+R¢*D PDE 1D MG U
I Define boundary conditions.
CASE (7)
| F(PDE_1D MG LEFT) THEN
D PDE_1D MG BETA=ZERO
D PDE_1D M5 GAMVA=D PDE 1D MG U
ELSE

D PDE_1D M3 BETA=ZERO
D PDE_1D M5 GAMVA=D PDE 1D MG DUDX(1) - ONE
END I F
END SELECT
I Reverse conmunication is used for the probl em data.
CALL PDE 1D MG (TO, TOUT, IDO, U, |OPT=I OPT)
END DO

end program

Example 9 - Electrodynamics, Parameters Studied with MPI
This example, described above in Example 1, is from Blom and Zegeling (1994).

The system parameters £ p, and 7 , are varied, using uniform random

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations * 295

numbers. Theintervals studied are 01<€<02,01< p<02, and10=n <20
Using N =21 grid values and other program options, the elapsed time, parameter

(xiﬂ

. : . . L v(x,t
written on afile. Thefinal summary includes the minimum value of ()|X:l,t=4,
and the maximum and average time per integration, per node.

Vi . o
values, and the value x=1t=4 gre sent to the root node. Thisinformation is

Rationale

Thisisanon-linear simulation problem. Using at least two integrating processors
and MPI allows more values of the parameters to be studied in a given time than
with asingle processor. This code is valuable as a study guide when an
application needs to estimate timing and other output parameters. The simulation
timeiscontrolled at the root node. An integration is started, after receiving
results, within the first SI M_TI ME seconds. The elapsed time will be longer than
SI M_TI ME by the slowest processor’s time for its last integration.

program PDE_1D MG EX09
I El ectrodynani cs Mdel, paraneter study.
USE PDE_1d_ng_i nt
USE MPI _SETUP_I NT
USE RAND_I NT
USE SHOW.| NT
| MPLICI T NONE
| NCLUDE "npi f. h"
| NTECER, PARAMETER :: NPDE=2, N=21
I NTEGER I, IDO, | ERROR, CONTINUE, STATUS(MPI _STATUS_SI ZE)
| NTEGER, ALLOCATABLE :: COUNTS(:)
I Define array space for the solution.
real (kind(1d0)) :: U(NPDE+1,N), TO, TOUT
real (kind(1d0)) :: ZERO=0DO, ONE=1DO, DELTA T=10D0, TEND=4DO
I SIMTIME is the nunber of seconds to run the sinulation.
real (kind(1d0)) :: EPS, P, ETA, Z, TWDO=2D0, THREE=3DO,
SI M_TI ME=60DO0
real (kind(1d0)) :: TIMES, TIMEE, TIMEL, TIME, TIME_SIM V_MN,
DATA(5)
real (kind(1d0)), ALLOCATABLE :: AV_TI ME(:), MAX_TIME(:)
TYPE(D_OPTI ONS) | OPT(4), SHOW.I OPT(2)
TYPE(S_OPTI ONS) SHOW._ | NTOPT(2)
MP_NPROCS=MP_SETUP(1)
MPI _NODE_PRI ORI TY=(/ (1-1, 1=1, M°_NPROCS) /)
I If NP_NPROCS=1, the program stops. Change
I MPI _ROOT_WORKS=. TRUE. if MP_NPROCS=1.
MPI _ROOT_WORKS=. FALSE.
I F(. NOT. MPI _ROOT_WMORKS . and. MP_NPRCCS == 1) STCP
ALLOCATE(AV_TI ME(MP_NPRCCS), MAX_TI ME(MP_NPRCCS) ,
COUNTS(MP_NPRQCCS))
I Get tine start for sinulation tinng.
TI ME=MPI _WIT ME()
| FCMP_RANK == 0) OPEN(FI LE=" PDE_ex09. out’, UNI T=7)
S| MULATE: DO
I Pick random paraneter val ues.
EPS=1D- 1* (ONE+r and(EPS))
P=1D- 1* (ONE+r and(P))

296 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

ETA=10D0* (ONE+r and(ETA))
| Start loop to integrate and communi cate solution tines
| DO=1
I Get tine start for each new probl em
DO
| F(. NOT. MPI _ROOT_WORKS .and. MP_RANK == 0) EXIT
SELECT CASE (| DO
I Define values that determine limts
CASE (1)
TO=ZERO
TOUT=1D 3
U(NPDE+1, 1) =ZERQ, U(NPDE+1, N) =ONE
| OPT(1) =PDE_1D MG MAX_BDF_ORDER
| OPT(2) =5
| OPT(3) =D_OPTI ONS(PDE_1D MG RELATI VE_TOLERANCE, 1D- 2)
| OPT(4) =D_OPTI ONS(PDE_1D_ M5 _ABSCLUTE_TOLERANCE, 1D- 2)

TI MES=MPI _WII ME()

I Update to the next output point.

I Wite solution and check for final point.

CASE (2)

TO=TOUT; TOUT=TOUT*DELTA T
| F(TO >= TEND) | DO=3
TOUT=M N(TOUT, TEND)

I All conpleted. Solver is shut down.

CASE (3)
TI MEE=MPI _WITI ME()
EXIT
| Define initial data val ues
CASE (5)

U(1,:)=1D0; U(2, :)=0D0
I Define differential equations.
CASE (6)

D_PDE_1D MG C=0D0; D_PDE_1D MG C(1, 1) =1D0; D_PDE_1D MG (2, 2) =1D0

D PDE 1D M3 R=P*D PDE 1D MG DUDX; D PDE_1D MG R(1) =D _PDE 1D M3 R(1)*EPS
Z=ETA*(D_PDE_1D MG U(1)-D _PDE 1D MG U(2))/ THREE
D _PDE 1D MG Q1) =EXP(Z) - EXP(- TWO* 2)
D PDE_1D M5 Q2)=-D PDE 1D M5 Q1)
I Define boundary conditions
CASE (7)
| F(PDE_1D MG LEFT) THEN
D PDE_1D MG BETA(1)=1D0; D PDE_1D M5 BETA(2) =0D0

D PDE_1D M3 GAMVA(1) =0D0; D_PDE_1D M3 GAMMA(2) =D PDE 1D MG U(2)
ELSE
D PDE_1D M3 BETA(1)=0D0; D PDE_1D M5 BETA(2) =1D0
D PDE_1D MG GAMVA(1) =D PDE 1D MG U(1) -
1D0; D PDE_1D MG GAMVA(2) =0D0
END | F
END SELECT
I Reverse communi cation is used for the problemdata
CALL PDE 1D MG (TO, TOUT, |DO, U)
END DO
Tl MEL=TI MEE- TI MES
DATA=(/EPS, P, ETA, U(2,N), TIMEL/)
| F(MP_RANK > 0) THEN
I Send paraneters and tinme to the root.

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations « 297

CALL MPI _SEND(DATA, 5, MPI _DOUBLE_PRECI SI ON, 0, MP_RANK,
MP_LI BRARY_WORLD, | ERROR)
I Receive back a "go/stop" flag.

CALL MPI _RECV(CONTINUE, 1, MPI | NTEGER, 0, MPI_ANY_TAG
MP_LI BRARY WORLD, STATUS, | ERROR)
I If root notes that tinme is up, it sends node a quit flag.

| F(CONTI NUE == 0) EXIT SI MULATE

ELSE

I If root is working, record its result and then stand ready
I for other nodes to send.

| F(MPI _ROOT_WORKS) WRI TE(7,*) MP_RANK, DATA
I If all nodes have reported, then quit.

| F(COUNT(MPI _NODE_PRIORITY >= 0) == 0) EXIT SI MILATE

| See if tine is up. Sone nodes still nust report.
| F(MPI _WIT ME()-TIME >= SIM TIME) THEN
CONTI NUE=0
ELSE
CONTI NUE=1
END | F

I Root receives sinmulation data and finds which node sent it.
| F(MP_NPROCS > 1) THEN
CALL MPI _RECV(DATA, 5,
MPI _DOUBLE_PRECI SI ON, MPI _ANY_SOURCE, MPl _ANY_TAG, MP_LI| BRARY_WORLD,
STATUS, | ERROR)
VRI TE(7, *) STATUS(MPI _SOURCE), DATA
I If tine at the root has el apsed, nodes receive signal to stop.
I Send the reporting node the "go/stop" flag.
I Mark if a node has been stopped.
CALL MPI _SEND({ CONTI NUE, 1, MPI | NTEGER,
STATUS(MPI _SOURCE), 0, MP_LIBRARY WORLD, | ERROR)
| F (CONTINUE == 0)
MPI _NODE_PRI ORI TY(STATUS(MPI _SOURCE) +1) =-
MPI _NODE_PRI ORI TY(STATUS(MPI _SOURCE) +1) - 1
END | F
| F (CONTI NUE == 0) MPI _NODE PRI ORI TY(1)=-1
END | F
END DO SI MULATE
| F(MP_RANK == 0) THEN
ENDFI LE(UNI T=7) ; REW ND(UNI T=7)
| Read the data. Find extrenes and averages.
MAX_TI ME=ZERO, AV_TI ME=ZERO, COUNTS=0; V._M N=HUGE(ONE)
DO
READ(7,*, END=10) |, DATA
COUNTS(| +1) =COUNTS(| +1) +1
AV_TI ME(| +1) =AV_TI ME(| +1) +DATA(5)
| F(CMAX_TI ME(1 +1) < DATA(5)) MAX_TI ME(| +1) =DATA(5)
V.M N=M N(V_M N, DATA(4))
END DO
10 CONTI NUE
CLOSE(UNI T=7)
I Set printing Index to match node nunberi ng.
SHOW | OPT(1) = SHOW STARTI NG | NDEX_| S
SHOW. | OPT(2) =0
SHOW | NTOPT(1) =SHOW STARTI NG_| NDEX_| S
SHOW. | NTOPT(2) =0
CALL SHOWN MAX_TI ME, " Maxi mum I ntegrati on Tine, per
process: ", | OPT=SHOW | OPT)
AV_TI ME=AV_TI ME/ MAX(1, COUNTS)
CALL SHOWNAV_TI ME, "Average Integration Tine, per

298 « Chapter 8: Partial Differential Equations IMSL Fortran 90 MP Library 4.0

process: ", | OPT=SHOW. | OPT)
CALL SHOW COUNTS, "Nunber of Integrations”, | OPT=SHOW | NTOPT)
WRI TE(*, " (1x, A F6.3)") "M ni mum val ue for v(x,t), at
x=1,t=4: ",V_.MN
END | F
MP_NPROCS=MP_SETUP(" Fi nal ")
end program

IMSL Fortran 90 MP Library 4.0 Chapter 8: Partial Differential Equations * 299

Chapter 9: Error Handling and
Messages - The Parallel Option

Introduction
This chapter describes the error-handling system used from within the IMSL
MPI REQUIRED Fortran 90 MP Library. Errorsof differing types may need to be reported from

several nodes. We have developed an error processor that uses MPI, when it is
appropriate, for communication of error messages to the root node, which then does
the printing to an open output unit. We encourage users to include this error
processor in their own applications that use MPI for distributed computing.

VNI started its development with the IMSL FORTRAN error processor (see Aird

and Howell, 1992), in use with the Fortran Numerical Libraries. Thiswas

influenced by early work (see Fox, Hall, and Schryer, 1978) from Bell

Laboratories’ PORT Library. Linked data structures have replaced fixed-size tables
within the routines. Now applications may avoid jumbling lines of error text output
if different threads and nodes generate independent errors. Users are not required
to be aware of any difference in the use of the two versions. Each version is
packaged into a separate library file. A user can safely call or link with the newer
version for all applications, even though their codes might not be using MPI code.
A drawback is that the code is longer than it needs to be due to the unused MPI
subprograms now in the linked executable. If the extra size of the executable is a
problem, then link with the older version.

The user is cautioned about manipulating these routines beyond specification.
Disabling the printing of messages or the subprogram stack handler can mask
serious error conditions. Madification or replacement of functionality by the user
within Fortran 90 MP Library can cause problems that are elusive and is definitely
not recommended. The routines described in this chapter are an integral part of the
IMSL Fortran 90 MP Library and are subject to change by Visual Numerics, Inc.

IMSL Fortran 90 MP Library 4.0 Chapter 9: Error Handling and Messages - The Parallel Option « 301

Error Classes

Theroutinesin the IMSL FORTRAN Libraries give rise to three classes of
error conditions: informational, terminal, and global. The correct processing of
an error condition depends on its class. The classes are defined as follows:

e Information Class: During processing, certain exceptional conditions arise
which may be interpreted as errors. The detection of singularity by alinear
equation solver isan example. It is appropriate for the routine detecting a
condition to inform the calling routine of the existence of the exception by
setting an appropriate error state and then returning. The calling routineis
then able to interpret the information and decide on the appropriate action.

If recovery is possible and desirable, then corrective action can be taken.
Otherwise the calling routine may pass the error state up one more level.

The severity of these conditions varies from “note” to “fatal.” For each
condition there is a possibility that corrective action can be taken by the
calling routine and that the recovery option is desirable. Only one such
informational error state can be handled in this manner. Situations
involving multiple errors require alternative mechanisms such as extra
arguments, and that is not implemented.

e Terminal Class. Usage errors such as incorrect or inconsistent argument
values are in this class. In most cases, these errors result from blunders in
developing software. In normal processing, a message is issued and
execution is terminated by the calling routine detecting the error. Serious
error conditions are classified as terminal if, in the opinion of the routine
designer, there is no reasonable chance or need for automatic recovery by
the calling routine. The calling routine or program needs revision and
recompilation in order to correct the error.

e Global Class: These error conditions are handled in a global manner.
A message is issued by the routine detecting the error, but processing
continues. The decision on whether or not to terminate execution is made
later by an upper-level routine, usually the main program, at the end of a
processing step.

The error-handling routines and procedures discussed in this
chapter are designed to work well for these three classes of
errors.

IMSL Code and User Code

In this chapteruser code refers to routines written by the user and referenced
by IMSL routines. Designating these sections as user code allows the error
handler to use error handling attributes set by the user. See the discussion of
El USR in the “Error Control” section of this chapter.

302 « Chapter 9: Error Handling and Messages - The Parallel Option IMSL Fortran 90 MP Library 4.0

Type Class and Severity

Information Class

1. Informational/note: A note isissued to indicate the possibility of atrivial
error or simply to provide information about the computations.

Default attributes: PRI NT=NO, STOP=NO

2. Informational/alert: This error type indicates that a function value has been
set to zero due to underflow.

Default attributes: PRI NT=NO, STOP=NO

3. Informational/warning: This error type indicates the existence of a condition
that may reguire corrective action by the user or calling routine. Usually the
condition can be ignored.

Default attributes (user code): PRI NT=YES, STOP=NO
Default attributes (IMSL code): PRI NT=NO, STOP=NO

4. Informational/fatal : This error type indicates the existence of a condition that
may be a serious error. In most cases, the user or calling routine must take
corrective action to recover.

Default attributes (user code): PRI NT=YES, STOP=NO
Default attributes (IMSL code): PRI NT=NO, STOP=NO

Terminal Class

5. Terminal/terminal: This error type indicates the existence of a serious error
condition. In normal use, execution is terminated.

Default attributes: PRI NT=YES, STOP=YES

Global Class

6. Global/warning: This error type indicates the existence of a condition that
may require corrective action by the user or calling routine. Usually the
condition can be ignored. The stop-or-continue decision is made at the end of
the processing step (by calling N1RGB, see “Error Types and Attributes”).

Default attributes: PRI NT=YES, STOP=NO

7. Global/fatal: This error type indicates a condition that may be a serious

error. In most cases, the user or calling routine must take corrective action to
recover. The stop-or-continue decision is made at the end of the processing step
(by callingN1RGB, see “Error Types and Attributes”).

Default attributes: PRI NT=YES, STOP=YES

IMSL Fortran 90 MP Library 4.0 Chapter 9: Error Handling and Messages - The Parallel Option « 303

CALL El PCS (i,

CALL ERSET (i,

PRINT and STOP attributes

The programmer or user can set PRI NT and STOP attributes by calling El POS
asfollows:

pattr, sattr)
where the change only appliesto asingletypei error,1<i <7.
e Ifi =0, the change appliesto al error types.

e |If -7<i <-1, thecurrent attribute settings for the error
type-i arereturnedin pattr and sattr.

e Asinputvalues, pattr or sattr =
-1 for no change
0 assignNO
assign YES
2 assign default settings

In IMSL routines, the routine E1IPSH (defined in the “Error Control” section)
sets the defaulPRI NT and STOP attributes andEl POS is usually not needed.
This routine provides the flexibility to handle special cases. The Library user
can sePRI NT andSTCP attributes by callingERSET as follows:

i pact, isact)

where the change only applies to a single typeror, 1<i <5, corresponding
to severityNote, Alert, Warning, Fatal, andTerminal. Calls toERSET() are
defined only after at least one routine name has been pushed onto the
subprogram stack. There is no restriction for calB1e0S() .

« Ifi =0, the change applies to all error types.
e« Asinputvaluespattr orsattr =

-1 for no change

0 assigmo

1 assignveEs

2 assign default settings

The routineERSET is specifically designed to be an easy-to-
use interface to theRI NT and STOP tables for Library users.

If i =3, then the specified attributes are set for error types 3
and 6. Similarly, ifi = 4, then the specified attributes are set

for error types 4 and 7. TheRI NT and STOP attribute

settings, user default values, and values used by IMSL routines

304 « Chapter 9: Error Handling and Messages - The Parallel Option IMSL Fortran 90 MP Library 4.0

arelisted below. In an IMSL routine, error types 5, 6, and 7 are
handled according to the PRI NT and STOP attributes set by the
user. IMSL routines must handle al informational errors, of
types 1 to 4, that are returned to them by other IMSL routines
that they reference.

User Default | MSL Routi ne

Type PRI NT STOP PRI NT STOP
1 NO NO NO NO
2 NO NO NO NO
3 YES NO NO NO
4 YES YES YES YES
5 YES YES
6 YES YES
7 YES YES

Error Types and Attributes

Seven error types are defined. Each error type has associated PRI NT and STOP
attributes. These flags have default settings (YES or NO) and may be set by the
user. The purpose of having multiple error types isto provide independent
control, default and user-defined, for errors of different types. Inthe parallel
version, a STOP attribute of YES means that after all messages are sent to the
root node for printing, the root node will broadcast STOP after printing the entire
suite of messages if any node has a STOP attribute of YES. Then MPI will be
finalized, if it has ever been initialized, and the STOP executed. To avoid shutting
down MPI al processors must have their STOP attributes set to NO after printing
€rror messages.

Error Control

Control is provided for error handling by a stack with four values for each level.
The values are routine name, error type, error code, and an attribute flag that
selects either the user PRI NT and STOP attributes or the IMSL routine
attributes. The error-control stack is pushed by referencing the subroutine in
the following call:

CALL EIPSH (‘name’)

This reference performs the following tasks:
e Increments the stack pointer by 1.

* Places name on the stack.

IMSL Fortran 90 MP Library 4.0 Chapter 9: Error Handling and Messages - The Parallel Option « 305

e Setserror type and error code to O for the current level.

e Setsthe attribute flag so that the PRI NT and STOP
attributes for IMSL routines are used for error types 1 to 4.
The user level attributes are used for types5to 7.

In addition to the error-control stack, there is an error message with maximum
length 1,024. The most recently issued message is retained in the message
structure until it is either printed or deleted. The error-control stack is popped
by referencing the subroutine ELPOP as follows:

CALL El POP (‘name’)

This reference performs the following tasks:

e Compares name with the name for the current level.
e Movesthe error type and error code values to the previous level.

e Decreasesthe stack pointer by 1. Printing of error messagesis triggered
by the stack pointer reaching a return to user code, called Level 1.

e |If the user attributes have been selected, decides whether or not the
message should be printed for error states of type 1 to 4 based on the
PRI NT attribute for the current error type.

» Decidesto stop or continue for error states based on the STOP attribute for
theerrors.

e If the user attributes have been selected, decides to stop or continue for
error states of type 1 to 4 based on the STOP attribute for the current error

type.

e IfinLibrary mode and if popping to user code, a stop-or-continue decision
is made based on areferenceto N1RGB.

* If an IMSL routine references user-written code, the error handler uses the
PRI NT and STOP attributes set by the user. Thisis accomplished by calling
the routine ELUSR. A typical set of statements follow:

CALL ElUSR (’ON)
[Ref erence to user-witten code]
CALL El USR (' OFF')

The user’s code is referenced between calis tssR. If the user's code calls

other IMSL routines and if those routines encounter error conditions, then they
will be handled properly. If the user does not “handle” an error, a type 4 error
for example, then the message will be printed and execution stopped when the
“CALL El POP” is executed by an IMSL routine and reaches Level 1. If the
user has changed the attributes for type 4 errors, the user is responsible for
handling the recovery from such errors. A stop-or-continue decision can be

306 « Chapter 9: Error Handling and Messages - The Parallel Option IMSL Fortran 90 MP Library 4.0

made for type 6 and type 7 errors by using the function NLRGB asfollows:

If (N RGB(0).NE.0) STOP

The function NLRGB returns 1 if any type 6 or type 7 error states have been set
since the previous N1RGB reference or since the beginning of execution and if
the STOP attribute for that error type is set to YES.

Callstoroutines ELPSH() and E1POP() areexpensive since they require
allocation of linked derived data types interna to the package. We have provided a
special name that ignores all stack manipulation until this name is popped from the
stack. Whence callsto the function NLRTY, NLRCD and | ERCD return the
maximum error type or corresponding code, regardless of the argument. The case of
the lettersin the nameisignored. Thusatypical set of statements are:

CALL E1PSH (‘NULLIFY_STACK)

[Reference to code that contains no call stack information but
has other error processing.]

CALL E1POP (‘NULLIFY_STACK?)

Error States

* The subroutine reference:

Call EIMES (errtype, errcode, 'nessage’)

is used to set an error state for the current level in the stack. At least
one routine name must be on the stack for this subprogram call to be
defined. The messageis printed when control returnsto Level 1, if the
print attribute for that typeis YES The printed message width can be
shortened by subroutine E1IHDR The name associated with the current
stack level is combined with the message when it is printed. Once an
error state has been set, any one of the settings, error type, error code,
or error message can be changed without changing the others. An
actual argument value of - 1 for the error type or error code causes
the particular item to retain its current setting.

* The next reference changes the message and retains the type and code
settings:
CALL EIMES (-1, -1, ‘new-message’)

e The next reference changes the error code and retains the type and
message settings:
CALL EIMES (-1, errcode, ' ")
e Thenext reference removes the error state:

CALL EIMES (0, 0, ')

IMSL Fortran 90 MP Library 4.0 Chapter 9: Error Handling and Messages - The Parallel Option « 307

e Values can beinserted into messages by the use of one of the
following subroutines:

CALL E1STL (ii, literalstring)
CALL E1STA (ai, characterarray)
CALL EISTI (ii, ivalue)

CALL E1STR (ri, rvalue)
CALL EISTD (di, dval ue)
CALL El STC (ci, cval ue)
CALL E1STZ (zi, zvalue)

The current values of the parameters are expanded and placed in the
text of the message. This happens at the respective places indicated
with the symbolsog Li), %A), %1i), %R), %D), % C),
and % Zi). Caseof thelettersL, A, I, R D, Cand Z isnot
important. Thetrailingindicesi are integers between 1 and 9, with
one exception: Use of anegative valuefori i inacall to ELISTL keeps
trailing blanksin I i t er al stri ng. Toimprove readability of
messages, we have provided that when the string % is embedded in
any message, anew lineimmediately starts.

e Theroutines EIST<L, A I, R D, C, Z> arecdledbefore
calling El MES to issue an error message. The values defined by
these routines are discarded after the reference to E1MVES.

» Thefunction reference Nl RCD(i) returnsthe error code. If i =0,
the code for the current level isreturned; if i =1, the code for the
most recently called routine (last pop) is returned.

e Likewise, N RTY(i) returnsthe error type.

» Thefunction reference | ERCD() returnsNLRCD(1) if NI RTY(1)
is1to 4, and O otherwise.

e TheINTEGER functions | ERCD, N1RCD, and N1RTY return
current information about the status of an error if the stack is not
empty. In the scalar version of the error message code, this stack
was always kept with at |east one name pushed on it. In the
parallel version of the error message library, thisis not so, due to
the need for synchronization of error printing. If acall to | ERCD,
NL1RCD, or NLRTY isbeing made to handle the occurrence of an
error in atop-level routine, then the programmer should first call
E1PSH('ROUTINE_NAME’) beforethe call to the subprogram
in question. Here ROUTINE_NAMEan be any name. After the
cal to IERCD, NIRCDor N1RTY, the programmer should make
acal to EIPOP('ROUTINE_NAME’) . Thisisnot an issue for
code bracketed between callsto MP_SETUP() and
MP_SETUP(‘Final’)

308 « Chapter 9: Error Handling and Messages - The Parallel Option IMSL Fortran 90 MP Library 4.0

Traceback Option

The traceback optionissetto ON or OFF by EITRB:

CALL E1TRB (i, tset),
where the traceback option only appliesto type | errors, if 1<i < 7.
If i =0 the selection appliesto all error types. For tset = 0 the
traceback is OFF. For t set = 1 thetraceback is ON. The traceback is
ON for al error types. This routine is provided for compatibility with
the previous version of the error processor.

Guidelines for Writing Error Messages

e Error messages should be written in correct and complete
sentences.

e Capitaizethefirst letter of the message.
e Typetwo spaces after the period at the end of the sentence.
e Use present tense whenever possible.

e Variablelength items, included by (%&Ai), should be placed at the
end of the message without a period. Entire messages are limited to
1,024 characters and long variable items in the middle could cause
critical parts of the message to be truncated. A period at the end
could cause confusion if it isinterpreted as part of dataitems.

e Messages should describe both the observed error condition and
the expected condition. For example: “A procedure name is
expected, but the following entity has been encountéegext:) ".

* Whenever possible, and especially when it is hot obvious, the
message should provide information about correcting the error
condition.

* Avoid calls toE1PSH() andE1POP() if this routine is at the most
forward level of the call chain and there is no error condition. Use
of these routines is expensive. Consider using the
‘nullify_stack’ argument for operational use. When this
special name is an argument to E1IPSH() , the package ceases
stacking names. When it is an argument to EIPOP(), resume
stacking names and print any error messages at Level 1.

IMSL Fortran 90 MP Library 4.0 Chapter 9: Error Handling and Messages - The Parallel Option « 309

Error Message Formats and Examples

Error messages are developed from arguments in the program unit that
callsEIMES() . Additional information isinserted into the text
including drop-in values used to clarify the error type, meaning,
subprogram name where the error occurred, and node names and ranks
where the application is executing. The message is printed by lines,
breaking on ablank, if possible. The number of columnsin aline has
the default value SCREEN_SI ZE=72. This can be reset using the
routine EIHDR() asfollows:

CALL E1HDR(NEW SCREEN S| ZE)

The sign of the | NTEGER variable NEW SCREEN_SI ZE determines the
action. If its value is non-positive then the argument is an output,
assigned the current value of SCREEN_SI ZE. For positive values of the
argument, the value of SCREEN_SI ZE is set to the smaller of

NEW SCEEN_SI ZE and 72. All error message output is written to unit
number given by the | NTEGER variable ERROR_UNI T. Thisvalueis
obtained in the package by:

CALL UMACH (3, ERROR UNIT)

If the value of ERROR_UNI T is non-positive, nothing is printed. This
test is made only on the root node. The user, or the defaults provided by
the operating system, must open the external file corresponding to
ERRCOR _UNI T.

We now give examples that show how to use the error processor in
applications. Small program units are listed followed by the output.
Each example is executed in an MPI application with two nodes. When
using more than two nodes messages may appear from each node. If
that node has no messages, nothing is printed.

Example 1

This program calls a subprogram that makes an error. The error occurs after a
call to MP_SETUP() . Messages and traceback information are gathered from
the nodes and printed at the root. Note that the names for the nodes are
dependent on the local operating environment and hence will vary.

program errpex1
USE MPI _SETUP_ I NT
| MPLI CI' T NONE

I Make calls to the VNI error processor while using MI.
I The error type shown is type 4 or FATAL.

I An exanple is a call to a routine that expects a positive

310« Chapter 9: Error Handling and Messages - The Parallel Option IMSL Fortran 90 MP Library 4.0

I value for the | NTEGER argunent.
MP_NPROCS=MP_SETUP()

CALL A Nane(0)

I Finalize MPI and print any error nessages.
I The prograns STOP by defaul t.
MP_NPROCS=MP_SETUP(‘Final’)
END PROGRAM

SUBROUTINE A_Name(l)
I This routine generates an error message.
IMPLICIT NONE

INTEGER |
IF(I <= 0) THEN

I Push the name onto the stack.
CALL E1PSH('A_Name’)

I Drop a value into the message.
CALL E1STI(1,1)

I Prepare the message for printing.
CALL EIMES(4,1,&
"The agument should be positive.'//&
"It now has value %(il1).")

I Pop the name off the stack.
CALL E1POP(‘A_Name')

I Had an invalid argument so RETURN.
RETURN
END IF

END SUBROUTINE

Output for Example 1

*** EATAL ERROR 1 on rank 1, torski.rd.imsl.com from: A_Name. The
agument should be positive. It now has value 0.
FORWARD Calls: Error Types and Codes:
MP_SETUP 0 O
A_Name 4 1

*** EATAL ERROR 1 on rank 0, texas.rd.imsl.com from: A_Name. The
agument should be positive. It now has value 0.
FORWARD Calls: Error Types and Codes:
MP_SETUP 0O O
A_Name 4 1

IMSL Fortran 90 MP Library 4.0 Chapter 9: Error Handling and Messages - The Parallel Option « 311

Example 2

This program is Example 1 with a different message from each
node. The messages are gathered from the nodes and printed at

the root.

program err pex2
USE MPI _SETUP_I NT
I MPLI CI' T NONE

I Make calls to the VNI error processor while using MI.

I The error types are WARNI NG and FATAL.

I An exanple is a call to a routine that expects a positive

I value for the | NTEGER ar gunent.
MP_NPROCS=MP_SETUP()

CALL B_Narme(0)
I Finalize MPI and print any error nessages.
I The program STOPs by defaul t.
MP_NPROCS=MP_SETUP(‘Final’)
END PROGRAM

SUBROUTINE B_Name(l)
USE MPI_NODE_INT
I This routine generates an error message.
IMPLICIT NONE
INTEGER I, TYPE
I Different types of errors occur at different nodes.
TYPE=4
IF(MP_RANK == 1) TYPE=3
IF(1<=0) THEN

I Push the name onto the stack.
CALL E1PSH('B_Name')

I Drop a value into the message.
CALL E1STI(1,1)

I Prepare the message for printing.
CALL EIMES(TYPE,2,&
‘The agument should be positive.'//&
"It now has value %(i1).")

I Pop the name off the stack.
CALL E1POP('B_Name')

I Had an invalid argument so RETURN.
RETURN
END IF

END SUBROUTINE

312 « Chapter 9: Error Handling and Messages - The Parallel Option

IMSL Fortran 90 MP Library 4.0

Output for Example 2

*** WARNING 2 on rank 1, torski.rd.imsl.comfrom B_Nanme. The
agunment shoul d be positive. It now has val ue 0.

FORWARD Cal | s: Error Types and Codes:
VP_SETUP 0 0
B_Nane 3 2

*** FATAL ERROR 2 on rank 0, texas.rd.inmsl.comfrom B_Name. The
agunment shoul d be positive. It now has val ue 0.

FORWARD Cal | s: Error Types and Codes:
MP_SETUP 0 0
B_Name 4 2
Example 3

This example shows an error when the program unit is in three states.
The STOP conditions for al error types are changed to NO using the
call toroutine ELPOS() :

e Inthefirst state MPI has not been initialized. Thus each node
writesits own identical copy of the error message. The lines may
be jumbled in some environments, even though that is not the case
here. There is no indication about the node where the message
occurred.

¢ Inthe second state MPI isinitialized. Error messages are gathered
and printed as shown in Example 1.

e Inthethird state MPI has been used and finalized. The executable
running on the alternate node is gone and further callsto MPI
routines are invalid. One error message from the remaining
executable prints.

program errpex3
USE MPI _SETUP_I NT
| MPLI CI' T NONE

I Make calls to the VNI error processor before, while
I and after using M.

I An exanple is a call to a routine that expects a positive
I value for the | NTEGER argunent.

| Set STOP attribute to NO
CALL E1PCS (0,1,0)

| Before MPI is initialized each node prints
I the error. Lines may be junbl ed.

IMSL Fortran 90 MP Library 4.0 Chapter 9: Error Handling and Messages - The Parallel Option « 313

CALL C nane(-2)

Initialize MPI and then nake an error.
MP_NPROCS=MP_SETUP()
CALL C _Name(0)

Finalize MPI and print any error nessages

that occurred since the last printing.

Al'l nodes report errors to the root node.
MP_NPROCS=MP_SETUP(’ Fi nal ')

After MPI is finalized a single set of

nmessages print. The ot her nodes are inoperative.
CALL C Nane(-1)

END PROGRAM

SUBROUTI NE C_Name(1)
USE MPI _NODE_| NT
This routine generates an error nessage.
I MPLICI T NONE
I NTEGER |, TYPE

TYPE=4
IF(1 <= 0) THEN

Push the nanme onto the stack.
CALL E1PSH(’ C Nane’)
Drop a value into the nessage.
CALL E1STI(1,1)
Prepare the nessage for printing.
CALL EIMES(TYPE, 3, &
" The agunent should be positive.’//&
" It now has value %il).")

Pop the nane off the stack.
CALL E1POP(’ C_Nane’)

Had an invalid argunent so RETURN.
RETURN

END | F

END SUBROUTI NE

Output for Example 3

*** FATAL ERROR 2 from C_Nanme. The agunent shoul d be positive.

now has val ue -2.
FORWARD Cal | s: Error Types and Codes:
C_Nane 4 3

*** FATAL ERROR 2 from C_Nanme. The agunent shoul d be positive.

now has val ue -2.
FORWARD Cal | s: Error Types and Codes:
C_Nane 4 3

It

It

*** FATAL ERROR 2 on rank 1, torski.rd.imsl.comfrom C_Nanme. The

314 « Chapter 9: Error Handling and Messages - The Parallel Option

IMSL Fortran 90 MP Library 4.0

agunment shoul d be positive. It now has val ue 0.

FORWARD Cal | s: Error Types and Codes:
VP_SETUP 0 0
C _Nane 4 3

*** FATAL ERROR 2 on rank 0, texas.rd.insl.comfrom C Nane. The
agunment shoul d be positive. It now has val ue 0.

FORWARD Cal | s: Error Types and Codes:
MP_SETUP 0 0
C _Nane 4 3

*** FATAL ERROR 2 from C _Nane. The agunent should be positive. It
now has val ue -1.
FORWARD Cal | s: Error Types and Codes:
C _Nane 4 3

IMSL Fortran 90 MP Library 4.0 Chapter 9: Error Handling and Messages - The Parallel Option « 315

Questions and Answers

Q 1: When do | need to use E1PSH and E1POP?

A: They are not needed in every routine. They should be used in every
subprogram that calls EI VES either directly or indirectly. Thisis
important during application debugging. To ignore further calls the user
can call E1PSH with the special name ‘nul 1'i fy_st ack’. Thename
stacking is restored with a call to E1POP using the same special nhame.

Q 2: How can | tell if an error condition has occurred in alower level
routine?

A: When an error state has been set the error type may be retrieved by
referencing the | NTEGER function NLRTY(1) . The corresponding
error code isretrieved by referencing the function Nl RCD(1) . The
purpose of the error code is to allow the programmer to distinguish
more than one error condition of the same type. Note that the error code
is printed with the message for all types.

Q 3: What are globa errors?

A: Error types 6 and 7 are global in the sensethat ELPOP never decides
to stop based on their occurrence. The function N1IRGB(1) returnsal
if processing should stop dueto aglobal error. Also, NLRGB clearsthe
global error indicators.

Q 4: Does El MES actually print the message or just store it?

A: All error messages are stored and printed, if the user desires, when
the subprogram call stack returnsto Level 1.

Q 5: To store an integer and areal number for use in a message, must
unigue positional index numbers be used?

A: No, for example:

CALL E1STI (1, 123)
CALL E1STR (1, 456.0)
CALL EIMES (5, 2, "% Rl) is nore than %I11) ')

Q 6: How do | disable an error state?
A:CALL EIMES (0, 0, ' ')

Note that any of the settings can be changed. In the following example,
the error type is reset to 5 and the other settings are left unchanged:

CALL EI MES (5, -1, ' ')
Q 7: How long can the message be?
A: An expanded message will be truncated after 1,024 characters. For

316 » Chapter 9: Error Handling and Messages - The Parallel Option IMSL Fortran 90 MP Library 4.0

this reason, long variable-length items, included by %A1), %L1), etc.,
should be placed at the end of the message.

Q 8: Why isit that when | call E1PCS to turn off printing and then call
ELMES, it prints anyway?

A:When E1PCS is called to change PRI NT or STOP attributes, errors at
the current level are not affected. Also note the following: Callsto
E1MES at Level 1 should be surrounded by callsto E1PSH and EI POP
so that the user can control printing and stopping. If a PRI NT or STOP
attribute is set to NO, for example by the user at Level 1, then it cannot
be set to YES at any level greater than 1.

Q 9: Are tracebacks on for al messages?

A: Traceback is ON al error types, but tracebacks are given only if
printing occurs.

Q 10: How can | force a specific portion of my message to begin on a
new line?

A: Insert the following two characters in the message: %

For example:

CALL E1PSH(‘MYSUB’)

CALL EIMES (4, 104, 'Line one. %/This is ‘// &
'‘a new line.’)

CALL E1POP(‘MYSUB’)

The resulting message might look like the following:

***EATAL ERROR 104 from: MYSUB. Line one.
This is a new line.

Q 11: Isthere away to avoid having trailing blanks removed from a
string inserted into a message?

A:Yes, use a negative index. For example:
CALL E1STL (-2, 'string with trailing blanks *)

Q 12: Why do error messages not print when the PRINT attributes are
set to YES?

A: They should print when ELPOPhas reached Level 1, so that no
more routine names remain on the stack.

Q 13: | used the error printing routine E1MES in my code. My function
call to NLRTY(1) returned the correct error type, but no message
printed. What is going on?

A: Thisiswill happen when no name was pushed on the stack. Before
your cal to ELVES, call ELPSH('ROUTINE_NAME’) , where
ROUTINE_NAMIES any name you choose. Then after the return from
the routine, call ELIPOP(‘ROUTINE_NAME’) . The message will print

IMSL Fortran 90 MP Library 4.0 Chapter 9: Error Handling and Messages - The Parallel Option « 317

at this synchronization point.

Q 14: Please explain the difference between the function values
NL1RTY(0) and NIRTY(1).

A: Thevalue NLRTY(1) isthe maximum error type noted in any

routine called by a user’s code. More precisely this is the maximum
error type bracketed by a call 1 PSH andE1POP, which could be in

a user’s code. The valiML RTY(0) is themaximum error type noted
before a call t&E1POP. This allows a programmer to make a series of
tests and possible callsEAMES. Then the valudllRTY(0) is used

to indicate what error condition occurred in the tests.

Support for Threads

Our design supports multiple threads at each node of a distributed
machine. These features are not yet fully tested. We have used calls to
routines that provide a simple interface to threaded computations. The
routines are:

CALL E1LOCK(LOCK_STATE)

If LOCK_STATE = 1, allow exactly one execution access from this
point forward.

If LOCK_STATE
point forward.

0, give up the exclusive execution access from this

HANDLE = N1THRD()

This | NTEGER function gives a handle for purposes of identifying the
execution thread. The default routine retusaSDLE = 1.

TEST = NIMICH(HANDLE 1, HANDLE 2)

This | NTEGER function compares two thread handles for equality. The

default routines returns the bit-wise exclusive or valu&TCH =
i eor (HANDLE 1, HANDLE 2).

318 « Chapter 9: Error Handling and Messages - The Parallel Option IMSL Fortran 90 MP Library 4.0

Appendix A: List of Subprograms
and GAMS Classification

Theroutines listed below are the generic names typically called by
usersin their codes. In fact, thereisno external library namein

IMSL F90 MP Library that matches these generic names. The generic
nameis associated at compile time with a specific external namethat is
appropriate for that datatype. The specific external names are not listed
below. (Notethat * appearing in the Chapter column means that the
routine is not intended to be user-callable.)

Routine Purpose Chapter GAMS
error_post Prints error messages that are generated ~ See Chapter 5 R3
by IMSL Library routines.
fast_dft Computes the Discrete Fourier See Chapter 3 Jla2
Transform (DFT) of arank-1 complex
array, X.
fast_2dft Computes the Discrete Fourier See Chapter 3 Jib
Transform (DFT) of arank-2 complex
array, X.
fast_3dft Computes the Discrete Fourier See Chapter 3 Jib
Transform (DFT) of arank-3 complex
array, X.
i sNaN Detect an |EEE NaN (not-a-number). See Chapter 6 R1
l'in_eig_gen Computes the eigenvaluesof ann x n SeeChapter 2 D4a2

matrix, A. Optionally, the eigenvectors of D4a4

Aor AT are computed. Using the
eigenvectors of A givesthe
decomposition AV = VE, whereVisann
x n complex matrix of eigenvectors, and
E is the complex diagonal matrix of
eigenvalues. Other options include the
reduction of A to upper triangular or
Schur form, reduction to block upper
triangular form with 2 x 2 or unit sized
diagonal block matrices, and reduction to
upper Hessenberg form.

IMSL Fortran 90 MP Library 4.0

Appendix A: List of Subprograms and GAMS Classification « A-1

lin_eig_self Computes the eigenvalues of a self- See Chapter 2 D4al
adjoint matrix, A. Optionaly, the D4a3
eigenvectors can be computed. This

gives the decomposition A= VDV I
where V isan n x n orthogonal matrix
and D isareal diagonal matrix.

lin_geig_gen Computes the generalized eigenvalues of See Chapter 2 D4b1
an n x n matrix pencil, Av OABv. D4b2
Optionally, the generalized eigenvectors D4b4

are computed. If either of Aor Bis
nonsingular, there are diagonal matrices
o and and acomplex matrix V
computed such that AVB = BVa.

lin_sol _gen Solves ageneral system of linear See Chapter 1 D2al
equations Ax = b. Using optional D2c1
arguments, any of several related
computations can be performed. These
extratasks include computing the LU
factorization of A using partial pivoting,
representing the determinant of A,

computing the inverse matrix A", and

solving Alx=bor Ax=b giventhe LU
factorization of A.

lin_sol _Isq Solves arectangular system of linear See Chapter 1 D9al
equations D9c
Ax [Ob, in aleast-squares sense. Using
optional arguments, any of several
related computations can be performed.
These extra tasks include computing and
saving the factorization of A using
column and row pivoting, representing
the determinant of A, computing the
generalized inverse matrix AT, or
computing the least-squares solution of

Ax Ob or ATy Od given the factorization
of A. An optional argument is provided
for computing the following unscaled

covariance matrixC = (A7A)"

A-2 + Appendix A: List of Subprograms and GAMS Classification IMSL Fortran 90 MP Library 4.0

lin_sol _self Solves asystem of linear equations Ax= See Chapter 1 D2bla

b, where A is a self-adjoint matrix. Using D2b1b
optional arguments, any of several D2dla
related computations can be performed. D2d1b

These extra tasks include computing and
saving the factorization of A using
symmetric pivoting, representing the
determinant of A, computing the inverse
matrix A, or computing the solution of
AX = b given the factorization of A. An
optional argument is provided indicating
that A is positive definite so that the
Cholesky decomposition can be used.

lin_sol _svd Solves arectangular least-squares system See Chapter 1 D9al
of linear equations Ax [0b using singular D6

value decomposition, A = USV T us ng
optional arguments, any of several
related computations can be performed.
These extra tasks include computing the
rank of A, the orthogonal m x mand n x
n matricesU and V, and the m x n
diagonal matrix of singular values, S

lin_sol _tri Solves multiple systems of linear See Chapter 1 D2a2a
equations AX; = yj,j =1, ...,k Each D2c2a
matrix A; is tridiagonal with the same
dimension, n: The default solution
method is based on LU factorization
computed using cyclic reduction. An
option is used to select Gaussian
elimination with partial pivoting.

lin_svd Computes the singular value See Chapter 2 D6
decomposition (SVD) of arectangular
meatrix, A. This gives the decomposition

A= US/T, whereVisannxn
orthogonal matrix, Uisan mx m
orthogonal matrix, and Sisared,
rectangular diagonal matrix.

NaN Returns, as ascalar function, avalue See Chapter 6 R1
corresponding to the IEEE 754 Standard
format of floating point (ANSI/IEEE
1985) for NaN.

parallel _& Parallel routines for non-negative See Chapter 7 K1a2
nonnegat i ve_| sq constrained linear-least squares based on

B adescent algorithm.
parallel _& Parallel routines for simple bounded See Chapter 7 K1a2
bounded_| sq constrained linear-least squares based on

a descent agorithm.

IMSL Fortran 90 MP Library 4.0 Appendix A: List of Subprograms and GAMS Classification « A-3

rand_gen

ScalLAPACK _Read

ScaLAPACK Wite

show

sort_real

spline_fitting

surface_fitting

bal anc, cbal anc

nor n2, cnor n2
mor n2, cnmor 2
nrnk, cnr n2

build_error_structure

perfect_shift

pwk

tri_solve

french_curve

Generates arank-1 array of random
numbers. The output array entries are
positive and lessthan 1 in value.

Read matrix datafrom afile and placein
atwo-dimensional block-cyclic form on
aprocess grid.

Write matrix datato afile, starting with a
two-dimensional block-cyclic formon a
process grid.

Print rank-1 and rank-2 arrays with
indexing and text.

Sorts arank-1 array of real numbers x so
they results are algebraically
nondecreasing, Y; < VY, <...Y,

Solves constrained |east-squares fitting
of one-dimensional data by B-splines.

Solves constrained |east-squares fitting
of two-dimensiona data by tensor
products of B-splines.

Balances a general matrix before
computing the eigenval ue-ei genvector
decomposition.

Computes the Euclidean length of a
vector or matrix, avoiding out-of-scale
intermediate subexpressions.

Fillsin flags, values and update the data
structure for error conditions that occur
in Library routines. Prepares the
structure so that calls to routine
error_post will display thereason
for the error.

Computes eigenvectors using actual
eigenvalue as an explicit shift. Called by
lin_eig_self.

A rational QR agorithm for computing
eigenvalues of real, symmetrictri-
diagonal matrices. Calledby | i n_svd
and|in_eig_self.

A redl, tri-diagonal, multiple system
solver. Uses both cyclic reduction and
Gauss elimination. Similar in function to
lin_sol tri.

Constrained weighted |east-squares
fitting of B-splines to discrete data, with
covariance matrix.and constraints at
points.

See Chapter 5

See Chapter 7

See Chapter 7

See Chapter 5

See Chapter 5

See Chapter 4

See Chapter 4

L6a

L6c

N1

N1

N1

N6alb

Ela

E2a

D4c

Dla3b

R3

D4c

D4c

D2a2a

Klalal

A-4 + Appendix A: List of Subprograms and GAMS Classification

IMSL Fortran 90 MP Library 4.0

spl i ne_support B-spline function and derivative * Ela
evaluation package

surface _fairing Constrained weighted least-squares * E2b,
fitting of tensor product B-splinesto K1lalb
discrete data, with covariance matrix and
constraints at points.

lin_sol _Isg_con Routines for constrained linear-least * K1a2
lin_sol _I'sq_ing squares based on aleast-distance, dual

| east _proj _distance algorithm.

band_accunul ati on Routines to accumulate and solve * D9al
band_sol ve banded |east-squares problem using

house_hol der Householder transformations.

Paral | el _nonnegative_l sq Routinesfor solving alarge least-squares See Chapter 7 Kla2a
system with non-negative constraints,
using parallel computing.

Par al | el _bounded_I sq Routines for solving alarge least-squares See Chapter 7 Kla2a
system with simple bounds, using
parallel computing.

ScalLAPACK_READ Move data from afile to Block-Cyclic See Chapter 7 N4
form, for usein ScaLAPACK
ScaLAPACK _WRI TE Move data from Block-Cyclic form, See Chapter 7 N4
following usein ScaLAPACK, to afile.
pde_1d_ny Routine for integrating an initial-value See Chapter 8 12al
PDE problem with one space variable. 1232
Remarks

The GAMS classification schemeis detailed in Boisvert et al. (1985).
Other categories for mathematical software are available on the Internet
through the World Wide Web. The current addressis
http://gams.nist.gov/.

IMSL Fortran 90 MP Library 4.0 Appendix A: List of Subprograms and GAMS Classification « A-5

Appendix B: List of Examples

Readers can locate a sample program that will help them when using
IMSL Fortran 90 MP Library within their application codes. Not all
examples are listed here. Note the Operator Examples sectionin
Chapter 6. The 37 programs in this suite use defined operations and
generic functions to implement many of the examples shown below. The
Parallel Examples section of Chapter 6 lists 18 programs that use IMSL
defined operations and generic functions applied to the box data type.
The fina two examples show how to choreograph printed output from
each paralel process, and a surface fitting problem, which uses four

processes.

Example Description Chapter

lin_sol _gen_exl Solve a system with random data. 1

l'in_sol _gen_ex2 Invert arandom matrix; evaluate its determinant. 1

lin_sol _gen_ex3 Solve arandom system with iterative refinement. 1

Iin_sol _gen_ex4 Evaluate arandom matrix exponential. 1

lin_sol _self_exl Solve a symmetric system of normal equations with random data. 1

lin_sol _self_ex2 Solve normal equations using Cholesky method; compute 1
covariance uses random data.

lin_sol _self_ex3 Inverseiteration for an eigenvector of a symmetric matrix with 1
random data.

l'in_sol _self_ex4 Solve aleast-squares problem using iterative refinement, with 1
random data.

lin_sol _Isg_exl Solve aleast-squares problem of data fitting a Chebyshev seriesto 1
agiven function with random independent variable values.

l'in_sol _I sq_ex2 Solve a data-fitting problem, asin 1 i n_sol _| sq_ex1, using 1
the generalized inverse for computing the coefficients.

l'in_sol _Isq_ex3 Two-dimensional least-squares data fitting of radial basis functions 1
to agiven function. Uses random data.

lin_sol _|sq_ex4 L east-squares fitting with an equality constraint by heavy 1

lin_sol _svd_exl
lin_sol _svd_ex2

weighting uses random data.
Solve aleast-squares system with random data.

Compute the polar decomposition of a square matrix with random
data.

IMSL Fortran 90 MP Library 4.0

Appendix B: List of Examples « B-1

lin_sol _svd_ex3
lin_sol _svd_ex4
lin_sol _tri_exl

lin_sol _tri_ex2

lin_sol _tri_ex3

lin_sol _tri_ex4

lin_svd_exl
lin_svd_ex2

lin_svd_ex3
lin_svd_ex4

lin_eig_self_exl
lin_eig_self_ex2

lin_eig_self_ex3

lin_eig_self_ex4

lin_eig_gen_exl
lin_eig_gen_ex2

lin_eig_gen_ex3
lin_eig_gen_ex4
Iin_geig_gen_exl
Iin_geig_gen_ex2

Iin_geig_gen_ex3
lin_geig_gen_ex4

Compress an image, the black interior of an approximate circle,
using SVD.

Inversion of the Laplace Transform of aunit step function, using
SvD.

Solve many tridiagonal systems using cyclic reduction with
random data.

Solve many tridiagonal systems, using iterative refinement. Switch
solution method from Cyclic Reduction to Gaussian Elimination, if
required. Uses random data.

Solve for selected eigenvectors of atridiagonal matrix. Switch
solution method from Cyclic Reduction to Gaussian Elimination, if
required. Uses random data.

Solve a One-Dimensional diffusion PDE. Usesthe IMSL/MATH
LIBRARY DAE solver D2SPG. Solves the tridiagonal corrector
equations in reverse communication mode. Outer |oop solves a
boundary value problem.

Compute SVD of a sguare matrix with random data.

Use SVD to solve linear |east-squares problem with a quadratic
constraint. Uses random data.

Use SVD to compute a GSVD of two random matrices.

Use SVD to solve alinear least-squares problem based on ridge
regression, as cross-validation. Uses random data.

Compute eigenval ues of a self-adjoint matrix with random data.
Compare values with magnitudes of singular values.

Compute complete eigenexpansions of a self-adjoint matrix with
random data.

Compute eigenvalues of self-adjoint matrix. Compute some
eigenvectors using inverse iteration and a symmetric solver. Uses
random data.

Compute solution of a self-adjoint generalized problem by
reduction to an ordinary self-adjoint problem.

Compute the eigenexpansion of areal matrix with random data.

Compute the roots of a complex polynomial equation with random
coefficients.

Solve linear systems with a scalar diagonal parameter with random
data.

Compute condition numbers of eigenvalues to estimate their
accuracy with random data.

Compute the generalized eigenvalues of a matrix pencil with
random data.

Compute the eigenexpansion of a self-adjoint matrix pencil with
random data. Uses options.

Test for solvability of a DAE system with random data.

Compute eigenexpansion of amatrix pencil, where the second
matrix may be singular. Uses random data.

B-2 « Appendix B: List of Examples

IMSL Fortran 90 MP Library 4.0

fast_dft_exl Compute FFT of a complex vector. Transform forward, then 3
backwards. Uses random data.

fast _dft_ex2 Compute the FFT of alinear function plus harmonic terms. 3
Remove the linear trend and transform the residuals. Uses random
data.

fast_dft_ex3 Compute the FFT of acomplex vector. Precompute the multipliers 3
and internal datafor later efficiency. Uses random data.

fast _dft_ex4 Compute the convolution of two periodic sequences. Uses random 3
data.

fast_2dft_exl Compute FFT of acomplex array. Transform forward, then 3
backwards. Uses random data.

fast_2dft_ex2 Compute the FFT of alinear function plus harmonic terms. 3
Remove the linear trend and transform the residuals. Uses random
data.

fast_2dft_ex3 Compute the FFT of a complex vector. Precompute the multipliers 3
and internal datafor later efficiency. Uses random data.

fast_3dft_exl Compute FFT of acomplex array. Transform forward, then 3
backwards. Uses random data.

rand_gen_ex1 Compute the running mean and variance of a sequence of random 5
numbers.

rand_gen_ex2 Start the random number generation with a known seed. Reset the 5
generator after obtaining some numbers.

rand_gen_ex3 Generate integers with the same frequency as a given histogram. 5
Executes until the results are ‘steady-state’ and then lists twenty
samples.

rand_gen_ex4 Generate random numbers using the PDF function 5
(1+cos(x))/ 27, — < x < 1, listing thirty samples.

sort_real _exl Sort an array of random numbers so they are non-decreasing.

sort_real _ex2 Sort any array so it is nonincreasing. Move columns of a matrix
using the output permutation.

nan_ex1l Generate arrays of single and double precision NaNs. Uses the 6
functioni sNaN() to detect the NaNs.

show_ex1 Print all types of rank-1 and rank-2 intrinsic arrays. Reset 5
precision and subscripts for one type.

show_ex2 Prepare output in a CHARACTER array. Reset precision, 5

subscripts and end-of-line sequence for one type.
spline_fitting_exl Natural B-spline interpolation to the function 4
f(x) = exp(-x*/2), x= 0.
spline_fitting_ex2 Shape the B-spline curve that least-squares fits 4
f(x) = exp(—x2 / 2), X = 0, with function and derivative

constraints matching (x).

IMSL Fortran 90 MP Library 4.0 Appendix B: List of Examples « B-3

spline_fitting_ex3

spline_fitting_ex4

surface_fitting_exl

surface_fitting_ex2

surface_fitting_ex3

surface_fitting_ex4

scpk_ex1
scpk_ex2
scpk_ex3
pnl sq_ex1
pnl sq_ex2

pbl sq_ex1
pbl sq_ex2

pde_ex1
pde_ex2
pde_ex3

pde_ex4
pde_ex5
pde_ex6
pde_ex7
pde_ex8
pde_ex9

Use B-spline interpol ation, Gauss-L egendre quadrature and
uniform random numbers to generate random numbers according

to the distribution f(x) = exp(~x*/2), ~1< x<1.

Use piece-wise linear B-splines to fit a periodic curve, the
perimeter of abox in two dimensions.

Use tensor product B-splines to least-squares fit

f(x,y) = exp(—x2 —yz), x=0,y=0.

Use tensor product B-splines to least-squares fit the standard

spherical coordinate parametric representation of a sphere.
Remove regularization.

Use tensor product B-splines to least-squares fit
f(xy) = exp(—x2 - yz), x>0, y=0. Constraints are

of of

f(00)=1--(00) =0, and a—y(o,o) =0.

Use tensor product B-splines to least-squares fit a data set
historically due to Ferguson. Reset regularization and constrain
the surface to be non-negative. Surfaceisfit twice.

Transpose a distributed matrix, in place.

Compute product of distributed matrices.

Solve adistributed linear system with ScaLAPACK.
Solve alarge system of linear inequalities.

Solve alarge linear |east-squares system with non-negativity
constraints.

Solve alarge system with linear equality and inequality
constraints.

Solve alarge non-linear equation with bounded | east-squares as
step control.

Solve an electrodynamics model PDE problem.
Solve for inviscid flow on a plate, amodel PDE problem.

Solve a population dynamics simulation, an integro-differential
PDE problem.

Solve amodel PDE problem in cylindrical coordinates.

Solve a flame propagation model PDE problem.

Solve a ‘hot-spot’ model PDE problem.

Solve for interacting waves, a model PDE problem.
Solve the Black-Scholes PDE for a European call option.

Study many values of a parameter found in exaipgé ex1.
Use several processes and MPI for communicating results.

N NN NN

[oe]

O 0 0 0 0 0

B-4 « Appendix B: List of Examples

IMSL Fortran 90 MP Library 4.0

Appendix C: References

References

Adams, et al.

Adams, Jeanne C., W.S. Brainerd, J.T. Martin, B.T. Smith, and J.L.
Wagener (1992), Fortran 90 Handbook, Complete ANSI/ISO Reference,
McGraw-Hill Book Co., New Y ork.

Aird and Howell

Aird, Thomas J. and Byron W. Howell (1992), The IMSL Error Handler
for FORTRAN, Technical Report 9103, Visual Numerics, Inc., Houston,
Texas.

Anderson, et al.

Anderson, E. et al. (1995), LAPACK Users Guide, SIAM Publications,
Philadelphia, PA.

ANSI/IEEE

ANSI/IEEE Std 754-1985 (1985), |EEE Standard for Binary Floating
Point Arithmetic, IEEE Inc., New Y ork.

Blackford, et al.

Blackford, L. S., et a. (1997), ScaLAPACK Users Guide, SIAM
Publications, Philadelphia, PA.

Blom, et al.

Blom, J. G., Zegeling, P. A., (1994), “ Algorithm 731: A Moving-Grid
Interface for Systems of One-Dimensional Time-Dependent Partial
Differential Equations,” ACM-Trans. Math. Soft., 20, 2, pages 194-214.

IMSL Fortran 90 MP Library 4.0 Appendix C: References: C-1

Boisvert, Howe, and Kahaner

Boisvert, R.E., S.E. Howe, D.K. Kahaner, (1985), GAMS: A framework
for the management of scientific software, ACM Transactions on
Mathematical Software, 11, 313- 355.

Brenan, Campbell, and Petzold

Brenan, K.E., S.L. Campbell, L.R. Petzold, (1989), Numerical Solutions
of Initial-Value Problemsin Differential-Algebraic Equations, Elsevier
Science Publishing Co., Inc., New Y ork.

de Boor

de Boor, Carl (1978), A Practical Guide to Splines, Springer_Verlag,
New York.

Fox, Hall, and Schryer

Fox, P.A., A.D. Hall, and N.L. Schryer, (1978), Framework for a
portable Fortran subroutine library: Machine-dependent constants,
automatic error handling, and dynamic storage allocation, using a stack,
ACM Transactions on Mathematical Software, 4, 176-188.

Franke

Franke, Richard (1982), “ Scattered Data Interpolation: Tests of Some
Methods,”, Mathematics of Computation, 37, 157, pages 181-200.

Fushimi

Fushimi, Masanori (1990), Random number generation with the
recursion X; = X3y A Xi. 3 Journal of Computational and Applied

Mathematics, 31, 105- 118.

Golub and Van Loan

Golub, Gene H. and Charles Van Loan (1989), Matrix Computations, 2d
ed., Johns Hopkins University Press, Baltimore, Md.

Gropp, Lusk, and Skjellum

Gropp, William, Ewing (Rusty) Lusk, and Anthony (Tony) Skjellum
(1994), Using MPI, MIT Press, Cambridge, MA.

Hanson

Hanson, R.J. (1992), A Design of High-Performance Fortran 90
Libraries, Technical Report 9201, Visual Numerics, Inc., Houston,
Texas.

C-2 - Appendix C: References

IMSL Fortran 90 MP Library 4.0

Hanson

Hanson, R.J. (1995), Constrained B-Spline Surface Fitting to Discrete
Data, Technical Report 9503, Visual Numerics, Inc., Houston, Texas.

Hanson and Krogh

Hanson, R.J. and F.T. Krogh (1981), Flexibility in mathematical
software devel opment using option arrays, ACM SSGNUM Newsletter,
Special Issue, ACM.

Hanson, et al.

Hanson, R.J., Art Belmonte, Richard Lehoucq, and Jackie Stolle (1991),
Improved Performance of Certain Matrix Eigenvalue Computations for
the IMSL MATH LIBRARY, Technical Report 9007, Visual Numerics,
Inc., Houston, Texas.

Henrici

Henrici, Peter (1982), Essentials of Numerical Analysis, John-Wiley &
Sons, New York.

Hildebrand

Hildebrand, F.B. (1974), Introduction to Numerical Analysis, 2d ed.,
McGraw-Hill Book Co., New Y ork.

IMSL

IMSL (1994), IMSL MATH/LIBRARY User’s Manual, Version 3.0,
Visual Numerics, Inc., Houston, Texas.

Koelbel, et al.

Koelbel, et al. (1994), The High Performance Fortran Handbook,
MIT Press, Cambridge, MA.

Lawson and Hanson

Lawson, Charles L. and Hanson, R. J. (1995), Solving Least Squares
Problems, Classicsin Applied Mathematics, 15, SIAM Publications,
Philadelphia, PA.

Metcalf and Reid

Metcalf, M. and J. Reid (1990), Fortran 90 Explained, Oxford Science
Publications, Oxford, United Kingdom.

IMSL Fortran 90 MP Library 4.0

Appendix C: References: C-3

Moré, et al.

Morg, J. J., Garbow, B. S., and Hillstrom, K. E. (1982), “Testing
Unconstrained Minimization Software,” ACM-Trans. Math. Soft., 7, 1,
pages 1-16.

NAG

NAG (1991), NAGWare: The Essential f90 Compiler, Releases 2.0a,
NCSU401N.

Pennington, Berzins

Pennington, S. V., Berzins, M. (1994), “ New NAG Library Software for
First Order Partial Differential Equations,” ACM-Trans. Math. Soft., 20,
1, pages 63-99.

Rodrigue

Rodrigue, Garry (1982), Parallel Computation, Academic Press, New
York, NY.

Snir, Otto, Huss-Lederman, Walker, andDongarra

Snir, Marc, Steve Otto, Steven Huss-Lederman, David Walker, and Jack
Dongarra (1996), MPI-The Complete Reference, MIT Press, Cambridge,
MA.

Struik

Struik, Dirk J. (1961), Lectures on Classical Differential Geometry,
Second Edition, Addison-Wesley, Reading, MA.

Verwer, et al.

Verwer, J. G., Blom, J. G., Furzeland, R. M., and Zegeling, P. A,
(1989), “ A Moving-Grid Method for One-Dimensional PDEs Based on
the Method of Lines,” Adaptive Methods for Partial Differential
Equations, Flaherty, J. E., et a., Eds., SIAM Publications, Philadel phia,
PA.

Visual Numerics Products

IMSL Math/Library Special Functions (1994) Part Number 5111A,
Visual Numerics, Inc., Houston, TX.

PV-WAVE Reference Manual, Version 6.0 (1996), Part Numbers 3566,
3567, Visual Numerics, Inc., Houston, TX.

C-4 - Appendix C: References

IMSL Fortran 90 MP Library 4.0

Wahba

Wahba, Grace (1990) Spline Models for Observational Data, SIAM
Publications, Philadelphia, PA.

Wilmott, et al.

Wilmott, P., Howison, S., Dewynne, J. (1995) The Mathematics of
Financial Derivatives, Cambridge University Press, New York, NY.

IMSL Fortran 90 MP Library 4.0 Appendix C: References - C-5

Appendix D: Benchmarking or
Timing Programs

Scalar Program Descriptions

An important question for users concerns the performance of Fortran 90
subprograms compared to equivalent subprograms from the FORTRAN 77
IMSL MATH/LIBRARY.

We have provided a set of main programs shown in Table B. These main
programs call Fortran 90 array functions, in single and double precision,
that compares a Fortran 90 routine with a FORTRAN 77 counterpart. The
main program reads single lines of input:

NSI ZE NTRI ES PREC “Description”
NSI ZE NTRI ES PREC “Description”
QT

The parametaemS| ZE andNTRI ES appear in the summary tables. The
parametePREC has values 1, 2 or 3. The choice depends on whether the
user wants precision of single, double or both versions timed. The array
functions return a

6 x 2 summary table of values:

F90 Version F77 Equivalent
1. Averagetime Averagetime

2. Standard deviation Standard deviation
3. Total time Tota time

4.nsi ze nsi ze
5.ntries ntries

6. Time Units/Sec. Time Units/Sec.

IMSL Fortran 90 MP Library 4.0 Appendix D: Benchmarking or Timing Programs ¢ D-1

Asan example, the programt i me_r and_gen is compiled and linked
with the single and double precision timing functions
s_rand_gen_bench andd_rand_gen_bench.

The two lines of input are;
100000 5 3 “Random Number Benchmarks”

QuUIT

This routine evaluates the elapsed time to compute 100,000 random
numbers obtained withrand_gen from the Fortran 90 MP Library and
rnun (drnun) from the IMSL MATH/LIBRARY. The “Average” is the

mean of the individual elapsed times for 5 calls to the routines, obtaining
100,000 random numbers in each call. The E&v.” is the standard
deviation for that “Average”. This value indicates the variability of the
“Average”. In order for this value to provide any useful information it is
necessary foNTRI ES| > 1. The valu¢NTRI ES| = 1 is acceptable, but

only one time sample and no standard deviation is obtained. Values of

NTRI ES > 0O result in the printing of results as showd &ble A The
numbers in the table will vary depending on the machine and other
factors that impact performance of Fortran codes.

Benchmark of rand_gen (F90) and r nun (F77):
Date of benchmark, (Y, Mo, D, H, M, S): 1994 511 8 58 58
1 3.6000E+00 3.2000E+00 Average
2 4.8990E-01 4.0000E-01 St. Dev.
3 1.8000E+01 1.6000E+01 Total Ticks
4 1.0000E+04 1.0000E+04 Size
5 5.0000E+00 5.0000E+00 Repests
6 5.0000E+01 5.0000E+01 Ticks per sec.
Benchmark of rand_gen (F90) and dr nun (F77):
Date of benchmark, (Y, Mo, D, H, M, S): 1994 511 8 58 59
1 2.8000E+00 3.2000E+00 Average
2 4.0000E-01 4.0000E-01 St. Dev.
3 1.4000E+01 1.6000E+01 Total Ticks
4 1.0000E+04 1.0000E+04 Size
5 5.0000E+00 5.0000E+00 Repests
6 5.0000E+01 5.0000E+01 Ticks per sec.

Table A: Benchmark Summary: r and_gen, rnun, (dr nun)

D-2 « Appendix D: Benchmarking or Timing Programs

IMSL Fortran 90 MP Library 4.0

If NTRI ES < 0 the 6 x 2 functions return the tabular values shown, with
[NTRI ES| samples. No printing is performed with NTRI ES < 0.

To compute a related benchmark such as the rate “random numbers per
second” for single precisiorand_gen, separately calculate

rate = sizex ticks per sec./average
=104x 50/3.6

= 138,889. numbers/sec.

= 0.139 million numbers/sec.

Fortran 90 Codes | FORTRAN 77 Codes

Number | Program Units Timed Timed
1 time_dft.f9o0, fast _dft fftef, fftch
s_dft_bench. 790, dfftcf, dfftch
d_dft_bench. f90
2 time_eig_gen.f90, lin_eig_gen e8crg, de8crg

s_ei g_gen_bench. f 90,
d_ei g_gen_bench. f90
3 tinme_eig_self.f90, lin_eig_self e5csf, debesf
s_eig_sel f_bench.f90
d_eig_sel f_bench.f90
4 time_gei g_gen. f 90, l'in_geig_gen g8crg, dg8crg
s_gei g_gen_bench. f90
d_gei g_gen_bench. f90
5 time_inv_chol . f90, l'in_sol _self | 2nds, dl 2nds
s_i nv_chol _bench. f 90
d_i nv_chol _bench. f 90
6 time_i nv_gen. f 90, l'in_sol _gen I 2nrg, dl2nrg
s_i nv_gen_bench. f 90,
d_i nv_gen_bench. f 90
7 time_inv_|lsq.f90, lin_sol _Isq I sgrr, dlsgrr
s_i nv_l sq_bench. f 90,
d_i nv_l sq_bench. f90

8 time_inv_sel f.f90, lin_sol _self I ftsf, |fssf
s_i nv_sel f _bench. f 90, dl ftsf, dlfssf
d_i nv_sel f _bench. f90

9 time_rand_gen. f 90, rand_gen rnun, drnun

s_i nv_rand_bench. f 90
d_i nv_rand_bench. f 90

Table B: Fortran 90 and FORTRAN 77 Comparisons

IMSL Fortran 90 MP Library 4.0 Appendix D: Benchmarking or Timing Programs « D-3

Fortran 90 Codes Fortran 77 Codes
Number | Program Units Timed Timed

10 tinme_sol _chol . f90, lin_sol _self I ftds, |fsds
s_inv_sol chol.f90, dl ftds, dlfsds
d_inv_sol _chol.f90

11 time_sol _gen. f90, lin_sol _gen Iftrg, Ifsrg
s_sol _gen_bench. f 90, dftrg, dlfsrg
d_sol _gen_bench. f90

12 tinme_sol _|sq.f90, lin_sol _Isq | 2rrv, dl2rrv
s_sol _| sq_bench. f 90,
d_sol | sq_bench. f90

13 tinme_sol _sel f.f90, lin_sol _self | ftsf, |fssf,
s_sol _sel f _bench. f 90, dl ftsf, dlfssf
d_sol _sel f_bench.f90

14 tinme_svd. f 90, lin_svd | svrr, dlsvrr
s_svd_bench. f 90
d_svd_bench. f 90

15 tinme_tri.f9o0, lin_sol _tri Islcr, dlslcr
s_tri_bench. f90
d_tri_bench.f90

16 time_mult.f90 A .x. B mat nul (D, E)
s_mult_bench. f90
d_mult_bench. f90

Table B — continued: Fortran 90 and FORTRAN 77 Comparisons
Notes on the comparable problems:;

1 Perform forward and backward DFT of arandom complex sequence of
sizeNS| ZE.

2. Compute eigenexpansion of arandom real matrix of dimension
NSI ZE x NSI ZE.

3. Compute eigenexpansion of arandom symmetric real matrix of

dimension NSI ZE x NSI ZE.

4, Compute generalized eigenexpansion of arandom matrix pencil of
dimension NSI ZE x NS| ZE.

5. Compute the inverse of a positive definite real matrix of dimension
NSI ZE x NSI ZE. Uses Cholesky method.

6. Compute the inverse of ageneral real random matrix of dimension
NSI ZE x NSI ZE. Uses LU factorization.

D-4 « Appendix D: Benchmarking or Timing Programs

IMSL Fortran 90 MP Library 4.0

7. Compute the generalized inverse of ageneral real random matrix of
dimension (2 x NSI ZE) x NSI ZE. Uses QR factorization for Fortran 90
and SVD for FORTRAN 77.

8. Compute the inverse of areal, symmetric random matrix of dimension
NSI ZE x NSI ZE. Uses Aasen’ s decomposition for Fortran 90 and Bunch-
Kaufman decomposition for FORTRAN 77.

9. Generate NS| ZE random numbers.

10. Solve asingle system of linear equations with a positive definite real
random matrix of dimension NSI ZE X NS| ZE.

11. Solve asingle system of linear equations with ageneral real random
matrix of dimension NSI ZE x NSI ZE.

12. Solve a single |east-squares system of linear equations with areal
random matrix of dimension (2 x NSI ZE) x NS| ZE.

13. Solve asingle system of linear equations with a symmetric real random
matrix of dimension NSI ZE x NSI ZE.

14. Compute the full singular value decomposition of a general real random
matrix of dimension NSI ZE x NSI ZE.

15. Solve NSIZE systems of linear equations of anonsymmetric
NSI ZE x NSI ZE tridiagonal matrix. Uses cyclic reduction for both
Fortran 90 and FORTRAN 77 versions.

16. Compute products of square matrices of size NSl ZE x NSI ZE. The
Fortran 90 version uses the IMSL defined operation C= A .x. B. The
arrays are assumed shape. The FORTRAN 77 version uses
F = mat nul (D, E) where the arrays are assumed size. Identical
problemsA = DandB = Earetimed.

17. Compare times to use SHOW() for writing arandom array of size NSIZE
to a CHARACTER buffer vs. writing the same array to a scratch file.

Parallel Program Descriptions

A set of parallel benchmark programsis shownin Table D. These main
programs call Fortran 90 box data type functions, in single and double
precision. They compare our parallel allocation algorithm to a scalar
sequential method. The main program reads single lines of input:

NSI ZE NTI MES NRACKS PREC ROOT_WORKS “Descri pti on”
QUT to Stop

Two initial lines of output echo the “Description” field, whether or not

the root is working, and the number of processors in the MPI
communicator. The parameté&Sl ZE, NTRI ES and NRACKS appear

in the summary tables. The param@REC has values 1, 2 or 3. The
choice depends on whether the user wants precision of single, double or

IMSL Fortran 90 MP Library 4.0 Appendix D: Benchmarking or Timing Programs ¢« D-5

both versionstimed. The array functions return a 7x 2 summary table of
values. The (1:6, 1) and (1:6,2) elements of this array represent the
results and parameters of the benchmark for the parallel and non-parallel
versions. The (7,1) and (7,2) elements of this array represent the ratio of
the parallel to the scalar times and afirst-order approximation to the
variation in the ratio.

Parallel Box Version Scalar Box Equivalent
1. Averagetime Averagetime

2. Standard deviation Standard deviation

3. Total Seconds Total Seconds

4.nsi ze nsi ze

5. nr acks nracks

6.ntries ntries

7. Parallel/Scalar Ratio Variation in Ratio

Asan example, the programt i me_paral | el _i iscompiled and linked
with the single and double precision timing functions
s _parallel i _benchandd _parallel i bench.

This routine evaluates the time to compute 5 inverse matrices of size 50

by 50 using the defined operator . i . The “Average” is the mean of the
individual elapsed times for 5 calls to the routines, obtaining 5 inverses in
each call. The “StDev.” is the standard deviation for that “Average”.

This value indicates the variability of the “Average”. In order for this
value to provide any useful information it is necessary\icRl ES| > 1.

The valugNTRI ES| = 1 is acceptable, but only one time sample and no
standard deviation is obtained. Valués\oRI ES > O result in the

printing of results as shown irable C The numbers in the table will

vary depending on the machine and other factors that impact performance
of Fortran codesf INTRI ES < 0 the7 x 2 functions return the tabular

values shown, witiNTRI ES| samples. No printing is performed with

NTRI ES < 0.

D-6 « Appendix D: Benchmarking or Timing Programs IMSL Fortran 90 MP Library 4.0

Single precision benchmark of parallel .i . and non-parallel .i.:
Date of benchmark, (Y, Mo, D, H, M, S): 1996 12 23 1016 18
Root not working; Number of Processors = 4

1 1.5815E+00 4.0241E+00 Average

2 2.5031E-01 1.8035E-02 St. Dev.

3 7.9077E+00 2.0121E+01 Total Seconds
4 5.0000E+01 5.0000E+01 Size

5 5.0000E+00 5.0000E+00 Racks per box
6 5.0000E+00 5.0000E+00 Repeats

Non-parallel/parallel averages and variation:

2.5444E+00

3.9129E-01

Double precision benchmark of parallel .i.

and non-parallel .i . :

Date of benchmark, (Y, Mo, D, H, M, S): 1996 12 23 10 16 48
Root not working; Number of Processors = 4

1.6985D+00
9.8576D-01
8.4923D+00
5.0000D+01
5.0000D+00
5.0000D+00

o 00 WN P

4.0372D+00
2.3836D-02
2.0186D+01
5.0000D+01
5.0000D+00
5.0000D+00

Average

St. Dev.

Total Seconds
Size

Racks per box
Repeats

Non-parallel/parallel averages and variation:

2.3770D+00

1.2392D-01

Table C: Performance Summary: Box operator .i.

IMSL Fortran 90 MP Library 4.0

Appendix D: Benchmarking or Timing Programs « D-7

Below isalist of the performance evaluation programs that time the box data computations using
parallel and non-parallel resources.

Number

Program Units

1

10

11

tine_parallel_i.f90,
s_paral l el _i _bench. f 90,

d_paral l el _i _bench.f90

tine_parallel_ix.f90,
s_paral |l el _i x_bench. f 90,

d_paral |l el _i x_bench. f90

tinme_parallel _xi.f90,
s_paral | el _xi _bench. f 90,

d_paral | el _xi _bench. f90

tinme_parallel _x.f90,
s_paral | el _x_bench. f 90,

d_paral | el _x_bench. f90

tinme_parallel_tx.f90,
s_paral |l el _tx_bench. f 90,

d_paral | el _tx_bench. f90

tinme_parallel _xt.f90,
s_paral | el _xt _bench. f 90,

d_paral |l el _xt_bench. f90

tinme_parall el _hx. f90,
s_paral | el _hx_bench. f 90,

d_paral | el _hx_bench. f 90

tinme_parallel _xh.f90,
s_paral | el _xh_bench. f 90,

d_paral | el _xh_bench. f 90

ti me_paral | el _chol . f90,
s_paral |l el _chol _bench. f 90,

d_paral | el _chol _bench. f90

ti me_paral | el _cond. f 90,
s_paral |l el _cond_bench. f 90,

d_paral |l el _cond_bench. f 90

ti me_parall el _rank. f 90,
s_paral | el _rank_bench. f 90,

d_paral |l el _rank_bench. f 90

Function Timed

CHOL(A)
COND(A)

RANK(A)

Table D: Parallel and non-Parallel Box Comparisons

D-8 « Appendix D: Benchmarking or Timing Programs

IMSL Fortran 90 MP Library 4.0

Number Program Units Function Timed

12 time_parallel _det.f90, DET(A)
s_paral |l el _det _bench. f 90,

d_parall el _det_bench. f90

13 time_parallel _orth.f90, ORTH(A, R=R)
s_parall el _orth_bench. f 90,

d_parall el _orht_bench. f90

14 ti me_parallel _svd.f90, SVD(A, U=U, V=V)
s_paral |l el _svd_bench. f 90,

d_parall el _svd_bench. f90

15 time_parallel _normf90, NORM A, TYPE=I)
s_paral |l el _norm bench. f 90,

d_paral |l el _norm bench. f90

16 time_parallel _eig.f90, El G(A, WW
s_paral l el _ei g _bench. f 90,

d_parall el _eig _bench.f90

17 time_parallel fft.f90, FFT_BOX(A)
s_parallel _fft_bench. f90, | FET_BOX(A)

d _parallel _fft_bench.f90

Table D — continued: Parallel and non-Parallel Box Comparisons

IMSL Fortran 90 MP Library 4.0 Appendix D: Benchmarking or Timing Programs « D-9

Index

2

2DFT (Discrete Fourier Transform)
86

3

3DFT (Discrete Fourier Transform)
91

A

Aasen' s method 11, 12
accuracy estimates of eigenvalues,
example 47, 69
Adamsiii
adjoint eigenvectors, example 47, 69
adjoint matrix iii
ainv= optional argument vi
ANSl ii, 164, 165
argument v
arguments, optional subprogram vi
array function
one-dimensiona smoothing 97
two-dimensional smoothing 98

B

bidiagonal matrix 50

BLACS231

block-cyclic decomposition
reading, writing utility 231

Blocking Output 165

boundary value problem 42

Brenan 43

B-spline 95

C
Campbell 43

changing messages 125
Chebyshev polynomials 19
Cholesky
algorithm 12
decomposition 9, 61, 74
factorization 154
method 13
combining Fortran 90 and
FORTRAN 77 routines viii
companion matrix 67
computing
eigenvalues, example 47, 56
therank of A 26
the SVD 47, 48
computing eigenvalues, example 47,
63
condition number 70
convolutions, real or complex
periodic sequences 84
covariance matrix 13, 18, 21
cross-validation with weighting,
example 47, 54
cyclic reduction 1, 34, 35, 37
cyclical 2D data, linear trend 88
cyclical data, linear trend 82

D

DASPG routine 43

datafitting
polynomial 18
two dimensional 24

data, optional vi

de Boor 95

decomposition, singular value 26

derived type function
one-dimensiona smoothing 96
two-dimensional smoothing 98

derived types
one-dimensional smoothing 96
determinant 156
determinant of A 2
DFT (Discrete Fourier Transform)
79
Differential Algebraic Equations 75
differential-algebraic solver 43
diffusion equation 1, 42
direct- access message file 126
discrete Fourier transform 160, 161,
163
inverse 162

IMSL Fortran 90 MP Library

Index - i

E

efficient solution method 68
eigenvalue 158
eigenval ue-eigenvector
decomposition 58, 61, 158
expansion (eigenexpansion) 47, 58
eigenvalues, self-adjoint matrix 14,
56, 62
eigenvectors 1, 40, 56, 59, 61, 62
epack= argument v
equality constraint, least squares 25
errors
printing error messages 123, 301
Euclidean length 171, 172
eva uator function
one-dimensiona smoothing 97
two-dimensional smoothing 98
EVASB routine 40
example
|east-squares, by rows
distributed 251
linear constraints
distributed 256, 257
linear inequalities
distributed 248
linear system
distributed, ScaLAPACK 243
matrix product
distributed, PBLAS 240
Newton's Method
distributed 259
transposing matrix
distributed 236, 237
examples
accuracy estimates of
eigenvalues 69
accur ate least-squar es solution
with iterativerefinement 16
analysisand reduction of a
generalized eigensystem 61
complex polynomial equation
Roots 66
computing eigenvalues 47, 56, 63
computing eigenvectorswith
inverseiteration 47, 59
computing generalized
eigenvalues 71
computing the SVD 47, 48
constraining a spline surfaceto
be non-negative
inter polation to data 120

constraining pointsusing spline
surface 119

convolution with Fourier
Transform 84

cross-validation with weighting
54

cyclical 2D data with a linear
trend 88

cyclical data with alinear trend
82

eigenvalue-eigenvector
expansion of a square matrix
58

evaluating the matrix
exponential 6, 7

Generalized Singular Value
Decomposition 52

generating strategy with a
histogram 130

generating with a Cosine
distribution 132

internal write of an array 139

iterativerefinement and use of
partial pivoting 38

L aplace transform solution 31

larger data uncertainty 76

least squareswith an equality
constraint 25

least-squar es solution of a
rectangular system 27

linear least squareswith a
quadratic constraint 50

matrix inversion and
determinant 1,5

natural cubic spline
interpolation to data 101

parametric representation of a
sphere 116

periodic curves 108

polar decomposition of a square
matrix 29

printing an array 137

reduction of an array of black
and white 30

ridgeregression 54

running mean and variance 126

seeding, using, and restoring the
generator 129

selected eigenvectors of
tridiagonal matrices 40

i - Index

IMSL Fortran 90 MP Library

sdlf-adjoint, positive definite
generalized eigenvalue
problem 74

several 2D transformswith
initialization 90

several transformswith
initialization 83

shaping a curve and its
derivatives 104

solution of multipletridiagonal
systems 35

solving a linear least squares
system of equations 9, 18

solving a linear system of
equations 2

solving parametric linear
systemswith scalar change
68

sort and final movewith a
permutation 136

sorting an array 134

splines model a random number
generator 106

system solving with Cholesky
method 13

system solving with the
generalized inverse 1, 22

tensor product splinefitting of
data 113

test for aregular matrix pencil
75

transforming array of random
complex numbers 79, 86, 91

tridiagonal matrix solving 42

two-dimensional data fitting 24

using inverseiteration for an
eigenvector 1, 14

exampleslist

error messages 310

operator 173

paralel 206

exclusive OR 128

F

factorization, LU 2
FFT (Fast Fourier Transform) 82,
88, 94
FORTRAN 77 40
combining with Fortran 90 ii, viii
interface 40
Fortran 90

combining with FORTRAN 77 viii
languageii
rank-1 array ii
rank-2 array vi
real-time clock 129
Fushimi 128, 129

G

Galerkin principle 43
generalized
eigenvalue 47, 61, 71, 158
feedback shift register (GFSR)
127
inverse
matrix 18, 20, 22
generalized inverse
system solving 1, 22
generator 123, 129, 132
generic root nameii
getting started iv
GFSR agorithm 128
Golub 5, 12, 22, 25, 50, 52, 54, 58,
61, 66
GSVD 52

H

Hanson 58
harmonic series 82, 88
Hessenberg matrix, upper 62, 67
High Performance Fortran

HPF 231
histogram 123, 130
Householder 74

|EEE 164, 165
IMSL Fortran 90 MP Library
generic root nameii
infinite eigenvalues 71
initialization, severa 2D transforms
90
initialization, severa transforms 83
interface block ii
internal write 123, 139
inverse 2
iteration, computing eigenvectors
14, 40, 59
matrix vi, 3, 9, 11, 13
generalized 18, 20

IMSL Fortran 90 MP Library

Index - iii

transform 80, 87, 92
inverse matrix 2
isNaN 165
1SOii
iterative refinement vi, 1, 38
IVPAG routine 43

K
Kershaw 37

L

Laplace transform solution 31

larger data uncertainty, example 47,
76

least squares 9, 18, 24, 25, 26, 31,
32,82, 89

library subprogramsii

linear equations 9

linear least-squares with non-
negativity constraints 246,
247, 248, 254, 256

linear solutions

packaged options 4

linear trend, cyclical 2D data 88

linear trend, cyclical data 82

LU factorization of A 2, 3, 4, 149

M

matrices
adjoint iii
covariance 13, 18, 21
inversevi, 2, 3,9, 11, 13
generalized 18, 20, 22
inversion and determinant 1, 5
orthogonal iii
poorly conditioned 27
unitary iii
upper Hessenberg 67
matrix pencil 47, 71, 75
means 126
message file
building new direct-access
message file 126
changing messages 125
management 124
private message files 126
Metcalf ii
method of lines 43
mistake

missing argument 233
Type, Kind or Rank
TKR 233
Modified Gram-Schmidt algorithm
167

Moore-Penrose 151, 152
MPI 146, 147

paralelism 146

N

NaN (Not a Number) 165
quiet 164
signaling 164
Newton' s method 32, 50
norm 166
normalize 171

o

object-oriented 141
one-dimensional smoothing, check-
list 96
optional argument vi
optional dataiv, vi
optional subprogram arguments vi
ordinary eigenvectors, example 47,
69
orthogonal
decomposition 50
factorization 22
matrix iii
orthogonalized 40, 59

P

parametric linear systems with
scalar change 68
parametric systems 68
partial pivoting 34, 38
PBLAS231
permutation 136
Petzold 43
piece-wise polynomial 96, 97
piecewise-linear Galerkin 43
pivoting
partial 2,5, 11
row and column 18, 22
symmetric 9
polar decomposition 29, 38
polynomial degree 96
printing an array, example 123, 137

iv - Index

IMSL Fortran 90 MP Library

printing arrays 137
private message files 126
PV_WAVE 275

Q

QR agorithm 50, 58
double-shifted 66
QR decomposition 156

R

radial-basis functions 24
random complex numbers,
transforming an array 79, 86,
91
random numbers 126
real numbers, sorting 134
record keys, sorting 136
reduction
array of black and white 30
regularizing term 37
Reid ii
required arguments v, vi
reverse communication 43
ridge regression 47, 54
cross-validation
example 47, 54
Rodrigue 37
row and column pivoting 18, 22
row vector, heavily weighted 25

S

ScalL APACK
contents 231, 232
data types 231, 232
definition of library 231
interface modules 233
reading utility
block-cyclic distributions 233
Schur form 62, 68
self-adjoint
eigenvalue problem 61
linear system 16
matrix 9, 12, 58, 61
eigenvalues 14, 56, 62
tridiagonal 12
Single Program, Multiple Data
SPMD 231
singular value decomposition (SVD)
26, 170

smoothing formulas 22
solvable 75
solving
general system 2
linear equations 9
rectangular
least squares 26
system 18
sorting an array, example 123, 134
square matrices
eigenvalue-eigenvector
expansion 58
polar decomposition 29, 38
subprograms
library ii
optional arguments vi
SVD 48, 52
SVRGN 135

T

testing suite v
transfer 166
transpose 151
tridiagonal 34

matrix 37

matrix solving, example 1, 42
two-dimensional datafitting 24
two-dimensional smoothing, check-

list 97

U

unitary matrix iii
upper Hessenberg matrix 67
using library subprogramsii

\%

VanLoan5, 12, 22, 25, 50, 52, 54,
58, 61, 66

variances 126

variational equation 42

w

World Wide Web
URL for ScaLAPACK User's
Guide 231, 232

IMSL Fortran 90 MP Library

Index - v

	Fortran 90 MP Library User's Guide
	Quick Tips
	Copyright
	Revision History
	Contents
	Introduction
	Chapter 1: Linear Solvers
	Chapter 2: Singular Value and
	Chapter 3: Fourier Transforms
	Chapter 4: Curve and Surface
	Chapter 5: Utilities
	Chapter 6: Operators and Generic Functions - The Parallel Option
	Chapter 7: ScaLAPACK Utilities and Large Scale Parallel Solvers
	Chapter 8: Partial Differential Equations
	Chapter 9: Error Handling and Messages - The Parallel Option
	Appendix A: List of Subprograms
	Appendix B: List of Examples
	Appendix C: References
	Appendix D: Benchmarking or
	Index

